分子遗传学第2章遗传的物质基础

合集下载

遗传的分子基础ppt课件

遗传的分子基础ppt课件

.
47
.
48
从1857年孟德尔进 行豌豆杂交实验算 起,经过无数科学 家近百年的探索, 蒙在生命遗传奥秘 上的面纱正在一层 层地剥去。
科学探索的道路 是螺旋式的,科学 家们在阶梯上不断 攀登,一个新的螺 旋展现在他们的眼 前,而这将引起一 场生命科学的革命。
.
49
• 最初由孟德尔提出的遗传因子的概念, 通过摩尔根、艾弗里、赫尔希和沃森、 克里克等几代科学家的研究,已经使生 物遗传机制建立在遗传物质DNA的基础 之上。
• 结果: (1)可以破坏、消化蛋白质的胰蛋白酶和糜蛋白酶不影
响转化活性; (2)分解、消化RNA(而不是消化分解DNA)的RNA酶对
转化活性无影响; (3)在加入分解、消化DNA的DNA酶后,转化活性丧失。
这些实验进一步证明了DNA作为遗传信息载体的功能。
.
32
• 发现遗传物质的化学本质是DNA,这是基 因研究上一个重要的里程碑。但在当时, 这项重要的发现并未引起足够的重视。 艾弗里虽曾被提名为诺贝尔奖的候选人, 但当时评奖委员会认为“最好等到DNA的 转化机理更多地为人们所了解的时候再 说”。可是,当争议平息、诺贝尔奖评 选委员会准备授奖之时,他已经去世了。
36
噬菌体感染实验
• 35S标记蛋白质外壳的噬菌体感染细菌 细菌无放射性
• 32P标记DNA内芯的噬菌体感染细菌细 菌有放射性
• 这一结果确凿无疑地证明,进入寄主细胞内 的是噬菌体DNA,而不是蛋白质外壳。噬菌 体的DNA不但包括噬菌体自我复制的信息, 而且包括合成噬菌体蛋白质所需要的全部信 息。
.
42
富兰克林拍摄的DNA晶体的X射线衍射照片,
这张照片正是发现DNA结构的关键

遗传学-第2章_遗传的细胞学基础

遗传学-第2章_遗传的细胞学基础

内膜系统 细胞质
细胞壁成分 细胞增殖
真核生物的细胞由细胞膜、细胞质、细胞核三部分 组成 (一)细胞膜(质膜) 细胞膜是细胞外围的一层薄膜,主要由蛋白质和类 脂构成。 功能:能够有选择地通过某些物质。 在植物细胞的细胞膜外面,还有一层由纤维素和果 胶质组成的细胞壁(支持和保护作用)。
(二)细胞质(胞质) 细胞质是细胞膜内环绕着细胞核外围的原生质,呈胶体状 态。里面有许多蛋白质、脂肪等物质,细胞质中包含着各种 细胞器:线粒体、质体(植)、核糖体、内质网、高尔基体、 中心体(动)、溶酶体和液泡(植)。 其中,质体和液泡只有植物才具有,中心体只是动物细胞才具 有。 线粒体是动植物细胞中普遍存在的细胞器,是细胞内呼吸作用和 氧化作用的中心,是贮藏能量的场所。 质体包括叶绿体、有色体和白色体,其中最重要的是叶绿体, 是植物光合作用的场所。 核糖体是极其微小的细胞器,由RNA和蛋白质组成,是细胞中合 成蛋白质的主要场所。 内质网是运输蛋白质的合成原料和合成产物的通道。
线粒体
线粒体DNA
叶绿体
叶绿体DNA
电镜下内质网
电镜下粗面内质网
(三)细胞核(胞核)

除细菌和蓝藻(原核生物)之外,各种生物的 细胞内都有细胞核,细胞核由核膜、核液、核 仁和染色质(染色体)组成。

细胞核是遗传物质聚集的主要场所,对细胞发 育和性状遗传起着指导作用。
植物细胞和动物细胞的区别
上各个微小的区段。这些区段长度各不相同,各有不同的分子结
构,规定着不同性状的遗传。 提问:染色体、DNA、基因有何不同?
第三节 细胞分裂

细胞分裂是生物进行生长和繁殖的基础,亲代 的遗传物质就是通过细胞分裂向子代传递的。 19世纪末,Flemming W(1882)和Boveri T(1891)分别发现了有丝分裂和减数分裂,为遗 传的染色体学说提供了理论基础。

遗传学笔记

遗传学笔记

遗传学笔记第一章绪论1.1 分子遗传学的含义1.不能把分子遗传学单纯地理解成中心法则的演绎*分子遗传学≠中心法则传统:分子遗传学=中心法则实际:分子遗传学≠中心法则,他首先是遗传学,其坚实的理论基础仍然是摩尔根的《基因论》中心法则只是对基因,性状及突变在核酸分子水平上的解释。

从中心法则到性状的形成仍然是一个复杂的甚至未知的遗传,变异与发育的生物学过程。

分子遗传学不仅盯住DNA/RNA,蛋白质,更要研究活细胞内与遗传便宜有关的一切分子事件。

分子遗传学≠核酸+蛋白质分子遗传学研究的对象是分子水平上的生物学过程-遗传与变异的过程。

它研究的是动态的生物学过程,而不是脱离生物体,在试管里孤立地研究生物大分子的结构与功能。

1992年,Nature 的主编J.Maddox 曾著文Is molecular biology yet a science?指出:"现在有那么一些叫分子生物学家的人,他们的文章无视全部的动物,植物,也很少言及他们的生理学。

实验的大部分资料来自所谓的'凝胶'---""分子生物学在很大程度上变成定性的科学。

---如果事情只是简单的说明某个基因版本与某种遗传病相关,那么,分离这种片段(如电泳),然后测序足以。

"但是"以往的巨大成就表明,生命过程是由严格控制下进行的一些有序事件组成"他说:"在人们长期为细胞生物学现象寻找定性的解释中,他们将会相信细胞只不过是一个充满了分子开关的袋子,他们作为分子传动器或开或关而出现在预定的事件序列中。

要真正在分子水平上了解遗传变异的本质,仅仅研究核酸或蛋白质的生物化学是不够的。

分子遗传学所研究的应该是细胞中动态的遗传变异过程,以及与其相关的分子事件。

所以不止是中心法则,核酸,蛋白质。

2.分子遗传学不是核酸及其产物(蛋白质)的生物化学分子遗传学是分子生物学的一个分支,或理解为狭义的分子生物学。

分子遗传学的内容

分子遗传学的内容

7/7/2021
13
mRNA基因转录激活及其调节
• mRNA基因是蛋白质基因,在基因组中占据 绝大多数,由RNA聚合酶II转录,真核RNA 聚合酶II与十几种基本转录因子结合成转录 起始复合物,对蛋白质基因进行转录。基本 转录因子中只有TFII D可以和TATA盒结合. TFII D由TBP(TATA结合蛋白)和十几种 TBP相关因子(TAF)构成。真核基因调节 的三大要素是顺式作用元件 反式作用因子 和RNA聚合酶,它们通过DNA和蛋白质及 蛋白质和蛋白质的相互作用调节的转录。
• (1) DNase I超敏位点: 由于转录激活区组 蛋白部分脱落,产生DNase I超敏位点 。
7/7/2021
8
• (2)DNA 拓扑构像发生变化,DNA转录 时,RNA 聚合酶的前面是正超螺旋,后面 是负螺旋。
• (3) DNA碱基修饰变化 转录激活的基因 处于低甲基化状态。
• (4)组蛋白的数量、结构和化学修饰发生 变化
7/7/2021
7
• 二、真核基因表达调节特点:
• (A) RNA聚合酶 原核生物只有一种RNA 聚合酶,真核生物有三种,分别转录不同的 RNA,RNA聚合酶II负责转录蛋白质的基 因 ,因此该酶最为重要 。
• (B) 活性染色质结构的变化 基因转录可 在染色质水平上调节,基因转录激活的染色 质在结构和性质上发生如下变化;
• 男性性别基因丢失九成 千万年后男人将消失! 澳大利亚国立大学的遗传学家詹妮?格雷夫斯教授 在近日的第15届国际染色体代表会议上发表讲话
7/7/2021
24
• 称,1000万年后目前现存的这种男人类型将 在地球上消失。3亿年前,当男性特有的Y 染色体产生之际曾含有1438个基因,但到目 前为止其中的1393个基因已经消失了,剩下 的45个基因也将在1000万年后消失。这就意 味着负责睾丸发育和男性荷尔蒙分泌的SRY

遗传课后题补充答案完整版

遗传课后题补充答案完整版

刘庆昌版《遗传学》答案补充生科1301 荣誉出品主编侯帅兵李泽光参编李泽光岳巍刘新露徐泽千宋新宇侯帅兵(排名不分先后)主审刘洋第二章遗传物质的分子基础1.怎样证明DNA是绝大多数生物的遗传物质?证明DNA是生物的主要遗传物质,可设计两种实验进行直接证明DNA是生物的主要遗传物质:(1)肺炎双球菌定向转化试验:有毒SⅢ型(65℃杀死)→小鼠成活→无细菌无毒RⅡ型→小鼠成活→重现RⅡ型有毒SⅢ型→小鼠死亡→重现SⅢ型RⅡ型有毒SⅢ型(65℃)→小鼠→死亡→重现SⅢ型将IIIS型细菌的DNA提取物与IIR型细菌混合在一起,在离体培养的条件下,也成功地使少数IIR型细菌定向转化为IIIS型细菌。

该提取物不受蛋白酶、多糖酶和核糖核酸酶的影响,而只能为DNA酶所破坏。

所以可确认导致转化的物质是DNA。

(2)噬菌体的侵染与繁殖试验T2噬菌体的DNA在大肠杆菌内,不仅能够利用大肠杆菌合成DNA的材料来复制自己的DNA,而且能够利用大肠肝菌合成蛋白质的材料,来合成其蛋白质外壳和尾部,因而形成完整的新生的噬菌体。

32P和35S分别标记T2噬菌体的DNA与蛋白质。

因为P是DNA的组分,但不见于蛋白质;而S是蛋白质的组分,但不见于DNA。

然后用标记的T2噬菌体(32P或35S)分别感染大肠杆菌,经10分钟后,用搅拌器甩掉附着于细胞外面的噬菌体外壳。

发现在第一种情况下,基本上全部放射活性见于细菌内而不被甩掉并可传递给子代。

在第二种情况下,放射性活性大部分见于被甩掉的外壳中,细菌内只有较低的放射性活性,且不能传递给子代。

2.简述DNA双螺旋结构及其特点。

(1)两条多核苷酸链以右手螺旋的形式,彼此以一定的空间距离,平行地环绕于同一轴上,象一个扭曲起来的梯子。

(2)两条多核苷酸链走向为反向平行(antiparallel)。

即一条链磷酸二脂键为5-3’方向,而另一条为3’-5’方向,二者刚好相反。

亦即一条链对另一条链是颠倒过来的,这称为反向平行。

分子遗传学和分子诊断学

分子遗传学和分子诊断学
02 PCR技术
扩增基因片段
03 基因芯片
快速检测多个基因
● 05
第五章 分子遗传学在生物学 研究中的应用
基因编辑技术的 革命性意义
基因编辑技术如 CRISPR-Cas9在生 物学研究中具有重要 应用。基因敲除、基 因修饰和基因组工程 等技术为研究人员提 供了强大的工具,推 动了生命科学领域的 发展。
RNA干扰的生物学功能
调控基因表 达
RNA干扰参与基 因表达的调控过

生物学研究 作用
RNA干扰技术在 生物学研究中发
挥着重要作用
抑制病毒复 制
RNAi技术可帮 助抑制病毒在细 胞内的复制过程
表观遗传学的新领域
研究基因 组 DNA 修 饰
DNA甲基化和组蛋白修饰 等表观遗传学关键内容
染色质结构的变化
基因异常导致的疾病
02 癌症的早期筛查
发现肿瘤的早期症状
03 药物敏感性检测
根据个体基因差异定制药物用量
未来发展趋势
基因组学
为个性化治疗提供更多可 能
生物信息学
加速分子诊断学技术的发 展
未来发展展望
随着基因组学和生物信息学的快速发展,分子遗 传学和分子诊断学将迎来更广阔的发展空间。未 来可能出现更多基于分子水平的个性化治疗方法。
● 02
第2章 分子遗传学基础知识
DNA结构和功能
01 DNA的组成
由磷酸、糖和碱基组成
02 DNA的传递过程
包括复制、转录和翻译
03 重要性
是遗传信息的载体
RNA的种类和功能
mRNA
在转录过程中起关键作用
tRNA
在翻译过程中传递氨基酸
rRNA
与核糖体结合,参与蛋白 质合成

普通遗传学课后习题解答

普通遗传学课后习题解答

普通遗传学课后习题解答第⼀章遗传的细胞学基础(p32-33)4.某物种细胞染⾊体数为2n=24,分别指出下列各细胞分裂期中的有关数据:(1)有丝分裂后期染⾊体的着丝点数。

(2)减数分裂后期I染⾊体着丝点数。

(3)减数分裂中期I的染⾊体数。

(4)减数分裂末期II 的染⾊体数。

[答案]:(1)48;(2)24;(3)24;(4)12。

[提⽰]:如果题⽬没有明确指出,通常着丝点数与染⾊体数都应该指单个细胞或细胞核内的数⽬;为了“保险”(4)也可答:每个四分体细胞中有12条,共48 条。

具有独⽴着丝点的染⾊体才称为⼀条染⾊体,由复合着丝点联结的两个染⾊体单体只能算⼀条染⾊体。

5.果蝇体细胞染⾊体数为2n=8,假设在减数分裂时有⼀对同源染⾊体不分离,被拉向同⼀极,那么:(1)⼆分⼦的每个细胞中有多少条染⾊单体?(2)若在减数分裂第⼆次分裂时所有的姊妹染⾊体单体都分开,则产⽣的四个配⼦中各有多少条染⾊体?(3)⽤n 表⽰⼀个完整的单倍染⾊体组,应怎样表⽰每个配⼦的染⾊体数?[答案]:(1)两个细胞分别为6 条和10 条染⾊单体。

(2)四个配⼦分别为3条、3 条、5条、5 条染⾊体。

(3)n=4 为完整、正常单倍染⾊体组;少⼀条染⾊体的配⼦表⽰为:n-1=3;多⼀条染⾊体的配⼦表⽰为:n+1=5。

[提⽰]:正常情况下,⼆价体的⼀对同源染⾊体分离并分配到两个⼆分体细胞。

在极少数情况下发⽣异常分配,也是染⾊体数⽬变异形成的原因之⼀。

6. ⼈类体细胞染⾊体2n=46,那么,(1)⼈类受精卵中有多少条染⾊体?(2)⼈的初级精母细胞、初级卵母细胞、精⼦、卵细胞中各有多少条染⾊体?[答案]:(1)⼈类受精卵中有46 条染⾊体。

(2)⼈的初级精母细胞、初级卵母细胞、精⼦、卵细胞中分别有46 条、46 条、23 条、23条染⾊体。

7.⽔稻细胞中有24条染⾊体,⼩麦中有42条染⾊体,黄⽠中有14条染⾊体。

理论上它们各能产⽣多少种含不同染⾊体的雌雄配⼦?[答案]:理论上,⼩稻、⼩麦、黄⽠各能产⽣=4096、=2097152、=128 种不同含不同染⾊体的雌雄配⼦。

遗传学基础知识点

遗传学基础知识点

遗传学基础知识点遗传学是生物学中的一个重要分支,研究个体间遗传信息的传递、表现和变异。

在遗传学的学习过程中,有一些基础知识点是必须要掌握的。

本文将围绕这些基础知识点展开讨论。

1. 遗传物质的本质遗传物质是指携带遗传信息的生物分子,主要包括DNA和RNA。

DNA是双螺旋结构,由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶)组成,形成基因和染色体。

RNA则在蛋白质合成中起着重要作用。

2. 孟德尔遗传定律孟德尔是遗传学的奠基人,他根据豌豆杂交实验提出了一系列遗传定律,包括隔离定律、自由组合定律和性联和定律。

这些定律揭示了遗传物质的传递规律。

3. 遗传的分子基础遗传信息的传递和表达是通过DNA分子进行的。

DNA分子在细胞分裂时复制,通过核糖体和tRNA、mRNA参与蛋白质合成,从而实现基因的表达。

4. 遗传性状的表现遗传性状是由基因决定的,在有性繁殖中通过配子随机组合形成。

一对等位基因可以表现为显性和隐性,而性状的表现受到基因型和环境的影响。

5. 遗传变异基因在不同个体间可以发生变异,包括基因突变、基因互作和基因重组等。

这种变异是进化的基础,可以导致个体的遗传多样性。

6. 遗传病与遗传咨询遗传病是由基因突变引起的遗传性疾病,如地中海贫血、囊性纤维化等。

遗传咨询是通过遗传学知识对个体的遗传信息进行评估和风险预测,提供个性化的健康建议。

通过对上述基础知识点的了解,可以更好地理解遗传学的基本原理和应用。

遗传学作为一门重要的生物学学科,为人类健康和生物多样性的研究提供了理论基础和实践指导。

希望本文能够对您的遗传学学习有所帮助。

遗传学复习提纲

遗传学复习提纲

遗传学复习提纲刘庆昌绪言1、遗传学研究的对象,遗传、变异、选择2、遗传学的发展,遗传学的发展阶段,主要遗传学家的主要贡献3、遗传学在科学和生产发展中的作用第一章遗传的细胞学基础1、细胞的结构和功能:原核细胞、真核细胞、染色质、染色体2、染色体的形态和数目:染色体的形态特征、大小、类别,染色质的基本结构、染色体的结构模型,染色体的数目,核型分析3、细胞的有丝分裂:细胞周期、有丝分裂过程及遗传学意义4、细胞的减数分裂:减数分裂过程及遗传学意义5、配子的形成和受精:生殖方式、雌雄配子的形成、受精、直感现象、无融合生殖6、生活周期:生活周期、世代交替、低等植物的生活周期、高等植物的生活周期、高等动物的生活周期第二章遗传物质的分子基础1、DNA作为主要遗传物质的证据:间接证据、直接证据(细菌的转化、噬菌体的侵染与繁殖、烟草花叶病毒的感染与繁殖)2、核酸的化学结构:DNA和RNA及其分布、DNA和RNA的分子结构3、DNA的复制:DNA复制的一般特点、原核生物DNA合成、真核生物DNA合成的特点以及与原核生物DNA合成的主要区别4、RNA的转录及加工:三种RNA分子、RNA合成的一般特点、原核生物RNA的合成、真核生物RNA的转录及加工5、遗传密码与蛋白质翻译:遗传密码及其特征、蛋白质的合成过程、中心法则及其发展第三章孟德尔遗传1、分离规律:孟德尔的豌豆杂交试验、性状分离、分离现象的解释、表现型和基因型、分离规律的验证(测交法、自交法、F1花粉鉴定法)、分离比例实现的条件、分离规律的应用2、独立分配规律:两对相对性状的遗传及其分离比、独立分配现象的解释、独立分配规律的验证(测交法、自交法)、多对基因的遗传、独立分配规律的应用,某2测验3、孟德尔规律的补充和发展:显隐性关系的相对性、复等位基因、致死基因、非等位基因间的相互作用、多因一效和一因多效第四章连锁遗传和性连锁1、连锁和交换:连锁遗传的发现及解释、完全连锁和不完全连锁、交换及其发生机制2、交换值及其测定:交换值、交换值的测定(测交法、自交法)3、基因定位与连锁遗传图:基因定位(两点测验、三点测验、干扰与符合)、连锁遗传图4、真菌类的连锁与交换:着丝点作图5、连锁遗传规律的应用6、性别决定与性连锁:性染色体、性别决定、性连锁、限性遗传、从性遗传第五章基因突变1、基因突变的时期和特征:基因突变的时期、基因突变的一般特征2、基因突变与性状表现:显性突变和隐性突变的表现、大突变和微突变的表现3、基因突变的鉴定:植物基因突变的鉴定(真实性、显隐性、突变频率)、生化突变的鉴定(营养缺陷型及其鉴定)、人类基因突变的鉴定24、基因突变的分子基础:突变的分子机制(碱基替换、缺失、插入)、突变的修复(光修复、暗修复、重组修复、SOS修复),转换与颠换,DNA防护机制(简并性、回复突变、抑制突变、多倍体、致死突变)5、基因突变的诱发:物理因素诱变(电离辐射与非电离辐射)、化学因素诱变(碱基类似物、DNA诱变剂)第六章染色体结构变异1、缺失:类型、细胞学鉴定、遗传效应2、重复:类型、细胞学鉴定、遗传效应3、倒位:类型、细胞学鉴定、遗传效应4、易位:类型、细胞学鉴定、遗传效应5、染色体结构变异的应用:基因定位、果蝇的CIB测定法、利用易位制造玉米核不育系的双杂合保持系、易位在家蚕生产上的利用、利用易位疏花疏果防治害虫第七章染色体数目变异1、染色体的倍数性变异:染色体组及其整倍性、整倍体与非整倍体(名称、染色体组成、联会方式)2、同源多倍体的形态特征、同源多倍体的联会和分离(染色体随机分离、染色单体随机分离)3、异源多倍体、多倍体的形成与应用、同源联会与异员源联会(烟草、小麦)、单倍体4、非整倍体:亚倍体(单体、缺体)、超倍体(三体、四体),三体的基因分离5、非整倍体的应用:单体测验、三体测验、染色体替换第八章数量遗传1、数量性状的特征:数量性状的特征、多基因假说、超亲遗传2、数量性状遗传研究的基本统计方法:均值、方差、标准差3、遗传模型:加性-显性-上位性效应及其与环境的互作,显性3表现形式4、遗传率的估算及其应用(广义遗传力和狭义遗传力)5、数量性状基因定位,单标记分析法,区间定位法,复合区间定位法,应用(3方面)第九章近亲繁殖和杂种优势1、近交与杂交的概念、自交和回交的遗传效应,纯合率2、纯系学说3、杂种优势的表现和遗传理论(显性假说、超显性假说、上位性假说)4、杂种优势利用与固定第十章细菌和病毒的遗传1、细菌和病毒遗传研究的意义:细菌、病毒、细菌和病毒在遗传研究中的优越性2、噬菌体的遗传分析:噬菌体的结构(烈性噬菌体、温和性噬菌体)、噬菌体的基因重组与作图3、细菌的遗传分析转化:转化的概念与过程、转化和基因重组作图接合:接合的概念与过程、U型管实验、F因子及其存在状态、中断杂交试验及染色体作图性导:性导的概念与过程、性导的作用转导:转导的概念与过程、利用普遍性转导进行染色体作图第十一章细胞质遗传1、细胞质遗传的概念和特点:细胞质遗传的概念、细胞质遗传的特点2、母性影响:母性影响的概念及其与母性遗传的区别3、叶绿体遗传:叶绿体遗传的表现、叶绿体遗传的分子基础4、线粒体遗传:线粒体遗传的表现、线粒体遗传的分子基础5、共生体和质粒决定的染色体外遗传:共生体的遗传(卡巴粒)、4质粒的遗传6、植物雄性不育的遗传:雄性不育的类别及其遗传特点(核不育型和质核不育型、孢子体不育和配子体不育、单基因不育和多基因不育、不育基因的多样性)、雄性不育的发生机理、雄性不育的利用(三系法、二系法)第十二章基因工程1、基因工程概述4、重组DNA分子5、将目的基因导入受体细胞(常用导入方法)、转基因生物的鉴定、基因工程的应用、转基因生物(食品)的安全问题第十三章基因组学1、基因组学的概念与概述、C值、N值2、基因组学的研究内容:结构基因组学、功能基因组学、蛋白质组学3、基因组图谱的构建(遗传图谱与标记种类、物理图谱)4、基因组测序策略:鸟枪法、重叠克隆群法5、基因组图谱的应用(5个方面)6、生物信息学与蛋白质组学第十四章基因表达的调控1、基因的概念及其发展、基因的微细结构、顺反测验、基因的作用与性状的表达2、原核生物的基因调控:转录水平的调控,乳糖操纵元、色氨酸操纵元;翻译水平的调控3、真核生物的基因调控:DNA水平、染色质水平(组蛋白、非组蛋白)、转录水平(顺式作用元件、反式作用因子)、翻译水平的调5控、蛋白质加工4、原核生物与真核生物在基因调控上的区别第十五章遗传与发育1、细胞核和细胞质在个体发育中的作用:细胞质在细胞生长分化中的作用、细胞核在细胞生长分化中的作用、细胞核与细胞质在个体发育中的相互依存、环境条件的影响2、基因对个体发育的控制:个体发育的阶段性、基因与发育模式、基因与发育过程3、细胞的全能性第十六章群体遗传与进化1、群体的遗传平衡:等位基因频率和基因型频率、哈迪-魏伯格定律及其应用2、改变基因平衡的因素:突变、选择、遗传漂变、迁移3、达尔文的进化学说及其发展:生物进化的概念、达尔文的进化学说及其发展、分子水平的进化4、物种的形成:物种概念、物种形成的方式(渐变式、爆发式)6。

高中生物第二章遗传的分子基础3.中心法则细胞分化和表观遗传学案苏教版

高中生物第二章遗传的分子基础3.中心法则细胞分化和表观遗传学案苏教版

第二课时 中心法则、细胞分化和表观遗传新课程标准 学业质量目标3。

1。

4 概述DNA 分子上的遗传信息通过RNA 指导蛋白质的合成,细胞分化的实质是基因选择性表达的结果,生物的性状主要通过蛋白质表现 3。

1.5 概述某些基因中碱基序列不变但表型改变的表观遗传现象合格 考试 1.通过实例分析,归纳基因表达产物与性状的关系。

(科学思维)2。

通过对实验结果的分析,理解细胞分化的实质.(科学思维)等级 考试1。

通过分类和比较,明确中心法则各生物过程的异同。

(科学思维)2.基于生物学事实和证据,构建基因控制性状的模型,理解基因与性状的关系。

(科学思维)3。

运用结构与功能观,理解表观遗传产生的原因.(生命观念)一、中心法则诠释了基因与生物性状的关系 1。

中心法则的提出及发展 (1)提出者:克里克。

(2)中心法则内容:根据图示,完成下表:项目序号生理过程遗传信息传递过程最初提出①DNA复制DNA流向DNA②转录DNA流向RNA③翻译RNA流向蛋白质发展补充④RNA复制RNA流向RNA⑤逆转录RNA流向DNA2.基因表达产物与性状的关系(1)基因控制性状的两种途径:①基因酶的合成代谢过程生物性状。

②基因蛋白质的结构生物性状。

(2)基因与性状的关系:判一判:结合基因与性状的对应关系,判断下列说法的正误:①生物的大多数性状受核基因控制。

(√)②一个基因只能控制一种性状。

(×)提示:一个基因可以影响多个性状。

③有些性状是由多个基因决定的。

(√)④基因型相同的个体表型一定相同。

(×)提示:基因型相同的个体表型不一定相同,生物性状也受环境影响。

⑤表型相同的个体基因型不一定相同。

(√)在人体细胞中,是否能发生上述中心法则的5个过程?举例说明.提示:不能。

人体中的RNA 不能进行复制。

二、细胞分化的本质是基因的选择性表达1。

生物体多种性状的形成,都是以细胞分化为基础的.2。

基因选择性表达的实例:选一选:下列基因中能在所有细胞中都表达的基因有:①②⑤,只在某类细胞中特异性表达的基因有:③④.①核糖体蛋白基因②ATP合成酶基因③卵清蛋白基因④胰岛素基因⑤呼吸酶基因3。

02遗传学 课后练习 复习题 总结 第二章 遗传的细胞学基础

02遗传学 课后练习 复习题 总结 第二章 遗传的细胞学基础

第二章遗传的细胞学基础本章习题1.解释下列名词:原核细胞、真核细胞、染色体、染色单体、着丝点、细胞周期、同源染色体、异源染色体、无丝分裂、有丝分裂、单倍体、二倍体、联会、胚乳直感、果实直感。

答:原核细胞:一般较小,约为1~10mm。

细胞壁是由蛋白聚糖(原核生物所特有的化学物质)构成,起保护作用。

细胞壁内为细胞膜。

内为DNA、RNA、蛋白质及其它小分子物质构成的细胞质。

细胞器只有核糖体,而且没有分隔,是个有机体的整体;也没有任何内部支持结构,主要靠其坚韧的外壁,来维持其形状。

其DNA 存在的区域称拟核,但其外面并无外膜包裹。

各种细菌、蓝藻等低等生物由原核细胞构成,统称为原核生物。

真核细胞:比原核细胞大,其结构和功能也比原核细胞复杂。

真核细胞含有核物质和核结构,细胞核是遗传物质集聚的主要场所,对控制细胞发育和性状遗传起主导作用。

另外真核细胞还含有线粒体、叶绿体、内质网等各种膜包被的细胞器。

真核细胞都由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架。

染色体:含有许多基因的自主复制核酸分子。

细菌的全部基因包容在一个双股环形DNA构成的染色体内。

真核生物染色体是与组蛋白结合在一起的线状DNA双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。

染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色体。

着丝点:在细胞分裂时染色体被纺锤丝所附着的位置。

一般每个染色体只有一个着丝点,少数物种中染色体有多个着丝点,着丝点在染色体的位置决定了染色体的形态。

细胞周期:包括细胞有丝分裂过程和两次分裂之间的间期。

其中有丝分裂过程分为:(1)DNA合成前期(G1期);(2)DNA合成期(S期);(3)DNA合成后期(G2期);(4)有丝分裂期(M期)。

同源染色体:生物体中,形态和结构相同的一对染色体。

异源染色体:生物体中,形态和结构不相同的各对染色体互称为异源染色体。

遗传学部分整理复习提纲

遗传学部分整理复习提纲

遗传学部分整理复习提纲遗传学部分整理复习提纲第⼀章:绪论1. 最重要⼈物的贡献、年份、论著1900年,孟德尔规律的重新发现标志遗传学的诞⽣,贝特⽣发现了连锁现象,但做出了错误的解释,发现连锁与交换规律的科学家是摩尔根。

约翰⽣最先提出“基因”⼀词。

斯特蒂⽂特绘制出第⼀张遗传连锁图。

1953年,⽡特森和克⾥克提出DNA分⼦结构模式理论。

第⼆章:遗传的细胞学基础1. 重要概念:染⾊体:间期细胞核内由DNA、组蛋⽩、⾮组蛋⽩及少量RNA 组成的线性复合结构。

异染⾊质:染⾊质上染⾊深,通常不含有功能基因,在细胞周期中变化较⼩的区域,具有这种固缩特性的染⾊体。

A染⾊体:真核细胞染⾊体组的任何正常染⾊体,包括常染⾊体和性染⾊体(A染⾊体在遗传上是重要的,对个体的正常⽣活和繁殖是必需的。

其数⽬的增减和结构的变化对机体会造成严重的后果);B染⾊体:在⼀组基本染⾊体外,所含的多余染⾊体或染⾊体断⽚称为B染⾊体,它们的数⽬和⼤⼩变化很多。

⼀般在顶端都具有着丝粒,⼤多含有较多的异染⾊质。

随体:位于染⾊体次缢痕末端的、圆形或圆柱形的染⾊体⽚段。

胚乳直感(花粉直感):在3n胚乳的性状上由于精核的影响⽽直接表现⽗本的某些性状。

果实直感:种⽪或果⽪组织在发育过程中由于花粉影响⽽表现⽗本的某些性状。

⽆融合⽣殖:雌雄配⼦不发⽣核融合的⼀种⽆性⽣殖⽅式。

巨型染⾊体:⽐普通染⾊体显著巨⼤的染⾊体的总称。

有丝分裂⼀般没有同源染⾊体联会,果蝇唾腺中的多线染⾊体,染⾊质线不断复制,但是染⾊体着丝粒不分裂。

联会:在减数分裂前期过程中,同源染⾊体彼此配对的过程。

⼆价体:减数分裂前期Ι的偶线期,同源染⾊体联会形成联会复合体的⼀对染⾊体。

单价体:在特殊情况,减数分裂前期Ι的偶线期联会时,存在不能配对的染⾊体。

同源染⾊体:形态、结构和功能相似的⼀对染⾊体,⼀条来⾃⽗本,⼀条来⾃母本。

组型分析:利⽤染⾊体分带技术等,在染⾊体长度、着丝粒位置、长短臂⽐、随体有⽆特点基础上,进⼀步根据染⾊的显带表现区分出各对同源染⾊体。

遗传学总结(完整版)

遗传学总结(完整版)

遗传学总结(完整版)动物遗传学(总结)第一章绪论1、遗传(heredity):后代和前代的相似性。

2、变异(variation):子代与亲代或子代与子代之间的不相似性。

3、遗传学:是研究遗传物质的结构与功能及遗传信息的传递与表达规律的一门科学。

第二章遗传的细胞学基础一、与遗传有关的细胞器1、线粒体:由双层膜围成的与能量代谢有关的细胞器,主要作用是通过氧化磷酸化合成ATP。

2、内质网:由单层膜围成一个连续的管道系统。

粗面内质网,表面附有核糖体,参与蛋白质的合成和加工;光面内质网表面没有核糖体,参与脂类合成。

3、核糖体:为椭球形的粒状小体,核糖体无膜结构,主要由蛋白质(40%)和rRNA(60%)构成,是细胞内蛋白质合成的场所。

4、中心体:中心粒加中心粒周边物质称为中心体。

或指动物真核细胞质中由两个中心粒组成的物质。

5、核仁:核仁是真核细胞细胞核内的生产核糖体的机器。

二、染色质与染色体1、染色质:是指染色体在细胞分裂的间期所表现的形态,呈纤细的丝状结构,含有许多基因的自主复制核酸分子。

2、染色体:在细胞分裂时期,在细胞核中容易被碱性染料染色、具有一定数目和形态结构的的杆状体。

3、染色质的类型P23:常染色质和异染色质染色质。

其中异染色质又分为结构染色质、兼性异染色质4、染色体的一般形态结构及分类P25:(1)形态结构:通常由长臂、短臂、着丝点、次缢痕、随体及端粒几部分组成。

(2)分类:A、B染色质、巨大染色体。

其中巨大染色体又分为多线染色体、灯刷染色体5、染色体的超微结构P26:两条反向平行的DNA双链。

:6、一倍体:只含有一个染色体组的细胞或生物(X)。

7、二倍体:由受精卵发育而来,且体细胞中含有两个染色体组的生物个体。

(2n)8、单倍体:含有配子染色体数的生物。

(N/2)9、单体:指比正常二倍体缺少一个染色体的个体。

(2n-1)10、缺体:指比正常二倍体(2n)缺少一对同源染色体的个体。

(2n-2)11、三体:指比正常二倍体多一个染色体的个体。

生物技术091遗传学复习重点

生物技术091遗传学复习重点

第一章遗传的细胞学基础1.胚乳直感:植物经过了双受精,胚乳细胞是3n,其中2n来自极核,n来自精核,如果在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状,这种现象称为胚乳直感。

2.果实直感:植物的种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状,称为果实直感。

3.植物的双受精:植物被子特有的一种受精现象。

当花粉传送到雌雄柱头上,长出花粉管,伸入胚囊,一旦接触助细胞即破裂,助细胞也同时破坏。

两个精核与花粉管的内含物一同进入胚囊,这时1个精核(n)与卵细胞(n)受精结合为合子(2n),将来发育成胚。

同时另1精核(n)与两个极核(n+n)受精结合为胚乳核(3 n),将来发育成胚乳。

这一过程就称为双受精。

4.植物的10个花粉母细胞可以形成:多少花粉粒?多少精核?多少管核?又10个卵母细胞可以形成:多少胚囊?多少卵细胞?多少极核?多少助细胞?多少反足细胞?答:植物的10个花粉母细胞可以形成:花粉粒:10×4=40个;精核:40×2=80个;管核:40×1=40个。

10个卵母细胞可以形成:胚囊:10×1=10个;卵细胞:10×1=10个;极核:10×2=20个;助细胞:10×2=20个;反足细胞:10×3=30个。

5.玉米体细胞里有10对染色体,写出叶、根、胚乳、胚囊母细胞、胚、卵细胞、反足细胞、花药壁、花粉管核(营养核)各组织的细胞中染色体数目。

答:⑴. 叶:2n=20(10对)⑵. 根:2n=20(10对)⑶. 胚乳:3n=30⑷. 胚囊母细胞:2n=20(10对)⑸. 胚:2n=20(10对)⑹. 卵细胞:n=10⑺. 反足细胞n=10⑻. 花药壁:2n=20(10对)⑼. 花粉管核(营养核):n=106.有丝分裂和减数分裂意义在遗传学上各有什么意义在遗传学上?答:有丝分裂在遗传学上的意义:多细胞生物的生长主要是通过细胞数目的增加和细胞体积的增大而实现的,所以通常把有丝分裂称为体细胞分裂,这一分裂方式在遗传学上具有重要意义。

遗传的物质基础(教案)

遗传的物质基础(教案)

遗传的物质基础教学目标:1. 了解染色体的概念和组成。

2. 掌握DNA的结构和功能。

3. 理解基因的概念和作用。

4. 掌握遗传信息的传递过程。

5. 能够运用遗传学知识解释一些遗传现象。

教学重点:1. 染色体的概念和组成。

2. DNA的结构和功能。

3. 基因的概念和作用。

4. 遗传信息的传递过程。

教学难点:1. DNA的双螺旋结构。

2. 基因的编码过程。

3. 遗传信息的传递机制。

教学准备:1. 染色体模型。

2. DNA双螺旋结构模型。

3. 基因表达过程图解。

4. 遗传信息的传递过程图解。

教学过程:一、导入(5分钟)1. 通过展示染色体模型,引导学生思考染色体的组成和功能。

2. 提问:你们听说过DNA吗?它有什么作用?二、染色体的概念和组成(5分钟)1. 介绍染色体的概念:染色体是细胞核中的一种结构,包含了遗传信息。

2. 讲解染色体的组成:染色体由DNA和蛋白质两种物质组成。

3. 展示染色体模型,让学生更直观地理解染色体的结构。

三、DNA的结构和功能(10分钟)1. 介绍DNA的概念:DNA是遗传信息的载体,存在于细胞核中。

2. 讲解DNA的双螺旋结构:DNA由两条长长的链组成,形成双螺旋结构。

3. 讲解DNA的功能:DNA上决定生物性状的小单位叫基因,基因控制生物的性状。

4. 展示DNA双螺旋结构模型,让学生更直观地理解DNA的结构。

四、基因的概念和作用(5分钟)1. 介绍基因的概念:基因是DNA上具有特定遗传信息的片段。

2. 讲解基因的作用:基因控制生物的性状。

3. 举例说明基因与性状之间的关系。

五、遗传信息的传递过程(5分钟)1. 讲解遗传信息的传递过程:DNA通过复制自身,将遗传信息传递给子代。

2. 讲解遗传信息的表达过程:DNA上的基因通过转录和翻译,指导蛋白质的合成。

3. 展示遗传信息的传递过程图解,让学生更直观地理解遗传信息的传递过程。

教学总结:通过本节课的学习,我们了解了染色体的概念和组成,掌握了DNA的结构和功能,理解了基因的概念和作用,以及遗传信息的传递过程。

《遗传学》朱军版习题及答案

《遗传学》朱军版习题及答案

《遗传学(第三版)》朱军主编课后习题与答案目录第一章绪论 (1)第二章遗传的细胞学基础 (2)第三章遗传物质的分子基础 (6)第四章孟德尔遗传 (9)第五章连锁遗传和性连锁 (12)第六章染色体变异 (15)第七章细菌和病毒的遗传 (21)第八章基因表达与调控 (27)第九章基因工程和基因组学 (31)第十章基因突变 (34)第十一章细胞质遗传 (35)第十二章遗传与发育 (38)第十三章数量性状的遗传 (39)第十四章群体遗传与进化 (44)第一章绪论1.解释下列名词:遗传学、遗传、变异。

答:遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。

同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。

遗传:是指亲代与子代相似的现象。

如种瓜得瓜、种豆得豆。

变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。

如高秆植物品种可能产生矮杆植株:一卵双生的兄弟也不可能完全一模一样。

2.简述遗传学研究的对象和研究的任务。

答:遗传学研究的对象主要是微生物、植物、动物和人类等,是研究它们的遗传和变异。

遗传学研究的任务是阐明生物遗传变异的现象及表现的规律;深入探索遗传和变异的原因及物质基础,揭示其内在规律;从而进一步指导动物、植物和微生物的育种实践,提高医学水平,保障人民身体健康。

3.为什么说遗传、变异和选择是生物进化和新品种选育的三大因素?答:生物的遗传是相对的、保守的,而变异是绝对的、发展的。

没有遗传,不可能保持性状和物种的相对稳定性;没有变异就不会产生新的性状,也不可能有物种的进化和新品种的选育。

遗传和变异这对矛盾不断地运动,经过自然选择,才形成形形色色的物种。

同时经过人工选择,才育成适合人类需要的不同品种。

因此,遗传、变异和选择是生物进化和新品种选育的三大因素。

4. 为什么研究生物的遗传和变异必须联系环境?答:因为任何生物都必须从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发病机理
通过同类相食(人) 传染
通过朊病毒污染的 HGH , 或通过角膜移植
发现病例
约2600例
约80例
家族性克 雅氏病
零星发生克 雅氏病 克雅氏病新 突变体vCJD GS 综 合 症 (GSS)
PrP基因种系突变
体 细 胞 突 变 PrPc 自 发 转变为PrPsc? 牛朊病毒传染? PrP基因种系突变 PrP 基 因 种 系 突 变 (D178N和M129)

第一次阐述了遗传信息的储存方式及DNA复制
的机理,以准确的语言回答了DNA是如何成为
遗传物质的。大大推动了分子生物学和分子遗
传学的发展,被誉为20世纪最伟大的发现之一
31
2.3.2 影响双螺旋结构稳定性的因素
碱基堆积的棒状实体 l 氢键 (Hydrogen bond 4~6 kc / mol) 弱键, 可加热解链,尿素、甲酰胺 1.碱基的氢供体 氨基、羟基 2.碱基的氢受体 酮基、亚氨基 3.G-C对及A-T对 之间的氢键:
1.8
只有一小沟,较深
大沟、小沟较深
37
A
B
Z
38
2.3.3.2 二级结构的形态
Linear DNA. L
Open Circle DNA OC
Supercoiled circle
Covalent Closed Circle CCC
第二章 遗传的物质基础
2.1 遗传物质的本质 2.2 核酸的化学组成及DNA一级结构 2.3 DNA的二级结构
2.4 DNA的三级结构
1
2.1 遗传物质的本质
2.1.1 DNA是主要的遗传物质
已知的有机体和一些病毒(SV40、T4 噬菌体和ØX174)
SV40病毒是人 类和猴子都发 现的致瘤病毒, 一种小型的20 面体的蛋白质 颗粒,由三种 病毒外壳蛋白 质Vp1、Vp2和 Vp3构成,中间 包装着一条环 形的病毒基因 组DNA。
• 每一单链具有5’ 3’ 极性
• 两条单链间以氢键连接 • 两条单链,极性相反,反向平行 • 以中心为轴,向右盘旋 (B-form)
8.5 Å
大沟是蛋白质结合特 异DNA序列的位点, 11.7 Å 对于蛋白质识别 DNA双螺旋结构的 特异信息非常重要
5.7 Å
7.5 Å
DNA双螺旋结构提出的生物学意义
7
类病毒(viroid):使高等植物产生疾病的有传染
2.1.3 Is the protein genetic material ? 复制 ? 表达遗传信息 ?
朊病毒Prion (proteinaccous infections particle) 引起的风波
羊搔痒病(scrapie):山羊和绵羊的退行性神经疾病 人类 kuru 病(新几内亚震颤病):影响人脑功能,约2600例 克-雅氏病、疯牛病(牛海绵状脑炎)… 均由传染性病原蛋白颗粒引起 统称Prion (朊病毒,Prion protein,PrP即蛋白质样的感 染性因子)
线 状 双 链 D N A
环 状 单 链
(+)DNA
2
2.1 遗传物质的本质
2.1.1 DNA是主要的遗传物质
遗传物质必须具有以下特性:
储存并表达遗传信息; 能把遗传信息传递给子代;
物理和化学性质稳定;
具有遗传变化的能力;
3
● DNA作为遗传物质的优点 (自然选择的优势)
储存遗传信息量大
★1kb DNA序列
OH端
24

2.3 DNA的二级结构
B型DNA---右手双螺旋DNA
(DNA Double Helix Model)
生物体内天然状态的DNA 几乎都以B-DNA存在
25
2.3.1 DNA 双螺旋结构模型
1938. W. T. Astbury 1950. Chargaff
利用X衍射研究DNA
A+G/T+C=1 A+T = G + C
2.1.2 RNA也可以作为遗传物质
RNA病毒,如烟草花叶病毒
(TMV, tobacco mosaic virus)、MS2噬菌体。由病毒基因组及蛋白 质外壳组成 性的因子,是很小的环状RNA分子,只由RNA组 成。其复制必须由宿主细胞的酶完成,RNA可以 作为复制的模板。类病毒通过复制占有宿主细胞 中关键的酶,从而影响细胞正常的功能,所以类 病毒通常是致病的
• Z-DNA可能存在于天然DNA的特殊区域 (因为天然DNA中的部分区域可以与ZDNA的抗体结合)
36
A、B、Z–DNA的比较
A
每圈bp数 11 每 bp转角(度) 32.7
B
10.4 34.6
Z
12 -30.0
每 bp上升距离
螺旋直径(nm) 沟
0.26
2.3
0.34
1.9
大沟、小沟
-0.38
l 0.2 mol / L Na+ 生理盐条件
消除DNA单链上磷酸基团间的静电斥力
l 磷酸基团间的静电斥力 l 碱基内能增加, 使氢键因碱基排列有序状态的破坏而减弱
34
2.3.3 DNA二级结构的多样性及形态
2.3.3.1

DNA二级结构的多样性
几种不同的DNA双螺旋结构以及同一种双螺旋 结构内参数存在差异的现象
1952. Alexander Todd
3’, 5’ 磷酸二酯键
Nt~~Nt ~~Nt~~Nt~~Nt
26
1952.
M. H. F. Wilkins & Rosalind Franklin
X~ray photograph of DNA with high quality
27
1953.
Watson & Crick
约100个家族
每年发生率约百万 分之一
46例
约50个家族 9个家族
致死性家族 睡眠隔离,接着失 失眠症(FFI) 眠,痴呆
朊病毒可以被蛋白酶K灭活,但不能被核酸酶处 理和UV辐射灭活,表现出典型的蛋白质性质 Prion 复制? 转 录? 翻译?
S.B. Prusiner证明:朊病毒的繁殖是将自身PrPcs的 分子结构信息通过与正常膜蛋白PrPc的结合,在分子伴侣 的辅助下,传递给PrPc并将其转化为PrPcs的过程。因此 获得1997年的Nobel奖,结束了关于蛋白质是否也为遗传 物质的争论。
13
核酸的分布
真核生物
DNA
原核生物
细胞核(95%) 核质区(拟核) 线粒体、叶绿体 (5%)
细胞质(75%) 线粒体、叶绿体 (15%) 细胞核(10%) 细胞质
RNA
14
碱基、核苷、核苷酸
☉ 碱基 Nitrogenous bases
嘧啶 Pyrimidines
Uracil (U)
嘌呤 Purines
●碱基堆积力

1 碱基堆积力 同一条链中的相邻碱基之间的非特异性作用力 2 碱基堆积力的来源 疏水作用力 累积的Van der Waal的作用力 3 碱基堆积作用的证据


单链多核苷酸倾向于碱基平行排列的规则螺线结构
破坏疏水作用和双链的氢键可降低DNA的稳定性
l 磷酸酯键 (phosphoester bond 80~90 kc / mol) 强键, 需酶促解链
dNTP Deoxynucleotides
17
多磷酸核苷酸
二磷酸核苷(NDP) 三磷酸核苷(NTP)
ATP(三磷酸腺苷)的结构 18
dAMP \ dADP\ dATP
19
20
核酸的组成结构
21
NH2 N N HOCH2 H H OH O H H OH 腺嘌呤核苷 N N N
OH N N
NH2 N
O OH
3’单磷酸核苷酸
RNA RNase
O OH
p
p
O OH
p
pH11.5
O
O
2’ 单磷酸核苷酸
p
O OH
p
2’, 3’ 环式单核苷酸
OH OH OH
O
p
5
DNA的碱基顺序本身就是遗传信息
存储的分子形式,生物界物种的多样性 即寓于DNA分子中四种脱氧核苷酸的千 变万化的不同排列组合之中。
ATGCTGATCACTGTTCTAGAGAATATGGGTTTATTATGCAGTAAAAATCATCGTTACACTGAAGCA GATGCCGAGGAAAATGCACAGGCTGCAGAAATTGACAGGAGAATCGAACAAGAGCGAAAAGCTG AAAAGCATATCCAAAAACTTCTACTACTTGGTGCTGGTGAATCTGGGAAGTCAACAATTTTTAAGC AGATAAAGCTTCTGTTTCAAACTGGCTTTGACGAGGACGAGCTAAAGAGCTATATCTCTGTCATC CATGCAAACATCTATCAGACTATAAAAATACTGTATGATGGATCAAAGGAATTTGCTCAAAATGAT GCAGATTCTTCCAAATATGTTTTATCCAGCGAAATTAAGGTTATTGGAGAGAAACTATCAGAAATC GGAAGCAGGTTGGACTATCCACGTCTAAATAGAGAACTTGCACAGGAGATAGAAACTCTCTGGA AAGATTCTGCAA 6
☉ 核苷(nucleotide) 嘧啶的1位N原子、嘌呤的9位N原子
糖苷键 Glycosidic bond
核糖是戊糖
RNA-核糖核苷 DNA-脱氧核糖核苷
16
☉ 核苷酸(nucleotide acid) 核苷的磷酸酯 9 1’ 核糖核苷酸 γ β α 脱氧核糖核苷酸
相关文档
最新文档