天然气水合物研究历程及发展趋势
天然气水合物研究历程及发展趋势新
天然气水合物研究历程及发展趋势摘要综合国内外关于天然气水合物的研究,概述其从发现、初步研究到深入研究的历程,总结了各阶段国内外天然气水合物研究的成果和进展。
从1810年发现天然气水合物以来,世界各地的科学家对气水化合物的类型和物化性质、自然赋存条件和成藏条件、资源评价、勘探开发手段等进行了广泛而卓有成效的研究。
总结世界各国天然气水合物的研究现状并指出了其发展趋势。
研究表明我国的许多海区具有天然气水合物形成的条件,希望2020年能够进行商业开采。
关键词:天然气水合物(gas hydrates)是一种由气体和水形成的冰状白色固态晶体,常在一种特定的高压低温条件下形成并稳定存在,广泛发育在浅海底层沉积物和深海大陆斜坡沉积地层以及极地地区的永久冻土层中。
目前各国科学家对全球天然气水合物的资源量较为一致的评价为2×1016m3,是剩余天然气储量的136倍(1·56×1 014 m3),如果将此储量折算为地球上的有机碳资源,它将占总资源的一半以上。
1国外天然气水合物的研究现状由于当前化石燃料(包括煤、石油与天然气),特别是其中的石油和天然气能源的短缺,使人们对天然气水合物这种高效潜在能源格外关注,自20世纪90年代以来,世界各国对潜力巨大的新型能源—天然气水合物的研究做了大量投入,已经取得了重大进展。
1995年,美国在海上钻井平台(简称ODP)第164航次中,率先在布莱克海脊布设了3口勘探井,首次有计划地取得了天然气水合物样品。
美国参议院委员会在1998年5月一致通过1418号议案—“天然气水合物研究与资源开发计划”。
把天然气水合物资源作为国家发展的战略能源列入长远计划,决定批准用于天然气水合物资源研究开发的每年投入为2 000万美元,计划到2015年实现商业性开采。
2002年4月,在圣彼德堡召开的国际海洋矿产会议上,美国地质调查局的W·J·Wintres展示的天然气水合物和沉积物检验实验室装置(简称GHASTLI)代表了当前天然气水合物模拟实验的最高水平,正在进行的是自然界和实验室形成的天然气水合物-沉积物的物理性质的研究。
天然气水合物研究与开发
天然气水合物研究与开发天然气水合物是一种新型的燃料资源,其储量相当丰富,可成为未来能源转型的重要后备力量。
目前,天然气水合物研究与开发已经成为全球能源科技的热点。
一、什么是天然气水合物天然气水合物,是一种以天然气和水形式结合的化合物,也称为天然气冰或脆冰。
它的分子结构是由天然气分子和水分子构成的六边形晶格结构,其中天然气占70%左右,水分子占30%左右。
由于这种化合物在常温常压下呈脆性,有如冰块,因此被称为水合物。
天然气水合物分布广泛,主要分布在浅海和大陆架上,特别是北极地区、南海和日本海等开垦较少的区域。
据估算,全球天然气水合物储量超过14万亿立方米,其中中国的海域储量最高,达3400亿立方米以上,是世界最大的天然气水合物资源国家。
二、天然气水合物研究与开发现状天然气水合物研究和开发虽然起步较晚,但近年来取得了密集的进展。
目前,全球主要的天然气水合物开发国家包括日本、美国、加拿大、印度、中国等。
在日本,多家大型能源公司已经积极投资天然气水合物的开发研究。
日本已经建立了一系列天然气水合物研究机构,主要研究领域包括天然气水合物开采、运输、存储等方面。
美国和加拿大也在积极开展天然气水合物研究工作,主要集中在研究天然气水合物的资源量和开采技术等。
美国已经成立了多个天然气水合物研究中心和联合实验室,而加拿大则在开采海域天然气水合物方面颇具优势。
在印度,天然气水合物研究和开发也备受重视。
印度天然气公司和国家天然气水合物公司联合投资,开展天然气水合物研究和开采工作。
中国也将天然气水合物作为战略能源资源来进行研究开发。
自2013年以来,中国天然气水合物开发基地建设进展迅速,中国海油、中海油、中化集团等多家国内大型能源公司也进行了天然气水合物研究和开发工作。
三、天然气水合物的优缺点与传统燃料相比,天然气水合物具有许多优点。
首先,天然气水合物储量丰富,可作为未来的主要能源资源;其次,天然气水合物燃烧释放出的二氧化碳排放量较低,不会对环境造成较大污染;最后,天然气水合物与液化天然气相比,其产生的碳排放量更少,能源利用效率更高。
天然气水合物研究的现状与发展前景
天然气水合物研究的现状与发展前景天然气水合物是一种新的天然气储藏形式,其在低温高压条件下,天然气和冰形成的固态混合物。
据统计,全球约有70%的天然气存在于水合物中,其储量远大于普通天然气。
因此,天然气水合物的研究与开发一直备受关注。
本文将就天然气水合物的研究现状和发展前景进行探讨。
一、研究现状目前,天然气水合物的研究已有很大的进展。
从1969年日本首次发现天然气水合物以来,到现在全球已有多个国家和地区参与了相关研究。
这些国家包括俄罗斯、美国、加拿大、挪威、日本、韩国等。
这些国家的研究涉及了天然气水合物的基本特性、地质分布、形成机制、采集与利用等方面。
1.基本特性天然气水合物的基本特性包括化学组成、晶体结构、物理性质等。
研究表明,天然气水合物的主要化学成分是甲烷,还可能含有一些其他气体分子,如乙烷、丙烷、氮气、二氧化碳等。
晶体结构方面,天然气水合物通常呈现出多晶、单晶或腔体晶体结构。
物理性质方面,天然气水合物的稳定条件是低温高压,其保持固态状态的温度和压力取决于化学成分和晶体结构。
2.地质分布天然气水合物主要分布在世界的海洋沉积物、沉积岩等区域。
其中,在北极地区、日本海、南海等区域,天然气水合物的分布较为集中。
此外,在陆地上也有少量天然气水合物存在,如中国青海湖地区、加拿大麦肯齐河流域等。
3.形成机制天然气水合物的形成是多种环节相互作用的结果。
主要包括天然气源、低温高压条件、水分子等因素。
研究表明,在构造活跃的地震带、断层带以及海底渗漏区,天然气可以通过多种途径注入到水体中。
然后,由于低温高压等条件,水分子形成的冰晶网络能够促进天然气分子的聚集形成天然气水合物。
4.采集与利用天然气水合物的采集与利用一直是一个难题。
由于天然气水合物稳定条件苛刻,因此采集和储存的难度很大。
目前,全球尚未有天然气水合物开发利用的商业化生产模式。
但是,各国正在积极研发天然气水合物采集、储存、转化等技术,以期为未来能源需求提供新的解决方案。
天然气水合物开发技术的研究
天然气水合物开发技术的研究引言天然气水合物是一种在海洋沉积物中广泛存在的天然气形式,其是一种结晶态的混合物,包括天然气(甲烷、乙烷等)和水分子。
天然气水合物在存储方面具有巨大的优势,仅在海洋上就蕴藏了数量庞大的储量。
由于其能源密度高、清洁、环保等优良特性,广受人们赞誉。
然而,目前天然气水合物的开发利用技术尚不成熟,存在着诸多难题和挑战。
本文将从天然气水合物开发技术的角度,来阐述其研究现状和未来趋势。
一、天然气水合物开发技术现状1. 采集技术现有天然气水合物采集技术主要包括钻探、热水注入和气体置换法等。
其中,热水注入法是目前应用最为广泛的采集方法,其主要原理为利用高压高温下的热水,将水合物释放出来。
2. 运输技术天然气水合物是通过管道、船舶等方式进行输送的。
其中,珠海深浅水运输队列技术、靠泊岸边LNG转移技术和浮式生产储运装置技术都是应用广泛的输送技术。
3. 加工技术天然气水合物加工技术可分为两种,一种是从水合物中提取气体进行加工;另一种是将水合物直接转化成甲烷气。
目前,水合物加工技术还面临着研究不充分和高成本等问题。
二、存在的问题1. 采集技术方面:采集设备难以耐受海洋环境下的腐蚀和压力,对于深海开采技术尚不成熟。
2. 运输技术方面:运输管道和设备的设计以应对极端天气和海洋环境的能力不足。
3. 加工技术方面:天然气水合物提取技术存在能耗和成本较高的问题,加工方法尚不成熟。
三、未来趋势天然气水合物的开采难度较大,目前尚需进一步研究和开发,得出更加有效和经济的开采技术。
预计未来几年,天然气水合物开采技术将面临以下几方面的挑战和临床:1. 从海底中开采天然气水合物需要克服的技术难题是如何在极端高压、低温的环境中进行作业和采集?2. 在遥远的钻机,如何保障人员的生命安全和精神状态?3. 现有的天然气水合物开采技术具有较高的能耗和成本,如何缓解开采成本上涨的压力?4. 如何将天然气水合物开采技术转化为现实生产力,推进能源领域的可持续发展?总结天然气水合物的勘探、开采、加工利用技术等均面临较大的难度及挑战,应立足于推广研究,成为可靠且经济的能源途径,其价值远远超出了其困难和挑战。
天然气水合物研究进展与开发技术概述
未来发展方向
未来发展方向
随着科技的不断进步,天然气水合物的研究和开发将迎来更多的发展机遇。 未来,天然气水合物的研究将更加深入,涉及的领域将更加广泛。在开发技术方 面,将会发展更加环保、高效、低成本的技术,如微生物法、化学试剂法和纳米 技术等。同时,加强天然气水合物全产业链的研发和优化,推动其在能源、化工、 制冷、航空航天等领域的应用。
研究进展
研究进展
天然气水合物是指在一定条件下,甲烷等气体分子与水分子形成的笼形化合 物。其形成和稳定主要受温度、压力、气体成分和盐度等多种因素影响。近年来, 随着地球科学、地质工程、能源工程等领域的发展,人们对天然气水合物的研究 逐步深入。
研究进展
目前,全球范围内天然气水合物的研究主要集中在以下几个方面:(1)形成 机理与分布规律;(2)物理性质与化学性质;(3)开采技术与经济性;(4) 环境影响与安全性。尽管取得了许多重要成果,但仍存在许多挑战,如天然气水 合物的稳定性和开采过程中的环境风险等。
天然气水合物储运技术的研究现状
2、高效开采技术研究:针对天然气水合物的开采,研究者们开发出了一系列 新型的高效开采技术,如水平井技术、多分支井技术等,大大提高了开采效率。
天然气水合物储运技术的研究现状
3、储运安全技术研究:针对天然气水合物储运过程中的安全问题,研究者们 通过模拟和分析不同情况下的风险因素,提出了一系列有效的安全防技术概述
天然气水合物储运技术概述
天然气水合物,又称可燃冰,是由天然气(主要是甲烷)与水在高压、低温 条件下形成的笼形结晶化合物。由于其储存量大、燃烧清洁、开采成本低等优势, 被视为一种具有巨大潜力的能源。然而,这种化合物的非稳定性以及难以运输的 问题,一直是阻碍其开发利用的主要难题。因此,天然气水合物的储运技术成为 近年来研究的热点和难点。
中国天然气水合物调查研究现状及其进展_张洪涛
中国地质GEOLOGYINCHINA第34卷第6期2007年12月Vol.34,No.6Dec.,2007天然气水合物是一种新型的潜在能源,主要分布于海底沉积物和陆上永久冻土带中。
据初步估算,全球天然气水合物资源量约为21×1015m3[1],是煤炭、石油和天然气资源总量的2倍,足够人类使用千年以上。
自1810年英国科学家Davy在实验室合成了氯气水合物以来,人类就从未停止过对天然气水合物的研究和探索,期间也曾出现过数次研究高潮,20世纪60年代特别是80年代末以来,由于其巨大的能源潜力和环境效应,世界各国开始对天然气水合物展开了全方位研究,掀起了天然气水合物的又一个研究高潮。
中国对天然气水合物的调查研究起步较晚,20世纪80年代初仅有少部分研究人员关注国际天然气水合物的研究进展,并将相关成果介绍到国内,90年代末期才进入了快速发展时期,初步形成了天然气水合物调查研究的小高潮。
笔者拟对中国天然气水合物调查研究的历史、现状及其问题进行初步总结,并对其发展前景进行展望,供相关部门和人员参考。
1天然气水合物调查研究历史回顾自人类发现天然气水合物以来,大致经历了实验室研究、管道堵塞及防治、资源调查与开发利用4个阶段(图1)。
传统上一直认为天然气水合物的研究历史始自1810年的Davy合成氯气水合物,但早在1778年,英国化学家Priestley有可能就在实验室里发现了二氧化硫水合物[2]。
之后的研究几乎均在化学家们的实验室中进行,试图合成各种各样的水合物,并希望能定量地描述它们的化学成分及其物理性质。
1934年,美国科学家Hammerschmidt发现天然气水合物会堵塞输气管道,影响天然气的输送,为此美国、前苏联、荷兰、德国等国先后开展了水合物的形成动力学和热力学研究以及如何防治输气管道中形成水合物问题,由此进入到管道堵塞及防治研究阶段,这一阶段的水合物被认为是令人厌烦的东西。
1965年,前苏联在西伯利亚麦索亚哈(Messoyakha)油气田区首次发现天然产出的天然气水合物,之后美国、加拿大也相继在阿拉斯加、马更些(Mackenzie)三角洲等陆上冻土区中发现了天然气水合物。
天然气水合物的发现历史
核心提示:在世界海域内已有60处直接或间接发现了天然气水合物,其中在18处钻探岩心中见到天然气水合物,42处见有天然气水合物的地震标志BSR。
1810年,首次在实验室发现天然气水合物。
1934年,前苏联在被堵塞的天然气输气管道里发现了天然气水合物。
由于水合物的形成,输气管道被堵塞。
这一发现引起前苏联人对天然气水合物的重视。
1965年,前苏联首次在西西伯利亚永久冻土带发现天然气水合物矿藏,并引起多国科学家的注意。
1970年,前苏联开始对该天然气水合物矿床进行商业开采。
1970年,国际深海钻探计划(DSDP)在美国东部大陆边缘的布莱克海台实施深海钻探,在海底沉积物取心过程中,发现冰冷的沉积物岩心嘶嘶地冒着气泡,并达数小时。
当时的海洋地质学家非常不解。
后来才知道,气泡是水合物分解引起的,他们在海底取到的沉积物岩心其实含有水合物。
1971年,美国学者Stoll等人在深海钻探岩心中首次发现海洋天然气水合物,并正式提出“天然气水合物”概念。
1974年,前苏联在黑海1950米水深处发现了天然气水合物的冰状晶体样品。
1979年,DSDP第66和67航次在墨西哥湾实施深海钻探,从海底获得91.24米的天然气水合物岩心,首次验证了海底天然气水合物矿藏的存在。
1981年,DSDP计划利用“格罗玛·挑战者号”钻探船也从海底取上了3英尺长的水合物岩心。
1992年,大洋钻探计划(ODP)第146航次在美国俄勒冈州西部大陆边缘Cascadia海台取得了天然气水合物岩心。
1995年,ODP第164航次在美国东部海域布莱克海台实施了一系列深海钻探,取得了大量水合物岩心,首次证明该矿藏具有商业开发价值。
1997年,大洋钻探计划考察队利用潜水艇在美国南卡罗来纳海上的布莱克海台首次完成了水合物的直接测量和海底观察。
同年,ODP在加拿大西海岸胡安-德夫卡洋中脊陆坡区实施了深海钻探,取得了天然气水合物岩心。
至此,以美国为首的DSDP及其后继的ODP在10个深海地区发现了大规模天然气水合物聚集:秘鲁海沟陆坡、中美洲海沟陆坡(哥斯达黎加、危地马拉、墨西哥)、美国东南大西洋海域、美洲西部太平洋海域、日本的两个海域、阿拉斯加近海和墨西哥湾等海域。
2024年天然气水合物市场前景分析
2024年天然气水合物市场前景分析概述天然气水合物(Natural Gas Hydrate,简称NGH)是一种富含天然气的固体,由水分子通过氢键与天然气分子结合而成。
随着能源需求的增长和传统能源资源的逐渐减少,天然气水合物作为一种新兴的能源资源备受关注。
本文将对天然气水合物市场前景进行分析,探讨其市场潜力和发展趋势。
市场潜力1. 丰富的储量天然气水合物是一种巨大的天然气资源。
据估计,全球天然气水合物储量可达到2000万亿立方米,相当于常规天然气储量的数十倍。
这意味着天然气水合物具有巨大的潜在市场潜力。
2. 清洁的能源相比于煤炭和石油,天然气水合物燃烧产生的二氧化碳排放量较低,对环境影响较小。
在全球追求清洁能源的大背景下,天然气水合物作为一种低碳清洁能源具有较高的市场需求。
3. 广泛的应用领域天然气水合物不仅可以用作燃料,还可以作为化工原料和工业燃料。
另外,天然气水合物还具备储气、运输等多种应用领域。
这些广泛的应用领域为天然气水合物市场带来了更多的商机。
发展趋势1. 技术突破目前,天然气水合物的开采和利用技术尚不成熟。
但随着科技的发展,相关技术正在不断完善,天然气水合物的开采成本将逐渐降低,推动市场的发展。
2. 政策支持各国政府纷纷推出支持天然气水合物开发的政策措施。
例如,日本政府制定了天然气水合物开发的战略计划,韩国政府也积极推动天然气水合物的研究与应用。
政策的支持将为天然气水合物市场提供良好的发展环境。
3. 产业链完善天然气水合物的开采和利用需要建立起完善的产业链,包括勘探、开采、运输、储存等环节。
目前,天然气水合物产业链正在逐步建设中,未来市场发展将得到更好的支撑。
结论天然气水合物作为一种具有巨大市场潜力的能源资源,具备丰富的储量和广泛的应用领域。
在政策支持和技术进步的推动下,天然气水合物市场有望迎来快速发展。
然而,需要注意的是,天然气水合物的开采和利用仍面临技术挑战和环境风险,需要进行深入研究和全面评估。
天然气水合物的研究与开发
天然气水合物的研究与开发引言天然气水合物是一种具有广泛应用前景的天然能源资源。
它是在高压、低温条件下,天然气分子和水分子结合形成的晶体物质。
天然气水合物具有高能量含量、相对低的碳排放以及丰富的储量等优点,因此受到了研究和开发的广泛关注。
本文将介绍天然气水合物的研究与开发现状,并探讨其应用前景和挑战。
天然气水合物的形成与特性形成过程天然气水合物的形成需要天然气和水分子在适当的压力和温度条件下结合形成。
当水分子的结构具有空腔时,天然气分子可以进入这些空腔,形成天然气水合物。
一般情况下,天然气水合物的形成需要较低的温度和较高的压力,通常发生在海洋和陆地沉积物中。
特性天然气水合物具有以下特性:•高能量含量:因为天然气水合物中含有大量的天然气分子,所以其能量含量相对较高。
•低碳排放:与传统燃烧燃料相比,天然气水合物燃烧释放的二氧化碳较少,对环境的影响较小。
•储量丰富:据估计,全球天然气水合物储量约为20万亿立方米,远远超过常规天然气储量。
•相对稳定:天然气水合物在适当的压力和温度条件下相对稳定,有利于储存和运输。
天然气水合物的研究与开发现状研究状况天然气水合物的研究始于20世纪30年代,但直到最近几十年才受到广泛关注。
目前的研究主要集中在以下几个方面:1.形成机制:研究人员通过实验和模拟,深入研究天然气水合物的形成机制,以便更好地理解其在自然界中的分布规律。
2.存储与运输:天然气水合物的储存和运输是其应用的关键问题,目前的研究主要集中在提高储存和运输效率,以及探索新的存储和运输技术。
3.开发利用技术:天然气水合物的开发利用是一个复杂的过程,涉及到开采、提取和转化等方面的技术。
目前,研究人员致力于改进开发技术,以提高天然气水合物的利用效率。
开发现状天然气水合物的开发目前还处于初级阶段,但已经有一些开发项目取得了一定的进展。
例如,日本、韩国和加拿大等国家都在海洋天然气水合物的开发上进行了一系列试验和项目。
这些项目主要集中在水合物开采、提取和转化等方面,以解决天然气水合物的开发与利用问题。
天然气水合物资源的研究与开发
天然气水合物资源的研究与开发天然气水合物,是指在一定温度、压力条件下,天然气分子在水分子中形成晶体结构的天然气资源。
它是一种新型的能源资源,被誉为“气体能源的石油”,其蕴藏量超过了传统石油和天然气的总和,预计将成为未来能源供应的重要来源。
然而,天然气水合物的开发与利用面临着诸多技术和经济难题,如何实现其商业化开采尚需解决的问题颇多。
天然气水合物的研究历史可以追溯到20世纪60年代,当时日本开始对其展开系统性的研究。
而直到2000年代,我国也开始在渤海湾、南海等地进行实地勘探和试采研究。
目前全球已发现天然气水合物资源丰富的地区主要分布在北极海域、日本、美国、中国等国家。
天然气水合物的制备基本依赖于高压、低温等复合条件,而这些条件在实际开采和利用过程中十分困难。
目前商业开发主要采用自然气水合物的分离和气化技术,其核心在于将天然气从水合物中分离出来,然后进行气化处理,使其成为可供使用的燃气资源。
由于天然气水合物分布位置深海和寒冷地带,开采条件异常苛刻,因此天然气水合物的开发成本也非常之高。
实际上,天然气水合物的开发利用还存在一些瓶颈问题,如高温、高压、储运、环保等问题均需要重点研究。
天然气水合物具有丰富的资源蕴藏量和广泛的应用前景,但现阶段其开发情况尚处于起步阶段。
未来可通过优化勘探技术与工艺技术,提升其开采效率和经济性,促进天然气水合物的全面开发与利用。
此外,应从保护海洋生态和环境等方面出发,对天然气水合物开采行业进行政策引导和规范管理,以确保能够长久地利用这些资源。
总之,天然气水合物资源的研究与开发是一个系统性、复杂性和长期性的工程,在未来的发展过程中还需要各方共同努力,不断提高技术水平和管理水平,全面推动其开采和利用,以促进我国能源结构优化和可持续经济发展。
天然气水合物的研究与开采
天然气水合物的研究与开采天然气水合物是一种属于天然气气体水合物的天然气资源,在大量存在海洋底部和固态地下,尤其是极地和深海区域。
由于其储量丰富,与石油和煤炭不同的是天然气水合物是可再生能源,以及其燃烧所排放的二氧化碳量比石油和煤炭更低,因此存在着巨大的潜力与应用前景。
然而由于其结构高度复杂,開采过程也非常难以執行,因此天然气水合物的開采面临著诸多挑战。
一、天然气水合物的构成及研究进展天然气水合物是由水分子组成的固态物质,其中包含大量甲烷气(CH4),并含有沥青、腐植物质、硫化氢等杂质。
其在自然界中存在两种类型的水合物,一种是滨海型,主要存在于海底的上覆地层沉积物中;另一种是深海型,主要形成于深水区域的超深度和大深度的海洋基岩的下方断层和骨架化区域。
目前在全球天然气水合物的研究中,日本、加拿大、奥地利、挪威、美国等国家均在积极探索开采技术。
由于天然气水合物的结构高度复杂,其开采也相当困难。
其主要挑战来自开采过程中可能遇到的颗粒结构的改变和不均匀分布,需要开发新型的钻探技术和运输技术,以便有效开采。
此外,还需要考虑水合物中的沥青和硫化氢等杂质去除等问题。
尽管目前天然气水合物的开采存在种种难题,但积极探索新型钻井技术和未来更加高效的运输和开采技术有望未来解决难题,推动天然气水合物的更多应用。
二、天然气水合物的开采技术之钻探技术天然气水合物的研究与开采的难度在很大程度上取决于这种资源的结构复杂。
由于其结构的特殊性,天然气水合物的开采需要研发相应的钻探技术。
目前,天然气水合物的钻井技术主要分为两种类型:传统的基本钻探技术和新型的海底操作填隙法(MDOF)技术。
两种钻探技术分别适用于不同的水合物分布类型和环境。
传统的基本钻探技术主要适用于滨海型和陆上天然气水合物,这种技术通过钻探器进行钻井,从钻探孔中提取出天然气水合物。
MDOF技术则主要适用于深海型天然气水合物,在水中进行作业、钻井和采集。
该技术在海底地区使用填隙剂进行填隙操作,将填隙剂注入到水合物体内,钻探孔口恢复气压,然后将填隙剂排出。
天然气水合物研究历程及现状
天然气水合物研究历程及现状1.世界天然气水合物研究历程回顾从1810 年英国Davy在实验室首次发现气水合物和1888 年Villard人工合成天然气水合物后,人类就再没有停止过对气水合物的研究和探索。
在这将近200年的时间内,全世界对天然气水合物的研究大致经历了3 个阶段,如表1-1[2]所示。
第一阶段是从1810 年到20 世纪30 年代初。
(1810年,Davy 合成氯气水合物并于次年发表文章正式提出水合物一词。
)在这120 年中,对气水合物的研究仅停留在实验室,且争议颇多。
第二阶段是大体可看作是自1934年起始的。
当年美国Hammerschmidt发表文章,提出天然气输气管道堵塞与水合物有关,从负面加深了对气水合物及其性质的研究。
在这个阶段,研究主题是工业条件下水合物的预报和清除、水合物生成阻化剂的研究和应用。
第三阶段是从上世纪60年代至今,全球天然气水合物进入大范围勘探普查开发的格局。
上世纪60 年代特罗费姆克等发现了天然气可以以固态形式存在于地壳中。
特罗费姆克等的研究工作为世界上第一座天然气水合物矿田——麦索雅哈气田的发现、勘探与开发前期的准备工作提供了重要的理论依据,从而大大拓宽了天然气地质学的研究领域。
美国学者在上世纪70年代也开始重视气水合物研究,并于1972年在阿拉斯加获得世界上首次确认的冰胶结永冻层中的气水合物实物。
天然气水合物成藏理论预测的成功、测得成藏理论区气水合物地球物理,地球化学异常,以及通过钻探取得水合物实样,这一系列的成果被认为是上世纪能源问题的重大发现。
可以说,从上世纪60 年代至今,全球气水合物研究跨入了一个崭新的阶段——第三个阶段(把气水合物作为一种能源进行全面研究和实践开发的阶段) ,世界各地科学家对气水合物的类型及物化性质、自然赋存和成藏条件、资源评价、勘探开发手段以及气水合物与全球变化和海洋地质灾害的关系等进行了广泛而卓有成效的研究。
天然气水合物研究已经发展成为包括天然气水合物地质学、天然气水合物地球化学、天然气水合物区域工程地质学和天然气水合物地球物理调查以及天然气水合物与全球气候变化在内的一门新兴学科。
天然气水合物研究进展
天然气水合物研究进展天然气水合物是天然气与水在一定条件下形成的类似冰的笼形晶体水合(clathratehydrate),俗称‘“可燃冰”。
自然界中存在的天然气水合物的主要气体成分为甲烷。
虽然早在19世纪在实验室中就发现了气体水合物,但仅在油气生产和运输管道、设备中发现水合物堵塞问题.天然气水合物的研究才引起人们的重视。
随着在冻土带和海洋中天然气水合物发现量的不断增大,其作为一种诱人的未来能源为许多国家政府重视。
天然气水合物可看作一类主、客体相互作用的水合物。
作为主体的水分子通过氢键作用形成不同形状的笼,客体分子则居于笼中,主体分子和客体分子间通过范德华力相互作用,客体分子的大小决定水合物的种类。
到目前为止,已经发现的天然气水合物结构有I型、II型和H型三种,其结构特征见表1。
水合物相平衡研究水合物相平衡的研究主要就是通过实验方法和数学预测手段确定水合物的相平衡条件。
在油气设备、管道中形成的水合物会引起堵塞,影响生产,甚至使管线乃至整个油井报废。
因此,研究天然气水合物的相平衡具有重要的实际意义。
为防止水合物形成,目前在油气工业生产、运输过程中普遍采用加人甲醇或乙二醇的方法,改变水合物的生成条件,防止水合物堵塞设备或管道。
有关实验表明,当加人50%(重量)甲醇时,水合物固液平衡曲线向低温方向移动了25-30℃。
近年来Sloan等人研究了加人适量的表面活性剂,形成反胶团或微乳,从而抑制水合物形成的方法。
日本的一些研究人员把水合物的开采与空气中二氧化碳的分离结合起来,对二氧化碳相平衡的研究也日益受到重视。
Ohgaki等人(1996)在实验室中验证了将空气中的二氧化碳分离和天然气水合物的开采结合起来的可能性。
自Ripmeester(1987)发现H型水合物以来,H型水合物相平衡的研究已成为水合物研究的一个重要方向。
1.含醇类或电解质体系由于油气工业生产中一般通过注人甲醇或乙二醇等抑制剂的方法防止水合物的形成,所以对合甲醇/乙二醉抑制剂的相平衡体系研究较多.并具有重要的实际应用价值。
天然气水合物发展史
Davy于1810年首次在伦敦皇家研究院实验室成功地合成了氯气水合物,引起了化学家们的极大关注,如法国Berthelot相Villard,美国Pauling等化学家在科学辩论的同时还进行了各种水合物合成实验,成功地合成了系列气水合物。
本世纪初期30年代,人们发现输气管道内形成白色冰状固体填积物,并给天然气输送带来很大麻烦,石油地质学家和化学家便把主要的精力放在如何消除气水合物堵塞管道方面。
直到60年代苏联在开发麦索亚哈气田时,首次在地层中发现了气水合物藏[4],人们才开始把气体水合物作为一种燃能研究。
此后不久,在西伯利亚、马更些三角洲、北斯洛普、墨西哥湾、日本海、印度湾、中南海北坡等地相继发现了气水合物,这使人们意识到气水合物是一种全球性的物理—地质作用现象,便掀起了70年代以来空前的水合物研究热潮。
在石油即将耗尽的现代,科学家积极的寻找有效的替代能源,近年来在海中发现的大量天然气水合物固体,天然气水合物(natural gas hydrates)简称为气水合物(gas hydrates),是由主成分水分子组成似冰晶笼状架构,将气体分子等副成分包裹于结晶构造空隙中之一种非化学计量(non-stoichiometric)的笼形包合物结晶。
所包合的气体分子组成可能有甲烷(CH4)、乙烷(C2H6)、丙烷(C3H8)、异丁烷(C4H10)、正丁烷(C4H10)、氮(N2)、二氧化碳(CO2)或硫化氢(H2S)等。
自然界产出的气水合物所含气体分子组成常以甲烷为主,故也有些学者将气水合物通称为甲烷水合物(methane hydrate),而水合甲烷(methane hydrate),成了目前的当红替代能源研究目标之一。
布鲁克黑文国立实验室的化学教授马哈詹等人,13日在加利福尼亚州圣叠戈举行的美国化学学会全国会议上报告说,他们建造了一个能放在桌面的耐压、耐低温透明舱室。
研究人员在这个实验舱中仿真海底环境,人工制造出水合甲烷。
天然气水合物资源开发现状及最新进展
天然气水合物资源开发现状及最新进展摘要:天然气水合物是20世纪发现的一种新型后备能源,被喻为21世纪石油天然气的理想替代资源,是目前地球上尚未开发的最大未知能源库。
本文介绍了天然气水合物的开发历程、资源状况、现有的开发技术方法与发展趋势,同时也总结了天然气水合物开发领域取得最新成果和认识。
最后得出天然气水合物的研究方向,并建议广泛的参与国际合作。
关键词:开发天然气水合物资源现状开发技术最新进展一、天然气水合物开发历程天然气水合物是以甲烷CH4为主的气态烃类物质(含少量CO2、H2S等非烃分子)充填或被束缚在笼状水分子结构中形成的冰晶状化合物,是在高压、低温条件下形成的。
它是继煤、石油和天然气等能源之后的一种潜在的新型能源,广泛存在于沟盆体系、陆坡体系、边缘海盆陆缘和北极地区的永久冻土区。
20世纪60年代初,前苏联借助地球物理方法首次在西伯利亚永冻层中发现了天然气水合物,随后美、加在加拉斯加北坡、马更些三角洲冻土带相继发现了大规模的水合物矿藏。
70年代初英国地调所科学家在美国东海岸大陆边缘所进行的地震探测中发现了“似海底反射层”(Bottom Similating Reflector,英文称BSR)。
紧接着于1974年又在深海钻探岩芯中获取天然气水合物样品并释放出大量甲烷,证实了“似海底反射”与天然气水含物有关。
70年代和80年代,深海钻探计划(DSI)和大洋钻探计划(ODP)陆续实施,在全球多处海底发现了天然气水合物,大规模的国际合作相继开展,天然气水合物研究以及综合普查勘探工作进人全面发展阶段。
1991年美国能源部组织召开“美国国家天然气水合物学术讨论会”。
1995年冬ODP64航次在大西洋西部布莱克海台组织了专门的天然气水合物调查,打了一系列深海钻孔,首次证明天然气水会物广泛分布,肯定其具有商业开发的价值。
同时指出天然气水会物矿层之下的游离气也具有经济意义。
如今,新技术、新方法的大量应用使天然气水合物的研究朝着更全面、更精深的方向发展。
天然气水合物的研究与趋势档
天然气水合物的研究现状与发展趋势1 天然气水合物的概念天然气水合物是水与轻烃、CO2 及 H2S 等小分子气体形成的非化学计量型晶体化合物(Clathrate) ,或称笼型水合物、气体水合物 (Gas hy2drate) 或气水合物、水化2[1]物。
可被看作是一类主2客体(Host2guest) 材料。
水分子(氢键)形成一种点阵结构 ,气体分子则填充于点阵间的空穴。
笼中空间的大小与客体分子必须匹配 ,才能生成稳定的水合物。
例如 ,He、H2 (直径小于 0.3 纳米)因太小而不能形成水合物 ,但许多简单分子如单原子的 Ar、Kr;双原子的 O2 、N2 ;轻烃、氯氟烃、硫化物等都能形成水合物。
目前 ,发现的水合物结构主要有 I、II和 H型三种(图1) 。
水和天然气在中高压和低温条件下混合时产生的天然气水合物 ,外貌极像冰雪或固体酒精 ,点火即可燃烧 ,有“可燃冰”、“气冰”、“固体瓦斯”之Ξ称。
在自然界分布非常广泛(图 2) ,海底以下 0 —1 500米深的大陆架或北极等地的永久冻土带都有[2 ,3]可能存在。
近年来 ,有关天然气水合物方面的研究已引起各国政府、企业界和学术界的强烈关注 ,因为它不仅涉及人类生存的资源与环境 ,而且涉及未来发展的各种新技术。
例如 ,现已探明 ,约为石油、煤等烃类资源总和两倍的地层甲烷水合物亟待人们去开采。
同时 ,仿天然气水合物结构可处理 CO2 等温室效应气体;可高温储存冷量 ,实现电力调峰 ,节约能源;可储存和运输天然气等。
首届和第二届国际天然气水合物会议(分别于 1993 年和 1996 年在美国和法国召开)都曾把天然气水合物储存技术、分离技术及地层甲烷水合物开发利用列为应引起关注的、很有前途的研究领域。
在美国举办的第三届(1999 年)国际天然气水合物会议的主题是“水合物挑战未来”,可见有关水合物的研究内容将更加广泛和深入。
2 社会经济价值和科学意义天然气作为一种清洁、优质、高效、低成本和少污染的理想生态能源 ,同时随着传统气体能源的逐渐减少 ,人类对非传统型气体能源的需求越来越大 ,天然气水合物也将逐渐成为一种重要而清洁的潜在能源。
天然气水合物资源勘探与开发技术研究进展
天然气水合物资源勘探与开发技术研究进展天然气水合物,是天然气分子与水分子在一定温度和压力条件下形成的固态化合物,具有巨大的潜在能源储量。
近年来,随着人类对能源需求的不断增长以及传统石油和天然气资源的减少,天然气水合物逐渐成为全球能源行业关注的焦点。
天然气水合物资源的勘探与开发技术也在不断发展和突破,为解决能源问题提供了新的可能性。
一、天然气水合物资源勘探技术的研究进展天然气水合物资源的勘探是实现其可持续利用的基础。
当前的天然气水合物勘探技术主要包括露天采样、岩石物理探测和钻探试验等。
其中,露天采样是目前应用最广泛的一种方法,通过收集从海洋底部冒出的天然气水合物样本,来研究其分布、组成和物理性质。
岩石物理探测技术则通过测量反射波和传播速度等数据,间接推断天然气水合物的存在和含量。
钻探试验则是直接钻取样本来验证和评估地下水合物的储量。
这些技术的不断发展完善,为天然气水合物资源的精确勘探提供了可靠手段。
同时,利用现代地球物理勘探技术也取得了一定的突破。
例如,通过声波测井技术可以得到水合物层的密度、压力和声波速度等信息,帮助确定水合物储层的分布和特征。
电磁测井技术则可以测量电阻率、磁化率等物理参数,从而推测水合物的存在。
二、天然气水合物资源开发技术的研究进展天然气水合物资源的开发是将其转化为可利用能源的关键环节。
目前,主要的开发技术包括艇载采集和常压溶解技术。
艇载采集技术是将水合物从海底采集到船上,再经过分离、恢复、脱除水分等步骤,最终得到天然气产品。
这种技术采集和处理过程复杂,对技术设备和人员要求较高,但能够直接利用水合物资源,是一种较为直接和高效的开发方式。
常压溶解技术则是在常温常压下,以添加剂辅助,将水合物转化为气相和水相,以便进行进一步处理。
该技术相对较为简单,无需特殊设备和条件,能够有效地提高水合物开发的经济性和可行性。
同时,储存和输送技术也是水合物资源开发的重要环节。
尽管天然气水合物在水下的压力和低温环境下保持稳定,但一旦离开这种环境,水合物会发生分解或变形。
天然气水合物的发现和研究历史
天然气水合物的发现和研究历史姚伯初编译国外地质,2000,(1):1-11天然气水台物的发现和研究历史分为以下三个阶段:1:从它的发现(1810年)到1934年此阶段中,科学家出于好奇心,将水和气体结合成固态的天然气水合物;2:从1934年至1960年主要将天然气水合物作为一种人造物质,科学家感兴趣的是它对天然气生产和加工的阻碍作用;3:从1960年至现在科学家发现在大洋中,永久冻土带内以及地球大气圈外的环境中均存在通过数百万年形成的天然气水合物。
目前是上述三个时期的最后时期,是天然气水台物发现史中最使人困惑的时期。
在十九世纪,水合物的初发现,总共有4O份出版物;至本世纪到1982年,有关水合物的出版物增加到80份。
一、实验室中的水合物1810年,Humphvey Davy先生用氯气发现了天然气水合物。
“在化学书中一般论述为:在低温条件下,氯气能浓缩和结晶。
我在几个实验中发现不是这样。
溶解在水中的氧氯化钾比净水更容易结冰。
但是,用石灰氯化钾干燥的纯气体在华氏4O度之下没有任何变化”Davy 于是说。
在随后的一又四分之一个世纪中,研究者的工作目标集中在两个方面:其一、集中认别形成水台物的所有化合物;其二、希望能定量地描述这些化合物及成份和物理性质。
表1总结性地列出了这个时期主要研究者的工作年代事件1810 Humphrey Davy先生发现氯化钾水合物1823 Faraday确定水合物分子式为C12·10H2O1882-83 Ditte和Maumene怀疑上述氯化钾水合物的组成1884 Roozeboom 确证了上述水合物的分子式1828 Lowig发现了溴水合物1876 Aiexeyeff对溴水物(Br2·H20)有异议1829 de Ia Rive发现了氧化硫水舍物,分子式为SO2·7H2O1848 Pierre测定了氧化硫水合物的分子式为SO2·11H2O1855 Schoenfield涮量出氧化巯水合物的分子式为SO2·14H2O1884-85 Roozeboom 第一次用SO2确定了水合物上、下四倍点1856-58 Berthelm (1856)、Milion (1860)、Dudaux (1867) 和Tanret(1878)对Cs2(铯)水台物组分持异议1885 Chancel和Parmentier确定了三氯甲烷水合物1882 Wroblewski测量了二氧化碳水合物1877-82 Cailletet和Caiiletet及Borclel第一次从CO2+PH3及H2S+PH3中测量了混合气体水合物1882 De Forcrand假设分子式为H2S·(12-16)H2O,测量了30对H2S与第二组分如CHCl、CH3Cl、C2H3Cl、C2H3Br及C2H3Cl的水合物,他认为气部组分为C·2H2S·23H2O1888 Viiiard得出H2S水合物与温度的相关性1888 Forerand和Villard测量了CH3CI和H2S水合物与温度的相关曲线1888 Villard测量了CH4、C2H4、C2H2和N20的水合物1890 Villard测最了C2H4·水合物,认为温度的下四倍点是随着所探索物质的分子量之增加而减少,他认为水合物是一种特殊晶体1896 Villard测量氮气水合物,假设的氰与氧气水台物;首先用热生成资料得到水/气比1897 De Forcrand和thomas探寻双水合物,发现混合水合物,由许多卤代烃和C2H2、CO2、C2H6混合而成1902 De Forcrand首先对AH 和成分使用了克劳一克拉珀关系I将15种水台物状态列成表1919 Scheller和Meyer改进了克劳一克拉珀技术1923-25 De Forermd 测量了氯和氙的水合物在第一时期中,法国科学家Villard和De Foxcrand为水合物做了很多工作。
天然气水合物的研究和应用
天然气水合物的研究和应用天然气水合物(Natural Gas Hydrates,NGHs)是一种广泛存在于海底等低温高压环境中的天然气储存形式。
其中天然气以限制性捆绑水分子的形式被固定在水合物分子中,带来了巨大的储气量和储量潜力,同时也面临着技术难度、环境保护和经济效益等问题。
本文将就天然气水合物的研究、应用和未来展望进行探讨。
一、天然气水合物的发现和性质在19世纪,人们就已经在冰球岛的壳牌油田开掘中发现了天然气水合物。
随着海洋科学和石油勘探技术的发展,人们对天然气水合物的形成、分布、储量等方面有了更深入的认识。
目前已经发现了全球超过30个国家的水合物分布,总量估计达到10万亿立方米以上,比当前已开采的石油、天然气总量还要多。
天然气水合物的形成需要低温高压环境,一般在水深500米以上的海底沉积物中形成。
水合物分子为八面体结构,每个八面体分子中由6个水分子包围着1个天然气分子。
天然气分子主要是甲烷和少量乙烷等烷烃,烷烃的数量和种类取决于地质和气候条件。
天然气水合物的密度为0.9 g/cm³,比一般气体的密度大20到30倍,因此也被称为“固态天然气”。
二、天然气水合物的开采难题由于天然气水合物深藏于海底,固态且密度大,开采难度极大,需要高度发展的技术和设备支持。
一般而言,天然气水合物的开采并不直接进行,而是通过将水合物升到一定深度使其转变为气态天然气,再通过管道输送到海面上。
但这种技术和设备的研发和运用需要消耗大量的资源和能源,并且需要面对海底环境、恶劣天气和地震等因素的影响,也就带来了极大的经济和环境风险。
三、天然气水合物的应用前景天然气水合物储量丰富,意味着对于全球能源短缺问题的缓解有着重要意义。
同时,纯度高、热值佳、易于储存等天然气水合物的特点,使其在能源领域拥有极为广泛的应用前景。
目前,日本、韩国、中国等国家均在积极探索天然气水合物的开发与利用途径。
除了在能源领域的应用,天然气水合物还有着广泛的研究价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天然气水合物研究历程及发展趋势张文亮1,2 贺艳梅3 孙豫红2(1.西南石油学院 21中原油田分公司天然气管理事业部 31中原油田分公司勘探开发科学研究院) 摘 要 综合国内外关于天然气水合物的研究,概述其从发现、初步研究到深入研究的历程,总结了各阶段国内外天然气水合物研究的成果和进展。
从1810年发现天然气水合物以来,世界各地的科学家对气水化合物的类型和物化性质、自然赋存条件和成藏条件、资源评价、勘探开发手段等进行了广泛而卓有成效的研究。
总结世界各国天然气水合物的研究现状并指出了其发展趋势。
研究表明我国的许多海区具有天然气水合物形成的条件,希望2020年能够进行商业开采。
关键词 天然气水合物 历程 赋存条件 模拟研究 发展趋势 地球上的天然气水合物蕴藏量十分丰富,大约27%的陆地(大部分分布在冻结岩层)和90%的海域都含有天然气水合物,陆地上的天然气水合物存在于200~2000m深处,海底之下沉积物中的天然气水合物埋深500~800m。
3目前各国科学家对全球天然气水合物的资源量较为一致的评价为2×1016m3,是剩余天然气储量的136倍(1156×1014m3),如果将此储量折算为地球上的有机碳资源,它将占总资源的一半以上[1]。
1 研究意义目前解决能源需求的问题显得越来越紧迫。
开发利用新的清洁能源,降低能源使用与技术发展对环境造成的负面影响,是解决本世纪能源问题的主要出路。
在我国能源发展战略中,高效、清洁的天然气水合物将成为重要的后续能源。
首先,天然气水合物的资源量特别巨大,资源开发技术较为现实、可行。
我国具有良好的天然气水合物蕴藏潜力,东海的冲绳海槽边坡,以及南海的北部陆坡、西沙海槽和西沙群岛南坡等都可能是有希望的储存区,我国西藏高原终年积雪的羌塘地区也有发现。
其次,天然气水合物的勘探、生产可与常规油气的勘探、生产同时进行,因为天然气水合物矿藏常伴有下伏的游离气,勘探常规油气时可兼探天然气水合物,使之成为常规油气勘探、生产的一种“副产品”,降低生产成本,实现经济合理的商业生产。
再者,随着石油、天然气的开发和利用,天然气的开采、运输与终端利用技术业已成熟,可充分继承利用现有的油气开采、运输与终端利用技术和装备等,在现有工业布局的基础上,可实现能源的平滑过渡与接替,而且也不会产生新的环保问题。
2 国内外研究历程及现状211 国外研究历程[2]1810年英国科学家Davy在实验室首次发现天然气水合物,1888年V illard人工合成了天然气水合物。
在20世纪60年代之前,人们关注研究其组成、结构、相平衡和生成条件,研究主题是工业条件下水合物的预报和清除、水合物生成阻化剂的研究和应用。
进入60年代后,世界各地科学家对气水合物的类型和物化性质、自然赋存和成藏条件、资源评8断块油气田2005年3月 F AULT2BLOCK O I L&G AS F I ELD 第12卷第2期3收稿日期 2004-09-06第一作者简介 张文亮,1975年生,工程师,1996年毕业于西安石油学院石油工程系,现为西南石油学院油气田开发专业博士研究生,地址(457001):河南省濮阳市,电话:(0393)4819009。
价、勘探开发手段以及气水合物与全球变化和海洋地质灾害的关系等进行了广泛的研究。
21111 20世纪70年代以前的研究20世纪60年代初期,前苏联专家提出了一种假设:在地壳的一定热动力条件下(温度为295°K,压力为25MPa)可以形成固态气水合物的天然气藏。
20世纪60年代中期,前苏联在开发北极圈内克拉斯雅尔地区的麦索雅哈气田时,在实践中第一次发现了天然气水合物藏,并于1968年开始了试采。
美国学者直到1971年才提出“天然气水合物体(gas hydrate bodies)”的概念,当时美国科学家正在东海岸深入研究大陆边缘,从地震声纳探测记录中发现了沉积物隆起中反映局部海底地形的地震反射层,即后来被普遍称为“海底模拟反射层(BSR)”,并证实了BSR与天然气水合物有关。
目前BSR已成为推测天然气水合物存在的一个重要标记[1]。
此期的主要成果是:认识到天然气水合物比等体积的游离甲烷气体含有多得多的甲烷(相当于164倍体积的游离甲烷);明确了天然气水合物带之底的地震反射以及反射极性反转和大的垂向反射系数为特征;提出天然气水合物边界与海底滑塌、滑坡之间的可能联系,并在南非西部的大陆斜坡和洋隆首次识别出此类例子。
21112 20世纪80年代的研究进展20世纪80年代开始,随着深海钻探计划(DS DP)和后来的大洋钻探计划(ODP)的相继实施,天然气水合物研究进入全面发展阶段。
开始运用除地震地球物理方法以外的多种测井方法对天然气水合物进行研究,开创了该领域研究的新阶段。
随着大洋钻探计划和海底沉积物取样水合物和含水合物沉积物样品的增多,人们开始引入流体地球化学和同位素地球化学的方法开展天然气水合物的形成标志、赋存特征及成矿气体来源等方面等研究,这使得天然气水合物研究开始进入多学科、多方法的综合发展阶段[3]。
这一阶段的主要成果是:通过同位素地球化学和流体地球化学的研究,查明天然气水合物的成矿气体主要是微生物成因,明确其结构特征取决于气体组成;指出了天然气水合物的稳定性对大气甲烷含量影响的问题;开发出了3种开采天然气水合物的方法(热激化法、减压法和注入抑制剂法),并确证热激化法和减压法二者的结合使用较为经济实用;对全球天然气水合物资源量有了基本统一的估算,相当于(211~410)×1016 m3的甲烷;提出了全球气候变化对海底和极地天然气水合物的不同影响[4]。
21113 20世纪90年代的新进展研究方法上,传统的天然气水合物研究主要借助于地质反射剖面上的异常反射特征,即BSR、空白反射带及反射极性反转的识别来进行。
20世纪90年代以后,在理论研究和找矿研究方面运用了一些新方法和新技术。
包括固态水合物相的热力学测量、水合物的计算表征、地球物理方法、地球化学方法和自生沉积矿物学法。
研究内容上,对天然气水合物的研究仍然集中在资源、环境和全球气候3个方面,但研究深度大大增加[5]。
212 天然气水合物研究现状日本对天然气水合物的研究开发处于领先地位。
1998年,日本国家石油公司与加拿大地质测量局和美国地质测量局合作,在加拿大西北部三角洲进行首次试钻,取得地下1150m永久冻土层天然气水合物砂质岩心。
国家石油公司在北海道附近进行了天然气水合物的勘探和资源储量评价。
目前该公司的目标是在两个地点打试采井, 2010年实现商业性生产。
据日本有关方面估算,在日本海域仅开采水合物可采储量的1/10,可向日本提供100年的天然气供应。
1999年,美国政府制定了《国家甲烷水合物多年研究和开发项目计划》,预期可建立天然气水合物矿床气体资源评价体系、发展商业生产技术,了解和定量评价甲烷水合物在全球碳循环中的作用及其与全球气候变化的相关性,解决水合物工程技术和海底稳定性问题。
加拿大地质测量局在胡安—德富卡洋中脊斜坡区的工作引人注目,水合物评价储量1800×108t石油当量。
在加拿大西北部永久冻土带钻探的麦肯齐河三角洲Mallik2L-38井深1150m 取得的37m岩心保留了天然气水合物层序互层的特征。
印度是继日本之后提出天然气水合物研究计划的第二个国家。
其目的是迅速摸清全国水合物资源的资源量,为经济开采做准备。
俄罗斯自20世纪70年代末以来,先后在黑海、里海、白令海、鄂霍茨克海、千岛海沟和太平洋9第12卷第2期 张文亮等1天然气水合物研究历程及发展趋势 2005年3月西南部等海域进行海底天然气水合物研究,发现具有工业价值的区域,近期仍在对巴伦支海和鄂霍茨克海的天然气水合物进行研究。
德国于20世纪80年代与印尼等国对西南太平洋的边缘海进行过联合研究,在莽拉威西海发现海底天然气水合物的识别标志。
目前,德国正在筹划大规模的国家研究计划,可能计划与俄罗斯合作研究鄂霍茨克海的海底水合物。
此外,研究天然气水合物的国家还有韩国、挪威和欧洲一些国家,欧洲联盟已拨出专款,研制天然气传感器和专用的水合物取样工具,在北大西洋开展天然气水合物调查,查清资源量。
213 我国天然气水合物研究现状我国在20世纪80年代末开始关注天然气水合物的研究。
2004年4月CODAT A气体水合物工作组中国地区会议暨研讨会在北京召开,讨论了全球式的天然气水合物信息系统的建设和数据共享。
中科院也建立了重要方向性项目“天然气水合物勘探开采模拟研究”平台,为系统地研究天然气水合物奠定了基础。
研究表明,我国的许多海区具有天然气水合物形成的条件,我国东海陆坡、南海北部陆坡、台湾东北和东南海域、冲绳海槽、东沙和南沙海槽等地域均有天然气水合物产出的良好地质条件;此外,初步勘查表明,我国是世界冻土第三大国,尤其是青藏高原是多年生冻土带,可能埋藏着丰富的天然气水合物。
经过我国科学家对我国海域天然气水合物进行研究,主要成果有:①针对天然气水合物的地球物理属性研究认为,水合物成矿带的顶、底面是一个客观存在的物性界面,BSR是其底面的标志。
对BSR发育位置的温压场研究表明:南海海域水合物发育的温压场条件与全球范围内相关海域水合物发育温压场环境具有较好的可比性。
②对天然气水合物沉积学的研究表明,天然气水合物主要分布于在三角洲前缘与浅海接壤处,在浅海与半深海连接处也有少量分布,它们所对应的砂泥岩在25%~50%,说明天然气水合物一般存在于地形转折处的下端、岩性中等偏细的沉积层中。
③在对地质、地球物理以及地球化学综合分析的基础上,根据地震剖面的解释成果,初步圈定了南海海域的有利远景区。
相关的地球化学资料以及高分辨率地震资料研究表明,南海北部具有天然气水合物较为有利的成矿环境。
3 天然气水合物研究发展趋势天然气水合物的开发利用必将对世界及我国能源发展及经济繁荣产生重大影响,同时也对基础研究提出了更高的要求,并为之提供了更广阔的天地。
近年来,天然气水合物的物理化学性质进一步被认识和掌握,研究方法不断发展和更新;水合物生成、分解动力学逐渐被认识、重视和发展;天然气水合物的开发利用受到世界各国的重视。
但要使大规模开采水合物成为可能,还要做大量的基础研究工作。
4 结论与认识虽然目前对天然气水合物的研究已达到一定水平,但仍有以下一些科学问题需要进一步研究:(1)水合物的结构、稳定性、物理化学性质、形成与分解的热动力学规律的进一步认识和掌握,丰富基础数据,建立基本模型。
(2)地层(多孔介质)中水合物的形成与分解性能研究、方法描述,解决开采基础问题及多孔介质中水合物的形成与分解性能和储放气规律及动力学问题研究。
(3)天然气水合物的成藏机理、天然气水合物的开采利用技术研究及水合物对海底地质灾害和全球气候变化的影响。