二次根式周测二
湘教版2019-2020学年八年级数学(上册)第五章《二次根式》测试题及答案
湘教版八年级数学(上)第五章《二次根式》测试卷一、选择题(24分)1 ) A.1个; B. 2个; C. 3个; D. 4个;2 )A. B. C. ; D.3、化简22a +-的结果是( )A.0;B. 2a -4;C. 4;D. 4-2a ;4、下列说法正确的是( )A. B. 不是二次根式;C. D.5、观察下列各式的计算,其中正确的有( )142==③-=A.0个;B. 1个;C. 2个;D. 3个;6 ) A.6和7之间; B. 7和8之间; C. 8和9之间; D. 9和10之间;7a b ==,下面用a 、b 正确的是( )A.0.2ab ;B. 2ab ;C. 0.1ab 2;D. 0.1a 2b ;8、已知实数x 、y 满足40x -=,则以x 、y 为两边长的等腰三角形的周长是( )A.20或16;B. 20;C. 16;D. 以上都不对;二、填空题(24分)9有意义,则x 的取值范围是 。
10的积为有理数: .11、当x= 时,5-12=成立的条件是 。
13、已知实数a 在数轴上的位置如图,= .14= 。
15、在实数范围内分解因式:x 2-5= .16、如果a 、b分别表示6ab 2-a 2b = .三、解答题(52分)17、(16分)计算:(1(2((3)22- (418、(8分)先化简,再求值:22112()2y x y x y x xy y -÷-+++,其中x y ==· ·· 1 -1 · a19、(7分)长方形的长为面积最大的正方形,求该正方形面积。
20、(7分)已知12yx=-,求3x+4y的值。
21、(7的整数部分是a,小数部分是b,求a2+ab+b2的值。
22、(7分)已知实数a、b、c在数轴上的位置如图所示,a c+参考答案:一、1、A ;2、C ;3、D ;4、A ;5、A ;6、B ;7、A ;8、B ;二、9、x ≥2;10(答案不唯一)11、4;12、x >2;13、1;14、15、(x x +;16、-8;三、17、(1)1;(2)(3)(4)18、原式=x y x y+-,当x y ==19、∴分割出最大面积的正方形边长为(2=6020、有条件知:x 2-4≥0,4-x 2≥0,∴x =±2,当x =2时,x -2=0(舍去)∴x =-2,y =-14,则3x +4y=-721=2,∴3a =,231b ==a 2+ab+b 2=10+22、∵0,0,0,0,a b ac c b <>+<-<a c +a a cbc a a c b c b -++-=-+++-=。
八年级数学下册《二次根式》单元测试能力提升卷 含答案 (原卷+详解)
人教版数学八年级下册单元测试能力提升卷《二次根式》一.选择题1有意义,且关于x 的分式方程3211m x x +=--有正数解,则符合条件的整数m 的和是( ) A .7-B .6-C .5-D .4-2.若23a <<( ) A .52a -B .12a -C .25a -D .21a -3.把四张形状大小完全相同宽为1cm 的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为,宽为4)cm 的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( )A .B .16cmC .4)cm +D .4)cm -4.已知10a -<<( )A .2aB .22a a+ C .2a D .2a-5.已知:a ,b =,则a 与b 的关系是( )A .0a b -=B .0a b +=C .1ab =D .22a b =6.计算201820193)3)-的值为( )A .1B 3C 3D .3-7.若实数x 满足|3|7x -=,化简2|4|x +( ) A .42x + B .42x -- C .2- D .28.如果22()1xf xx=+并且f表示当x12f==,f表示当x=值,即13f==,那么f f f f f f f+++++⋯++的值是()A.12n-B.32n-C.52n-D.12n+9()======A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错10.下列各式中,正确的是个数有()2=a b=+=A.1个B.2个C.3个D.0个11.若实数m满足|4||3|1m m-=-+,那么下列四个式子中与(m-相等的是() AB.CD.二.填空题12a为.13.若x,y4y=,则xy的值为.14.=⋯观察下列各式:请你找出其中规律,并将第(1)n n个等式写出来.15.已知m是实数,且m+1m-都是整数,那么m的值是.16.已知ABC∆的三边长分别为AB=BC=AC=其中7a>,则ABC ∆的面积为 .17.已知a ,b 是实数,且)1a b =,问a ,b 之间有怎样的关系: .18.阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘2122222(2)===, (1分母有理化可得 ;(2)关于x 的方程132x -的解是 .19.已知252a a +=-,225b b +=-,且a b ≠,则化简 .20.(1)(2)02(3)ππ--(3)-(4)21.已知a 为实数,且a +与1a-a 的值是 .三.解答题 22.计算:(1-(2)21)(3)解分式方程:1111x x x+=--;(4)已知:22112()1121x A x x x x -=-÷+-++;①当1x =时,先化简,再求值; ②代数式A 的值能不能等于3,并说明理由.23.已知:12y 的值.24.若x ,y 是实数,且13y =,求2(3-的值.25.已知:a 、b 、c 是ABC ∆26.化简求值:x =,y =的值.27.阅读下面的文字再回答问题甲、乙两人对题目:“化简并求值:2a 14a =”有不同的解答.甲的解答是:22213474a a a a a a a +==+-=-=;乙的解答是22211174a a a a a a a ==+-=+= (1)填空: 的解答是错误的;(2)解答错误的原因是未能正确运用二次根式的性质?请用含字母a 的式子表示这个性质(3)请你正确运用上述性质解决问题:当35x <<28.先阅读,再解答问题.恒等变形,是代数式求值的一个很重要的方法,利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.如当1x =时,求32122x x x --+的值,为解答这题,若直接把1x 代入所求的式中,进行计算,显然很麻烦.我们可以通过恒等变形,对本题进行解答.方法一 将条件变形.因1x =,得1x -=(1)x -的表达式.原式321(22)22x x x =--+21[(1)(1)3]22x x x x x =----+ 21[(1)3]22x x x =--+ 1(33)22x x =-+ 2=方法二 先将条件化成整式,再把等式两边同时平方,把无理数运算转化为有理数运算.由1x -=得2220x x --=,即,222x x -=,222x x =+. 原式21(22)22x x x x =+--+ 222x x x x =+--+2=请参以上的解决问题的思路和方法,解决以下问题: (1)若2310a a -+=,求32232531a a a --++的值;(2)已知2x =,求432295543x x x x x x ---+-+的值.29.(1(2)已知1x ,1y =,求代数式22x y xy +的值.30.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式了的平方,如23(1+.善于思考的小明进行了以下探索:若设222(22a m m n ++=++a 、b 、m 、n 均为整数), 则有222a m n =+,2b mn =.这样小明就找到了一种把类似a + 请你仿照小明的方法探索并解决下列问题:(1)若2(a m +=+,当a 、b 、m 、n 均为整数时,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)若2(a m +=+,且a 、m 、n 均为正整数,求a 的值;(3.人教版数学八年级下册单元测试能力提升卷《二次根式》答案详解版一.选择题1有意义,且关于x 的分式方程3211m x x +=--有正数解,则符合条件的整数m 的和是( ) A .7-B .6-C .5-D .4-【解析】去分母得,2(1)3m x -+-=, 解得,52m x +=, 关于x 的分式方程3211m x x +=--有正数解, ∴502m +>, 5m ∴>-,又1x =是增根,当1x =时,512m +=,即3m =- 3m ∴≠-,有意义,20m ∴-,2m ∴,因此52m -<且3m ≠-, m 为整数,m ∴可以为4-,2-,1-,0,1,2,其和为4-, 故选:D .2.若23a <<( ) A .52a -B .12a -C .25a -D .21a -【解析】23a <<,∴2(3)a a =---23a a =--+ 25a =-.故选:C .3.把四张形状大小完全相同宽为1cm 的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为,宽为4)cm 的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( )A .B .16cmC .4)cmD .4)cm【解析】设小长方形卡片的长为x ,宽为y ,根据题意得:2x y += 则图②中两块阴影部分周长和是2(42)2(4)4442162(2)1616()y x y x x y cm -+-=⨯--=-+=-.故选:B .4.已知10a -<<( )A .2aB .22a a+C .2a D .2a-【解析】10a -<<,∴==11()a a a a=--+2a =-.故选:D . 5.已知:a ,b =,则a 与b 的关系是( )A .0a b -=B .0a b +=C .1ab =D .22a b =【解析】分母有理化,可得2a =+,2b =(2(2a b ∴-=+--=A 选项错误;(2(24a b +=++=,故B 选项错误;(2(2431ab =+⨯=-=,故C 选项正确;22(2437a =+=+=+22(2437b ==-=-22a b ∴≠,故D 选项错误;故选:C .6.计算201820193)3)-的值为( )A .1B 3C 3D .3【解析】原式201820183)3)3)=⨯20183)]3)=⨯2018(109)3)=-⨯13)=⨯3=,故选:B .7.若实数x 满足|3|7x -=,化简2|4|x +( ) A .42x + B .42x --C .2-D .2【解析】|3|7x -,|3||4|7x x ∴-++=,43x∴-,2|4|x∴+2(4)|26|x x=+--2(4)(62)x x =+--42x=+,故选:A.8.如果22()1xf xx=+并且f表示当x12f==,f表示当x=值,即13f==,那么f f f f f f f+++++⋯++的值是()A.12n-B.32n-C.52n-D.12n+【解析】代入计算可得,1f f+=,1f f+=,⋯,1f f+=,所以,原式11(1)22n n=+-=-.故选:A.9()======A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错【解析】甲同学在计算时,将分子和分母都乘以是有可能等于0,此时变形后分式没有意义,所以甲同学的解法错误;乙同学的解法正确;故选:B .10.下列各式中,正确的是个数有( )2=a b =+= A .1个 B .2个C .3个D .0个【解析】2不能合并,故①错误,若1a =,2b =a b ≠+,故②错误,,故③正确,3a +=故选:B .11.若实数m 满足|4||3|1m m -=-+,那么下列四个式子中与(m -( )A B .C D .【解析】由|4||3|1m m -=-+得,3m ,40m ∴-<,30m -,(m ∴-故选:D . 二.填空题12a 为 2 .a 为2, 故答案为:2.13.若x ,y 4y =,则xy 的值为 2 .【解析】x ,y 4y =,210x ∴-=,4y =,则12x =,故1422xy =⨯=.故答案为:2.14.(2019秋•===,⋯观察下列各式:请你找出其中规律,并将第(1)n n (n =+===,⋯得(n =+(n =+15.已知m 是实数,且m +1m-都是整数,那么m 的值是 3-3- 【解析】22m +是整数,m a ∴=-,(其中a 为整数),∴1m ==,又1m -是整数,281a ∴-=,3a ∴=±,3m ∴=-或3m =--故答案为:3-3--.16.已知ABC ∆的三边长分别为AB =BC AC =其中7a >,则ABC ∆的面积为 168 .【解析】2AB ==BC =AC =如图,点(,24)A a ,(,24)B a --,(7,0)C11124247242168222ABC S OC OC ∆∴=⨯+⨯=⨯⨯⨯=故答案为:168.17.已知a ,b 是实数,且)1a b =,问a ,b 之间有怎样的关系: 0a b += .【解析】2(1)1a ab +=,等式的两边都乘以)a b a =①,等式的两边都乘以)b -a b +②,①+b a b a =,整理,得220a b += 所以0a b += 故答案为:0a b +=18.阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘2122222(2)===,(11 ;(2)关于x的方程132x -=+ 的解是 . 【解析】(11==1;(2)132x -=,132x -=,132x -=+⋯+,113122x -=+,611x -=-+6x =x =,故答案为:2.19.已知252a a +=-,225b b +=-,且a b ≠,则化简+=【解析】252a a +=-,225b b +=-,即2520a a ++=,2520b b ++=,且a b ≠,a ∴、b 可看做方程2520x x ++=的两不相等的实数根,则5a b +=-,2ab =,0a ∴<,0b <,则原式=-==(254)2-=-=故答案为:20.(1)(2)02(3)ππ--(3)-(4)【解析】(1)原式==(2)原式2(3)1ππ=---+231ππ=--++2=;(3)原式=3=;(4)原式322=-+3=.21.已知a 为实数,且a +1a-a 的值是 5-5-【解析】a +a ∴是含-1a -∴化简后为1a 为含5a ∴=-5--故答案为:5-5--. 三.解答题(共9小题) 22.计算:(1-(2)21)(3)解分式方程:1111x x x +=--; (4)已知:22112()1121x A x x x x -=-÷+-++;①当1x =+时,先化简,再求值; ②代数式A 的值能不能等于3,并说明理由.【解析】(1)原式11=-=-;(2)原式426=-=- (3)两边都乘以1x -,得:11x x -=-, 解得:1x =,检验:当1x =时,10x -=,1x ∴=是原分式方程的增根,则原分式方程无解;(4)①原式211(1)[](1)(1)(1)(1)2x x x x x x x -+=-+-+-- 22(1)(1)(1)2x x x x x -+=+--11x x +=-,当1x 时,原式===;②若代数式A 的值为3,则131x x +=-,解得2x =,当2x =时,原式没有意义,∴代数式A 的值不可能为3.23.已知:12y =的值. 【解析】180x -,18x810x -,18x,18x ∴=,12y =,∴原式4===.24.若x ,y 是实数,且13y =,求2(3-的值.【解析】x ,y 是实数,且13y ,410x ∴-且140x -,解得:14x =,13y ∴=,2(3∴-的值.2===18=25.已知:a 、b 、c 是ABC ∆【解析】a 、b 、c 是ABC ∆的三边长,a b c ∴+>,b c a +>,b a c +>,∴原式||||||a b c b c a c b a =++-+-+--()()a b c b c a b a c =++-+-++-a b c b c a b a c =++--+++- 3a b c =+-.26.化简求值:x =,y的值.【解析】22x ===-,2y ===,∴====27.阅读下面的文字再回答问题甲、乙两人对题目:“化简并求值:2a+14a =”有不同的解答.甲的解答是:22213474a a a a a a a +==+-=-=;乙的解答是22211174a a a a a a a =+-=+= (1)填空: 乙 的解答是错误的;(2)解答错误的原因是未能正确运用二次根式的性质?请用含字母a 的式子表示这个性质(3)请你正确运用上述性质解决问题:当35x <<【解析】(1)乙的做法错误.当14a =时,10a a ->1a a =-,故乙的做法错误.故答案为:乙(2)当0a <a -;(3)35x <<,70x ∴-<,250x ->.7252x x x =-+-=+28.先阅读,再解答问题.恒等变形,是代数式求值的一个很重要的方法,利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.如当1x =时,求32122x x x --+的值,为解答这题,若直接把1x 代入所求的式中,进行计算,显然很麻烦.我们可以通过恒等变形,对本题进行解答.方法一 将条件变形.因1x =,得1x -=(1)x -的表达式.原式321(22)22x x x =--+21[(1)(1)3]22x x x x x =----+ 21[(1)3]22x x x =--+ 1(33)22x x =-+ 2=方法二 先将条件化成整式,再把等式两边同时平方,把无理数运算转化为有理数运算.由1x -=得2220x x --=,即,222x x -=,222x x =+. 原式21(22)22x x x x =+--+ 222x x x x =+--+2=请参以上的解决问题的思路和方法,解决以下问题:(1)若2310a a -+=,求32232531a a a --++的值;(2)已知2x =,求432295543x x x x x x ---+-+的值. 【解析】(1)2310a a -+=,231a a ∴-=-,213a a +=,13a a +=,32232531a a a ∴--++2232(3)(3)333a a a a a a a =-+-+-+ 12(1)(1)33a a a =⨯-+-+-+12133a a a =--+-+ 14a a =-+ 34=-1=-;(2)2x =+,2x ∴-= ∴432295543x x x x x x ---+-+322(2)(2)7(2)19(2)33(2)1x x x x x x x x -+------=--======962-=32=.29.(1(2)已知1x ,1y =,求代数式22x y xy +的值.【解析】(1)原式92=-+7=;(2)22x y xy +()xy x y =+11)=+1=⨯=.30.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式了的平方,如23(1+.善于思考的小明进行了以下探索:若设222(22a m m n ++=++a 、b 、m 、n 均为整数),则有222a m n =+,2b mn =.这样小明就找到了一种把类似a +请你仿照小明的方法探索并解决下列问题:(1)若2(a m +=+,当a 、b 、m 、n 均为整数时,用含m 、n 的式子分别表示a 、b ,得:a = 227m n + ,b = ;(2)若2(a m +=+,且a 、m 、n 均为正整数,求a 的值;(3.【解析】(1)设222(72a m m n +=+=++a 、b 、m 、n 均为整数),则有227a m n =+,2b mn =;故答案为227m n +,2mn ;(2)62mn =,3mn ∴=, a 、m 、n 均为正整数,1m ∴=,3n =或3m =,1n =,当1m =,3n =时,22313928a m n =+=+⨯=;当3m =,1n =时,22393112a m n =+=+⨯=;即a 的值为为12或28;(3t =,则244t =8=+8=+81)=+6=+21)=,1t ∴=.。
二次根式单元 期末复习综合模拟测评学能测试试题
一、选择题1.下列计算正确的为( ).A .2(5)5-=-B .257+=C .64322+=+D .3622= 2.下列各式成立的是( )A .2(3)3-=B .633-=C .222()33-=-D .2332-=3.下列计算结果正确的是( )A .2+5=7B .3223-=C .2510⨯=D .25105= 4.当0x =时,二次根式42x -的值是( ) A .4 B .2 C .2D .0 5.二次根式23的值是( )A .-3B .3或-3C .9D .36.设a 为3535+--的小数部分,b 为633633+--的小数部分,则21b a-的值为( ) A .621+-B .621-+C .621--D .621++ 7.当119942x +=时,多项式()20193419971994x x --的值为( ). A .1 B .1- C .20022 D .20012-8.若a b >,则化简二次根式3a b -的正确结果是( )A .a ab --B .-a abC .a abD .-a ab9.下列二次根式中,与3是同类二次根式的是( )A .18B .13 C 24D 0.310.下列各式计算正确的是( )A .233=B ()255-=±C 523=D .3223=二、填空题11.将2(3)(0)3a a a a -<-化简的结果是___________________. 12.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72 [72]=8 [8]=2 [2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________.13.实数a ,b 在数轴上的位置如图所示,则化简()22b a b +-﹣|a +b |的结果是_____.14.设12211112S =++,22211123S =++,32211134S =++,设12...n S S S S =+++,则S=________________ (用含有n 的代数式表示,其中n 为正整数).15.当x =2+3时,式子x 2﹣4x +2017=________.16.把31a a-根号外的因式移入根号内,得________ 17.已知实数a 、b 、c 在数轴上的位置如图所示,化简2a ﹣|a ﹣c |+2()c b -﹣|﹣b |=_______.18222a a ++的最小值是______.19.14(1)(1)(2)(8)(9)x x x x x x +⋅⋅⋅=+++++的解是______. 20.化简:321x三、解答题21.1123124231372831-+- 533121【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法.【详解】1123124231372831-+-=1)2(3+⨯=121. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.已知m ,n 满足m 4n=3+. 【答案】12015 【解析】【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13, ∴原式=3-23+2012=12015. 【点睛】 本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.23.已知x=2,求代数式(7+x 2+(2)x【答案】2【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x 2=(2)2=7﹣则原式=(7﹣+(2=49﹣24.计算②)21-【答案】① 【分析】 ①根据二次根式的加减法则计算;②利用平方差、完全平方公式进行计算.【详解】解:①原式=②原式=(5-2-=【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.25.观察下列各式:11111122=+-=11111236=+-=111113412=+-= 请你根据上面三个等式提供的信息,猜想:(1=_____________ (2)请你按照上面每个等式反映的规律,写出用n (n 为正整数)表示的等式:______________;(3【答案】(1)1120;(211(1)n n =++;(3)1156,过程见解析 【分析】(1)仿照已知等式确定出所求即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,仿照上式得出结果即可.【详解】解:(1111114520=+-=; 故答案为:1120;(2111111(1)n n n n =+-=+++;11(1)n n =++;(31156== 【点睛】此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.26.计算:(1(2|a ﹣1|,其中1<a【答案】(1)1;(2)1【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简.【详解】解:(1-1=2-1=1(2)∵1<a ,a ﹣1=2﹣a +a ﹣1=1.【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.27.计算:(1)()202131)()2---+ (2【答案】(1)12;(2)【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可;(2)根据二次根式的加减乘除运算法则计算即可.【详解】(1)解:原式= 9-1+4=12(2)【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.28.已知长方形的长a =b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)11 4.23=⨯⨯=正方形的面积也为4. 2.=周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的性质、二次根式的加法以及混合运算的法则逐项进行判断即可.【详解】A5=,故A选项错误;B B选项错误;C=,故C选项错误;D2=,正确,故选D.【点睛】本题考查了二次根式的运算,熟练掌握各运算的运算法则是解题的关键.2.A解析:A【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】解:A3=,故A正确;B-不能合并,故B错误;C、22(3=,故C错误;D、=D错误;故选:A.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.3.C解析:C【分析】根据二次根式的加法、减法、乘法、分母有理化逐一进行计算判断即可.【详解】A不能合并,故A选项错误;B.-=B选项错误;C=D==D选项错误,故选C.【点睛】本题考查了二次根式的运算,分母有理化,熟练掌握各运算法则是解题的关键.4.B解析:B【分析】把x=0【详解】解:当x=0时,=2,故选:B.【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.5.D解析:D【分析】根据二次根式的性质进行计算即可.【详解】|3|3=.故选:D.【点睛】(0)0(0)(0)a aa aa a><⎧⎪===⎨⎪-⎩.6.B解析:B【分析】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后化简、运算、求值,即可解决问题.【详解】∴a,∴b ,∴21b a -, 故选:B .【点睛】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.7.B解析:B【解析】【分析】由原式得()2211994x -=,得244+11994x x -=,原式变形后再将244+11994x x -=代和可得出答案.【详解】∵12x +=, ()2211994x ∴-=,即24419930x x --=,()()32241997199444199344199311x x x x x x x ∴--=--+---=-.∴原式()201911=-=-.【点睛】本题难度较大,需要对要求的式子进行变形,学会转化. 8.D解析:D【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可;【详解】∴-a 3b≥0∵a>b,∴a>0,b<0a ab=-,故选:D.【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.9.B解析:B【详解】A不是同类二次根式,故此选项错误;BC=不是同类二次根式,故此选项错误;D不是同类二次根式,故此选项错误;故选B.10.A解析:A【分析】根据二次根式的性质和运算法则逐一计算可得.【详解】A、23=此选项计算正确,符合题意;B、5=此选项计算错误,不符合题意;C-不是同类二次根式,不能合并,此选项计算错误,不符合题意;D、-=故选:A.【点睛】本题主要考查了利用二次根式的性质化简以及二次根式的加减运算,准确利用二次根式的性质计算是解题的关键.二、填空题11..【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴(a-=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.12.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.13.3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b>0,a﹣b<0,a+b<0,∴原式=|解析:3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b >0,a ﹣b <0,a +b <0,∴原式=|b |+|a ﹣b |﹣|a +b |=b ﹣(a ﹣b )+(a +b )=b ﹣a +b +a +b=3b ,故答案为:3b【点睛】a =和绝对值的性质是解题的关键.14.【分析】先根据题目中提供的三个式子,分别计算的值,用含n 的式子表示其规律,再计算S 的值即可.【详解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案为:【点睛】本题 解析:221n n n ++ 【分析】n 的式子表示其规律,再计算S 的值即可.【详解】解:∵1221191=124S =++311122===+-;∵222114912336S =++=7111116623===+=+-;∵32211169134144S =++=1311111121234===+=+-; …… ∵()()()222222111111n n n S n n n n ++=++=++,()()2111111111n n n n n n n n ++===+=+-+++;∴...S =1111111112231n n =+-++-++-+…+ 111n n =+-+. 221n n n +=+ 故答案为:221n n n ++ 【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解. 15.2016【解析】把所求的式子化成(x ﹣2)2+2013然后代入式子计算,即可得到:x2﹣4x+2017=(x ﹣2)2+2013 =()2+2013=3+2013=2016.故答案是:2016.解析:2016【解析】把所求的式子化成(x ﹣2)2+2013然后代入式子计算,即可得到:x 2﹣4x+2017=(x﹣2)2+2013 =2+2013=3+2013=2016.故答案是:2016.点睛:此题主要考查了配方法的应用,解题关键是把式子配成完全平方,然后整体代入即可求解,考查了学生对整体思想的认识和应用,学生对整体思想不熟时出错的主要原因.16.【分析】根据被开方数大于等于零,可得出,再根据二次根式的性质进行计算即可.【详解】解:∵,∴,∴.故答案为:.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质解析:a 【分析】根据被开方数大于等于零,可得出0a <,再根据二次根式的性质进行计算即可.【详解】 解:∵310a-≥, ∴0a <,∴===故答案为:a . 【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质是解此题的关键.17.-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,∴∴﹣|a ﹣c|+﹣|﹣b|=解析:-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,0c a b <<<∴00.a c c b >,<|a﹣c﹣|﹣b|a a c cb b=||()||a a cbc b=()=a a c b c b=-2a.【点睛】本题考查二次根式的性质与化简和化简绝对值.在解决本题时需注意①对于任意实数a,都有=;②在化简绝对值时,绝对值内如果是一个多项式,要给化简后的结果带上括号.||a18.0【解析】【分析】先将化简为就能确定其最小值为1,再和1作差,即可求解。
人教版八年级数学下册第十六章 二次根式周周测1(16.1-16.2) 练习
第十六章 二次根式周周测1一 选择题1.已知3+x =0,则x 为( )A.x>3B.x<-3C. x=-3D. x 的值不能确定2.化简:21a -+的结果为( )A .4—2aB .0C .2a —4D .43.如果一个三角形的三边长分别为1.k .3,化简|32|8136472-++--k k k 结果是( )A .4k —5B .1C .13D .19—4k4.下列命题中,错误..的是( )A ,则x=5;B .若a (a≥0C π-3D 55.等式33-=-x x x x 成立的条件是( )A .x≠3B .x≥0C .x≥0且x≠3D .x>36.计算32642x x ÷的结果为( ) A .x 22 B .x 32 C .x 26 D .x 322 7.计算311÷312÷521的结果是( )A .27B .27 C D .78的结果是( )A .-3 B . C .-3 D .9.化简的结果是( ). A. B. C. D.10.估计418⨯的运算结果应在( ) A .1到2之间B .2到3之间C .3到4之间D .4到5之间 二 填空题11=___________.12.化简:32583⨯的结果为 .13.若x x x x --=--3232成立,则x 满足_______________.14.把a a 1-中根号外面的因式移到根号内的结果是 .15.若x y ==xy 的值是 .三 解答题16.已知1x x+=1x x -的值.17.在△ABC 中,BC 边上的高h=36cm ,它的面积恰好等于边长为23cm 的正方形面积。
则求BC 的长.18.将根号外的数移入根号内并化简:19.方老师想设计一个长方形纸片,已知长方形的长是cm ,宽是cm ,他又想设计一个面积与其相等的圆,请你帮助方老师求出圆的半径.20.(1)试比较与的大小; (2)你能比较与的大小吗?其中k 为正整数.21.若ABC 的三边长分别为,,a b c ,其中a 和b 269b b -=-,求边长c 的取值范围是多少?22.已知实数aa =,求22008a -的值是多少?第十六章 二次根式周周测1试题答案1. C2. C3. A4. B5. D6. C7. A8. C9. A 10. A11. -0.3 12. 240 13. 2≤x <314. 15. m-n16.22222211()8,1128,24.11()4,21122x x x xx x x x x xx xx x x x +=∴+=++=∴-+=∴-=-=±∴-=-=-即或 17.解:正方形面积为2=18(, 1·h ·BC=18,解得BC=设圆的半径为r ,则270r ππ=, 20.21.22.。
二次根式练习题30道加答案过程
二次根式练习题30道加答案过程1.当a______时,a?2有意义;当x______时,2.当x______时,1有意义. x?315.计算:??11有意义;当x______时,的值为1. 2?22x?xab?11 xx3.直接写出下列各式的结果: 49=______;2=______;2=______;2=______; 2=______;[2]2=______.4.下列各式中正确的是. ??42??2?4?? 27?35.下列各式中,一定是二次根式的是. ?32 2?x6.已知2x?3是二次根式,则x应满足的条件是.x>0 x≤0 x≥-x>-3.当x为何值时,下列式子有意义? ?x; ?x2;x2?1; 7?x.8.计算下列各式:29.若?2?成立,则x,y必须满足条件______.10. ?112______;=______;4324?________.49?36=______;0.81?0.25=______;24a?a3=______.11.下列计算正确的是. 2?3? 2??6?42??312.化简5?2,结果是.?2-10 10 13.如果??,那么.x≥0 x≥ 0≤x≤ x为任意实数 14.当x=-3时,x2的值是.± - 93a6a2b?13a2?492?572x2y716.已知三角形一边长为,这条边上的高为cm,求该三角形的面积.17.把下列各式化成最简二次根式:=______;=______; 45=______; 48x=______;23=______;412=______;a5b3=______; 112?3=______.18.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式:如:32与2. 2与______; 32与______; a 与______; 8a与______;6a2与______.19.?x?xx?x成立的条件是. x<1且x≠0 x>0且x≠1 0<x≤1 0<x<10.下列计算不正确...的是. 3116?72y3x?13x6xy 2??209x?2x21.下列根式中,不是..最简二次根式的是 A.B.C.12D.22.1625= 279=243= 27=5=23=34.当a=______时,最简二次根式与?可以合并.35.若a=+2,b=-2,则a+b=______,ab=______. 36.合并二次根式:?5x1111? ?0.125222?=______;23.把下列二次根式,27,,445,2,,,化简后,与2的被开方数相同的有_________;与的被开a?4ax=______. xx?y23xy37.下列各式中是最简二次根式的是. ab2?3方数相同的有______;与的被开方数相同的有______.4. ?313=______;7?548=______.25.化简后,与的被开方数相同的二次根式是.141626.下列说法正确的是.被开方数相同的二次根式可以合并与可以合并只有根指数为2的根式才能合并2与不能合并27.可以与合并的二次根式是.2aa127a3a28、9?7?5.29.??.30.?3??31.?.32.27?13?.33.12?3438.下列计算正确的是.2??5ab?5a??6?5x?4x?x39.等于.6?6??221 ??2240.?112? 1..42..3..44.? 5.2.46.4?6?3?2.47...78.49.2ba?3a3bab?.参考答案1.a?2,x?3..2.x>0,x=1.3.7;7;7;7;0.7;49.4.D.5.B.6.D..x≤1;x=0;x 是任意实数;x≥-7..18;6;15;6.9.x≥0且y≥0.10.;24;16. 42;0.45;11.B.12.A.13.B. 14.Ba2.b; 15.2;6;24;2x;2ab; 49;12;6xy32y. 16..217.2;;;4;632302?;; abab;18.;;;;19.C.20.C.21.C.453; ; ; 22; ; 53222;2;4.23.,2,,,422.24.3;?6.25.B.26.A. 7.C.28.2?329.30.1123??434.6.35.2,3.36.2;?.31.?32.?33.37.B.38.D.39.B. 042. 6?41.36?7.19?6143.7?44.2.45.84?6.446.?8.47.2?5..?1..?2.? 二次根式1.表示二次根式的条件是______.2.使x有意义的x的取值范围是______..若?有意义,则m =______.4.已知??y?4,则xy的平方根为______..当x=5时,在实数范围内没有意义的是. 1?x| 7?x2?3x4x?206.若|x?5|?2?0,则x-y的值是.--7.计算下列各式: ?2?1)2328.已知△ABC的三边长a、b、c均为整数,且a和b 满足a?2?b2?6b?9?0.试求△ABC的c边的长.9.已知数a,b,c在数轴上的位置如图所示:化简:a2?|a?c|?2?|?b|的结果是:______. 10.已知矩形的长为2,宽为,则面积为______cm2.11.比较大小:3______2;5______4;?22______?6. 12.如果nm是二次根式,那么m,n应该满足条件. mn>0m>0,n≥0 m≥0,n>0 mn≥0且m≠013.把4234根号外的因式移进根号内,结果等于. ? ?44414.计算:5?=______;8a3b.122ab2=______; ?2213?2;=______;3?=______.15.先化简,再求值:?a,其中a?5?12. 16.把下列各式中根号外的因式移到根号里面: a?1 a;?1y?1?17.已知a,b为实数,且??0,求a2008-b2008的值. 18.化简二次根式:17=______;18=______;?413=______. 19.计算下列各式,使得结果的分母中不含有二次根式: 1=______; 132______;2x2=______;y=______.0.已知≈1.732,则13≈______;27≈______.1.计算b1a?ab?ab等于.1ab2ab 11a2bab bab bab22.下列各式中,最简二次根式是.1x?yab x2? 5a2b23.?? ?a?ba?b24.已知:△ABC中,AB=AC,∠A=120°,BC?8,求△ABC的面积.25.观察规律:12?1?2?1,1?2?3?,12??2?3求值.122?7=______;1?=______;1n?1?n=______.26.238ab3与6ba2b无法合并,这种说法是______的.27.一个等腰三角形的两边长分别是2和3,则这个等腰三角形的周长为.2?4362?262?42?4或62?28.?.29.0??12?|5?|?230.a?a133a?12aa.31.2aba1a?bb?aa3b?2bab3.32.化简求值:3x1?4y?x?y,其中x=4,y=1x9.33.已知四边形ABCD四条边的长分别为,,.5和3,求它的周长.4.探究下面问题判断下列各式是否成立.你认为成立的,在括号内画“√”,否则画“×”.①2?23?22;②3?38?338;③4?4?4;④5?524?5524.1515你判断完以上各题后,发现了什么规律?请用含有n的式子将规律表示出来,并写出n的取值范围.请你用所学的数学知识说明你在中所写式子的正确性.35.设a??b??,则a2007b2008的值是______.36.的运算结果是. 0abab2abab37.下列计算正确的是. 2?a?ba??aba2?b2?a?ba?1a?a8.1?2.1?2?.100101.40.2?2.41.已知x??,y??,求值:x2-xy+y2.42.已知x+y=5,xy=3,求x?y的值.yx43.若b<0,化简?ab3的结果是______.44.若菱形的两条对角线长分别为和则此菱形的面积为______.45.若x??2,则代数式x2-4x+3的值是______.6.当a<2时,式子a?2,2?a,a?2,2中,有意义的有. 1个 2个 3个7.若a,b两数满足b<0<a且|b|>|a|,则下列各式有意义的是.a?bb?a a?b ab48abab5??ab?9.?8x4.50.已知:如图,直角梯形ABCD中,AD∥BC,∠A =90°,△BCD为等边三角形,且AD=2,求梯形ABCD的周长.二次根式基础练习一、选择题1.若3?m为二次根式,则m的取值为A.m≤3B.m<3C.m≥D.m>32.下列式子中二次根式的个数有⑴1;⑵3?3;⑶?x2?1;⑷8;⑸12;⑹3?x;⑺x2?2x?3.A.2个 B.3个 C.4个 D.5个3.当a?2a?2有意义时,a的取值范围是A.a≥B.a>C.a≠ D.a≠-24.下列计算正确的是①??4??9?6;②?4?9?6;③52?42?5?4??4?1;④52?42?52?42?1;A.1个 B.2个 C.3个 D.4个5.化简二次根式2?3得A.?B.5C.?D.306.对于二次根式x2?9,以下说法不正确的是A.它是一个正数 B.是一个无理数C.是最简二次根式D.它的最小值是37.把3aab分母有理化后得A.4bB.C.1 bD.b28.ax?by的有理化因式是A.x?yB.x?yC.ax?by D.ax?by9.下列二次根式中,最简二次根式是A.3a B.13C.D.10.计算:a1b?ab?ab等于A.1ab2abB.1ababC.1bab D.bab二、填空题11.当x___________时,?3x是二次根式.12.当x___________时,3?4x在实数范围内有意义. 13.比较大小:?32______?23.14.2ba?a18b?____________;252?242?__________.15.计算:3a?2b?___________.16b216.计算:ca2=_________________.17.当a=3时,则15?a2?___________.18.若x?2x?23?x?3?x成立,则x满足_____________________.三、解答题19.把下列各式写成平方差的形式,再分解因式:)计算:⑴?3?;⑵2?13?6;⑶131?23?;⑷x?10?1y?z.221.计算:⑴?220;⑵0.01?81; 0.25?144⑶12123ab1?2?1;⑷?.352bab22.把下列各式化成最简二次根式: abc27132?122 ⑴;⑵?252723.已知:x?24.参考答案:一、选择题 c3.a4b120?4,求x2?2的值.x1.A;2.C;3.B;4.A;5.B;6.B;7.D;8.C;9.D;10.A.二、填空题11.≤1314b;12.≤;13.<;14.,7;15.302ab;16.;17.32;a34318.2≤x<3.三、解答题19.⑴;⑵;⑶;⑷;20.⑴?243;⑵2;⑶?43;⑷10xyz; 33c2321.⑴?;⑵;⑶1;⑷;22.⑴33;⑵ ?2bc;23.18.4a420二次根式检测题一、选择题有意义,那么x的取值范围是 A.x?B.x?3C.x? D.x≥3 2.下列二次根式中,是最简二次根式的是新- 课-标- 第-一 -网 1.A.2xyB.ab23.1?2a,那么A.a<≥11 B.错误!24.下列二次根式,5.a的值为6.m?n的值是C.1D..D.8. )A.x?1B.x??1C.x≥1D.x≤?19.n的最小值是A. B.C. D.210.k、m、n为三整数,若错误!未找到引用源。
2020人教版八年级数学下册第16章二次根式单元综合评价试卷 含解析
2020人教版八年级数学下册第16章二次根式单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共10小题)1.若在实数范围内有意义,则a的取值范围是()A.a≥﹣B.a≤﹣C.a>﹣D.a<﹣2.下列各式属于最简二次根式的是()A.B.C.D.3.下列式子运算正确的是()A.B.C.D.4.如果=2a﹣1,那么()A.a B.a≤C.a D.a≥5.下列根式中,不能与合并的是()A.B.C.D.6.实数a、b在数轴上对应的位置如图,化简等于()A.b﹣1B.2a﹣b﹣1C.1﹣b D.b+1﹣2a7.不改变根式的大小,把根号外的因式移入根号内,正确的是()A.B.C.﹣D.﹣8.已知x=2﹣,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.2+D.2﹣9.对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2C.2D.2010.已知方程+3=,则此方程的正整数解的组数是()A.1B.2C.3D.4二.填空题(共6小题)11.若2<a<3,则=.12.若两个最简二次根式与可以合并,则a=.13.若y=++2,则x y=.14.若规定符号“*”的意义是a*b=ab﹣b2,则2*()的值是.15.已知:m+n=10,mn=9,则=.16.已知|a﹣2007|+=a,则a﹣20072的值是.三.解答题(共9小题)17.计算:(1);(2);18.计算(1);(2).19.(1)(+)(﹣)﹣(+3)2 (2)÷(﹣)﹣×+.20.已知:a=﹣2,b=+2,分别求下列代数式的值:(1)a2b﹣ab2 (2)a2+ab+b2.21.已知一个三角形的三边长分别为、6、2x.(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.22.观察下列等式:①=1×3;②=3×5;③=5×7;…根据上述规律解决下列问题:(1)完成第④个等式:=×;(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.23.古希腊的几何学家海伦,约公元50年,在数学史上以解决几何测量问题而闻名.在他的著作《度量》一书中,给出了如下公式:若一个三角形的三边分别为a,b,c,记p=(a+b+c),那么三角形的面积为:S=(海伦公式).我国南宋时期数学家秦九韶(约1202﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:S=.海伦公式和秦九韶公式实质上是同一个公式,所以我们一般也称此公式为海伦﹣秦九韶公式.若△ABC的三边长为5,6,7,△DEF的三边长为,,,请利用上面的两个公式分别求出△ABC和△DEF的面积.24.有这样一类题目:将化简,如果你能找到两个数m、n,使记m2+n2=a,并且mn=,则将a±2,变成m2+n2±2mn=(m±n)2开方,从而使得化简.例如:化简.因为3+2=1+2+2=12+()2+2=(1+)2所以==1+仿照上例化简下列各式:(1);(2).25.斐波那契(约1170﹣1250,意大利数学家)数列是按某种规律排列的一列数,他发现该数列中的每个正整数都可以用无理数的形式表示,如第n(n为正整数)个数a n可表示为[()n﹣()n].(1)计算第一个数a1;(2)计算第二个数a2;(3)证明连续三个数之间a n﹣1,a n,a n+1存在以下关系:a n+1﹣a n=a n﹣1(n≥2);(4)写出斐波那契数列中的前8个数.参考答案与试题解析一.选择题(共10小题)1.若在实数范围内有意义,则a的取值范围是()A.a≥﹣B.a≤﹣C.a>﹣D.a<﹣【解答】解:在实数范围内有意义,则2a+3≥0,解得:a≥﹣.故选:A.2.下列各式属于最简二次根式的是()A.B.C.D.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.3.下列式子运算正确的是()A.B.C.D.【解答】解:A、和不是同类二次根式,不能计算,故A错误;B、=2,故B错误;C、=,故C错误;D、=2﹣+2+=4,故D正确.故选:D.4.如果=2a﹣1,那么()A.a B.a≤C.a D.a≥【解答】解:∵=|1﹣2a|=2a﹣1,∴1﹣2a≤0,解得:a≥.故选:D.5.下列根式中,不能与合并的是()A.B.C.D.【解答】解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项合题意;D、,本选项不合题意;故选:C.6.实数a、b在数轴上对应的位置如图,化简等于()A.b﹣1B.2a﹣b﹣1C.1﹣b D.b+1﹣2a 【解答】解:由数轴知b﹣a<0、0<a<1,∴1﹣a>0,则原式=|b﹣a|﹣|1﹣a|=a﹣b﹣(1﹣a)=a﹣b﹣1+a=2a﹣b﹣1,故选:B.7.不改变根式的大小,把根号外的因式移入根号内,正确的是()A.B.C.﹣D.﹣【解答】解:由题意知:1﹣a>0,所以,a<1,∴=﹣=﹣,故选:D.8.已知x=2﹣,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.2+D.2﹣【解答】解:把x=2﹣代入代数式(7+4)x2+(2+)x+得:=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+.故选:C.9.对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2C.2D.20【解答】解:∵3>2,∴3※2=﹣,∵8<12,∴8※12=+=2×(+),∴(3※2)×(8※12)=(﹣)×2×(+)=2.故选:B.10.已知方程+3=,则此方程的正整数解的组数是()A.1B.2C.3D.4【解答】解:∵=10,x,y为正整数,∴,化为最简根式应与为同类根式,只能有以下三种情况:+3=+9=4+6=7+3=10.∴,,,共有三组解.故选:C.二.填空题(共6小题)11.若2<a<3,则=a﹣2.【解答】解:∵2<a<3,∴=a﹣2.故答案为:a﹣2.12.若两个最简二次根式与可以合并,则a=3.【解答】解:由题意得,2a=9﹣a,解得a=3.故答案为:3.13.若y=++2,则x y=9.【解答】解:y=有意义,必须x﹣3≥0,3﹣x≥0,解得:x=3,代入得:y=0+0+2=2,∴x y=32=9.故答案为:9.14.若规定符号“*”的意义是a*b=ab﹣b2,则2*()的值是4﹣5.【解答】解:由题意得:2*()=2×(﹣1)﹣=4﹣5.故答案为:4﹣5.15.已知:m+n=10,mn=9,则=±.【解答】解:∵m+n=10,mn=9,∴()2====,∴=±.故答案是:.16.已知|a﹣2007|+=a,则a﹣20072的值是2008.【解答】解:∵|a﹣2007|+=a,∴a≥2008.∴a﹣2007+=a,=2007,两边同平方,得a﹣2008=20072,∴a﹣20072=2008.三.解答题(共9小题)17.计算:(1);(2).【解答】解:(1)原式=2﹣3+=0;(2)原式=2﹣4﹣3+=3﹣7.18.计算(1);(2);【解答】解:(1)原式=2×÷3=;(2)原式=÷×3=9.19.(1)(+)(﹣)﹣(+3)2.(2)÷(﹣)﹣×+.【解答】解:(1)原式=7﹣5﹣(3+6+18)=2﹣21﹣6=﹣19﹣6;(2)原式=﹣﹣+2=﹣4﹣+2=﹣4+.20.已知:a=﹣2,b=+2,分别求下列代数式的值:(1)a2b﹣ab2(2)a2+ab+b2.【解答】解:(1)∵a=﹣2,b=+2,∴a2b﹣ab2=ab(a﹣b)=(﹣2)(+2)(﹣2)=[﹣22]•(﹣4)=(﹣1)(﹣4)=4;(2)∵a=﹣2,b=+2,∴a2+ab+b2=(a+b)2﹣ab=(﹣2++2)2﹣(﹣2)()=(2﹣[﹣22]=12+1=13.21.已知一个三角形的三边长分别为、6、2x.(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.【解答】解:(1)周长=+6+2x=2+3+=7.(2)当x=4时,周长=7×=14.(答案不唯一).22.观察下列等式:①=1×3;②=3×5;③=5×7;…根据上述规律解决下列问题:(1)完成第④个等式:=7×9;(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.【解答】解:(1)∵①==1×3;②==3×5;③==5×7;…∴==7×9;故答案为:7,9;(2)由(1)知,第n个等式=(2n﹣1)(2n+1),证明如下:.23.古希腊的几何学家海伦,约公元50年,在数学史上以解决几何测量问题而闻名.在他的著作《度量》一书中,给出了如下公式:若一个三角形的三边分别为a,b,c,记p=(a+b+c),那么三角形的面积为:S=(海伦公式).我国南宋时期数学家秦九韶(约1202﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:S=.海伦公式和秦九韶公式实质上是同一个公式,所以我们一般也称此公式为海伦﹣秦九韶公式.若△ABC的三边长为5,6,7,△DEF的三边长为,,,请利用上面的两个公式分别求出△ABC和△DEF的面积.【解答】解:若△ABC的三边长为5,6,7时,p=(5+6+7)=9,S△ABC==6,△DEF的三边长为,,时,S△DEF==.24.有这样一类题目:将化简,如果你能找到两个数m、n,使记m2+n2=a,并且mn=,则将a±2,变成m2+n2±2mn=(m±n)2开方,从而使得化简.例如:化简.因为3+2=1+2+2=12+()2+2=(1+)2所以==1+仿照上例化简下列各式:(1);(2).【解答】解:(1)原式===2+.(2)原式===.25.斐波那契(约1170﹣1250,意大利数学家)数列是按某种规律排列的一列数,他发现该数列中的每个正整数都可以用无理数的形式表示,如第n(n为正整数)个数a n可表示为[()n﹣()n].(1)计算第一个数a1;(2)计算第二个数a2;(3)证明连续三个数之间a n﹣1,a n,a n+1存在以下关系:a n+1﹣a n=a n﹣1(n≥2);(4)写出斐波那契数列中的前8个数.【解答】解:(1)a1=[()﹣()]=×=1;(2)a2=[()2﹣()2]=×=1;(3)证明:a n+1﹣a n=[()n+1﹣()n+1]﹣[()n﹣()n]=[()n+1﹣()n]﹣[()n+1﹣()n]=[()n(﹣1)]﹣[()n(﹣1)]=[()n()]﹣[()n(﹣)]=[()n﹣1﹣()n﹣1];(4)斐波那契数列中的前8个数是1,1,2,3,5,8,13,21.。
【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)
人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C. 9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c ) A. 2a -2c B. -2c C. 2b D.2a11、已知a ,b a 、b ,则下列表示正确的是( ) A. 0.3ab B. 3ab C. 0.1ab D.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是( )C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)a a b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+同理可得:32321-=+从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB 二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1; 18、±3三、解答题 19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+;四、解答题21、22、; 23、2017; 24、-a 五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0. (3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版八年级数学下册 第十六章 二次根式 单元测试题(含答案)一、选择题。
人教版八年级下册数学第十六章 二次根式测试题含答案
人教版八年级下册数学第十六章测试卷一、选择题(每小题3分,共30分)1.下列计算正确的是( )A .532=+B .2553=-C .3226=⨯D .326=÷2.如果a 为任意实数, 下列各式中一定有意义的是( )AB CD 3.下列式子中,属于最简二次根式的是( )A .9B .7C .20D .31 4.下列二次根式,不能与12合并的是( )A .48B .18C .311D .-755.下列计算正确的是( )A =B 1==C .(21-+=D=6.已知ab <0,则b a 2化简后为( )A .b aB . b a -C .b a -D .b a --7.在△ABC 中,BC =,BC 上的高为cm ,则△ABC 的面积为( )A . 2B .cm 2C . 2D .28.( )ABCD9.|3﹣y |=0( )A .9B .C .D .﹣910.实数a 在数轴上的位置如图所示,则错误!未找到引用源。
化简后为( )A . 7B . -7C . 错误!未找到引用源。
D .无法确定第10题图二、填空题(每小题3分,共30分)11.当6-=x 时,二次根式73x -的值为12.小红说:“因为4=2,所以4不是二次根式.”你认为小红的说法对吗?________ (填对或错)13.若代数式2-x x有意义,则x 的取值范围是_____________ 14.已知y =44x x -+-+3,则(y ﹣x )2017= .15.当a = 时,最简二次根式2a -与102a -是同类二次根式;16.把1m m--根号外的因式移到根号内,则得 . 17.如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数是3和-1,则点C 所对应的实数是 .第17题图18.已知a 、b 、c 是△ABC ()2940a b --=,则第三边c 的取值范围是____________.19.已知a ,b 18a b +=a +b = .20. 2 2 6 22 10 ⋅⋅⋅、、、、 (第n 个数). 三、解答题(共60分)21.(6分)化简(1(2)60061243--22.(6分)(1)(2)先化简,在求值:22()a b ab b a a a--÷-,其中1a =,1b =.23.(6分)求值: (1)已知a =21,b =41,求b a b --ba b +的值.(2)已知x =251-,求x 2-x +5的值.24.(6分)x 为偶数,求(1+x .25.(8分)一个三角形的三边长分别为,54.(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值.26.(8分)在一块边长为m 的正方形土地中,修建了一个边长为m 的正方形养鱼池,问:剩余部分的面积是多少?27.(10分)我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax +b =0,其中a 、b 为有理数,x 为无理数,那么a =0且b =0.运用上述知识,解决下列问题:(1)如果032)2(=++-b a ,其中a 、b 为有理数,那么a = ,b = ; (2)如果5)21()22(=--+b a ,其中a 、b 为有理数,求2a b +的值.28.(10分)小明在学习二次根式后,发现一些含根号的式子可以写成另一个含根号的式子的平方,如(231+=+,善于思考的小明进行了如下探索:设(2a m +=+,(其中a 、b 、m 、n 均为正整数)则有2222a m n +=+222,2a m n b mn ∴=+=这样,小明找到了把部分a +. 请你仿照小明的方法探索并解决问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b 得,a = ,b =(2)若(2a m +=+且a 、b 、m 、n 均为正整数,求a 的值.参考答案1.C2.C3.B【解析】最简二次根式是指不能继续化简的二次根式,A 、原式=3;B 为最简二次根式;C 、原式=25;D 、原式=334.B【解析】本题首先将所有的二次根式的化简,如果化简后被开方数相同,则能够进行合并.3212=;3448=;2318= 5.A .【解析】A ==B ==;故该选项错误;C 、(2451+=-=-,故该选项错误;D 212==;故该选项错误.故选A . 6.B【解析】根据题意可得:a <0,b >0,则原式=a .7.C【解析】由三角形面积公式得11422ABC S BC h ==⨯==△(cm 2). 8.B【解析】二次根式的乘除法运算属于同级运算,按照从左到右的运算顺序运算即可. 9.C【解析】根据非负数的性质列出算式,分别求出x 、y 的值,根据二次根式的性质计算即可. 解:由题意得,x ﹣12=0,3﹣y =0,解得,x =12,y =3, 则﹣=2﹣=,故选:C . 10.A 【解析】二次根式的性质为:⎩⎨⎧≤-≥=)0()0(2a a a a a a ,根据数轴可得:a -4 0,a -11 0,则原式=114-+-a a =a -4+11-a =7.11.5. 【解析】当6x =-时,()73736255x -=--==.12.错【解析】二次根式是指含有的式子.13.x ≥0且x ≠2【解析】二次根式的被开方数为非负数,分式的分母不为零.根据性质可得:x ≥0且x -2≠0,解得:x ≥0且x ≠2. 14.﹣1【解析】直接利用二次根式有意义的条件得出x ,y 的值,进而代入求出答案. 解:∵y =++3,∴x =4,y =3,则(y ﹣x )2017=(3﹣4)2017=﹣1. 故答案为:﹣1. 15.4.【解析】根据同类二次根式的定义可得,a -2=10-2a ,解得a =4. 故答案为:4. 16.m -【解析】根据题意可得:m <0,所以211()()m m m m--=--=- 17.23+1.【解析】解:设点C 所对应的实数是x .则有x (-1),解得x =1. 18.5<c <13【解析】根据题意可得:a -9=0,b -4=0,解得:a =9,b =4,则a -b <c <a +b ,即5<c <13. 19.10.==,x 、y 都是正整数,是同类二次根式, ∴28a b ==⎧⎨⎩或82b a ==⎧⎨⎩, ∴a +b =10.20【解析】的倍数,的1倍,依此类推,第n21.(1)-1;(2 【解析】(1)利用平方差公式计算;(2)先将各式化简成最简二次根式,然后合并同类二次根式即可. 解:(1)原式=223-2)()( =2-3 =-1 (2)60061243--= 61066166-- =6)10616(-- =6625-22.(12【解析】(1)先根据绝对值、负整数指数幂、二次根式等知识点分别进行计算,最后进行加减运算即可.(2)先化简分式,再把a 、b 的值代入化简的式子即可求值. 解:(1)原式=34-+1.(2)原式=222a b a ab b a a--+÷=2()a b aa ab -⨯- =1a b-把1a =,1b =代入上式得:12=.23.(1)2;(2)7+【解析】(1)首先根据二次根式的计算法则将所求的二次根式进行化简,然后将a 和b 的值代入化简后的式子进行计算;(2)首先根据二次根式的化简法则将x 进行化简,然后将x 的值代入所求的代数式进行计算. 解:(1)原式=))(()()(b a b a b a b b a b +---+=b a b ab b ab -+-+=b a b -2.当a =21,b =41时, 原式=4121412-⨯=2. (2)∵x =-251-=4525-+=25+.∴=x 2-x +5=(5+2)2-(5+2)+5=5+45+4-5-2+5=7+45. 24.6a ≥0,b >0时才能成立. 因此得到9-x ≥0且x -6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意得9060x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩ ∴6<x ≤9 ∵x 为偶数 ∴x =8∴原式=(1+x=(1+x=(1+x∴当x =86.25.(1(2)当x =20或当x 等)【解析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并解:(1)周长=+54;(2)当x =2025=(或当x =455=等)262.【解析】解:22-====m 2).答:剩余部分的面积是m 2.27.(1)a=2,b=-3;(2)5 3 -.【解析】(1),b是有理数,则a﹣2,+3都是有理数,根据如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.即可确定(2)首先把已知的式子化成ax+b=0,(其中a、b为有理数,x为无理数)的形式,根据a=0,b=0即可求解.解:(1)2,﹣3;(2)整理,得(a+b)2+(2a﹣b﹣5)=0.∵a、b为有理数,∴250a ba b+=⎧⎨--=⎩,解得:5353ab⎧=⎪⎪⎨⎪=-⎪⎩,∴523a b+=-.第11 页共11 页。
二次根式单元测试卷及参考答案和评分标准
2-4丌
十
y2+6y十
VZ+2+13=o
新华师大版九年级 上册数学摸底试卷 第 8页
^卷
新华师大版九年级上册数学摸底试卷 (一
第 21章 二次根式单元测试 卷
姓名 时间 :90分 钟
满分 H⒛ 分
)
^卷 总分
一 、选择题 (每 小题 3分 ,共 sO分 )
工 2有 意义,则 夕 1,若 二次根式√ ¢ 的取值范围是
(A)曰 ≥2 (B)夕 ≤2 (C)夕 >2 (D)曰 ≠2
2-4J+4的 结果是 <2,则 化简√ 2,已 知艿 丌
求 兰+芏 的值 。
+1,
… ………………… …… …………・ 8分 ⒉ ,(9分 )一 个 三 角形 的三 边长分 别 为 5捂 ,:湎 ・
y
艿
解rr艿 =VΞ ~19y=VΞ +1
,∶
礓
;
∴ v=陋 -1肛 +θ =2-1=1
l=2刁 Ξ × +y=VΞ -1+VΞ 十
(1)求 它 的周长
(2)请 你 给 一 个 适 当 的 丌 值 ,使 它 的周
艮 式 则化 简 二 次本
、F劳
(A)扳
(:)w匚
7 ∶
(C)-扳
(D)-V匚
7 ∶
二 、填空题 (每 小题 3分 ,共 15分 )
11,计 算 :2丬
十 乇 )2= 硕
, . VΠ
,
12,化 简:~哂i-刁
t=
、 13.比 较大∷ :⒉ 厅 犭
2Vt,则 这个直角三角形的周长 14.己 知直角三角形两条直角边边长分别是让 娇口
九年级数学(上)第二十一章《二次根式》测试题及参考答案
九年级数学(上)《二次根式》测试题一、选择题(每小题3分,共30分)1、使式子1-x 2+x 有意义X 的取值范围是( )A 、X ≤1B 、X ≤1且X ≠-2C 、X ≠-2D X <1且X ≠-22、若代数式x x -+212有意义,则x 的取值范围是( )A 、21->x B 、4±≠x C 、0≥x D 、40≠≥x x 且 3、下列运算正确的是( ) A 、15.05.15.05.122=-=-B 、15.025.02=⨯= ≥C 、5)5(2-=-x xD 、x x x 22-=-4、下列根式中,最简二次根式是( )A 、a 25B 、22b a +C 、2aD 、5.05、已知:直角三角形的一条直角边为9,斜边长为10,则另一条直角边长为( )A 1B 19C 19D 296、若x=-3,则 ︳1-(1+X 2) ︳=( )A 1B -1C 3D -37、24n 是整数,则正整数n的最小值是( )A 4B 5C 6D 78、对于二次根式92+x ,以下说法不正确的是( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是39、下列说法错误是………………………………( ) A.962+-a a 是最简二次根式 B.4是二次根式 C.22b a +是一个非负数 D.162+x 的最小值是410、下列各式中与6是同类二次根式的是 ( ) A.36 B.12 C.32D.18二、填空题(每小题3分,共18分)11、使式子4-X 无意义的x取值是12、已知:X=2.5, 化简(X-2)2+ ︳X-4 ︳的结果是13、10xy .30yx (x>0,y>0)= 14、已知4322+-+-=x x y ,则,=xy . 15、三角形的三边长分别是20 ㎝ 45 ㎝ 40 ㎝,则这个三角形的周长为 16、观察下列各式:322322+=⨯;833833+=⨯;15441544+=⨯;……则依次第四个式子是 ;用)2(≥n n 的等式表达你所观察得到的规律应是 。
湖北省武汉市光谷实验中学2022-2023学年度八年级下册数学周测试卷(含手写图片答案)
武汉市光谷实验2022-2023学年度八下数学周测3.7一、选择题(每小题3分,共24分)1、若是二次根式,则应满足的条件是( )A .均为非负数B .同号C .D .2、二次根式的值是( )A .B .C .D .03是同类二次根式的是( )A.B.C. D. 4、下列说法正确的是()A.若,则a<0 B . C . D .5的平方根是5、化简的结果是( )A .B .C .D .6、已知,化简二次根式的正确结果是( )A .B .C .D .7、把根号外的因式移到根号内,得( )A . B . C . D .8、下列各式中,一定能成立的是( )A .B .C .=x-1D .二.填空题(每小题3分,共15分)9、已知代数式在实数范围内有意义,则的取值范围是__________ 10,则x 的取值范围是.11、当 时,二次根式取最小值。
12、一直角三角形的两边长分别为3和4.则第三边的长为___________x y 2-y y x -2ba b a ,b a ,b a ,00>,b a ≥0≥b a 13)3(2++m m 233222a a -=20,2>=a a a 则若4284b a b a =5)0(||2<<--y x x y x y -b a <b a 3-ab a --ab a -ab a ab a -mm 1-m m -m --m -22)5.2()5.2(=-22)(a a =122+-x x 3392+⋅-=-x x x xx 11+-x 2x =-=x 1+x13、如图,有一块直角三角形纸板ABC,两直角边AC=6cm,BC=8cm.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且点C 落到点E 处,则CD 等于___________三 计算(每小题4分)14(1) (2) (3)(4)(5)四综合(8+8+8+8+9)15、先化简,再求值:,其中.16、已知,求的值.17、先化简,再求值:,其中.18、已知:,求(1)的值. (2)的值19如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=3,BD=4,求AD 的长.638⨯+)(-÷(0)121()12(2)12(---⨯÷+⎪⎭⎫ ⎝⎛--+÷--25223x x x x 35-=x 12,8=-=+ab b a +⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+y y x xy y x y 36436327,32==y x 132-=x 12+-x x 87223--+x x x 20212021)310()310(+⋅-+-。
二次根式练习题及答案
二次根式练习题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(二次根式练习题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为二次根式练习题及答案的全部内容。
二次根式练习题及答案(一)一、选择题(每小题2分,共24分)1.(2012·武汉中考)若在实数范围内有意义,则的取值范围是()A。
B. C. D。
2.在下列二次根式中,的取值范围是≥的是()A. B. C. D。
3.如果,那么()A。
< B。
≤ C.> D。
≥4。
下列二次根式,不能与合并的是()A. B。
C. D.5. 如果最简二次根式与能够合并,那么的值为()A.2B.3C.4 D。
56。
(2011·四川凉山中考)已知,则的值为()A. B. C。
D.7。
下列各式计算正确的是()A. B.C. D.8.等式成立的条件是( )A. B。
C. D。
9。
下列运算正确的是()A。
B。
C。
D.10.已知是整数,则正整数的最小值是()A。
4B。
5 C。
6D。
211。
(2012·山东潍坊中考)如果代数式有意义,那么的取值范围是()A. B. C。
D。
12.(2012·湖南永州中考)下列说法正确的是()A。
B。
C。
不等式的解集为D.当时,反比例函数的函数值随自变量取值的增大而减小二、填空题(每小题3分,共18分)13。
化简:;=_________.14.比较大小:3;______。
15.(1)(2012·吉林中考)计算________;(2)(2012·山东临沂中考)计算.16.已知为两个连续的整数,且,则.17.若实数满足,则的值为.18.(2011·四川凉山中考)已知为有理数,分别表示的整数部分和小数部分,且,则。
二次根式单元测试题及参考答案
新华师大版九年级上册数学第21章 二次根式单元测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 若二次根式15-x 有意义,则x 的取值范围是 【 】(A )51>x (B )x ≥51(C )x ≤51 (D )51<x2. 化简()221-的结果是 【 】(A )12- (B )21- (C )()12-±(D )()21-±3. 下列二次根式中是最简二次根式的是 【 】 (A )32(B )2 (C )9 (D )12 4. 下列运算正确的是 【 】 (A )x x x 32=+ (B )3223=- (C )3232=+ (D )25188=+5. 下列二次根式中能与32合并的是 【 】 (A )8 (B )31(C )18 (D )9 6. 等式1313+-=+-x x x x 成立的x 的取值范围在数轴上可表示为 【 】 A. B. C. D.7. 已知a 为整数,且53<<a ,则a 等于 【 】 (A )1 (B )2 (C )3 (D )48. 计算()5452-515-÷⎪⎪⎭⎫⎝⎛的结果为 【 】(A )5 (B )5- (C )7 (D )7-9. 已知21,21-=+=n m ,则代数式mn n m 322-+的值为 【 】 (A )9 (B )3± (C )5 (D )3 10. 已知0>xy ,则化简二次根式2x yx -的结果是 【 】 (A )y (B )y - (C )y -(D )y --二、填空题(每小题3分,共15分)11. 计算:=--124_________. 12. 化简:()=--7177_________.13. 菱形的两条对角线的长分别为()1210+cm 和()3210-cm,则该菱形的面积为_________cm 2.14. 12与最简二次根式15+a 是同类二次根式,则=a _________.15. 对于任意的正数n m ,定义运算※为:m ※⎪⎩⎪⎨⎧<+≥-=nm n m nm n m n ,,,计算(3※2)⨯(8※12)的结果为_________.三、解答题(共75分)16. 计算:(每小题4分,共8分)(1)()1212362-⎪⎭⎫⎝⎛--+⨯-;(2)()()()2217373---+.17. 先化简,再求值:(每小题8分,共16分)(1)44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ,其中3=x ;(2)11112-÷⎪⎭⎫⎝⎛-+x x x ,其中12+=x .18.(10分)(1)要使x 21-在实数范围内有意义,求x 的取值范围; (2)已知实数y x ,满足条件:()211221-+-+-=x x x y ,求()100y x +的值.19.(10分)在二次根式b ax +中,当1=x 时,其值为2;当6=x 时,其值为3. (1)求使该二次根式有意义的x 的取值范围; (2)当15=x 时,求该二次根式的值.20.(10分)一个三角形的三边长分别为xx x x 5445,2021,55. (1)求它的周长;(2)请你给一个适当的x 值,使它的周长为整数,并求出此时三角形的周长.21.(10分)已知c b a ,,满足()023582=-+-+-c b a . (1)求c b a ,,的值;(2)以c b a ,,为边能否构成三角形?若能,求出该三角形的周长;若不能,请说明理由.22.(11分)规律探究: 观察下列各式:()()()()()().;34434343431;23323232321;12212121211 -=-+-=+-=-+-=+-=-+-=+(1)请利用上面的规律直接写出100991+的结果;(2)请用含n (n 为正整数)的代数式表示上述规律,并证明;(3)计算:()20171201720161431321211+⨯⎪⎭⎫⎝⎛++++++++ .新华师大版九年级上册数学摸底试卷(一)第21章 二次根式单元测试卷C 卷参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11.2312. 7 13. 44 14. 2 15. 2 三、解答题(共75分)16. 计算:(每小题4分,共8分)(1)()1212362-⎪⎭⎫⎝⎛--+⨯-;解:原式23212--+-=33332-=--=(2)()()()2217373---+. 解:原式()222179+---=1222232-=+-=17. 先化简,再求值:(每小题8分,共16分)(1)44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ,其中3=x ;解:44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x()()xx x x x x x x x x 3223222212=-⋅-=--÷-+-+=当3=x 时原式333=.(2)11112-÷⎪⎭⎫⎝⎛-+x x x ,其中12+=x .解:11112-÷⎪⎭⎫⎝⎛-+x x x ()()()()x x x x x x x xx x 11111111-+⋅+-=-+÷+--=()xx -=--=11当12+=x 时原式2121-=--=.18.(10分)(1)要使x 21-在实数范围内有意义,求x 的取值范围; (2)已知实数y x ,满足条件:()211221-+-+-=x x x y ,求()100y x +的值.解:(1)由二次根式有意义的条件可知:x 21-≥0解之得:x ≤21; ……………………………………3分 (2)∵x 21-≥0,12-x ≥0∴x ≤21,x ≥21 ∴21=x……………………………………6分∴21211210022=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-++=y……………………………………8分 ∴()112121100100100==⎪⎭⎫⎝⎛+=+y x .……………………………………10分 19.(10分)在二次根式b ax +中,当1=x 时,其值为2;当6=x 时,其值为3. (1)求使该二次根式有意义的x 的取值范围;(2)当15=x 时,求该二次根式的值.解:(1)由题意可得:⎪⎩⎪⎨⎧=+=+362b a b a ∴⎩⎨⎧=+=+964b a b a ……………………………………4分解之得:⎩⎨⎧==31b a……………………………………6分 ∴该二次根式为3+x 由二次根式有意义的条件可知:3+x ≥0 解之得:x ≥3-;……………………………………8分 (2)当15=x 时23183153==+=+x .……………………………………10分 20.(10分)一个三角形的三边长分别为xx x x 5445,2021,55. (1)求它的周长;(2)请你给一个适当的x 值,使它的周长为整数,并求出此时三角形的周长. 解:xx x x C 5445202155++=∆ x x x 52155++=x 525=; ……………………………………7分 (2)答案不唯一.……………………………………10分 21.(10分)已知c b a ,,满足()023582=-+-+-c b a .(1)求c b a ,,的值;(2)以c b a ,,为边能否构成三角形?若能,求出该三角形的周长;若不能,请说明理由. 解:(1)∵()023582=-+-+-c b a()28-a ≥0,5-b ≥0,23-c ≥0∴023,05,08=-=-=-c b a ∴23,5,228====c b a ; ……………………………………7分 (2)能.……………………………8分52523522+=++=∆C .……………………………………10分 22.(11分) 解:(1)11310-;……………………………………2分 (2)n n n n -+=++111……………………………………4分证明:()()nn nn n n n n -+++-+=++11111 nn n n nn -+=-+-+=111……………………………………7分 (3) 2016.(过程略)……………………………………11分。
单元测试卷(内容:二次根式及勾股定理)
单元测试卷(内容:二次根式及勾股定理)一.选择题(共14小题)1.下列各式中,正确的是()A.B.C.D.2.下列计算正确的是()A.B.C.D.3.我国是最早了解勾股定理的国家之一.据《周髀算经》记载,勾股定理的公式与证明是在商代由商高发现的,故又称之为“商高定理”;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,并给出了另外一个证明,下面四幅图中,不能证明勾股定理的是()A.B.C.D.4.如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.公路l走向是南偏西45°B.公路l走向是北偏东45°C.从点P向北走3km后,再向西走3km到达lD.从点P向北偏西45°走3km到达l5.若直角三角形的两边长分别是5和12,则它的斜边长是()A.13B.13或C.D.12或136.如图,直线AO⊥OB,垂足为O,线段AO=3,BO=4,以点A为圆心,AB的长为半径画弧,交直线AO于点C.则OC的长为()A.5B.4C.3D.27.如图,在△ABC中,∠BAC=90°,BC=5,以AB,AC为边作正方形,这两个正方形的面积和为()A.5B.9C.16D.258.如图,在四边形ABCD中,∠DAB=∠BCD=90°,分别以四边形的四条边为边向外作四个正方形,若S1+S4=135,S3=49,则S2=()A.184B.86C.119D.819.已知△ABC的三个内角分别为∠A、∠B、∠C,三边分别为a、b、c,下列条件不能判定△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:7B.∠A=∠B﹣∠CC.a:b:c=2:3:4D.b2=(a+c)(a﹣c)10.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16的直吸管露在罐外部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.4≤a≤5B.3≤a≤4C.2≤a≤3D.1≤a≤211.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.下列所给数据中,不能判断△ABC 是直角三角形的是()A.a=,b=2,c=1B.∠A﹣∠B=∠CC.(a﹣b)(a+b)=c2D.∠A:∠B:∠C=2:5:812.如图,正方形ABCD的顶点A,D在数轴上,且点A表示的数为﹣1,点D表示的数为0,用圆规在数轴上截取AE=AC,则点E所表示的数为()A.1B.1﹣C.﹣1D.13.如图,在Rt△ABC中,∠B=90°,作AC的中垂线1交BC于点D,连接AD,若AB =3,BC=9,则BD的长为()A.6B.5C.4D.314.若3、4、a为勾股数,则a的值为()A.B.5C.5或7D.5或二.填空题(共4小题)15.若|2017﹣m|+=m,则m﹣20172=.16.阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘以同一个适当的代数式,使分母不含根号.例如:,(1)将分母有理化可得;(2)关于x的方程3x﹣=+++…+的解是.17.已知x=+1,y=﹣1,则x2﹣5xy+y2+6=.18.把a中根号外面的因式移到根号内的结果是.三.解答题(共15小题)19.若x,y为实数,且y=++.求﹣的值.20.阅读下列解题过程:===﹣1;===﹣.请回答下列问题:(1)归纳:观察上面的解题过程,请直接写出下列各式的结果.①=;②=;(2)应用:求++++…+的值;(3)拓广:﹣+﹣=.21.已知:a=﹣1,求÷(2﹣)的值.22.阅读材料:把根式进行化简,若能找到两个数m、n,是m2+n2=x且mn=,则把x±2变成m2+n2±2mn=(m±n)2开方,从而使得化简.例如:化简解:∵3+2=1+2+2=12+()2+2×1×=(1+)2∴==1+;请你仿照上面的方法,化简下列各式:(1);(2).23.已知a=,b=,求a2+3ab+b2﹣a+b的值24.计算:(1)÷+2×﹣(2+)2(2)(﹣)﹣2﹣(﹣1)2012×﹣+25.计算:(1)﹣(3+);(2)(+1)(﹣1)+﹣()0.26.计算:(1)(2﹣6+3)÷2;(2)(2+5)(2﹣5)﹣(﹣)2.27.已知x=+,y=﹣,求:(1)+的值;(2)2x2+6xy+2y2的值.28.计算与求值.已知a=,求﹣的值.29.观察下列各式,发现规律:=2;=3;=4;…(1)填空:=,=;(2)计算(写出计算过程):;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.30.如图,在平静的湖面上,有一支芦苇AB,高出水面部分AC为1米,一阵风吹来,芦苇被吹到一边,芦苇顶端被水面淹没(即AB=DB),一支芦苇移动的水平距离为3米,则湖水深度BC为所少米?31.如图,在△ABC中,∠BAC=90°,AB=15,AC=20,AD⊥BC,垂足为D.(1)△ABC的面积是.(2)求BC、AD的长.32.如图,某人从点A划船横渡一条河,由于水流的影响,实际上岸地点C离欲到达点B 有45m,已知他在水中实际划了75m,求该河流的宽度AB.33.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,AC+BC=,AB=2.(1)求△ABC的面积;(2)求CD的长.。
初二数学《二次根式》全章测试含答案
《二次根式》全章检测班级____________姓名_________________成绩_____________一、选择题:(每小题3分,共24分)1.若32-x 是二次根式,则x 应满足的条件是( ) A. 23>x B. 23≥x C. 23<x D. 23≤x 2.下列二次根式中,是最简二次根式的是( ) A .2.0B .x1C .22b a - D .a 43.下列变形中,正确的是( ) A. (23)2=2×3=6 B.2)52(-=-52C.169+=169+ D.)4()9(-⨯-=49⨯4.若a a -=-1)1(2,则a 的取值范围是( ) A .1a >B .1≥aC .1a <D .1≤a5.化简后,与2的被开方数相同的二次根式是( )A.12 B. 18 C.41D. 32 6.实数a 在数轴上的位置如图所示,化简2)2(1-+-a a =( ) A .23a - B. 3- C .1 D .1- 7.下列各式中,一定成立的是( ) A.2)(b a +=a +b B. 22)1(+a =a 2+1C.12-a =1+a ·1-a D.b a =b1ab8.等腰三角形两边分别为32和25,那么这个三角形的周长是( )1- 0 12aA.2534+B.21034+C.2534+或21032+D.21032+ 二、填空题:(每小题3分,共24分) 9.使1-x x有意义的x 的取值范围是_______________ 10.若0442=+-++y y y x ,则xy 的值为________ 11.若0<n ,则化简3227m n =12.在实数范围内分解因式:94-x =_____________________13.当21<x <1时,122+-x x -241x x +-=______________ 14.如果最简二次根式a b b -3和22+-a b 是同类二次根式,则ab =_____________15.若322--+-=x x y ,则y x 的值为__________16.已知b a 、分别是5的整数部分和小数部分,则ba 1-=_____________ 三、解答题:17.计算:(每小题5分,共30分) (1) 3118122++- (2)213675÷⨯(3) 2524(35)36-++(4) (33+22)(23-32)(5) 12112(322)(223)(336)+-+-(6)322327633aa a a a -+18.先化简,再求值:(每小题6分,共12分) (1)(6x y x +33xy y )-(4y xy+36xy ),其中x =32,y =3(2) 已知x 为偶数,且a a a a a a a aa a a 39612-1,3131222-+---+--=--求的值四、解答题:(每小题5分,共10分) 19.已知4,4=-=+ab b a ,求aba b a b +的值20.先观察规律:, (454)51,34341,23231,12121-=+-=--=+-=+再利用这一规律计算下列式子的值:)12002)(200120021 (3)41231121(+++++++++参考答案:1 2 3 4 5 6 7 8 BCDDBCBD910 111210≠≥x x 且-4 m mn 33-)3)(3)(3(2-++x x x13141516232+-x 1 81 5- 17. (1)33524- (2) 10 (3) 465230-++ (4) 636- (5) 30202- (6) 33a a18. (1) 223,--xy (2) 23,11a a +-19. 4,2--ab 20. 2001。
成都市第八中学八年级数学下册第一单元《二次根式》检测卷(含答案解析)
一、选择题1.已知123a =+,23b =-,a 与b 大小关系是( ) A .a b ≥ B .a b ≤ C .a b < D .a b = 2.以下关于8的说法,错误的是( )A .8是无理数B .822=±C .283<<D .822÷= 3.若式子x 2-有意义,则x 的取值范围为( )A .x 2≥B .x 2≠C .x 2>D .x 2< 4.已知y =1110x x -+-+,那么252x y x y +-的值等于( ) A .1 B .78 C .54- D .45- 5.一个等腰三角形两边的长分别为75和18,则这个三角形的周长为( ) A .10332+B .5362+C .10332+或5362+D .无法确定 6.下列计算正确的是( )A .42=±B .22423x x x +=C .()326328a b a b -=-D .()235x x x -=÷ 7.已知,在ABC 中,D 是BC 边上一点,30,45ABC ADC ∠=∠=.若D 是BC 边的中点,则ACB ∠的度数为( )A .95°B .100°C .105°D .110° 8.下列各式中,错误的是( ) A .2(3)3-= B .233-=-C .2(3)3=D .2(3)3-=- 9.如图为实数a ,b 在数轴上的位置,则222()()()b a a b +---=( )A .-aB .bC .0D .a-b10.下列二次根式能与22 )A .12B .24C .18D .6 11.若()()4545x x x x --=-⋅-则x 可取的整数值有( ). A .1个 B .2个C .3个D .4个 12.下列四个式子中,与1(2021)2021a a --的值相等的是( ) A .2021a - B .2021a -- C .2021a - D .2021a --二、填空题13.把四张形状大小完全相同宽为1cm 的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为21cm ,宽为4cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是_________.1413a 13b ,那么2(2)b a +-的值是________. 15.82_____. 16.已知a 、b 为有理数,m 、n 分别表示5721amn bn +=,则3a b +=_________.17.计算:2131|32|2218-⎛⎫--+= ⎪⎝⎭_________. 18.若1<x <4()()2241x x --=___________19.210|11|(12)0a b c -+-++=,则a b c ++的平方根是______.20.()9920020211(0.25)2232(2)(3)22π-⨯--+--÷-⨯+-=∣∣_________ 三、解答题 21.先化简,再求值:(221111a a a ++--)÷a ,其中a 2. 22.计算:(183(26)27+(2(÷; (3)52311x y x y +=⎧⎨+=⎩; (4)4(2)153123x y y x +=-⎧⎪+⎨=-⎪⎩. 23.计算:(1+ (2)24.先化简,再求值:(1+12x +)÷293x x --,其中x2. 25.我们规定用(a ,b)表示一对数对.给出如下定义:记m =,n = a > 0,b > 0),将(m ,n )与(n ,m )称为数对(a ,b )的一对“对称数对”. 例如:(4,1)的一对“对称数对”为(12,1)和(1,12); (1)数对(9,3)的一对“对称数对”是 ;(2)若数对(3,y )的一对“对称数对”相同,则y 的值为 ;(3)若数对(x ,2)的一个“对称数对”1),则x 的值为 ;(4)若数对(a ,b )的一个“对称数对”ab 的值.26.观察,计算,判断:(只填写符号:>,<,=)(1)①当2a =,2b =时,2a b +②当3a =,3b =时,2a b +; ③当4a =,1b =时,2a b +④当5a =,3b =时,2a b +(2)写出关于2a b +______探究证明:(提示:20≥) (3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,写出镜框周长的最小值为______.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】 根据分母有理化将a =进行整理即可求解. 【详解】解:2a =+=2=-又2b =-a b ∴=.故选:D .【点睛】此题主要考查分母有理化的应用,正确掌握分母有理化是解题关键.2.B解析:B 【分析】表示求8的算术平方根,而算术平方根是求一个非负数的正的平方根,据此可以得到结果.【详解】A A 正确.B 、8表示求8的算术平方根,而算术平方根是求一个非负数的正的平方根,=B 错误.C 、4823<∴<.故C 正确.D 2÷===.故D 正确.故选B .【点睛】 本题考查了算术平方根的定义、二次根式的除法及无理数的有关概念,正确的理解算术平方根是解决此题的关键.3.A解析:A【分析】因为二次根式的被开方数是非负数,所以x 20-≥,据此可以求得x 的取值范围.【详解】则x20-≥,解得:x2≥.故选:A【点睛】(a0≥)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.D解析:D【分析】先根据二次根式的性质求出x、y的值,再代入代数式计算即可.【详解】解:因为y+10,可知10 10 xx-≥⎧⎨-≥⎩,即11xx≥⎧⎨≤⎩,解得x=1,所以y=10;所以,252x yx y+-=210520+-=﹣1215=﹣45.故选:D.【点睛】本题考查了二次根式的意义.解决此题的关键是要先根据二次根式意义求出x,y的值再代入所求的代数式中求值.5.A解析:A【分析】满足三角形成立的条件,最后对三边求和即可.【详解】若,则周长为+若=,∴,此三角形不存在,∴这个三角形的周长为故选:A .【点睛】本题考查等腰三角形的性质,涉及化简二次根式,熟练掌握等腰三角形的性质以及三角形成立的条件是解题的关键.6.C解析:C【分析】A 选项利用二次根式的化简判断即可;B 利用合并同类项的运算判断即可;C 利用积的乘方判断即可;D 利用同底数幂的除法判断即可;【详解】A 2= ,不符合二次根式的化简,故该选项错误;B 、22223x x x += ,不符合合并同类项的运算,故该选项错误;C 、()326328a ba b -=-,故该选项正确; D 、()523x x x -÷=- ,不符合同底数幂的除法,故该选项错误;故选:C .【点睛】本题考查了二次根式的化简,合并同类项,整数指数幂,正确掌握公式是解题的关键; 7.C解析:C【分析】过A 作AE ⊥BC 于E ,在AE 上取点F ,连接CF ,使得∠CFE=30°,设DE=x ,即可得出CE=DE-CD=(2x ,进而得到AE=(2CE ,再根据CE ,CF=2CE ,得到AF=AE-EF=2CE=CF ,即可得到∠ACE 的度数,从而得到结果.【详解】解:如图所示,过A 作AE ⊥BC 于E ,在AE 上取点F ,连接CF ,使得∠CFE=30°, 设DE=x ,∵∠ABE=30°,∠ADE=45°,∴AE=x ,x ,BD=CD=)1x ,∴CE=x-)1x=(2x ,∴AECE =2+,即AE=(2+CE ,又∵Rt △CEF 中,,CF=2CE ,∴AF=AE-EF=2CE=CF ,∴∠FAC=∠FCA=12∠CFE=15°, ∴∠ACE=∠ACF+∠ECF=15°+60°=75°,∴∠ACB=105°,故选C .【点睛】本题主要考查了含30°角的直角三角形的性质以及等腰直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.8.D解析:D【分析】根据算术平方根的意义,可得答案.【详解】解:A 、2(3)3=,故A 计算正确,不符合题意;B 、233-=-,故B 计算正确,不符合题意;C 、23)3=,故C 计算正确,不符合题意;D 2(3)3-=,故D 计算错误,符合题意;故选:D .【点睛】2a (a≥0).9.C解析:C【分析】由数轴可得a 、b 和a-b 的正负,再由二次根式性质去根号、合并同类项即可.【详解】根据实数a 、b 在数轴上的位置得知:-1<a <0<b <1,∴a-b <0,则原式=b-a-(b-a )=b-a-b+a=0.故选:C .【点睛】考查了数轴及二次根式的化简,解题关键是由数轴得出a 、b 和a-b 的正负情况. 10.C解析:C【分析】根据同类二次根式的定义可得答案.【详解】A =,不能与B =合并,故本选项不符合题意;C =合并,故本选项符合题意;D ,不能与合并,故本选项不符合题意.故选:C .【点睛】本题主要考查了同类二次根式的定义,即二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.11.B解析:B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.12.D解析:D【分析】根据二次根式有意义的条件可得出20210a ->,可得20210a -<,由此可将2021a -变形得出答案.【详解】由题意得:20210a ->,可得20210a -<,∴((2021a a ---== 故选:D .【点睛】本题考查了二次根式的性质与化简,关键是由等式可确定出20210a ->.二、填空题13.16cm 【分析】根据题意分别列出关系式得出关于图②中两块阴影部分的长和宽再利用周长公式时行计算去括号合并即可得到结果【详解】解:设小长方形卡片的长为xcm 小长方形卡片的宽为根据题意得:x =-2则图② 解析:16cm【分析】根据题意分别列出关系式,得出关于图②中两块阴影部分的长和宽,再利用周长公式时行计算,去括号合并即可得到结果.【详解】解:设小长方形卡片的长为xcm ,小长方形卡片的宽为1cm ,根据题意得: x 2,则图②-2和2,宽分别为:2和4-x =6∴图②中两块阴影部分的周长和是:22+2)+2(2+6)=16-16(cm ).故答案为:16cm .【点睛】本题主要考查了二次根式的应用,在解题时要根据题意结合图形得出两块阴影部分的长和宽是解题的关键.14.【分析】直接利用的取值范围得出ab 的值进而求出答案【详解】解:故答案为:【点睛】本题主要考查了估算无理数的大小正确得出ab 的值是解题关键解析:11-【分析】a 、b 的值,进而求出答案.【详解】 解:3134<<,3a ∴=,3b ∴=-,()))22223231311b a ∴+-=+-=-=-故答案为:11-【点睛】本题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键.15.【分析】先分母有理化然后化简后合并即可【详解】解:=2﹣=故答案为:【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式然后合并同类二次根式即可在二次根式的混合运算中如能结合题目特点灵.【分析】先分母有理化,然后化简后合并即可.【详解】=【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.4【分析】只需先对估算出大小从而求出其整数部分a 其小数部分用表示再分别代入进行计算;【详解】∵2<<3∴2<<3∴m=2n==把m=2n=代入∴化简得:∴且解得:∴故答案为:4【点睛】本题考查了无理解析:4【分析】只需先对5-a ,其小数部分用5a -表示,再分别代入21amn bn +=进行计算;【详解】∵2<3,∴2<5-3,∴ m=2,n=52=3,把m=2,n=3代入21amn bn +=∴ ((22331a b -+-=,化简得:())616261a b a b ++= ,∴ 6161a b +=且260a b +=,解得: 1.5a =,0.5b =-∴331.50.54a b +=⨯-=,故答案为:4.【点睛】本题考查了无理数大小的估算和二次根式的混合运算,能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键;17.【分析】根据负整数指数幂定义绝对值的性质二次根式的除法计算法则依次计算再计算加减法即可【详解】解:原式==故答案为:【点睛】此题考查计算能力正确掌握负整数指数幂定义绝对值的性质二次根式的除法计算法则解析:2+【分析】根据负整数指数幂定义,绝对值的性质,二次根式的除法计算法则依次计算,再计算加减法即可.【详解】解:原式=42-+2+故答案为:2+.【点睛】此题考查计算能力,正确掌握负整数指数幂定义,绝对值的性质,二次根式的除法计算法则是解题的关键.18.【分析】原式利用二次根式的性质得到然后利用的范围去绝对值后合并即可【详解】∵原式故答案为:【点睛】本题考查了二次根式的性质与化简:熟练掌握二次根式的性质是解决此类问题的关键解析:52x -【分析】 原式利用二次根式的性质得到41x x ---,然后利用x 的范围去绝对值后合并即可.【详解】∵14x <<, 原式41x x =---()()41x x =----4152x x x =-+-+=-.故答案为:52x -.【点睛】本题考查了二次根式的性质与化简:熟练掌握二次根式的性质是解决此类问题的关键. 19.【分析】根据绝对值二次根式和偶次方的非负性得到abc 的值利用平方根的定义即可求解【详解】解:∵∴即∴∴的平方根是故答案为:【点睛】本题考查绝对值二次根式和偶次方的非负性以及平方根的定义掌握平方根的定 解析:3±【分析】根据绝对值、二次根式和偶次方的非负性得到a 、b 、c 的值,利用平方根的定义即可求解.【详解】解:∵2|11|(12)0b c -++=,∴100a -=,110b -=,120c +=,即10a =,11b =,12c =-,∴()1011129a b c ++=++-=,∴a b c ++的平方根是3±,故答案为:3±.【点睛】本题考查绝对值、二次根式和偶次方的非负性,以及平方根的定义,掌握平方根的定义是解题的关键.20.【分析】分别利用积的乘方逆运算绝对值的性质有理数的运算法则二次根式的性质计算各项即可求解【详解】解:故答案为:【点睛】本题考查实数的混合运算掌握积的乘方逆运算绝对值的性质有理数的运算法则二次根式的性 解析:π7-【分析】分别利用积的乘方逆运算、绝对值的性质、有理数的运算法则、二次根式的性质计算各项,即可求解.【详解】解:()992002011(0.25)2232(2)22-⨯--+--÷-⨯∣∣ ()9910011(0.25)491π35222⎛⎫=-⨯-+--⨯-⨯+- ⎪⎝⎭ ()991(0.254)410π4532⎛⎫=-⨯⨯-+-⨯-+- ⎪⎝⎭()14π32255=-⨯-++- π7=-,故答案为:π7-.【点睛】本题考查实数的混合运算,掌握积的乘方逆运算、绝对值的性质、有理数的运算法则、二次根式的性质是解题的关键.三、解答题21.211a -,1 【分析】 将括号中的第一项分母分解因式,第二项提取−1,找出最简公分母,通分后利用同分母分式的加法法则计算,同时根据除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,合并约分后得到最简结果,然后将a 的值代入即可求出原式的值.【详解】(221111a a a ++--)÷a =[(1)(1)(1)(1211)a a a a a a ++-+-+-]1a ⨯ =21111()(1)a a a a a +-+--⨯ =211a -, 当a=1121=-. 【点睛】 此题主要考查了分式的混合运算以及化简求值问题,二次根式的混合运算,选择正确的计算方法,首先进行通分降低了计算量是解决问题的关键.22.(1;(2;(3)41x y =⎧⎨=⎩;(4)31x y =-⎧⎨=⎩【分析】(1)先进行二次根式的乘法运算,然后化简后合并即可;(2)利用二次根式的乘除法则运算;(3)利用加减消元法解方程组;(4)先把原方程组整理后,然后利用加减消元法解方程组.【详解】(1++=;(2(÷ =-16; (3)52311x y x y +=⎧⎨+=⎩①②, ②﹣①×2得3y ﹣2y=1,解得y=1,把y=1代入①得x +1=5,解得x=4,所以方程组的解为41 xy=⎧⎨=⎩;(4)原方程组整理为457 233x yx y+=-⎧⎨+=-⎩①②,①﹣②×2得﹣y=﹣1,解得y=1,把y=1代入②得2x+3=﹣3,解得x=﹣3,所以原方程组的解为31xy=-⎧⎨=⎩.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组.23.(1)6;(2)7.【分析】(1)利用二次根式的除法运算计算后,再分别计算算术平方根,相加、减即可;(2)利用二次根式的除法运算计算后,再分别计算算术平方根,相加、减即可.【详解】解:(1)原式=3-2+5 =6;(2==4-3+6 =7.【点睛】0,0)a b=≥>是解题关键.24.12x+,【分析】首先计算括号里面的加法,再算括号外的除法,化简后,再代入x的值可得答案.【详解】解:原式=(22xx+++12x+)•3(3)(3)xx x-+-,=32x x ++•3(3)(3)x x x -+-, =12x +,当x 2【点睛】此题主要考查了分式的化简求值,关键是掌握计算顺序和计算法则,正确进行化简.25.(1)1(3与1)3, ;(2)13;(3)1 ;(4)16ab =或6ab = 【分析】(1)根据“对称数对”的定义代入计算即可;(2)先将数对(3,y)的一对“对称数对”表示出来,根据“数对(3,y)的一对“对称数对”相同”,可得y 的值;(3)先将数对(x ,2)的一对“对称数对”表示出来,根据“数对(x ,2)的一个“对称数对”是1)”,即可得出x 的值;(4)先将数对(a ,b)的一对“对称数对”表示出来,根据“数对(a ,b)的一个“对称数对”是分两种情况进行讨论,分别得出a ,b 的值,然后得出ab 的值.【详解】解:(1)由题意得13=,∴数对(9,3)的一对“对称数对”是1(3与1)3,;(2)由题意得,∴数对(3,y )的一对“对称数对”为3⎛ ⎝与3⎭,∵数对(3,y )的一对“对称数对”相同,∴= ∴13y =;(3)∵数对(x ,2)的一对“对称数对”是与而数对(x ,2)的一个“对称数对”,1), ∴1=,∴x=1;(4)∵数对(a ,b)的一对“对称数对”是与,而数对(a ,b)的一个“对称数对”是,∴==1,183a b == ∴11863ab =⨯=;==1,318a b ==, ∴113186ab =⨯=, 综上所述,16ab =或6ab =. 【点睛】 本题考查了实数的运算,“对称数对”的定义.理解题意是解题的关键.26.(1)①=;②=;③>;④>;(2)2a b +≥,证明见解析;(3)4. 【分析】(1)①、②、③、④直接将a 、b 的值代入计算即可;(2)由20≥可得0a b -≥,最后移项即可说明;(3)当镜框为正方形时,周长最小,即然后根据正方形的面积求出边长即可解答.【详解】(1)①当2a =,2b =时,2a b +=2,则2a b +②当3a =,3b =时,2a b +=3,则2a b +③当4a =,1b =时,2a b +=2.5,则2a b +④当5a =,3b =时,2a b +=42a b + 故:①=,②=,③>,④>;(2)2a b +≥ 20≥,∴0a b -≥,整理得,2a b +≥;(3)当镜框为正方形时,周长最小∵镜框的面积为1∴镜框的边长为1,即周长为4.【点睛】本题主要考查了二次根式的应用,确定出两个算式的大小关系并灵活运用这种关系成为解答本题的关键.。
八下二次根式勾股定理平行四边形性质判定周测
周测试题4一、选择题(每小题2分,共24分)1.下列各式中①a ;②1+b ; ③2a ; ④32+a ; ⑤12-x ;⑥122++x x 一定是二次根式的有( )个。
A . 1 个 B. 2个 C. 3个 D. 4个2.若3962=+-+b b b ,则b 的值为( )A .0B .0或1C .b ≤3D .b ≥33. 已知已知:20n 是整数,则满足条件的最小正整数n 的值是( )A .0B .1C .2D .54.能使等式22x x x x =--成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2xD. 2x ≥ 5. 化简6151+的结果为( ) A .3011 B .33030 C .30330 D .1130 6.化简)22(28+-得( )A .—2B .22-C .2D . 224-7.如果数轴上表示a 、b 两个数的点都在原点的左侧,且a 在b 的左侧,则的值为2)(b a b a ++-( )A .b 2-B .b 2C .a 2D .a 2-8. 若△ABC 中,AB=13,AC=15,高AD=12,则BC 的长是( )A. 14B. 4C. 14或4D. 以上都不对9. 如图,四边形ABCD 中,AB=3cm ,BC=4cm ,CD=12cm ,DA=13cm ,且∠ABC=90°,则四边形ABCD 的面积是( )C. D. 无法确定A. 84B. 3610. 如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C'处,BC'交AD 于E ,AD=8,AB=4,则DE 的长为( )A. 3B. 4C. 5D. 611、下列说法正确的是( ).A 平行四边形的对角互补,邻角相等B 平行四边形的对角线相等C 两组对边分别平行的图形是平行四边形D 平行四边形的对边平行且相等12、如图,平行四边形ABCD 的周长是28cm ,△ABC 的周长是22cm ,则AC 的长为 ( )A 6c mB 12cmC 4cmD 8cm二、填空题(每小题2分,共12分)13.二次根式31-x 有意义的条件是 。
专题02 二次根式的加减法压轴题七种模型全攻略(原卷版)
专题02二次根式的加减法压轴题七种模型全攻略
【考点导航】
目录
【典型例题】 (1)
【考点一同类二次根式】 (1)
【考点二二次根式的加减运算】 (1)
【考点三二次根式的混合运算】 (2)
【考点四比较二次根式的大小】 (2)
【考点五已知字母的值,化简求值】 (2)
【考点六二次根式中的分母有理化】 (3)
【考点七二次根式的应用】 (5)
【过关检测】 (6)
【典型例题】
【考点一同类二次根式】
【变式训练】
【考点二二次根式的加减运算】
【变式训练】
【考点三二次根式的混合运算】
【变式训练】
【考点四比较二次根式的大小】
【变式训练】
【考点五已知字母的值,化简求值】
(1)代数式xy的值;
x y x+的值.
(2)代数式32
【变式训练】
【考点六二次根式中的分母有理化】
【变式训练】
【考点七二次根式的应用】
【变式训练】
(1)较小正方形的边长为
(2)设两处空白部分的面积分别为
①1S__________2S;(填
S S+=-,则正方形内部较大的正方形面积为
②若122306
2.(2023春·河南商丘·八年级校联考阶段练习)濮阳市指出要全力做好国土绿化工作,加快推进森林濮阳生态建设.现濮阳某公园有一块长方形绿地
图中阴影部分),长为(
(1)求长方形ABCD的周长;
(2)图片中的空白部分另作他用,需要50元/平方米的定期维护费,求定期维护的总费用.
【过关检测】
一、选择题
二、填空题
三、解答题
(填或)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二次根式》周测二
一.选择题(每小题3分,共30分)
1. 下列二次根式中,最简二次根式是( )
A. 51
B. 0.5
C. 5
D. 50
2.式子1x +中,自变量x 的取值范围是( )
A.x ≥1
B. x ≥1-
C. x ≤1
D.x ≤1-
3.下列计算正确的是( )
A.
822-= B. 235+= C. 236⨯= D. 824÷=
4.如果一个三角形的面积为12,一边长为3,则这条边上的高是( )
A.4
B.2
C.
2 D. 22 5.化简82(22)-+得( )
A .2- B.
22- C.2 D. 422- 6. 8n 是整数,正整数n 的最小值是( )
A.4
B.3
C.2
D.0
7.若3的整数部分为x ,小数部分为y ,则3x y -的值是( )
A. 333-
B. 3
C.1
D.3 8. 2013(23)+与2014(23)-乘积的结果是( )
A. 23+ B 23-. C. 23-+ D. 23--
9.若2(22)2a b +=+(a 、b 为有理数),则b a +等于( )
A.2
B. 3
C. 8
D.10
10.如图,正方形ABCD 中,点E 是BC 边的中点,连接DE ,过点C 作CF ⊥DE 交BD 于点G ,交AB 于点H ,连接BF ,以下结论:①AH =BH ;②∠BFH =45°;③HF +EF =2BF ;④HC =5AH ,其
中结论正确的序号是( )
A 只有①② B.只有①③ C.只有①②③ D.①②③④
二.填空题(每小题3分,共18分)
11、方程21x =的解是____________.
12.已知4=+y x ,2=xy ,则x y y x
+的值是_________. 13.小明做数学题时,发现11122-=;222255-=;33331010-=;44441717-=;……;按此规律,若88a a b b
-=(a 、b 为正整数),则=+b a ___________. 14.矩形的长为(201313)+cm ,宽为 (201313)-cm ,则其面积为____________ 2cm
16. 如图,四边形ABCD 中,AB =AC =AD ,E 是CB 的中点,AE =EC , ∠BAC =3∠DBC ,BD =6266+,则AB =_________.
三.解答题(共6题,共60分)
17.(本题6分)计算:
21(2124348)28÷-
18.(本题10分)化简:
5146329x x x x
--,并将自己所喜欢的值代入化简结果进行计算.
19.(本题10分)化简,求值:22211(m 1)11m m m m m -+-÷---+,其中3m =,
20.(本题10分)一个圆形的半径为x ,它的周长与长20π,宽
365
π的矩形的周长一样,求x 的值.
21.(本题10分)如果直角三角形的两条直角边的长分别为231+和231-,求斜边c 的长.
22.(本题10分)如图所示,在等腰Rt △ABC 中,AC =BC ,以斜边AB 为边作等边△ABD ,使得C 、D 在AB 的同侧;再以CD 为边作等边△CDE ,使得C 、E 落在AD 的异侧,若CD =31-,求AE 的长.。