2017届广西省第一轮中考单元测试(八)统计与概率(含答案)

合集下载

2017广西南宁中考数学试题及答案解析

2017广西南宁中考数学试题及答案解析

S22016年南宁初中毕业升学考试数学试卷(考试时间:120分钟,满分:120分)一、选择题(本大题共 12小题,每小题3分,共36分,每小题给出的四个选项,只有一项是符合题目要求的) 1.-2的相反数是() (A ) -2(B ) 0(C ) 2(D ) 42.把一个正六棱柱如图 1摆放,光线由上向下照射此正六棱柱时的正投影是()4.已知正比例函数 y=3x 的图像经过点(1, m ),则m 的值为()绩(百分制)依次是 80分,90分,则小明这学期的数学成绩是()(D 为底边中点)的长是(7.下列运算正确的是11 .有3个正方形如图4所示放置,阴影部分的面积依次记为 S1,S 2,则S1: S 2等于( )报道:2016年广西高考报名人数约为 332000人,(A ) (B ) (C )(A) 0.332 X 10(B) 3.32 X10,一、 一 _ _一4(C) 3.32 X 10其中数据 332000用科学记数法,—、 一 _ _一4(D) 33.2 X 10(A)(B) 3(Q(D) -35.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%期末卷面成绩占60%小明的两项成 (A) 80 分 (B) 82 分(C) 84 分(D) 86 分6.如图2,厂房屋顶人字形(等腰三角形)钢架跨度BC=10米,/ B=36 ,贝U 中柱 AD(A) 5sin36 米 (B) 5cos36 米 (C) 5tan36 米(D) 10tan36 米 36 O(A) a -a=a (B) ax+ay=axy (O m • m =m( D)(y ) =y/ DCE=40,贝U N P 的度数为((A) 140(B) 70(C) 6010.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”(D ) 40 ,第二次降价每个又减10元,经两次降价后售价为 90元。

则得到方程((A) 0.8x-10=90(B) 0.08x-10=90 (Q 90-0.8x=10(D) x-0.8x-10=903创历史新y 是x 的函数的是(8.下列各曲线中表示9.如图3,点A, B, C, P 在。

历年真题2017年广西北部湾经济区中考初三九年级毕业考试数学真题试卷后附答案下载

历年真题2017年广西北部湾经济区中考初三九年级毕业考试数学真题试卷后附答案下载

数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前广西北部湾经济区2017年四市(南宁市、北海市、钦州市、防城港市)同城初中毕业升学统一考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,ABC △中,60A =∠,40B =∠,则C ∠等于 ( ) A .100 B .80 C .60D .40 2.在下列几何体中,三视图都是圆的为( )ABCD3.根据习近平总书记在“一带一路”国际合作高峰论坛开幕式上的演讲,中国将在未来3年向参与“一带一路”建设的发展中国家和国际组织提供60000000000元人民币援助,建设更多民生项目.其中数据60000000000用科学记数法表示为( ) A .100.610⨯B .110.610⨯C .10610⨯D .11610⨯ 4.下列运算正确的是( )A .3(4)312x x --=-+B .224(3)412x x x -=-C .23325x x x +=D .623x x x ÷=5.一元一次不等式组220,13x x +⎧⎨+⎩>≤的解集在数轴上表示为( )ABCD6.今年世界环境日,某校组织以保护环境为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,9.5.这6名选手成绩的众数和中位数分别是( ) A .8.8分,8.8分 B .9.5分,8.9分 C .8.8分,8.9分D .9.5分,9.0分7.如图,ABC △中,AB AC >,CAD ∠为ABC △的外角,观察图中尺规作图中的痕迹,则下列结论错误的是 ( ) A .DAE B =∠∠ B .EAC C =∠∠ C .AE BC ∥ D .DAE EAC =∠∠8.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( ) A .15 B .14 C .13D .129.如图,O 是ABC △的外接圆,2BC =,30BAC =∠,则劣弧BC 的长等于( )A .2πB .πCD10.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行90km所用时间相等,设江水的流速为km/hv,则可列方程为( )毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)A .120903535v v =+- B .120903535v v =-+ C .120903535v v =-+D .120903535v v=+- 11.如图,一艘海轮位于灯塔P 的南偏东45方向,距离灯塔60n mile 的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的北偏东30方向上的B 处,这时,B 处与灯塔P 的距离为( )A.mile B.mile C.n mileD.n mile12.如图,垂直于x 轴的直线AB 分别与抛物线1C :2y x =(0x ≥)和抛物线2C :24x y =(0x ≥)交于,A B 两点,过点A 作CD x ∥轴分别与y 轴和抛物线2C 交于,C D ,过点B 作EF x ∥轴分别与y 轴和抛物线1C 交于点,E F ,则OFE EADSS △△的值为 ( )ABC .14D .16第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 13.计算:|6|-= .14.红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有 人. 15.已知x a y b =⎧⎨=⎩,是方程组2025x y x y -=⎧⎨+=⎩,的解,则3a b -= .16.如图,菱形A B C D 的对角线相交于点O ,2AC =,BD =将菱形按如图方式折叠,使点B 与点O 重合,折痕为EF ,则五边形AEFCD 的周长为 .17.对于函数2y x=,当函数值1y -<时,自变量x 的取值范围是 .18.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点(1,2)P 在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90,第一次旋转至图①位置,第二次旋转至图②位置……,则正方形铁片连续旋转2017次后,点P 的坐标为 .三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:3(2)2sin45(1)--+-.20.(本小题满分6分)先化简,再求值:2211121x x x x x---÷++,其中1x .21.(本小题满分8分)如图,在平面直角坐标系中,ABC △的三个顶点分别为(1,2),(2,4)A B ----,(4,1)C --.(1)把ABC △向上平移3个单位后得到111A B C △,请画出111A B C △并写出点1B 的坐标; (2)已知点A 与点2(2,1)A 关于某直线l 成轴对称,请画出直线l 及ABC △关于直线l 对称的222A B C △,并直接写出直线l 的函数解析式.22.(本小题满分8分)如图,矩形ABCD 的对角线,AC BD 相交于点O ,点,E F 在BD 上,BE DF =.数学试卷 第5页(共20页) 数学试卷 第6页(共20页)(1)求证:AE CF =;(2)若6AB =,60COD ∠=,求矩形ABCD 的面积.23.(本小题满分8分)为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A :自行车,B :电动车,C :公交车,D :家庭汽车,E :其他”五个选项中选择最常用的一项,将所得调查结果整理后绘制成如下不完整的条形统计图和扇形统计图.请结合统计图回答下列问题:(1)在这次调查中,一共调查了 名市民,扇形统计图中,C 组对应的扇形圆心角是 度;(2)请补全条形统计图;(3)若甲、乙两人上班时从,,,A B C D 四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.24.(本小题满分10分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅图书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本. (1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人.如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a %,求a 的值至少是多少?25.(本小题满分10分)如图,AB 是O 的直径,弦CD AB ⊥,垂足为H ,连接AC ,过弧BD 上一点E 作EG AC ∥交CD 的延长线于点G ,连接AE 交CD 于点F ,且EG FG =,连接CE . (1)求证:ECF △∽GCE △; (2)求证:EG 是O 的切线;(3)延长AB 交GE 的延长线于点M ,若3tan 4G =,AH =,求EM 的值.26.(本小题满分10分)如图,已知抛物线29y ax a =--与坐标轴交于,,A B C 三点,其中(0,3)C ,BAC ∠的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线,AC AB 分别交于点,M N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若PAD △为等腰三角形,求出点P 的坐标;(3)证明:当直线l 绕点D 转动时,11AM AN+均为定值,并求出该定值. 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共20页) 数学试卷 第8页(共20页)广西北部湾经济区2017年四市(南宁市、北海市、钦州市、防城港市)同城初中毕业升学统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】由三角形内角和定理可知180∠+∠+∠=︒A B C ,∴18018060∠=︒-∠-∠=︒-︒-︒=︒C A B ,故选B . 【考点】定理“三角形的内角和是180°”. 2.【答案】D【解析】根据题意,各立体图形的三视图如下,故选D .【考点】正确画出各个立体图形的三视图. 3.【答案】C【解析】本题考查用科学记数法表示较大数根据科学记数法的概念,将已知数表示为10(1||10,)⨯≤<为整数n a a n 的形式,即1060000000000610=⨯,故选C .【考点】用科学记数法表示数,关键就是确定a 和n 的值,因数a 的取值为1||10≤<a ,故需将原数的小数点移动,使值变为a ,而小数点移动的位数是10的指数n 的绝对值,从而确定用科学记数法表示数的结果. 4.【答案】A【解析】3(4)312--=-+x x ,故选项A 正确;224(3)436-⋅=x x x ,故选项B 错误;232+x x 没有同类项不能合并,故选项C 错误;624÷=x x x ,故选项D 错误,故选C .【考点】整式运算法则. 5.【答案】A【解析】在不等式组中,解220+>x 可得1>-x ,解13+≤x 可得2≤x,所以原不等数学试卷 第9页(共20页) 数学试卷 第10页(共20页)式的解集为12-≤<x ,表示在数轴上为,故选A .【考点】解一元一次不等式组. 6.【答案】C【解析】因8.8分在这组数据中出现了2次,次数最多,故众数为8.8分;将这组数据从小到大进行排序为8.5,8.8,8.8,9.0,9.4,9.5,则中位数为8.8分和9.0分的平均数,即为8.9分,故选C . 【考点】众数和中位数的概念. 7.【答案】D【解析】根据作图痕迹可知,图中是作∠DAE 等于已知角∠B ,故选项A 结论正确;∠=∠DAE E ,∴∥AE BC ,∠=∠EAC C ,故选项B 和选项C 结论均正确;由>AB AC 可知∠>∠C B ,所以∠>∠EAC DAE ,所在AE 不是∠DAC 的角平分线,故选项D 结论错误,故选D .【考点】作一个角等于已知角、平行线的判定和性质. 8.【答案】C由列表可知,一共有12种等可能情况,而两数之和等于5的有4种情况,故所求概率41123==P ,故选C .【考点】列表或画柱状图求概率. 9.【答案】A【解析】如图,连接OB ,0C ,223060∴∠=∠=⨯︒=︒BOC BAC ,又=OA OB ,∴△AOB 是等边三角形,2∴===OA OB BC ,劣弧BC 的长为60π22π=1803⨯,故选A .【考点】圆心角与圆周角的关系等边三角形的判定和性质,计算扇形的弧长. 10.【答案】D【解析】根据题意可知轮船顺流航行的速度为(35)/+v km h ,逆流航行的速度为(35)/-v km h ,由“顺流航行120km 的时间与逆流航行90km 的时间相等”可列方程120903535=+-v v,故选D . 【考点】列分式方程解应用题. 11.【答案】B【解析】设⊥PD AB 于点D ,由图可知 60 =AP n mile ,△APD 是等腰直角三角形,2sin 456030 2 ∴=⋅︒=⨯=PD AP n mile ,又在△Rt BDP 中,60∠=︒BPD ,30260 2 cos602∴===︒PD BP n mile,故选B .【考点】解直角三角形的实际应用. 12.【答案】D【解析】设=AC m ,由点B 在抛物线24=x y 上可得24=m OE ,由点A 在抛物线2=y x 上可得2=OC m ,2223 44∴=-=-=m CE OC OE m m ,13∴=OE CE 又设=OC n ,∴由点D 在抛物线24=xy 上可得=CD 由点A 在抛物线2=y x 上可得=AC 12∴=CA CD ,同理可得12=EF BE ,12∴=BF AD ,1111212362⋅∴==⋅=⨯=⋅△△OBF EAD BF OES BF OE S AD CE AD CE ,故选D . 【考点】二次函数的图象及其性质,求三角形的面积.第Ⅱ卷数学试卷 第11页(共20页) 数学试卷 第12页(共20页)二、选择题 13.【答案】6【解析】根据绝对值的概念,负数的绝对值是它的相反数,∴-6的绝对值是6,即|6|6-=. 【考点】有理数的绝对值. 14.【答案】680【解析】根据题意,喜欢跳绳的学生人数占抽查的学生人数的百分比为8520042.5÷=%,则估计全校学生中喜欢跳绳项目的学生人数为160042.5680⨯=%人. 【考点】用样本估计总体. 15.【答案】5【解析】将方程组中的两个方程相加得35-=x y,=x a ,=y b ,∴35-=a b .【考点】根据二元一次方程组的解求整式的值. 16.【答案】7【解析】在菱形ABCD 中,2=AC,=BD ⊥AC BD ,∴1=OA,=OB 由勾股定理可得 2==AB BC ,又2=AC ,∴ 60∠=︒ABC ,根据折叠的性质,可得△ABC ,△BEF ,△OEF ,△AEO ,△OFC 都是等边三角形,∴112====AE EF FC AB ,2===AD DC AC ,五边形AEFCD 的周长为31227⨯+⨯=.【一题多解】解方程组202 5 ⎧⎨+=⎩-= ①,②,x y y x 1+2⨯2得510=x , 2∴=x ,把2=x 代入2,得y=1,∴方程组的解为21==⎧⎨⎩,,x y 即2=a ,1=b ,∴35-=a b .【考点】菱形的性质,等边三角形的判定和性质,锐角三角函数的定义,轴对称性质. 17.【答案】20-<<x【解析】当1=-y 时,2=-x ,根据反比例函数的图象可知,当1<-y 时,x 的取值范围是20-<<x .【考点】反比例函数的图象和性质.18.【答案】6053,2() 【解析】根据题意,正方形每翻四次,点P 在正方形中位置回到原位,通过探究,连续旋转2017次后,点P 在正方形中的位置与1图相同,∴此时点P 的横坐标为2017326053⨯+=,纵坐标为2,即此时点P 的坐标为60532(,).【考点】探索规律.19.【答案】先化简符号和二次根式,写出特殊角的锐角三角函数值、计算有理数的乘方,然后进行综合计算,求出结果. 解:原式=221+-=1【考点】实数的综合运算20.【答案】先分解因式进行分式的乘除运算,再进行分式的减法运算,将分式化为最简分式,最后将字母的值代人计算即可.解:原式=21-1111+-⋅+-()()()x x xx x =11-+x x=1111+-=++x x x x .把1=x 代入, 则原式=11===+x 【考点】分式的化简求值.21.【答案】(1)根据平移的性质作出平移后的三角形,可直接写出点B ,的坐标; (2)根据轴对称的性质得到对称直线,进而作出三角形关于直线的对称图形,根据轴对称的性质可直接写出直线的解析式. 解:(1)111△A B C 如图所示.1 2 ()1--,B .数学试卷 第13页(共20页) 数学试卷 第14页(共20页)(2)面出直线l 如图所示.222△A B C 如图所示.直线l 的函数解析式为=-y x .【考点】平移的性质和作图轴对称的性质和作图.22.【答案】(1)根据矩形的性质和已知条件可证两个三角形全等,再由对应边相等证得线段相等;(2)利用“有一个角是60︒的等腰三角形是等边三角形”判定三角形是等边三角形,从而得到三角形的边长,再根据勾股定理得到矩形的长,即可求得矩形的面积. 解:(1)证明:四边形ABCD 是矩形,∴∥AB CD ,=AB CD , ∴∠=∠ABE CDF . 在 △ABE 和 △CDF 中,=⎧⎪∠=∠⎨⎪=⎩,,,AB CD ABE CDF BE DF ∴△≌△()ABE CDF SAS ,∴=AE CF .(2)在矩形ABCD 中,6==AB CD , ==OB OC OD .60∠=︒COD ,∴△COD 为等边三角形,6==OD CD ,∴212==BD OD .在 △Rt BCD 中,=BC .6∴=⋅==矩形ABCD S BC CD .【考点】矩形的性质,全等和性质,等边三角形的判定和性质,勾股定理.23.【答案】(1)根据B 在身形统计图中的百分比和在条形统计图中的人数,可求得调查的总人数;根据总人数和条形统计图中其他项的人数,可计算出C 的人数,进而得到C 组对应的扇形圆心角;(2)根据C 的人数补全条形统计图即可;(3)用面出树状图或列表法,得到所有等可能的结果数,再根据题意确定满足条件的结果数,用概率公式即可求解. 解:(1)2000, 108.(2)补全条形统计图如图所示.(3)根据题意面树状图(或列表)如下:数学试卷 第15页(共20页) 数学试卷 第16页(共20页)由树状图(或列表)可见,所有可能出现的结果共有16种,这些结果出现的可能性相等,其中甲、乙两人恰好选择同一种交通工具上班的结果有4种.所以甲、乙两人恰好选择同一种交通工具上班的概率是41164==P . 答:甲、乙两人恰好选择同一种交通工具上班的概率是14.【考点】统计的初步知识用面树状图或列表法求概率. 24.【答案】(1)根据题意可列出一元二次方程,求解即可; (2)根据题意可列出一元一次不等式,即可求出a 的最小值.解:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x .根据题意,得27500110800+=()x .解得10.2=x ,2 2.2=-x (不合题意,舍去).答:该社区从2014年至2016年图书借阅总量的年平均增长率为20%. (2)解法一:根据题意,得 1080011440108001201350+⨯≥+(%)(%)a .1a%x1440108001(0)()2%+>+.解得12.5≥a .答:a 的值至少应为12.5. 解法二:根据题意,得2016年居民人均图书借阅量为: 1080013508÷=(本). 2017年居民人均图书借阅量不低于: 10800120%14409+÷=()(本). 819∴+≥(%)a解得a>12.5.答:a 的值至少应为12.5【考点】列方程和不等式解应用题.25.【答案】(1)根据等弧所对的圆周角相等和两直线平行内错角相等,转换得角相等,结合已知条件可证得两个三角形相似;(2)由等边对等角得角相等,利用余角关系得直线与圆的半径垂直,从而判定直线是圆的切线;(3)由平行线得角相等,根据正切函数的定义可求得线段的长,设半径为r ,根据勾股定理列出方程,求得圆的半径,再根据角的正切值求解或利用正切函数的定义结合三角形相似求解.解:证明:AB 为O 的直径且⊥CD AB ,∴=AD AC .∴∠=∠ACD AEC .∥EG AC ,∴∠=∠G ACD . ∴∠=∠G CEF .又∠=∠GCE ECF ,∴△∽△ECF GCF . (2)连接OE ,=AO EO ,∴∠=∠EAO AEO .=EG FG ,∴∠=∠GEF GFE .又∠=∠AFH GFE ,∴∠=∠GEF AFH .90∠+∠=︒AFH EAO90∴∠=∠+∠=∠+∠=︒GEO GEF AEOAFH EAO .∴⊥OE GE ,OE 是半径,∴EG 是O 的切线.数学试卷 第17页(共20页) 数学试卷 第18页(共20页)(3)解法一:∥EG AC ,∴∠=∠G ACH ,3tan tanG 4∴∠===AH ACH HC .43∴==HC AH连接OC ,设=OC r ,则在△Rt HOC 中,222+=OH HC r ,222+=∴-((r r,∴=r 又在△OEM 中,⊥OE EG ,∴∠=∠EOM G .3tan tanG 4∴∠==EOM .34∴=EM OE.34∴==EM . 解法二:∥EG AC ,∴∠=∠G ACH .3tan tan 4∴∠===AH ACH G HC .∴设3==AH k ,4=HC k ,则5=AC k∴=k连接BC ,则在△Rt AHC 与△Rt ACB 中,∠=∠HAC CAB ,∴△∽△HAC CAB ,∴=AC AB,22∴==()AC k AB AH ,12==OE AB . 又在△Rt OEM 中,∠=∠M HAC ,4tanM tan HAC3∴=∠==HC AH . 43∴=OE EM . 3344∴===EM OE 【考点】圆的相关性质,相似三角形的判定和性质,切线的判定,锐角三角函数,勾股定理, 方程思想.26.【答案】(1)将C 点坐标代人抛物线解析式可求得a 的值,令y=0可求出点A 的坐标,根据解析式可求出对称轴;(2)根据锐角三函数可求出角的度数以及点的坐标,根据等腰三角形两腰相等分情况讨论,设点P 的坐标为待定系数,根据勾股定理列出方程,求出系数值,从而求得点P 的坐标;(3)作垂线得三角形的高,利用面积关系可求得线段之间的关系,进行化简即可.也可根据直线的解析式列出方程求解.解:(1)13=-a ;()A;对称轴为=x (2)由(1)可知=AO =COtan ∴∠===CO CAO AO 又090∠︒<<CAO,60∴∠=︒CAO .AD 是∠CAO 的平分线,tan30∴=⋅︒DOAO . 0,1∴()D .数学试卷 第19页(共20页) 数学试卷 第20页(共20页)设)P m ,△PAD 为等腰三角形,则 1当=PD AD 时,22=⋅=AD OD ,即222=PD .22+1=4-()m ,0∴=m 或2=m (舍去).∴)P . 2当=PA PD 时,即22=PA PD .2222++1)∴=-(m m .4∴=-m,4∴-)P .32<PD ∴≠AD AP .∴ 当P为)或4-)时,△PAD 为等腰三角形 (3)证法一:过点D 作⊥DF AC ,垂足为F ,过点M 作⊥MH x 轴,垂足为H ,则11sin6022=⋅=⋅⋅︒AMNSAN MH AN AM . 另=+△△△AMN ADM AND S S S1122=⋅+⋅DF AM OD AN .AD 是∠BAC 的平分线,1∴==DF OD ,12∴⋅=+AN AM AM AN . 两边同除以⋅AN AM,得11+=AN AM 证法二:1当直线l 与x 轴垂直时,即直线l 与y 轴重合时,点M 与C 重合,点N 与O重合,这时,==AM AC==AN AO11∴+==AM AN . 2当直线l 与x 轴不垂直时,过点M 作⊥MH x 轴于点H,直线l 经过点D (01),, ∴设直线l 的解析式为1=+y kx令0=y ,则1=-x,1,0∴-()N k.1∴=-ANk . 又直线AC 的解析式为3=+y ,联立31.⎧=+⎪⎨=+⎪⎩,y y kx 解得=x .又60∠=︒BAC 2∴==AM AH .11∴+=AMAN.综上所述,11+=AM AN 【考点】二次函数的图象和性质,锐角三角函数,等腰三角形的性质,三角形的面积,数形 结合思想.。

广西桂林市2017届中考数学试卷(附答案解析)

广西桂林市2017届中考数学试卷(附答案解析)

2017年广西桂林市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)2017的绝对值是()A.2017 B.﹣2017 C.0 D.2.(3分)4的算术平方根是()A.4 B.2 C.﹣2 D.±23.(3分)一组数据2,3,5,7,8的平均数是()A.2 B.3 C.4 D.54.(3分)如图所示的几何体的主视图是()A.B.C. D.5.(3分)下列图形中不是中心对称图形的是()A.B.C.D.6.(3分)用科学记数法表示数57000000为()A.57×106 B.5.7×106C.5.7×107D.0.57×1087.(3分)下列计算正确的是()A.a3÷a3=a B.(x2)3=x5C.m2•m4=m6D.2a+4a=8a8.(3分)如图,直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2 B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°9.(3分)下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0D.角的平分线上的点到角的两边的距离相等10.(3分)若分式的值为0,则x的值为()A.﹣2 B.0 C.2 D.±211.(3分)一次函数y=﹣x+1(0≤x≤10)与反比例函数y=(﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣≤x≤1 B.﹣≤x≤C.﹣≤x≤D.1≤x≤12.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2 C.πD.π二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:x2﹣x=.14.(3分)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=.15.(3分)分式与的最简公分母是.16.(3分)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是.17.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则的值为.18.(3分)如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有个点.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣2017)0﹣sin30°++2﹣1.20.(6分)解二元一次方程组:.21.(8分)某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:(1)图表中的m=,n=;(2)扇形统计图中F组所对应的圆心角为度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?22.(8分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.23.(8分)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)24.(8分)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?25.(10分)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.26.(12分)已知抛物线y1=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B (4,0).(1)求抛物线y1的函数解析式;(2)如图①,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值;(3)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线y2上一动点,⊙P与直线BC相切,且S⊙P :S△DFH=2π,求满足条件的所有点P的坐标.2017年广西桂林市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)2017的绝对值是()A.2017 B.﹣2017 C.0 D.【分析】根据正数的绝对值是它本身,即可判断.【解答】解:2017的绝对值等于2017,故选A.【点评】本题考查绝对值的性质,记住正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.2.(3分)4的算术平方根是()A.4 B.2 C.﹣2 D.±2【分析】根据算术平方根的定义即可求出答案.【解答】解:4的算术平方根是2.故选:B.【点评】本题考查算术平方根,解题的关键是正确理解算术平方根与平方根的定义,本题属于基础题型.3.(3分)一组数据2,3,5,7,8的平均数是()A.2 B.3 C.4 D.5【分析】根据平均数的定义计算.【解答】解:数据2,3,5,7,8的平均数==5.故选D.【点评】本题考查了平均数:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.4.(3分)如图所示的几何体的主视图是()A.B.C. D.【分析】根据圆锥的三视图进行判断,即可得到其主视图.【解答】解:根据圆锥的摆放位置,可知从正面看圆锥所得的图形是三角形,故该圆锥的主视图是三角形,故选:A.【点评】本题主要考查了几何体的三视图,解决问题的关键是掌握圆锥的三视图的特征.5.(3分)下列图形中不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.【点评】本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)用科学记数法表示数57000000为()A.57×106 B.5.7×106C.5.7×107D.0.57×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:用科学记数法表示数57000000为5.7×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)下列计算正确的是()A.a3÷a3=a B.(x2)3=x5C.m2•m4=m6D.2a+4a=8a【分析】A、利用同底数幂的除法法则计算得到结果,即可做出判断;B、利用幂的乘方运算法则计算得到结果,即可做出判断;C、利用同底数幂的乘法法则计算得到结果,即可做出判断;D、利用合并同类项的法则计算得到结果,即可做出判断.【解答】解:A、a3÷a3=1,本选项错误;B、(x2)3=x6,本选项错误;C、m2•m4=m6,本选项正确;D、2a+4a=6a,本选项错误.故选:C.【点评】此题考查了同底数幂的乘除法,幂的乘方,以及合并同类项,熟练掌握法则是解本题的关键.8.(3分)如图,直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2 B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°【分析】根据同位角相等,两直线平行即可判断.【解答】解:∵∠1=∠4,∴a∥b(同位角相等两直线平行).故选B.【点评】本题考查平行线的判定,解题的关键是熟练掌握平行线的判定方法,属于基础题.9.(3分)下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0D.角的平分线上的点到角的两边的距离相等【分析】根据对顶角的定义,有理数的性质,角平分线的性质对各选项分析判断即可得解.【解答】解:A、相等的角是对顶角,是假命题,例如,角平分线把角分成的两个角相等,但不是对顶角,故本选项错误;B、若实数a,b满足a2=b2,则a=b,是假命题,应为a=b或a=﹣b,故本选项错误;C、若实数a,b满足a<0,b<0,则ab<0,是假命题,应为ab>0,故本选项错误;D、角的平分线上的点到角的两边的距离相等是真命题,故本选项正确.故选D.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)若分式的值为0,则x的值为()A.﹣2 B.0 C.2 D.±2【分析】根据分式的值为零的条件即可求出x的值.【解答】解:由题意可知:解得:x=2故选(C)【点评】本题考查分式的值为零,解题的关键是正确理解分式的值为零的条件,本属于基础题型.11.(3分)一次函数y=﹣x+1(0≤x≤10)与反比例函数y=(﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣≤x≤1 B.﹣≤x≤C.﹣≤x≤D.1≤x≤【分析】由x的取值范围结合y1=y2可求出y的取值范围,根据y关于x的关系式可得出x关于y的关系式,利用做差法求出x=1﹣y+再﹣9≤y≤﹣中的单调性,依此单调性即可求出x1+x2的取值范围.【解答】解:当x=﹣10时,y==﹣;当x=10时,y=﹣x+1=﹣9,∴﹣9≤y1=y2≤﹣.设x1<x2,则y2=﹣x2+1、y1=,∴x2=1﹣y2,x1=,∴x1+x2=1﹣y2+.设x=1﹣y+(﹣9≤y≤﹣),﹣9≤y m<y n≤﹣,则x n﹣x m=y m﹣y n+﹣=(y m﹣y n)(1+)<0,∴x=1﹣y+中x值随y值的增大而减小,∴1﹣(﹣)﹣10=﹣≤x≤1﹣(﹣9)﹣=.故选B.【点评】本题考查了反比例函数图象上点的坐标特征以及一次函数图象上点的坐标特征,找出x=1﹣y+在﹣9≤y≤﹣中的单调性是解题的关键.12.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2 C.πD.π【分析】如图,连接AC、BD交于点G,连接OG.首先说明点E从点A运动到点B时,点F的运动路径长为,求出圆心角,半径即可解决问题.【解答】解:如图,连接AC、BD交于点G,连接OG.∵BF⊥CE,∴∠BFC=90°,∴点F的运动轨迹在以边长为直径的⊙O上,当点E从点A运动到点B时,点F的运动路径长为,∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∵∠ABC=60°,∴∠BCG=60°,∴∠BOG=120°,∴的长==π,故选D.【点评】本题考查菱形的性质、弧长公式、轨迹等知识,解题的关键是正确寻找点F的运动轨迹,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:x2﹣x=x(x﹣1).【分析】首先提取公因式x,进而分解因式得出答案.【解答】解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.(3分)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=4.【分析】根据中点定义解答.【解答】解:∵点C是线段AD的中点,若CD=1,∴AD=1×2=2,∵点D是线段AB的中点,∴AB=2×2=4.故答案为4.【点评】本题考查了两点之间的距离,熟悉中点定义是解题的关键.15.(3分)分式与的最简公分母是2a2b2.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解与的分母分别是2a2b、ab2,故最简公分母是2a2b2;故答案是:2a2b2.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.16.(3分)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是.【分析】根据6个完全相同的小球中有3个球的标号是偶数,再根据概率公式即可得出答案.【解答】解:∵共有6个完全相同的小球,其中偶数有2,4,6,共3个,∴从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是=;故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则的值为.【分析】作BH⊥OA于H,如图,利用矩形的性质得OA=OC=OB,∠ABC=90°,则根据勾股定理可计算出AC=5,AO=OB=,接着利用面积法计算出BH=,于是利用勾股定理可计算出OH=,然后证明△OBH∽△OEA,最后利用相似比可求出的值.【解答】解:作BH⊥OA于H,如图,∵四边形ABCD为矩形,∴OA=OC=OB,∠ABC=90°,在Rt△ABC中,AC==5,∴AO=OB=,∵BH•AC=AB•BC,∴BH==,在Rt△OBH中,OH===,∵EA⊥CA,∴BH∥AE,∴△OBH∽△OEA,∴=,∴===.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时主要利用相似比计算线段的长.也考查了矩形的性质.18.(3分)如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有(3n﹣1)个点.【分析】观察已知图形,得出一般性规律,写出即可.【解答】解:如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有(3n﹣1)个点.故答案为:(3n﹣1).【点评】此题考查了规律型:图形的变化类,弄清题中的规律是解本题的关键.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣2017)0﹣sin30°++2﹣1.【分析】根据先计算零指数幂、代入特殊角的三角函数值、化简二次根式、负整数指数幂,然后计算加减法.【解答】解:原式=1﹣+2+=1+2.【点评】本题综合考查了零指数幂、特殊角的三角函数值、化简二次根式、负整数指数幂,属于基础题,熟记计算法则即可解题.20.(6分)解二元一次方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:②﹣①得:3x=6,解得:x=2,把x=2代入①得y=﹣1,∴原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(8分)某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:(1)图表中的m= 16 ,n= 30 ;(2)扇形统计图中F 组所对应的圆心角为 18 度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?【分析】(1)根据题意列式计算即可;(2)360°×F 组所对应的百分数即可得到结论;(3)根据题意列式计算即可得到结论.【解答】解:(1)m=8÷10%×20%=16,n=24÷(8÷10%)×100=30;(2)扇形统计图中F 组所对应的圆心角为:360°×=18°;(3)由题意得,每周平均课外阅读时间不低于3小时的学生数为:1500×(20%+10%+5%)=525名.故答案为:16,30,18.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(8分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB 的端点均在格点上.(1)将线段AB 向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B ,两线段相交于点O ;(2)求证:△AOB≌△B′OA′.【分析】(1)根据平移变换的性质作图即可;(2)根据平行线的性质得到∠A=∠B′,∠B=∠A′,根据ASA定理证明即可.【解答】解:(1)如图所示:(2)证明:∵AB∥A′B′,∴∠A=∠B′,∠B=∠A′在△AOB和△B′OA′中,,∴△AOB≌△B′OA′.【点评】本题考查的是作图﹣平移变换、全等三角形的判定,掌握平移变换的性质、全等三角形的判定定理是解题的关键.23.(8分)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)【分析】在Rt△BED中可先求得BE的长,过C作CF⊥AE于点F,则可求得AF 的长,从而可求得EF的长,即可求得CD的长.【解答】解:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE•tan∠BDE≈18.75(cm),如图,过C作AE的垂线,垂足为F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE﹣AF≈10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.【点评】本题主要考查解直角三角形的应用,利用条件构造直角三角形是解题的关键,注意角度的应用.24.(8分)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?【分析】(1)设该市这两年投入基础教育经费的年平均增长率为x,根据2015年及2017年投入的基础教育经费金额,即可得出关于x的一元二次方程,解之即可取其正值即可得出结论;(2)根据年平均增长率求出2018年基础教育经费投入的金额,再根据总价=单价×数量,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其中的最大值即可.【解答】解:(1)设该市这两年投入基础教育经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%.(2)2018年投入基础教育经费为7200×(1+20%)=8640(万元),设购买电脑m台,则购买实物投影仪(1500﹣m)台,根据题意得:3500m+2000(1500﹣m)≤86400000×5%,解得:m≤880.答:2018年最多可购买电脑880台.【点评】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据2015年及2017年投入的基础教育经费金额,列出关于x的一元二次方程;(2)根据总价=单价×数量,列出关于m的一元一次不等式.25.(10分)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.【分析】(1)根据圆周角定理可得∠ADB=90°,再根据等腰三角形的性质可证AD=DE;(2)根据AA可证△CED∽△CAB,根据相似三角形的性质和已知条件可求CD;(3)延长EF交⊙O于M,在Rt△ABD中,根据勾股定理可求BD,根据AA可证△BPE∽△BED,根据相似三角形的性质可求BP,进一步求得DP,根据等高三角形面积比等于底边的比可得S△DPE :S△BPE=13:32,S△BDE:S△BCD=4:5,再根据三角形面积公式即可求解.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AB=BC,∴D是AC的中点,∠ABD=∠CBD,∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴=,∵AB=BC=10,CE=2,D是AC的中点,∴CD=;(3)解:延长EF交⊙O于M,在Rt△ABD中,AD=,AB=10,∴BD=3,∵EM⊥AB,AB是⊙O的直径,∴=,∴∠BEP=∠EDB,∴△BPE∽△BED,∴=,∴BP=,∴DP=BD﹣BP=,∴S△DPE :S△BPE=DP:BP=13:32,∵S△BCD=××3=15,S△BDE:S△BCD=BE:BC=4:5,∴S△BDE=12,∴S△DPE=.【点评】考查了圆周角定理、等腰三角形的性质、相似三角形的判定与性质以及勾股定理的知识.注意准确作出辅助线、掌握方程思想的应用是解此题的关键.26.(12分)已知抛物线y1=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B (4,0).(1)求抛物线y1的函数解析式;(2)如图①,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值;(3)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线y2上一动点,⊙P与直线BC相切,且S⊙P :S△DFH=2π,求满足条件的所有点P的坐标.【分析】(1)将点A(﹣1,0)和点B(4,0)代入y1=ax2+bx﹣4即可得到结论;(2)由对称性可知,得到抛物线y2的函数解析式为y2=﹣x2+3x+4,求得直线BC 的解析式为:y=﹣x+4,设D(m,﹣m+4),E(m,m2﹣3m﹣4),其中0≤m≤4,得到DE=﹣m+4﹣(m2﹣3m﹣4)=﹣(m﹣1)2+9,即可得到结论;(3)由题意得到△BOC是等腰直角三角形,求得线段BC的垂直平分线为y=x,由(2)知,直线DE的解析式为x=1,得到H(2,2),根据S⊙P :S△DFH=2π,得到r=,由于⊙P与直线BC相切,推出点P在与直线BC平行且距离为的直线上,于是列方程即可得到结论.【解答】解:(1)将点A(﹣1,0)和点B(4,0)代入y1=ax2+bx﹣4得:a=1,b=﹣3,∴抛物线y1的函数解析式为:y1=x2﹣3x﹣4;(2)由对称性可知,抛物线y2的函数解析式为:y2=﹣x2+3x+4,∴C(0,4),设直线BC的解析式为:y=kx+q,把B(4,0),C(0,4)代入得,k=﹣1,q=4,∴直线BC的解析式为:y=﹣x+4,设D(m,﹣m+4),E(m,m2﹣3m﹣4),其中0≤m≤4,∴DE=﹣m+4﹣(m2﹣3m﹣4)=﹣(m﹣1)2+9,∵0≤m≤4,∴当m=1时,DE max=9;此时,D(1,3),E(1,﹣6);(3)由题意可知,△BOC是等腰直角三角形,∴线段BC的垂直平分线为:y=x,由(2)知,直线DE的解析式为:x=1,∴F(1,1),∵H是BC的中点,∴H(2,2),∴DH=,FH=,∴S△DFH=1,设⊙P的半径为r,∵S⊙P :S△DFH=2π,∴r=,∵⊙P与直线BC相切,∴点P在与直线BC平行且距离为的直线上,∴点P在直线y=﹣x+2或y=﹣x+6的直线上,∵点P在抛物线y2=﹣x2+3x+4上,∴﹣x+2=﹣x2+3x+4,解得:x1=2+,x2=2﹣,﹣x+6=﹣x2+3x+4,解得:x3=2+,x4=2﹣,∴符合条件的点P坐标有4个,分别是(2+,﹣),(2﹣,),(2+,4﹣),(2﹣,4+).【点评】本题考查了待定系数法求函数的解析式,折叠的性质,二次函数的最大值问题,等腰直角三角形的性质,线段的垂直平分线的性质,直线与圆的位置关系,正确的理解题意是解题的关键.。

广西贵港市2017年中考数学试题(含答案)

广西贵港市2017年中考数学试题(含答案)

2017年贵港市初中毕业升学考试数学试卷1.-2的倒数是A .-2B .2C .-12D .122.计算(-2a )2-3a 2的结果是A .-a 2B .a 2C .-5a 2D .5a 23.在一次投掷实心球训练中,小丽同学5次投掷成绩(单位:m )为:6、8、9、8、9。

则关于这组数据的说法不正确...的是 A .极差是3 B .平均数是8 C .众数是8和9 D .中位数是9 4.下列各点中在反比例函数y =6x的图像上的是A .(-2,-3)B .(-3,2)C .(3,-2)D .(6,-1) 5.如果仅用一种多边形进行镶嵌,那么下列正多边形不能够...将平面密铺的是 A .正三角形 B .正四边形 C .正六边形 D .正八边形 6.如图是由若干个大小相同的正方体搭成的几何体的三视图,则该几何体所用的正方形的个数是A .2B .3C .4D .57.在平面直角坐标系xOy 中,已知点A (2,1)和点B (3,0),则sin ∠AOB 的值等于 A .55 B .52 C .32 D .128.如图,已知直线y 1=x +m 与y 2=kx -1相交于点P (-1,1),则关于x 的不等式x +m >kx -1的解集在数轴上表示正确的是A .B .C .D .第8题图第10题图9.从2、-1、-2三个数中任意选取一个作为直线y =kx +1中的k 值,则所得的直线不经..过.第三象限的概率是: A .13 B .12 C .23D .110.如图,P A 、PB 是⊙O 的切线,A 、B 是切点,点C 是劣弧AB 上的一个动点,若∠P =40°,则∠ACB 的度数是A .80°B .110°C .120°D .140° 11.如图,在直角梯形ABCD 中,AD //BC ,∠C =90°,AD =5,BC=9,以A 为中心将腰AB 顺时针旋转90°至AE ,连接DE ,则△ADE 的面积等于A .10B .11C .12D .1312.如图,在菱形ABCD 中,AB =BD ,点E 、F 分别在BC 、CD上,且BE =CF ,连接BF 、DE 交于点M ,延长DE 到H 使DE =BM ,连接AM 、AH 。

易错点08 统计与概率-中考数学考试易错题(原卷版)

易错点08  统计与概率-中考数学考试易错题(原卷版)

易错点08 统计与概率1.统计及3类统计图的特点(条形统计图、扇形统计图、折线统计图)2.统计相关概念(中位数、众数、平均数、极差、方差等)3.概率计算01中位数、众数、平均数的有关概念理解不透彻,错求中位数、众数、平均数。

1.(2021•泗洪县一模)某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.79.59.59.7方差/环2 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁1.(2021·湖南湘潭·中考真题)某中学积极响应党的号召,大力开展各项有益于德智体美劳全面发展的活动小明同学在某学期德智体美劳的评价得分如图所示,则小明同学五项评价的平均得分为()A.7分B.8分C.9分D.10分2.(2021·四川内江·中考真题)某中学七(1)班的6位同学在课间体育活动时进行一分钟跳绳比赛,成绩(单位:个)如下:122,146,134,146,152,121.这组数据的众数和中位数分别是()A.152,134B.146,146C.146,140D.152,1403.(2021·辽宁鞍山·中考真题)某班40名同学一周参加体育锻炼时间统计如表所示:时间/h6789人数218146那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.18,7.5B.18,7C.7,8D.7,7.502极差、方差的概念理解不清晰,从而不能正确求出一组数据的极差、方差。

1.(2020·四川巴中·中考真题)某地区一周内每天的平均气温如下:25℃,27.3℃,21℃,21.4℃,28℃,33.6℃,30℃.这组数据的极差为()A.8.6B.9C.12.2D.12.61.(2020·山东济南·中考真题)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多452.(2021·辽宁沈阳·中考真题)下列说法正确的是( ) A .任意掷一枚质地均匀的骰子,掷出的点数一定是奇数 B .“从一副扑克牌中任意抽取一张,抽到大王”是必然事件 C .了解一批冰箱的使用寿命,采用抽样调查的方式D .若平均数相同的甲、乙两组数据,20.3s =甲,20.02s =乙,则甲组数据更稳定3.(2021·山东日照·中考真题)袁隆平院士被誉为“世界杂交水稻之父”,他研究的水稻,不仅高产,而且抗倒伏.在某次实验中,他的团队对甲、乙两种水稻品种进行产量稳定实验,各选取了8块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为1200千克/亩,方差为2186.9S =甲,2325.3S =乙.为保证产量稳定,适合推广的品种为( )A .甲B .乙C .甲、乙均可D .无法确定03 概率与频率的意义理解不清晰,不能正确求出事件的概率。

广西贵港市中考数学总复习 第八单元 统计与概率单元测试(八)统计与概率试题

广西贵港市中考数学总复习 第八单元 统计与概率单元测试(八)统计与概率试题

单元测试(八) 统计与概率(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.下列说法中正确的是( D )A.“打开电视机,正在播《动物世界》”是必然事件B.某种彩票的中奖概率为千分之一,说明每买1 000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为三分之一D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查2.要估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞出100条鱼,发现只有两条鱼是刚才做了记号的鱼.假设鱼在鱼塘内均匀分布,那么估计这个鱼塘的鱼数约为( B )A.5 000条 B.2 500条 C.1 750条 D.1 250条3.某校要从四名学生中选拔一名参加市“风华小主播”大赛,选拔赛中每名学生的平均成绩x及其方差s2如表所示.如果要选择一名成绩高且发挥稳定的学生参赛,那么应选择的学生是( B )甲乙丙丁x 8998s211 1.2 1.3A.甲 B.乙 C.丙 D.丁4.(2014·娄底)实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习.值周班长小兵每周对各小组合作学习情况进行综合评分.下表是其中一周的评分结果:组别一二三四五六七分值90 96 89 90 91 85 90“分值”这组数据的中位数和众数分别是( B )A.89、90 B.90、90 C.88、95 D.90、955.(2016·贺州)从分别标有数-3、-2、-1、0、1、2、3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( D )A.17B.27C.37D.476.(2014·天津)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86 92 90 83笔试90 83 83 924的权.根据四人各自的平均成绩,公司将录取( B )A.甲 B.乙 C.丙 D.丁7.如图是从一副扑克牌中取出的两组牌,分别是黑桃1、2、3、4,红桃1、2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌面数字之和等于7的概率是( B )A.14B.18C.116D.1328.(2016·达州)如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为( D )A.13B.12C.23D.34二、填空题(每小题5分,共20分)9.(2016·兰州)一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球20个.10.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为60名.11.已知一组数据-3,x,-2,3,1,6的中位数为1,则其方差为9.12.小明和小亮用如图所示的两个转盘(每个转盘被分成四个面积相等的扇形)做游戏,转动两个转盘各一次,如果两次数字之和为奇数,则小明胜,否则,小亮胜,这个游戏公平吗?答:公平(填“公平”或“不公平”).三、解答题(共48分)13.(10分)作为宁波市政府民生实事之一的公共自行车建设工作基本完成,某部门对今年4月份中的7天进行了公共自行车租车量的统计,结果如下:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600×100%≈3.3%.14.(12分)(2016·黄冈)望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)m=26%,n=14%,这次共抽查了50名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1 200名学生,请你估计该校C类学生约有多少人?解:(2)补图如图所示.(3)1 200×20%=240(人).答:该校C类学生约有240人.15.(12分)(2016·衡阳)在四张背面完全相同的纸牌A,B,C,D,其中正面分别有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A,B,C,D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.解:(1)画树状图得:则共有16种等可能的结果.(2)∵既是中心对称又是轴对称图形的只有B,C,∴既是轴对称图形又是中心对称图形的有4种情况.∴既是轴对称图形又是中心对称图形的概率为:416=14.16.(14分)(2015·钦州)某校决定在6月8日“世界海洋日”开展系列海洋知识的宣传活动,活动有A.唱歌、B.舞蹈、C.绘画、D.演讲四项宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:选项方式百分比A 唱歌35%B 舞蹈 aC 绘画25%D 演讲10%请结合统计图表,回答下列问题:(1)本次抽查的学生共300人,a=30%,并将条形统计图补充完整;(2)如果该校学生有1 800人,请你估计该校喜欢“唱歌”这项宣传方式的学生约有多少人?(3)学校采用抽签方式让每班在A,B,C,D四项宣传方式中随机抽取两项进行展示,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率.解:(1)补充条形图如图.(2)1 800×35%=630(人).答:该校喜欢“唱歌”这项宣传方式的学生约有630人.(3)画出树状图如下:共有12种等可能的结果数,其中含A和B的结果数为2.2 12=1 6.所以某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率=。

中考数学总复习 第八单元 统计与概率 第28讲 统计试题(2021学年)

中考数学总复习 第八单元 统计与概率 第28讲 统计试题(2021学年)

广西贵港市2017届中考数学总复习第八单元统计与概率第28讲统计试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广西贵港市2017届中考数学总复习第八单元统计与概率第28讲统计试题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广西贵港市2017届中考数学总复习第八单元统计与概率第28讲统计试题的全部内容。

第八单元统计与概率第28讲统计1.(2014·南宁)数据1、2、4、0、5、3、5的中位数和众数分别是( D )A.3和2B.3和3C.0和5D.3和52.(2014·贵港)某市5月份连续五天的日最高气温(单位:℃)分别为:33、30、30、32、35。

则这组数据的中位数和平均数分别是( D )A.32、33B.30、32C.30、31D.32、323.(2015·崇左)甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均分是x甲=85,x乙=85,x丙=85,x丁=85.方差是s错误!=3.8,s错误!=2。

3,s错误!=6.2,s错误!=5.2,则成绩最稳定的是( B )A.甲B.乙 C.丙D.丁4.(2016·滨州)某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( D )A.15.5、15。

5 B.15。

5、15 C.15、15.5 D.15、155.(2016·雅安)某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如图所示扇形统计图,则在被调查的学生中,喜欢跑步和打羽毛球的学生人数分别是( B)A.30、40B.45、60 C.30、60 D.45、406.(2016·柳州模拟)甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲射击成绩的方差是1.2,乙射击成绩的方差是1.8.下列说法中不一定正确的是( C )A.甲射击成绩比乙稳定B.乙射击成绩的波动比甲较大C.甲、乙射击成绩的众数相同D.甲、乙射中的总环数相同7.(2016·永州)在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是( C )A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小8.(2016·深圳)已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,x2+3,x3+3,x4+3的平均数是8.9.(2015·河池)某学校计划开设A、B、C、D四门本校课程供学生选修,规定每个学生必须并且只能选修其中一门.为了了解学生的选修意向,现随机抽取部分学生进行调查,并将调查结果绘制成如图所示的条形统计图.已知该校学生的人数2 000人,由此估计选修A课程的学生有800人.10.(2014·柳州)一位射击运动员在10次射击训练中,命中靶的环数如图所示:请你根据图表,完成下列问题:(1)补充完成下面成绩表单的填写:射击序次12345678910成绩/环8978107910710(2)求该运动员这10次射击训练的平均成绩.解:平均成绩为:8+9+7+8+10+7+9+10+7+1010=8.5(环).11.(2016·桂林)每年5月的第二周为我国城市节约用水宣传周.某社区为了做好今年居民节约用水的宣传,从本社区6 000户家庭中随机抽取200户,调查他们家庭今年三月份的用水量,并将调查的结果绘制成如下的两幅不完整的统计图表:用户三月份用水量频数分布表用水量h(吨)频数频率h≤3003<h≤6200。

2017届广西省第一轮数学中考单元测试(三)函数(含答案)

2017届广西省第一轮数学中考单元测试(三)函数(含答案)

二、填空题 (每小题 4 分, 共 16 分) 9. 一次函数 y= 2x- 6 的图象与 x 轴的交点坐标为 (3, 0). 10.已知函数 y= x- 2 和 y=- 2x+ 1 的图象交于点 P,根据图象直接写出: 当 x- 2≤- 2x+ 1 时 ,自变量 x 的取值 范围是 x≤1.
k 11. 如图 ,?AOBC 中 , 对角线交于点 E,双曲线 y= x(k>0) 经过 A, E 两点 , 若 ?AOBC 的面积为 12, 则 k= 4.
y+ 3=k(x +2).
14.(10 分 )已知二次函数 y= x 2- 4x+ 3. (1) 用配方法求其函数的顶点 C 的坐标 , 并描述该函数的函数值随自变量的增减而增减的情况;
(2) 求函数图象与 x 轴的交点 A ,B 的坐标 , 及△ ABC 的面积. 解: (1)y = x2- 4x+ 3= x2- 4x+ 4- 1= (x - 2)2- 1. ∴其函数的顶点 C 的坐标为 (2, - 1). ∴当 x< 2 时 , y 随 x 的增大而减小;当 x>2 时 ,y 随 x 的增大而增大. (2) 令 y= 0, 则 x 2- 4x+ 3= 0,解得 x 1= 1,x 2= 3. ∴当点 A 在点 B 左侧时 , A(1 ,0), B(3 , 0); 当点 A 在点 B 右侧时 , A(3 ,0) ,B(1 , 0).
C. y1= y2
D .无法比较
6. 为了建设社会主义新农村 ,我市积极推进“行政村通畅工程” ,张村和王村之间的道路需要进行改造 , 施工队在
工作了一段时间后 ,因暴雨被迫停工几天 ,不过施工队随后加快了施工进度 ,按时完成了两村之间道路的改造.下
面能反映该工程尚未改造道路里程 y( 公里 )与时间 x( 天 )的函数关系的大致图象是 (D)

中考数学真题试卷及答案(广西贵港)2017年

中考数学真题试卷及答案(广西贵港)2017年

中考数学真题试卷及答案(广西贵港)2017年一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 7的相反数是()A.7B.−7C.17D.−172. 数据3,2,4,2,5,3,2的中位数和众数分别是()A.2,3B.4,2C.3,2D.2,23. 如图是一个空心圆柱体,它的左视图是()A. B.C. D.4. 下列二次根式中,最简二次根式是()A.−√2B.√12C.√15D.√a25. 下列运算正确的是()A.3a2+a=3a3B.2a3⋅(−a2)=2a5C.4a6+2a2=2a3D.(−3a)2−a2=8a26. 在平面直角坐标系中,点P(m−3, 4−2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限7. 下列命题中假命题是()A.正六边形的外角和等于360∘B.位似图形必定相似C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根8. 从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.1 4B.12C.34D.19. 如图,A,B,C,D是⊙O上的四个点,B是AC^的中点,M是半径OD上任意一点.若∠BDC=40∘,则∠AMB的度数不可能是()A.45∘B.60∘C.75∘D.85∘10. 将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A.y=(x−1)2+1B.y=(x+1)2+1C.y=2(x−1)2+1D.y=2(x+1)2+111. 如图,在Rt△ABC中,∠ACB=90∘,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM.若BC=2,∠BAC=30∘,则线段PM的最大值是()A.4B.3C.2D.112. 如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M 不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≅△DMC;②△CON≅△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是12,其中正确结论的个数是()A.2B.3C.4D.5二、填空题(每题3分,满分18分,将答案填在答题纸上)13. 计算:−3−5=________.14. 中国的领水面积约为370 000________2,将数370 000用科学记数法表示为________.15. 如图,AB // CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF= 40∘,那么∠BEF的度数为________.16. 如图,点________在等边△ABC的内部,且________C=6,________A=8,________B=10,将线段________C绕点C顺时针旋转60∘得到________′C,连接AP′,则sin∠________AP′的值为________.17. 如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与AB^交于点D,以O为圆心,OC的长为半径作CE^交OB于点E,若OA=4,∠AOB=120∘,则图中阴影部分的面积为________.(结果保留π)18. 如图,过C(2, 1)作AC // x轴,BC // y轴,点A,B都在直线y=−x+6上,若双曲(x>0)与△ABC总有公共点,则k的取值范围是________.线y=kx三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.))−2−2cos60∘; 19.19. (1)计算:|−3|+(√5+π)0−(−12(2)先化简,再求值:(1a−1−1a+1)+4+2aa2−1,其中a=−2+√2.20. 尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.21. 如图,一次函数y=2x−4的图象与反比例函数y=kx的图象交于A,B两点,且点A 的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.22. 在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表(1)填空:a=________,b=________,m=________,n=________;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.23. 某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?24. 如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;,求⊙O的半径.(2)若AC=8,tan∠BAC=√2225. 如图,抛物线y=a(x−1)(x−3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.26. 已知,在Rt△ABC中,∠ACB=90∘,AC=4,BC=2,D是AC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【考点】相反数【解析】根据一个数的相反数就是在这个数前面添上“-”号,求解即可.【解答】7的相反数是−7,2.【答案】C【考点】中位数众数【解析】根据中位数和众数的定义分别进行解答即可.【解答】把这组数据从小到大排列:2,2,2,3,3,4,5,最中间的数是3,则这组数据的中位数是3;2出现了3次,出现的次数最多,则众数是2.3.【答案】B【考点】简单几何体的三视图【解析】根据从左边看得到的图形是左视图,可得答案.【解答】从左边看是三个矩形,中间矩形的左右两边是虚线,4.【答案】A【考点】最简二次根式【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选A.5.【答案】D【考点】合并同类项幂的乘方与积的乘方单项式乘单项式【解析】运用合并同类项,单项式乘以单项式,幂的乘方等运算法则运算即可.【解答】A.3a2与a不是同类项,不能合并,所以A错误;B.2a3⋅(−a2)=2×(−1)a5=−2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(−3a)2−a2=9a2−a2=8a2,所以D正确,6.【答案】A【考点】点的坐标【解析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】①m−3>0,即m>3时,−2m<−6,4−2m<−2,所以,点P(m−3, 4−2m)在第四象限,不可能在第一象限;②m−3<0,即m<3时,−2m>−6,4−2m>−2,点P(m−3, 4−2m)可以在第二或三象限,综上所述,点P不可能在第一象限.7.【答案】C【考点】命题与定理【解析】根据正确的命题是真命题,错误的命题是假命题进行分析即可.【解答】A、正六边形的外角和等于360∘,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;8.【答案】B【考点】三角形三边关系列表法与树状图法【解析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率.【解答】从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)=24=12,9.【答案】D【考点】圆心角、弧、弦的关系圆周角定理【解析】根据圆周角定理求得∠AOB的度数,则∠AOB的度数一定不小于∠AMB的度数,据此即可判断.【解答】∵ B是AC^的中点,∵ ∠AOB=2∠BDC=80∘,又∵ M是OD上一点,∵ ∠AMB≤∠AOB=80∘.则不符合条件的只有85∘.10.【答案】C【考点】二次函数图象与几何变换【解析】根据平移规律,可得答案.【解答】由图象,得y=2x2−2,由平移规律,得y=2(x−1)2+1,11.【答案】B【考点】旋转的性质【解析】如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.【解答】如图连接PC.在Rt△ABC中,∵ ∠A=30∘,BC=2,∵ AB=4,根据旋转不变性可知,A′B′=AB=4,∵ A′P=PB′,A′B′=2,∵ PC=12∵ CM=BM=1,又∵ PM≤PC+CM,即PM≤3,∵ PM的最大值为3(此时P、C、M共线).12.【答案】D【考点】全等三角形的性质正方形的性质相似三角形的判定与性质【解析】根据正方形的性质,依次判定△CNB≅△DMC,△OCM≅△OBN,△CON≅△DOM,△OMN∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】∵ 正方形ABCD中,CD=BC,∠BCD=90∘,∵ ∠BCN+∠DCN=90∘,又∵ CN⊥DM,∵ ∠CDM+∠DCN=90∘,∵ ∠BCN=∠CDM,又∵ ∠CBN=∠DCM=90∘,∵ △CNB≅△DMC(ASA),故①正确;根据△CNB≅△DMC,可得CM=BN,又∵ ∠OCM=∠OBN=45∘,OC=OB,∵ △OCM≅△OBN(SAS),∵ OM=ON,∠COM=∠BON,∵ ∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵ DO=CO,∵ △CON≅△DOM(SAS),故②正确;∵ ∠BON+∠BOM=∠COM+∠BOM=90∘,∵ ∠MON=90∘,即△MON是等腰直角三角形,又∵ △AOD是等腰直角三角形,∵ △OMN∽△OAD,故③正确;∵ AB=BC,CM=BN,∵ BM=AN,又∵ Rt△BMN中,BM2+BN2=MN2,∵ AN2+CM2=MN2,故④正确;∵ △OCM≅△OBN,∵ 四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∵ 当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2−x,∵ △MNB的面积=12x(2−x)=−12x2+x,∵ 当x=1时,△MNB的面积有最大值12,此时S△OMN的最小值是1−12=12,故⑤正确;综上所述,正确结论的个数是5个,二、填空题(每题3分,满分18分,将答案填在答题纸上)13.【答案】−8【考点】有理数的减法【解析】根据有理数的减法运算法则进行计算即可得解.【解答】−3−5=−8.14.【答案】km,3.7×105【考点】科学记数法–表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于370 000有6位,所以可以确定n=6−1=5.【解答】370 000=3.7×105,15.【答案】60∘【考点】平行线的判定与性质【解析】先根据平行线的性质,得到∠CFB的度数,再根据∠CFE:∠EFB=3:4以及平行线的性质,即可得出∠BEF的度数.【解答】∵ AB // CD,∠ABF=40∘,∵ ∠CFB=180∘−∠B=140∘,又∵ ∠CFE:∠EFB=3:4,∵ ∠CFE=37∠CFB=60∘,∵ AB // CD,∵ ∠BEF=∠CFE=60∘,16.【答案】P,ABC,PC,PA,PB,PC,C,P,C,AP,PAP,35【考点】等边三角形的性质旋转的性质解直角三角形【解析】连接PP′,如图,先利用旋转的性质得CP=CP′=6,∠PCP′=60∘,则可判定△CPP′为等边三角形得到PP′=PC=6,再证明△PCB≅△P′CA得到PB=P′A=10,接着利用勾股定理的逆定理证明△APP′为直角三角形,∠APP′=90∘,然后根据正弦的定义求解.【解答】连接PP′,如图,∵ 线段PC绕点C顺时针旋转60∘得到P′C,∵ CP=CP′=6,∠PCP′=60∘,∵ △CPP′为等边三角形,∵ PP′=PC=6,∵ △ABC为等边三角形,∵ CB=CA,∠ACB=60∘,∵ ∠PCB=∠P′CA,在△PCB和△P′CA中{PC=P′C∠PCB=∠P′CA CB=CA,∵ △PCB≅△P′CA,∵ PB=P′A=10,∵ 62+82=102,∵ PP′2+AP2=P′A2,∵ △APP′为直角三角形,∠APP′=90∘,∵ sin∠PAP′=PP′P′A =610=35.17.【答案】43π+2√3【考点】线段垂直平分线的性质扇形面积的计算【解析】连接OD、AD,根据点C为OA的中点可得∠CDO=30∘,继而可得△ADO为等边三角形,求出扇形AOD的面积,最后用扇形AOB的面积减去扇形COE的面积,再减去S空白ADC即可求出阴影部分的面积.【解答】如图,连接OD,AD,∵ 点C为OA的中点,∵ OC=12OA=12OD,∵ CD⊥OA,∵ ∠CDO=30∘,∠DOC=60∘,∵ △ADO为等边三角形,∵ CD=2√3,∵ S扇形AOD =60π×42360=83π,∵ S阴影=S扇形AOB−S扇形COE−(S扇形AOD−S△COD)=120π∗42360−120π∗22360−(83π−12×2×2√3)=163π−43π−83π+2√3=43π+2√3.18.【答案】2≤k≤9【考点】反比例函数与一次函数的综合【解析】把C的坐标代入求出k≥2,解两函数组成的方程组,根据根的判别式求出k≤9,即可得出答案.【解答】当反比例函数的图象过C点时,把C的坐标代入得:k=2×1=2;把y=−x+6代入y=kx 得:−x+6=kx,x2−6x+k=0,△=(−6)2−4k=36−4k,∵ 反比例函数y=kx的图象与△ABC有公共点,∵ 36−4k≥0,k≤9,即k的范围是2≤k≤9,三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.【答案】原式=3+1−(−2)2−2×12=4−4−1=−1当a=−2+√2原式=2(a−1)(a+1)+4+2a(a+1)(a−1)=6+2a a2−1=√2 5−4√2=−26+18√27【考点】实数的运算分式的化简求值零指数幂、负整数指数幂负整数指数幂特殊角的三角函数值【解析】(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a的值代入即可求出答案.【解答】原式=3+1−(−2)2−2×12=4−4−1=−1当a=−2+√2原式=2(a−1)(a+1)+4+2a(a+1)(a−1)=6+2a a2−1=√2 5−4√2=−26+18√2720.【答案】点P为所求作;OC为所求作;MD为所求作;【考点】作图—复杂作图【解析】(1)在OA上截取OP=2a即可求出点P的位置;(2)根据角平分线的作法即可作出∠AOB的平分线;(3)以M为圆心,作一圆与射线OB交于两点,再以这两点分别为圆心,作两个相等半径的圆交于D点,连接MD即为OB的垂线;【解答】点P为所求作;OC为所求作;MD为所求作;21.【答案】把x=3代入y=2x−4得y=6−4=2,则A的坐标是(3, 2).得k=6,把(3, 2)代入y=kx则反比例函数的解析式是y=6;x根据题意得2x−4=6,x解得x=3或−1,把x=−1代入y=2x−4得y=−6,则B的坐标是(−1, −6).【考点】反比例函数与一次函数的综合【解析】(1)把x=3代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标.【解答】把x=3代入y=2x−4得y=6−4=2,则A的坐标是(3, 2).把(3, 2)代入y=k得k=6,x;则反比例函数的解析式是y=6x根据题意得2x−4=6,x解得x=3或−1,把x=−1代入y=2x−4得y=−6,则B的坐标是(−1, −6).22.【答案】30,150,0.2,0.24如图所示:3000×(0.12+0.2)=960(人);即估算该校学生一周的课外阅读时间不足三小时的人数为960人.【考点】用样本估计总体频数(率)分布表频数(率)分布直方图【解析】(1)根据阅读时间为1≤x<2的人数及所占百分比可得,求出总人数b=150,再根据频率、频数、总人数的关系即可求出m、n、a;(2)根据数据将频数分布直方图补充完整即可;(3)由总人数乘以时间不足三小时的人数的频率即可.【解答】b=18÷0.12=150(人),∵ n=36÷150=0.24,∵ m=1−0.12−0.3−0.24−0.14=0.2,∵ a=0.2×150=30;故答案为:30,150,0.2,0.24;如图所示:3000×(0.12+0.2)=960(人);即估算该校学生一周的课外阅读时间不足三小时的人数为960人.23.【答案】甲队胜了8场,则负了2场;乙队在初赛阶段至少要胜6场【考点】一元一次方程的应用一元一次不等式的实际应用【解析】(1)设甲队胜了x场,则负了(10−x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a场,根据积分超过15分才能获得参赛资格,进而得出答案.【解答】设甲队胜了x场,则负了(10−x)场,根据题意可得:2x+10−x=18,解得:x=8,则10−x=2,答:甲队胜了8场,则负了2场;设乙队在初赛阶段胜a场,根据题意可得:2a+(10−a)>15,解得:a>5,答:乙队在初赛阶段至少要胜6场.24.【答案】连结OP、OA,OP交AD于E,如图,∵ PA=PD,∵ 弧AP=弧DP,∵ OP⊥AD,AE=DE,∵ ∠1+∠OPA=90∘,∵ OP=OA,∵ ∠OAP=∠OPA,∵ ∠1+∠OAP=90∘,∵ 四边形ABCD为菱形,∵ ∠1=∠2,∵ ∠2+∠OAP=90∘,∵ OA⊥AB,∵ 直线AB与⊙O相切;连结BD,交AC于点F,如图,∵ 四边形ABCD为菱形,∵ DB与AC互相垂直平分,∵ AC=8,tan∠BAC=√22,∵ AF=4,tan∠DAC=DFAF =√22,∵ DF=2√2,∵ AD=√AF2+DF2=2√6,∵ AE=√6,在Rt△PAE中,tan∠1=PEAE =√22,∵ PE=√3,设⊙O的半径为R,则OE=R−√3,OA=R,在Rt△OAE中,∵ OA2=OE2+AE2,∵ R2=(R−√3)2+(√6)2,∵ R=3√32,即⊙O的半径为3√32.【考点】菱形的性质切线的判定与性质解直角三角形【解析】(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90∘,而∠OAP=∠OPA,所以∠1+∠OAP=90∘,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90∘,然后根据切线的判定定理得到直线AB与⊙O相切;(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=√22,得到DF=2√2,根据勾股定理得到AD=2+DF2=2√6,求得AE=√6,设⊙O的半径为R,则OE=R−√3,OA=R,根据勾股定理列方程即可得到结论.【解答】连结OP、OA,OP交AD于E,如图,∵ PA=PD,∵ 弧AP=弧DP,∵ OP⊥AD,AE=DE,∵ ∠1+∠OPA=90∘,∵ OP=OA,∵ ∠OAP=∠OPA,∵ ∠1+∠OAP=90∘,∵ 四边形ABCD为菱形,∵ ∠1=∠2,∵ ∠2+∠OAP=90∘,∵ OA⊥AB,∵ 直线AB与⊙O相切;连结BD,交AC于点F,如图,∵ 四边形ABCD为菱形,∵ DB与AC互相垂直平分,∵ AC=8,tan∠BAC=√22,∵ AF=4,tan∠DAC=DFAF =√22,∵ DF=2√2,∵ AD=√AF2+DF2=2√6,∵ AE=√6,在Rt△PAE中,tan∠1=PEAE =√22,∵ PE=√3,设⊙O 的半径为R ,则OE =R −√3,OA =R ,在Rt △OAE 中,∵ OA 2=OE 2+AE 2,∵ R 2=(R −√3)2+(√6)2,∵ R =3√32, 即⊙O 的半径为3√32.25.【答案】在y =a(x −1)(x −3),令x =0可得y =3a ,∵ C(0, 3a),∵ y =a(x −1)(x −3)=a(x 2−4x +3)=a(x −2)2−a ,∵ D(2, −a);在y =a(x −1)(x −3)中,令y =0可解得x =1或x =3,∵ A(1, 0),B(3, 0),∵ AB =3−1=2,∵ S △ABD =12×2×a =a ,如图,设直线CD 交x 轴于点E ,设直线CD 解析式为y =tx +b ,把C 、D 的坐标代入可得{b =3a 2t +b =−a,解得{t =−2a b =3a , ∵ 直线CD 解析式为y =−2ax +3a ,令y =0可解得x =32,∵ E(32, 0),∵ BE =3−32=32∵ S △BCD =S △BEC +S △BED =12×32×(3a +a)=3a ,∵ S △BCD :S △ABD =(3a):a =3,∵ k =3;∵ B(3, 0),C(0, 3a),D(2, −a),∵ BC 2=32+(3a)2=9+9a 2,CD 2=22+(−a −3a)2=4+16a 2,BD 2=(3−2)2+a 2=1+a 2,∵ ∠BCD <∠BCO <90∘,∵ △BCD 为直角三角形时,只能有∠CBD =90∘或∠CDB =90∘两种情况,①当∠CBD =90∘时,则有BC 2+BD 2=CD 2,即9+9a 2+1+a 2=4+16a 2,解得a =−1(舍去)或a =1,此时抛物线解析式为y =x 2−4x +3;②当∠CDB =90∘时,则有CD 2+BD 2=BC 2,即4+16a 2+1+a 2=9+9a 2,解得a =−√22(舍去)或a =√22,此时抛物线解析式为y =√22x 2−2√2x +3√22; 综上可知当△BCD 是直角三角形时,抛物线的解析式为y =x 2−4x +3或y =√22x 2−2√2x +3√22. 【考点】二次函数综合题【解析】(1)令x =0可求得C 点坐标,化为顶点式可求得D 点坐标;(2)令y =0可求得A 、B 的坐标,结合D 点坐标可求得△ABD 的面积,设直线CD 交x 轴于点E ,由C 、D 坐标,利用待定系数法可求得直线CD 的解析式,则可求得E 点坐标,从而可表示出△BCD 的面积,可求得k 的值;(3)由B 、C 、D 的坐标,可表示出BC 2、BD 2和CD 2,分∠CBD =90∘和∠CDB =90∘两种情况,分别利用勾股定理可得到关于a 的方程,可求得a 的值,则可求得抛物线的解析式.【解答】在y =a(x −1)(x −3),令x =0可得y =3a ,∵ C(0, 3a),∵ y =a(x −1)(x −3)=a(x 2−4x +3)=a(x −2)2−a ,∵ D(2, −a);在y =a(x −1)(x −3)中,令y =0可解得x =1或x =3,∵ A(1, 0),B(3, 0),∵ AB =3−1=2,∵ S △ABD =12×2×a =a ,如图,设直线CD 交x 轴于点E ,设直线CD 解析式为y =tx +b ,把C 、D 的坐标代入可得{b =3a 2t +b =−a,解得{t =−2a b =3a , ∵ 直线CD 解析式为y =−2ax +3a ,令y =0可解得x =32,∵ E(32, 0),∵ BE =3−32=32∵ S △BCD =S △BEC +S △BED =12×32×(3a +a)=3a ,∵ S △BCD :S △ABD =(3a):a =3,∵ k =3;∵ B(3, 0),C(0, 3a),D(2, −a),∵ BC 2=32+(3a)2=9+9a 2,CD 2=22+(−a −3a)2=4+16a 2,BD 2=(3−2)2+a 2=1+a 2,∵ ∠BCD <∠BCO <90∘,∵ △BCD 为直角三角形时,只能有∠CBD =90∘或∠CDB =90∘两种情况,①当∠CBD =90∘时,则有BC 2+BD 2=CD 2,即9+9a 2+1+a 2=4+16a 2,解得a =−1(舍去)或a =1,此时抛物线解析式为y =x 2−4x +3;②当∠CDB =90∘时,则有CD 2+BD 2=BC 2,即4+16a 2+1+a 2=9+9a 2,解得a =−√22(舍去)或a =√22,此时抛物线解析式为y =√22x 2−2√2x +3√22; 综上可知当△BCD 是直角三角形时,抛物线的解析式为y =x 2−4x +3或y =√22x 2−2√2x +3√22. 26.【答案】①在Rt △ABC 中,∵ BC =2,AC =4,∵ AB =√22+42=2√5,∵ AD =CD =2,∵ BD =√22+22=2√2,由翻折可知,BP =BA =2√5.②如图1中,∵ △BCD 是等腰直角三角形,∵ ∠BDC =45∘,∵ ∠ADB =∠BDP =135∘,∵ ∠PDC =135∘−45∘=90∘,∵ ∠BCD =∠PDC =90∘,∵ DP // BC ,∵ PD =AD =BC =2,∵ 四边形BCPD 是平行四边形.如图2中,作DN ⊥AB 于N ,PE ⊥AC 于E ,延长BD 交PA 于M .设BD =AD =x ,则CD =4−x ,在Rt △BDC 中,∵ BD 2=CD 2+BC 2,∵ x 2=(4−x)2+22,∵ x =52,∵ DB =DA ,DN ⊥AB ,由△ADN ∽△ABC ,可得AN AC =AD AB ,∵ AN 4=522√5∵ BN =AN =√5,在Rt △BDN 中,DN =√BD 2−BN 2=√52, 由△BDN ∽△BAM ,可得DN AM =BDAB , ∵ √52AM =5225,∵ AM =2,∵ AP =2AM =4,由△ADM ∽△APE ,可得AM AE =AD AP ,∵ 2AE =524, ∵ AE =165,∵ EC =AC −AE =4−165=45, 易证四边形PECH 是矩形,∵ PH =EC =45.【考点】四边形综合题【解析】(1)①分别在Rt △ABC ,Rt △BDC 中,求出AB 、BD 即可解决问题;②想办法证明DP // BC ,DP =BC 即可;(2)如图2中,作DN ⊥AB 于N ,PE ⊥AC 于E ,延长BD 交PA 于M .设BD =AD =x ,则CD =4−x ,在Rt △BDC 中,可得x 2=(4−x)2+22,推出x =52,推出DN =√BD 2−BN 2=√52,由△BDN ∽△BAM ,可得DN AM =BDAB ,由此求出AM ,由△ADM ∽△APE,可得AMAE =ADAP,由此求出AE=165,可得EC=AC−AE=4−165=45由此即可解决问题.【解答】①在Rt△ABC中,∵ BC=2,AC=4,∵ AB=√22+42=2√5,∵ AD=CD=2,∵ BD=√22+22=2√2,由翻折可知,BP=BA=2√5.②如图1中,∵ △BCD是等腰直角三角形,∵ ∠BDC=45∘,∵ ∠ADB=∠BDP=135∘,∵ ∠PDC=135∘−45∘=90∘,∵ ∠BCD=∠PDC=90∘,∵ DP // BC,∵ PD=AD=BC=2,∵ 四边形BCPD是平行四边形.如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4−x,在Rt△BDC中,∵ BD2=CD2+BC2,∵ x2=(4−x)2+22,∵ x=52,∵ DB=DA,DN⊥AB,由△ADN∽△ABC,可得ANAC =ADAB,∵ AN4=522√5∵ BN=AN=√5,在Rt△BDN中,DN=√BD2−BN2=√52,由△BDN∽△BAM,可得DNAM =BDAB,∵ √52 AM =522√5,∵ AM=2,∵ AP=2AM=4,由△ADM∽△APE,可得AMAE =ADAP,∵ 2AE =524,∵ AE=165,∵ EC=AC−AE=4−165=45,易证四边形PECH是矩形,∵ PH=EC=45.。

广西壮族自治区钦州市2017年广西中考数学一模试卷及参考答案

广西壮族自治区钦州市2017年广西中考数学一模试卷及参考答案
表法求出上衣和裤子搭配成不同颜色的概率.
24. 如图(1),四边形ABCD是平行四边形,BD是它的一条对角线,过顶点A、C分别作AM⊥BD,CN⊥BD,M,N
为垂足.
(1) 求证:AM=CN; (2) 如图(2),在对角线DB的延长线及反向延长线上分别取点E,F,使BE=DF,连接AE、CF,试探究:当EF满 足什么条件时,四边形AECF是矩形?并加以证明. 25. 如图(1),在平面直角坐标系中,抛物线y=﹣ x2+bx+c与x轴交于点A(﹣4,0),与y轴交于点B(0,4).
15
D
9.5≤x<10
3
(1) 图中a=,这次比赛成绩的众数落在组; (2) 请补全频数分布直方图; (3) 学校决定选派本次比赛成绩最好的3人参加全市中学生朗诵比赛,并为参赛选手准备了2件白色、1件蓝色上衣和 黑色、蓝色、白色的裤子各1条,小军先选,他从中随机选取一件上衣和一条裤子搭配成一套衣服,请用画树状图法或列
A. B.3 C.5D.6 二、填空题
12. 当x=________时,分式 的值为零. 13. 一组数据2、﹣2、4、1、0的中位数是________. 14. 分解因式:a2+2ab+b2=________. 15. 如图,为测量某栋楼房AB的高度,在C点测得A点的仰角为30°,朝楼房AB方向前进10米到达点D,再次测得A点 的仰角为60°,则此楼房的高度为________米(结果保留根号).
A.
B.
C.
D.
4. 青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米.将2500000用科学记数法表示应为( )
A . 0.25×107 B . 2.5×107 C . 2.5×106 D . 25×105

2017年广西南宁市中考数学真题及答案

2017年广西南宁市中考数学真题及答案

2017年广西南宁市中考数学真题及答案一、选择题(本大题共12小题,每小题3分,共36分)1.如图,△ABC中,∠A=60°,∠B=40°,则∠C等于()A.100°B.80°C.60°D.40°【答案】B.【解析】试题分析:由三角形内角和定理得,∠C=180°﹣∠A﹣∠B=80°,故选B.考点:三角形内角和定理.2.在下列几何体中,三视图都是圆的为()A.B.C.D.【答案】D.【解析】考点:简单几何体的三视图.3.根据习近平总书记在“一带一路”国际合作高峰论坛开幕式上的演讲,中国将在未来3年向参与“一带一路”建设的发展中国家和国际组织提供60000000000元人民币援助,建设更多民生项目,其中数据60 000 000 000用科学记数法表示为()A.0.6×1010B.0.6×1011C.6×1010D.6×1011【答案】C.【解析】试题分析:将60000000000用科学记数法表示为:6×1010.故选C . 考点:科学记数法—表示较大的数. 4.下列运算正确的是( )A .123)4(3+-=--x xB .422124)3(x x x -=⋅- C .32523x x x =+ D .326x x x =÷ 【答案】A . 【解析】考点:整式的混合运算. 5.一元一次不等式组⎩⎨⎧≤+>+31022x x 的解集在数轴上表示为( )A .B .C .D .【答案】A . 【解析】 试题分析:22013x x +>⎧⎨+≤⎩①②解不等式①得:x >﹣1,解不等式②得:x ≤2,∴不等式组的解集是﹣1<x ≤2,表示在数轴上,如图所示:.故选A .考点:解一元一次不等式组;在数轴上表示不等式的解集.6.今年世界环境日,某校组织的保护环境为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,9.5,这6名选手成绩的众数和中位数分别是( ) A .8.8分,8.8分 B .9.5分,8.9分 C .8.8分,8.9分 D .9.5分,9.0分 【答案】C . 【解析】试题分析:由题中的数据可知,8.8出现的次数最多,所以众数为8.8;从小到大排列:8.5,8.8,8.8,9.0,9.4,9.5,故可得中位数是(8.8+9.0)÷2=8.9. 故选C .考点:众数;中位数.7.如图,△ABC 中,AB >AC ,∠CAD 为△ABC 的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )A .∠DAE =∠B B .∠EAC =∠C C .AE ∥BCD .∠DAE =∠EAC 【答案】D . 【解析】考点:作图—复杂作图;平行线的判定与性质;三角形的外角性质.8.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( ) A .51 B .41 C . 31 D .21【答案】C . 【解析】试题分析:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于5的有4种情况,∴两次摸出的小球标号之和等于5的概率是:412=31.故选C . 考点:列表法与树状图法.9.如图,⊙O 是△ABC 的外接圆,BC =2,∠BAC =30°,则劣弧BC 的长等于( )A .32π B .3πC . 332πD .33π【答案】A . 【解析】考点:弧长的计算;圆周角定理.10.一艘轮船在静水中的最大航速为35km/h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行90km 所用时间相等.设江水的流速为v km/h ,则可列方程为( ) A .359035120-=+v v B .v v +=-359035120 C . 359035120+=-v v D .vv -=+359035120【答案】D .【解析】试题分析:设江水的流速为v km/h ,根据题意得:vv -=+359035120,故选D . 考点:由实际问题抽象出分式方程.11.如图,一艘海轮位于灯塔P 的南偏东45°方向,距离灯塔60n mile 的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的北偏东30°方向上的B 处,这时,B 处与灯塔P 的距离为( )A .nmile 360B .nmile 260C . nmile 330D .nmile 230 【答案】B . 【解析】考点:解直角三角形的应用﹣方向角问题;勾股定理的应用.12.如图,垂直于x 轴的直线AB 分别与抛物线1C :2x y =(x ≥0)和抛物线2C :42x y =(x ≥0)交于A ,B 两点,过点A 作CD ∥x 轴分别与y 轴和抛物线C 2交于点C ,D ,过点B 作EF ∥x 轴分别与y 轴和抛物线C 1交于点E ,F ,则EADOFES S ∆∆的值为( )A .62 B .42 C . 41 D .61【答案】D . 【解析】∴则EADOFES S ∆∆=1212BF OEAD CE ⋅⋅ =1483⨯=61,故选D .考点:二次函数图象上点的坐标特征;综合题. 二、填空题(本大题共6小题,每小题3分,共18分) 13.计算:|﹣6|= . 【答案】6. 【解析】试题分析:﹣6<0,则|﹣6|=﹣(﹣6)=6,故答案为:6. 考点:绝对值.14.红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有 人. 【答案】680. 【解析】试题分析:由于样本中最喜欢的项目是跳绳的人数所占比例为85200,∴估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有1600×85200=680,故答案为:680. 考点:用样本估计总体. 15.已知⎩⎨⎧==b y a x 是方程组⎩⎨⎧=+=-5202y x y x 的解,则3a ﹣b = .【答案】5. 【解析】 试题分析:∵⎩⎨⎧==b y a x 是方程组⎩⎨⎧=+=-5202y x y x 的解,∴2025a b a b -=⎧⎨+=⎩①②,①+②得,3a ﹣b =5,故答案为:5.考点:二元一次方程组的解;整体思想.16.如图,菱形ABCD 的对角线相交于点O ,AC =2,BD =23,将菱形按如图方式折叠,使点B 与点O 重合,折痕为EF ,则五边形AEFCD 的周长为 .【答案】7. 【解析】∴△AEO 是等边三角形,∴AE =OE ,∴BE =AE ,∴EF 是△ABC 的中位线,∴EF =12AC =1,AE =OE =1,同理CF =OF =1,∴五边形AEFCD 的周长为=1+1+1+2+2=7.故答案为:7.考点:翻折变换(折叠问题);菱形的性质;综合题.17.对于函数xy 2=,当函数值y <﹣1时,自变量x 的取值范围是 . 【答案】﹣2<x <0. 【解析】试题分析:∵当y =﹣1时,x =﹣2,∴当函数值y <﹣1时,﹣2<x <0.故答案为:﹣2<x <0. 考点:反比例函数的性质.18.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点P (1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P 的坐标为 .【答案】(1517,1). 【解析】考点:坐标与图形变化﹣旋转;规律型:点的坐标. 三、解答题(本大题共8小题,共66分)19.计算:3)1(45sin 28)2(-+-+-- .【答案】12 【解析】试题分析:首先利用二次根式的性质以及特殊角的三角函数值分别化简得出答案. 试题解析:原式=22221+-=12+ 考点:实数的运算;特殊角的三角函数值.20.先化简,再求值:2211121x xx x x---÷++,其中15-=x.【答案】11x+,55.【解析】考点:分式的化简求值.21.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.【答案】(1)作图见解析;(2)y=﹣x.【解析】试题分析:(1)根据图形平移的性质画出△A1B1C1并写出点B1的坐标即可;(2)连接AA2,作线段AA2的垂线l,再作△ABC关于直线l对称的△A2B2C2即可.试题解析:(1)如图,△A1B1C1即为所求,B1(﹣2,﹣1);(2)如图,△A2B2C2即为所求,直线l的函数解析式为y=﹣x.考点:作图﹣轴对称变换;待定系数法求一次函数解析式;作图﹣平移变换. 22.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 在BD 上,BE =DF . (1)求证:AE =CF ;(2)若AB =6,∠COD =60°,求矩形ABCD 的面积.【答案】(1)证明见解析;(2)363. 【解析】(2)解:∵OA =OC ,OB =OD ,AC =BD ,∴OA =OB ,∵∠AOB =∠COD =60°,∴△AOB 是等边三角形,∴OA =AB =6,∴AC =2OA =12,在Rt △ABC 中,BC 22AC AB 3,∴矩形ABCD 的面积=AB •BC =6×633考点:矩形的性质;全等三角形的判定与性质.23.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A :自行车,B :电动车,C :公交车,D :家庭汽车,E :其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角是°;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.【答案】(1)2000,108;(2)作图见解析;(3)14.【解析】试题解析:(1)被调查的人数为:800÷40%=2000(人),C组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C组对应的扇形圆心角度数为:6002000×360°=108°,故答案为:2000,108;(2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:416=14.考点:列表法与树状图法;扇形统计图;条形统计图.24.为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?【答案】(1)20%;(2)12.5.【解析】答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1350=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.5%.故a的值至少是12.5.考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题.25.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过BD上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:△ECF∽△GCE;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tan G=34,AH=33,求EM的值.【答案】(1)证明见解析;(2)证明见解析;(3)2538.【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出AD AC=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AH HC EM OE=,由此即可解决问题;(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC .设⊙O 的半径为r .考点:圆的综合题;压轴题.26.如图,已知抛物线a ax ax y 9322--=与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标;(3)证明:当直线l 绕点D 旋转时,ANAM 11+均为定值,并求出该定值.【答案】(1)a=13,A(﹣3,0),抛物线的对称轴为x=3;(2)点P的坐标为(3,2)或(3,0)或(3,﹣4);(3)32.【解析】试题分析:(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(3,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD=PA、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可.设点P的坐标为(3,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=PA时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=2或a=0,∴点P的坐标为(3,2)或(3,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4,∴点P的坐标为(,﹣4).综上所述,点P 的坐标为(3,2)或(3,0)或(3,﹣4).(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:330m -+=,解得:m =3,∴直线AC 的解析式为33y x =+.∵∠MAG =60°,∠AGM =90°,∴AM =2AG =33k +-233k k -,∴AN AM 11+323231k k -- =3232k -3(32(31)k k -3. 考点:二次函数综合题;旋转的性质;定值问题;动点型;分类讨论;压轴题.。

2017广西河池中考试卷解析

2017广西河池中考试卷解析

2017年广西省河池市中考数学试卷满分:120分版本:人教版 第I 卷(选择题,共36分)一、选择题(每小题3分,共36分)1.(2017广西河池,1,3分)下列实数中,为无理数的是( )A .2-B .2C .2D .4 答案:B解析:只有2是无理数,其他均为有理数.2.(2017广西河池,2,3分)如图,点O 在直线AB 上,若ο60=∠BOC ,则AOC ∠的大小是( )A .ο60B .ο90C .ο120D .ο150 答案:C解析:∵ο60=∠BOC ,BOC ∠+AOC ∠=180°∴AOC ∠=ο120 3.(2017广西河池,3,3分)若函数11-=x y 有意义,则( ) A .1>x B .1<x C .1=x D .1≠x 答案:D 解析:∵11-=x y 有意义 ∴x -1≠0即1≠x 4.(2017广西河池,4,3分)如图是一个由三个相同正方体组成的立体图形,它的主观图是( )A .B .C .D .答案:D解析:从正面看有两层,下面一层有2个正方形,上面一层有一个正方形.从正面看有两列,左面有2个正方形,右面有1个正方形,故选D . 5.(2017广西河池,5,3分)下列计算正确的是( )A .523a a a =+B .623a a a =⋅C . 632)(a a = D .236a a a =÷答案:C解析:325a a a +≠故A 错误,325a a a ⋅=故B 错误,632)(a a =故C 正确,633a a a ÷=故D错误,故选C6.(2017四川广安,6,3分)点)1,3(-P 在双曲线xky =上,则k 的值是( ) A .3- B .3 C . 31- D .31 答案:A解析:k =-3×1=-3,故选A7.(2017广西河池,7,3分)在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是92,88,95,93,96,95,94 .这组数据的中位数和众数分别是( )A .94,94B .94,95C . 93,95D .93,96 答案:B解析:从小到大依次排为:88,92,93,94,95,95,96,则中位数和众数分别是94,95 ,故选B8.(2017广西河池,8,3分)如图,⊙O 的直径AB 垂直于弦ο36,=∠CAB CD ,则BCD ∠的大小是( )A .ο18 B .ο36 C . ο54 D .ο72 答案:B解析:AB 与CD 交于E ∵AB 为直径,AB ⊥CD ∴∠ACB =∠CEB =90°∴∠BCD =∠CAB =36° 9.(2017四川广安,9,3分)三角形的下列线段中,能将三角形分成面积相等的两部分是( )A .中线B .角平分线C .高D .中位线 答案:A解析:由上图可知:能将三角形分成面积相等的两部分是中线,故选A10.(2017广西河池,10,3分)若关于x 的一元二次方程022=-+a x x 的两个相等的实数根,则a 的值是( )A .1-B .1C . 4-D .4 答案:A解析:由题可知△=4+4a =0,解得a =-111.(2017广西河池,11,3分)如图,在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线AG ,若AD =5,DE =6,则AG 的长是( )A .6B .8C . 10D .12答案:B解析:设AG 与BE 交点为O ,∵AD =AE ,AG 平分∠BAD ,AO =AO ,∴可证△ADO ≌△AEO (SAS ),∴BO =EO =3,∠AOD =∠AOE =90º,AB =5,∴AO =4,∵AE ∥DG ,∴可证△AOE ≌△GOD ,AO =GO ,∴AE =2AO =8,故选B. 12.(2017广西河池,12,3分)已知等边△ABC 的边长为12, D 是AB 上的动点,过D 作DE ⊥AC 于点E ,过E 作EF ⊥BC 于点F ,过F 作FG ⊥AB 于点G .当G 与D 重合时,AD 的长是( )A .3B .4C . 8D .9答案:C解析:由题易知△DEF 为等边三角形,x +2x =12解得x =4,∴AD =2x=8第II 卷(非选择题,共84分) 二、填空题(每小题3分,共18分). 13.(2017广西河池,13,3分)分解因式:=-252x .答案:(x +5)(x -5)解析:=-252x (x +5)(x -5) 14.(2017广西河池,14,3分)点(2,1)A 与点B 关于原点对称,则点B 的坐标是 . 答案:(-2,-1)解析:由(x ,y )关于原点对称的点为(-x ,-y )可得B (-2,-1)15.(2017广西河池,15,3分)在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90 ,则这位歌手的成绩是 .答案:90 解析:平均分=92938887905++++=9016.(2017广西河池,16,3分)如图,直线ax y =与双曲线)0(>=x xky 交于点(1,2)A ,则不等式xkax >的解集是 .答案:解析:由图可知:xkax >的解集是-1<x <0或x >1 17.(2017广西河池,17,3分)圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是 .答案:10解析:设半圆半径为x ,根据题意得2πx ÷2=2π×5,解得x =10. 18.(2017广西河池,18,3分)如图,在矩形ABCD 中,AB =2,E 是BC 的中点,AE ⊥BD 于点F ,则CF 的长是 .答案: 2解析:作CG ⊥BD ,可证△ABF ≌△CDG ≌△CFG ,得CF =CD =AB =2三、解答题(本大题共4个小题,共66分).19.(2017广西河池,19,6分)计算:02845sin 2|1|-+--ο.思路分析:绝对值、三角函数值、根式、0次方的考查 解: 原式=1-2×22+22-1=1-2+22-1=2 20.(2017广西河池,20,6分)解不等式组:⎩⎨⎧<+>-31012x x .思路分析:分别解2个不等式再取公共部分解:21013x x ->⎧⎨+<⎩(1)(2)由(1)得x >12 由(2)得x <2∴原不等式组的解集为12<x <221.(2017广西河池,21,6分)直线l 的解析式为22+-=x y ,分别交x 轴、y 轴于点B A ,.(1)写出B A ,两点的坐标,并画出直线l 的图象;(2)将直线l 向上平移4个单位得到1l ,1l 交x 轴于点C .作出1l 的图象,1l 的解析式是 .(3)将直线l 绕点A 顺时针旋转ο90得到2l ,2l 交1l 于点D .作出2l 的图象=∠CAD tan .思路分析:(1)利用直线解析式y =kx +b 与x 轴、y 轴交于(-bk ,0),(0,b )可求A ,B 坐标 (2)利用上加下减可求l 2 (3)利用旋转作图△AOB ≌△ADC 可求=∠CAD tan 12 解:(1)A (1,0),B (0,2),直线l 如图所示 (2)y =-2x +6,直线1l 如图所示(3)直线2l 如图所示,=∠CAD tan 1222.(2017广西河池,22,8分)(1)如图1,在正方形ABCD 中,点F E ,分别在CD BC ,上,BF AE ⊥于点M ,求证BF AE =;(2)如图2,将(1)中的正方形ABCD 改为矩形ABCD ,,3,2==BC AB BF AE ⊥于点M ,探究AE 与BF 的数量关系,并证明你的结论.图(1) 图(2)思路分析:(1)利用ASA 证明△ABE ≌△BCF 可得BF AE = (2)方法1:利用导角证明△ABE ∽△BCF 可AB BF =AB CF =23方法2:利用∠BAE =∠CBF ,cos ∠BAE =cos ∠CBF 即AB BF =AB CF =23图(3) 图(4)解:(1)如图(3)由题知∠1=∠2,AB =BC ,∠ABE =∠BCF ∴△ABE ≌△BCF (ASA ) ∴BF AE =(2)如图(4)由题知∠3=∠4,∠ABE =∠BCF∴△ABE ∽△BCF ∴AB BF =AB CF∵,3,2==BC AB ∴AB BF =AB CF =23 ∴3AB =2BF23.(2017广西河池,23,8分)九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”只是竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:68,99,99,67,99,63,90,60.频数分布表 分数段频数(人数)7060<≤x a8070<≤x 169080<≤x24 10090<≤xb请解答下列问题:(1)完成频数分布表,=a ,=b . (2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩10090<≤x 范围内的学生有多少人? (4)九(1)班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲、乙两位同学的概率.思路分析:(1)由题知a =4,b =4 (2)利用频数分布表补全频数分布直方图(3)600×448=50(人)(4)画树形图求解解:(1)a =4,b =4(2)补全如图(3)600×448=50(人) 答:略 (4)树形图如下:P 甲、乙=26=13 答:略24.(2017广西河池,24,8分)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等. (1)排球和足球的单价各是多少元?(2)若恰好用去1200元,有哪几种购买方案?思路分析:(1)设未知数,根据数量相等列分式方程(2)设未知数列二元一次方程,根据两球的个数为自然数分类讨论 解:(1)设排球单价x 元/个,足球单价(x +30)元/个500x =800x +30 解得x =50 经检验x =50是原方程的解 ∴x +30=80答:排球单价50元/个,足球单价80元/个 (2)设买排球a 个,足球b 个 50a +80b =1200即5a +8b =120∴a =120-8b 5 ∵a ,b 为自然数 ∴b =0时, a =24 b =5时, a =16 b =10时,a =8 b =15时,a =0答:共有4种方案:0个足球和24个排球,5个足球和16个排球,10个足球和8个排球,15个足球和0个排球 25.(2017广西河池,25,9分)如图,AB 为⊙O 的直径,CB ,CD 分别切⊙O 于点B ,D ,CD 交BA 的延长线于点E ,CO 的延长线交⊙O 于点G ,EF ⊥OG 于点F . (1)求证∠FEB =∠ECF ;(2)若BC =6,DE =4,求EF 的长.思路分析:(1)根据切线长定理和基本的相似导角可证ECF FEB ∠=∠(2)利用勾股定理和角的三角函数值或相似可得EF =2 5解:(1)∵CB ,CD 分别切⊙O ,EF ⊥OG∴∠B =∠EFC =90°,∠BCF =∠ECF∵∠EOF =∠COB ∴∠FEB =∠BCF ∴∠FEB =∠ECF(2)连DO 如图:由(1)知CD =CB ,OD =OB ∠ODC =∠EFC =∠B =90°∵BC =6,DE =4, ∴CD =CB =6在RT △CEB 中,由勾股定理得:EB =8 设OB =OD =r在RT △EDO 中,由勾股定理得:42+r 2=(8-r )2 解得r =3 ∴OD =OB =3 在RT △CDO 中,由勾股定理得:OC 2=62+32 解得OC =3 5在RT △CDO 和RT △CEF 中,由同角的三角函数值相等得:sin ECF ∠=sin DCO ∠即EF 10=35解得EF =2526.(2017广西河池,26,10分)抛物线322++-=x x y 与x 轴交于点B A ,(A 在B 的左侧),与y 轴交于点C .(1)求直线BC 的解析式;(2)抛物线的对称轴上存在点P ,使ABC APB ∠=∠,利用图1求点P 的坐标; (3)点Q 在y 轴右侧的抛物线上,利用图2比较OCQ ∠与OCA ∠的大小,并说明理由.图(1) 图(2)思路分析:(1)由题得A (-1,0),B (3,0),C (0,3)再用两点式求BC :y =-x +3(2)设P (1,y p ),由ABC APB ∠=∠=45°构造等腰直角三角形利用勾股定理求解P (3)找到OCQ ∠=OCA ∠时Q 的坐标再分类讨论 解:(1)由题得A (-1,0),B (3,0),C (0,3)设BC :y =kx +b ∴⎩⎨⎧3k +b =0b =3 解得⎩⎨⎧k =-1b =3∴BC :y =-x +3(2)如图(3),设P (1,y p ),由(1)知ABC APB ∠=∠=45°过A 作AN ⊥PN 于N ,则△APN 为等腰直角三角形设AN =t ,对称轴于x 轴交于点M ,则AP =BP =2t ,AN =PN =t ∴BN =(2-1)t 在RT △ABN 和RT △AMP中,由勾股定理得:AN 2+BN 2=AB 2即t 2+()221t ⎡⎤⎣⎦=42AM 2+PM 2=AP 2 即22+y p2=)22t解得y p =22+2或-22-2∴ABC APB ∠=∠时,P 1(1,22+2)或P 2(1,-22-2)图(3)(3)当直线CQ 经过(1,0)时,OCQ ∠=OCA ∠,如图(4)图(4)此时CQ 直线:y =-3x +3联立⎩⎪⎨⎪⎧y =-x 2+2x +3y =-3x +3 解得⎩⎨⎧x =5y =-12 ∴Q (5,-12)由图知:当0<x Q <5时OCQ ∠>OCA ∠,x Q >5,OCQ ∠<OCA ∠。

2017届广西省第一轮中考单元测试(二)方程与不等式(含答案)

2017届广西省第一轮中考单元测试(二)方程与不等式(含答案)

10. 已知关于
x 的方程 x 2+ x + 2a- 1= 0 的一个根是
0, 则 a= 1. 2
x- y= 3,
11. 已知关于 x, y 的方程组
的解满足不等式 x+ y<3 , 则 a 的取值范围为 a< 1.
2x+ y= 6a
ab
ab
12. (2015 ·崇左 )4 个数 a, b, c,d 排列成
x=- 1 A.
y=2
x=1 B.
y=- 2
x=- 1 C.
y=- 2
x式 2(x+ 2)≥ 6 的解集在数轴上表示为 (A)
4.下列一元二次方程没有实数根的是 (B)
A . x2+2x + 1= 0
B. x 2+ x + 2= 0
C. x 2- 1= 0
D. x 2- 2x -1= 0
长率相同.
(1) 求这两年该县投入教育经费的年平均增长率;
(2) 若该县教育经费的投入还将保持相同的年平均增长率
, 请你预算 2017 年该县投入教育经费多少万元?
解: (1) 设该县投入教 育经费的年平均增长率为 x.则 6 000(1+ x) 2= 8 640.
解得 x 1= 0.2=20%, x2=- 2.2(不合题意 ,舍去 ).
单元测试 (二) 方程与不等式
一、选择题 (每小题 3 分, 共 24 分)
( 时间: 45 分钟
1. 一元一次方程 3x+ 2(1- x) = 4 的解是 (C)
2 A . x= 5
6 B.x= 5
C. x=2
D .x= 1
满分: 100 分 )
x- y=- 3,
2. 方程组
的解是 (A)
2x+ y= 0

广西省中考数学科目考试说明(2)

广西省中考数学科目考试说明(2)

广西省中考数学科目考试说明(2)2017年广西省中考数学科目考试说明(3)三角形①理解三角形及其内角、外角、中线、高线、角平分线等概念,了解三角形的稳定性。

②探索并证明三角形的内角和定理。

掌握它的推论:三角形的外角等于与它不相邻的两个内角的和。

证明三角形的任意两边之和大于第三边。

③理解全等三角形的概念,能识别全等三角形中的对应边、对应角。

④掌握基本事实:两边及其夹角分别相等的两个三角形全等。

⑤掌握基本事实:两角及其夹边分别相等的两个三角形全等。

⑥掌握基本事实:三边分别相等的两个三角形全等。

⑦证明定理:两角分别相等且其中一组等角的对边相等的两个三角形全等。

⑧探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边距离相等的点在角的平分线上。

⑨理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上。

⑩了解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;底边上的高线、中线及顶角平分线重合。

探索并掌握等腰三角形的判定定理:有两个角相等的三角形是等腰三角形。

探索等边三角形的性质定理:等边三角形的各角都等于60°,及等边三角形的判定定理:三个角都相等的三角形(或有一个角是60°的等腰三角形)是等边三角形。

了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半。

掌握有两个角互余的三角形是直角三角形。

探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

探索并掌握判定直角三角形全等的“斜边、直角边”定理。

了解三角形重心的概念。

(4)四边形①了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;探索并掌握多边形内角和与外角和公式。

②理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系;了解四边形的不稳定性。

广西贵港市2017年中考数学真题试题(含解析1)

广西贵港市2017年中考数学真题试题(含解析1)

2017年广西贵港市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7的相反数是()A.7 B.﹣7 C.D.﹣2.数据3,2,4,2,5,3,2的中位数和众数分别是()A.2,3 B.4,2 C.3,2 D.2,23.如图是一个空心圆柱体,它的左视图是()A. B.C. D.4.下列二次根式中,最简二次根式是()A. B. C.D.5.下列运算正确的是()A.3a2+a=3a3 B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a26.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.下列命题中假命题是()A.正六边形的外角和等于360°B.位似图形必定相似C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.19.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45° B.60° C.75° D.85°10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+111.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.112.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()A.2 B.3 C.4 D.5二、填空题(每题3分,满分18分,将答案填在答题纸上)13.计算:﹣3﹣5= .14.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为.15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为.16.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为.17.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为.(结果保留π)18.如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线y=(x>0)与△ABC总有公共点,则k的取值范围是.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化简,在求值:(﹣)+,其中a=﹣2+.20.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.21.如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A,B两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.22.在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时)频数(人)频率1≤x<2 18 0.122≤x<3 a m3≤x<4 45 0.34≤x<5 36 n5≤x<6 21 0.14合计 b 1(1)填空:a= ,b= ,m= ,n= ;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.23.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?24.如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.25.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD 沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.2017年广西贵港市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7的相反数是()A.7 B.﹣7 C.D.﹣【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:7的相反数是﹣7,故选:B.2.数据3,2,4,2,5,3,2的中位数和众数分别是()A.2,3 B.4,2 C.3,2 D.2,2【考点】W5:众数;W4:中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:2,2,2,3,3,4,5,最中间的数是3,则这组数据的中位数是3;2出现了3次,出现的次数最多,则众数是2.故选:C.3.如图是一个空心圆柱体,它的左视图是()A. B.C. D.【考点】U1:简单几何体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是三个矩形,中间矩形的左右两边是虚线,故选:B.4.下列二次根式中,最简二次根式是()A. B. C.D.【考点】74:最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:A.5.下列运算正确的是()A.3a2+a=3a3 B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方.【分析】运用合并同类项,单项式乘以单项式,幂的乘方等运算法则运算即可.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B.2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选D.6.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】D1:点的坐标.【分析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6,4﹣2m<﹣2,所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;②m﹣3<0,即m<3时,﹣2m>﹣6,4﹣2m>﹣2,点P(m﹣3,4﹣2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.7.下列命题中假命题是()A.正六边形的外角和等于360°B.位似图形必定相似C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根【考点】O1:命题与定理.【分析】根据正确的命题是真命题,错误的命题是假命题进行分析即可.【解答】解:A、正六边形的外角和等于360°,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C.8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.1【考点】X6:列表法与树状图法;K6:三角形三边关系.【分析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率.【解答】解:从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)==,故选B9.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45° B.60° C.75° D.85°【考点】M5:圆周角定理;M4:圆心角、弧、弦的关系.【分析】根据圆周角定理求得∠AOB的度数,则∠AOB的度数一定不小于∠AMB的度数,据此即可判断.【解答】解:∵B是的中点,∴∠AOB=2∠BDC=80°,又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+1【考点】H6:二次函数图象与几何变换.【分析】根据平移规律,可得答案.【解答】解:由图象,得y=2x2﹣2,由平移规律,得y=2(x﹣1)2+1,故选:C.11.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.1【考点】R2:旋转的性质.【分析】如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.【解答】解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.12.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()A.2 B.3 C.4 D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN ∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x,∴当x=1时,△MNB的面积有最大值,此时S△OMN的最小值是1﹣=,故⑤正确;综上所述,正确结论的个数是5个,故选:D.二、填空题(每题3分,满分18分,将答案填在答题纸上)13.计算:﹣3﹣5= ﹣8 .【考点】1A:有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣3﹣5=﹣8.故答案为:﹣8.14.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为 3.7×105.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于370 000有6位,所以可以确定n=6﹣1=5.【解答】解:370 000=3.7×105,故答案为:3.7×105.15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为60°.【考点】JA:平行线的性质.【分析】先根据平行线的性质,得到∠CFB的度数,再根据∠CFE:∠EFB=3:4以及平行线的性质,即可得出∠BEF的度数.【解答】解:∵AB∥CD,∠ABF=40°,∴∠CFB=180°﹣∠B=140°,又∵∠CFE:∠EFB=3:4,∴∠CFE=∠CFB=60°,∵AB∥CD,∴∠BEF=∠CFE=60°,故答案为:60°.16.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为.【考点】R2:旋转的性质;KK:等边三角形的性质;T7:解直角三角形.【分析】连接PP′,如图,先利用旋转的性质得CP=CP′=6,∠PCP′=60°,则可判定△CPP′为等边三角形得到PP′=PC=6,再证明△PCB≌△P′CA得到PB=P′A=10,接着利用勾股定理的逆定理证明△APP′为直角三角形,∠APP′=90°,然后根据正弦的定义求解.【解答】解:连接PP′,如图,∵线段PC绕点C顺时针旋转60°得到P'C,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6,∵△ABC为等边三角形,∴CB=CA,∠ACB=60°,∴∠PCB=∠P′CA,在△PCB和△P′CA中,∴△PCB≌△P′CA,∴PB=P′A=10,∵62+82=102,∴PP′2+AP2=P′A2,∴△APP′为直角三角形,∠AP P′=90°,∴sin∠PAP′===.故答案为.17.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为π+2.(结果保留π)【考点】MO:扇形面积的计算;KG:线段垂直平分线的性质.【分析】连接OD、AD,根据点C为OA的中点可得∠CDO=30°,继而可得△ADO为等边三角形,求出扇形AOD的面积,最后用扇形AOB的面积减去扇形COE的面积,再减去S空白ADC即可求出阴影部分的面积.【解答】解:连接O、AD,∵点C为OA的中点,∴∠C DO=30°,∠DOC=60°,∴△ADO为等边三角形,∴S扇形AOD==π,∴S阴影=S扇形AOB﹣S扇形COE﹣(S扇形AOD﹣S△COD)=﹣﹣(π﹣×2×2)=π﹣π﹣π+2=π+2.故答案为π+2.18.如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线y=(x>0)与△ABC总有公共点,则k的取值范围是2≤k≤9 .【考点】G8:反比例函数与一次函数的交点问题.【分析】把C的坐标代入求出k≥2,解两函数组成的方程组,根据根的判别式求出k≤9,即可得出答案.【解答】解:当反比例函数的图象过C点时,把C的坐标代入得:k=2×1=2;把y=﹣x+6代入y=得:﹣x+6=,x2﹣6x+k=0,△=(﹣6)2﹣4k=36﹣4k,∵反比例函数y=的图象与△ABC有公共点,∴36﹣4k≥0,k≤9,即k的范围是2≤k≤9,故答案为:2≤k≤9.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化简,在求值:(﹣)+,其中a=﹣2+.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a的值代入即可求出答案.【解答】解:(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1(2)当a=﹣2+原式=+===7+520.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.【考点】N3:作图—复杂作图.【分析】(1)在OA上截取OP=2a即可求出点P的位置;(2)根据角平分线的作法即可作出∠AOB的平分线;(3)以M为圆心,作一圆与射线OB交于两点,再以这两点分别为圆心,作两个相等半径的圆交于D点,连接MD即为OB的垂线;【解答】解:(1)点P为所求作;(2)OC为所求作;(3)MD为所求作;21.如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A,B两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把x=3代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标.【解答】解:(1)把x=3代入y=2x﹣4得y=6﹣4=2,则A的坐标是(3,2).把(3,2)代入y=得k=6,则反比例函数的解析式是y=;(2)根据题意得2x﹣4=,解得x=3或﹣1,把x=﹣1代入y=2x﹣4得y=﹣6,则B的坐标是(﹣1,﹣6).22.在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时)频数(人)频率1≤x<2 18 0.122≤x<3 a m3≤x<4 45 0.34≤x<5 36 n5≤x<6 21 0.14合计 b 1(1)填空:a= 30 ,b= 150 ,m= 0.2 ,n= 0.24 ;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据阅读时间为1≤x<2的人数及所占百分比可得,求出总人数b=150,再根据频率、频数、总人数的关系即可求出m、n、a;(2)根据数据将频数分布直方图补充完整即可;(3)由总人数乘以时间不足三小时的人数的频率即可.【解答】解:(1)b=18÷0.12=150(人),∴n=36÷150=0.24,∴m=1﹣0.12﹣0.3﹣0.24﹣0.14=0.2,∴a=0.2×150=30;故答案为:30,150,0.2,0.24;(2)如图所示:(3)3000×(0.12+0.2)=960(人);即估算该校学生一周的课外阅读时间不足三小时的人数为960人.23.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?【考点】C9:一元一次不等式的应用;8A:一元一次方程的应用.【分析】(1)设甲队胜了x场,则负了(10﹣x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a场,根据积分超过15分才能获得参赛资格,进而得出答案.【解答】解:(1)设甲队胜了x场,则负了(10﹣x)场,根据题意可得:2x+10﹣x=18,解得:x=8,则10﹣x=2,答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a场,根据题意可得:2a+(10﹣a)≥15,解得:a≥5,答:乙队在初赛阶段至少要胜5场.24.如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.【考点】ME:切线的判定与性质;L8:菱形的性质;T7:解直角三角形.【分析】(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.【解答】解:(1)连结OP、OA,OP交AD于E,如图,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°,∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°,∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直线AB与⊙O相切;(2)连结BD,交AC于点F,如图,∵四边形ABCD为菱形,∴DB与AC互相垂直平分,∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=,在Rt△PAE中,tan∠1==,∴PE=,设⊙O的半径为R,则OE=R﹣,OA=R,在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半径为.25.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.【考点】HF:二次函数综合题.【分析】(1)令x=0可求得C点坐标,化为顶点式可求得D点坐标;(2)令y=0可求得A、B的坐标,结合D点坐标可求得△ABD的面积,设直线CD交x轴于点E,由C、D坐标,利用待定系数法可求得直线CD的解析式,则可求得E点坐标,从而可表示出△BCD的面积,可求得k的值;(3)由B、C、D的坐标,可表示出BC2、BD2和CD2,分∠CBD=90°和∠CDB=90°两种情况,分别利用勾股定理可得到关于a的方程,可求得a的值,则可求得抛物线的解析式.【解答】解:(1)在y=a(x﹣1)(x﹣3),令x=0可得y=3a,∴C(0,3a),∵y=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=a(x﹣2)2﹣a,∴D(2,﹣a);(2)在y=a(x﹣1)(x﹣3)中,令y=0可解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∴S△ABD=×2×a=a,如图,设直线CD交x轴于点E,设直线CD解析式为y=kx+b,把C、D的坐标代入可得,解得,∴直线CD解析式为y=﹣2ax+3a,令y=0可解得x=,∴E(,0),∴BE=3﹣=∴S△BCD=S△BEC+S△BED=××(3a+a)=3a,∴S△BCD:S△ABD=(3a):a=3,∴k=3;(3)∵B(3,0),C(0,3a),D(2,﹣a),∴BC2=32+(3a)2=9+9a2,CD2=22+(﹣a﹣3a)2=4+16a2,BD2=(3﹣2)2+a2=1+a2,∵∠BCD<∠BCO<90°,∴△BCD为直角三角形时,只能有∠CBD=90°或∠CDB=90°两种情况,①当∠CBD=90°时,则有BC2+BD2=CD2,即9+9a2+1+a2=4+16a2,解得a=﹣1(舍去)或a=1,此时抛物线解析式为y=x2﹣4x+3;②当∠CDB=90°时,则有CD2+BD2=BC2,即4+16a2+1+a2=9+9a2,解得a=﹣(舍去)或a=,此时抛物线解析式为y=x2﹣2x+;综上可知当△BCD是直角三角形时,抛物线的解析式为y=x2﹣4x+3或y=x2﹣2x+.26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD 沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.【考点】LO:四边形综合题.【分析】(1)①分别在Rt△ABC,Rt△BDC中,求出AB、BD即可解决问题;②想办法证明DP∥BC,DP=BC即可;(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,可得x2=(4﹣x)2+22,推出x=,推出DN==,由△BDN∽△BAM,可得=,由此求出AM,由△ADM∽△APE,可得=,由此求出AE=,可得EC=AC﹣AE=4﹣=由此即可解决问题.【解答】解:(1)①在Rt△ABC中,∵BC=2,AC=4,∴AB==2,∵AD=CD=2,∴BD==2,由翻折可知,BP=BA=2.②如图1中,∵△BCD是等腰直角三角形,∴∠BDC=45°,∴∠ADB=∠BDP=135°,∴∠PDC=135°﹣45°=90°,∴∠BCD=∠PDC=90°,∴DP∥BC,∵PD=AD=BC=2,∴四边形BCPD是平行四边形.(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,∵BD2=CD2+BC2,∴x2=(4﹣x)2+22,∴x=,∵DB=DA,DN⊥AB,∴BN=AN=,在Rt△BDN中,DN==,由△BDN∽△BAM,可得=,∴=,∴AM=2,∴AP=2AM=4,由△ADM∽△APE,可得=,∴=,∴AE=,∴EC=AC﹣AE=4﹣=,易证四边形PECH是矩形,∴PH=EC=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.
1 4
B.18
C.116
D.
1 32
8.(2016 ·达州 )如图 ,在 5× 5 的正方形网格中 ,从在格点上的点 A, B,C,D 中任取三点 ,所构成的三角形恰好是 直角三角形的概率为 (D)
A.
1 3
B.12
2
3
C.3
D.4
二、填空题 (每小题 5 分, 共 20 分)
9.(2016 ·兰州 )一个不透明的口袋里装有若干除颜色外其他完全相同的小球
,并分别赋予它们 6 和 4 的权.根据四人各自的
平均成绩 ,公司将录取 (B)
A.甲
B.乙
C .丙
D .丁
7. 如图是从一副扑克牌中取出的两组牌 , 分别是黑桃 1、 2、 3、4, 红桃 1、 2、 3、4, 将它们背面朝上分别重新洗 牌后 , 从两组牌中各摸出一张 ,那么摸出的两张牌面数字之和等于 7 的概 率是 (B)
解: (1)8, 8, 8.5.
(2)30 × 8.5= 255(万车次 ).
(3)3 200× 0.1 ÷9 600× 100%≈ 3.3%.
14. (12 分)(2016 黄·冈 )望江中学为了了解学生平均每天“诵读经典”的时间
,在全校范围内随机抽查了部分学生进
行调查统计 , 并将调查统计的结果分ห้องสมุดไป่ตู้:每天诵读时间
3. 某校要从四名学生中选拔一名参加市“风华小主播”大赛
, 选拔赛中每名学生的平均成绩
示.如果要选择一名成绩高且发挥稳定的学生参赛
, 那么应选择的学生 是 (B)
x 及其方差 s2 如表所
甲乙


x
8
9
9
8
2
s
1
1 1.2 1.3
A. 甲
B.乙
C.丙
D .丁
4. (2014 ·娄底 )实施新课改以来 , 某班学生经常采用“小组合作学习”的方式进行学习.值周班长小兵每周对各小 组合作学习情况进行综合评分.下表是其中一周的评分结果:
t≤ 20 分钟的学生记为 A 类 ,20 分钟< t≤ 40 分钟的学生记
为 B 类 ,40 分钟< t≤60 分钟的学生记为 C 类, t> 60 分钟的学生记为 D 类四种 ,将收集的数据绘制成如下两幅不
完整的统计图.请根据图中提供的信息 ,解答下列问题:
(1)m = 26%, n=14%, 这次共抽查了 50 名学生进行调查统计;
三、解答题 ( 共 48 分 )[来源 学科网 ZXXK]
13. (10 分)作为宁波市政府民生实事之一的公共自行车建设工作基本完成 共自行车租车量的统计 , 结果如下:
,某部门对今年 4 月份中的 7 天进行了公
(1) 求这 7 天日租车量的众数、中位数和平均数; (2) 用 (1)中平均数估计 4 月份 (30 天 )共租车多少万车次; (3) 市政府在公共自行车建设项目中共投入 9 600 万元 , 估计 2014 年共租车 3 200 万车次 , 每 车次平均收入租车费 0.1 元 , 求 2014 年租车费收入占总投入的百分率 (精确到 0.1%).
,其中有 6 个黄球 ,将口袋中的球摇匀 ,
从中任意摸出一个球记下颜色后再放回 ,通过大量重复上述实验后发现 ,摸到黄球的频率稳定在 30% ,由此估计口
袋中共有小球 20 个.
10. 某学校在“你最喜 爱的球类运动”调查中 , 随机调查了若干名学生 ( 每名学生分别选了一项球类运动 ), 并根据
调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少
(2) 请补全上面的条形图; (3) 如果该校共有 1 200 名学生 , 请你估计该校 解: (2) 补图如图所示.
C 类学生约有多少人?
(3)1 200× 20% = 240(人). 答:该校 C 类学生约有 240 人.
15. (12 分 )(2016 岳·阳 )已知不等式组 错误 ! (1) 求不等式组的解集 , 并写出它的所有整数解;
(2) 在不等式组的所有整数解中任取两个不同的整数相乘 解: (1) 由① , 得 x>- 2.
, 请用画树状图或列表的方法求积为正数的概率.
6 人 ,则该校被调
查的学生总人数为 60 名.
11. 已知一组数据- 3, x, - 2, 3, 1,6 的中位数为 1, 则其方差为 9. 12. 小明和小亮用如图所示的两个转盘 (每个转盘被分成四个面积相等的扇形 )做游戏 , 转动两个转盘各一次 , 如果 两次数字之和为奇数 , 则小明胜 , 否则 ,小亮胜 ,这个游戏公平吗?答:公平 ( 填“公平”或“不公平” ).
2. 要估计鱼塘中的鱼数 ,养鱼者首先从鱼塘中打捞了 50 条鱼 ,在每条鱼身上做好记号后把这些鱼放归鱼塘 ,再从
鱼塘中打捞出 100 条鱼 ,发现只有两条鱼是刚才做了记号的鱼.假设鱼在鱼塘内均匀分布
,那么估计这个鱼塘的鱼
数约为 (B)
A . 5 000 条
B. 2 500 条
C. 1 750 条
D. 1 250 条
组别 一 二 三 四 五 六 七
分值 90 96 89 90 91 85 90
“分值”这组数据的中位数和众数分别是 (B)
A . 89、 90
B. 90、 90
C.88、 95
D .90、 95
5. (2016 ·贺州 )从分别标有数- 3、- 2、- 1、0、1、2、3 的七张没有明显差别的卡片中 ,随机抽取一张 ,所抽卡片 上的数的绝对值不小于 2 的概率是 (D)
1
2
A. 7
B. 7
3
4
C.7
D. 7
6. (2014 ·天津 )某公司欲招聘一名公关人员 , 对甲、乙、丙、丁四位候选人进行了面试和笔试
, 他们的成绩如表:
测试成绩 (百分制 ) 候选人

乙丙

面试
86
92 90
83
笔试
90
83 83
92
如果公司认为 ,作为公关人员面试的成绩应该比笔试的成绩更重要
单元测试 (八) 统计与概率
一、选择题 (每小题 4 分, 共 32 分)
( 时间: 45 分钟 满分: 100 分 )
1. 下列说法中正确的是 (D)
A .“打开电视机 , 正在播《动物世界》”是必然事件
B. 某种彩票的中奖概率为千分之一 , 说明每买 1 000 张彩票 , 一定有一张中奖
C. 抛掷一枚质地均匀的硬币一次 , 出现正面朝上的概率为三分之一 D. 想了解长沙市所有城镇居民的人均年收入水 平 , 宜采用抽样调查
相关文档
最新文档