【中小学资料】2018版高三物理一轮复习 专题9 磁场(含2014年高考真题)
(新课标)2018年高考物理一轮复习第九章磁场突破全国卷试题
第九章 磁场近几年高考对于带电粒子在磁场中及复合场中的运动考查是比较频繁的,2012年以前一般为压轴计算题,难度较大,综合性较强;近几年一般为选择题,难度适中.【重难解读】带电粒子在复合场中的运动综合了洛伦兹力、牛顿运动定律、匀速圆周运动、功能关系等知识,同时对于数学的运算能力、空间想象能力、做图能力都有较高要求,是高考命题的热点和重点.【典题例证】(18分)在科学研究中,可以通过施加适当的电场和磁场来实现对带电粒子运动的控制.如图甲所示的xOy 平面处于匀强电场和匀强磁场中,电场强度E 和磁感应强度B 随时间t 作周期性变化的图象如图乙所示.x 轴正方向为E 的正方向,垂直纸面向里为B 的正方向.在坐标原点O 有一粒子P ,其质量和电荷量分别为m 和+q ,不计重力.在t =τ2时刻释放P ,它恰能沿一定轨道做往复运动.(1)求P 在磁场中运动时速度的大小v 0; (2)求B 0应满足的关系;(3)在t 0⎝⎛⎭⎪⎫0<t 0<τ2时刻释放P ,求P 速度为零时的坐标. [解析] (1)τ2~τ做匀加速直线运动,τ~2τ做匀速圆周运动,电场力F =qE 0,加速度a =F m ,速度v 0=at ,且t =τ2,解得v 0=qE 0τ2m.(4分)(2)只有当t =2τ时,P 在磁场中做圆周运动结束并开始沿x 轴负方向运动,才能沿一定轨道做往复运动,如图所示.设P 在磁场中做圆周运动的周期为T .则⎝ ⎛⎭⎪⎫n -12T =τ (n =1,2,3…)(1分) 匀速圆周运动qvB 0=m v 2r ,T =2πrv(1分)解得B 0=(2n -1)πmq τ (n =1,2,3…).(2分)(3)在t 0时刻释放,P 在电场中加速的时间为τ-t 0 在磁场中做匀速圆周运动,有v 1=qE 0(τ-t 0)m(1分)圆周运动的半径r 1=mv 1qB 0(1分) 解得r 1=E 0(τ-t 0)B 0(1分)又经τ-t 0时间,P 减速为零后向右加速的时间为t 0P 再进入磁场,有v 2=qE 0t 0m(1分)圆周运动的半径r 2=mv 2qB 0(1分) 解得r 2=E 0t 0B 0(1分) 综上分析,速度为零时横坐标x =0 相应的纵坐标为y =⎩⎪⎨⎪⎧2[kr 1-(k -1)r 2]2k (r 1-r 2), (k =1,2,3…)(2分)解得y =⎩⎪⎨⎪⎧2E 0[k (τ-2t 0)+t 0]B2kE 0(τ-2t 0)B,(k =1,2,3…).(2分)[答案] (1)qE 0τ2m(2)B 0=(2n -1)πmq τ,(n =1,2,3…)(3)横坐标x =0,纵坐标y =⎩⎪⎨⎪⎧2E 0[k (τ-2t 0)+t 0]B2kE 0(τ-2t 0)B,(k =1,2,3…)1.带电粒子在组合场中运动的分析思路第1步:分阶段(分过程)按照时间顺序和进入不同的区域分成几个不同的阶段; 第2步:受力和运动分析,主要涉及两种典型运动,如下:第3步:用规律2.带电粒子在叠加场中运动的分析方法 (1)弄清叠加场的组成. (2)进行受力分析.(3)确定带电粒子的运动状态,注意运动情况和受力情况的结合. (4)对于粒子连续通过几个不同种类的场时,要分阶段进行处理. (5)画出粒子运动轨迹,灵活选择不同的运动规律.①当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解.②当带电粒子在叠加场中做匀速圆周运动时,应用牛顿运动定律结合圆周运动规律求解.③当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解. (6)对于临界问题,注意挖掘隐含条件.【突破训练】1.(2017·上海浦东高三模拟)如图所示,一束正离子从S 点沿水平方向射出,在没有偏转电场、磁场时恰好击中荧光屏上的坐标原点O ;若同时加上电场和磁场后,正离子束最后打在荧光屏上坐标系的第Ⅲ象限中,则所加电场E 和磁场B 的方向可能是(不计离子重力及其之间相互作用力)( )A .E 向下,B 向上 B .E 向下,B 向下C .E 向上,B 向下D .E 向上,B 向上解析:选A.正离子束打到第Ⅲ象限,相对原入射方向向下,所以电场E 方向向下;根据左手定则可知磁场B 方向向上,故A 正确.2.(多选)(高考江苏卷)如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为 I ,线圈间产生匀强磁场,磁感应强度大小 B 与 I 成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为 I H ,与其前后表面相连的电压表测出的霍尔电压 U H 满足:U H =kI H Bd,式中k 为霍尔系数,d 为霍尔元件两侧面间的距离.电阻R 远大于R L ,霍尔元件的电阻可以忽略,则( )A .霍尔元件前表面的电势低于后表面B .若电源的正负极对调,电压表将反偏C .I H 与I 成正比D .电压表的示数与R L 消耗的电功率成正比解析:选CD.当霍尔元件通有电流I H 时,根据左手定则,电子将向霍尔元件的后表面运动,故霍尔元件的前表面电势较高.若将电源的正负极对调,则磁感应强度B 的方向换向,I H 方向变化,根据左手定则,电子仍向霍尔元件的后表面运动,故仍是霍尔元件的前表面电势较高,选项A 、B 错误.因R 与R L 并联,根据并联分流,得I H =R LR L +RI ,故I H 与I 成正比,选项C 正确.由于B 与I 成正比,设B =aI ,则I L =RR +R L I ,P L =I 2L R L ,故U H =k I H B d =ak (R +R L )R 2dP L ,知U H ∝P L ,选项D 正确.3.在直角坐标系的第一象限和第三象限内分布有如图所示的匀强磁场和匀强电场,电场强度为E ,磁感应强度为B ;现在第三象限中从P 点以初速度v 0沿x 轴正方向发射一质量为m 、电荷量为+q 的粒子,粒子经过电场后恰从坐标原点O 射入磁场,不计粒子的重力.(1)已知P 点的纵坐标为-L ,试求P 点的横坐标;(2)若粒子经O 点射入磁场时的速度大小为2v 0,试求粒子在磁场中运动的时间及磁场出射点与O 点的距离.解析:(1)粒子从P 点射出后,初速度方向与电场方向垂直,粒子做类平抛运动,则竖直方向:a =qE m ,L =12at 2水平方向:x =v 0t 解得x =v 02mLqE,故P 点的横坐标为-v 02mLqE.(2)粒子的运动轨迹如图所示,经过O 点时,速度方向与x 轴的夹角为θ ,则cos θ=v 02v 0=12即θ=60°,故粒子在磁场中做圆周运动的轨迹所对的圆心角为α=2θ=2π3粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,有qvB =m v 2R得圆周运动的半径R =mv qB =2mv 0qB圆周运动的周期T =2πR v=2πmqB粒子在磁场中做圆周运动经历的时间 t ′=2π32π×T =2πm 3qB根据几何关系得出射点到O 点的距离d =2R sin θ=2×2mv 0qB ×32=23mv 0qB.答案:(1)-v 02mLqE (2)2πm 3qB 23mv 0qB4.在地面附近的真空中,存在着竖直向上的匀强电场和垂直电场方向水平向里的匀强磁场,如图甲所示.磁场的磁感应强度B 随时间t 的变化情况如图乙所示.该区域中有一条水平直线MN ,D 是MN 上的一点.在t =0时刻,有一个质量为m 、电荷量为+q 的小球(可看做质点),从M 点开始沿着水平直线以速度v 0做匀速直线运动,t 0时刻恰好到达N 点.经观测发现,小球在t =2t 0至t =3t 0时间内的某一时刻,又竖直向下经过直线MN 上的D 点,并且以后小球多次水平向右或竖直向下经过D 点.求:(1)电场强度E 的大小;(2)小球从M 点开始运动到第二次经过D 点所用的时间; (3)小球运动的周期,并画出运动轨迹(只画一个周期). 解析:(1)小球从M 点运动到N 点时, 有qE =mg ,解得E =mg q.(2)小球从M 点到达N 点所用时间t 1=t 0小球从N 点经过34个圆周,到达P 点,所以t 2=t 0⎝ ⎛⎭⎪⎫或t 2=34×2πm qB 0=t 0 小球从P 点运动到D 点的位移x =R =mv 0B 0q小球从P 点运动到D 点的时间t 3=R v 0=mB 0q所以时间t =t 1+t 2+t 3=2t 0+m B 0q⎣⎢⎡⎦⎥⎤或t =m qB 0(3π+1),t =2t 0⎝ ⎛⎭⎪⎫13π+1.(3)小球运动一个周期的轨迹如图所示.小球的运动周期为T =8t 0⎝ ⎛⎭⎪⎫或T =12πm qB 0.答案:(1)mg q (2)2t 0+mB 0q(3)8t 0 运动轨迹见解析 5.如图甲所示,空间Ⅰ区域存在方向垂直纸面向里的有界匀强磁场,边界线MN 与PQ 相互平行,MN 右侧空间Ⅱ区域存在一周期性变化的匀强电场,方向沿纸面垂直于MN 边界,电场强度的变化规律如图乙所示(规定向左为电场的正方向).一质量为m 、电荷量为+q 的粒子,在t =0时刻从电场中A 点由静止开始运动,粒子重力不计.(1)若场强大小E 1=E 2=E ,A 点到MN 的距离为L ,为使粒子进入磁场时速度最大,交变电场变化周期的最小值T 0应为多少?粒子的最大速度v 0为多大?(2)设磁场宽度为d ,改变磁感应强度B 的大小,使粒子以速度v 1进入磁场后能从磁场左边界PQ 穿出,求磁感应强度B 满足的条件及该粒子穿过磁场的时间t 的范围;(3)若电场的场强大小E 1=2E 0,E 2=E 0,电场变化周期为T ,t =0时刻从电场中A 点释放的粒子经过n 个周期正好到达MN 边界,假定磁场足够宽,粒子经过磁场偏转后又回到电场中,向右运动的最大距离和A 点到MN 的距离相等.求粒子到达MN 时的速度大小v 和匀强磁场的磁感应强度大小B .解析:(1)当粒子在电场中一直做加速运动进入磁场时速度最大,设加速时间为t 0,则L =qE 2mt 20,T 0=2t 0 解得T 0=22mLqE由动能定理得qEL =12mv 20解得v 0=2qELm.(2)设粒子在磁场中运动的轨道半径为r ,则有qv 1B =mv 21r,r >d解得B <mv 1qd根据几何关系,粒子在磁场中通过的弧长s 应满足的条件是d <s <πd2粒子穿过磁场的时间t =s v 1解得d v 1<t <πd 2v 1.(3)粒子在电场变化的前半周期内加速度大小a 1=2qE 0m后半周期内加速度大小a 2=qE 0m在一个周期内速度的增加量Δv =a 1T2-a 2T2经过n 个周期到达MN 时v =n Δv ,解得v =nqE 0T2m粒子在磁场中运动的周期T 1=2πmqB粒子在磁场中运动的时间t ′=T 12粒子在电场中向右运动的最大距离和A 点到MN 的距离相等,说明粒子返回电场后所做的减速运动正好是前面加速运动的逆过程,根据对称性可知,在磁场中运动的时间t ′应满足t ′=(2k +1)T2,(k =0,1,2,3…)解得B =2πm(2k +1)qT ,(k =0,1,2,3…).答案:见解析。
2018高考物理大一轮复习:第9章-磁场(10份打包有课件)
2018高考物理大一轮复习:第9章-磁场(10份打包有课件)第1节磁场的描述、磁场对电流的作用一、磁场、磁感应强度1.磁场(1)基本性质:磁场对处于其中的磁体、电流和运动电荷有磁力的作用.(2)方向:小磁针的N极所受磁场力的方向.2.磁感应强度(1)物理意义:描述磁场强弱和方向.(2)定义式:B=FIL(通电导线垂直于磁场).(3)方向:小磁针静止时N极的指向.(4)单位:特斯拉,符号T二、磁感线及几种常见的磁场分布1.磁感线在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致.2.几种常见的磁场(1) 条形磁铁和蹄形磁铁的磁场(如图所示)(2)几种电流周围的磁场分布直线电流的磁场通电螺线管的磁场环形电流的磁场特点无磁极、非匀强且距导线越远处磁场越弱与条形磁铁的磁场相似,管内为匀强磁场且磁场最强,管外为非匀强磁场环形电流的两侧是N极和S极且离圆环中心越远,磁场越弱安培定则立体图横截面图纵截面图(3)磁感线的特点①磁感线上某点的切线方向就是该点的磁场方向.②磁感线的疏密程度表示磁场强弱.③磁感线是闭合曲线,没有起点和终点.在磁体外部,从N极指向S 极,在磁体内部,从S极指向N极.④磁感线是假想的曲线,不相交、不中断、不相切.三、安培力的大小和方向1.大小(1)F=BILsin θ(其中θ为B与I之间的夹角)(2)磁场和电流垂直时F=BIL(3)磁场和电流平行时F=02.方向(1)用左手定则判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.(2)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面.(注意:B和I可以有任意夹角)[自我诊断]1.判断正误(1)小磁针N极受磁场力的方向就是该处磁感应强度的方向.(√)(2)磁场中的一小段通电导体在该处受力为零,此处B一定为零.(×)(3)由定义式B=FIL可知,电流强度I越大,导线L越长,某点的磁感应强度就越小.(×)(4)磁感线是真实存在的.(×)()通电线圈可等效成条形磁铁,它周围的磁感线起始于线圈一端,终止于线圈的另一端.(×)(6)安培力的方向既跟磁感应强度方向垂直,又跟电流方向垂直.(√) 2.(多选)指南针是我国古代四大发明之一.关于指南针,下列说法正确的是()A.指南针可以仅具有一个磁极B.指南针能够指向南北,说明地球具有磁场.指南针的指向会受到附近铁块的干扰D.在指南针正上方附近沿指针方向放置一直导线,导线通电时指南针不偏转解析:选B指南针有N、S两个磁极,受到地磁场的作用静止时S极指向南方,A错误,B正确.指南针有磁性,可以与铁块相互吸引,正确.由奥斯特实验可知,小磁针在通电导线放置位置合适的情况下,会发生偏转,D错误.3.磁场中某区域的磁感线如图所示,则()A.a、b两处的磁感应强度的大小不等,Ba>BbB.a、b两处的磁感应强度的大小不等,Ba<Bb.同一通电导线放在a处受力一定比放在b处受力大D.同一通电导线放在a处受力一定比放在b处受力小解析:选B在磁场中,磁感线的疏密表示磁场的强弱,故Ba<Bb,A错误,B正确.同一通电导线如果都垂直放入磁场中,则在a处受力一定比b处受力小,但如果导线与磁场平行放置,受力均为0,故、D均错误.4.关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()A.安培力的方向可以不垂直于直导线B.安培力的方向总是垂直于磁场的方向.安培力的大小与通电直导线和磁场方向的夹角无关D.将直导线从中点折成直角,安培力的大小一定变为原的一半解析:选B根据左手定则,安培力垂直于电流和磁感应强度所组成的平面,A错误,B正确.由安培力公式F=BILsin θ(θ为B与I的夹角)可知,错误.若在垂直于磁感应强度的平面内将直导线折成直角,其有效长度变为原的22,安培力大小也变为原的22,D错误.考点一磁场的理解及安培定则1.磁感应强度的三点理解(1)磁感应强度由磁场本身决定,因此不能根据定义式B=FIL认为B 与F成正比,与IL成反比.(2)测量磁感应强度时小段通电导线必须垂直磁场放入,如果平行磁场放入,则所受安培力为零,但不能说该点的磁感应强度为零.(3)磁感应强度是矢量,其方向为放入其中的小磁针N极的受力方向,也是小磁针静止时N极的指向.2.安培定则的应用在运用安培定则判定直线电流和环形电流的磁场时应分清“因”和“果”原因(电流方向)结果(磁场绕向)直线电流的磁场大拇指四指环形电流的磁场四指大拇指3.磁场的叠加磁感应强度是矢量,计算时与力的计算方法相同,利用平行四边形定则或正交分解法进行合成与分解.◆特别提醒:两个电流附近的磁场的磁感应强度是由两个电流分别独立存在时产生的磁场在该处的磁感应强度叠加而成的.1.指南针是我国古代四大发明之一.当指南针上方有一条水平放置的通电导线时,其N极指向变为如图实线小磁针所示.则对该导线电流的以下判断正确的是()A.可能东西放置,通有由东向西的电流B.可能东西放置,通有由西向东的电流.可能南北放置,通有由北向南的电流D.可能南北放置,通有由南向北的电流解析:选若导线东西放置,通有由东向西的电流,根据安培定则可知,小磁针所在处合磁场方向将在南北方向上,其不会出现题图所示情况,故选项A错误.若导线东西放置,通有由西向东的电流,根据安培定则可知,小磁针N 极不偏转,故选项B错误.若导线南北放置,通有由北向南的电流时,根据安培定则可知,小磁针N极将顺时针偏转,可转向图中实线所示位置,故选项正确.若导线南北放置,通有由南向北的电流,根据安培定则可知,小磁针N极将逆时针偏转,指向西北方,故选项D错误.2.(2017•河北廊坊模拟)(多选)无限长通电直导线在周围某一点产生的磁场的磁感应强度B的大小与电流大小成正比,与导线到这一点的距离成反比,即B=Ir(式中为常数).如图所示,两根相距L 的无限长直导线分别通有电流I和3I在两根导线的连线上有a、b两点,a点为两根直导线连线的中点,b点距电流为I的导线的距离为L 下列说法正确的是()A.a点和b点的磁感应强度方向相同B.a点和b点的磁感应强度方向相反.a点和b点的磁感应强度大小比为8∶1D.a点和b点的磁感应强度大小比为16∶1解析:选AD根据右手螺旋定则,导线周围的磁场的磁感线,是围绕导线形成的同心圆,两导线在a处的磁感应强度方向都向下,则合磁感应强度方向向下;根据B=Ir,电流为3I导线在b处的磁感应强度方向向下,而电流为I导线在b处的磁感应强度方向向上,因电流为3I导线在b处产生的磁场较大,则合磁感应强度方向向下,因此a 点和b点的磁感应强度方向相同,故A正确,B错误.两导线在a处的磁感应强度大小B1=3IL2+IL2=8IL;两导线在b 处的磁感应强度大小B2=3I2L-IL=I2L,则a点和b点的磁感应强度大小之比为16∶1,故错误,D正确.3.(2017•江西南昌调研)如图所示,、N和P是以N为直径的半圆弧上的三点,为半圆弧的圆心,∠P=60°,在、N处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时点的磁感应强度大小为B1若将处长直导线移至P处,则点的磁感应强度大小为B2,那么B2与B1之比为()A3∶1B.3∶2.1∶1 D.1∶2解析:选B如图所示,当通有电流的长直导线在、N两处时,根据安培定则,可知:二者在圆心处产生的磁感应强度都为B1/2;当将处长直导线移到P处时,两直导线在圆心处产生的磁感应强度也为B1/2,做平行四边形,由图中的几何关系,可得B2B1=B22B12=s 30°=32,故选项B正确.4.(2017•湖北三市六校联考)如图甲所示,无限长导线均通以恒定电流I直线部分和坐标轴接近重合,弯曲部分是以坐标原点为圆心的相同半径的一段圆弧,已知直线部分在原点处不形成磁场,则图乙中处磁感应强度和图甲中处磁感应强度相同的是()解析:选A 由题意可知,图甲中处磁感应强度的大小是其中一段在点产生的磁感应强度大小的2倍,方向垂直纸面向里;图A中,根据安培定则可知,左上段与右下段的通电导线产生的磁场叠加为零,则剩余的两段通电导线产生的磁感应强度大小是其中一段在点的磁感应强度的2倍,且方向垂直纸面向里,故A正确;同理,图B中,四段通电导线在点产生的磁感应强度是其中一段在点产生的磁感应强度的4倍,方向垂直纸面向里,故B错误;图中,右上段与左下段产生磁场叠加为零,则剩余两段产生磁感应强度大小是其中一段在点产生磁感应强度的2倍,方向垂直纸面向外,故错误;图D中,四段在点产生的磁感应强度是其中一段在点产生磁感应强度的2倍,方向垂直纸面向外,故D错误.磁感应强度叠加三步骤空间中的磁场通常会是多个磁场的叠加,磁感应强度是矢量,可以通过平行四边形定则进行计算或判断.其步骤如下:(1)确定场,如通电导线.(2)定位空间中需求解磁场的点,利用安培定则判定各个场在这一点上产生的磁场的大小和方向.如图中、N在点产生的磁场.(3)应用平行四边形定则进行合成,如图中的合磁场B考点二安培力作用下的平衡与加速问题1.分析导体在磁场中平衡和加速问题的思路(1)确定要研究的导体.(2)按照已知力→重力→安培力→弹力→摩擦力的顺序,对导体受力分析.(3)分析导体的运动情况.(4)根据平衡条或牛顿第二定律列式求解.2.受力分析的注意事项(1)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面.(2)安培力的大小:应用公式F=BILsin θ计算弯曲导线在匀强磁场中所受安培力的大小时,有效长度L等于曲线两端点的直线长度.(3)视图转换:对于安培力作用下的力学问题,导体棒的受力往往分布在三维空间的不同方向上,这时应利用俯视图、剖面图或侧视图等,变立体图为二维平面图.考向1:安培力作用下静态平衡问题通电导体在磁场中受安培力和其它力作用而处于静止状态,可根据磁场方向、电流方向结合左手定则判断安培力方向.[典例1](2016•广东广州三模)(多选)如图所示,质量为、长度为L的直导线用两绝缘细线悬挂于、′,并处于匀强磁场中,当导线中通以沿x正方向的电流I,且导线保持静止时悬线与竖直方向夹角为θ磁感应强度方向和大小可能为()A.z正向,gILtan θB.正向,gIL.z负向,gILtan θD.沿悬线向上,gILsin θ解析本题要注意在受力分析时把立体图变成侧视平面图,然后通过平衡状态的受力分析确定B的方向和大小.若B沿z正向,则从向′看,导线受到的安培力F=ILB,方向水平向左,如图甲所示,导线无法平衡,A错误.若B沿正向,导线受到的安培力竖直向上,如图乙所示.当FT=0,且满足ILB=g,即B =gIL时,导线可以平衡,B正确.若B沿z负向,导线受到的安培力水平向右,如图丙所示.若满足FTsin θ=ILB,FTs θ=g,即B=gtan θIL,导线可以平衡,正确.若B沿悬线向上,导线受到的安培力左斜下方向,如图丁所示,导线无法平衡,D错误.答案 B考向2:安培力作用下动态平衡问题此类题目是平衡问题,只是由于磁场大小或方向、电流大小或方向的变化造成安培力变化,与力学中某个力的变化类似的情景.[典例2](2017•陕西西安模拟)如图所示,长为L的通电直导体棒放在光滑水平绝缘轨道上,劲度系数为的水平轻弹簧一端固定,另一端拴在棒的中点,且与棒垂直,整个装置处于方向竖直向上、磁感应强度为B的匀强磁场中,弹簧伸长x时,棒处于静止状态.则()A.导体棒中的电流方向从b流向aB.导体棒中的电流大小为xBL.若只将磁场方向缓慢顺时针转过一小角度,x变大D.若只将磁场方向缓慢逆时针转过一小角度,x变大解析由受力平衡可知安培力方向水平向右,由左手定则可知,导体棒中的电流方向从a流向b,故A错误;由于弹簧伸长为x,根据胡克定律有x=BIL,可得I=xBL,故B正确;若只将磁场方向缓慢顺时针或逆时针转过一小角度,则安培力在水平方向上的分力减小,根据力的平衡可得,弹簧弹力变小,导致x变小,故、D错误.答案 B考向3:安培力作用下加速问题此类题目是导体棒在安培力和其它力作用下合力不再为零,而使导体棒产生加速度,根据受力特点结合牛顿第二定律解题是常用方法.[典例3]如图所示,PQ和N为水平平行放置的金属导轨,相距1 ,导体棒ab跨放在导轨上,棒的质量为=02 g,棒的中点用细绳经滑轮与物体相连,物体的质量=03 g,棒与导轨的动摩擦因数为μ=0,匀强磁场的磁感应强度B=2 T,方向竖直向下,为了使物体以加速度a=3 /s2加速上升,应在棒中通入多大的电流?方向如何?(g=10 /s2)解析导体棒所受的最大静摩擦力大小为f=0g=1 N的重力为G=g=3 N要使物体加速上升,则安培力方向必须水平向左,则根据左手定则判断得知棒中电流的方向为由a到b根据受力分析,由牛顿第二定律有F安-G-f=(+)aF安=BIL联立得I=27 A答案27 A方向由a→b安培力作用下导体的分析技巧(1)安培力作用下导体的平衡问题与力学中的平衡问题分析方法相同,只不过多了安培力,解题的关键是画出受力分析示意图.(2)安培力作用下导体的加速问题与动力学问题分析方法相同,关键是做好受力分析,然后根据牛顿第二定律求出加速度.考点三磁场中导体运动方向的判断1.判定通电导体运动或运动趋势的思路研究对象:通电导线或导体――→明确导体所在位置的磁场分布情况――→利用左手定则导体的受力情况――→确定导体的运动方向或运动趋势的方向2.几种判定方法电流元法分割为电流元――→左手定则安培力方向―→整段导体所受合力方向―→运动方向特殊位置法在特殊位置―→安培力方向―→运动方向等效法环形电流小磁针条形磁铁通电螺线管多个环形电流结论法同向电流互相吸引,异向电流互相排斥;两不平行的直线电流相互作用时,有转到平行且电流方向相同的趋势转换研究对象法定性分析磁体在电流磁场作用下如何运动或运动趋势的问题,可先分析电流在磁体磁场中所受的安培力,然后由牛顿第三定律,确定磁体所受电流磁场的作用力,从而确定磁体所受合力及运动方向1 一个可以自由运动的线圈L1和一个固定的线圈L2互相绝缘垂直放置,且两个线圈的圆心重合,如图所示.当两线圈中通以图示方向的电流时,从左向右看,线圈L1将()A.不动B.顺时针转动.逆时针转动D.在纸面内平动解析:选B方法一(电流元法)把线圈L1沿水平转动轴分成上下两部分,每一部分又可以看成无数段直线电流元,电流元处在L2产生的磁场中,根据安培定则可知各电流元所在处的磁场方向向上,由左手定则可得,上半部分电流元所受安培力均指向纸外,下半部分电流元所受安培力均指向纸内,因此从左向右看线圈L1将顺时针转动.方法二(等效法)把线圈L1等效为小磁针,该小磁针刚好处于环形电流I2的中心,小磁针的N极应指向该点环形电流I2的磁场方向,由安培定则知I2产生的磁场方向在其中心处竖直向上,而L1等效成小磁针后,转动前,N极指向纸内,因此小磁针的N极应由指向纸内转为向上,所以从左向右看,线圈L1将顺时针转动.方法三(结论法)环形电流I1、I2之间不平行,则必有相对转动,直到两环形电流同向平行为止.据此可得,从左向右看,线圈L1将顺时针转动.2.如图所示,蹄形磁铁用柔软的细绳悬吊在天花板上,在磁铁两极的正下方固定着一根水平直导线,当直导线中通以向右的电流时()A.磁铁的N极向纸外、S极向纸内转动,绳子对磁铁的拉力减小B.磁铁的S极向纸外、N极向纸内转动,绳子对磁铁的拉力减小.磁铁的N极向纸外、S极向纸内转动,绳子对磁铁的拉力增大D.磁铁的S极向纸外、N极向纸内转动,绳子对磁铁的拉力增大解析:选假设磁铁不动,导线运动,根据安培定则可知,通电导线左边的磁场斜向下,而右边的磁场斜向上,那么在导线两侧取两小段,根据左手定则可知,左边一小段所受安培力的方向垂直纸面向里,右侧一小段所受安培力的方向垂直纸面向外,从上往下看,导线顺时针转动.如今导线不动,磁铁运动,根据相对运动,则知磁铁逆时针转动(从上向下看),即N极向纸外转动,S极向纸内转动.当转动90°时,导线所受的安培力方向竖直向上,根据牛顿第三定律可得磁铁受到导线向下的作用力,故绳子对磁铁的拉力增大,正确.判断磁场中导体运动趋势的两点注意(1)应用左手定则判定安培力方向时,磁感线穿入手心,大拇指一定要与磁感线方向垂直,四指与电流方向一致但不一定与磁感线方向垂直,这是因为:F一定与B垂直,I不一定与B垂直.(2)导体与导体之间、磁体与磁体之间、磁体与导体之间的作用力和其他作用力一样具有相互性,满足牛顿第三定律.时规范训练[基础巩固题组]1.中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也.”进一步研究表明,地球周围地磁场的磁感线分布示意如图.结合上述材料,下列说法不正确的是()A.地理南、北极与地磁场的南、北极不重合B.地球内部也存在磁场,地磁南极在地理北极附近.地球表面任意位置的地磁场方向都与地面平行D.地磁场对射向地球赤道的带电宇宙射线粒子有力的作用解析:选由题意可知,地理南、北极与地磁场的南、北极不重合,存在磁偏角,A正确.磁感线是闭合的,再由图可推知地球内部存在磁场,地磁南极在地理北极附近,故B正确.只有赤道上方附近的磁感线与地面平行,故错误.射向地球赤道的带电宇宙射线粒子的运动方向与地磁场方向不平行,故地磁场对其有力的作用,这是磁场的基本性质,故D正确.2.三根平行的长直导体棒分别过正三角形AB的三个顶点,并与该三角形所在平面垂直,各导体棒中均通有大小相等的电流,方向如图所示.则三角形的中心处的合磁场方向为()A.平行于AB,由A 指向BB.平行于B,由B指向.平行于A,由指向AD.由指向解析:选A如图所示,由右手螺旋定则可知,导体A中电流在点产生的磁场的磁感应强度方向平行B,同理,可知导线B、中电流在点产生的磁场的磁感应强度的方向分别平行于A、AB,又由于三根导线中电流大小相等,到点的距离相等,则它们在点处产生的磁场的磁感应强度大小相等,再由平行四边形定则,可得处的合磁场方向为平行于AB,由A指向B,故选项A正确.3.如图所示,A是一个用长为L的导线弯成的、以为圆心的四分之一圆弧,将其放置在与平面A垂直的磁感应强度为B的匀强磁场中.当在该导线中通以由到A,大小为I的恒定电流时,该导线受到的安培力的大小和方向是()A.BIL,平行于向左B22BILπ,垂直于A的连线指向左下方22BILπ,平行于向右D.22BIL,垂直于A的连线指向左下方解析:选B直导线折成半径为R的14圆弧形状,在磁场中的有效长度为2R,又因为L=14×2πR,则安培力F=BI•2R=22BILπ安培力的方向与有效长度的直线A垂直,根据左手定则可知,安培力的方向垂直于A的连线指向左下方,B正确.4.如图所示,用粗细均匀的电阻丝折成平面梯形框架abd其中ab、d 边与ad边夹角均为60°,ab=b=d=L,长度为L的电阻丝电阻为R0,框架与一电动势为E、内阻r=R0的电相连接,垂直于框架平面有磁感应强度为B的匀强磁场,则梯形框架abd受到的安培力的大小为()A.0B.BEL11R010BEL11R0 DBELR0解析:选并联部分的总电阻为R并=3R0•2R03R0+2R0=6R0,电路中的总电流I=ER并+r,所以线框受到的合外力F=BI•2L=10BEL11R0,正确..如图所示,接通开关S的瞬间,用丝线悬挂于一点、可自由转动的通电直导线AB将()A.A端向上,B端向下,悬线张力不变B.A端向下,B端向上,悬线张力不变.A端向纸外,B端向纸内,悬线张力变小D.A端向纸内,B端向纸外,悬线张力变大解析:选D当开关S接通时,由安培定则知导线附近磁感线分布如图,由左手定则判断出通电直导线此时左部受力指向纸内,右部受力指向纸外,导线将转动,转到与磁感线接近垂直时,导线转动的同时,相当于具有向里的电流,则导线受安培力将竖直向下,可知悬线张力变大,故选项D正确.6.电磁炮是一种理想的兵器,它的主要原理如图所示,利用这种装置可以把质量为=20 g的弹体(包括金属杆EF 的质量)加速到6 /s若这种装置的轨道宽d=2 、长L=100 、电流I =10 A、轨道摩擦不计且金属杆EF与轨道始终垂直并接触良好,则下列有关轨道间所加匀强磁场的磁感应强度和磁场力的最大功率结果正确的是()A.B=18 T,P=108×108B.B=06 T,P=72×104.B=06 T,P=36×106D.B=18 T,P=216×106解析:选D通电金属杆在磁场中受安培力的作用而对弹体加速,由功能关系得BIdL=12v2,代入数值解得B=18 T;当速度最大时磁场力的功率也最大,即P=BIdv,代入数值得P=216×106 ,故选项D 正确.[综合应用题组]7.质量为、长为L的直导体棒放置于四分之一光滑圆弧轨道上,整个装置处于竖直向上磁感应强度为B的匀强磁场中,直导体棒中通有恒定电流,平衡时导体棒与圆弧圆心的连线与竖直方向成60°角,其截面图如图所示.则下列关于导体棒中电流的分析正确的是()A.导体棒中电流垂直纸面向外,大小为I=3gBLB.导体棒中电流垂直纸面向外,大小为I=3g3BL.导体棒中电流垂直纸面向里,大小为I=3gBLD.导体棒中电流垂直纸面向里,大小为I=3g3BL解析:选根据左手定则可知,不管电流方向向里还是向外,安培力的方向只能沿水平方向,再结合导体棒的平衡条可知,安培力只能水平向右,据此可判断出,导体棒中的电流垂直纸面向里,对导体棒受力分析如图所示,并根据平衡条可知,F=gtan 60°,又安培力为F=BIL,联立可解得I=3gBL,故选项正确.8.如图所示,两平行光滑金属导轨固定在绝缘斜面上,导轨间距为L,劲度系数为的轻质弹簧上端固定,下端与水平直导体棒ab相连,弹簧与导轨平面平行并与ab垂直,直导体棒垂直跨接在两导轨上,空间存在垂直导轨平面斜向上的匀强磁场.闭合开关后导体棒中的电流为I,导体棒平衡时,弹簧伸。
09.磁场(2014年高考物理真题分类汇编)
09.磁场1.(2014年 安徽卷)18.“人造小太阳”托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞。
已知等离子体中带电粒子的平均动能与等离子体的温度T 成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子的运动半径不变。
由此可判断所需的磁感应强度B 正比于AB .T CD .2T 【答案】A【解析】由于等离子体中带电粒子的平均动能与等离子体的温度T 成正比,即k E T ∝。
带电粒子在磁场中做圆周运动,洛仑磁力提供向心力:2v qvB m R =得mv B qR =。
而212k E mv =故可得:mvB qR ==又带电粒子的运动半径不变,所以B ∝∝A 正确。
2.(2014年 大纲卷)25.(20 分)如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(xy 平面)向外;在第四象限存在匀强电场,方向沿x 轴负向。
在y 轴正半轴上某点以与x 轴正向平行、大小为v 0的速度发射出一带正电荷的粒子,该粒子在(d ,0)点沿垂直于x 轴的方向进人电场。
不计重力。
若该粒子离开电场时速度方向与y 轴负方向的夹角为θ,求:⑪电场强度大小与磁感应强度大小的比值; ⑫该粒子在电场中运动的时间。
25. 【答案】(1)201tan 2v θ (2)02tan d v θ【考点】带电粒子在电磁场中的运动、牛顿第二定律、 【解析】(1)如图粒子进入磁场后做匀速圆周运动,设磁感应强度大小为B ,粒子质量与所带电荷量分别为m 和q ,圆周运动的半径为R 0,由洛伦兹力公式及牛顿第二定律得:2000mv qv B R =由题给条件和几何关系可知:R 0=d设电场强度大小为E ,粒子进入电场后沿x 轴负方向的加速度大小为a x ,在电场中运动的时间为t ,离开电场时沿x 轴负方向的速度大小为v y 。
由牛顿定律及运动学公式得: x qE ma = x qE ma =x v at = 2xv d = 粒子在电场中做类平抛运动,如图所示tan y v v θ=联立得201tan 2E v B θ= (2)同理可得02tan d t v θ=3.(2014年 广东卷)36、(18分)如图25所示,足够大的平行挡板A 1、A 2竖直放置,间距6L 。
(完整版)2018最新版本高考物理专题复习――磁场-Word版
(特别推介)高考物理专题复习――磁场(附参照答案 )一、磁场磁体是经过磁场对铁一类物质发生作用的,磁场和电场相同,是物质存在的另一种形式,是客观存在。
小磁针的指南指北表示地球是一个大磁体。
磁体四周空间存在磁场;电流四周空间也存在磁场。
电流四周空间存在磁场,电流是大批运动电荷形成的,所以运动电荷四周空间也有磁场。
静止电荷四周空间没有磁场。
磁场存在于磁体、电流、运动电荷四周的空间。
磁场是物质存在的一种形式。
磁场对磁体、电流都有磁力作用。
与用查验电荷查验电场存在相同,能够用小磁针来查验磁场的存在。
以下图为证明通电导线四周有磁场存在——奥斯特实验,以及磁场对电流有力的作用实验。
1.地磁场地球自己是一个磁体,邻近存在的磁场叫地磁场,地磁的南极在地球北极邻近,地磁的北极在地球的南极邻近。
2.地磁体四周的磁场散布与条形磁铁四周的磁场散布状况相像。
3.指南针放在地球四周的指南针静止时能够指南北,就是遇到了地磁场作用的结果。
4.磁偏角地球的地理两极与地磁两极其实不重合,磁针并不是正确地指南或指北,此间有一个交角,叫地磁偏角,简称磁偏角。
说明:①地球上不一样点的磁偏角的数值是不一样的。
②磁偏角随处球磁极迟缓挪动而迟缓变化。
③地磁轴和地球自转轴的夹角约为11°。
二、磁场的方向在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。
规定:在磁场中的随意一点小磁针北极受力的方向就是那一点的磁场方向。
确立磁场方向的方法是:将一不受外力的小磁针放入磁场中需测定的位臵,当小磁针在该位臵静止时,小磁针 N 极的指向即为该点的磁场方向。
磁体磁场:能够利用同名磁极相斥,异名磁极相吸的方法来判断磁场方向。
电流磁场:利用安培定章(也叫右手螺旋定章)判断磁场方向。
三、磁感线在磁场中画出有方向的曲线表示磁感线,在这些曲线上,每一点的切线方向都跟该点的磁场方向相同。
(1)磁感线上每一点切线方向跟该点磁场方向相同。
(2)磁感线特色(1)磁感线的疏密反应磁场的强弱,磁感线越密的地方表示磁场越强,磁感线越疏的地方表示磁场越弱。
全程复习构想2018高考物理一轮复习第九章磁场1磁场及其对电流的作用课件
5.常见的电流磁场分布 电流 立体图 横截面图 纵截面图 直线电流 通电螺线管 环形电流 注意:地磁场的 N 极在地理的南极附近,地磁场的 S 极在 地理的北极附近.
6.磁感线的特点 (1)磁感线是为了形象地描述磁场而人为假设的曲线,并不 是客观存在于磁场中的真实曲线. (2)磁感线在磁体(螺线管)外部由N极到S极,内部由S极到N 极,是闭合曲线. (3)磁感线的疏密表示磁场的强弱,磁感线较密的地方磁场 较强,磁感线较疏的地方磁场较弱. (4)磁感线上任何一点的切线方向,都跟该点的磁场(磁感应 强度)方向一致. (5)磁感线不能相交,也不能相切.
3.[磁场的叠加](多选)(2014· 海南卷,8)如图,两根平行长 直导线相距 2L,通有大小相等、方向相同的恒定电流;a、b、c l 是导线所在平面内的三点,左侧导线与它们的距离分别为 2、l 和 3l.关于这三点处的磁感应强度,下列判断正确的是( ) A.a 处的磁感应强度大小比 c 处的大 B.b、c 两处的磁感应强度大小相等 C.a、c 两处的磁感应强度方向相同 D.b 处的磁感应强度为零
[解题思路 ] (1)判断临界状态→画出临界状态时金属棒受 到的摩擦力→根据共点力的平衡条件找出安培力的范围. (2)安培力的临界值→流经金属棒的电流的临界值→由电路 知识找出滑动变阻器接入电路中的阻值范围.
[解析] (1)当金属棒刚好达到向上运动的临界状态时,金属 棒受到的摩擦力为最大静摩擦力,方向平行斜面向下,设金属棒 受到的安培力大小为 F1,其受力分析如图甲所示.则有 FN=F1sin θ+mgcos θ F1cos θ=mgsin θ+Ffmax Ffmax=μFN 以上三式联立并代入数据 可得 F1=8 N
如图所示,电流 I 和磁场 B 垂直,直导线受到的安培力 F= BIL,将直导线从中点折成直角,分段研究导线受到的安培力, 电流 I 和磁场 B 垂直,根据平行四边形定则可得,导线受到的安 2 培力的合力为 F′= 2 BIL,选项 D 错误. [答案] B
2018年高考物理复习真题训练 9磁场--含答案解析
专题9磁场1.(2017全国卷Ⅰ)如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a、b、c电荷量相等,质量分别为m a、m b、m c.已知在该区域内,a在纸面内做匀速圆周运动,b在纸面内向右做匀速直线运动,c在纸面内向左做匀速直线运动.下列选项正确的是A.m>m>ma b c C.m>m>mc a b B.m>m>mb ac D.m>m>mc b a答案:B解析:由题意知,m a g=qE,m b g=qE+Bqv,m c g+Bqv=qE,所以mb >ma>mc,故B正确,ACD错误.2.(2017全国卷Ⅱ)如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P为磁场边界上的一点.大量相同的带电粒子以相同的速率经过P点,在纸面内沿不同的方向射入磁场.若粒子射入速率为v,这些粒子在磁1场边界的出射点分布在六分之一圆周上;若粒子射入速率为v,相应的出射点分布在三分之一圆周上.不计重力2及带电粒子之间的相互作用.则v:v为21A.3:2答案:CB.2:1C.3:1D.3:2.22,解析:本题考查带电粒子在磁场中的运动由于是相同的粒子,粒子进入磁场时的速度大小相同,由qvB=m v2R可知,R=mv,即粒子在磁场中做圆周运动的半径相同.若粒子运动的速度大小为v1,如图所示,通过旋转圆qB可知,当粒子的磁场出射点A离P点最远时,则AP=2R1;同样,若粒子运动的速度大小为v2,粒子的磁场出射点B离P点最远时,则BP=2R2,由几何关系可知,R=1 C项正确.R3,R=R cos30=R,则23.(2017江苏卷)如图所示,两个单匝线圈a、b的半径分别为r和2r.圆形匀强磁场B的边缘恰好与a线圈重合,则穿过a、b两线圈的磁通量之比为(A)1:1(B)1:2(C)1:4(D)4:1答案:A解析:本题考查考生对磁通量概念的理解.由题图可知,穿过a、b两个线圈的磁通量均为Φ=B⋅πr2,因此磁通量之比为1∶1,A项正确.4.(2017全国卷Ⅲ)如图,空间存在方向垂直于纸面(xOy平面)向里的磁场.在x≥0区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1).一质量为m、电荷量为q(q>0)的带电粒子以速λqB (1+)RRvv联立①②③④式得,所求时间为t=t+t=0λ度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求(不计重力)(1)粒子运动的时间;(2)粒子与O点间的距离.πm12mv答案:(1)(2)0(1-qB01λ)解析:(1)在匀强磁场中,带电粒子做圆周运动.设在x≥0区域,圆周半径为R1;在x<0区域,圆周半径为R2.由洛伦兹力公式及牛顿定律得qB v=00mv20①1qλB v=00mv20②2粒子速度方向转过180°时,所用时间t1为t1=πR1③粒子再转过180°时,所用时间t2为t2=πR2④πm1(1+)⑤qB012(2)由几何关系及①②式得,所求距离为d=2(R-R)=122mv0(1-qB1λ)⑥5.(2017江苏卷)一台质谱仪的工作原理如图所示.大量的甲、乙两种离子飘入电压为U0的加速电场,其初速度几乎为0,经过加速后,通过宽为L的狭缝MN沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片上.已知甲、乙两种离子的电荷量均为+q,质量分别为2m和m,图中虚线为经过狭缝左、右边界M、N的甲种离子的运动轨迹.不考虑离子间的相互作用.( (3) L < 2 2Bq2(1)求甲种离子打在底片上的位置到 N 点的最小距离 x ;(2)在答题卡的图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度 d ;(3)若考虑加速电压有波动,在 U –∆U )到( U + ∆U )之间变化,要使甲、乙两种离子在底片上没有重叠,求狭缝宽度 L 满足的条件.答案:(1) x =mB q4 mU 2 mU 4mU L 20 - L (2) d = 0 - 0 - B q B q qB 2 4[2 (U - ∆U ) - 2(U + ∆U )]0 0解析:(1)设甲种离子在磁场中的运动半径为 r 1电场加速 qU = 1⨯ 2mv 2且 qvB = 2mv2 r1解得 r =2mU0 根据几何关系 x = 2r - L1 1解得 x =4 mU B q0 - L(2)(见图) 最窄处位于过两虚线交点的垂线上d = r - r 2 - ( L1 1)2解得 d =2 mU 4mU 0 - B q qB 20 - L 24=2r1的最小半径r2max=即4m(U-∆U)->LB q答案:(1)v=2v,方向与x轴方向的夹角为45°角斜向上(2)E(3)设乙种离子在磁场中的运动半径为r2m(U-∆U)B qr2的最大半径r 12m(U+∆U)B q由题意知2r1min -2r2max>L22m(U+∆U)00 B q B q解得L<2m[2(U -∆U)-2(U+∆U) ]006.(2017天津卷)平面直角坐标系x Oy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ现象存在沿y轴负方向的匀强电场,如图所示.一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y轴的距离为到x轴距离的2倍.粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等.不计粒子重力,问:(1)粒子到达O点时速度的大小和方向;(2)电场强度和磁感应强度的大小之比.0B2y⑥⑦设磁感应强度大小为 B ,粒子做匀速圆周运动的半径为 R ,洛伦兹力提供向心力,有: q vB = m⑨解析:(1)在电场中,粒子做类平抛运动,设 Q 点到 x 轴距离为 L ,到 y 轴距离为 2L ,粒子的加速度为 a ,运动时间为 t ,有2L = v t①L =1at 2 ②2设粒子到达 O 点时沿 y 轴方向的分速度为 vyv = at ③y设粒子到达 O 点时速度方向与 x 轴正方向夹角为α ,有 tan α =联立①②③④式得α =45° ⑤即粒子到达 O 点时速度方向与 x 轴正方向成 45°角斜向上.vyv④设粒子到达 O 点时速度大小为 v ,由运动的合成有 v =v 2 + v2 0联立①②③⑥式得 v =2v(2)设电场强度为 E ,粒子电荷量为 q ,质量为 m ,粒子在电场中受到的电场力为 F ,粒子在电场中运动的加速度: a =qEm⑧v 2R根据几何关系可知: R =2L整理可得: E v= 0B 2x v子,形成宽为 2b ,在 y 轴方向均匀分布且关于 轴对称的电子流.电子流沿 方向射入一个半径为 R ,中心位于正下方有一对平行于 轴的金属平行板 K 和 A ,其中 K 板与 P 点的距离为 d ,中间开有宽度为2l 且关于 y 轴对2电荷量为 e ,忽,7.(2017 浙江卷)如图所示,在 xOy 平面内,有一电子源持续不断地沿 正方向每秒发射出 N 个速率均为 的电x x原点 O 的圆形匀强磁场区域,磁场方向垂直xOy 平面向里,电子经过磁场偏转后均从P 点射出,在磁场区域的x称的小孔.K 板接地,A 与 K 两板间加有正负、大小均可调的电压UAK,穿过 K 板小孔到达 A 板的所有电子被收集且导出,从而形成电流.已知 b =略电子间相互作用.(1)求磁感应强度 B 的大小;3 R, d = l,电子质量为 m ,(2)求电子从 P 点射出时与负y 轴方向的夹角θ的范围;(3)当UAK= 0 时,每秒经过极板 K 上的小孔到达极板 A 的电子数;(4)画出电流 i 随 UAK变化的关系曲线(在答题纸上的方格纸上).答案:(1) B = mv,(2)60o (3) n =6 N eR3= 0.82N (4) i m ax = 0 .82 Ne解析:由题意可以知道是磁聚焦问题,即(1)轨到半径 R=rB =mveR(2)右图以及几何关系可知,上端电子从 P 点射出时与负 y 轴最大夹角θm ,由几何关系sin θm = b得 θm = 60 OR同理下端电子从 p 点射出与负 y 轴最大夹角也是 60 度范围是 - 60 o ≤ θ ≤ 60 o(3) tan α = l得 α = 45 Ody ' = R s in α = 2 R2===0.82n=0.82N4e mv2或者根据(3)可得饱和电流大小每秒进入两极板间的电子数为n n y'6N b3(4)有动能定理得出遏止电压U=-c 12emv2与负y轴成45度角的电子的运动轨迹刚好与A板相切,其逆过程是类平抛运动,达到饱和电流所需要的最小反向电压U'=-1im ax=0.82Ne.。
2018届高考物理一轮总复习专题9磁场专题热点综合课件
•知识结构 ·思维导图
•热点考向 ·真题考法
• 考向1 磁场对电流的作用 • 1.[对安培力的考查](2016新课标Ⅲ卷)某同学用如图中所给器材进行与
安平培行力,有足关够的大实的验电.磁两 铁根(未金画属出导)的轨Na极b和位a于1b1两固导定轨在的同正一上水方平,面S内极且位相于互 两导轨的正下方,一金属棒置于导轨上且与两导轨垂直.
A.2mqvB C.2qmBv
B.
3mv qB
D.4qmBv
【答案】D
【解析】设射入磁场的入射点为 A,延长入射速度 v 所在直线交 ON 于一点 C, 则轨迹圆与 AC 相切;由于轨迹圆只与 ON 有一个交点,所以轨迹圆与 ON 相切,所 以轨迹圆的圆心必在∠ACD 的角平分线上,作出轨迹圆如图所示,其中 O′为圆心, B 为出射点.由几何关系可知∠O′CD=30°,Rt△O′DC 中,CD=O′D·cot 30° = 3R;由对称性知,AC=CD= 3R;等腰△ACO 中,OA=2AC·cos 30°=3R;等 边△O′AB 中,AB=R,所以 OB=OA+AB=4R.由 qvB=mvR2得 R=mqBv,所以 OB =4qmBv,D 正确.
4.[带电粒子在磁场中的偏转](2016 年新课标Ⅲ卷)平面 OM 和平面 ON 之间的 夹角为 30°,其横截面(纸面)如图所示,平面 OM 上方存在匀强磁场,磁感应强度大 小为 B,方向垂直于纸面向外.一带电粒子的质量为 m,电荷量为 q(q>0).粒子沿 纸面以大小为 v 的速度从 OM 的某点向左上方射入磁场,速度与 OM 成 30°角.已 知该粒子在磁场中的运动轨迹与 ON 只有一个交点,并从 OM 上另一点射出磁场.不 计重力.粒子离开磁场的出射点到两平面交线 O 的距离为( )
高中物理高考 高考物理一轮复习专题课件 专题9+磁场(全国通用)
2.回旋加速器 (1)基本构造:回旋加速器的核心部分是放置在磁场中的两个D形 的金属扁盒 (如图所示),其基本组成为:
①粒子源 ②两个D形金属盒 ③匀强磁场 ④高频电源 ⑤粒子引出装置
(2)工作原理
①电场加速 qU=ΔEk; ②磁场约束偏转 qBv=mvr2,v=qmBr∝r;
③加速条件:高频电源的周期与带电粒子在 D 形盒中运动的周 2πm
知识点一 磁场及其描述 1.磁场 (1)基本特性:对放入其中的磁体、电流和运动电荷都有_磁__场__力__的 作用. (2)方向:磁场中任一点小磁针_北__极__(N__极__)的受力方向为该处的磁场 方向.
2.磁感应强度
B=IFL
强弱
方向
北极(N极)
3.磁感应强度与电场强度的比较
磁感应强度 B 电场强度 E
要点一 通电导线在安培力作用下的运动的判断方法 [突破指南]
电流元法
把整段导线分为直线电流元,先用左手定则判 断每段电流元受力的方向,然后判断整段导线 所受合力的方向,从而确定导线运动方向.
等效法
环形电流可等效成小磁针,通电螺线管可以等 效成条形磁铁或多个环形电流,反过来等效也 成立.
特殊 通过转动通电导线到某个便于分析的特殊位置,然 位置法 后判断其所受安培力的方向,从而确定其运动方向.
A.FN1<FN2,弹簧的伸长量减小 B.FN1=FN2,弹簧的伸长量减小 C.FN1>FN2,弹簧的伸长量增大 D.FN1>FN2,弹簧的伸长量减小
解析 采用“转换研究对象法”:由于条形磁铁的磁感线是从N 极出发到S极,所以可画出磁铁在导线A处的一条磁感线,此处磁 感应强度方向斜向左下方,如图,导线A中的电流垂直纸面向外, 由左手定则可判断导线A必受 斜向右下方的安培力,由牛顿 第三定律可知磁铁所受作用力的方向是斜向左上方,所以磁铁对 斜面的压力减小,FN1>FN2.同时,由于导线A比较靠近N极,安 培力的方向与斜面的夹角小于90°,所以电流对磁铁的作用力有 沿斜面向下的分力,使得弹簧弹力增大,可知弹簧的伸长量增大, 所以正确选项为C.
2018版高三物理一轮复习 专题10 电磁感应(含2014年高考真题).
专题10 电磁感应1.(2014上海)如图,匀强磁场垂直于软导线回路平面,由于磁场发生变化,回路变为圆形。
则磁场()(A)逐渐增强,方向向外(B)逐渐增强,方向向里(C)逐渐减弱,方向向外(D)逐渐减弱,方向向里答案:CD解析:本题考查了楞次定律,感应电流的磁场方向总是阻碍引起闭合回路中磁通量的变化,体现在面积上是“增缩减扩”,而回路变为圆形,面积是增加了,说明磁场是在逐渐减弱.因不知回路中电流方向,故无法判定磁场方向,故CD都有可能。
2.[2014·新课标全国卷Ⅰ] 在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是( )A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化答案:D解析:产生感应电流的条件是:只要穿过闭合电路的磁通量发生变化,电路中就会产生感应电流.本题中的A、B选项都不会使电路中的磁通量发生变化,不满足产生感应电流的条件,故不正确.C选项虽然在插入条形磁铁瞬间电路中的磁通量发生变化,但是当人到相邻房间时,电路已达到稳定状态,电路中的磁通量不再发生变化,故观察不到感应电流.在给线圈通电、断电瞬间,会引起闭合电路磁通量的变化,产生感应电流,因此D选项正确.3.[2014·新课标全国卷Ⅰ] 如图(a)所示,线圈ab、cd绕在同一软铁芯上.在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是( )答案:C 解析: 本题考查了电磁感应的图像.根据法拉第电磁感应定律,ab 线圈电流的变化率与线圈cd 上的波形图一致,线圈cd 上的波形图是方波,ab 线圈电流只能是线性变化的,所以C 正确.4.[2014·江苏卷] 如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为( )A.Ba 22ΔtB.nBa 22ΔtC.nBa 2ΔtD.2nBa 2Δt答案:B解析: 根据法拉第电磁感应定律知E =n ΔΦΔt =n ΔB ·S Δt,这里的S 指的是线圈在磁场中的有效面积,即S =a 22,故E =n (2B -B )S Δt =nBa 22Δt,因此B 项正确. 5..[2014·山东卷] 如图所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好,在向右匀速通过M 、N 两区的过程中,导体棒所受安培力分别用F M 、F N 表示.不计轨道电阻.以下叙述正确的是( )A .F M 向右B .F N 向左C .F M 逐渐增大D .F N 逐渐减小答案:BCD解析: 根据安培定则可判断出,通电导线在M 区产生竖直向上的磁场,在N 区产生竖直向下的磁场.当导体棒匀速通过M 区时,由楞次定律可知导体棒受到的安培力向左.当导体棒匀速通过N 区时,由楞次定律可知导体棒受到的安培力也向左.选项B 正确.设导体棒的电阻为r ,轨道的宽度为L ,导体棒产生的感应电流为I ′,则导体棒受到的安培力F 安=BI ′L =B BLv R +r L =B 2L 2v R +r,在导体棒从左到右匀速通过M 区时,磁场由弱到强,所以F M 逐渐增大;在导体棒从左到右匀速通过N 区时,磁场由强到弱,所以F N 逐渐减小.选项C 、D 正确.6.[2014·四川卷] 如图所示,不计电阻的光滑U 形金属框水平放置,光滑、竖直玻璃挡板H 、P 固定在框上,H 、P 的间距很小.质量为0.2 kg 的细金属杆CD 恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1 m 的正方形,其有效电阻为0.1 Ω.此时在整个空间加方向与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B =(0.4-0.2t )T ,图示磁场方向为正方向.框、挡板和杆不计形变.则( )A .t =1 s 时,金属杆中感应电流方向从C 到DB .t =3 s 时,金属杆中感应电流方向从D 到CC .t =1 s 时,金属杆对挡板P 的压力大小为0.1 ND .t =3 s 时,金属杆对挡板H 的压力大小为0.2 N答案:AC解析: 由于B =(0.4-0.2 t ) T ,在t =1 s 时穿过平面的磁通量向下并减少,则根据楞次定律可以判断,金属杆中感应电流方向从C 到D ,A 正确.在t =3 s 时穿过平面的磁通量向上并增加,则根据楞次定律可以判断,金属杆中感应电流方向仍然是从C 到D ,B 错误.由法拉第电磁感应定律得E =ΔΦΔt =ΔB ΔtS sin 30°=0.1 V ,由闭合电路的欧姆定律得电路电流I =E R=1 A ,在t =1 s 时,B =0.2 T ,方向斜向下,电流方向从C 到D ,金属杆对挡板P 的压力水平向右,大小为F P =BIL sin 30°=0.1 N ,C 正确.同理,在t =3 s 时,金属杆对挡板H 的压力水平向左,大小为F H =BIL sin 30°=0.1 N ,D 错误.7.[2014·安徽卷] 英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场.如图所示,一个半径为r场B ,环上套一带电荷量为+q 的小球.已知磁感应强度B 随时间均匀增加,其变化率为k 功的大小是( )A .0 B.12r 2qk C .2πr 2qk D .πr 2qk 答案:D解析: 本题考查电磁感应、动能定理等知识点,考查对“变化的磁场产生电场”的理解能力与推理能力.由法拉第电磁感应定律可知,沿圆环一周的感生电动势E 感=ΔΦΔt =ΔB Δt·S =k ·πr 2,电荷环绕一周,受环形电场的加速作用,应用动能定理可得W =qE感=πr 2qk .选项D 正确。
2018版高考物理(全国通用)大一轮复习讲义文档:第九章磁场第1讲含答案
[高考命题解读]分析年份高考(全国卷)四年命题情况对照分析1.考查方式高考对本章内容考查命题频率极高,常以选择题和计算题两种形式出题,选择题一般考查磁场的基础知识和基础规律,一般难度不大;计算题主要是考查安培力、带电粒子在磁场中的运动与力学、电学、能量知识的综合应用,难度较大,较多是高考的压轴题.2.命题趋势(1)磁场的基础题号命题点2013年Ⅰ卷18题带电粒子在圆形有界磁场中的运动Ⅱ卷17题带电粒子在圆形有界磁场中的运动2014年Ⅰ卷15、16题安培力、洛伦兹力分别在力电综合问题中的应用Ⅱ卷20题洛伦兹力作用下的匀速圆周运动2015年Ⅰ卷14、24题安培力、洛伦兹力分别在力电综合问题中的应用知识及规律的考查(2)安培力、洛伦兹力的考查 (3)带电粒子在有界磁场中的临界问题,在组合场、复合场中的运动问题 (4)磁场与现代科学知识的综合应用 Ⅱ卷18题 对磁体、地磁场和磁力的认识Ⅱ卷19题 洛伦兹力作用下的匀速圆周运动2016年 Ⅰ卷15题 带电粒子在电磁场中运动的多过程现象Ⅱ卷18题 带电粒子在圆形有界磁场中的运动Ⅲ卷18题 带电粒子在角形有界磁场中的运动第1讲 磁场及其对电流的作用一、对磁场的理解1.磁场(1)基本特性:磁场对处于其中的磁体、电流和运动电荷有力的作用.(2)方向:小磁针的N极所受磁场力的方向,或自由小磁针静止时N 极的指向.2.磁感应强度(1)定义式:B=错误!(通电导线垂直于磁场).(2)方向:小磁针静止时N极的指向.(3)磁感应强度是反映磁场性质的物理量,由磁场本身决定,是用比值法定义的.3.磁感线(1)引入:在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致.(2)特点:磁感线的特点与电场线的特点类似,主要区别在于磁感线是闭合的曲线.(3)条形磁铁和蹄形磁铁的磁场(如图1所示).图1二、安培定则的应用及磁场的叠加1.安培定则的应用直线电流的磁场通电螺线管的磁场环形电流的磁场特点无磁极、非匀强,且距导线与条形磁铁的磁场相似,管环形电流的两侧是N极和S越远处磁场越弱内为匀强磁场且磁场最强,管外为非匀强磁场极,且离圆环中心越远,磁场越弱安培定则立体图横截面图2.磁场的叠加磁感应强度是矢量,计算时与力的计算方法相同,利用平行四边形定则或正交分解法进行合成与分解.三、安培力1.安培力的方向(1)左手定则:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内.让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.(2)注意问题:磁感线方向不一定垂直于电流方向,但安培力方向一定与磁场方向和电流方向垂直,即大拇指一定要垂直于磁场方向和电流方向决定的平面.2.安培力的大小当磁感应强度B的方向与导线方向成θ角时,F=ILB sin_θ.(1)当磁场与电流垂直时,安培力最大,F max=ILB.(2)当磁场与电流平行时,安培力等于零.[深度思考]安培力常用公式F=BIL中的L是导线的尺度吗?答案L为有效长度1.(教科版选修3-1P83第3题)(多选)如图2为通电螺线管.A为螺线管外一点,B、C两点在螺线管的垂直平分线上,则下列说法正确的是( )图2A.磁感线最密处为A处,最疏处为B处B.磁感线最密处为B处,最疏处为C处C.小磁针在B处和A处N极都指向左方D.小磁针在B处和C处N极都指向右方答案BC2.(人教版选修3-1P94第1题改编)下面的几个图显示了磁场对通电直导线的作用力,其中正确的是()答案C3.(教科版选修3-1P92第1题)(多选)一小段长为L的通电直导线放在磁感应强度为B的磁场中,当通过它的电流为I时,所受安培力为F.以下关于磁感应强度B的说法正确的是()A.磁感应强度B一定等于错误!B.磁感应强度B可能大于或等于FILC.磁场中通电直导线受力大的地方,磁感应强度一定大D.在磁场中通电直导线也可以不受力答案BD4.(人教版选修3-1P94第3题改编)如图3所示,用天平测量匀强磁场的磁感应强度.下列各选项所示的载流线圈匝数相同,边长MN相等,将它们分别挂在天平的右臂下方.线圈中通有大小相同的电流,天平处于平衡状态.若磁场发生微小变化,天平最容易失去平衡的是()图3答案A命题点一对磁场的理解1.磁感应强度是矢量,其方向与导线所受力的方向垂直;2.电流元必须垂直于磁场方向放置,公式B=错误!才成立;3.磁场中某点的磁感应强度是由磁场本身决定的,与通电导线受力的大小及方向都无关.例1 (多选)下列说法正确的是()A.磁场中某点的磁感应强度可以这样测定:把一小段通电导线放在该点时,受到的磁场力F与该导线的长度L、通过的电流I的乘积的比值B=错误!,即磁场中某点的磁感应强度B.通电导线在某点不受磁场力的作用,则该点的磁感应强度一定为零C.磁感应强度B=错误!只是定义式,它的大小取决于场源及磁场中的位置,与F、I、L以及通电导线在磁场中的方向无关D.磁场是客观存在的答案CD解析A项考查的是磁感应强度的定义,只有当通电导线与磁场方向垂直时才有B=错误!,A错;B项中,当通电导线与磁场平行时,不受磁场力,此时,磁感应强度不为零,B错;C选项中,B=错误!是定义式,磁场强弱取决于场源及磁场中的位置,C正确;磁场与电场一样,都是客观存在的,D正确.1.(多选)指南针是我国古代四大发明之一.关于指南针,下列说法正确的是()A.指南针可以仅具有一个磁极B.指南针能够指向南北,说明地球具有磁场C.指南针的指向会受到附近铁块的干扰D.在指南针正上方附近沿指针方向放置一直导线,导线通电时指南针不偏转答案BC解析指南针两端分别是N极和S极,具有两个磁极,选项A错误;指南针静止时,N极的指向为该处磁场的方向,故指南针能够指向南北,说明地球具有磁场,选项B正确;铁块在磁场中被磁化,会影响指南针的指向,选项C正确;通电直导线在其周围会产生磁场,会影响指南针的指向,选项D错误.2.(2016·北京理综·17)中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也.”进一步研究表明,地球周围地磁场的磁感线分布示意如图4。
【高三物理试题精选】2018高考物理磁场一轮复习题(含答案和解释)
2018高考物理磁场一轮复习题(含答案和解释)
4 (2018 吴江模拟)如图4所示,一个质量为m、电荷量为+q的带电粒子,不计重力,在a点以某一初速度水平向左射入磁场区域Ⅰ,沿曲线abcd运动,ab、bc、cd都是半径为R的圆弧,粒子在每段圆弧上运动的时间都为t。
规定垂直于纸面向外的磁感应强度为正,则磁场区域Ⅰ、Ⅱ、Ⅲ三部分的磁感应强度B随x变化的关系可能是图5中的( )
图4
图5
解析选C 由左手定则可判断出磁感应强度B在磁场区域Ⅰ、Ⅱ、Ⅲ内磁场方向分别为向外、向里和向外,在三个区域中均运动1/4圆周,故t=T/4,由于T=2πmBq,求得B=πm2qt,只有选项C正确。
5 (2018 南京月考)如图6所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场。
一带电粒子a(不计重力)以一定的初速度由左边界的O点射入磁场、电场区域,恰好沿直线由区域右边界的O′点(图中未标出)穿出。
若撤去该区域内的磁场而保留电场不变,另一个同样的粒子b(不计重力)仍以相同初速度由O点射入,从区域右边界穿出,则粒子b( )
图6
A.穿出位置一定在O′点下方
B.穿出位置一定在O′点上方
C.运动时,在电场中的电势能一定减小
D.在电场中运动时,动能一定减小
解析选C a粒子要在电场、磁场的复合场区内做直线运动,则该粒子一定沿水平方向做匀速直线运动,故对粒子a有Bqv=Eq,即只要满足E=Bv无论粒子带正电还是负电,粒子都可以沿直线穿出复合场区;当撤去磁场只保留电场时,粒子b由于电性不确定,故无法判断从O′点的上方还是下方穿出,选项A、B错误;粒子b在穿过电。
2018年高考物理复习9-1
4.通电导线放入磁场中,若不受安培力,说明该处磁 感应强度为零。( × ) 5.垂直放置在磁场中的线圈面积减小时,穿过线圈的 磁通量可能增大。( √ ) 6.安培力可以做正功,也可以做负功。 ( √ )
二、对点激活 1.[磁感应强度]关于磁感应强度 B,下列说法中正确 的是( 情况有关 B.磁场中某点 B 的方向, 与放在该点的试探电流元所 受磁场力方向一致 C.在磁场中某点的试探电流元不受磁场力作用时,该 点 B 值大小为零 D.在磁场中磁感线越密集的地方,磁感应强度越大 ) A. 磁场中某点 B 的大小, 与放在该点的试探电流元的
BIL 。
(2)安培力的特点 ①方向:安培力的方向与线圈平面 垂直 ; ②大小:安培力的大小与通过的电流成 正比 。 (3)表盘刻度特点 由于导线在安培力作用下带动线圈转动,螺旋弹簧变 形,反抗线圈的转动,电流越大,安培力越大,形变就 越大 ,所以指针偏角与通过线圈的电流 I 成 正比 ,表 盘刻度 均匀 。
3.几种常见的磁场 (1)常见磁体的磁场
(2)几种电流周围的磁场分布 直线电流的 磁场 无磁极、 非匀 特点 强, 且距导线 越远处磁场 越弱 通电螺线管的磁场 环形电流的磁 场
与条形磁铁的磁场 环形电流的两 相似,管内为匀强 侧是 N 极和 S 磁场且磁场由 极, 且离圆环中 S→N,管外为非匀 心越远,磁场 越弱 强磁场
F (2)大小:B= IL (通电导线垂直于磁场)。 (3)方向:小磁针静止时 N 极 的指向。
(4)B 是 矢 量,合成时遵循 位: 特斯拉 ,符号 T 。
平行四边形
法则。单
3.磁通量 (1)公式:Φ= BS 。 (2)单位: 韦伯 ,符号: Wb 。 (3)适用条件: ①匀强磁场; ②S 是 垂直 磁场并在磁场 中的有效面积。 4.安培的分子电流假说 安培认为,在原子、分子等物质微粒的内部,存在着一 种 电流 ——分子电流。 分子电流使每个物质微粒都成为微 小的磁体,它的两侧相当于 磁体的两极 。
2018版高三物理一轮复习专题9磁场(含2014年高考真题)
专题9磁场1.[2014 •新课标全国卷I ]关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()A.安培力的方向可以不垂直于直导线B.安培力的方向总是垂直于磁场的方向C.安培力的大小与通电直导线和磁场方向的夹角无关D.将直导线从中点折成直角,安培力的大小一定变为原来的一半答案:B解析:本题考查安培力的大小和方向.安培力总是垂直于磁场与电流所决定的平面,因此,安培力总与磁场和电流垂直,A错误,B正确;安培力F= BIL sin 0,其中B是电流方向与磁场方向的夹角,C错误;将直导线从中点折成直角,导线受到安培力的情况与直角导线在磁场中的放置情况有关,并不一定变为原来的一半,D错误.2.[2014 •新课标全国卷I ]如图所示,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未面出),一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变.不计重力.铝板上方和下方的磁感应强度大小之比为()A. 2B. 2 C . 1 D. _2-答案:D2mv B r 2 V1解析:本题考查了带电粒子在磁场中的运动.根据qvB= 有 =—•—,穿过铝板后粒子= r Ba r 1 V2, V1 厂亠,一r 2 1 B1 \[2丄动能减半,则厂=2,穿过铝板后粒子运动半径减半,则7"=于,因此==T,D正确.V2 T r 1 2 B2 23.[2014 •山东卷]如图所示,场强大小为E、方向竖直向下的匀强电场中有一矩形区域abed,水平边ab长为s,竖直边ad长为h.质量均为m带电荷量分别为+ q和一q的两粒子,由a、e两点先后沿ab和ed方向以速率v o进入矩形区(两粒子不同时出现在电场中)•不计重力.若两粒子轨迹恰好相切,则V o等于()A .2而 B.sqE2mh小迹D sqE 4 mh 4 'mh答案:B两个粒子在竖直方向上都做加速度大小相等的匀加速直线 所以它们的运动时间相等. 两个粒子在水平方向上都做速度 大小相等的匀速直线运动,因为运动时间相等,所以水平位移大小相等•综合判断,两个粒 子运动到轨迹相切点的水平位移都为s ,竖直位移都为2,由2=Emt ,s =v o t 得v o =■^y Emh 选项B 正确.4. [2014 •新课标n 卷]图为某磁谱仪部分构件的示意图•图中,永磁铁提供匀强磁场, 硅微条径迹探测器可以探测粒子在其中运动的轨迹•宇宙射线中有 大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时, 下列说法正确的是()A. 电子与正电子的偏转方向一定不同B. 电子与正电子在磁场中运动轨迹的半径一定相同C. 仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D. 粒子的动能越大,它在磁场中运动轨迹的半径越小 答案:AC 解析:电子、正电子和质子垂直进入磁场时, 所受的重力均可忽略,受到的洛伦兹力的方向与其电性有关,由左手定则可知A 正确;由轨道公式 R =丽知,若电子与正电子与进入磁场时的速度不同,则其运动的轨迹半径也不相同,故B 错误.由R=岁=亠驴知,D 错误.因Bq Bq质子和正电子均带正电, 且半径大小无法计算出, 故依据粒子运动轨迹无法判断该粒子是质 子还是正电子,C 正确.5. [2014 •江苏卷]如图所示,导电物质为电子的霍尔元件位于两串联线圈之间, 线圈中电流为I ,线圈间产生匀强磁场,磁感应强度大小 B 与I 成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为I H ,与其前后表面相连的电压表测出的霍尔电压满足:I H BU H = k=,式中k 为霍尔系数,d 为霍尔元件两侧面间的距离•电阻R 远大于R,霍尔元件解析:两个粒子都做类平抛运动.运动,因为竖直位移大小相等,d的电阻可以忽略,贝U ( )电K元件A.霍尔元件前表面的电势低于后表面B.若电源的正负极对调,电压表将反偏C.I H与I成正比D.电压表的示数与R-消耗的电功率成正比答案:CD解析:由于导电物质为电子,在霍尔元件中,电子是向上做定向移动的,根据左手定则可判断电子受到的洛伦兹力方向向后表面,故霍尔元件的后表面相当于电源的负极,霍尔元件前表面的电势应高于后表面,A选项错误;若电源的正负极对调,则I H与B都反向,由左手定则可判断电子运动的方向不变,B选项错误;由于电阻R和R.都是固定的,且R和F L并联,R. I H B 2故I H=—I,贝y C正确;因B与I成正比,I H与I成正比,则U H= k—x I , R又是定值R± R. d电阻,所以D正确.、6.[2014 •安徽卷]“人造小太阳”托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞. 已知等离子体中带电粒子的平均动能与等离子体的温度T成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子在磁场中的运动半径不变.由此可判断所需的磁感应强度B正比于( )A. T B . TC. T3D . T2答案:A解析:本题是“信息题”:考查对题目新信息的理解能力和解决问题的能力.根据洛伦兹力2v mv提供向心力有qvB=叶解得带电粒子在磁场中做圆周运动的半径r =.由动能的定义式E<r qB=@mV,可得r = qB,结合题目信息可得B X“/T,选项A正确。
2018版高考物理一轮总复习 第9章 磁场 第1讲 磁场及其对电流的作用
磁场及其对电流的作用时间:45分钟满分:100分一、选择题(本题共10小题,每小题7分,共70分。
其中1~6为单选,7~10为多选)1.关于通电导线所受安培力F的方向、磁感应强度B的方向和电流I的方向之间的关系,下列说法正确的是( )A.F、B、I三者必须保持相互垂直B.F必须垂直B、I,但B、I可以不相互垂直C.B必须垂直F、I,但F、I可以不相互垂直D.I必须垂直F、B,但F、B可以不相互垂直答案 B解析由左手定则可知,F必须与B和I确定的平面垂直,即F⊥B,F⊥I,但B和I不一定垂直,所以B选项正确,其他选项错误。
2.[2016·德州模拟]如图所示为某种用来束缚原子的磁场的磁感线分布情况(只标出了部分磁感线的方向),以O点(图中白点)为坐标原点,沿z轴正方向磁感应强度B大小的变化最有可能为( )答案 C解析磁感线的疏密表示磁场的强弱,由图可知,沿z轴正方向的磁感应强度的大小是先变小后变大,由于题目中问的是磁感应强度B大小的变化最有可能的为哪个,只有C正确。
3.如图所示,A为一水平旋转的橡胶盘,带有大量均匀分布的负电荷,在圆盘正上方水平放置一通电直导线,电流方向如图。
当圆盘高速绕中心轴OO′转动时,通电直导线所受磁场力的方向是( )A.竖直向上B.竖直向下C.水平向里D.水平向外答案 C解析橡胶盘带负电,顺时针转动,形成逆时针方向环形电流,由安培定则可知,在通电直导线所在位置产生的磁场竖直向上,所以由左手定则可知,直导线所受磁场力的方向水平向里,C选项正确,其他选项错误。
4.如图所示,一圆环用细橡皮筋悬吊着处于静止状态,环中通以逆时针方向的电流,在环的两侧放有平行于橡皮筋的直导线,导线和环在同一竖直面内,两导线到橡皮筋的距离相等。
现在直导线中同时通以方向如图所示、大小相等的电流,则通电的瞬间( )A.环将向右摆动B.俯视看环会发生顺时针转动C.橡皮筋会被拉长D.环有收缩的趋势答案 D解析直导线通电后,由安培定则可知,两导线间平面上的磁场方向垂直于纸面向里,由于磁场分布具有轴对称性,将圆环分成若干段小的直导线,由左手定则可知,各段受到的安培力都指向圆心,根据对称性可知,它们的合力为零,因此环不会摆动,也不会转动,橡皮筋的拉力也不会增大,只是环有收缩的趋势,A、B、C项错误,D项正确。
2018年高考物理总复习高考AB卷:专题九 磁场 含答案
专题九磁场A卷全国卷磁场磁场力1.(2015·新课标全国Ⅱ,18,6分)(难度★★)(多选)指南针是我国古代四大发明之一。
关于指南针,下列说法正确的是()A.指南针可以仅具有一个磁极B.指南针能够指向南北,说明地球具有磁场C.指南针的指向会受到附近铁块的干扰D.在指南针正上方附近沿指针方向放置一直导线,导线通电时指南针不偏转解析指南针不可以仅具有一个磁极,故A错误;指南针能够指向南北,说明地球具有磁场,故B正确;当附近的铁块磁化时,指南针的指向会受到附近铁块的干扰,故C正确;根据安培定则,在指南针正上方附近沿指针方向放置一直导线,导线通电时会产生磁场,指南针会偏转与导线垂直,故D错误。
答案BC2.(2014·新课标全国Ⅰ,15,6分)(难度★★)关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()A.安培力的方向可以不垂直于直导线B.安培力的方向总是垂直于磁场的方向C.安培力的大小与通电直导线和磁场方向的夹角无关D.将直导线从中点折成直角,安培力的大小一定变为原来的一半解析由左手定则可知,安培力的方向一定与磁场方向和直导线垂直,选项A错、B正确;安培力的大小F=BIL sin θ与直导线和磁场方向的夹角有关,选项C错误;将直导线从中点折成直角,假设原来直导线与磁场方向垂直,若折成直角后一段与磁场仍垂直,另一段与磁场平行,则安培力的大小变为原来的一半,若折成直角后,两段都与磁场垂直,则安培力的大小变为原来的22。
因此安培力大小不一定是原来的一半,选项D 错误。
答案 B3.(2015·新课标全国Ⅰ,24,12分)(难度★★★)如图,一长为10 cm 的金属棒ab 用两个完全相同的弹簧水平地悬挂在匀强磁场中,磁场的磁感应强度大小为0.1 T ,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘。
金属棒通过开关与一电动势为12 V 的电池相连,电路总电阻为2 Ω。
已知开关断开时两弹簧的伸长量均为0.5 cm ;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3 cm ,重力加速度大小取10 m/s 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题9 磁场1.[2014·新课标全国卷Ⅰ] 关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是( )A .安培力的方向可以不垂直于直导线B .安培力的方向总是垂直于磁场的方向C .安培力的大小与通电直导线和磁场方向的夹角无关D .将直导线从中点折成直角,安培力的大小一定变为原来的一半 答案:B解析:本题考查安培力的大小和方向.安培力总是垂直于磁场与电流所决定的平面,因此,安培力总与磁场和电流垂直,A 错误,B 正确;安培力F =BIL sin θ,其中θ是电流方向与磁场方向的夹角,C 错误;将直导线从中点折成直角,导线受到安培力的情况与直角导线在磁场中的放置情况有关,并不一定变为原来的一半, D 错误.2.[2014·新课标全国卷Ⅰ] 如图所示,MN 为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未面出),一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝板后到达PQ 的中点O ,已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变.不计重力.铝板上方和下方的磁感应强度大小之比为( )A .2 B.2 C .1 D.22答案:D解析:本题考查了带电粒子在磁场中的运动.根据qvB =mv 2r 有B 1B 2=r 2r 1·v 1v 2 ,穿过铝板后粒子动能减半,则v 1v 2=2,穿过铝板后粒子运动半径减半,则r 2r 1=12,因此B 1B 2=22,D 正确.3.[2014·山东卷] 如图所示,场强大小为E 、方向竖直向下的匀强电场中有一矩形区域abcd ,水平边ab 长为s ,竖直边ad 长为h .质量均为m 、带电荷量分别为+q 和-q 的两粒子,由a 、c 两点先后沿ab 和cd 方向以速率v 0进入矩形区(两粒子不同时出现在电场中).不计重力.若两粒子轨迹恰好相切,则v 0等于( )A.s22qE mh B.s 2qEmh C.s42qEmh D.s4qE mh答案:B解析:两个粒子都做类平抛运动.两个粒子在竖直方向上都做加速度大小相等的匀加速直线运动,因为竖直位移大小相等,所以它们的运动时间相等.两个粒子在水平方向上都做速度大小相等的匀速直线运动,因为运动时间相等,所以水平位移大小相等.综合判断,两个粒子运动到轨迹相切点的水平位移都为s 2,竖直位移都为h 2,由h 2=Eq2m t 2,s 2=v 0t 得v 0=s2Eqmh,选项B 正确.4. [2014·新课标Ⅱ卷] 图为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时,下列说法正确的是( )A .电子与正电子的偏转方向一定不同B .电子与正电子在磁场中运动轨迹的半径一定相同C .仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D .粒子的动能越大,它在磁场中运动轨迹的半径越小 答案:AC解析:电子、正电子和质子垂直进入磁场时,所受的重力均可忽略,受到的洛伦兹力的方向与其电性有关,由左手定则可知A 正确;由轨道公式R =mv Bq知 ,若电子与正电子与进入磁场时的速度不同,则其运动的轨迹半径也不相同,故B 错误.由R =mv Bq=2mE kBq知,D 错误.因质子和正电子均带正电,且半径大小无法计算出,故依据粒子运动轨迹无法判断该粒子是质子还是正电子,C 正确.5.[2014·江苏卷] 如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I ,线圈间产生匀强磁场,磁感应强度大小B 与I 成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为I H ,与其前后表面相连的电压表测出的霍尔电压U H 满足:U H =k I H Bd,式中k 为霍尔系数,d 为霍尔元件两侧面间的距离.电阻R 远大于R L ,霍尔元件的电阻可以忽略,则( )A .霍尔元件前表面的电势低于后表面B .若电源的正负极对调,电压表将反偏C .I H 与I 成正比D .电压表的示数与R L 消耗的电功率成正比 答案:CD解析:由于导电物质为电子,在霍尔元件中,电子是向上做定向移动的,根据左手定则可判断电子受到的洛伦兹力方向向后表面,故霍尔元件的后表面相当于电源的负极,霍尔元件前表面的电势应高于后表面,A 选项错误;若电源的正负极对调,则I H 与B 都反向,由左手定则可判断电子运动的方向不变,B 选项错误;由于电阻R 和R L 都是固定的,且R 和R L 并联,故I H =R LR +R L I ,则C 正确;因B 与I 成正比,I H 与I 成正比,则U H =k I H Bd∝I 2,R L 又是定值电阻,所以D 正确.、6.[2014·安徽卷] “人造小太阳”托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞.已知等离子体中带电粒子的平均动能与等离子体的温度T 成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子在磁场中的运动半径不变.由此可判断所需的磁感应强度B 正比于( ) A.T B .T C.T 3D .T 2答案:A解析:本题是“信息题”:考查对题目新信息的理解能力和解决问题的能力.根据洛伦兹力提供向心力有qvB =m v 2r 解得带电粒子在磁场中做圆周运动的半径r =mvqB.由动能的定义式E k=12mv 2,可得r =2mE k qB,结合题目信息可得B ∝T ,选项A 正确。
7. [2014·北京卷] 带电粒子a 、b 在同一匀强磁场中做匀速圆周运动,它们的动量大小相等,a 运动的半径大于b 运动的半径.若a 、b 的电荷量分别为q a 、q b ,质量分别为m a 、m b ,周期分别为T a 、T b .则一定有( ) A. q a <q b B. m a <m b C. T a <T b D. q a m a <q bm b答案:A解析:本题考查带电粒子在磁场中的运动和动量定义.带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,即qvB =m v 2r,p =mv ,得p =qBr ,两粒子动量相等,则q a Br a =q b Br b ,已知r a >r b ,则q a <q b ,A 正确,其他条件未知,B 、C 、D 无法判定.8. [2014·全国卷] 如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(xy 平面)向外;在第四象限存在匀强电场,方向沿x 轴负向.在y 轴正半轴上某点以与x 轴正向平行、大小为v 0的速度发射出一带正电荷的粒子,该粒子在(d ,0)点沿垂直于x 轴的方向进入电场.不计重力.若该粒子离开电场时速度方向与y 轴负方向的夹角为θ,求:(1 )电场强度大小与磁感应强度大小的比值; (2)该粒子在电场中运动的时间.解:(1)如图,粒子进入磁场后做匀速圆周运动.设磁感应强度的大小为B ,粒子质量与所带电荷量分别为m 和q ,圆周运动的半径为R 0.由洛伦兹力公式及牛顿第二定律得qv 0B =m v 20R 0①由题给条件和几何关系可知R 0=d ②设电场强度大小为E ,粒子进入电场后沿x 轴负方向的加速度大小为a x ,在电场中运动的时间为t ,离开电场时沿x 轴负方向的速度大小为v x .由牛顿定律及运动学公式得Eq =ma x ③ v x =a x t ④ v x2t =d ⑤由于粒子在电场中做类平抛运动(如图),有tan θ=v x v 0⑥联立①②③④⑤⑥式得E B =12v 0tan 2θ⑦ (2)联立⑤⑥式得t =2d v 0tan θ⑧ 9.[2014·福建卷Ⅰ] 如图所示,某一新型发电装置的发电管是横截面为矩形的水平管道,管道的长为L 、宽为d 、高为h ,上下两面是绝缘板.前后两侧面M 、N 是电阻可忽略的导体板,两导体板与开关S 和定值电阻R 相连.整个管道置于磁感应强度大小为B 、方向沿z 轴正方向的匀强磁场中.管道内始终充满电阻率为ρ的导电液体(有大量的正、负离子),且开关闭合前后,液体在管道进、出口两端压强差的作用下,均以恒定速率v 0沿x 轴正向流动,液体所受的摩擦阻力不变.(1)求开关闭合前,M 、N 两板间的电势差大小U 0; (2)求开关闭合前后,管道两端压强差的变化Δp ;(3)调整矩形管道的宽和高,但保持其他量和矩形管道的横截面积S =dh 不变,求电阻R 可获得的最大功率P m 及相应的宽高比d h的值.解:(1)设带电离子所带的电荷量为q ,当其所受的洛伦兹力与电场力平衡时,U 0保持恒定,有qv 0B =q U 0d① 得U 0=Bdv 0②(2)设开关闭合前后,管道两端压强差分别为p 1、p 2,液体所受的摩擦阻力均为f ,开关闭合后管道内液体受到的安培力为F 安,有p 1hd =f ③p 2hd =f +F 安④ F 安=BId ⑥根据欧姆定律,有I =U 0R +r⑥ 两导体板间液体的电阻r =ρd Lh⑦ 由②③④⑤⑥⑦式得Δp =Ldv 0B 2LhR +d ρ⑧(3)电阻R 获得的功率为P =I 2R ⑨P =⎝ ⎛⎭⎪⎪⎫Lv 0B LR d +ρh 2R ⑩ 当d h =LRρ时,⑪电阻R 获得的最大功率P m =LSv 20B24ρ.⑫10.[2014·广东卷] (18分)如图25 所示,足够大的平行挡板A 1、A 2竖直放置,间距6L .两板间存在两个方向相反的匀强磁场区域Ⅰ和Ⅱ,以水平面MN 为理想分界面,Ⅰ区的磁感应强度为B 0,方向垂直纸面向外. A 1、A 2上各有位置正对的小孔S 1、S 2,两孔与分界面MN 的距离均为L .质量为m 、电荷量为+q 的粒子经宽度为d 的匀强电场由静止加速后,沿水平方向从S 1进入Ⅰ区,并直接偏转到MN 上的P 点,再进入Ⅱ区,P 点与A 1板的距离是L 的k 倍,不计重力,碰到挡板的粒子不予考虑.(1)若k =1,求匀强电场的电场强度E ;(2)若2<k <3,且粒子沿水平方向从S 2射出,求出粒子在磁场中的速度大小v 与k 的关系式和Ⅱ区的磁感应强度B 与k 的关系式. 解:(1)粒子在电场中,由动能定理有qEd =12mv 2 -0粒子在Ⅰ区洛伦兹力提供向心力qvB 0=m v 2r当k =1时,由几何关系得r =L解得E =qB 20L 22md.(2)由于2<k <3时,由题意可知粒子在Ⅱ区只能发生一次偏转,由几何关系可知(r -L )2+(kL )2=r 2解得r =k 2+12L又qvB 0=m v 2r,则v =(k 2+1)qB 0L 2m粒子在Ⅱ区洛伦兹力提供向心力,即qvB =m v 2r 1由对称性及几何关系可知kL (3-k )L =rr 1即r 1=(3-k )(k 2+1)2k L联立上式解得B =k3-kB 0.11. [2014·四川卷] 如图所示,水平放置的不带电的平行金属板p 和b 相距h ,与图示电路相连,金属板厚度不计,忽略边缘效应.p 板上表面光滑,涂有绝缘层,其上O 点右侧相距h 处有小孔K ;b 板上有小孔T ,且O 、T 在同一条竖直线上,图示平面为竖直平面.质量为m 、电荷量为-q (q >0)的静止粒子被发射装置(图中未画出)从O 点发射,沿p 板上表面运动时间t 后到达K 孔,不与板碰撞地进入两板之间.粒子视为质点,在图示平面内运动,电荷量保持不变,不计空气阻力,重力加速度大小为g .(1)求发射装置对粒子做的功;(2)电路中的直流电源内阻为r ,开关S 接“1”位置时,进入板间的粒子落在b 板上的A 点,A 点与过K 孔竖直线的距离为l .此后将开关S 接“2”位置,求阻值为R 的电阻中的电流强度;(3)若选用恰当直流电源,电路中开关S 接“1”位置,使进入板间的粒子受力平衡,此时在板间某区域加上方向垂直于图面的、磁感应强度大小合适的匀强磁场(磁感应强度B 只能在0~B m =()21+5m ()21-2qt范围内选取),使粒子恰好从b 板的T 孔飞出,求粒子飞出时速度方向与b 板板面的夹角的所有可能值(可用反三角函数表示).解:(1)设粒子在p 板上做匀速直线运动的速度为v 0,有h =v 0t ①设发射装置对粒子做的功为W ,由动能定理得W =12mv 20②联立①②可得 W =mh 22t2③(2)S 接“1”位置时,电源的电动势E 0与板间电势差U 有E 0=U ④板间产生匀强电场的场强为E ,粒子进入板间时有水平方向的速度v 0,在板间受到竖直方向的重力和电场力作用而做类平抛运动,设加速度为a ,运动时间为t 1,有U =Eh ⑤ mg -qE =ma ⑥ h =12at 21⑦ l =v 0t 1⑧S 接“2”位置,则在电阻R 上流过的电流I 满足I =E 0R +r⑨ 联立①④~⑨得I =mh q (R +r )⎝ ⎛⎭⎪⎫g -2h 3l 2t 2⑩(3)由题意知此时在板间运动的粒子重力与电场力平衡,当粒子从K 进入板间后立即进入磁场做匀速圆周运动,如图所示,粒子从D 点出磁场区域后沿DT 做匀速直线运动,DT 与b 板上表面的夹角为题目所求夹角θ,磁场的磁感应强度B 取最大值时的夹角θ为最大值θm ,设粒子做匀速圆周运动的半径为R ,有qv 0B =mv 0R⑪过D 点作b 板的垂线与b 板的上表面交于G ,由几何关系有DG =h -R (1+cos θ)⑫ TG =h +R sin θ⑬tan θ=sin θcos θ=DG TG⑭联立①⑪~⑭,将B =B m 代入,求得θm =arcsin 25⑮当B 逐渐减小,粒子做匀速圆周运动的半径为R 也随之变大,D 点向b 板靠近,DT 与b 板上表面的夹角θ也越变越小,当D 点无限接近于b 板上表面时,粒子离开磁场后在板间几乎沿着b 板上表面运动而从T 孔飞出板间区域,此时B m >B >0满足题目要求,夹角θ趋近θ0,即θ0=0⑯则题目所求为 0<θ≤arcsin 25⑰12.[2014·四川卷]在如图所示的竖直平面内,水平轨道CD 和倾斜轨道GH 与半径r =944 m的光滑圆弧轨道分别相切于D 点和G 点,GH 与水平面的夹角θ=37°.过G 点、垂直于纸面的竖直平面左侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度B =1.25 T ;过D 点、垂直于纸面的竖直平面右侧有匀强电场,电场方向水平向右,电场强度E =1×104N/C.小物体P 1质量m =2×10-3kg 、电荷量q =+8×10-6C ,受到水平向右的推力F =9.98×10-3N 的作用,沿CD 向右做匀速直线运动,到达D 点后撤去推力.当P 1到达倾斜轨道底端G 点时,不带电的小物体P 2在GH 顶端静止释放,经过时间t =0.1 s 与P 1相遇.P 1与P 2与轨道CD 、GH 间的动摩擦因数均为μ=0.5,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,物体电荷量保持不变,不计空气阻力.求:(1)小物体P 1在水平轨道CD 上运动速度v 的大小; (2)倾斜轨道GH 的长度s .解:(1)设小物体P 1在匀强磁场中运动的速度为v ,受到向上的洛伦兹力为F 1,受到的摩擦力为f ,则F 1=qvB ① f =μ(mg -F 1)②由题意,水平方向合力为零F -f =0③联立①②③式,代入数据解得v =4 m/s ④(2)设P 1在G 点的速度大小为v G ,由于洛伦兹力不做功,根据动能定理 qEr sin θ-mgr (1-cos θ)=12mv 2G -12mv 2⑤P 1在GH 上运动,受到重力、电场力和摩擦力的作用,设加速度为a 1,根据牛顿第二定律qE cos θ-mg sin θ-μ(mg cos θ+qE sin θ)=ma 1⑥P 1与P 2在GH 上相遇时,设P 1在GH 上运动的距离为s 1,则s 1=v G t +12a 1t 2⑦设P 2质量为m 2,在GH 上运动的加速度为a 2,则m 2g sin θ-μm 2g cos θ=m 2a 2⑧P 1与P 2在GH 上相遇时,设P 2在GH 上运动的距离为s 2,则s 2=12a 2t 2⑨联立⑤~⑨式,代入数据得s =s 1+s 2⑩ s =0.56 m ⑪13. [2014·天津卷] 同步加速器在粒子物理研究中有重要的应用,其基本原理简化为如图所示的模型.M 、N 为两块中心开有小孔的平行金属板.质量为m 、电荷量为+q 的粒子A (不计重力)从M 板小孔飘入板间,初速度可视为零.每当A 进入板间,两板的电势差变为U ,粒子得到加速,当A 离开N 板时,两板的电荷量均立即变为零.两板外部存在垂直纸面向里的匀强磁场,A 在磁场作用下做半径为R 的圆周运动,R 远大于板间距离.A 经电场多次加速,动能不断增大,为使R 保持不变,磁场必须相应地变化.不计粒子加速时间及其做圆周运动产生的电磁辐射,不考虑磁场变化对粒子速度的影响及相对论效应.求:(1)A 运动第1周时磁场的磁感应强度B 1的大小;. (2)在A 运动第n 周的时间内电场力做功的平均功率P n ;(3)若有一个质量也为m 、电荷量为+kq (k 为大于1的整数)的粒子B (不计重力)与A 同时从M 板小孔飘入板间,A 、B 初速度均可视为零,不计两者间的相互作用,除此之外,其他条件均不变.下图中虚线、实线分别表示A 、B 的运动轨迹.在B 的轨迹半径远大于板间距离的前提下,请指出哪个图能定性地反映A 、B 的运动轨迹,并经推导说明理由.A B C D解:(1)设A 经电场第1次加速后速度为v 1,由动能定理得qU =12mv 21-0①A 在磁场中做匀速圆周运动,所受洛伦兹力充当向心力qv 1B 1=mv 21R②由①②得B 1=1R2mUq③(2)设A 经n 次加速后的速度为v n ,由动能定理得nqU =12mv 2n -0④设A 做第n 次圆周运动的周期为T n ,有T n =2πRv n⑤设在A 运动第n 周的时间内电场力做功为W n ,则W n =qU ⑥在该段时间内电场力做功的平均功率为P n =W nT n⑦由④⑤⑥⑦解得P n =qU πR nqU 2m⑧ (3)A 图能定性地反映A 、B 运动的轨迹.A 经过n 次加速后,设其对应的磁感应强度为B n ,A 、B 的周期分别为T n 、T ′,综合②、⑤式并分别应用A 、B 的数据得T n =2πmqB nT ′=2πm kqB n =T nk由上可知,T n 是T ′的k 倍,所以A 每绕行1周,B 就绕行k 周.由于电场只在A 通过时存在,故B 仅在与A 同时进入电场时才被加速.经n 次加速后,A 、B 的速度分别为v n 和v ′n ,考虑到④式v n =2nqUmv ′n =2nkqUm=kv n由题设条件并考虑到⑤式,对A 有T n v n =2πR设B 的轨迹半径为R ′,有T ′v ′n =2πR ′比较上述两式得R ′=R k上式表明,运动过程中B 的轨迹半径始终不变. 由以上分析可知,两粒子运动的轨道如图A 所示.14. [2014·浙江卷] 离子推进器是太空飞行器常用的动力系统.某种推进器设计的简化原理如图1所示,截面半径为R 的圆柱腔分为两个工作区.Ⅰ为电离区,将氙气电离获得1价正离子;Ⅱ为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.Ⅰ区产生的正离子以接近0的初速度进入Ⅱ区,被加速后以速度v M 从右侧喷出.Ⅰ区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R2处的C 点持续射出一定速率范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图2所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α≤90°).推进器工作时,向Ⅰ区注入稀薄的氙气.电子使氙气电离的最小速率为v 0,电子在Ⅰ区内不与器壁相碰且能到达的区域越大,电离效果越好.已知离子质量为M ;电子质量为m ,电量为e .(电子碰到器壁即被吸收,不考虑电子间的碰撞)第25题图1(1)求Ⅱ区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请判断Ⅰ区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);第25题图2(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围; (4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系.解:本题考查带电粒子在电场和磁场中的运动等知识和分析综合及应用数学解决物理问题的能力.(1)由动能定理得12Mv 2M =eU ①U =Mv 2M2e②a =eE M =e U ML =v 2M2L③(2)垂直纸面向外④(3)设电子运动的最大半径为r2r =32R .⑤eBv =m v 2r⑥所以有v 0≤v <3eBR4m⑦要使⑦式有解,磁感应强度B >4mv 03eR .⑧(4)如图所示,OA =R -r ,OC =R2,AC =r根据几何关系得r =3R4(2-sin α)⑨由⑥⑨式得v max =3eBR4m (2-sin α).15. (16分)[2014·重庆卷] 某电子天平原理如题8图所示,E 形磁铁的两侧为N 极,中心为S 极,两极间的磁感应强度大小均为B ,磁极宽度均为L ,忽略边缘效应,一正方形线圈套于中心磁极,其骨架与秤盘连为一体,线圈两端C 、D 与外电路连接,当质量为m 的重物放在秤盘上时,弹簧被压缩,秤盘和线圈一起向下运动(骨架与磁极不接触),随后外电路对线圈供电,秤盘和线圈恢复到未放重物时的位置并静止,由此时对应的供电电流I 可确定重物的质量,已知线圈匝数为n ,线圈电阻为R ,重力加速度为g .问题8图(1)线圈向下运动过程中,线圈中感应电流是从C 端还是从D 端流出?(2)供电电流I 是从C 端还是D 端流入?求重物质量与电流的关系. (3)若线圈消耗的最大功率为P ,该电子天平能称量的最大质量是多少? 解:(1)感应电流从C 端流出.(2)设线圈受到的安培力为F A ,外加电流从D 端流入. 由F A =mg 和F A =2nBIL 得m =2nBL gI(3)设称量最大质量为 m 0. 由m =2nBL gI 和P =I 2R得m 0=2nBL gP R16. (18分)[2014·重庆卷] 如题9图所示,在无限长的竖直边界NS 和MT 间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM 平面向外和向内的匀强磁场,磁感应强度大小分别为B 和2B ,KL 为上下磁场的水平分界线,在NS 和MT 边界上,距KL 高h 处分别有P 、Q 两点,NS 和MT 间距为1.8h ,质量为m ,带电荷量为+q 的粒子从P 点垂直于NS 边界射入该区域,在两边界之间做圆周运动,重力加速度为g .题9图(1)求电场强度的大小和方向.(2)要使粒子不从NS 边界飞出,求粒子入射速度的最小值.(3)若粒子能经过Q 点从MT 边界飞出,求粒子入射速度的所有可能值.答题9图1 答题9图2 解:(1)设电场强度大小为E . 由题意有mg =qE得E =mg q,方向竖直向上.(2)如答题9图1所示,设粒子不从NS 边飞出的入射速度最小值为v min ,对应的粒子在上、下区域的运动半径分别为r 1和r 2,圆心的连线与NS 的夹角为φ. 由r =mv qB有r 1=mv min qB ,r 2=12r 1 由(r 1+r 2)sin φ=r 2r 1+r 1cos φ=h v min =(9-62)qBhm(3)如答题9图2所示,设粒子入射速度为v ,粒子在上、下方区域的运动半径分别为r 1和r 2,粒子第一次通过KL 时距离K 点为x .由题意有3nx =1.8h (n =1,2,3…) 32x ≥(9-62)h 2x =r 21-(h -r 1)2得r 1=⎝⎛⎭⎪⎫1+0.36n 2h2,n <3.5即n =1时,v =0.68qBhm;n =2时,v =0.545qBhm;n =3时,v =0.52qBhm17.[2014·江苏卷] 某装置用磁场控制带电粒子的运动,工作原理如图所示.装置的长为L ,上下两个相同的矩形区域内存在匀强磁场,磁感应强度大小均为B 、方向与纸面垂直且相反,两磁场的间距为d .装置右端有一收集板,M 、N 、P 为板上的三点,M 位于轴线OO ′上,N 、P 分别位于下方磁场的上、下边界上.在纸面内,质量为m 、电荷量为-q 的粒子以某一速度从装置左端的中点射入,方向与轴线成30°角,经过上方的磁场区域一次,恰好到达P 点.改变粒子入射速度的大小,可以控制粒子到达收集板上的位置.不计粒子的重力.(1)求磁场区域的宽度h ;(2)欲使粒子到达收集板的位置从P 点移到N 点,求粒子入射速度的最小变化量Δv ; (3)欲使粒子到达M 点,求粒子入射速度大小的可能值. 解:(1)设粒子在磁场中的轨道半径为r 根据题意 L =3r sin 30°+3d cos 30° 且h =r (1-cos 30°) 解得 h =⎝ ⎛⎭⎪⎫23L -3d ⎝ ⎛⎭⎪⎫1-32.(2)设改变入射速度后粒子在磁场中的轨道半径为r ′m v 2r =qvB ,m v ′2r ′=qv ′B , 由题意知 3r sin 30°=4r ′sin 30° 解得Δv =v -v ′=qB m ⎝ ⎛⎭⎪⎫L 6-34d .(3)设粒子经过上方磁场n 次由题意知 L =(2n +2)d cos 30°+(2n +2)r n sin 30°且 mv 2nr n =qv n B ,解得 v n =qB m ⎝ ⎛⎭⎪⎫L n +1-3d⎝ ⎛⎭⎪⎫1≤n <3L 3d -1,n 取整数18.(20分)[2014·山东卷] 如图甲所示,间距为d 、垂直于纸面的两平行板P 、Q 间存在匀强磁场.取垂直于纸面向里为磁场的正方向,磁感应强度随时间的变化规律如图乙所示.t=0时刻,一质量为m 、带电荷量为+q 的粒子(不计重力),以初速度v 0.由Q 板左端靠近板面的位置,沿垂直于磁场且平行于板面的方向射入磁场区.当B 0和T B 取某些特定值时,可使t =0时刻入射的粒子经Δt 时间恰能垂直打在P 板上(不考虑粒子反弹).上述m 、q 、d 、v 0为已知量.图甲 图乙(1)若Δt =12T B ,求B 0;(2)若Δt =32T B ,求粒子在磁场中运动时加速度的大小;(3)若B 0=4mv 0qd,为使粒子仍能垂直打在P 板上,求T B .解:(1)设粒子做圆周运动的半径为R 1,由牛顿第二定律得qv 0B 0=mv 2R 1①据题意由几何关系得R 1=d ②联立①②式得B 0=mv 0qd③(2)设粒子做圆周运动的半径为R 2,加速度大小为a ,由圆周运动公式得a =v 20R 2④ 据题意由几何关系得3R 2=d ⑤联立④⑤式得a =3v 2d⑥(3)设粒子做圆周运动的半径为R ,周期为T ,由圆周运动公式得T =2πRv 0⑦由牛顿第二定律得qv 0B 0=mv 20R⑧由题意知B 0=4mv 0qd,代入⑧式得d =4R ⑨粒子运动轨迹如图所示,O 1、O 2为圆心,O 1O 2连接与水平方向的夹角为θ,在每个T B 内,只有A 、B 两个位置才有可能垂直击中P 板,且均要求0<θ<π2,由题意可知π2+θ2πT =T B2⑩设经历完整T B 的个数为n (n =0,1,2,3……) 若在A 点击中P 板,据题意由几何关系得R +2(R +R sin θ)n =d ⑪当n =0时,无解⑫当n =1时,联立⑨⑪式得θ=π6(或sin θ=12)⑬联立⑦⑨⑩⑬式得T B =πd3v 0⑭ 当n ≥2时,不满足0<θ<90°的要求⑮ 若在B 点击中P 板,据题意由几何关系得R +2R sin θ+2(R +R sin θ)n =d ⑯当n =0时,无解⑰ 当n =1时,联立⑨⑯式得θ=arcsin 14(或sin θ=14)⑱联立⑦⑨⑩⑱式得T B =⎝ ⎛⎭⎪⎫π2+arcsin 14d 2v 0⑲当n ≥2时,不满足0<θ<90°的要求.⑳。