三相逆变器中IGBT的几种驱动电路的分析
IGBT驱动电路原理与保护电路
IGBT驱动电路原理与保护电路IGBT(Insulated-Gate Bipolar Transistor)驱动电路主要由三部分组成:信号隔离部分、驱动信号放大部分和保护电路。
信号隔离部分是将输入信号与输出信号进行隔离,防止输入信号中的噪声和干扰对输出信号产生影响。
常用的信号隔离方法有变压器隔离、光电隔离和互感器隔离等。
其中,光电隔离是最常用的方法之一,它通过输入端的光电耦合器将电信号转换成光信号,通过光电隔离再将光信号转换为电信号输出。
这样可以有效防止输入信号中的噪声和干扰对输出信号产生干扰,提高系统的稳定性和可靠性。
驱动信号放大部分是将输入信号进行放大,以驱动IGBT的门极电压,控制IGBT的导通和关断。
驱动信号放大部分一般采用功放电路,常用的放大器有晶体管放大器和运放放大器。
通过合理选择放大器的工作点和增益,可以将输入信号进行适当放大,提高系统的灵敏度和响应速度,以确保IGBT的正常工作。
保护电路是为了保护IGBT免受电路中的过电流、过电压等异常情况的损害而设计的。
保护电路一般包括过流保护、过压保护、过温保护和短路保护等功能。
过流保护通过在电路中增加电流传感器来检测电流的变化,一旦电流超过设定值就会触发保护,例如通过切断电源来防止IGBT损坏。
过压保护通过在电路中增加电压传感器来检测电压的变化,一旦电压超过设定值就会触发保护,例如通过切断电源来防止IGBT损坏。
过温保护通过在IGBT芯片上增加温度传感器来检测芯片温度的变化,一旦温度超过设定值就会触发保护,例如通过减小驱动信号的幅度来降低功耗和温度。
短路保护通过在电路中增加短路检测电路,一旦检测到短路就会触发保护,例如通过立即切断电源来防止IGBT损坏。
总之,IGBT驱动电路的原理是通过信号隔离部分将输入信号与输出信号进行隔离,通过驱动信号放大部分将输入信号进行放大,以驱动IGBT的门极电压,控制其导通和关断。
同时,通过保护电路对IGBT进行多重防护,保证其在电路异常情况下的正常工作,提高系统的可靠性和稳定性。
【标准】三相逆变器中IGBT的几种驱动电路的分析
三相逆变器中IGBT的几种驱动电路的分析1 前言电力电子变换技术的发展,使得各种各样的电力电子器件得到了迅速的发展。
20世纪 80年代,为了给高电压应用环境提供一种高输入阻抗的器件,有人提出了绝缘门极双极型晶体管(IGBT) [1>。
在IGBT 中,用一个 MOS门极区来控制宽基区的高电压双极型晶体管的电流传输,这就产生了一种具有功率MOSFET的高输入阻抗与双极型器件优越通态特性相结合的非常诱人的器件,它具有控制功率小、开关速度快和电流处理能力大、饱和压降低等性能。
在中小功率、低噪音和高性能的电源、逆变器、不间断电源( UPS)和交流电机调速系统的设计中,它是目前最为常见的一种器件。
功率器件的不断发展,使得其驱动电路也在不断地发展,相继出现了许多专用的驱动集成电路。
IGBT的触发和关断要求给其栅极和基极之间加上正向电压和负向电压,栅极电压可由不同的驱动电路产生。
当选择这些驱动电路时,必须基于以下的参数来进行:器件关断偏置的要求、栅极电荷的要求、耐固性要求和电源的情况。
图1为一典型的IGBT驱动电路原理示意图。
因为IGBT栅极发射极阻抗大,故可使用MOSFET驱动技术进行触发,不过由于IGBT的输入电容较MOSFET为大,故IGBT的关断偏压应该比许多MOSFET驱动电路提供的偏压更高。
广告插播信息维库最新热卖芯片:FX602D4ICM7555LM317D2T-TR TPA1517DWPR BL3207IRFR13N20D SP708REN CY2305SXC-1AD8108AST LXT970QC对IGBT驱动电路的一般要求 [2>[3>:1)栅极驱动电压IGBT开通时,正向栅极电压的值应该足够令IGBT产生完全饱和,并使通态损耗减至最小,同时也应限制短路电流和它所带来的功率应力。
在任何情况下,开通时的栅极驱动电压,应该在 12~ 20 V之间。
当栅极电压为零时,IGBT处于断态。
IGBT驱动电路原理与保护电路
IGBT驱动电路原理与保护电路IGBT(Insulated Gate Bipolar Transistor)驱动电路是一种用于控制和驱动IGBT器件的电路,用于将低功率信号转化为高功率信号,以实现对IGBT器件的控制。
IGBT驱动电路通常由输入电路、隔离电路、输出电路和保护电路组成。
下面将详细介绍IGBT驱动电路的原理和保护电路的作用。
IGBT驱动电路的主要工作原理是通过输入信号的变化来控制IGBT的通断,从而实现对高功率负载的控制。
IGBT驱动电路一般采用CMOS电路设计,以确保高噪声抑制和良好的电磁兼容性。
常见的IGBT驱动电路分为光耦隔离和变压器隔离两种。
光耦隔离驱动电路是将输入信号与输出信号通过光电耦合器隔离,在高功率环境下提供了良好的隔离和保护。
光电耦合器的输入端通常由输入信号发生器驱动,而输出端则连接到IGBT的控制极,实现信号的传输和控制。
光耦隔离驱动电路在功率轻载和带负载的情况下都能提供良好的电气隔离,提高了系统的可靠性和稳定性。
变压器隔离驱动电路是通过变压器来实现输入和输出信号的隔离。
输入信号通过变压器的一侧传输,然后通过变压器的另一侧连接到IGBT的控制极。
变压器隔离驱动电路具有较高的耐受电压和电流能力,并能抵御噪声和干扰的影响。
IGBT保护电路的作用:IGBT是一种高功率开关设备,在工作过程中容易受到电流过大、电压过高、温度过高等因素的影响,导致过热、短路甚至损坏。
因此,为了保护IGBT设备的正常工作和延长其使用寿命,需要在IGBT驱动电路中添加一些保护电路。
常见的IGBT保护电路包括过流保护、过压保护和过温保护。
过流保护电路通过检测IGBT芯片上的电流大小来保护器件的工作。
当电流超过预设值时,保护电路会通过切断电源或降低输入信号的方式来阻止过大电流通过IGBT。
这样可以防止IGBT芯片发生过热和失效。
过压保护电路通过监测IGBT器件上的电压来保护该器件的工作。
当电压超过正常工作范围时,保护电路会通过切断电源或降低输入信号的方式来阻止过高电压对IGBT芯片的损害。
IGBT的驱动电路原理与保护技术
IGBT的驱动电路原理与保护技术IGBT(Insulated Gate Bipolar Transistor)是一种用于高压高功率开关电路的半导体器件,结合了MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)的输入特性和BJT(Bipolar Junction Transistor)的输出特性。
IGBT的驱动电路原理与保护技术对于确保IGBT的正常工作和延长其寿命非常重要。
1.基本原理:驱动电路的主要目的是将控制信号转换成足够的电压和电流来控制IGBT的开关动作。
基本的驱动电路一般由一个发生器、一个驱动电流放大器以及一个隔离电压放大器组成。
2.发生器:发生器产生控制信号,控制IGBT的开关状态。
信号可以是脉冲信号,由微控制器或其他逻辑电路产生。
3.驱动电流放大器:驱动电流放大器用于放大脉冲信号,以提供足够的电流来控制IGBT。
其输出电流通常在几十毫安到几安之间。
4.隔离电压放大器:IGBT通常需要电隔离,以防止高电压干扰信号影响其正常工作。
隔离电压放大器用于将驱动信号从控制信号隔离,并提供相应的电压放大。
1.过流保护:IGBT的工作电流超过额定值时,可能会导致损坏。
因此,电路中应包含过流保护电路,可以通过电流传感器来监测电流,并在超过设定值时立即切断电源。
2.过温保护:IGBT在超过一定温度时可能会发生热失控,导致器件损坏。
因此,必须安装温度传感器来监测器件的温度,并在超过设定值时采取适当的措施,如降低输入信号或切断电源。
3.过压保护:当IGBT的工作电压超过额定值时,可能会引起击穿,导致器件损坏。
因此,在电路中需要安装过压保护电路,以确保电压不会超过允许的范围。
4.反馈电路:为了确保IGBT的正常工作,需要实时监测其输出电流和电压。
因此,反馈电路可以用来调整控制信号,以保持IGBT在安全范围内工作。
总之,IGBT的驱动电路原理和保护技术是确保IGBT正常工作和延长其寿命的关键。
三相逆变器中IGBT的几种驱动电路的分析word资料7页
三相逆变器中IGBT的几种驱动电路的分析明正峰,童建利,钟彦儒(西安理工大学110信箱,陕西西安710048)摘要:对几种三相逆变器中常用的IGBT驱动专用集成电路进行了详细的分析,对TLP250、EXB8系列和M579系列进行了深入的讨论,给出了它们的电气特性参数和内部功能方框图,还给出了它们的典型应用电路。
讨论了它们的使用要点及注意事项。
对每种驱动芯片进行了IGBT的驱动实验,通过有关的波形验证了它们的特点。
最后得出结论:IGBT驱动集成电路的发展趋势是集过流保护、驱动信号放大功能、能够外接电源且具有很强抗干扰能力等于一体的复合型电路。
关键词:绝缘栅双极晶体管;集成电路;过流保护1 前言电力电子变换技术的发展,使得各种各样的电力电子器件得到了迅速的发展。
20世纪80年代,为了给高电压应用环境提供一种高输入阻抗的器件,有人提出了绝缘门极双极型晶体管(IGBT)[1]。
在IGBT中,用一个MOS 门极区来控制宽基区的高电压双极型晶体管的电流传输,这就产生了一种具有功率MOSFET的高输入阻抗与双极型器件优越通态特性相结合的非常诱人的器件,它具有控制功率小、开关速度快和电流处理能力大、饱和压降低等性能。
在中小功率、低噪音和高性能的电源、逆变器、不间断电源(UPS)和交流电机调速系统的设计中,它是目前最为常见的一种器件。
功率器件的不断发展,使得其驱动电路也在不断地发展,相继出现了许多专用的驱动集成电路。
IGBT的触发和关断要求给其栅极和基极之间加上正向电压和负向电压,栅极电压可由不同的驱动电路产生。
当选择这些驱动电路时,必须基于以下的参数来进行:器件关断偏置的要求、栅极电荷的要求、耐固性要求和电源的情况。
图1为一典型的IGBT驱动电路原理示意图。
因为IGBT栅极发射极阻抗大,故可使用MOSFET驱动技术进行触发,不过由于IGBT的输入电容较MOSFET为大,故IGBT的关断偏压应该比许多MOSFET驱动电路提供的偏压更高。
IGBT的驱动电路原理与保护技术
IGBT的驱动电路原理与保护技术IGBT(Insulated Gate Bipolar Transistor)是一种功率MOSFET和普通异质结型二极管的复合封装元件,具有高电压承受能力和高输入阈值电压等特点。
IGBT广泛应用于电力电子领域,如变频器、电力传动系统和电力转换等方面。
为了确保IGBT能正常工作,需要设计合理的驱动电路和保护技术。
IGBT驱动电路的原理是将控制信号加在IGBT的栅极上,控制IGBT的导通和关断。
该电路主要由驱动电源、反馈电路、隔离电路和增益电路组成。
驱动电源:将直流电源或交流电源转换为待驱动的IGBT所需的驱动电压和电流。
常用的驱动电源有三相桥式整流电路和离线开关电源。
其中,三相桥式整流电路通过整流变压器将交流电源转换为直流电源,经由滤波电容后供给驱动电路;离线开关电源利用开关电源电路将交流电源转换为恒定的直流电源,再供给驱动电路。
反馈电路:用于检测IGBT的开关状态以及输出电流等参数信息。
常用的反馈电路有隔离放大器和反馈变压器。
隔离放大器通过光电转换和电隔离将输入信号转换为输出信号,并保证输入与输出之间的电气隔离,以确保安全性和稳定性。
反馈变压器是通过变压器将输出信号与输入信号进行隔离和耦合,达到反馈的目的。
隔离电路:用于隔离驱动电源和IGBT的主回路。
通过隔离电路可以避免驱动电源与主回路之间的相互影响,提高系统的稳定性和安全性。
常用的隔离电路有光耦隔离和磁耦隔离。
光耦隔离通过光电转换将输入信号转换为光信号,再由光耦合输出为等效电流信号,实现了输入与输出之间的电气隔离。
磁耦隔离通过变压器的电磁感应将输入信号耦合到输出端,实现输入与输出之间的电气隔离。
增益电路:用于提升输入信号的电平和电流,以满足IGBT的工作要求。
增益电路可以选择共射极放大器、共基极放大器或共集极放大器等。
对于IGBT来说,常用的增益电路是共射极放大器。
增益电路的设计需要考虑输入输出阻抗的匹配、功率损耗和响应速度等因素。
三电平逆变器IGBT驱动和保护电路的实现
三电平逆变器IGBT驱动和保护电路的实现由于三电平电压型逆变器对主元件的耐压要求可降低一半,而且输出波形好,因而一出现就显示了巨大的优越性。
本设计方案中三电平电压型逆变器由12个IGBT单元和钳位二极管等组成中性点钳位电路。
有三个电平(+E、0和-E)输出,在直流中间环节电容分压对称时,就有27种不同的输出状态。
由于主电路中有12只IGBT,因此需要12路驱动电路。
如果每路驱动电路采用独立开关电源+驱动模块+IGBT的常用模式,则成本非常高。
在这种情况下,就很有必要设计一种廉价、实用且有效的IGBT驱动保护电路,既能降低成本,又不至于削弱电路的各种性能。
IGBT对驱动电路的基本要求作为三电平逆变器的主要功率开关器件,IGBT的工作状态直接关系到整个系统的性能。
所以设计合理的驱动电路显得尤为重要。
理想的驱动电路应具有以下基本性能:1. 要求驱动电路为IGBT提供一定幅值的正反向栅极电压Vge。
正向Vge越高,器件Vces 越低,越有利于降低器件的通态损耗。
但为了限制短路电流幅值,一般不允许Vge超过+20V。
关断IGBT时,必须为器件提供-5V~-15V的反向Vge,以便尽快抽取器件内部的存储电荷,缩短关断时间,提高IGBT的耐压和抗干扰能力。
2. 要求驱动电路具有隔离输入输出信号的功能,同时要求在驱动电路内部信号传输无延时或延时很小。
3. 要求在栅极回路中必须串联合适的栅极电阻Rg,用以控制Vge的前后沿陡度,进而控制器件的开关损耗。
Rg增大,Vge前后沿变缓,IGBT开关过程延长,开关损耗增加;Rg减小,Vge前后沿变陡,器件开关损耗降低,同时集电极电流变化率增大。
因此,Rg的选择应根据IGBT的电流容量、额定电压及开关频率,一般取几欧姆到几十欧姆。
4. 驱动电路应具有过压保护和dv/dt保护能力。
当发生短路或过流故障时,理想的驱动电路还应该具备完善的短路保护功能。
IGBT驱动和保护电路的实现根据以上对IGBT驱动及短路保护电路的讨论,本文设计了一种具有完善短路保护功能的隔离式IGBT驱动和保护电路,如图1所示。
IGBT驱动电路原理及保护电路
IGBT驱动电路原理及保护电路IGBT(Insulated Gate Bipolar Transistor)驱动电路是一种用于驱动IGBT的电路,主要用于控制和保护IGBT。
IGBT是一种高性能功率半导体器件,广泛应用于各种功率电子设备中。
驱动信号发生器产生一个驱动信号,通常是一个脉冲信号,用于控制IGBT的开关状态。
信号放大器将驱动信号放大到足够的电压和电流,以满足IGBT的驱动要求。
保护电路用于监测IGBT的工作状态,并在故障发生时提供保护措施。
电源则为整个驱动电路提供所需的电能。
IGBT驱动电路的保护功能非常重要。
保护电路通常包括过流保护、过温保护、过压保护和短路保护等功能。
过流保护通过监测IGBT的输出电流来避免过大的电流损坏IGBT。
过温保护通过监测IGBT的温度来避免过热导致的损坏。
过压保护通过监测输入电压来避免过大的电压损坏IGBT。
短路保护通过监测IGBT的输出电压和电流来避免短路导致的损坏。
IGBT驱动电路还可以包括其他功能,如电流限制、反馈控制、隔离等。
电流限制功能可以限制IGBT的输出电流,以满足设备的需要。
反馈控制功能可以通过监测输出信号,并将反馈信号送回到驱动信号发生器中,实现对IGBT的精确控制。
隔离功能可以通过光耦等器件实现驱动信号和IGBT之间的电气隔离,提高系统的安全性和可靠性。
总之,IGBT驱动电路是用于驱动和保护IGBT的电路,通过控制IGBT的输入电流和电压来实现对其的开关操作。
保护电路是其重要组成部分,可以提供对IGBT的过流、过温、过压和短路等故障的保护。
IGBT驱动电路还可以包括其他功能,如电流限制、反馈控制和隔离等。
这些功能和保护措施都有助于提高IGBT的性能和可靠性,保护其免受损坏。
三种IGBT驱动电路和保护方法详解
三种IGBT驱动电路和保护方法详解IGBT(Insulated Gate Bipolar Transistor)是一种功率开关器件,具有高压能力和快速开关速度,广泛应用于各类电力电子设备中。
为了保证IGBT的正常工作和延长寿命,需要合理设计驱动电路和采取保护措施。
以下将详细介绍三种常见的IGBT驱动电路和保护方法。
1.全桥驱动电路:全桥驱动电路使用四个驱动器来控制IGBT的开关动作,通过驱动信号的控制确保IGBT的正确触发。
全桥驱动电路的优点是开关速度快、电流能力高、噪音抵抗能力强。
驱动信号的产生可以通过模拟电路或数字电路实现,后者具有更高的可靠性和精准性。
在全桥驱动电路中,还会配备隔离变压器,用于提供与主电源隔离的驱动信号。
保护方法:(1)过温保护:通过测量IGBT芯片的温度,一旦温度超过设定值,即切断IGBT的驱动信号,防止过热损坏。
(2)过流保护:通过监测IGBT输入电流,当电流超过额定值时,切断IGBT的驱动信号,避免损坏。
(3)过压保护:检测IGBT的输入电压,当电压超过设定值时,中断驱动信号,以防止损坏。
(4)过电压保护:通过监测IGBT的输出电压,当电压异常升高时,关闭IGBT的驱动信号,避免对后续电路造成损害。
(5)失控保护:当IGBT因为故障或其他原因丧失了晶体管功能时,立即中断其驱动信号,以保护设备安全。
2.半桥驱动电路:半桥驱动电路仅使用两个驱动器来控制一个IGBT的开关动作。
相比于全桥驱动电路,半桥驱动电路简化了驱动电路的设计,成本更低。
但由于只有单个驱动器来控制IGBT,因此其驱动能力和噪音抵抗能力相对较弱。
保护方法:半桥驱动电路的保护方法与全桥驱动电路类似,包括过温保护、过流保护、过压保护、过电压保护和失控保护等。
可以将这些保护方法集成在半桥驱动电路中,一旦触发保护条件,即切断驱动信号,以保护IGBT和其他电路设备。
3.隔离式驱动电路:隔离式驱动电路通过隔离变压器将主电源与IGBT的驱动信号分隔开,能够提高系统的稳定性和安全性。
逆变器6个igbt工作原理
逆变器6个igbt工作原理
IGBT(模拟可控硅)是一种半导体可控管,它的上端和普通的晶体管类似,
上端和通过MOS管控制,底端有较大的可控性和高效率,通常被广泛用于变频器、高压板、断路器、电焊机、电机和转换器等电力转换装置。
这种半导体元件,将模拟运放,MOS管和功率晶体管3种器件合二为一,几乎可用于所有电力控制系统,经过优化运放成本,更易于某些系统的节省内存和芯片空间。
IGBT可以用于控制电流变化,在逆变器中广泛的运用,它的运行由两个部件
决定,其中IGBT的模拟端和MOS管端,结合在一起就形成了一个完整的可控管
框架。
在此框架中IGBT和MOS管共同作用的原理下,将需要逆变的直流电源电压,转换成我们需要的交流电压, IGBT表现出良好的高效率,节能和控制能力,可以有效抑制电磁兼容性(EMC)问题。
IGBT在逆变器中,需要使用6个IGBT,分别连接3组两个IGBT组成,每组IGBT被接入电路同一侧,它们的工作原理用三种模式来说明:
第一种模式:IGBT的源极与发射极电压均为正,同时控制反向;
第二种模式:IGBT源极和发射极电压均为负,同时控制向正;
第三种模式:IGBT源极和基极电压为负,发射极电压为正,检测反向。
IGBT逆变器可以在高效率、低噪音、低颤动、节能、高应用效果、长寿命等
方面大大节省系统成本。
IGBT技术提供了最佳的性能,是目前最新发展的电力技术,也是未来的发展方向之一。
igbt驱动电路原理
igbt驱动电路原理IGBT(Insulated Gate Bipolar Transistor)是一种常用的功率半导体器件,它结合了MOSFET的高输入电阻和GTR的大电流驱动能力,因此在现代电力电子领域得到了广泛的应用。
IGBT驱动电路是控制IGBT开关的重要组成部分,它的设计原理和工作特性对于整个电路的稳定性和性能有着重要的影响。
首先,IGBT驱动电路的原理是将控制信号转换成适合IGBT输入的电压和电流信号,从而实现对IGBT的精确控制。
在IGBT工作过程中,需要将其导通和关断,而这就需要通过驱动电路提供相应的电压和电流信号来控制IGBT的通断状态。
因此,IGBT驱动电路的设计需要考虑到IGBT的工作特性和参数,以确保驱动电路能够稳定可靠地控制IGBT的开关操作。
其次,IGBT驱动电路的设计需要考虑到IGBT的输入电容和输入电流的要求。
IGBT的输入电容较大,需要较大的电流来充放电,因此驱动电路需要具有较强的驱动能力,以确保在IGBT开关时能够提供足够的电流来充放电IGBT的输入电容。
同时,由于IGBT的输入电流较大,驱动电路需要具有足够的输出电流能力,以确保在IGBT开关时能够提供足够的电流来驱动IGBT的输入。
另外,IGBT驱动电路的设计还需要考虑到IGBT的工作频率和工作环境的影响。
IGBT的工作频率较高时,驱动电路需要具有较快的响应速度和较短的上升和下降时间,以确保能够及时有效地控制IGBT的开关操作。
同时,工作环境的温度和湿度等因素也会对驱动电路的稳定性和可靠性产生影响,因此驱动电路的设计需要考虑到这些因素,以确保在不同的工作环境下都能够正常工作。
综上所述,IGBT驱动电路的设计原理涉及到对IGBT的工作特性和参数的深入了解,以及对驱动电路的稳定性、可靠性和适应性的考虑。
只有在充分考虑到这些因素的基础上,才能设计出性能优良的IGBT驱动电路,从而确保整个电路的稳定性和性能。
因此,在实际工程中,需要根据具体的应用需求和工作环境的特点,结合IGBT的工作特性和参数,进行合理的驱动电路设计,以实现对IGBT 的精确控制和高效运行。
各种IGBT驱动电路
各种IGBT驱动电路
本文将讨论IGBT驱动电路,包括不同型号和公司的驱动
电路,以及一些具体应用的电路原理图和性能分析。
在三相逆变器中,IGBT的驱动电路有多种分析控制方式,需要根据具体应用场景进行选择。
某新型大功率三相半桥加热IGBT驱动电路的电路图如下,通过缓冲电路来保护IGBT,提高其使用寿命。
集成电路TLP250可以构成驱动器电路,适用于IGBT应
用电路。
而电磁炉IGBT管驱动单元电路的工作原理则需要具
体分析。
除了选型和原理的考虑,IGBT驱动电路的保护和性能也
需要进行设计和分析。
以下是一些适合不同应用场景的IGBT
驱动电路图。
FF20可控硅整流桥IGBT驱动电路
适合感应加热电源的IGBT驱动电路
用于有源电力滤波器的IGBT驱动电路图
总之,IGBT驱动电路的设计和选择需要根据具体应用场景进行考虑,同时保护和性能的分析也是必要的。
IGBT驱动电路原理及保护电路
IGBT驱动电路原理及保护电路驱动电路的作用是将单片机输出的脉冲进行功率放大,以驱动IGBT.保证IGBT 的可靠工作,驱动电路起着至关重要的作用,对IGBT驱动电路的基本要求如下:(1) 提供适当的正向和反向输出电压,使IGBT可靠的开通和关断。
(2) 提供足够大的瞬态功率或瞬时电流,使IGBT能迅速建立栅控电场而导通。
(3) 尽可能小的输入输出延迟时间,以提高工作效率。
(4) 足够高的输入输出电气隔离性能,使信号电路与栅极驱动电路绝缘。
(5) 具有灵敏的过流保护能力。
第一种驱动电路EXB841/840EXB841工作原理如图1,当EXB841的14脚和15脚有10mA的电流流过1us 以后IGBT正常开通,VCE下降至3V左右,6脚电压被钳制在8V左右,由于VS1稳压值是13V,所以不会被击穿,V3不导通,E点的电位约为20V,二极管VD,截止,不影响V4和V5正常工作。
当14脚和15脚无电流流过,则V1和V2导通,V2的导通使V4截止、V5导通,IGBT栅极电荷通过V5迅速放电,引脚3电位下降至0V,是IGBT 栅一射间承受5V左右的负偏压,IGBT可靠关断,同时VCE的迅速上升使引脚6“悬空”.C2的放电使得B点电位为0V,则V S1仍然不导通,后续电路不动作,IGBT 正常关断。
如有过流发生,IGBT的V CE过大使得VD2截止,使得VS1击穿,V3导通,C4通过R7放电,D点电位下降,从而使IGBT的栅一射间的电压UGE降低,完成慢关断,实现对IGBT的保护。
由EXB841实现过流保护的过程可知,EXB841判定过电流的主要依据是6脚的电压,6脚的电压不仅与VCE 有关,还和二极管VD2的导通电压Vd有关。
典型接线方法如图2,使用时注意如下几点:a、IGBT栅-射极驱动回路往返接线不能太长(一般应该小于1m),并且应该采用双绞线接法,防止干扰。
b、由于IGBT集电极产生较大的电压尖脉冲,增加IGBT栅极串联电阻RG有利于其安全工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相逆变器中IGBT的几种驱动电路的分析1 前言电力电子变换技术的发展,使得各种各样的电力电子器件得到了迅速的发展。
20世纪 80年代,为了给高电压应用环境提供一种高输入阻抗的器件,有人提出了绝缘门极双极型晶体管(IGBT) [1>。
在IGBT中,用一个 MOS 门极区来控制宽基区的高电压双极型晶体管的电流传输,这就产生了一种具有功率MOSFET的高输入阻抗与双极型器件优越通态特性相结合的非常诱人的器件,它具有控制功率小、开关速度快和电流处理能力大、饱和压降低等性能。
在中小功率、低噪音和高性能的电源、逆变器、不间断电源( UPS)和交流电机调速系统的设计中,它是目前最为常见的一种器件。
功率器件的不断发展,使得其驱动电路也在不断地发展,相继出现了许多专用的驱动集成电路。
IGBT的触发和关断要求给其栅极和基极之间加上正向电压和负向电压,栅极电压可由不同的驱动电路产生。
当选择这些驱动电路时,必须基于以下的参数来进行:器件关断偏置的要求、栅极电荷的要求、耐固性要求和电源的情况。
图 1为一典型的IGBT驱动电路原理示意图。
因为IGBT栅极 发射极阻抗大,故可使用MOSFET驱动技术进行触发,不过由于IGBT的输入电容较MOSFET为大,故IGBT的关断偏压应该比许多MOSFET驱动电路提供的偏压更高。
对IGBT驱动电路的一般要求 [2>[3>:1)栅极驱动电压IGBT开通时,正向栅极电压的值应该足够令IGBT产生完全饱和,并使通态损耗减至最小,同时也应限制短路电流和它所带来的功率应力。
在任何情况下,开通时的栅极驱动电压,应该在 12~ 20 V之间。
当栅极电压为零时,IGBT处于断态。
但是,为了保证IGBT在集电极 发射极电压上出现 dv/dt噪声时仍保持关断,必须在栅极上施加一个反向关断偏压,采用反向偏压还减少了关断损耗。
反向偏压应该在- 5~- 15 V之间。
2)串联栅极电阻( Rg)选择适当的栅极串联电阻对IGBT栅极驱动相当重要。
IGBT的开通和关断是通过栅极电路的充放电来实现的,因此栅极电阻值将对IGBT的动态特性产生极大的影响。
数值较小的电阻使栅极电容的充放电较快,从而减小开关时间和开关损耗。
所以,较小的栅极电阻增强了器件工作的耐固性(可避免 dv/dt带来的误导通),但与此同时,它只能承受较小的栅极噪声,并可能导致栅极-发射极电容和栅极驱动导线的寄生电感产生振荡。
3)栅极驱动功率IGBT要消耗来自栅极电源的功率,其功率受栅极驱动负、正偏置电压的差值ΔUGE、栅极总电荷 QG和工作频率 fs的影响。
电源的最大峰值电流 IGPK为:在本文中,我们将对几种最新的用于IGBT驱动的集成电路做一个详细的介绍,讨论其使用方法和优缺点及使用过程中应注意的问题。
2 几种用于IGBT驱动的集成芯片2. 1 TLP250(TOSHIBA公司生产)在一般较低性能的三相电压源逆变器中,各种与电流相关的性能控制,通过检测直流母线上流入逆变桥的直流电流即可,如变频器中的自动转矩补偿、转差率补偿等。
同时,这一检测结果也可以用来完成对逆变单元中IGBT实现过流保护等功能。
因此在这种逆变器中,对IGBT驱动电路的要求相对比较简单,成本也比较低。
这种类型的驱动芯片主要有东芝公司生产的TLP250,夏普公司生产的PC923等等。
这里主要针对TLP250做一介绍。
TLP250包含一个 GaAlAs光发射二极管和一个集成光探测器, 8脚双列封装结构。
适合于IGBT或电力MOSFET栅极驱动电路。
图 2为TLP250的内部结构简图,表 1给出了其工作时的真值表。
TLP250的典型特征如下:1)输入阈值电流( IF): 5 mA(最大);2)电源电流( ICC): 11 mA(最大);3)电源电压( VCC): 10~ 35 V;4)输出电流( IO):± 0.5 A(最小);5)开关时间( tPLH /tPHL): 0.5 μ s(最大);6)隔离电压: 2 500 Vpms(最小)。
表 2给出了TLP250的开关特性,表 3给出了TLP250的推荐工作条件。
注:使用TLP250时应在管脚 8和 5间连接一个 0.1 μF的陶瓷电容来稳定高增益线性放大器的工作,提供的旁路作用失效会损坏开关性能,电容和光耦之间的引线长度不应超过 1 cm。
图 3和图 4给出了TLP250的两种典型的应用电路。
在图 4中, TR1和 TR2的选取与用于IGBT驱动的栅极电阻有直接的关系,例如,电源电压为 24 V时, TR1和 TR2的Icmax≥ 24/Rg。
图 5给出了TLP250驱动IGBT时, 1 200 V/200 A的IGBT上电流的实验波形( 50 A/10 μs)。
可以看出,由于TLP250不具备过流保护功能,当IGBT过流时,通过控制信号关断IGBT,IGBT中电流的下降很陡,且有一个反向的冲击。
这将会产生很大的 di/dt和开关损耗,而且对控制电路的过流保护功能要求很高。
TLP250使用特点:1)TLP250输出电流较小,对较大功率IGBT实施驱动时,需要外加功率放大电路。
2)由于流过IGBT的电流是通过其它电路检测来完成的,而且仅仅检测流过IGBT的电流,这就有可能对于IGBT的使用效率产生一定的影响,比如IGBT在安全工作区时,有时出现的提前保护等。
3)要求控制电路和检测电路对于电流信号的响应要快,一般由过电流发生到IGBT可靠关断应在 10 μ s以内完成。
4)当过电流发生时,TLP250得到控制器发出的关断信号,对IGBT的栅极施加一负电压,使IGBT硬关断。
这种主电路的 dv/dt比正常开关状态下大了许多,造成了施加于IGBT两端的电压升高很多,有时就可能造成IGBT的击穿。
2.2 EXB8..Series( FUJI ELECTRIC公司生产)随着有些电气设备对三相逆变器输出性能要求的提高及逆变器本身的原因,在现有的许多逆变器中,把逆变单元IGBT的驱动与保护和主电路电流的检测分别由不同的电路来完成。
这种驱动方式既提高了逆变器的性能,又提高了IGBT的工作效率,使IGBT更好地在安全工作区工作。
这类芯片有富士公司的 EXB8..Series、夏普公司的PC929等。
在这里,我们主要针对EXB8..Series做一介绍。
EXB8..Series集成芯片是一种专用于IGBT的集驱动、保护等功能于一体的复合集成电路。
广泛用于逆变器和电机驱动用变频器、伺服电机驱动、UPS、感应加热和电焊设备等工业领域。
具有以下的特点:1)不同的系列(标准系列可用于达到 10 kHz开关频率工作的IGBT,高速系列可用于达到 40 kHz开关频率工作的IGBT)。
2)内置的光耦可隔离高达 2 500 V/min的电压。
3)单电源的供电电压使其应用起来更为方便。
4)内置的过流保护功能使得IGBT能够更加安全地工作。
5)具有过流检测输出信号。
6)单列直插式封装使得其具有高密度的安装方式。
常用的 EXB8..Series 主要有:标准系列的EXB850和EXB851,高速系列的EXB840和EXB841。
其主要应用场合如表 4所示。
注:1)标准系列:驱动电路中的信号延迟≤ 4 μ s2)高速系列:驱动电路中的信号延迟≤ 1.5 μ s图 6给出了 EXB8..Series的功能方框图。
表 5给出了 EXB8..Series的电气特性。
表 6给出了 EXB8..Series工作时的推荐工作条件。
表 6 EXB8..Series工作时的推荐工作条件图 7给出了 EXB8..Series的典型应用电路。
EXB8..Series使用不同的型号,可以达到驱动电流高达 400 A,电压高达 1 200 V的各种型号的IGBT。
由于驱动电路的信号延迟时间分为两种:标准型(EXB850、EXB851)≤ 4 μs,高速型(EXB840、EXB841)≤ 1μs,所以标准型的 IC 适用于频率高达 10 kHz的开关操作,而高速型的 IC适用于频率高达 40 kHz的开关操作。
在应用电路的设计中,应注意以下几个方面的问题:——IGBT栅 射极驱动电路接线必须小于 1 m;——IGBT栅 射极驱动电路接线应为双绞线;——如想在IGBT集电极产生大的电压尖脉冲,那么增加IGBT栅极串联电阻( Rg)即可;——应用电路中的电容 C1和 C2取值相同,对于EXB850和EXB840来说,取值为 33 μF,对于EXB851和EXB841来说,取值为 47 μF。
该电容用来吸收由电源接线阻抗而引起的供电电压变化。
它不是电源滤波器电容。
EXB8..Series的使用特点:1) EXB8..Series的驱动芯片是通过检测IGBT在导通过程中的饱和压降 Uce来实施对IGBT的过电流保护的。
对于IGBT的过电流处理完全由驱动芯片自身完成,对于电机驱动用的三相逆变器实现无跳闸控制有较大的帮助。
2) EXB8..Series的驱动芯片对IGBT过电流保护的处理采用了软关断方式,因此主电路的 dv/dt比硬关断时小了许多,这对IGBT的使用较为有利,是值得重视的一个优点。
3) EXB8..Series驱动芯片内集成了功率放大电路,这在一定程度上提高了驱动电路的抗干扰能力。
4) EXB8..Series的驱动芯片最大只能驱动 1 200V /300 A的IGBT,并且它本身并不提倡外加功率放大电路,另外,从图 7中可以看出,该类芯片为单电源供电,IGBT的关断负电压信号是由芯片内部产生的- 5 V信号,容易受到外部的干扰。
因此对于 300 A以上的IGBT或者IGBT并联时,就需要考虑别的驱动芯片,比如三菱公司的M57962L等。
图 8给出了EXB841驱动IGBT时,过电流情况下的实验波形。
可以看出,正如前面介绍过的,由于 EXB8..Series芯片内部具备过流保护功能,当IGBT过流时,采用了软关断方式关断IGBT,所以IGBT中电流是一个较缓的斜坡下降,这样一来,IGBT关断时的 di/dt明显减少,这在一定程度上减小了对控制电路的过流保护性能的要求。
2. 3 M579..Series(MITSUBISHI公司生产)M579..Series是日本三菱公司为IGBT驱动提供的一种 IC系列,表 7给出了这种系列的几种芯片的基本应用特性(其中有*者为芯片内部含有BOOSTER电路)。
在 M579..Series中,以M57962L为例做出一般的解释。
随着逆变器功率的增大和结构的复杂,驱动信号的抗干扰能力显得尤为重要,比较有效的办法就是提高驱动信号关断IGBT时的负电压,M57962L的负电源是外加的(这点和 EXB8..Series不同),所以实现起来比较方便。