200w逆变器电路图

合集下载

逆变器的电路图及维修简要

逆变器的电路图及维修简要

逆变器的电路图及维修简要随着绿色能源可再生能源的大规模开发和利用,太阳能凭借其独特的优点得到了更多的关注。

太阳能是当前世界上最清洁、最现实、大规模开发利用最有前景的可再生能源之一。

其中太阳能光伏利用受到世界各国的普遍关注,而太阳能光伏并网发电是太阳能光伏利用的主要发展趋势,必将得到快速的发展。

本论文就是在此背景下,对太阳能并网发电系统中最大功率跟踪控制技术、并网控制策略、孤岛效应检测方法等进行了研究,具有重要的现实意义。

太阳能光伏并网发电系统的两个核心部分是太阳能电池板的最大功率点跟踪(MPPT)控制和光伏并网逆变控制。

本文重点对光伏发电的逆变器最大功率点跟踪技术、孤岛检测技术以及光伏电站并网控制技术进行了讨论,并且预测了光伏发电技术的发展趋势。

1研究背景传统电能的生产百分之六七十都采用的火电形式,火电是用煤发电,有大量的温室气体和有毒气体产生,这些气体的排放破坏生态平衡,并且全球各国工业对煤、石油、天然气等化石能源的需求量急剧增长,而这些不可再生能源的储量是有限的,越来越少,不该作为燃料耗尽。

太阳能具有分布广泛,资源可再生,易采集,清洁、干净、污染小,建造灵活方便,扩容方便,具有通用性,有可存储性等特点。

太阳能系统可以加入蓄电池储存电能,光伏建筑集成,把太阳能光伏发电系统直接与建筑物相结合,这样能节省发电站使用的土地面积、减少了传输成本。

最后太阳能光伏具有分布式特点,光伏发电系统的分布式特点既可以提高整个能源系统的安全可靠性,特别是从抵御自然灾害和战备的角度看,更具有明显的意义。

2光伏并网发电系统的基本介绍2.1光伏并网发电系统的基本原理太阳能光伏发电并网系统是将太阳能光伏阵列发出的直流电转化为与公共电网电压同频同相的交流电,因此该系统是既能满足本地负载用电又能向公共电网送电。

一般情况下,公共电网系统可看作是容量为无穷大的交流电压源。

当太阳能光伏发电并网系统中太阳能光伏阵列的发电量小于本地负载用电量时,本地负载电力不足部分由公共电网输送供给;当光伏电池阵列的发电量大于本地负载用电量时,太阳能光伏系统将多余的电能输送给公共电网,实现并网发电。

逆变器的等效电路图

逆变器的等效电路图
可见,叠弧现象的影响是转折点
2018/10/9
a
变成
p a p p (a ) 2 90 2 19
换流的几个角度
为描述整流器工作方式, 我们用了以下几个角度: α=触发延迟角; μ=叠弧角; δ=熄弧延迟角 =α+μ。
以晶闸管3为例:
①触发角从b相电压在三相电压中开始 最大开算算起 ②从其换相电压uba为零时刻算起
2018/10/9
20
自然换向点,是各相晶闸管能导通的最早时刻,将 其作为晶闸管控制角的起点
a电压最高 wt=30°
b电压最高 wt=150°
c电压最高 wt=270°
u d
u u ab ac
u u u u u u bc ba ca cb ab ac
O
wt
c电压最低wt=90° 2018/10/9
负号表示方向
3wL Vd 1.35U l cosa Id p 3wL 1.35U l cos(p b ) Id p 3wL (1.35U l cos b Id ) p
3wL Vd 1.35U l cos b Id p
15
2018/10/9
3wL U d 1.35U l cos b Id p
Vd 0 Vd (cosa cos ) 0 2
可见,叠弧现象的影响是转折点
2018/10/9
a
变成
p a p p (a ) 2 90 2 18
整流器与逆变器的转折点 三、逆变器交直流数量关系表达式
1.若不考虑换相重叠现象,则 2.若考虑换相重叠现象,则
1.若不考虑换相重叠现象,则 2.若考虑换相重叠现象,则

逆变器原理图_框图

逆变器原理图_框图

车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。

图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。

由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。

图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。

TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。

TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。

TL494芯片还内置2只NPN图二本逆变器输入端为汽车蓄电池(+12V,4.5Ah),输出端为工频方波电压(50Hz,220V)。

其系统主电路和控制电路框图如图1所示,采用了典型的二级变换,即DC/DC变换和DC/AC逆变。

12V直流电压通过推挽式变换逆变为高频方波,经高频升压变压器升压,再整流滤波得到一个稳定的约320V直流电压;然后再由桥式变换以方波逆变的方式,将稳定的直流电压逆变成有效值稍大于220V的方波电压,以驱动负载。

逆变器部分图纸

逆变器部分图纸
4 5
6 7
3E2 3G2 BSM300GA120GN2
infineon V3
4 5
6 7
+603 NC -603 NC U13 NC V13 380 NC NC 380 NC W13 NC -607 NC +607
-603 4
-605
U3 V2 W1
LEM42
LEM41
ZYA100-S 正远 定做(LEM)
Vout
25V/100u
1R18Байду номын сангаас
1C38 1L5
R12R13
CON1 1
C
U1
1
8
2
7
3
6
10K/1206
10K/1206
15Ω/1206
3R3K
GND 2
1C20
KA7815 1C28 1C16
D4
Vin
IGBT1
C1
C1
C
4
5
NC
2
NB
1D4 US1G
1
D8
E1
E1
1U1 TOP227YN
3
NA
6 2NB 19 2NA
7 NC 17 723
12 723
2WJ
1WJ
7 3ERY 20 3ERZ
8 FIN 18 KJFA
14 800
801
802
8 3PB 21 3PA
9 FOUT 19 M204
16 204f
FIN
NC
9 NC 22 NC
10 201 20 204f
18 NC
N1
N2
10 3NB 23 3NA

200W正弦波逆变电源的设计方法

200W正弦波逆变电源的设计方法

文章编号 :10 42 ( 0 1 o 0 6— 7 9 2 1 )4—02 o 3 7一 6
2 0W 正 弦 波逆 变 电源 的 设计 方 法 0
郑文兵
( 上海 电力学院 电力与 自动化工程学 院 , 上海 2 09 ) 0 0 0


要 :提出了一种基于数字控制 的具 有高频链 的 20W 正 弦波逆 变 电源的 设计方 法. 弦波逆变 电源 由 0 正
第2 7卷第 4期 21 0 1年 8月 上 Nhomakorabea海
电 力 学 院 学 报
Vo. 7, No 4 12 . Au . 2 1 g 01
J u a o S a g a Un v riy o E e ti P we or l n f hn hi i e st f lcr c o r
图. 最后利用 PI 软件对整体 电路进 行了仿真 , S M 仿真结果表 明符 合理论分析 的结果 .
关键词 :正弦波逆变 电源 ;软开关 ;瞬时无 功理论 ; 数字控制
中图分 类号 : P 7 T 3 12 r 1 ; P 3 . 文献标 志码 :A
Th sg eho fa 2 0 W i e W a e I v re e De i n M t d o 0 Sn v n e tr
周波变换器之间采用高频变压器隔离.
r D . 5

s }
s E

_ ] L f
u b
= -

I u c
} E ・} =

J 】 I
D t
’ T T
图 1 主电路拓扑结构
1 1 全桥 DC DC 变换 器 元 器件 参数 选择 . / 由于全桥 D / C变换 器 的输 入侧 为 l 的 CD 2V 蓄 电池 , 因此 功率 开 关 S ~S 选 用 5 和 5 , 可 OV O

逆变器原理及电路图

逆变器原理及电路图

逆变器原理及电路图2009-09-10 21:52场上常见款式车载逆变器产品的主要指标输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。

二常见车载逆变器产品的电路图及工作原理目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL494或KA7500芯片为主的脉宽调制电路。

一款最常见的车载逆变器电路原理图见图1。

车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。

[img]/UploadFiles/200942618167800.jpg[/img]1.车载逆变器电路工作原理图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。

由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。

图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。

TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。

简单逆变器的电路图

简单逆变器的电路图

简单逆变器的电路图
下图是一个简单逆变器的电路图.其特点是共集电极电路,可将三极管的集电极直接安装在机壳上,便于散热.不易损坏三极管.,我的简单逆变器用了十多年了,没出现过一次烧管的事.现给大家介绍一下制作方法.
变压器的制作:可根据自己的需要选用一个机床用的控制变压器.我用的是100W的控制变压器.将变压器铁芯拆开,再将次级线圈拆下来.并记录下每伏圈数.然后重新绕次级线圈.用1.35mm的漆包线,先绕一个22V的线圈,在中间抽头,这就是主线圈.再用0.47的漆包线线绕两个4V的线圈为反馈线圈,线圈的层间用较厚的牛皮纸绝缘.线圈绕好后插上铁芯.将两个4V次级分别和主线圈连在一起,注意头尾的别接反了.可通电测电压.如果4V线圈和主线圈连接后电压增加说明连接正确,反之就是错的.
可换一下接头.这样变压器就做好了.
电阻的选择.两个与4V线圈串联的电阻可用电阻丝制作.可根据输出功率大小选择电阻的大小,一般的几个欧姆.输出功率大时,电阻越小,偏流电阻用1W的300欧姆的电阻.不接这个电阻也能工作.但由
于管子的参数不一致有时不起振,最好接一个.
三极管的选择:每边用三只3DD15并联.共用六只管子.电路连接好后检查无错误,就可以通电调整了.
接上蓄电池,找一个100W的白炽灯做负载.打开开关,灯泡应该能正常发光.如果不能正常发光,可减小基极的电阻.直到能正常发光为止.再接上彩电看能否正常启动.不能正常启动也是减小基极的电阻.
调整完毕后就可以正常使用了.
我的逆变器和充电器做在了一个机壳内,输出并联在了家里的交流电源上.并安装上了继电器,停电时可自动切换为逆变器供电,并切断外电路,来电时自动接上交流电切断逆变器供电并转入充电状态.如果没有停电来电状态指示灯的话,停电来电时无感觉.。

逆变器原理图

逆变器原理图

IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,enhancements,improvements and other changes to its semiconductor products and services per JESD46,latest issue,and to discontinue any product or service per JESD48,latest issue.Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All semiconductor products(also referred to herein as“components”)are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its components to the specifications applicable at the time of sale,in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by applicable law,testing of all parameters of each component is not necessarily performed.TI assumes no liability for applications assistance or the design of Buyers’products.Buyers are responsible for their products and applications using TI components.To minimize the risks associated with Buyers’products and applications,Buyers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any patent right,copyright,mask work right,or other intellectual property right relating to any combination,machine,or process in which TI components or services are rmation published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.Buyer acknowledges and agrees that it is solely responsible for compliance with all legal,regulatory and safety-related requirements concerning its products,and any use of TI components in its applications,notwithstanding any applications-related information or support that may be provided by TI.Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures,monitor failures and their consequences,lessen the likelihood of failures that might cause harm and take appropriate remedial actions.Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.In some cases,TI components may be promoted specifically to facilitate safety-related applications.With such components,TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements.Nonetheless,such components are subject to these terms.No TI components are authorized for use in FDA Class III(or similar life-critical medical equipment)unless authorized officers of the parties have executed a special agreement specifically governing such use.Only those TI components which TI has specifically designated as military grade or“enhanced plastic”are designed and intended for use in military/aerospace applications or environments.Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk,and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.TI has specifically designated certain components as meeting ISO/TS16949requirements,mainly for automotive use.In any case of use of non-designated products,TI will not be responsible for any failure to meet ISO/TS16949.Products ApplicationsAudio /audio Automotive and Transportation /automotiveAmplifiers Communications and Telecom /communicationsData Converters Computers and Peripherals /computersDLP®Products Consumer Electronics /consumer-appsDSP Energy and Lighting /energyClocks and Timers /clocks Industrial /industrialInterface Medical /medicalLogic Security /securityPower Mgmt Space,Avionics and Defense /space-avionics-defense Microcontrollers Video and Imaging /videoRFID OMAP Applications Processors /omap TI E2E Community Wireless Connectivity /wirelessconnectivityMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2015,Texas Instruments Incorporated。

逆变器工作原理图

逆变器工作原理图

逆变器工作原理图
逆变器工作原理:由交流变换成直流叫整流,反之,由直流变成交流叫做逆变.在本中频装置中用到两种情况的逆变,一种是直流逆变成中频交流,由感应圈输出.另一种是直流逆变成工频交流,输送到电网去.本图属于前者.简述工作过程:如果先触发1.4号二个可控硅这时电流由直流电源Ud的正端-1号可控硅-负载-4号可控硅-Ud负端,如图黑实线所示.经过半个周期后再触发2,3号可控硅.而1.4号可控硅关断,这时电流从Ud正端-2号可控硅-负载-3号可控硅-Ud负端,如图虚线所示.在二个半周中负载电流改变了方向,负载电流变成了交流.图中LK是限流电抗,当可控硅触发后,它的电流将从无到有以很高的速度增长,即可控硅的电流变化率di/dt很大必须要有LK限制di/dt 以免超过可控硅的允许值而损坏.。

某200KW高倍聚光光伏并网电站项目箱变电气图

某200KW高倍聚光光伏并网电站项目箱变电气图
日 期签 名借(通)用件登记CAD 制 图旧底图总号底图总号SuperWORKS绘日 期审 定批 准图 号123412图 号批 准审 定日 期比 例设 计校 核广东明阳电气股份有限公司K2K18765432187654321K2K1K2K1K2K1CGcCGbCGa8765432112K2K1K2K1K2K1CGcCGbCGa87654321A2B2A1B1K2K1K2K1K2K1CGcCGbCGa8765432143214321K2K1K2K1K2K1CGcCGbCGa876543214321K2K1K2K1K2K1CGcCGbCGa87654321B1A1R3R1B2A20R24321VCGcCGbCGa中山市明阳电器有限公司校 核设 计比 例日 期审 定批 准图 号219217215负荷开关分闸CG带压高电显示UVW3.带电显示器接线用三芯的屏蔽线;00112233445566778899AABBCCDDEEFFGGHHHHGGFFEEDDCCBBAA99887766554433221100交流电源AC220V箱变二次原理图云南永仁维的200KW高倍聚光光伏并网电站项目箱变二次原理图10.MD.001(3/5)10.MD.001(5/5)2HA13142TA1314125620320534CK22072LD122HD122BD12小型断路器就地合闸就地分闸远方分闸远方合闸合闸指示分闸指示储能指示控制路回L11L111QF12121QF12N11N1134智能控制器电源云南永仁维的200KW高倍聚光光伏并网电站项目11.MD.001(1/1)0011223344556677AABBCCDDEEFFGGHHIIJJ箱变二次端子图云南永仁维的200KW高倍聚光光伏并网电站项目16151413121110987654321483276-1INPUTOUTPUT5+AC220VK2K1K2

200W逆变电源初步设计

200W逆变电源初步设计

课程设计(论文)任务及评语院(系):电气工程学院教研室:电气注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要逆变是利用晶闸管电路把直流电转变成交流电的过程。

逆变分为有源逆变和无源逆变,交流侧接负载的为无缘逆变,交流侧接电网上时成为有源逆变。

逆变电源是将小电压直流电经过升压,再经过逆变变成有适合功率的交流电,以解决没有交流电源的情况下交流电气设备的用电问题。

升压过程用升压斩波电路,也叫boost变换器。

是通过控制全控型器件IGBT晶闸管的导通时间来控制输出直流电压大小。

本设计是将给定12V直流电转变为频率50HZ,电压220V的交流电,在直流部分首先采用升压斩波电路将直流电压提升到约100V左右,为下一步逆变提供适当裕量,第二步逆变部分,控制晶闸管导通周期为0.02S,以保证输出交流电压频率固定为50HZ,晶闸管采用脉冲触发控制。

经实验仿真验证,本设计最终输出电压为幅值为310V(±5V),输出功率大于200W,周期为0.02S的正弦波,且波形无明显失真,系统整体性能良好,满足设计要求。

关键词:逆变电源;升压斩波;无源逆变;脉冲触发目录第1章绪论 (1)1.1逆变电源技术概况 (1)1.2本文设计内容 (1)第2章逆变电源电路设计 (3)2.1200W逆变电源总体设计方案 (3)2.2具体电路设计 (4)2.2.1主电路设计 (4)2.2.1 控制电路设计 (7)2.2.2 保护电路设计 (7)2.3元器件型号选择 (8)2.3.1 晶闸管参数计算与选择 (8)2.3.2 电阻、电容、电感参数计算与选择 (10)2.4系统仿真 (10)2.4.1 MATLAB仿真软件简介 (10)2.4.2 逆变电源仿真模型建立 (11)2.4.3 逆变电源仿真波形及数据分析 (13)第3章课程设计总结 (18)参考文献 (19)第1章绪论1.1逆变电源技术概况电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。

200W微型逆变器解决方案PMM_SE1401

200W微型逆变器解决方案PMM_SE1401

LLC级实测波形(1)
Q201上方MOS Ch2=Vgs 5V/div(红线),Ch3=Vds 20V/div(蓝线)
满载
开通
关断
© 英飞凌科技股份公司版权所有,2014年。保留所有权利。 Page 13
LLC 级实测波形(2)
Q202上方MOS Ch2=Vgs 5V/div(红线),Ch3=Vds 20V/div(蓝线)
元件:
控制器:ICE2HS01G OptiMOS : BSC028N06NS 驱动器:LM5101A 碳化硅二极管:IDH05S120 铁氧体磁芯:谐振电感器– PQ3220,主变压器 – EER35 LLC效率=98%
© 英飞凌科技股份公司版权所有,2014年。保留所有权利。 Page 12
逆变器MOSFET ( 50/60Hz) IPB65R099C6
© 英飞凌科技股份公司版权所有,2014年。保留所有权利。 Page 27
需要双向电流通道和低trr续流二极管
i v t0
t1
T/2
© 英飞凌科技股份公司版权所有,2014年。保留所有权利。
Page 20
逆变侧
技术规格: 输入:360Vdc
输出:230Vac(180Vac~264Vac)/50Hz(47Hz~53Hz)
拓扑:半桥 元件: 控制器:XE161FL CoolMOS:IPB65R099C6 碳化硅二极管:IDD06SG60C 驱动器:IR2181S和UCC27322 电感器:3800uH,Amogreentech公司的APH40P60
© 英飞凌科技股份公司版权所有,2014年。保留所有权利。
无需使用电解电容器 微型太阳能逆变器演示板:正面

200KW感应加热电源主电路设计

200KW感应加热电源主电路设计

辽宁工业大学电力电子技术课程设计(论文)院(系):电气工程学院专业班级:电气133学号:130303087学生姓名:陈夹夹指导教师:____________起止时间:2015・12・24至2015・1・3课程设计(论文)任务及评语注:成绩:平时20% 论文质量60% 答辩20%以百分制计算感应加热技术在金属冶炼、铸造、锻造透热、弯管、烧结、表面热处理、铜焊以及晶体生长等行业得到了广泛的应用。

本文针对感应加热装置的需要,对加热电源的主电路进行设计。

引入该电源使得加热电源的各方面性能都得到一定的改善。

可以跟踪负载的频率,提高装置的效率,从而达到节能和节时的双重目的。

本次课题主要对200KW感应加热电源主电路进行分析确定了整体方案,它包括整流电路、滤波电路、逆变电路的设计。

用三相桥式整流电路对三相工频交流电进行整流,输出通过滤波电路做滤波处理。

然后,通过对感应加热电源工作原理的分析,确定以IGBT作为功率开关器件的电压型逆变作为本次设计的逆变电路。

通过整体方案计算了系统的参数以及进行了器件的选择,并通过对设计的主电路的仿真分析验证了设计的可行性。

关键词:感应加热;IGBT:整流;逆变器第1章绪论 (1)1.1感应加热技术概况 (1)1.2本文设计内容 (1)第2章感应加热电源主电路设计 (3)2. 1感应加热电源主电路总体设计方案 (3)2.2具体电路设计 (3)2. 2. 1整流电路设计 (3)2.2.2滤波电路设计 (4)2.2.3逆变电路设计 (5)2. 3元器件型号选择 (8)2.3.1整流电路参数汁算与选择 (8)2.3.2滤波电路参数计算与选择 (9)2.3.3逆变电路参数计算与器件选择 (9)2.3.4谐振槽路参数设汁与选择 (9)2. 4系统仿真 (10)2. 4. 1 MATLAB仿真软件简介 (10)2.4.2感应加热电源主电路波形仿真 (11)第3章课程设计总结 (14)参考文献 (15)第1章绪论1.1感应加热技术概况感应加热来源于法拉第发现的电磁感应现象,也就是交变的电流会在导体中产生感应电流,从而导致导体发热。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档