高中数学第一章计数原理12排列与组合122组合第1课时教案新人教A版选修23
高中数学第一章计数原理1.2排列与组合1.2.1排列(第3课时)教案新人教A版选修2-3(2021
高中数学第一章计数原理1.2 排列与组合1.2.1 排列(第3课时)教案新人教A版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章计数原理1.2 排列与组合1.2.1 排列(第3课时)教案新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章计数原理1.2 排列与组合1.2.1 排列(第3课时)教案新人教A版选修2-3的全部内容。
1。
2。
1 排列第三课时教学目标知识与技能利用捆绑法、插空法解决排列问题.过程与方法经历把简单的计数问题化为排列问题解决的过程,从中体会“化归”的数学思想.情感、态度与价值观能运用所学的排列知识,正确地解决实际问题,体会“化归”思想的魅力.重点难点教学重点:利用捆绑法、插空法解决排列问题.教学难点:利用捆绑法、插空法解决排列问题.错误!错误!提出问题:7位同学排队,根据上一节课所学的方法,解决下列排列问题.(1)7位同学站成一排,共有多少种不同的排法?(2)7位同学站成两排(前3后4),共有多少种不同的排法?(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?活动设计:学生自己做,找学生到黑板上板演.活动成果:解:(1)问题可以看作:7个元素的全排列A错误!=5 040。
(2)根据分步乘法计数原理:7×6×5×4×3×2×1=7!=5 040.(3)问题可以看作:余下的6个元素的全排列A错误!=720。
高中数学第一章计数原理1.2排列与组合1.2.2组合第1课时组合与组合数公式讲义新人教A版选修2_3
第1课时组合与组合数公式知识点组合的定义从n个不同元素中取出m(m≤n)个元素□01合成一组,叫做从n个不同元素中取出m个元素的一个组合.知识点组合与组合数公式组合的定义包含两个基本内容:一是“取出元素”;二是“合成一组”,表示与元素的顺序无关,排列与组合的相同点是从n 个不同元素中任取m 个元素,不同点是组合是“不管元素的顺序合成一组”,而排列是要求元素按照一定的顺序排成一列.因此区分某一问题是组合还是排列,关键是看取出的元素有无顺序.组合数的两个性质,性质1反映了组合数的对称性,在m >n2时,通常不直接计算C mn 而改为C n -m n ,对于性质2,C m n +1=C m n +C m -1n 要会正用、逆用、变形用.1.判一判(正确的打“√”,错误的打“×”)(1)从a ,b ,c 三个不同的元素中任取两个元素的一个组合是C 23.( ) (2)从1,3,5,7中任取两个数相乘可得C 24个积.( ) (3)1,2,3与3,2,1是同一个组合.( ) (4)C 35=5×4×3=60.( ) 答案 (1)× (2)√ (3)√ (4)×2.做一做(1)从6名学生中选出3名学生参加数学竞赛的不同选法种数是________. (2)C 1820=________. (3)C 399+C 299=________.答案 (1)20 (2)190 (3)161700解析 (1)由组合数公式知C 36=6×5×43×2×1=20.(2)C 1820=C 220=20×192×1=190. (3)C 399+C 299=C 3100=100×99×983×2×1=161700.探究1 组合的有关概念 例1 给出下列问题:(1)从a ,b ,c ,d 四名学生中选2名学生完成一件工作,有多少种不同的选法? (2)从a ,b ,c ,d 四名学生中选2名学生完成两件不同的工作,有多少种不同的选法? (3)a ,b ,c ,d 四支足球队之间进行单循环比赛,共需赛多少场? (4)a ,b ,c ,d 四支足球队争夺冠亚军,有多少种不同的结果?(5)某人射击8枪,命中4枪,且命中的4枪均为2枪连中,不同的结果有多少种? (6)某人射击8枪,命中4枪,且命中的4枪中恰有3枪连中,不同的结果有多少种? 在上述问题中,哪些是组合问题?哪些是排列问题?[解] (1)2名学生完成的是同一件工作,没有顺序,是组合问题. (2)2名学生完成两件不同的工作,有顺序,是排列问题.(3)单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题. (4)冠亚军是有顺序的,是排列问题.(5)命中的4枪均为2枪连中,为相同的元素,没有顺序,是组合问题. (6)命中的4枪中恰有3枪连中,即连中3枪和单中1枪,有顺序,是排列问题. 拓展提升判断是否为组合问题,关键是判断问题是否与顺序有关,可以结合条件理解,也可以选择一个结果,交换这个结果中两个元素先后顺序,看是否对结果产生影响,若无新变化,则是组合问题.总之,与顺序有关是排列问题,若与顺序无关,则是组合问题.[跟踪训练1] 判断下列问题是排列问题,还是组合问题.(1)从集合A ={-1,1,10,8,6,4}中任取两个数相加,得到的和共有多少个? (2)从集合A ={-1,1,10,8,6,4}中任取两个数相除,得到的商共有多少个?(3)从a ,b ,c ,d 这四名同学中任取两名同学去参加某一活动,共有多少种不同的选法? (4)四个人互发一个电子邮件,共写了多少个电子邮件?解 (1)从集合A 中取出两个数后,改变两个数的顺序,其和不变.因此此问题,只与取出的元素有关,与元素的顺序无关,故是组合问题.(2)从集合A 中取出两个数相除,若改变其分子、分母的位置,其结果就不同,因此其商的值与元素的顺序有关,是排列问题.(3)由于从4名同学中取出的两名同学参加的同一项活动,没有顺序,因此是组合问题. (4)四人互发电子邮件,由于发信人与收信人是有区别的,与顺序有关,是排列问题. 探究2 组合数及组合数性质的运用 例2 (1)计算:C 410-C 37·A 33; (2)已知1C m 5-1C m 6=710C m 7,求C m8;(3)求C 38-n3n +C 3n21+n 的值; (4)证明:m C m n =n C m -1n -1. [解] (1)原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)原方程可化为m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,即m !(5-m )!5!-m !(6-m )(5-m )!6×5!=7×m !(7-m )(6-m )(5-m )!10×7×6×5!,∴1-6-m 6=(7-m )(6-m )60,即m 2-23m +42=0,解得m =2或21(不符合题意,舍去).∴C m 8=C 28=28.(3)∵⎩⎪⎨⎪⎧38-n ≤3n ,3n ≤21+n ,∴9.5≤n ≤10.5,∵n ∈N *,∴n =10, ∴C 38-n3n +C 3n21+n =C 2830+C 3031=30!28!·2!+31!30!·1!=466.(4)证明:m C mn =m ·n !m !(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n C m -1n -1.拓展提升(1)像排列数公式一样,公式C mn=n (n -1)(n -2)…(n -m +1)m !一般用于计算;而公式C m n =n !m !(n -m )!及C mn =A mn A m m 一般用于证明、解方程(不等式)等.(2)在解决与组合数有关的问题时,要注意隐含条件“m ≤n 且m ,n ∈N *”的运用.如本例(3).(3)要注意公式Am n =C m n A m m 的逆向运用,如本例(1)中可利用“C 37A 33=A 37”简化计算过程. (4)本例(4)所推导的结论“m C m n =n C m -1n -1”以及它的变形公式是非常重要的公式,应熟练掌握.[跟踪训练2] (1)①求值:C 5-n n +C 9-nn +1;②求证:C mn =m +1n -mC m +1n . (2)计算:①C 58+C 98100·C 77; ②C 05+C 15+C 25+C 35+C 45+C 55; ③C n n +1·C n -1n .解 (1)①⎩⎪⎨⎪⎧5-n ≤n ,5-n ≥0,9-n ≤n +1,9-n ≥0,解得4≤n ≤5.又因为n ∈N *,所以n =4或n =5. 当n =4时,原式=C 14+C 55=5, 当n =5时,原式=C 05+C 46=16.②证明:因为C mn =n !m !(n -m )!,m +1n -m C m +1n =m +1(m +1)!·n !(n -m )(n -m -1)!=n !m !(n -m )!,所以C mn =m +1n -mC m +1n . (2)①原式=C 38+C 2100×1=8×7×63×2×1+100×992×1=56+4950=5006.②原式=2(C 05+C 15+C 25)=2(C 16+C 25)=2×⎝ ⎛⎭⎪⎫6+5×42×1=32. ③原式=C 1n +1·C 1n =(n +1)n =n 2+n . 探究3 简单的组合问题例3 现有10名教师,其中男教师6名,女教师4名. (1)从中选2名去参加会议,有多少种不同的选法?(2)从中选出2名男教师或2名女教师去外地学习,有多少种不同的选法? (3)从中选出男、女教师各2名去参加会议,有多少种不同的选法?[解] (1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即有C 210=10×92×1=45种不同的选法. (2)可把问题分两类:第1类,选出2名男教师,有C 26种方法;第2类,选出2名女教师,有C 24种方法,即共有C 26+C 24=21种不同的选法.(3)从6名男教师中选2名的选法有C 26种,从4名女教师中选2名的选法有C 24种,根据分步乘法计数原理,共有C 26·C 24=6×52×1×4×32×1=90种不同的选法. 拓展提升解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于:排列问题与取出的元素之间的顺序有关,而组合问题与取出元素的顺序无关.其次要注意两个基本原理的运用,即分类与分步的灵活运用,在分类与分步时,一定要注意有无重复和遗漏.[跟踪训练3] 在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人参加市级培训.在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加; (3)甲、乙、丙三人不能参加; (4)甲、乙、丙三人只能有1人参加.解 (1)从中任取5人是组合问题,共有C 512=792种不同的选法.(2)甲、乙、丙三人必须参加,则只需要从另外9人中选2人,是组合问题,共有C 29=36种不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C59=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,可分两步:先从甲、乙、丙中选1人,有C13=3种选法;再从另外9人中选4人,有C49种选法.共有C13C49=378种不同的选法.1.下列问题不是组合问题的是 ( )A.10个朋友聚会,每两人握手一次,一共握手多少次?B.平面上有2015个不同的点,它们中任意三点不共线,连接任意两点可以构成多少条线段?C.集合{a1,a2,a3,…,a n}的含有三个元素的子集有多少个?D.从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法?答案 D解析组合问题与次序无关,排列问题与次序有关,D项中,选出的2名学生,如甲、乙,其中“甲参加独唱、乙参加独舞”与“乙参加独唱、甲参加独舞”是两个不同的选法,因此是排列问题,不是组合问题,选D.2.若C 7n +1-C 7n =C 8n ,则n 等于( ) A .12 B .13 C .14 D .15 答案 C解析 C 7n +1=C 7n +C 8n =C 8n +1,∴n +1=7+8,n =14,故选C. 3.把三张游园票分给10个人中的3人,分法有 ( ) A .A 310种 B .C 310种 C .C 310A 310种 D .30种答案 B解析 三张票没区别,从10人中选3人即可,即C 310,故选B. 4.若C 4n >C 6n ,则n 的集合是________. 答案 {6,7,8,9} 解析 ∵C 4n >C 6n ,∴⎩⎪⎨⎪⎧C 4n >C 6n ,n ≥6⇒⎩⎪⎨⎪⎧n !4!(n -4)!>n !6!(n -6)!,n ≥6⇒⎩⎪⎨⎪⎧n 2-9n -10<0,n ≥6⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6.∵n ∈N *,∴n =6,7,8,9. ∴n 的集合为{6,7,8,9}.5.在6名内科医生和4名外科医生中,现要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法?(1)有3名内科医生和2名外科医生; (2)既有内科医生,又有外科医生.解 (1)先选内科医生有C 36种选法,再选外科医生有C 24种选法,故有C 36C 24=120种选派方法.(2)既有内科医生,又有外科医生,正面思考应包括四种情况,内科医生去1人,2人,3人,4人,有C 16C 44+C 26C 34+C 36C 24+C 46C 14=246种选派方法.若从反面考虑,则有C 510-C 56=246种选派方法.。
高中数学第一章计数原理1.2排列与组合1.2.2第1课时组合与组合数公式课件新人教A版选修23
(4)冠 、亚军是有顺序的,是排列问题. (5)命中的4枪均为2枪连中,为相同的元素,没有顺 序,是组合问题. (6)命中的4枪中恰有3枪连中,即连中3枪和单中1 枪,有顺序,是排列问题.
类型 2 组合数的计算
[典例 2] (1)计算:C9979+C9989+C91900=________; (2)求值:C5n-n+C9n-+n1=________; (3)解不等式 C4n>C6n. 解析:(1)C9979+C9989+C91900=C91800+C91900=C91901=C2101= 101×100 2×1 =5 050.
第一章 计数原理
1.2 排列与组合 1.2.2 组合
第 1 课时 组合与组合数公式
[学习目标] 1.理解组合及组合数的概念(重点). 2. 能利用计数原理推导组合数公式,并会应用公式解决简单 的组合问题(重点、难点).
1.组合的概念 (1)组合:一般地,从n个不同的元素中取出m(m≤n) 个元素合成一组,叫作从n不同元素中取出m个元素的一 个组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的 所有不同组合的个数,叫作从n个不同元素中取出m个元 素的组合数,用符号Cnm表示.
2.下列计算结果为 21 的是( )
A.A24+C26 B.C77
C.A27
D.C27
解析:C27=72× ×61=21.
答案:D
3.下面几个问题中属于组合问题的是________. ①由 1,2,3,4 构成的双元素集合;②由 1,2,3 构成两位数的方法;③由 1,2,3 组合无重复数字的两位 数的方法. 解析:①中选出的两个元素构成集合,与顺序无关,
高中数学 第一章 计数原理 1.2 排列与组合 1.2.2 组合的综合应用导学案 新人教A版选修2
湖北省松滋市高中数学第一章计数原理1.2 排列与组合1.2.2 组合的综合应用导学案新人教A版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖北省松滋市高中数学第一章计数原理1.2 排列与组合1.2.2 组合的综合应用导学案新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖北省松滋市高中数学第一章计数原理1.2 排列与组合1.2.2 组合的综合应用导学案新人教A版选修2-3的全部内容。
1.2。
2组合的综合应用【学习目标】 明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决实际问题。
【重点难点】重点:能正确认识组合与排列的联系与区别。
难点:理解组合的意义,正确地解决实际问题.。
【使用说明与学法指导】1。
课前用20分钟预习课本P 26内容并完成书本上练、习题及导学案上的问题导学.2.独立思考,认真限时完成,规范书写.课上小组合作探究,答疑解惑.【问题导学】1.下列问题中是组合问题的个数是( 2 ) ( )①从全班50人中选出5名组成班委会;②从全班50人中选出5名分别担任班长,副班长、团支部书记、学习委员、生活委员; ③从1,2,3,…,9中任取出两个数求积;④从1,2,3,…,9中任取出两个数求差或商.2。
求值:173213nnn n C C -++.解 由错误!,解得错误!≤n ≤错误!.又n ∈N *,∴n =6,故原式=C 错误!+C 错误!=C 错误!+C 错误!=313。
要从12人中选出5人去参加一项活动,下列要求,有多少种不同选法?(1)A ,B ,C ,3人都参加;(2)A ,B ,C,3人都不参加;(3)A ,B ,C ,3人中只有一个参加.解 (1)只需再从A ,B ,C 之外的9人中选择2人,所以有方法C 错误!=36(种).(2)由于A ,B ,C 三人都不能入选,所以只能从余下的9人中选择5人,即有选法C 错误!=126(种).(3)可分两步:先从A ,B ,C 三人中选出一人,有C 错误!种选法;再从其余的9人中选择4人,有C 错误!种选法.所以共有选法C 错误!C 错误!=378(种).4.从5名男生和4名女生中选出4人去参加辩论比赛.(1)如果4人中男生和女生各选2人,有多少种选法?(2)如果男生中的甲与女生中的乙必须在内,有多少种选法?(3)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?(4)如果4人中必须既有男生又有女生,有多少种选法?解 (1)从男生中选2人,从女生中选2人,共有C 错误!C 错误!=60(种)选法;(2)男生中的甲与女生中的乙必须在内,只需从除2人外的其余7人中再选2人,有C 2,7=21(种)选法;(3)从反面考虑,只要9人中选4人,减去不含男生甲和女生乙的情况,有C 错误!-C 错误!=91(种)选法;(4)从反面考虑,只要所有情况减去全是男生和全是女生的情况,有C 4,9-C 44-C 错误!=120(种)选法.【合作探究】问题1:四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?解:(1)根据分步计数原理:一共有 种方法;问题2:四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?解:(捆绑法)第一步:从四个不同的小球中任取两个“捆绑”在一起看成一个元素,有 种方法;第二步:从四个不同的盒中任取三个将球放入有 种方法,所以, 一共有 =144种方法4425624C 34A 24C 34A问题3:(3)马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?解:(插空法)本题等价于在7只亮着的路灯之间的6个空档中插入3只熄掉的灯. 故 所求方法总数为 种方法【深化提高】5.(1) 以AB 为直径的半圆上,除A 、B 两点外,另有6个点,直径AB 上另有4个点,共12个点,以这12个点为顶点共能组成多少个四边形?(2) 在角A 的一边上有五个点(不含A ),另一边上有四个点(不含A ),由这十个点(含A )可构成多少个三角形?解 (1)分类讨论:A 、B 只含有一个点时,共有2(C 错误!+C 错误!C 错误!)=160(个);既含A 又含B 时,共有C 26=15(个);既不含A 也不含B 时,共有C 错误!-1-C 错误!C 错误!=185(个).所以共有160+15+185=360(个).(2)含A 点时,可构成C 错误!C 错误!=20(个)三角形;不含A 点时,可构成C 错误!C 错误!+C 错误!C 错误!=70(个)三角形.故 共有20+70=90(个)三角形.【学习评价】●自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差3620C●当堂检测(3选2填或2选2填1解答)A组(你一定行):1。
高中数学第一章计数原理1.2排列与组合1.2.2组合1学案无答案新人教A版选修2_3
1.2.2组合(1)【学习目标】1.理解组合的定义,正确认识组合与排列的区别与联系.2.理解排列数与组合数之间的联系,掌握组合数公式,能运用组合数公式进行计算.3.会解决一些简单的组合问题.【重点难点】重 点: 理解组合的定义,正确认识组合与排列的区别与联系;理解排列数与组合数之间的联系,掌握组合数公式,能运用组合数公式进行计算.难 点: 会用组合数解决一些简单的问题.【学法指导】区分组合与排列的异同点,并加以应用.【学习过程】一.复习巩固1、组合定义:一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2、组合数:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号________表示.3、组合数公式:0(1)(2)(1)!!!()! 1.m m n nm m m n n A n n n n m C m A n C m n m C ---===+=- 我们规定:二.课堂学习与研讨探究 组合数 1: mn m n n C C -=性质731010C C 练习:计算两个组合数 ;问题1:为何上面两个不同的组合数其结果相同?怎样对这一结果进行解释?问题2:上述情况加以推广可得组合数怎样的性质?探究2.组合数性质2:11m m m n n n C C C -+=+一个口袋内装有大小相同的7个白球和1个黑球(1)口袋里取出3个球,共有多少种取法?(2)从口袋里取出3个球,使其中含有一个黑球,有多少种取法?(3)从口袋里取出3个球,使其中不含黑球,有多少种取法?从引例中可以发现一个结论:323877C C C =+对上面的发现(等式)作怎样解释?1211,,,1m n n a a a n m C +++ 一般地,从这个不同的元素中取出个元素的组合数是,组合数性质2:11m m m n n n C C C -+=+ 试用代数法证明性质2?11123111,,,1m n n a a a a a a n m a C -+- 这些组合可分成两类:一类含有,一类不含有,含有的组合是从这个元素中取出个元素与组成的,共有个; 1231,,,m n n a a a a n m C + 不含的组合是从这个元素中取出个元素组成的,共有个 由分类计数原理,得例1 计算例2. 一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛。
2018年秋高中数学 第一章 计数原理 1.2 排列与组合 1.2.1 第1课时 排列与排列数公式学案 新人教A版选修2-3
第1课时排列与排列数公式学习目标:1.理解排列的概念,能正确写出一些简单问题的所有排列.(重点)2.理解排列数公式,能利用排列数公式进行计算和证明.(难点)[自主预习·探新知]1.排列的概念从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.相同排列的两个条件(1)元素相同.(2)顺序相同.思考:如何理解排列的定义?阶乘式A m n=n!n-m!(n,m∈N*,m≤n)[提示]“一个排列”是指:从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,不是数;“排列数”是指从n个不同元素中取出m(m≤n)个元素的所有排列的个数,是一个数.所以符号A m n只表示排列数,而不表示具体的排列.[基础自测]1.判断(正确的打“√”,错误的打“×”)(1)两个排列的元素相同,则这两个排列是相同的排列.( )(2)从六名学生中选三名学生参加数学、物理、化学竞赛,共有多少种选法属于排列问题.( )(3)有十二名学生参加植树活动,要求三人一组,共有多少种分组方案属于排列问题.(4)从3,5,7,9中任取两个数进行指数运算,可以得到多少个幂属于排列问题.(5)从1,2,3,4中任取两个数作为点的坐标,可以得到多少个点属于排列问题.[解析](1)×因为相同的两个排列不仅元素相同,而且元素的排列顺序也相同.(2)√因为三名学生参赛的科目不同为不同的选法,每种选法与“顺序”有关,属于排列问题.(3)×因为分组之后,各组与顺序无关,故不属于排列问题.(4)√因为任取的两个数进行指数运算,底数不同、指数不同结果不同.结果与顺序有关,故属于排列问题.(5)√因为纵、横坐标不同,表示不同的点,故属于排列问题.[答案](1)×(2)√(3)×(4)√(5)√2.甲、乙、丙三名同学排成一排,不同的排列方法有( )A.3种B.4种C.6种D.12种C[由排列定义得,共有A33=6种排列方法.]3.90×91×92×…×100可以表示为( )A.A10100B.A11100C.A12100D.A13100B[由排列数公式得原式为A11100,故选B.]4.A24=________,A33=________.【导学号:95032026】12 6[A24=4×3=12;A33=3×2×1=6.][合作探究·攻重难]排列的概念判断下列问题是否为排列问题.(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;[思路探究]判断是否为排列问题关键是选出的元素在被安排时,是否与顺序有关.若与顺序有关,就是排列问题,否则就不是排列问题.[解](1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.所以在上述各题中(2)(5)属于排列问题.[规律方法]1.解决本题的关键有两点:一是“取出元素不重复”,二是“与顺序有关”.2.判断一个具体问题是否为排列问题,就看取出元素后排列是有序的还是无序的,而检验它是否有序的依据就是变换元素的“位置”(这里的“位置”应视具体问题的性质和条件来决定),看其结果是否有变化,有变化就是排列问题,无变化就不是排列问题.[跟踪训练]1.判断下列问题是否是排列问题(1)同宿舍4人,每两人互通一封信,问他们一共写了多少封信?(2)同宿舍4人,每两人通一次电话,问他们一共通了几次电话?[解](1)是一个排列问题,相当于从4个人中任取两个人,并且按顺序排好.有多少个排列就有多少封信,共有A24=12封信.(2)不是排列问题,“通电话”不讲顺序,甲与乙通了电话,也就是乙与甲通了电话.排列的简单应用(1)从1,2,3,4四个数字中任取两个数字组成两位数,共有多少个不同的两位数?(2)写出A,B,C,D四名同学站成一排照相,A不站在两端的所有可能站法.【导学号:95032027】[解](1)所有两位数是12,21,13,31,14,41,23,32,24,42,34,43,共有12个不同的两位数.(2)如图所示的树形图:故所有可能的站法是BACD,BADC,BCAD,BDAC,CABD,CADB,CBAD,CDAB,DABC,DACB,DBAC,DCAB,共12种.[规律方法]在排列个数不多的情况下,树形图是一种比较有效的表示方式.在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,在每一类中再按余下的元素在前面元素不变的情况下确定第二个元素,再按此元素分类,依次进行,直到完成一个排列,这样能不重不漏,然后按树形图写出排列.2.(1)A,B,C三名同学照相留念,成“一”字形排队,所有排列的方法种数为( ) A.3种B.4种C.6种D.12种(2)北京、广州、南京、天津4个城市相互通航,应该有________种机票.(1)C (2)12[(1)所有的排法有:A—B—C,A—C—B,B—A—C,B—C—A,C—A—B,C—B—A,共6种.(2)列出每一个起点和终点情况,如图所示.北京→广州,北京→南京,北京→天津,广州→南京、广州→天津、广州→北京,南京→天津,南京→北京,南京→广州,天津→北京,天津→广州,天津→南京,共排列数公式的推导与应用[探究问题]1.两个同学从写有数字1,2,3,4的卡片中选取卡片进行组数字游戏.从这选出2个或3个分别能构成多少个无重复数字的两位数或三位数?[提示]从这4个数字中选出2个能构成出3个能构成A34=4×3×2=24个无重复数字的三位数.2.由探究1知A24=4×3=12,A34=4×3×2=[提示]A2n的意义:假定有排好顺序的a n中任取2个元素去填空,一个空位填一个元素,每一种填法就得到一个排列;反过来,任一个排列总可以由这样的一种填法得到,因此,所有不同的填法的种数就是排列数A2n.由分步乘法计数原理知完成上述填空共有n(n-1)种填法,所以A2n=n(n-1).3.你能写出A m n的值吗?有什么特征?若m=n呢?[提示]A m n=n(n-1)(n-2)…(n-m+1)(m,n∈N*,m≤n).(1)公式特征:第一个因数是n,后面每一个因数比它前面一个少1,最后一个因数是n -m+1,共有m个因数;(2)全排列:当m =n 时,即n 个不同元素全部取出的一个排列. 全排列数:A n n =n (n -1)(n -2)·…2·1=n !(叫做n 的阶乘).另外,我们规定0!=1.所以A m n =n (n -1)(n -2)…(n -m +1)=n !n -m !=A n n A n-m n -m . (1)计算:2A 58+7A 48A 88-A 59;(2)求证:A m n +1-A m n =m A m -1n . 【导学号:95032028】[思路探究]:(1)合理选用排列数的两个公式进行展开.(2)提取公因式后合并化简.[解] (1)2A 58+7A 48A 88-A 59=2×8×7×6×5×4+7×8×7×6×58×7×6×5×4×3×2×1-9×8×7×6×5 =8×7×6×5×8+78×7×6×5×24-9=1. (2)证明:∵A m n +1-A m n =n +1!n +1-m !-n !n -m ! =n !n -m !⎝ ⎛⎭⎪⎫n +1n +1-m -1 =n !n -m !·m n +1-m =m ·n !n +1-m !=m A m -1n . ∴A m n +1-A m n =m A m -1n .[规律方法] 排列数的计算方法1.排列数的计算主要是利用排列数的乘积公式进行,应用时注意:连续正整数的积可以写成某个排列数,其中最大的是排列元素的总个数,而正整数(因式)的个数是选取元素的个数,这是排列数公式的逆用.2.应用排列数公式的阶乘形式时,一般写出它们的式子后,再提取公因式,然后计算,这样往往会减少运算量.[跟踪训练]3.求3A x 8=4A x -19中的x .[解] 原方程3A x 8=4A x -19可化为3×8!8-x !=4×9!10-x !, 即3×8!8-x !=4×9×8!10-x 9-x 8-x !, 化简,得x 2-19x +78=0,解得x 1=6,x 2=13.由题意知{ x ≤8,x -1≤9,解得x ≤8.所以原方程的解为x =6.[当 堂 达 标·固 双 基]1.已知下列问题:①从甲、乙、丙三名同学中选出两名分别参加数学和物理学习小组;②从甲、乙、丙三名同学中选出两名同学参加一项活动;③从a ,b ,c ,d 四个字母中取出2个字母;④从1,2,3,4四个数字中取出2个数字组成一个两位数.其中是排列问题的有( )A .1个B .2个C .3个D .4个B [①是排列问题,因为两名同学参加的活动与顺序有关;②不是排列问题,因为两名同学参加的活动与顺序无关;③不是排列问题,因为取出的两个字母与顺序无关;④是排列问题,因为取出的两个数字还需要按顺序排成一列.]2.4×5×6×…×(n -1)×n 等于( )【导学号:95032029】A .A 4nB .A n -4n C .(n -4)! D .A n -3n D [4×5×6×…×(n -1)×n 中共有n -4+1=n -3个因式,最大数为n ,最小数为4, 3.] ________种. A 55=120种.]120.]=5+150-10=320. 法二:A 59+A 49A 610-A 510=4!+5!10!4!-10!5!=5×9!+9!5×10!-10!=6×9!4×10!=320.。
高中数学第一章计数原理12排列与组合121排列第1课时教案新人教A版选修23
1.2.1 排列整体设计教材分析分类加法计数原理是对完成一件事的所有方法的一个划分,依分类加法计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步乘法计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类加法计数原理和分步乘法计数原理的地位是有区别的,分类加法计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌啰嗦,教师一定要先做出表率并要求学生严格按原理去分析问题.只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础.分类加法计数原理和分步乘法计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题.这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关的是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.课时分配3课时第一课时教学目标知识与技能了解排列数的意义,掌握排列数公式及推导方法,并能运用排列数公式进行计算.过程与方法经历排列数公式的推导过程,从中体会“化归”的数学思想.情感、态度与价值观能运用所学的排列知识,正确地解决实际问题,体会“化归”思想的魅力.重点难点教学重点:排列、排列数的概念.教学难点:排列数公式的推导.教学过程引入新课提出问题1:前面我们学习了分类加法计数原理和分步乘法计数原理,请同学们回顾两个原理的内容,并回顾两个原理的区别与联系.活动设计:教师提问,学生补充.活动成果:1.分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事.应用两种原理解题:①分清要完成的事情是什么;②是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;③有无特殊条件的限制.设计意图:复习两个原理,为新知识的学习奠定基础.提出问题2:研究下面三个问题有什么共同特点?能否对下面的计数问题给出一种简便的计数方法呢?问题一:从5人的数学兴趣小组中选2人分别担任正、副组长,有多少种不同的选法?问题二:用1,2,3,4,5这5个数字组成没有重复数字的两位数,共有多少个?问题三:从a,b,c,d,e这5个字母中,任取两个按顺序排成一列,共有多少种不同的排法?活动设计:先独立思考,后小组交流,请同学发言、补充.活动成果:共同特点:问题三中把字母a,b,c,d,e分别代表人,就是问题一;分别代表数,就是问题二.把上面问题中所取的对象叫做元素,于是问题一、二、三都变成问题:从五个不同的元素中任取两个,然后按顺序排成一列,共有多少种不同的排列方法?我们把这一类问题称为排列问题,这就是我们今天要研究的内容.设计意图:通过三个具体的实例引入新课.探究新知提出问题1:你能把上述三个问题总结一下,概括出排列的定义吗?活动设计:学生举手发言、学生补充,教师总结.活动成果:从n个不同元素中,任取m(m≤n)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同.从n个不同元素中,任取m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号A m n表示.注意区别排列和排列数的不同:“一个排列”是指:从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,不是数;“排列数”是指从n个不同元素中,任取m(m≤n)个元素的所有排列的个数,是一个数.所以符号A m n只表示排列数,而不表示具体的排列.设计意图:引导学生通过具体实例总结概括出排列和排列数的概念,培养学生的抽象概括能力.提出问题2:从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,这是不是个排列问题,排列数怎么求?活动设计:学生独立思考,举手回答.活动成果:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午的活动在后的顺序排列,一共有多少种不同的排法的问题,是排列问题.解决这一问题可分两个步骤:第1步,确定参加上午活动的同学,从3人中任选1人,有3种方法;第2步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的2人中去选,于是有2种方法.根据分步乘法计数原理,在3名同学中选出2名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有3×2=6种,如右图所示.设计意图:分析具体例子,巩固排列的定义,探索求排列数的方法.提出问题3:从1,2,3,4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数,是不是排列问题,怎样求排列数?活动设计:学生独立思考,举手回答.活动成果:这显然是个排列问题,解决这个问题分三个步骤:第一步先确定百位上的数,在4个数中任取1个,有4种方法;第二步确定十位上的数,从余下的3个数中取,有3种方法;第三步确定个位上的数,从余下的2个数中取,有2种方法.由分步乘法计数原理共有:4×3×2=24种不同的方法,用树形图排出,并写出所有的排列.由此可写出所有的排法.显然,从4个数字中,每次取出3个,按“百”“十”“个”位的顺序排成一列,就得到一个三位数.因此有多少种不同的排列方法就有多少个不同的三位数.可以分三个步骤来解决这个问题:第1步,确定百位上的数字,在1,2,3,4这4个数字中任取1个,有4种方法;第2步,确定十位上的数字,当百位上的数字确定后,十位上的数字只能从余下的3个数字中去取,有3种方法;第3步,确定个位上的数字,当百位、十位上的数字确定后,个位的数字只能从余下的2个数字中去取,有2种方法.根据分步乘法计数原理,从1,2,3,4这4个不同的数字中,每次取出3个数字,按“百”“十”“个”位的顺序排成一列,共有4×3×2=24种不同的排法,因而共可得到24个不同的三位数,如图所示.由此可写出所有的三位数:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432.设计意图:分析具体例子,巩固排列的定义,探索求排列数的方法.提出问题4:由以上两个问题我们发现:A23=3×2=6,A34=4×3×2=24,你能否得出A2n的意义和A2n的值?活动设计:学生举手发言、学生补充,教师总结.活动成果:由A 2n 的意义:假定有排好顺序的2个空位,从n 个元素a 1,a 2,…,a n 中任取2个元素去填空,一个空位填一个元素,每一种填法就得到一个排列;反过来,任一个排列总可以由这样的一种填法得到,因此,所有不同的填法的种数就是排列数A 2n .由分步乘法计数原理知完成上述填空共有n(n -1)种填法,∴A 2n =n(n -1).设计意图:由特殊到一般,引导学生逐步推导出排列数公式.提出问题5:有上述推导方法,你能推导出A 3n ,A m n 吗?活动设计:学生自己推导,学生板演.活动成果:求A 3n 可以按依次填3个空位来考虑,∴A 3n =n(n -1)(n -2),求A m n 可以按依次填m 个空位来考虑:A m n =n(n -1)(n -2)…(n-m +1),由此可以得到排列数公式:A m n =n(n -1)(n -2)…(n-m +1)(m ,n∈N ,m≤n).说明:(1)公式特征:第一个因数是n ,后面每一个因数比它前面一个少1,最后一个因数是n -m +1,共有m 个因数;(2)全排列:当n =m 时即n 个不同元素全部取出的一个排列.全排列数:A n n =n(n -1)(n -2)…2·1=n !(叫做n 的阶乘).另外,我们规定0!=1.所以A m n =n(n -1)(n -2)…(n-m +1)=n !(n -m )!=A nn A n -m n -m . 设计意图:引导学生逐步利用分步乘法计数原理推导出排列数公式.理解新知分析下列问题,哪些是求排列数问题?(1)有5本不同的书,从中选3本送给3名同学,每人各一本,共有多少种不同的送法?(2)有5种不同的书,要买3本送给3名同学,每人各一本,共有多少种不同的送法?(3)用0,1,2,3,4这5个数字,可以组成多少个没有重复数字的三位数?(4)用1,2,3,4,5这5个数字,可以组成多少个没有重复数字的三位数?(5)从1,2,3,4四个数字中,任选两个做加法,其不同结果有多少种?(6)从1,2,3,4四个数字中,任选两个做除法,其不同结果有多少种?活动设计:学生自己完成,没有把握的问题和同桌讨论.教师巡视,找同学说出答案和理由.活动成果:(1)是 (2)不是 (3)是 (4)是 (5)不是 (6)不是(2)不是从5个不同的元素中选出三个不同的元素,而是从多个可以相同的元素中,选出三个元素排成一列,不符合排列中元素不同的规定.(3)是排列问题,但排列数中有一部分0在百位的不是三位数.(5)中选出的两个元素的和与顺序无关,不符合排列的定义.设计意图:加深对排列和排列数的理解.应用新知例1解方程:3A 3x =2A 2x +1+6A 2x .思路分析:利用排列数公式求解即可.解:由排列数公式得:3x(x -1)(x -2)=2(x +1)x +6x(x -1),∵x≥3,∴3(x-1)(x -2)=2(x +1)+6(x -1),即3x 2-17x +10=0,解得x =5或x =23,∵x≥3,且x∈N ,∴原方程的解为x =5. 点评:解含排列数的方程和不等式时要注意排列数A mn 中,m ,n∈N 且m≤n 这些限制条件,要注意含排列数的方程和不等式中未知数的取值范围.【巩固练习】1.解不等式:A x 9>6A x -29.2.求证:(1)A n n =A m n ·A n -m n -m (2)(2n )!2n ·n!=1·3·5…(2n-1). 解答或证明:1.解:原不等式即9!(9-x)!>6·9!(11-x)!, 也就是1(9-x)!>6(11-x)·(10-x)·(9-x)!,化简得:x 2-21x +104>0, 解得x<8或x>13,又∵2<x≤7,且x∈N ,所以,原不等式的解集为{3,4,5,6,7}.2.证明:(1)A m n ·A n -m n -m =n !(n -m)!(n -m)!=n !=A n n ,∴原式成立. (2)!2n ·n!=2n·(2n -1)·(2n -2)…4·3·2·12n ·n! =2n n·(n -1)…2·1·(2n -1)(2n -3)…3·12n ·n!=n !·1·3…(2n -3)(2n -1)n !=1·3·5…(2n-1)=右边, ∴原式成立.点评:公式A m n =n(n -1)(n -2)…(n-m +1)常用来求值,特别是m ,n 均为已知时;公式A m n =n !(n -m)!常用来证明或化简. 【变练演编】化简:(1)12!+23!+34!+…+n -1n !;(2)1×1!+2×2!+3×3!+…+n×n!. (1)解:原式=1!-12!+12!-13!+13!-14!+…+1-!-1n !=1-1n !. (2)提示:由(n +1)!=(n +1)n !=n×n!+n !,得n×n!=(n +1)!-n !, 原式=(n +1)!-1.【达标检测】1.计算:(1)A 310;(2)A 812A 712. 2.若A mn =17×16×15×…×5×4,则n =______,m =______.3.若n∈N *,且55<n <69,则(55-n)(56-n)…(68-n)(69-n)用排列数符号表示为______.答案:1.(1)720 (2)5 2.17 14 3.A 1569-n课堂小结1.知识收获:排列概念、排列数公式.2.方法收获:化归.3.思维收获:分类讨论、化归思想.补充练习【基础练习】1.若x =n !3!,则x =( )A .A 3nB .A n -3nC .A n 3D .A 3n -32.与A 310·A 77不等的是( )A .A 910B .81A 88C .10A 99D .A 10103.若A 5m =2A 3m ,则m 的值为( )A .5B .3C .6D .74.计算:2A 59+3A 699!-A 610=________;(m -1)!A n -1m -1·(m -n)!=________. 【拓展练习】5.若2<(m +1)!A m -1m -1≤42,则m 的解集是________. 6.(1)已知A m 10=10×9×…×5,那么m =__________;(2)已知9!=362 880,那么A 79=__________;(3)已知A 2n =56,那么n =____________;(4)已知A 2n =7A 2n -4,那么n =____________.答案:1.B 2.B 3.A 4.1 1 5.{2,3,4,5,6}6.(1)6 (2)181 440 (3)8 (4)7设计说明本节课是排列组合的第一课时,本节课的主要内容就是用两个原理推导出排列数公式.本节课的特点是学生自己发现并总结定义,自主探究,自主完成排列数公式的推导.备课资料可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题.在这类问题使用住店处理的策略中,关键是正确判断哪个是底数,哪个是指数.例1 (1)将6个不同的小球放到3个不同的盒子中,有多少种不同的方法?(2)6个人争夺3个项目的冠军,有多少种不同的方法?解析:(1)36;(2)63.例2由1,2,3,4,5,6这6个数字共可以组成多少个不同的7位数?解析:完成此事共分7步,第一步:从6个数字中任取一个数字放在首位,有6种不同的办法,第二步:从6个数字中任取一个数字放在十万位,有6种不同的办法,依次类推,由分步乘法计数原理知共可以组成67个不同的7位数.。
高中数学第一章计数原理1.2排列与组合1.2.1第1课时排列与排列数公式课件新人教A版选修23
跟踪训练2 写出A,B,C,D四名同学站成一排照相,A不站在两端的 所有可能站法. 解 由题意作“树状图”,如下,
故所有可能的站法是BACD,BADC,BCAD,BDAC,CABD,CADB, CBAD,CDAB,DABC,DACB,DBAC,DCAB.
解答
类型三 排列数公式及应用 例3 (1)用排列数表示(55-n)(56-n)…(69-n)(n∈N*且,n<55); 解 因为55-n,56-n,…,69-n中的最大数为69-n,且共有69-n- (55-n)+1=15(个)元素, 所以(55-n)(56-n)…(69-n)=A1659-n.
证明
反思与感悟 排列数公式的形式及选择方法 排列数公式有两种形式,一种是连乘积的形式,另一种是阶乘的形式, 若要计算含有数字的排列数的值,常用连乘积的形式进行计算,而要对 含有字母的排列数的式子进行变形或作有关的论证时,一般用阶乘式.
跟踪训练3 不等式 Ax8<6A8x-2 的解集为
A.[2,8]
第一章 1.2.1 排 列
第1课时 排列与排列能应用排列知识解决简单的实际 问题.
内容索引
问题导学 题型探究 达标检测
问题导学
知识点一 排列的定义
从甲、乙、丙三名同学中选出2人参加一项活动,其中1名同学参加上午 的活动,另1名同学参加下午的活动. 思考 让你安排这项活动需要分几步? 答案 分两步.第1步确定上午的同学; 第2步确定下午的同学.
B.[2,6] C.(7,12)
D√.{8}
解析 由 Ax8<6Ax8-2,得8-8!x!<6×108-!x!,
化简得x2-19x+84<0,
解得7<x<12,
①
高中数学 第一章 计数原理 1.2 排列与组合 1.2.2 排列(2)课堂导学案 新人教A版选修23
1.2.2 组合 2课堂导学三点剖析一、解排列问题的直接求法和间接求法【例1】 6个人排值日,每日一人,甲不排星期一,乙不排星期二,丙不排星期三,共有多少种不同的排法.解析:正面思考,情形太繁多,不易解决,考虑问题的反面,即甲排在星期一,乙排在星期二,丙排在星期三,其中至少有一种情况发生.甲排在星期一,乙排在星期二,丙排在星期三可能排法的集合依次用A 、B 、C 表示.那么,不符合题意的排法共有Card(A∪B∪C)种. 因为Card(A∪B∪C)=Card(A)+Card(B)+Card(C)-Ca rd(A∩B)-Card(B∩C)-Card(C∩A)+Card(A∩B∩C)=334423553A A C A +-,所以符合题意的排法共有 )3(3344235566A A C A A +--=426(种).温馨提示排列问题大多使用直接法求解.但有些计数问题正面情况太繁杂或直接法难以入手,这时往往从问题的反面考虑更容易解决.因此,在解排列问题时直接求法和间接求法互相补充. 二、允许重复的排列问题的求法【例2】 四本读物中有三本是相同的,把这四本读物平均分给四个人,有多少种不同的分法?解析:设所求的分法有N 种,在每一种分法里,有三人分得的是相同的读物,一人分得的是不同的读物,假定其中第二人分得读物是b ,第一、第三、第四人分得的读物都是a ,因为把三本不同的书籍分给三人有33A 种方法,所以如果把三本相同的书籍换成三本不同的书籍a 1,a 2,a 3,那么这时分法的种数是原来的33A 倍,也就是说,把a 1,a 2,a 3,b 四本不同的书籍分给四人的方法种数(有14A 种)是把a,a,a,b 四本书分给四人的方法种数的33A 倍,即14A =33NA ,所以N=3344A A =4(种)三、树形图在解排列问题中的应用【例3】某工程由A ,B ,C ,D ,E ,F ,G ,H ,I 9个工序组成,由众多的施工队施工,当工序甲只有在工序乙完成后才能开工时,我们称工序乙是工序甲的紧前工序,现在这9个工序解析:给出工序的安排,也就是要正确画出体现工序之间衔接关系的工程网络树形图,求出其关键路线,就可知道整个工程的总工期. 依题意画出工程网络树形图(如图),由图易知:①→③→④→⑥→⑦所需时间最长,它表明整个工程的总工程至少为4+5+4+1=14(天). 很明显,在①→②→④→⑥→⑦这条路线上的工序,若有一个延迟一天,整个工程就要推迟一天,而不在这条路线上的工序对总工期就没有这种直接的影响.(树形图)温馨提示近年来,在北京、上海中学生数学知识应用竞赛及各地的高考模拟训练中,出现了以工程的工序、工期为题材的所谓“工序网络”问题,利用数形图能清楚地反映工作的先后顺序和相互关系,使管理者对全局有一个完整清晰的了解.因此,学会正确有序地使用树形图,是解决问题的有力工具. 各个击破【类题演练1】用0,1,2,3,4,5能组成多少个没有重复数字且大于201 345的自然数?解析:用0,1,2,3,4,5组成的六位数共有(5566A A -)个,其中小于或等于自然数201345的数可分成两类,一类是首位数字是“1”的共有55A 个,一类是首位数字是“2”的,只有201345本身一个.这时不符合条件的数就有(55A +1)个,因此符合条件的数共有(5566A A -)-(55A +1)=479(个)【变式提升1】有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是( ) A.234 B.346 C.350 D.363解析:直接法,分三类:1)两人坐前排,按要求有4×4×22A +6×22A =44种坐法;2)两人坐后排,按要求有211A =110种坐法;3)两人分别坐在前、后排,有2×8×12=192种坐法. ∴共有44+110+192=346种排法,选B.【类题演练2】七名同学争夺五项冠军的可能性的种数为( ) A.75B.57C.57AD.57C解析:因一个同学可同时夺得几项冠军,故学生可重复排列.将7名同学看做7家“店”,五项冠军看做5名“客”,都可住进7家“店”中任意一家,即每个“客”有7种住宿选择.由乘法原理得到共75种.故选A.【变式提升2】一市区有5条南北向大道,4条东西向大道,一人想从市区的西北角走到东南角,问有多少种最短的路径可走?解析:下图中,1,2,3,4为东西向的大道被5条南北向的大道所截断的相应部分;a,b,c 为南北向的大道被4条东西向的大道所截断的相应部分.1 2 3 4a 1 a 2 a 3 a 4 ab 1 b 2 b 3 b 4 bc 1c 2c 3c 4 c由西北角到东南角需依次经过东西向的1,2,3,4与依次经过南北向的a,b,c ,从而使路径最短.由此可知,所求路径等于两组元素1,2,3,4及a,b,c 的全排列,其中数字大小的次序、文字字母的次序一定,即相当于这7个元素里有4个元素是相同的,另外有3个元素是相同的,因此,所求最短路径数为N=!3!4!7•=35. 【类题演练3】 如图(甲),有一个正方体的铁丝架,把它的侧棱中点I ,J ,K ,L 也用铁丝依次连上,现有一只蚂蚁想沿着铁丝从A 点爬到G 点,问最近的路线一共有几条?并用字母把这些路线表示出来.(甲)解析:设正方体的边长为2,则其一半为1,这样从A 点到各点的最短路线长如图(乙)所示(图中括号 标记),再逆向追踪用树形图表示路线如图丙. 从而找出从A 到G 的12条最短路径: AIEFG ,ABJFG ,AIJFG , AIEHG ,ADLHG ,AILHG , ABCKG ,ADCKG ,ADLKG , AILKG ,ABJKG ,AIJKG.(乙) (丙)【变式提升3】某药品研究所研制了5种消炎药a 1,a 2,a 3,a 4,a 5,4种退热药b 1,b 2,b 3,b 4,现从中取两种消炎药和一种退热药同时进行进行疗效试验,但a 1,a 2两种药或同时用或同时不用,a 3,b 4两种药不能同时使用,则不同实验方法有( )A.12种B.14种C.16种D.18种 解析:如图得:不同方案有4+6+4=14种答案:B。
2018-2019学年高中数学 第一章 计数原理 1.2.2 第1课时 组合(一)讲义 新人教A版选修2-3
含组合数的化简、证明或解方程、不
(1)对于含组合数的化简、证明或解方程、不等式等问题多利 ①组合数公式,即: Cnm=m!nn!-m!=nn-1…m!n-m+1; ②组合数的性质,即 Cnm=Cnn-m和 Cnm+1=Cmn +Cmn -1; ③排列数与组合数的关系,即 Anm=Cmn Amm. (2)当含有字母的组合数的式子要进行变形论证时,利用阶乘 便.
1.由 Cx1+0 1+C1170-x可得不相同的值的个数是
A.1
B.2
C.3
D.4
[解析]
x+1≤10 ∵x1+7-1≥x≤010,∴7≤x≤9,
17-x≥0
又 x∈Z,∴x=7,8,9.
当 x=7 时,C810+C1100=46
当 x=8 时,C910+C910=20 当 x=9 时,C1100+C810=46.
规律总结』 1.性质“Cnm=Cnn-m”的意义及作用. 反映的是组合数的对称性,即从n个不
意义 → 同的元素中取m个元素的一个组合与 剩下的n-m个元素的组合相对应
作用 → 当m>n2时,计算Cnm通常转化为计算Cnn-m
2.与排列组合有关的方程或不等式问题要用到排列数、组 组合数的性质,求解时,要注意由 Cnm中的 m∈N+,n∈N+,且 的范围,因此求解后要验证所得结果是否适合题意.
序写出,即
• ∴所有组合为ABC,ABD,ABE,ACD,ACE BCD,BCE,BDE,CDE.
解法二:画出树形图,如图所示.
∴所有组合为 ABC,ABD,ABE,ACD,ACE,ADE,BCD CDE.
命题方向2 ⇨组合数公式
典例 2 (2018·江西玉山一中检测)若 20C5n+5=4(n+4)Cnn+- 的值.
高中数学1.2.2组合第1课时组合与组合数公式人教A版选修2_3
【解】 (1)从 10 名教师中选 2 名去参加会议的选法种数,就是 从 10 个不同的元素中取出 2 个元素的组合数,即 C210=120××19= 45(种). (2)可把问题分两类情况: 第 1 类,选出的 2 名是男教师有 C26种方法; 第 2 类,选出的 2 名是女教师有 C24种方法. 根据分类加法计数原理,共有 C26+C24=15+6=21(种)不同的选 法.
2.由 13 个人组成的课外活动小组,其中 5 个人只会跳舞,5 个人 只会唱歌,3 个人既会唱歌也会跳舞,若从中选出 4 个会跳舞和 4 个会唱歌的人去演节目,共有多少种不同的选法?
解:对 3 个既会唱歌又会跳舞的人进行分类: 第一类:若 3 人都不参加,共有 C03C45C45=25(种); 第二类:若 3 人都跳舞或都唱歌,共有 2C33C15C45=50(种); 第三类:若 3 人中有两人唱歌或跳舞,共有 2C23C25C45=300(种); 第四类:若 3 人中有一人唱歌或跳舞,共有 2C13C35C45=300(种);
判断下列问题是组合问题还是排列问题: (1)把 5 本不同的书分给 5 个学生,每人一本; (2)从 7 本不同的书中取出 5 本给某个同学; (3)10 个人互相写一封信,共写了几封信; (4)10 个人互相通一次电话,共通了几次电话.
解:(1)由于书不同,每人每次拿到的也不同,有顺序之分,故它 是排列问题. (2)从 7 本不同的书中,取出 5 本给某个同学,在每种取法中取出 的 5 本并不考虑书的顺序,故它是组合问题. (3)因为两人互写一封信与写信人与收信人的顺序有关,故它是排 列问题. (4)因为互通电话一次没有顺序之分.故它是组合问题.
■名师点拨 对组合概念的三点说明
(1)组合的特点 组合要求 n 个元素是不同的,被取出的 m 个元素也是不同的,即 从 n 个不同的元素中进行 m 次不放回地取出.
高中数学 第一章 计数原理 1.2 排列与组合 1.2.1 排列(1)课堂导学案 新人教A版选修23
1.2.1 排列 1课堂导学三点剖析一、没有限制条件的排列问题【例1】 从甲、乙、丙3名同学中选出2名参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的方法?解析:从甲、乙、丙3名同学中任选2名分别参加上午、下午的活动,对应于从3个元素中 任取2个元素的一个排列,因此共有23A =3×2=6种不同的方法.温馨提示判断是否是排列问题,关键是看是否与顺序有关.此问题的活动分上午和下午.甲参加上午的活动,乙参加下午的活动与甲参加下午的活动,乙参加上午的活动是不同的选派方法,与顺序有关.因此,此题是排列问题.二、有限制条件的排列问题【例2】 用0,1,2,3,4,5,6可以组成多少个没有重复数字的六位数?解法一:从特殊元素入手,0只能放在除十万位外的其他五个数位上,故共组成665615A A A +•=4 320个没有重复数字的六位数. 解法二:从特殊位置入手,十万位不能排0,可先从其他6个数字中选出一个数字排到该位上,其他位置可随意排列,故共组成5616A A •=4 320(个)没有重复数字的六位数.解法三:用排除法:先不考虑任何限制条件,共组成67A 个六位数,但需去掉0在十万位上的情形,有56A 种,故共有67A -56A =4 320(个)没有重复数字的六位数.温馨提示有限制条件的排列问题,往往先考虑有限制条件的特殊元素或特殊位置,这可叫“特殊元素(位置)优先法”.三、处理排列问题的典型问题和方法【例3】 三个女生和五个男生排成一排.(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?解析:(1)(捆绑法)因为三个女生必须在一起,所以可以把她们看成一个整体,这样同五个男生合在一起共有六个元素,排成一排共有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 种不同的排法,因此共有66A ·33A =4 320种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间一个空,这样共有六个位置,再把三个女生插入这六个位置中,使得每个位置至多有一个女生插入,就能保证任意两个女生都不相邻,因此共有55A ·36A =14 400种不同的排法.(3)(位置分析法):因为两端不能排女生,所以两端只能挑选5个男生中的2人,有25A 种不同的排法,对于其中的任意一种排法,其余6位都有66A 种排法,所以共有25A ·66A =14 400种不同的排法.(4)因为只要求两端不都排女生,所以如果首位排了男生,则末位就不再受条件限制了,这样可以有15A ·77A 种不同的排法;如果首位是女生,有13A 种排法,这时末位就只能排男生,共有13A ·15A ·66A 种不同的排法,所以共有15A ·77A +13A ·15A ·66A =36 000种不同的排法.各个击破【类题演练1】5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的选法?解析:不同选法的种数有35A =5×4×3=60(种).【变式提升1】某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?解析:用1面旗表示的信号有13A 种,用2面旗表示的信号有23A 种,用3面旗表示 的信号有33A 种,根据分类计数原理,所求的信号数是13A +23A +33A =3+3×2+3×2×1=15(种).【类题演练2】某年级开设语文、政治、外语、体育、数学、物理、化学七门课程,依下列条件课程表有多少种不同排法.(1)一天开设七门不同课程,其中体育不排第一节也不排在第七节;(2)一天开设四门不同课程,其中体育不排第一节也不排在第四节.解析:(1)从元素考虑先满足体育后再安排其他课,从2-6节中任取一节排体育有15A 种排法,再从剩下的6 节课中排其它课程有66A 种排法.依乘法原理有15A ·66A =3 600(种).【变式提升2】用0,1,2,…9十个数字可组成多少个没有重复数字的:(1)五位奇数?(2)大于30 000的五位偶数?解析:(1)要得到五位奇数,末位应从1,3,5,7,9五个数字中取,有15A 种取法.取定末位数字后,首位就有除这个数字和0之外的八种不同取法.首末两位取定后,十个数字还有八个数字可供中间的十位,百位与千位三个数位选取,共有38A 种不同的安排方法.因此由分步计数原理共有5×8×38A =13 440个没有重复数字的五位奇数.(2)要得偶数,末位应从0,2,4,6,8中选取,而要得比30 000大的五位偶数,可分两类: ①末位数字从0,2中选取,则首位可取3、4、5、6、7、8、9中任一个,共7种选取方法,其余三个数位就有除首末两个数位上的数字之外的八个数字可以选取,共38A 种取法.所以共有2×7×38A 种不同情况.②末位数字从4、6、8中选取,则首位应从3、4、5、6、7、8、9中除去末位数字的六个数字中选取,其余三个数位仍有38A 种选法,所以共有3×6×38A 种不同情况.由分类计数原理,共有2×7×38A +3×6×38A =10 752个比30 000大的无重复数字的五位偶数.【类题演练3】从6名运动员中选出4名参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方法?解析:设全集U={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元集个数的公式可得参赛方法共有:card(U)-card(A)-card(B)+card(A∩B)=24353546A A A A +--=252(种). 【变式提升3】信号兵把红旗与白旗从上到下挂在旗杆上表示信号,现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是( )(用数字作答)解析:5面旗全排列有55A 种挂法,由于3面红旗与2面白旗的分别全排列均只能作一次 的挂法,故共有不同的信号种数是223355A A A •=10(种).。
高中数学第一章计数原理1.2排列与组合1.2.1排列(第2课时)教案新人教A版选修2-3(new)
根据分类加法计数原理,共有24+8=32种不同的排法.
【达标检测】
1.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?
本节课是排列的第二课时,本节课的主要目标是在老师的带领下,体会排列数公式的应用,体会把具体计数问题划归为排列问题的过程.本节课的设计特点是:教师的问题是主线,学生的探究活动是主体,师生合作,共同完成知识和方法的总结.
多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理.
例1(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是( )
本题中两个小题的区别在于:第(1)小题是从5本不同的书中选出3本分送给3名同学,各人得到的书不同,属于求排列数问题;而第(2)小题中,给每人的书均可以从5种不同的书中任选1种,各人得到哪种书相互之间没有联系,要用分步计数原理进行计算.
设计意图:引导学生通过具体实例回顾排列的概念和排列数公式.
提出问题2:请同学们再回顾一下排列的概念和排列数公式.
1.2.1排列
第二课时
教学目标
知识与技能
利用排列和排列数公式解决简单的计数问题.
过程与方法
经历把简单的计数问题化为排列问题解决的过程,从中体会“化归”的数学思想.
情感、态度与价值观
能运用所学的排列知识,正确地解决实际问题,体会“化归”思想的魅力.
重点难点
教学重点:利用排列和排列数公式解决简单的计数问题.
【巩固练习】
从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?
2020高中数学 第一章 计数原理 1.2.1 排列(1)教案 新人教A版选修2-3
运用所学解决问题
由小组长带头总结
集体讨论,各个击破。
评
老师总结,并指出易出现的问题
学生听讲并做笔记
知识形成体系,对于该节内容有了一个比较清晰的认识。对于这两节内容也有了质的提升,从而极大地增加了学生学习的信心.
检
迁移训练
学生完成
速度质量的考查
教学反思
教学后完成
重点
进一步理解和掌握分类加法计数原理和分步乘法计数原理.
难点
能根据实际问题特征,正确选择计数原理解决实际问题.
教学过程
教师活动
学生活动
设计意图(备注)
导
你知道什么是函数的极值吗?
主动思考,带着问题翻书自行阅读当页内容。并回答老师提出的问题并将自己疑惑的东西记下
问题引如,激发学生兴趣,学生易于从书上内容中找到答案。增加学习的信心。
思
你知道怎么求极值吗?
比照老师问题,自主学习,在过程中可与下一环节结合起来进行讨论。
提纲式引领学习,让学生有的放矢,不至于茫然抓不住重点。不知道自己要干什么。
议
总结求极值的一般步骤
学生感觉难度增加,但又不是说下不了手的感觉,小组中学习较好的充分发挥作用.
小组合作学习,充分发挥小组同学的力量,让每一Leabharlann 都成为学习的主人。教材内容分析
借助几何直观体会定积分的基本思想,初步了解定积分的概念。
学生分析
学生对数学的学习已经有了一定的认识,需要从一个更加全面的方面的了解、分析以及掌握逻辑用语,对于我们的学习和生活都有一定的作用。
学习目标
1.进一步理解和掌握分类加法计数原理和分步乘法计数原理.
2.能根据实际问题特征,正确选择计数原理解决实际问题.
高中数学 第一章 计数原理 1.2 排列与组合 1.2.2 组合(第2课时)教案 新人教A版选修2-3
1.2.2 组合第二课时教学目标知识与技能了解组合数的性质,会利用组合数的性质简化组合数的运算;能把一些计数问题抽象为组合问题解决,会利用组合数公式及其性质求解计数问题.过程与方法通过具体实例,经历把具体事例抽象为组合问题,利用组合数公式求解的过程. 情感、态度与价值观能运用组合要领分析简单的实际问题,提高分析问题的能力.重点难点教学重点:组合数的性质、利用组合数公式和性质求解相关计数问题.教学难点:利用组合数公式和性质求解相关计数问题.教学过程引入新课提出问题1:判断下列问题哪个是排列问题,哪个是组合问题,并回顾排列和组合的区别和联系.(1)从A 、B 、C 、D 四个景点选出2个进行游览;(2)从甲、乙、丙、丁四个学生中选出2个人担任班长和团支部书记.活动设计:教师提问.活动成果:(1)是组合问题,(2)是排列问题.1.组合的概念:一般地,从n 个不同元素中取出m(m≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.组合与排列的区别和联系:(1)区别:①排列有顺序,组合无顺序.②相同的组合只需选出的元素相同,相同的排列则需选出的元素相同,并且选出元素的顺序相同.(2)联系:①都是从n 个不同的元素中选出m(m≤n)个元素;②排列可以看成先组合再全排列.设计意图:复习组合的概念,检查学生的掌握情况.提出问题2:利用上节课所学组合数公式,完成下列两个练习:练习1:求证:C m n =n mC m -1n -1.(本式也可变形为:mC m n =nC m -1n -1) 练习2:计算:①C 310和C 710;②C 37-C 26与C 36;③C 411+C 511.活动设计:学生板演.活动成果:练习2答案:①120,120 ②20,20 ③792.1.组合数的概念:从n 个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号C m n 表示.2.组合数的公式:C mn =A m n A m m =n(n -1)(n -2)…(n -m +1)m ! 或C m n =n !m !(n -m)!(n ,m∈N ,且m≤n). 设计意图:复习组合数公式,为得到组合数的性质打下基础.探索新知提出问题1:由问题2练习中所求的几个组合数,你有没有发现一些规律,能不能总结并证明一下?活动设计:小组交流后请不同的同学总结补充.活动成果:1.性质:(1)C m n =C n -m n ;(2)C m n +1=C m n +C m -1n .2.证明:(1)∵C n -m n =n !(n -m)![n -(n -m)]!=n !m !(n -m)!, 又C m n =n !m !(n -m)!,∴C m n =C n -m n . (2)C m n +C m -1n =n !m !(n -m)!+n !(m -1)![n -(m -1)]!=n !(n -m +1)+n !m m !(n -m +1)!=(n -m +1+m)n !m !(n -m +1)!=(n +1)!m !(n -m +1)!=C m n +1, ∴C m n +1=C m n +C m -1n .设计意图:引导学生自己推导出组合数的两个性质.运用新知类型一:组合数的性质1(1)计算:C 37+C 47+C 58+C 69;(2)求证:C n m +2=C n m +2C n -1m +C n -2m .(1)解:原式=C 48+C 58+C 69=C 59+C 69=C 610=C 410=210;(2)证明:右边=(C n m +C n -1m )+(C n -1m +C n -2m )=C n m +1+C n -1m +1=C n m +2=左边.【巩固练习】求证:C 1n +2C 2n +3C 3n +…+nC n n =n2n -1.证明:左边=C 1n +2C 2n +3C 3n +…+nC n n =C 11C 1n +C 12C 2n +C 13C 3n +…+C 1n C n n ,其中C 1i C i n 可表示先在n 个元素里选i 个,再从i 个元素里选一个的组合数.设某班有n 个同学,选出若干人(至少1人)组成兴趣小组,并指定一人为组长.把这种选法按取到的人数i 分类(i =1,2,…,n),则选法总数即为原式左边.现换一种选法,先选组长,有n 种选法,再决定剩下的n -1人是否参加,每人都有两种可能,所以组员的选法有2n -1种,所以选法总数为n2n -1种.显然,两种选法是一致的,故左边=右边,等式成立.【变练演编】求证:C 1n +22C 2n +32C 3n +…+n 2C n n =n(n +1)2n -2.证明:由于i 2C i n =C 1i C 1i C i n 可表示先在n 个元素里选i 个,再从i 个元素里选两个(可重复)的组合数,所以原式左端可看成在上题中指定一人为组长的基础上,再指定一人为副组长(可兼职)的组合数.对原式右端我们可分为组长和副组长是否是同一个人两种情况.若组长和副组长是同一个人,则有n2n -1种选法;若组长和副组长不是同一个人,则有n(n -1)2n -2种选法.∴共有n2n -1+n(n -1)2n -2=n(n +1)2n -2种选法.显然,两种选法是一致的,故左边=右边,等式成立.类型二:有约束条件的组合问题2在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件.(1)有多少种不同的抽法?(2)抽出的3件中恰好有1件是次品的抽法有多少种?(3)抽出的3件中至少有1件是次品的抽法有多少种?解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有C 3100=100×99×981×2×3=161 700种. (2)从2件次品中抽出1件次品的抽法有C 12种,从98件合格品中抽出2件合格品的抽法有C 298种,因此抽出的3件中恰好有1件次品的抽法有C 12×C 298=9 506种.(3)解法1 从100件产品抽出的3件中至少有1件是次品,包括有1件次品和有2件次品两种情况.在第(2)小题中已求得其中1件是次品的抽法有C 12×C 298种,因此根据分类加法计数原理,抽出的3件中至少有一件是次品的抽法有C 12×C 298+C 22×C 198=9 604种.解法2抽出的3件产品中至少有1件是次品的抽法的种数,也就是从100件中抽出3件的抽法种数减去3件中都是合格品的抽法的种数,即C 3100-C 398=161 700-152 096=9 604种.点评:“至少”“至多”的问题,通常用分类法或间接法求解.【巩固练习】1.4名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有C 34,C 24×C 16,C 14×C 26种方法,所以,一共有C 34+C 24×C 16+C 14×C 26=100种方法.解法二:(间接法)C 310-C 36=100.2.按下列条件,从12人中选出5人,有多少种不同选法?(1)甲、乙、丙三人必须当选;(2)甲、乙、丙三人不能当选;(3)甲必须当选,乙、丙不能当选;(4)甲、乙、丙三人只有一人当选;(5)甲、乙、丙三人至多2人当选;(6)甲、乙、丙三人至少1人当选;解:(1)C 33C 29=36;(2)C 03C 59=126;(3)C 11C 49=126;(4)C 13C 49=378;(5)方法一:(直接法)C 03C 59+C 13C 49+C 23C 39=756,方法二:(间接法)C 512-C 33C 29=756;(6)方法一:(直接法)C 13C 49+C 23C 39+C 33C 29=666,方法二:(间接法)C 512-C 03C 59=666.【变练演编】有翻译人员11名,其中5名精通英语、4名精通法语,还有2名英、法语皆通.现欲从中选出8名,其中4名译英语,另外4名译法语,一共可列多少张不同的名单?解:分三类:第一类:2名英、法语皆通的均不选,有C 45C 44=5种;第二类:2名英、法语皆通的选一名,有C 12C 35C 44+C 12C 45C 34=60种;第三类:2名英、法语皆通的均选,有A 22C 35C 34+C 25C 44+C 45C 24=120种.根据分类加法计数原理,共有5+60+120=185种不同的名单.【达标检测】1.计算:(1)C 399+C 299;(2)2C 38-C 39+C 28.2.从6位同学中选出4位参加一个座谈会,要求张、王两人中至多有一个人参加,则有不同的选法种数为________.3.从7人中选出3人参加活动,则甲、乙两人不都入选的不同选法共有______种. 答案:1.(1)161 700 (2)56 2.9 3.30课堂小结1.知识收获:组合数的性质,用组合数公式解决简单的计数问题.2.方法收获:化归的思想方法.3.思维收获:化归的思想方法.补充练习【基础练习】1.求证:(1)C m n +1=C m -1n +C m n -1+C m -1n -1;(2)C m +1n +C m -1n +2C m n =C m +1n +2.2.某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有______.3.100件产品中有合格品90件,次品10件,现从中抽取4件检查.(1)都不是次品的取法有多少种?(2)至少有1件次品的取法有多少种?(3)不都是次品的取法有多少种?4.从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法?答案或解答:2.C 38=56;3.解:(1)C 490=2 555 190;(2)C 4100-C 490=C 110C 390+C 210C 290+C 310C 190+C 410=1 366 035;(3)C 4100-C 410=C 190C 310+C 290C 210+C 390C 110+C 490=3 921 015.4.解:分为三类:1奇4偶有C 16C 45;3奇2偶有C 36C 25;5奇有C 56,所以一共有C 16C 45+C 36C 25+C 56=236种不同的取法.【拓展练习】现有8名青年,其中有5名能胜任英语翻译工作;有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?解:我们可以分为三类:①让两项工作都能担任的青年从事英语翻译工作,有C 24C 23;②让两项工作都能担任的青年从事德语翻译工作,有C 34C 13;③让两项工作都能担任的青年不从事任何工作,有C 34C 23.所以一共有C 24C 23+C 34C 13+C 34C 23=42种方法.设计说明本节课是组合的第二课时,本节课的主要目标有两个,一个是学生在教师的问题驱动下自主探究组合数的性质,并在老师的带领下,体会组合数公式的应用;另一个是体会把具体计数问题化归为组合问题的过程.本节课的设计特点是:教师的问题是主线,学生的探究活动是主体,师生合作,共同完成知识和方法的总结.备课资料相同元素分组分配问题解决方法:档板法.(1)参加联赛的10个名额要分配到高三年级的8个班级中,则每个班级至少一个名额的分配方法有______种;(2)10个相同的小球全部放入编号为1、2、3的盒子中,则使每个盒子中球的个数不小于盒子的编号数的方法有______种.解析:利用档板法.(1)相当于在排成一排的10个“1”所形成的9个空隙中,选出7个插入7块档板的方法,每一种插板方法对应一种名额分配方法,有C79种方法;(2)可以首先在2、3号盒子中先分别放入1、2个球,然后在剩余的7个球排成一排形成的6个空隙中选出2个空隙各插入一块板,有C26种方法.注:档板法的使用比较灵活,且对数学思想方法要求较高,现利用档板法证明一个不定方程的自然数解的组数的结论:方程x1+x2+…+x m=n(m,n∈N,m,n≥2)的自然数解有C m-1n+m-1组.简证:转化为正整数解的组数,利用档板模型有:作代换y i=x i+1(i=1,2,…,m),则方程x1+x2+…+x m=n的自然数解的组数,即y1+y2+…+y m=n+m的正整数解的组数,相当于把n+m个球分成m份,每份至少1个的方法数,即在n+m-1个球的间隙中放置m-1个档板的方法种数,即C m-1n+m-1.。
高中数学 第一章1.2 排列与组合 1.2.2 第1课时 组合与组合数公式学案 新人教A版选修2-3 (2)
第1课时组合与组合数公式学习目标 1.理解组合的定义,正确认识组合与排列的区别与联系.2.理解排列数与组合数之间的联系,掌握组合数公式,能运用组合数公式进行计算.3.会解决一些简单的组合问题.知识点一组合的定义思考①从3,5,7,11中任取两个数相除;②从3,5,7,11中任取两个数相乘.以上两个问题中哪个是排列?①与②有何不同特点?答案①是排列,①中选取的两个数是有序的,②中选取的两个数无需排列.梳理一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.知识点二组合数与组合数公式组合数及组合数公式组合数定义及表示从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m个元素的组合数,用符号C m n表示.组合数公式乘积形式C m n=n(n-1)(n-2)…(n-m+1)m!阶乘形式C m n=n!m!(n-m)!性质C m n=C n-mnC m n+1=C m n+C m-1n备注规定C0n=11.从a1,a2,a3三个不同元素中任取两个元素组成一个组合是C23.( ×) 2.从1,3,5,7中任取两个数相乘可得C24个积.( √)3.C35=5×4×3=60.( ×)4.C2 0162 017=C12 017=2 017.( √)类型一组合概念的理解例1 给出下列问题:(1)a,b,c,d四支足球队之间进行单循环比赛,共需比赛多少场?(2)a,b,c,d四支足球队争夺冠、亚军,有多少种不同的结果?(3)从全班40人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?(4)从全班40人中选出3人参加某项活动,有多少种不同的选法?在上述问题中,哪些是组合问题,哪些是排列问题?考点组合的概念题点组合的判断解(1)单循环比赛要求两支球队之间只打一场比赛,没有顺序,是组合问题.(2)冠、亚军是有顺序的,是排列问题.(3)3人分别担任三个不同职务,有顺序,是排列问题.(4)3人参加某项相同活动,没有顺序,是组合问题.反思与感悟区分排列与组合的办法是首先弄清楚事件是什么,区分的标志是有无顺序,而区分有无顺序的方法是:把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.跟踪训练1 判断下列问题是排列问题还是组合问题,并求出相应的结果.(1)集合{0,1,2,3,4}的含三个元素的子集的个数是多少?(2)某小组有9位同学,从中选出正、副班长各一个,有多少种不同的选法?若从中选出2名代表参加一个会议,有多少种不同的选法?考点组合的概念题点组合的判断解(1)由于集合中的元素是不讲次序的,一个含三个元素的集合就是一个从0,1,2,3,4中取出3个数组成的集合.这是一个组合问题,组合的个数是C35=10.(2)选正、副班长时要考虑次序,所以是排列问题,排列数是A29=9×8=72,所以选正、副班长共有72种选法;选代表参加会议是不用考虑次序的,所以是组合问题,所以不同的选法有C29=36(种).类型二组合数公式及性质的应用命题角度1 有关组合数的计算与证明例2 (1)计算C410-C37·A33;考点组合数公式题点利用组合数公式进行计算(1)解 原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)求证:C mn =m +1n +1C m +1n +1. 考点 组合数公式 题点 组合数公式的应用 (2)证明 因为右边=m +1n +1C m +1n +1=m +1n +1·(n +1)!(m +1)!(n -m )!=n !m !(n -m )!=C mn , 左边=C mn ,所以左边=右边,所以原式成立.反思与感悟 (1)涉及具体数字的可以直接用公式C m n=A mn A m m =n (n -1)(n -2)…(n -m +1)m !计算.(2)涉及字母的可以用阶乘式C mn =n !m !(n -m )!计算.(3)计算时应注意利用组合数的两个性质: ①C m n =C n -m n ;②C m n +1=C m n +C m -1n .跟踪训练2 (1)计算C 34+C 35+C 36+…+C 32 017的值为( ) A .C 42 017 B .C 52 017 C .C 42 018-1D .C 52 017-1(2)计算C 98100+C 199200=________. 考点 组合数性质 题点 的性质计算与证明 答案 (1)C (2)5 150 解析 (1)C 34+C 35+C 36+…+C 32 017 =C 44+C 34+C 35+C 36+…+C 32 017-C 44 =C 45+C 35+…+C 32 017-1=… =C 42 017+C 32 017-1=C 42 018-1. (2)C 98100+C 199200=C 2100+C 1200 =100×992+200=5 150.命题角度2 含组合数的方程或不等式 例3 (1)已知1C m 5-1C m 6=710C m 7,求C m 8+C 5-m8;(2)解不等式C 4n >C 6n . 考点 组合数性质题点 含有组合数的方程或不等式的问题 解 (1)∵1C m 5-1C m 6=710C m 7,∴m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,即m !(5-m )!5!-m !(6-m )(5-m )!6×5!=7×m !(7-m )(6-m )(5-m )!10×7×6×5!.∴1-6-m 6=(7-m )(6-m )60,即m 2-23m +42=0,解得m =2或21. ∵0≤m ≤5,∴m =2, ∴C m8+C 5-m8=C 28+C 38=C 39=84.(2)由C 4n >C 6n ,得⎩⎪⎨⎪⎧n !4!(n -4)!>n !6!(n -6)!,n ≥6即⎩⎪⎨⎪⎧n 2-9n -10<0,n ≥6,解得⎩⎪⎨⎪⎧-1<n <10,n ≥6,又n ∈N *,∴该不等式的解集为{6,7,8,9}.反思与感悟 (1)解题过程中应避免忽略根的检验而产生增根的错误,注意不要忽略n ∈N *. (2)与排列组合有关的方程或不等式问题要用到排列数、组合数公式,以及组合数的性质,求解时,要注意由C m n 中的m ∈N *,n ∈N *,且n ≥m 确定m ,n 的范围,因此求解后要验证所得结果是否适合题意.跟踪训练3 解方程3C x -7x -3=5A 2x -4. 考点 组合数性质题点 含有组合数的方程或不等式的问题 解 原式可变形为3C 4x -3=5A 2x -4, 即3(x -3)(x -4)(x -5)(x -6)4×3×2×1=5(x -4)(x -5),所以(x-3)(x-6)=5×4×2=8×5.所以x=11或x=-2(舍去).经检验符合题意,所以方程的解为x=11.类型三简单的组合问题例4 有10名教师,其中6名男教师,4名女教师.(1)现要从中选2名去参加会议,有________种不同的选法;(2)选出2名男教师或2名女教师参加会议,有________种不同的选法;(3)现要从中选出男、女教师各2名去参加会议,有________种不同的选法.考点组合的应用题点无限制条件的组合问题答案(1)45 (2)21 (3)90解析(1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即C210=10×92×1=45(种).(2)可把问题分两类情况:第1类,选出的2名是男教师有C26种方法;第2类,选出的2名是女教师有C24种方法.根据分类加法计算原理,共有C26+C24=15+6=21(种)不同选法.(3)从6名男教师中选2名的选法有C26种,从4名女教师中选2名的选法有C24种,根据分步乘法计数原理,共有不同的选法C26×C24=6×52×1×4×32×1=90(种).反思与感悟(1)解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于排列问题与取出元素之间的顺序有关,而组合问题与取出元素的顺序无关.(2)要注意两个基本原理的运用,即分类与分步的灵活运用.在分类和分步时,一定注意有无重复或遗漏.跟踪训练4 一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出的3个小球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?考点组合的应用题点有限制条件的组合问题解(1)从口袋内的8个球中取出3个球,取法种数是C38=8×7×63×2×1=56.(2)从口袋内取出3个球有1个是黑球,于是还要从7个白球中再取出2个,取法种数是C27=7×62×1=21.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,取法种数是C37=7×6×53×2×1=35.1.给出下列问题:①从甲、乙、丙3名同学中选出2名分别去参加2个乡镇的社会调查,有多少种不同的选法?②有4张电影票,要在7人中选出4人去观看,有多少种不同的选法?③某人射击8枪,击中4枪,且命中的4枪均为2枪连中,则不同的结果有多少种?其中组合问题的个数是( )A.3 B.2 C.1 D.0考点组合的概念题点组合的判断答案 B解析①与顺序有关,是排列问题,②③均与顺序无关,是组合问题,故选B.2.集合M={x|x=C n4,n≥0且n∈N},集合Q={1,2,3,4},则下列结论正确的是 ( ) A.M∪Q={0,1,2,3,4} B.Q⊆MC.M⊆Q D.M∩Q={1,4}考点组合数公式题点利用组合数公式进行计算答案 D解析由C n4知n=0,1,2,3,4,因为C04=1,C14=4,C24=4×32=6,C34=C14=4,C44=1,所以M={1,4,6}.故M∩Q={1,4}.3.若C n12=C2n-312,则n等于( )A.3 B.5 C.3或5 D.15考点组合数性质题点含有组合数的方程或不等式的问题答案 C解析由组合数的性质得n=2n-3或n+2n-3=12,解得n=3或n=5,故选C.4.某校开设A类选修课3门,B类选修课5门,一位同学要从中选3门,若要求两类课程中至少各选1门,则不同的选法共有( )A .15种B .30种C .45种D .90种 考点 组合的应用题点 有限制条件的组合问题 答案 C解析 分两类,A 类选修课选1门,B 类选修课选2门,或者A 类选修课选2门,B 类选修课选1门,因此,共有C 13·C 25+C 23·C 15=45(种)选法.5.五个点中任何三点都不共线,则这五个点可以连成________条线段;如果是有向线段,共有________条. 考点 组合的概念 题点 组合的判断 答案 10 20解析 从五个点中任取两个点恰好连成一条线段,这两个点没有顺序,所以是组合问题,连成的线段共有C 25=10(条) .再考虑有向线段的问题,这时两个点的先后排列次序不同则对应不同的有向线段,所以是排列问题,排列数是A 25=20.所以有向线段共有20条.1.排列与组合的联系与区别(1)联系:二者都是从n 个不同的元素中取m (m ≤n )个元素. (2)区别:排列问题中元素有序,组合问题中元素无序. 2.关于组合数的计算(1)涉及具体数字的可以直接用公式C m n=A mn A m m =n (n -1)(n -2)…(n -m +1)m !计算;(2)涉及字母的可以用阶乘式C mn =n !m !(n -m )!计算.(3)组合数的两个性质: 性质1:C mn =C n -mn ; 性质2:C mn +1=C mn +C m -1n .一、选择题1.以下四个问题,属于组合问题的是( ) A .从3个不同的小球中,取出2个排成一列 B .老师在排座次时将甲、乙两位同学安排为同桌C .在电视节目中,主持人从100位幸运观众中选出2名幸运之星D .从13位司机中任选出两位开同一辆车往返甲、乙两地考点 组合的概念 题点 组合的判断 答案 C解析 只有从100位幸运观众中选出2名幸运之星,与顺序无关,是组合问题. 2.A 3101C 2100+C 97100等于( ) A.16 B .101 C.1107D .6考点 组合数公式题点 利用组合数公式进行计算 答案 D解析 A 3101C 2100+C 97100=A 3101C 2100+C 3100=A 3101C 3101=A 33=6.3.下列等式不正确的是( ) A .C mn =n !m !(n -m )!B .C m n =C n -mn C .C m n +1=C mn +C m -1n D .C mn =C m +1n +1考点 组合数公式 题点 组合数公式的应用 答案 D解析 A 是组合数公式;B ,C 是组合数性质;C mn =n !m !(n -m )!,C m +1n +1=(n +1)!(m +1)!(n -m )!,两者不相等,故D 错误.4.若A 3n =6C 4n ,则n 的值为( ) A .6 B .7 C .8 D .9 考点 组合数性质题点 含有组合数的方程或不等式的问题 答案 B解析 由题意知n (n -1)(n -2)=6·n (n -1)(n -2)(n -3)4×3×2×1,化简得n -34=1,所以n =7.5.把三张游园票分给10个人中的3人,则分法有( ) A .A 310种B .C 310种C.C310A310种D.30种考点组合的应用题点无限制条件的组合问题答案 B解析三张票没区别,从10人中选3人即可,即C310.6.将2名女教师,4名男教师分成2个小组,分别安排到甲、乙两所学校轮岗支教,每个小组由1名女教师和2名男教师组成,则不同的安排方案共有( )A.24种B.10种C.12种D.9种考点组合的应用题点有限制条件的组合问题答案 C解析第一步,为甲地选1名女教师,有C12=2(种)选法;第二步,为甲地选2名男教师,有C24=6(种)选法;第三步,剩下的3名教师到乙地,故不同的安排方案共有2×6×1=12(种),故选C.7.现有6个白球,4个黑球,任取4个,则至少有两个黑球的取法种数是( )A.115 B.90 C.210 D.385考点组合的应用题点有限制条件的组合问题答案 A解析依题意根据取法可分为三类:两个黑球,有C24C26=90(种);三个黑球,有C34C16=24(种);四个黑球,有C44=1(种).根据分类加法计数原理可得,至少有两个黑球的取法种数是90+24+1=115,故选A.8.对于所有满足1≤m≤n≤5的自然数m,n,方程x2+C m n y2=1所表示的不同椭圆的个数为( )A.15 B.7 C.6 D.0考点组合数性质题点利用组合数的性质进行计算与证明答案 C解析因为1≤m≤n≤5,且方程表示椭圆,所以C m n可能为C12,C13,C23,C14,C24,C34,C15,C25, C35,C45,其中C13=C23,C14=C34,C15=C45,C25=C35,所以x2+C m n y2=1能表示的不同椭圆有6个.二、填空题9.从2,3,5,7四个数中任取两个不同的数相乘,有m个不同的积;任取两个不同的数相除,有n个不同的商,则m∶n=________.考点 组合的概念 题点 组合的判断 答案 1∶2解析 ∵m =C 24,n =A 24,∴m ∶n =1∶2.10.从进入决赛的6名选手中决出1名一等奖、2名二等奖、3名三等奖,则可能的决赛结果共有________种. 考点 组合的应用题点 有限制条件的组合问题 答案 60解析 根据题意,所有可能的决赛结果有C 16C 25C 33=6×5×42×1=60(种).11.不等式C 2n -n <5的解集为________. 考点 组合数性质题点 含有组合数的方程或不等式的问题 答案 {2,3,4} 解析 由C 2n -n <5,得n (n -1)2-n <5,即n 2-3n -10<0, 解得-2<n <5.由题意知n ≥2,且n ∈N *,则n =2,3,4, 故原不等式的解集为{2,3,4}. 三、解答题12.已知C 4n ,C 5n ,C 6n 成等差数列,求C 12n 的值. 考点 组合数公式 题点 组合数公式的应用 解 由已知得2C 5n =C 4n +C 6n ,所以2×n !5!(n -5)!=n !4!(n -4)!+n !6!(n -6)!,整理得n 2-21n +98=0, 解得n =7或n =14, 要求C 12n 的值,故n ≥12, 所以n =14,于是C 1214=C 214=14×132×1=91. 13.在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人参加市级培训.在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人不能参加.考点 组合的应用题点 有限制条件的组合问题解 (1)从中任取5人是组合问题,共有C 512=792(种)不同的选法.(2)甲、乙、丙三人必须参加,则只需要从另外9人中选2人,是组合问题,共有C 29=36(种)不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C 59=126(种)不同的选法.四、探究与拓展14.以下三个式子:①C mn =A m n m !;②A m n =n A m -1n -1;③C m n ÷C m +1n =m +1n -m .其中正确的个数是____. 考点 组合数公式题点 组合数公式的应用答案 3解析 ①式显然成立;②式中A m n =n (n -1)(n -2)…(n -m +1),A m -1n -1=(n -1)(n -2)…(n -m +1),所以A m n =n A m -1n -1,故②式成立;对于③式C mn ÷C m +1n =C m n C m +1n =A mn ·(m +1)!m !·A m +1n =m +1n -m ,故③式成立. 15.某届世界杯举办期间,共32支球队参加比赛,它们先分成8个小组进行循环赛,决出16强(每队均与本组其他队赛1场,各组第一、二名晋级16强),这16支球队按确定的程序进行淘汰赛,即八分之一淘汰赛,四分之一淘汰赛,半决赛,决赛,最后决出冠、亚军,此外还要决出第三、四名,问这届世界杯总共将进行多少场比赛?考点 组合的应用题点 有限制条件的组合问题解 可分为如下几类比赛:(1)小组循环赛,每组有C 24=6(场),8个小组共有48场;(2)八分之一淘汰赛,8个小组的第一、二名组成16强,根据赛制规则,每2支球队一组,每组比赛1场,可以决出8强,共有8场;(3)四分之一淘汰赛,根据赛制规则,8强中每2支球队一组,每组比赛1场,可以决出4强,共有4场;(4)半决赛,根据赛制规则,4强每2支球队一组,每组比赛1场,可以决出2强,共有2场;(5)决赛,2强比赛1场确定冠、亚军,4强中的另2支球队比赛1场决出第三、四名,共有2场.综上,由分类加法计数原理知,总共将进行48+8+4+2+2=64(场)比赛.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2 组合整体设计教材分析排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关的是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据笔者观察,有些同学之所以在学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.课时分配3课时第一课时教学目标知识与技能理解组合的意义,能写出一些简单问题的所有组合.明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题.过程与方法通过具体实例,体会组合数的意义,总结排列数A m n与组合数C m n之间的联系,掌握组合数公式,能运用组合数公式进行计算.情感、态度与价值观能运用组合要领分析简单的实际问题,提高分析问题的能力.重点难点教学重点:组合的概念和组合数公式.教学难点:组合的概念和组合数公式.教学过程引入新课提出问题1:回顾分类加法计数原理和分步乘法计数原理,排列的概念和排列数公式.活动设计:教师提问.活动成果:1.分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事有N=m1×m2×…×m n种不同的方法.3.排列的概念:从n个不同元素中,任取m(m≤n)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.4.排列数的定义:从n个不同元素中,任取m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号A m n表示.5.排列数公式:A m n=n(n-1)(n-2)…(n-m+1)(m,n∈N ,m≤n).6.阶乘:n!表示正整数1到n的连乘积,叫做n的阶乘.规定0!=1.7.排列数的另一个计算公式:A m n=n!(n-m)!.设计意图:检查学生的掌握情况,为新知识的学习奠定基础.提出问题2:分析下列两个问题是不是排列问题,为什么?问题(1):从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题(2):从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?活动设计:学生自己分析,教师提问.活动成果:问题(1)中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而问题(2)只要求选出2名同学,是与顺序无关的,不是排列.我们把这样的问题称为组合问题.设计意图:引导学生通过具体实例找出排列与组合问题的不同,引出组合的概念.探索新知提出问题1:结合上述问题(2),试总结组合和组合数的概念.活动设计:学生小组讨论,总结概念.活动成果:1.组合的概念:一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n 个不同元素中取出m个元素的一个组合.2.组合数的概念:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号C m n表示.设计意图:培养学生的类比和概括能力.理解新知提出问题1:判断下列问题是组合问题还是排列问题?(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共打了多少个电话?活动设计:小组交流,共同分析.活动成果:(1)(3)(4)是排列;(2)(5)是组合.设计意图:通过具体实例比较排列和组合,加深对组合的理解.提出问题2:试找出排列和组合的区别和联系.活动设计:小组交流,教师提问,学生补充.活动成果:1.区别:(1)排列有顺序,组合无顺序.(2)相同的组合只需选出的元素相同,相同的排列则需选出的元素相同,并且选出元素的顺序相同.2.联系:(1)都是从n 个不同的元素中选出m(m≤n)个元素;(2)排列可以看成先组合再全排列.设计意图:加深对排列组合的理解,为推导组合数公式奠定基础.提出问题2:你能类比排列数的推导过程和排列与组合的联系推导出从4个不同元素a ,b ,c ,d 中取出3个元素的组合数C 34是多少吗?活动设计:小组交流,共同推导.活动成果:由于排列是先组合再排列,而从4个不同元素中取出3个元素的排列数A 34可以求得,故我们可以考察一下C 34和A 34的关系,如下:组合 排列abc→abc,bac ,cab ,acb ,bca ,cbaabd→abd,bad ,dab ,adb ,bda ,dbaacd→acd,cad ,dac ,adc ,cda ,dcabcd→bcd,cbd ,dbc ,bdc ,cdb ,dcb由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数A 34,可以分如下两步:①考虑从4个不同元素中取出3个元素的组合,共有C 34个;②对每一个组合的3个不同元素进行全排列,各有A 33种方法.由分步乘法计数原理得:A 34=C 34·A 33,所以,C 34=A 34A 33. 设计意图:从具体实例出发,探索组合数的求法.提出问题3:你能想出求C m n 的方法吗?活动设计:小组交流,共同推导.活动成果:一般地,求从n 个不同元素中取出m 个元素的组合数C m n ,可以分如下两步:①先求从n 个不同元素中取出m 个元素的排列数A m n ;②求每一个组合中m 个元素的全排列数A m m ,根据分步乘法计数原理得:A m n =C m n ·A m m .得到组合数的公式:C mn =A mn A m m =n(n -1)(n -2)…(n -m +1)m ! 或C m n =n !m !(n -m)!(n ,m∈N ,且m≤n). 规定:C 0n =1.设计意图:引导学生逐步利用分步乘法计数原理推导出组合数公式.运用新知类型一:组合数公式的应用1计算:(1)C 47; (2)C 710.解:(1)C 47=7×6×5×44!=35; (2)解法1:C 710=10×9×8×7×6×5×47!=120.解法2:C 710=10!7!3!=10×9×83!=120. 【巩固练习】求证:C m n =m +1n -m·C m +1n . 证明:∵C m n =n !m !(n -m)!, m +1n -m ·C m +1n =m +1n -m ·n !(m +1)!(n -m -1)!=m +1(m +1)!·n !(n -m)(n -m -1)!=n !m !(n -m)!, ∴C m n =m +1n -m·C m +1n . 【变练演编】设x∈N *,求C x -12x -3+C 2x -3x +1的值.解:由题意可得:⎩⎪⎨⎪⎧ 2x -3≥x-1,x +1≥2x-3,解得2≤x≤4, ∵x∈N *,∴x=2或x =3或x =4.当x =2时原式的值为4;当x =3时原式的值为7;当x =4时原式的值为11.∴所求的值为4或7或11.类型二:简单的组合问题例2一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:(1)这位教练从这17名学员中可以形成多少种学员上场方案?(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?思路分析:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从17个不同元素中选出11个元素的组合问题;对于(2),守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题.解:(1)由于上场学员没有角色差异,所以可以形成的学员上场方案种数为C 1117=12 376.(2)教练员可以分两步完成这件事情:第1步,从17名学员中选出11人组成上场小组,共有C 1117种选法;第2步,从选出的11人中选出1名守门员,共有C 111种选法.所以教练员做这件事情的方式种数为C 1117×C 111=136 136.【巩固练习】(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?解:(1)以平面内10个点中每2个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段条数为C 210=10×91×2=45.(2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每2个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段条数为A 210=10×9=90.【变练演编】(1)凸五边形有多少条对角线?(2)凸n(n>3)边形有多少条对角线?解答:(1)凸五边形的五个顶点中,任意两个顶点的连线是凸五边形的一条对角线或是一条边,所以,凸五边形的对角线条数为C 25-5=5.(2)凸n 边形的n 个顶点中,任意两个顶点的连线是凸n 边形的一条对角线或是一条边,所以,凸n 边形的对角线条数为C 2n -n =n(n -3)2. 【达标检测】1.判断下列问题哪个是排列问题,哪个是组合问题:(1)从4个风景点中选出2个安排游览,有多少种不同的方法?(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?2.7名同学进行乒乓球擂台赛,决出新的擂主,则共需进行的比赛场数为( )A .42B .21C .7D .63.如果把两条异面直线看作“一对”,则在五棱锥的棱所在的直线中,异面直线有( )A .15对B .25对C .30对D .20对答案:1.(1)是组合问题 (2)是排列问题 2.B 3.A课堂小结1.知识收获:组合概念、组合数公式.2.方法收获:化归.3.思维收获:分类讨论、化归思想.补充练习【基础练习】1.A ,B ,C ,D ,E 5个足球队进行单循环比赛,(1)共需比赛多少场?(2)若各队的得分互不相同,则冠、亚军的可能情况共有多少种?2.空间有10个点,其中任何4点不共面,(1)过每3个点作一个平面,一共可作多少个平面?(2)以每4个点为顶点作一个四面体,一共可作多少个四面体?3.壹圆、贰圆、伍圆、拾圆的人民币各一张,一共可以组成多少种币值?4.写出从a ,b ,c ,d ,e 这5个元素中每次取出4个的所有不同的组合.答案:1.(1)10 (2)20 2.(1)C 310=120 (2)C 410=210 3.C 14+C 24+C 34+C 44=24-1=15.4.a ,b ,c ,d a ,b ,c ,e a ,b ,d ,e a ,c ,d ,e b ,c ,d ,e.【拓展练习】5.第19届世界杯足球赛于2010年夏季在南非举办,共32支球队有幸参加,他们先分成8个小组进行循环赛,决出16强(每队均与本组其他队赛一场,各组一、二名晋级16强),这16支球队按确定的程序进行淘汰赛,最后决出冠亚军,此外还要决出第三名、第四名,问这次世界杯总共将进行多少场比赛?解:可分为如下几类比赛:(1)小组循环赛:每组有C 24=6场,8个小组共有48场;(2)八分之一淘汰赛:8个小组的第一、二名组成16强,根据赛制规则,每两个队比赛一场,可以决出8强,共有8场;(3)四分之一淘汰赛:根据赛制规则,8强中每两个队比赛一次,可以决出4强,共有4场;(4)半决赛:根据赛制规则,4强每两个队比赛一场,可以决出2强,共有2场;(5)决赛:2强比赛1场确定冠亚军,4强中的另两支队比赛1场决出第三、四名,共有2场.综上,共有8C24+8+4+2+2=64场比赛.设计说明本节课是组合的第一课时,主要目标是学习组合的概念,探究组合数公式,并利用组合数公式解决简单的计数问题.主要特点是:类比排列数公式的推导方法,抓住排列和组合的区别和联系,利用排列数公式推导出组合数公式.本节课的设计充分体现教师所提问题的主导作用和学生根据问题自主探究的主体地位,学生在与教师和与同学的思维碰撞中自主学习、自主探究.备课资料在判断一个问题是排列还是组合问题时,主要看元素的组成有没有顺序性,有顺序的是排列,无顺序的是组合.有大小形状相同的3个红色小球和5个白色小球,排成一排,共有多少种不同的排列方法?误解:因为是8个小球的全排列,所以共有A88种方法.错因分析:误解中没有考虑3个红色小球是完全相同的,5个白色小球也是完全相同的,同色球之间互换位置是同一种排法.正解:8个小球排好后对应着8个位置,题中的排法相当于在8个位置中选出3个位置给红球,剩下的位置给白球,由于这3个红球完全相同,所以没有顺序,是组合问题.这样共有:C38=56种排法.。