2015春七年级数学下册 5.3.2 命题、定理、证明教学实录 (新版)新人教版
人教版数学七年级下册5.3.2-1《命题、定理、证明1》教案2
人教版数学七年级下册5.3.2-1《命题、定理、证明1》教案2一. 教材分析《命题、定理、证明1》是人教版数学七年级下册第五章第三节的一部分,这部分内容是学生学习数学证明的基础。
通过这部分的学习,学生将理解命题与定理的概念,学会如何阅读和理解数学证明,并初步掌握证明的方法。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力,能够理解和运用基本的数学概念和运算。
但是,对于数学证明这一概念,学生可能还比较陌生,需要通过具体的例子和实践活动来逐渐理解和掌握。
三. 教学目标1.了解命题和定理的概念,能够区分它们。
2.学会阅读和理解数学证明,能够初步进行简单的证明。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.命题与定理的概念。
2.数学证明的方法和步骤。
五. 教学方法采用问题驱动法和案例教学法,通过具体的例子和实践活动,引导学生理解和掌握命题、定理和证明的概念和方法。
六. 教学准备1.PPT课件。
2.相关例题和练习题。
七. 教学过程1.导入(5分钟)通过一个具体的数学问题,引出命题、定理和证明的概念。
2.呈现(15分钟)讲解命题和定理的概念,通过具体的例子让学生理解它们的区别。
然后讲解数学证明的方法和步骤,引导学生学会阅读和理解数学证明。
3.操练(15分钟)让学生分组讨论,尝试解决一些简单的证明问题,教师巡回指导。
4.巩固(5分钟)对学生的解答进行点评,指出其中的错误和不足,引导学生正确理解和掌握证明的方法。
5.拓展(5分钟)给出一些思考题,让学生进一步深入理解和掌握命题、定理和证明的知识。
6.小结(5分钟)对本节课的主要内容进行总结,强调命题、定理和证明的概念和方法。
7.家庭作业(5分钟)布置一些相关的练习题,让学生巩固所学知识。
8.板书(5分钟)将本节课的主要内容进行板书,方便学生复习和记忆。
教学过程每个环节所用的时间:导入5分钟,呈现15分钟,操练15分钟,巩固5分钟,拓展5分钟,小结5分钟,家庭作业5分钟,板书5分钟。
七年级数学下册第5章相交线与平行线5.3.2命题定理证明教案新版新人教版
5.3.2命题、定理、证明课型新授单位主备人教学目标:1.理解命题、定理、证明的概念,能区分命题的题设和结论;2.会判断命题的真假,能写出简单的推理过程.重点、难点:教学重点:命题的概念和区分命题的题设与结论.教学难点:表述推理过程.教学准备:PPT课件和微课等。
教学过程一、情景引入问题:下列语句在表述形式上,哪些是对事情作了判断?哪些不是?1. 对顶角相等;2. 画一个角等于已知角;3. 两直线平行,同位角相等;4. a、b两条直线平行吗?5. 温柔的小莉;6. 玫瑰花是动物;7. 若a2=4,求a的值;8. 若a2=b2,则a=b.概念:像这样判断一件事情的语句,叫做命题.追问:你能举出一些命题的例子吗?二、合作探究观察下面命题:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)如果两个角的和是90º,那么这两个角互余;问题1:命题是由几部分组成的?命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.数学命题表达:“如果……那么……”的形式试一试:请将下列命题改为:“如果……那么……”的形式:(1)两条平行线被第三条直线所截,同旁内角互补;(2)对顶角相等.答:(1)两条平行线被第三条直线所截,如果两个角是同旁内角,那么这两个角互补;(2)如果两个角是对顶角相等,那么这两个角相等.情境回顾:问题:下面的命题,哪些是正确的,哪些是错误的?1. 对顶角相等;3. 两直线平行,同位角相等;6. 玫瑰花是动物;8. 若a2=b2,则a=b.答案:√,√,×,×真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫做假命题.追问:你能再举出真命题和假命题的例子吗?探究真命题:(1)在同一平面内,如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条;(4)经过直线外一点有且只有一条直线与这条直线平行;(5)两点确定一条直线.定理:上面命题正确性是经过推理证实的,这样得到的真命题叫做定理.※定理也可以作为继续推理的依据.追问:你能说几个学习过的定理吗?三、释疑解难例:在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.问题:这是一个真命题,你说一说理由吗?已知:b∥c,a⊥b.求证:a⊥c.证明:∵a⊥b(已知),又∵b∥c(已知),∴∠1=∠2(两直线平行,同位角相等).∴∠2=∠1=90º(等量代换).∴∠1=90º(垂直的定义).∴a⊥c(垂直的定义).证明:一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.注意:判断一个命题是假命题,也可举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.举反例说明:“相等的角是对顶角”是假命题解:如图所示,OC是∠AOB的平分线∴∠1=∠2但∠1和∠2不是对顶角∴“相等的角是对顶角”是假命题四、巩固训练,能力提高1、判断下列语句是不是命题?(1)两点之间,线段最短;( )(2)请画出两条互相平行的直线; ( )(3)过直线外一点作已知直线的垂线;( )(4)如果两个角的和是90º,那么这两个角互余.( )答案:是,不是,不是,是2、判断下列命题哪些是真命题?哪些是假命题?(1)在同一平面内,如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条;(2)如果两个角互补,那么它们是邻补角;(3)如果 |a|=|b|,那么a=b;(4)经过直线外一点有且只有一条直线与这条直线平行;(5)两点确定一条直线.答:真命题,假命题,假命题,真命题,真命题3、命题:“同位角相等”是真命题吗?如果是,请说明理由;如果不是,请用反例说明.答:假命题,理由如下如图所示,∵∠1、∠2是直线a、b被直线c所截形成的同位角且∠1≠∠2∴“同位角相等”是假命题4、在下面的括号里,填上推理的依据.已知:如图所示,∠1=∠2,∠3=∠4,求证:EG∥FH.证明:∵∠1=∠2(已知)∠AEF=∠1 (对顶角相等);∴∠AEF=∠2 (等量代换).∴AB∥CD(同位角相等,两直线平行).∴∠BEF=∠CFE(两直线平行,内错角相等).∵∠3=∠4(已知);∴∠BEF-∠4=∠CFE-∠3.即∠GEF=∠HFE(等式性质).∴EG∥FH(内错角相等,两直线平行).五、体验收获今天我们学习了哪些知识?1. 什么叫做命题?命题是由哪两部分组成的?2. 举例说明什么是真命题,什么是假命题.如何判断一个命题的真假?3. 谈一谈你对证明的理解.六、板书设计:命题、定理、证明命题定理证明概念:判断一件事情的语句经过推理证实的真命题例题例题真命题、假命题。
人教初中数学七下 5.3.2 命题、定理、证明教学实录
5.3.2 命题、定理、证明师:同学们,这节课我们来学习新的一课:命题与定理。
现在我们先来尝试完成一下下面的问题,看你能不能在老师不讲解的情况下掌握。
生:(完成下列练习1)1、试判断下列句子是否正确。
(1)如果两个角是对顶角,那么这两个角相等;(2)三角形的内角和是180°;(3)同位角相等;(4)平行四边形的对边相等;(5)两个角的和为180°,则称两个角互为余角。
(6) 相等的角是对顶角。
师:小柳,你来说说你的答案。
生:(1)(2)(4)(6)是对的,(3)(5)是错的。
师:正确,同学们回忆一下(1)(2)(4)(6)是不是我们之前学习的知识点?我们把这些正确的句子叫做真命题,也叫定理;象(3)(5)这些错误的句子叫做假命题。
生:老师,什么叫命题?师:这个问题提的很好,命题是指,能够判断对错的句子。
如“你今天吃饭了吗?”这句话你能够判断它是对的还是错的吗?生:不能判断。
象这种不能判断对错的句子就不是命题了。
为了巩固这两个概念,我们来完成下列的练习。
生:(做下列练习)2、判断下列语句是否命题,如果是命题,说明它是真命题还是假命题。
(1)两条直线相交,只有一个交点;(2)画线段AB= 3 厘米;(3)两直线平行,同位角相等;(4)正数大于负数;(5)同角的余角相等;(6)在直线AB上任取一点C;(7)明天会下雨吗?(8)画线段AB=CD;(9)相等的角都是直角;(10)同旁内角互补.师:我们来开火车,一个一个同学说每一小题的答案,小珂你开始。
生:(1)是真命题;生:(2)不是命题;生:(3)是真命题;生:(4)是真命题;生:(5)是真命题;生:(6)不是命题;生:(7)不是命题;生:(8)不是命题;生:(9)是假命题;生:(10)是假命题;师:好,同学们都掌握的很好。
我们再来学习下一个知识点,再看看下面这个练习。
3、观察下列命题,你发现他们有什么共同特点和结构特征?①如果两个角相等,那么它们是对顶角.②如果a>b,b>c,那么a=c .小结:命题由________和_________两个部分组成。
最新人教版七年级数学下册《5.3.2 命题、定理、证明》精品教案
5.3.2 命题、定理、证明一、教学目标1.了解“证明”的必要性和推理过程中要步步有据.2.了解综合法证明的格式和步骤.3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.二、学法引导1.教师教法:尝试指导,引导发现与讨论相结合.2.学生学法:在教师的指导下,积极思维,主动发现.三、重点·难点及解决办法(-)重点证明的步骤和格式是本节重点.(二)难点理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.(三)解决办法通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.四、课时安排l课时五、教具学具准备投影仪、三角板、自制胶片.六、师生互动活动设计1.通过引例创设情境,点题,引入新课.2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.3.通过提问的形式完成小结.七、教学步骤(-)明确目标使学生严密推理过程,掌握推理格式,提高推理能力。
(二)整体感知以情境设计,引出课题,引导讨论,例题示范讲解新知,以练习巩固新知.(三)教学过程创设情境,引出课题师:上节课我们学习了定理与证明,了解了这两个概念.并以证明“两直线平行,内错角相等”来说明什么是证明.我们再看这一命题的证明(投影出示).例1 已知:如图1,,是截线,求证:.证明:∵(已知),∴(两直线平行,同位角相等).∵(对项角相等),∴(等量代换).这节课我们分析这一命题的证明过程,学习命题证明的步骤和格式.[板书]2.9 定理与证明探究新知1.命题证明步骤学生活动:由学生分组讨论以上命题的证明过程,按自己的理解说出证明一个命题都需要哪几步.【教法说明】根据上一节“两直线平行,内错角相等”这一命题的证明过程让学生讨论、分析、归纳命题证明的一般步骤,一是可以加深对命题证明的理解,二是培养学生归纳总结能力。
人教版数学七年级下册5.3.2命题、定理、证明优秀教学案例
3. 详细讲解证明的方法和步骤,包括直接证明、反证法和归纳法等,让学生掌握证明的基本方法。
4. 通过示例题目,演示如何运用命题、定理和证明的知识解决问题,让学生理解学习的实际意义。
(三)学生小组讨论
1. 将学生分成小组,每组选择一个定理进行证明,并用自己的语言解释证明的每一步。
这些亮点体现了本节课在教学设计、教学方法和教学评价等方面的优秀之处,有助于提高学生的学习兴趣、培养学生的思维能力和团队合作能力,促进学生的全面发展。同时,这些亮点也是我作为特级教师在教学实践中不断探索和尝试的结果,希望能够为其他教师提供一定的借鉴和参考。
4. 总结归纳环节:在课程结束时,引导学生回顾和总结所学内容,帮助学生巩固知识,提高学生的记忆和理解能力。总结归纳环节能够使学生对学习内容有一个清晰的认识,增强学生对知识的系统性和整体性的理解。
5. 作业小结环节:布置与课程内容相关的作业,要求学生运用所学知识解决问题,培养学生的应用能力和实践能力。作业小结环节能够及时巩固所学知识,帮助学生检验自己的学习效果,同时也为教师提供了了解学生学习情况的机会,为下一步的教学提供参考。
3. 设计一些评估题目,检验学生对命题、定理和证明的掌握程度,及时发现和纠正学生的错误。
4. 注重对学生的形成性评价,关注学生的进步和努力,激发学生的学习动力和自信心。
四、教学内容与过程
(一)导入新课
1. 利用生活实例引入命题的概念,例如:“如果今天是星期五,那么学校放假。”引导学生理解命题由题设和结论两部分组成。
2. 强调定理证明的重要性,以及定理证明在数学中的应用,使学生认识到学习定理证明的意义。
3. 总结学生在小组讨论中的表现,对学生的学习成果进行肯定和鼓励,激发学生的学习动力。
人教版数学七年级下册5.3.2《命题、定理、证明》教学设计4
人教版数学七年级下册5.3.2《命题、定理、证明》教学设计4一. 教材分析《人教版数学七年级下册5.3.2命题、定理、证明》这一节主要介绍命题、定理和证明的概念。
通过本节课的学习,学生能够理解命题、定理和证明的定义,掌握判断命题真假的方法,了解证明的两种方法——演绎法和归纳法,并能够运用这些知识解决实际问题。
二. 学情分析七年级的学生已经掌握了基本的数学运算能力和逻辑思维能力,但对命题、定理和证明的概念接触较少。
因此,在教学过程中,需要引导学生从实际问题中抽象出命题、定理和证明的概念,并通过实例让学生理解和掌握这些概念。
三. 教学目标1.了解命题、定理和证明的概念。
2.掌握判断命题真假的方法。
3.掌握证明的两种方法——演绎法和归纳法。
4.能够运用命题、定理和证明的知识解决实际问题。
四. 教学重难点1.重点:命题、定理和证明的概念,判断命题真假的方法,证明的两种方法。
2.难点:证明的两种方法——演绎法和归纳法的理解和运用。
五. 教学方法1.情境教学法:通过实际问题引入命题、定理和证明的概念。
2.实例教学法:通过具体的实例让学生理解和掌握命题、定理和证明的概念。
3.小组讨论法:引导学生分组讨论,培养学生的合作能力和解决问题的能力。
4.教学反馈法:通过提问、练习等方式及时了解学生的学习情况,调整教学进度和方法。
六. 教学准备1.教学PPT:制作含有命题、定理和证明的实例的PPT。
2.练习题:准备一些判断命题真假和运用证明方法的练习题。
3.教学素材:准备一些实际问题作为教学素材。
七. 教学过程1.导入(5分钟)通过一个实际问题引入命题、定理和证明的概念。
例如:在三角形中,如果一个角是直角,那么它的两条边分别是斜边。
这个命题是如何判断真假的?如何用数学语言来表达这个命题?2.呈现(10分钟)介绍命题、定理和证明的定义。
命题是判断某个陈述真假的语句,定理是被证明为真的命题,证明是用逻辑推理的方法来证明定理的过程。
七年级数学下册 第五章 相交线与平行线 5.3.2 命题、定理、证明备课资料教案 (新版)新人教版
第五章 5.3.2命题、定理、证明知识点1:命题判断一件事情的语句,叫命题.它必须对某件事情作出判断,要么肯定,要么否定,而像“你回家了吗”“画AB∥CD”等等就不是命题.知识点2:命题的组成命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.它通常可以写成“如果……那么……”的形式,“如果”后面接的是题设,“那么”后面接的是结论.如果一个命题是正确的,那么它就是真命题,反之就是假命题.知识点3:定理经过推理证实而得到的真命题叫做定理.注意:理解命题的概念时要注意两点:(1)命题必须是一个完整的句子;(2)这个句子必须对某件事情给出明确的判断(如肯定或否定的判断).知识点4:证明一个命题的正确性需要经过推理,才能作出判断,这个推理的过程叫做证明.考点1:如果……那么……【例1】把下列命题改写成“如果……那么……”的形式.(1)同位角相等;(2)等角的补角相等.解:(1)如果两个角是同位角,那么这两个角相等.(2)如果两个角是相等的角,那么这两个角的补角相等.考点2:举反例【例2】请判断命题“若a,b互为相反数,则a≠b”是真命题还是假命题?如果是假命题,举出反例说明.2解:假命题.因为0的相反数是0,而0=0,所以此命题是假命题.点拨举反例是说明一个命题是假命题常用的方法,所列举的反例满足命题的题设部分,不满足命题的结论即可.考点3:利用辅助线进行证明【例3】 如图,AB ∥CD.AF 、CF 分别是∠EAB 、∠ECD 的角平分线,F 是两条角平分线的交点.求证:∠F=∠AEC.解:如图,过点E 作EM ∥AB,过点F 作FN ∥AB,∵ AB ∥CD,∴ EM ∥CD.∴ ∠MEA=∠BAE,∠MEC=∠DCE.∴ ∠MEA+∠MEC=∠BAE+∠DCE,即 ∠AEC=∠BAE+∠DCE.同理可得∠AFC=∠BAF+∠DCF.∵ AF 、CF 分别是∠EAB 、∠ECD 的平分线, ∴ ∠BAF=∠BAE,∠DCF=∠DCE.∴ ∠AFC=∠BAE+∠DCE.∴ ∠AFC=∠AEC,即 ∠F=∠AEC.点拨:作辅助线,可以探究:∠AEC 与∠BAE 及∠DCE 之间的关系,结合角的平分线的性质,可以探究出∠F 与∠AEC 之间的关系.。
人教版数学七年级下册5.3.2《命题、定理、证明》教学设计1
人教版数学七年级下册5.3.2《命题、定理、证明》教学设计1一. 教材分析本节课的主题是“命题、定理、证明”,这是人教版数学七年级下册第五章第三节的内容。
在这一部分中,学生将学习到什么是命题,如何判断命题的真假,以及如何用定理来证明一个命题的正确性。
这是学生初步接触逻辑推理和数学证明的重要阶段,也是培养学生数学思维能力的关键环节。
二. 学情分析学生在之前的学习中已经接触过一些基本的数学概念和运算规则,具备一定的数学基础。
但是,对于命题、定理、证明这些较为抽象的数学概念,可能还存在一定的理解和应用困难。
因此,在教学过程中,需要注重引导学生理解这些概念的内涵和外延,以及如何运用这些概念来解决问题。
三. 教学目标1.了解命题、定理的概念,理解命题与定理之间的关系。
2.学会判断命题的真假,并能运用定理进行证明。
3.培养学生的逻辑思维能力和数学证明能力。
四. 教学重难点1.重点:命题、定理的概念,命题真假的判断,定理的证明。
2.难点:命题、定理之间的逻辑关系,证明方法的灵活运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主探究、合作交流来获取知识。
2.利用实例和反例,让学生直观地理解命题的真假判断。
3.通过证明实例,让学生掌握定理的证明方法,并能够灵活运用。
六. 教学准备1.准备相关的教学PPT,内容包括命题、定理的定义,命题真假的判断,定理的证明等。
2.准备一些实际的数学问题,用于引导学生进行思考和讨论。
3.准备一些证明实例,用于让学生进行模仿和练习。
七. 教学过程1.导入(5分钟)通过一个简单的数学问题,引发学生对命题、定理、证明的思考。
例如:已知勾股定理,判断以下命题的真假:“所有的直角三角形都满足勾股定理”。
2.呈现(10分钟)介绍命题、定理的概念,以及命题真假的判断方法。
通过PPT展示相关的定义和判断方法,让学生理解和掌握。
3.操练(10分钟)让学生通过实际的例子来判断命题的真假。
七年级数学下册 5.3.2 命题、定理、证明教案 (新版)新人教版
命题、定理教学目的:1、知识与技能:了解命题的概念 ,并能区分命题的题设和结论.2、经历判断命题真假的过程 ,对命题的真假有一个初步的了解.3、初步培养学生不同几何语言相互转化的能力.重点:命题的概念和区分命题的题设与结论.难点:区分命题的题设和结论.教学过程一、创设情境复习导入教师出示以下问题:1.平行线的判定方法有哪些?2.平行线的性质有哪些.学生能积极的思考教师所出示的各个问题复习稳固有关的知识点为本节课的学习打下良好的根底.(注意:平行线的判定方法三种,另外还有平行公理的推论)二、尝试活动探索新知教师给出以下语句,①如果两条直线都与第三条直线平行,那么这条直线也互相平行;②等式两边都加同一个数,结果仍是等式;③对顶角相等;④如果两条直线不平行,那么同位角不相等.学生学生能由教师的引导分析每个语句的特点.思考:你能说一说这4个语句有什么共同点吗 ?并能耐总结出这些语句都是对某一件事情作出 "是〞或 "不是〞的判断.初步感受到有些数学语言是对某件事作出判断的.教师给出命题的定义.判断一件事情的语句,叫做命题.(3)命题的组成.①命题由题设和结论两局部组成.题设是事项,结论是由事项推出的事项.②命题的形成 ,可以写成 "如果…… ,那么……〞的形式 .真命题与假命题:教师出示问题:如果两个角相等 ,那么它们是对顶角.如果a>b.b>c那么a =b如果两个角互补 ,那么它们是邻补角.三、尝试反应理解新知明确命题有正确与错误之分:命题的正确性是我们经过推理证实的 ,这样得到的真命题叫做定理 ,作为真命题 ,定理也可以作为继续推理的依据.(四、课堂练习:1. "等式两边乘同一个数 ,结果仍是等式〞是命题吗 ?它们题设和结论分别是什么 ?2.命题 "两条平行线被第三第直线所截 ,内错角相等〞是正确的 ?命题 "如果两个角互补 ,那么它们是邻补角〞是正确吗 ?再举出一些命题的例子 ,判断它们是否正确. )五、总结拓展:教师引导学生完本钱节课的小结 ,强调重要的知识点.六、布置作业:习题5.3第11题.教学反思1 、要主动学习、虚心请教,不得偷懒. 老老实实做"徒弟〞,认认真真学经验,扎扎实实搞教研.2 、要勤于记录,善于总结、扬长避短. 记录的过程是个学习积累的过程, 总结的过程就是一个自我提高的过程.通过总结, 要经常反思自己的优点与缺点,从而取长补短,不断进步、不断完善.3 、要突破创新、富有个性,倾心投入. 要多听课、多思考、多改良,要正确处理好模仿与开展的关系,对指导教师的工作不能照搬照抄,要学会扬弃,在原有的根底上,根据自身条件创造性实施教育教学,逐步形成自己的教学思路、教学特色和教学风格, 弘扬工匠精神, 努力追求自身教学的高品位.。
人教版数学七年级下册《5-3-2命题、定理、证明 》教学设计
人教版数学七年级下册《5-3-2命题、定理、证明》教学设计一. 教材分析《5-3-2命题、定理、证明》是人教版数学七年级下册的教学内容,主要包括命题、定理和证明的概念及其关系。
本节课的内容是学生学习数学证明的基础,对于培养学生的逻辑思维和论证能力具有重要意义。
二. 学情分析学生在七年级上学期已经学习了基本的数学概念和运算,对于问题的解决有一定的基础。
但是,学生对于抽象的逻辑推理和证明过程可能存在理解上的困难,需要通过具体的事例和实践活动来帮助他们理解和掌握。
三. 教学目标1.了解命题、定理和证明的概念及其关系。
2.能够识别和判断一个数学命题是真还是假。
3.学会使用简单的逻辑推理和归纳推理写出简单的证明过程。
四. 教学重难点1.重点:命题、定理和证明的概念及其关系。
2.难点:证明过程的写法和逻辑推理的运用。
五. 教学方法采用问题驱动的教学方法,通过引导学生观察、思考和推理,激发学生的学习兴趣,培养学生的逻辑思维和论证能力。
同时,结合小组合作和讨论,促进学生之间的交流和合作。
六. 教学准备1.教学PPT:包括命题、定理和证明的概念及其关系的图片和示例。
2.练习题:包括判断命题真假和写证明过程的练习题。
3.小组合作的学习材料:包括相关的数学故事和案例。
七. 教学过程1.导入(5分钟)通过一个有趣的数学故事引入命题、定理和证明的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解命题、定理和证明的概念及其关系,通过示例让学生理解命题是陈述性语句,定理是经过证明的命题,证明是用来证实命题真假的过程。
3.操练(10分钟)让学生独立完成一些判断命题真假的练习题,并简要说明判断的依据。
通过小组讨论和分享,让学生理解不同的人可能会有不同的判断方法,但正确的判断应该基于逻辑推理和证明过程。
4.巩固(10分钟)让学生分组合作完成一些写证明过程的练习题。
在学生完成练习后,让各小组展示他们的证明过程,并解释他们的推理思路。
人教版七年级数学(下)—教案:5.3.2命题、定理、证明优秀教学案例
4.针对学生的学习情况,调整教学策略,为下一节课的教学做好准备。
五、案例亮点
1.情境创设:本节课通过生活实例和多媒体展示,有效地激发了学生的学习兴趣,使他们能够主动参与到课堂学习中。情境创设不仅增强了学生对数学知识的理解,还提高了他们的学习积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发他们学习数学的内在动力。
2.培养学生的自信心和自尊心,让他们感受到自己在数学学习中的进步和成就。
3.引导学生认识到数学的严谨性和逻辑性,培养他们的思维品质和道德素养。
4.通过对命题、定理和证明的学习,使学生感受到数学的美丽和力量,提高他们对数学价值观的认识。
2.问题导向:教师在教学中提出了具有挑战性和引导性的问题,引导学生进行深入思考和探索。问题导向的教学策略使得学生在解决问题的过程中,能够不断提高自己的数学思维水平和解决问题的能力。
3.小组合作:教师组织学生进行小组讨论和合作,培养了他们的团队协作能力和沟通能力。小组合作使得每个学生都能在课堂上发挥自己的特长,提高了他们的自主学习能力和合作意识。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,培养他们的自我评价和自我调节能力。
2.组织学生进行互评和小组评价,让他们学会倾听他人的意见,提高他们的批判性思维。
3.教师对学生的学习成果进行肯定和鼓励,增强他们的自信心和自尊心。
4.结合学生的学习情况,调整教学策略,为下一节课的教学做好准备。
四、教学内容与过程
(二)问题导向
1.提出具有挑战性和引导性的问题,激发学生的思维活力,培养他们的解决问题的能力。
2.引导学生通过讨论和思考,逐步解决问题,让他们体验到解决问题的过程和成就感。
人教版七年级数学下册5.3.2命题、定理、证明优秀教学案例
5.引导学生树立正确的价值观,认识到学习数学不仅是为了考试,更是为了提升自己的综合素质,为未来的发展打下坚实基础。
三、教学策略
(一)情景创设
为了让学生更好地理解和掌握命题、定理、证明的知识,我将采用生活化的情景创设方法。通过引入学生熟悉的生活实例,如地图上的最短路径、圆桌上的饼等,让学生感受到数学与现实生活的紧密联系。同时,结合课本中的例题,设计具有趣味性和挑战性的问题,激发学生的学习兴趣和探究欲望。
3.反馈:针对学生的表现,及时给予反馈,鼓励优点,指出不足,并提出改进建议。让学生在反思和评价中不断成长,提高他们的自我认知和自我调节能力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中的一些现象,如:为什么两点之间的直线距离最短?为什么圆形的轮子可以平稳滚动?通过这些现象,引发学生对命题、定理、证明的兴趣。
3.各小组代表汇报讨论成果,其他小组给予评价和反馈。
(四)总结归纳
1.教师引导学生总结本节课所学的知识点,如命题、定理、证明方法等。
2.帮助学生梳理知识体系,明确各个知识点之间的联系。
3.强调本节课的重点和难点,提醒学生注意掌握。
(五)作业小结
1.布置作业:结合本节课内容,设计不同难度的习题,让学生巩固所学知识。
2.提问学生:“在生活中,你们还遇到过哪些类似的问题?”让学生意识到数学知识与生活的紧密联系。
3.引导学生回顾已学的相关知识点,为新课的学习做好铺垫。
(二)讲授新知
1.讲解命题的概念,举例说明命题的表述方法,让学生理解命题的内涵和外延。
2.介绍基本的几何定理,如线段的性质、角的性质等,并结合课本中的例题,让学生理解定理的含义和应用。
人教版七年级数学下册第五章5.3.2命题、定理、证明(教案)
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《命题、定理、证明》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断真假的陈述?”比如,判断广告中的产品宣传是否真实。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索命题的奥秘。
在学生小组讨论环节,大家对于定理在实际生活中的应用提出了很多有趣的观点。但同时我也注意到,部分学生在讨论过程中较为沉默,可能是因为他们对主题不他们积极参与讨论,提高自信心。
首先,关于命题的真假判断,大多数学生能够理解并掌握基本的判断方法,但在遇到一些复杂命题时,仍然会出现判断失误的情况。这说明在今后的教学中,我需要多设计一些具有挑战性的题目,帮助学生提高判断能力。
其次,定理的应用是学生们普遍感到困惑的地方。在讲解定理时,我应该更加注重引导学生理解定理的适用条件,以及如何在实际问题中灵活运用定理。通过案例分析,让学生明白定理并不是孤立的知识点,而是可以解决实际问题的有力工具。
1.教学重点
(1)理解命题的概念:命题是描述性语句,可以判断其真假。本节课重点是让学生掌握命题的基本要素,如何判断一个命题的真假,以及如何书写正确的命题。
举例:判断下列命题的真假:“一个三角形的三个内角和为180度。”
(2)掌握定理的定义:定理是经过证明的命题。重点在于让学生理解定理在几何证明中的重要性,并学会运用定理进行问题的解决。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解命题的基本概念。命题是可以判断真假的陈述句。它是数学逻辑推理的基础,是建立定理和进行证明的前提。
2.案例分析:接下来,我们来看一个具体的案例。通过分析“一个三角形的三个内角和为180度”这个命题,了解它在几何证明中的应用。
人教版七年级数学下册5.3.2《命题、定理、证明》教学设计
人教版七年级数学下册5.3.2《命题、定理、证明》教学设计一. 教材分析《命题、定理、证明》是人教版七年级数学下册第五章第三节的内容,主要介绍了命题、定理和证明的概念。
这部分内容是学生学习几何证明的基础,对于培养学生的逻辑思维能力和空间想象能力具有重要意义。
本节课的内容主要包括命题的定义、分类及定理的概念,以及证明的方法。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于基本的几何概念和性质有一定的了解。
但是,学生在证明方面的知识和能力还有待提高,因此,在教学过程中需要注重引导学生理解和掌握证明的方法和技巧。
三. 教学目标1.理解命题、定理和证明的概念,能够区分它们之间的联系和区别。
2.学会用几何语言表达命题和定理。
3.掌握证明的方法和技巧,能够运用所学的知识解决一些简单的几何问题。
四. 教学重难点1.重点:命题、定理和证明的概念及它们之间的联系和区别。
2.难点:证明的方法和技巧,以及如何运用所学的知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主学习、合作探究的方式掌握命题、定理和证明的概念。
2.利用几何图形和实例,帮助学生直观地理解命题、定理和证明的联系和区别。
3.通过练习和案例分析,培养学生的证明能力和解决实际问题的能力。
六. 教学准备1.准备相关的几何图形和实例,用于讲解和展示。
2.准备一些练习题和案例,用于巩固和拓展所学知识。
七. 教学过程1.导入(5分钟)利用一个简单的几何问题引入命题、定理和证明的概念,激发学生的兴趣。
2.呈现(10分钟)讲解命题、定理和证明的定义及它们之间的联系和区别。
通过几何图形和实例,让学生直观地理解这些概念。
3.操练(10分钟)让学生分组讨论,分析一些给定的几何问题,尝试运用所学的命题、定理和证明方法解决问题。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成一些相关的练习题,巩固对命题、定理和证明的理解。
5.3.2 命题、定理与证明(教学设计)-七年级数学下册同步备课系列(人教版)
5.3.2命题、定理与证明教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级下册(以下统称“教材”)第五章“相交线与平行线”5.3.2命题、定理与证明,内容包括:命题、定理及证明的概念;命题的题设和结论;真假命题.2.内容解析新课标提出了对学生“数学思考”的要求:“经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.”在学段目标中,进一步指出:在探索图形性质、与他人合作交流等活动中,发展合情推理,进一步学习有条理地思考与表达.而命题是数学教学的基本依据,经过推理证实的命题如定理可以作为继续推理的依据,所以认识命题的定义、结构、真假是数学学习的重要任务之一.而正确找出命题的题设和结论是基础,特别是题设和结论不明显的命题和难以判断真假的命题是学习的重点.本节课将通过一些具体的例子来了解基本概念,不必深究,不钻难题,所以学习本节课特别重要,是后面学习定理和证明的前提和基础,具賄承上启下的作用.基于以上分析,确定本节课的教学重点为:理解命题、定理及证明的概念,会区分命题的题设和结论.二、目标和目标解析1.目标(1)理解命题、定理及证明的概念,会区分命题的题设和结论;(2)会判断真假命题,知道证明的意义及必要性,了解反例的作用.2.目标解析理解命题的概念及构成;会判断所给命题的真假;初步感知什么是证明;通过对命题及其真假的判断,提高学生的理性判断能力;通过对证明的学习,培养学生严谨的数学思维;初步体会命题在数学中的应用、用证明论证自己的判断;为今后的学习打好基础,发展应用意识;通过对命题、定理、证明的学习,让学生学会从理性的角度判断一件事情的真假,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心.三、教学问题诊断分析学生在此之前已经学习了平行线的判定等内容,对命题已经有了初步的认识,为顺利完成本节课的教学任务打下了基础,但对于命题、真假命题的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析.于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性.基于以上学情分析,确定本节课的教学难点为:会区分命题的条件和结论,会判断命题的真假.四、教学过程设计问题引入我们日常讲话中,有些话是对某件事情作出判断的,有些话只是对事物进行描述的,如:(1)中华人民共和国的首都是北京.……()(2)我们班的同学多么聪明!……………()(3)浪费是可耻的.………………………()(4)春天到了,花儿开了.………………()在数学学习中,同样有判断和描述这两类语言,如:(1)画线段AB=3厘米.……………………()(2)两条直线相交,只有一个交点.……()自学导航观察下列语句,它们有什么共同点?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边加同一个数,结果仍是等式.像上面这样,判断一件事情的语句,叫做命题.命题的组成一般地,命题由题设和结论两部分组成.题设:是已知事项;结论:是由已知事项推出的事项.数学中的命题常可以写成“如果……,那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_____.例如,命题(1)中,“两条直线都与第三条直线平行”是_____,“这两条直线也互相平行”是_____.(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;有些命题的题设和结论不明显,要经过分析才能找出题设和结论,从而将它写成“如果……,那么……”的形式.例如,命题(3)“对顶角相等”可以写成“如果两个角是对顶角,那么这两个角相等”.(2)两条平行线被第三条直线所截,同旁内角互补;______________________________________________________________________________ (4)等式两边加同一个数,结果仍是等式.______________________________________________________________________________考点解析考点1:命题的定义和结构例1.判断下列语句是不是命题,如果是,改写成“如果……那么……”的形式,并指出它们的题设和结论.(1)画线段AB=2cm;(2)你喜欢画画吗?(3)分数一定是有理数;(4)同角的补角相等;(5)两个锐角余.解:(1)不是命题,因为没有对事情作出判断;(2)不是命题,因为没有对事情作出判断;(3)是命题.改写:如果一个数是分数,那么它一定是有理数.题设:一个数是分数;结论:它一定是有理数.(4)是命题.改写:如果两个角是同一个角的补角,那么这两个角相等.题设:两个角是同一个角的补角;结论:这两个角相等.(5)是命题.改写:如果两个角是锐角,那么这两个角互余.题设:两个角是锐角;结论:这两个角互余.【迁移应用】1.下列语句中,不是命题的是()A.两点之间,线段最短B.内错角都相等C.连接A,B两点D.平行于同一直线的两直线平行2.下列语句中,是命题的有()①两直线平行,同旁内角相等;②π不是有理数;③若a≠b,则a≠b;④明天会下雨吗?⑤在直线AB上取一点P.A.2个B.3个C.4个D.5个3.把“在同一平面内,垂直于同一条直线的两条直线互相平行”改写成“如果……那么……”的形式是___________________________________________________________.4.指出下列命题的题设和结论:(1)如果∠1与∠2是内错角,那么∠1=∠2;(2)对顶角相等;(3)两个负数的和是负数.解:(1)题设:∠1与∠2是内错角;结论:∠1=∠2.(2)题设:两个角是对顶角;结论:这两个角相等.(3)题设:两个数是负数;结论:这两个数的和是负数.自学导航真假命题真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题;假命题:命题中题设成立时,不能保证结论一定成立,这样的命题叫做假命题.(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边加同一个数,结果仍是等式.判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.考点解析考点2:真命题和假命题例2.判断下列命题是真命题还是假命题,如果是假命题举出一个反例.(1)钝角大于它的补角;(2)互补的两个角一个是钝角,一个是锐角;(3)在同一平面内,过直线外一点有且只有一条直线与已知直线垂直;(4)若||=||,则a=b;(5)若a+b=0,则||=||.解:(1)是真命题;(2)是假命题.反例:两个角都是直角,这两个角互补,但不是钝角和锐角.(3)是真命题;(4)是假命题.反例:当a=-1,b=1时,||=||,但a≠b.(5)是真命题.【迁移应用】1.下列选项中,可以用来说明命题“若a2>4,则a>2”是假命题的反例是()A.a=-3B.a=-2C.a=2D.a=32.“两直线被第三条直线所截,同位角相等”是____命题(填“真”或“假”)3.下列命题:①同旁内角互补;②垂线段最短;③同一平面内,不重合的两条直线相交,则它们只有一个交点;④若一个角的两边与另一个角的两边分别平行,则这两个角相等.其中是真命题的是________(填序号)自学导航定理、证明如何证实一个命题是真命题呢?我们学过的一些图形的性质,都是真命题.其中有些命题是基本事实(公理),如“两点确定一条直线”“经过直线外一点有且只有一条直线与这条直线平行”等.还有一些命题,如“对顶角相等”“内错角相等,两直线平行”等,它们的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据.在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.考点解析考点3:定理与证明例3.如图,AB//CD,∠1=∠2,求证:AF//CG.证明:∵AB//CD(已知),∴∠EAB=∠ECD(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠EAB-∠1=∠ECD-∠2(等式的性质),即∠EAF=∠ECG,∴AF∥CG(同位角相等,两直线平行).【迁移应用】1.填空完成推理过程:如图,∠1=∠2,求证:∠B=∠BCD.证明:∵∠1=_______,∠1=∠2,∴∠2=_______.∴AB//CD(_______________________).∴∠B=∠BCD(_______________________).2.如图,已知∠A=∠ADE,∠C=∠E.求证:BE//CD.证明:∵∠A=∠ADE(已知),∴DE//AC(内错角相等,两直线平行),∴∠ABE=∠E(两直线平行,内错角相等).又∠C=∠E(已知),∴∠ABE=∠C(等量代换),∴BE//CD(同位角相等,两直线平行).考点4:填写推理过程和依据例4.完成下面的证明:如图,BC//DE,BE,DF分别是∠ABC,∠ADE的平分线.求证:∠1=∠2.证明:∵BC//DE,∴∠ABC=∠ADE(________________________).∵BE,DF分别是∠ABC,∠ADE的平分线,12∠ABC,∠4=12∠ADE.∴∠3=∠4∴_____∥______(________________________).∴∠1=∠2(________________________).【迁移应用】1.完成下面的证明:如图,AB⊥BC,BC⊥CD,且∠1=∠2.求证:BE//CF证明:∵AB⊥BC,BC⊥CD,∴________=________=90°(___________)∵∠1=∠2,∴∠ABC-∠1=∠DCB-∠2,即________=_________.∴BE//CF(_________________________).2.请补全证明过程及推理依据如图,D,E,F分别是三角形ABC的边AB,AC,BC上的点,若AB//EF,∠DEF=∠B.求证:∠AED=∠C.证明:∵AB//EF,∴_______=∠EFC(________________________).∴∠DEF=∠B,∴∠DEF=∠EFC(__________),∴DE//BC(______________________),∴∠AED=∠C.考点5:填写推理过程和依据例5.如图,∠ACD是∠ACB的邻补角,请从下面三个语句中,选出两个作为条件,另一个作为结论,构造一个真命题.①CE//AB;②∠A=∠B;③CE平分∠ACD.(1)由上述条件可构造出哪几个真命题?按“⊕⊕⇒⊕”的形式写出来;(2)选择(1)中的一个真命题进行证明.解:(1)可构造三个真命题,分别是:命题1:①②⇒③;命题2:①③⇒②;命题3:②③⇒①.(2)选择命题2:①③⇒②证明:∵CE//AB,∴∠ACE=∠A,∠DCE=∠B.∵CE平分∠ACD,∴∠ACE=∠DCE.∴∠A=∠B.(答案不唯一)【迁移应用】如图,现有以下三个条件:①AB//CD;②∠B=∠D;③∠E=∠F.请以其中两个为条件,第三个为结论构造新的命题;(1)请写出所有的命题:(写成“如果……那么……”的形式)(2)请选择其中的一个真命题进行证明.解:(1)命题1:如果AB//CD,∠B=∠D,那么∠E=∠F;命题2:如果AB//CD,∠E=∠F,那么∠B=∠D;命题3:如果∠B=∠D,∠E=∠F,那么AB//CD.(2)选择命题 1.证明:∵AB//CD,∴∠B=∠DCF∵∠B=∠D,∴∠D=∠DCF∴DE//BF,∴∠E=∠F.(答案不唯一)。
人教版数学七年级下册教案5.3.2《 命题、定理、证明》
人教版数学七年级下册教案5.3.2《命题、定理、证明》一. 教材分析《命题、定理、证明》是人教版数学七年级下册的教学内容,这部分内容是学生学习几何初步知识的重要环节。
通过学习命题、定理和证明,使学生了解几何学的基本概念和逻辑推理方法,培养学生空间想象能力和思维能力。
本节课的内容在教材中起到了承前启后的作用,为后续几何知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念,具备了一定的逻辑推理能力。
但部分学生对抽象的命题、定理和证明的概念理解起来较为困难,需要通过具体例子来帮助学生理解和掌握。
三. 教学目标1.了解命题、定理、证明的概念,理解它们之间的关系。
2.学会用逻辑推理的方法证明几何命题。
3.培养学生的空间想象能力和思维能力。
四. 教学重难点1.教学重点:命题、定理、证明的概念及逻辑推理方法。
2.教学难点:理解命题、定理、证明之间的关系,运用逻辑推理证明几何命题。
五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。
通过具体例子引入概念,引导学生主动探究、合作交流,培养学生的逻辑推理能力。
六. 教学准备1.教学PPT课件。
2.相关例题及练习题。
3.几何画图工具。
七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的一些几何现象,引导学生思考这些现象背后的几何规律。
通过观察和讨论,让学生感受到几何学的魅力,激发学生的学习兴趣。
2.呈现(10分钟)介绍命题、定理、证明的概念,并通过PPT课件展示相关例题。
让学生直观地了解命题、定理、证明之间的关系,帮助学生建立基本概念。
3.操练(15分钟)让学生分组讨论,选取一些简单的几何命题,尝试用逻辑推理的方法进行证明。
教师巡回指导,解答学生疑问,帮助学生掌握证明的方法。
4.巩固(10分钟)出示一些有关命题、定理、证明的练习题,让学生独立完成。
教师及时批改、讲解,巩固学生所学知识。
5.拓展(10分钟)引导学生思考:如何判断一个命题是真命题还是假命题?让学生通过举例、分析,掌握判断命题真假的方法。
人教版七年级数学下册教案:5.3.2 命题、定理、证明
课题 5.3.2命题、定理、证明授课人教学目标知识技能掌握命题、定理的概念,并能分清命题的题设和结论,判定真命题和假命题;能根据已知条件对简单问题进行证明.数学思考通过讨论、探究、交流等形式,使学生在辩论中获得知识体验.问题解决用类比的方法,经历自主学习、合作探究,领悟命题的有关概念.情感态度在学习过程中培养学生敢于怀疑、大胆探究的品质,培养合作、交流的能力,从活动中体会学习的快乐.教学重点掌握命题、定理的概念,并能分清命题的组成.教学难点分清命题的组成,并能把一个命题改写成“如果……那么……”的形式.授课类型新授课课时教具教学活动教学步骤师生活动设计意图活动一:创设情境导入新课【课堂引入】以下6个句子,有什么不同?你能对它们进行分类吗?如果你能分类,分类的依据是什么?(1)熊猫没有翅膀;(2)对顶角相等;(3)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(4)你喜欢数学吗?(5)作线段AB=CD;(6)清新的空气;(7)不许讲话.指出像这样判断一件事情的语句,叫做命题.既复习了已学知识,又让学生认识了命题的多种表现形式.活动二:实践探究交流新知【探究1】命题的概念下列句子中,哪些是命题?①直角三角形中的两个锐角互余;②正数都大于0;③如果∠1+∠2=180°,那么∠1与∠2互补;④太阳不是行星;⑤对顶角相等吗?⑥作一个角等于已知角.分析:①②③是命题,它们都对事情作出了肯定回1.通过各类型的语句探究命题的概念.答;④是命题,它对事情作出了否定回答;⑤不是命题,只表示疑问,并未作出判断;⑥不是命题,只是描述了一个作图的过程,设有做出判断.解:①②③④是命题,⑤⑥不是命题.师生共同总结判断命题的依据:对事件做出了肯定或否定的判断的句子为命题,否则不是命题.【探究2】命题的题设和结论命题由题设和结论两部分组成,其中“题设”是已知事项,即命题中的已知条件;“结论”是由已知事项推出的事项,即结论是在已知条件的前提下可得到的结果.命题的表述形式有标准形式:“如果……那么……”,另外还有“若……则……”等,一般地,“如果……”和“若……”是题设部分,“那么……”和“则……”是结论部分.一些命题前面的“附加部分”属题设.要准确找出一个命题的题设和结论,特别是一些没有关联词语、题设和结论不明显的命题.(续表)活动二:实践探究交流新知例2判断下列语句是不是命题,是命题的指出命题的题设和结论,并判断此命题是否是真命题.(1)画射线AC;(2)同位角相等吗?(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;(4)任意两个直角都相等;(5)如果两条直线相交,那么它们只有一个交点;(6)若|x|=|y|,则x=y.解:(1)(2)不是命题;(3)题设是两条直线被第三条直线所截,同旁内角互补,结论是这两条直线平行,是真命题;(4)题设是两个角是直角,结论是这两个角相等,2.师生通过例题共同探究命题的题设和结论的确定方法.3.引导学生区分命题与定理的关系,且体会数学命题证明的必要性.是真命题;(5)题设是两条直线相交,结论是它们只有一个交点,是真命题;(6)题设是|x|=|y|,结论是x=y,是假命题;有些数学命题,如“对顶角相等”,没有写成标准形式,条件和结论不明显,要认真分析是由什么来推断什么,把它恢复成标准形式,这样就容易找到它的条件和结论.如“对顶角相等”恢复成标准形式是“如果两个角是对顶角,那么这两个角相等”.有些命题的条件之前还有条件,那么这两个条件合起来作为命题的条件,如“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”,条件是两条直线被第三条直线所截,同位角相等;结论是这两条直线平行.【探究3】定理与证明我们已经知道下列各命题都是正确的,即都是公认的真命题:(1)两点确定一条直线;(2)两点之间线段最短;(3)过一点有且只有一条直线与已知直线垂直;(4)过直线外一点有且只有一条直线与这条直线平行.有些命题可以从基本事实出发或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.归纳:定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.探究证明:根据条件、定义以及基本事实、定理等,经过演绎推理,来判断一个命题是否正确,这样的推理过程叫做证明.图5-3-63如图5-3-63,有下列三个条件:①DE∥BC:②∠1=∠2;③∠B=∠C.(1)若从这三个条件中任选两个作为题设,另一个作为结论,组成一个命题,一共能组成几个命题,请你把它们写出来;(2)请你就其中的一个真命题给出推理过程.(续表)活动二:实践探究交流新知解:(1)一共能组成3个命题,它们是:题设:①②,结论:③;题设:①③,结论:②;题设:②③,结论:①.(2)情况一题设:①②,结论:③;证明:∵DE∥BC,∴∠1=∠B,∠2=∠C.又∵∠1=∠2,∴∠B=∠C;情况二题设:①③,结论:②;证明:∵DE∥BC,∴∠1=∠B,∠2=∠C.又∵∠B=∠C,∴∠1=∠2.归纳总结:证明的一般步骤:第一步:根据题意画出图形;第二步:根据命题的题设和结论,结合图形,写出已知、求证;第三步:通过分析,找出证明的方法,写出证明过程.在证明几何命题时,须注意以下几点:1.明确题目的题设和结论;2.证明过程中引用的根据(理由)与“定理的证明相同”;3.证明过程中每一步结果所用的根据必须是得到这一结果的充分理由;4.要防止利用未学过的定理来证明学过的命题,避免循环论证.4.归纳证明的过程有助于培养学生严密的逻辑推理能力,为后续的学习打好基础.活动三:【应用举例】1.利用新知解决问题,根据相开放训练体现应用图5-3-64例1如图5-3-64,已知直线b∥c,a⊥b.求证:a⊥c.证明:∵a⊥b(已知),∴∠1=90°(垂直的定义).又∵b∥c(已知),∴∠1=∠2(两直线平行,同位角相等),∴∠2=∠1=90°(等量代换),∴a⊥c(垂直的定义).变式图5-3-65在下面的括号内填上推理的根据.如图5-3-65,AB和CD相交于点O,∠A=∠B.求证:∠C=∠D.证明:∵∠A=∠B,∴AC∥BD(__内错角相等,两直线平行__),∴∠C=∠D(__两直线平行,内错角相等__).分析:根据已知的条件及图形证明某个数学结论是常见的数学题目,本题以“∵”“∴”的形式将完整的说理过程展现出来,需要同学们根据图形条件及已知条件填上原因.也就是在我们推理过程的每一步必须要有理有据,不关性质进行演绎推理.2.通过变式练习巩固证明过程,训练学生推理证明的能力.能乱写.本题既利用了平行线的判定方法,又运用了平行线的性质.(续表)活动三:开放训练体现应用【拓展提升】例2如图5-3-66,直线DE经过点A,DE∥BC,∠B=44°,∠C=85°.(1)求∠DAB的度数;(2)求∠EAC的度数;(3)求∠BAC的度数;(4)通过这道题你能说明为什么三角形的内角和是180°吗?图5-3-66知识的综合与拓展提高应考能力.活动四:课堂总结反思【当堂训练】课本第21页练习第1,2题;课本第22页练习第1,2题.课后作业:课本第23页习题5.3第7(2),8,9,12,13题.通过练习进一步巩固所学知识,使教师及时了解学生对本课所学知识的掌握情况.【板书设计】5.3命题、定理、证明命题⎩⎪⎨⎪⎧概念:构成分类⎩⎪⎨⎪⎧题设:已知事项结论:由已知事项推出的事项真命题:假命题:定理:证明:通过知识框图浓缩本节知识,易于学生理解.【教学反思】①[授课流程反思]既复习了已学知识,又让学生认识了命题的多种表现形式,从而使学生明白命题我们都学过,只是没有从概念上加以澄清,从而消除学生对新知识的恐惧感,增加亲切感.回顾反思,找出差距与不足,形成知识及教学体系,更进②[讲授效果反思]本节课的教学内容较简单,通过本节课的教学,学生在区分命题的题设和结论的基础上知道命题有真假之分,其中有的真命题又叫做定理.对于假命题只要举出反例加以说明即可,其中推理过程叫做证明.③[师生互动反思]学生小组合作学习的积极性较高,体现出学生愿学乐学的心态,教师要及时性地给予鼓励和表扬.一步提升教师教学能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3.2 命题、定理、证明
师:同学们,这节课我们来学习新的一课:命题与定理。
现在我们先来尝试完成一下下面的问题,看你能不能在老师不讲解的情况下掌握。
生:(完成下列练习1)
1、试判断下列句子是否正确。
(1)如果两个角是对顶角,那么这两个角相等;
(2)三角形的内角和是180°;
(3)同位角相等;
(4)平行四边形的对边相等;
(5)两个角的和为180°,则称两个角互为余角。
(6) 相等的角是对顶角。
师:小柳,你来说说你的答案。
生:(1)(2)(4)(6)是对的,(3)(5)是错的。
师:正确,同学们回忆一下(1)(2)(4)(6)是不是我们之前学习的知识点?我们把这些正确的句子叫做真命题,也叫定理;象(3)(5)这些错误的句子叫做假命题。
生:老师,什么叫命题?
师:这个问题提的很好,命题是指,能够判断对错的句子。
如“你今天吃饭了吗?”这句话你能够判断它是对的还是错的吗?
生:不能判断。
象这种不能判断对错的句子就不是命题了。
为了巩固这两个概念,我们来完成下列的练习。
生:(做下列练习)
2、判断下列语句是否命题,如果是命题,说明它是真命题还是假命题。
(1)两条直线相交,只有一个交点;
(2)画线段AB= 3 厘米;
(3)两直线平行,同位角相等;
(4)正数大于负数;
(5)同角的余角相等;
(6)在直线AB上任取一点C;
(7)明天会下雨吗?
(8)画线段AB=CD;
(9)相等的角都是直角;
(10)同旁内角互补.
师:我们来开火车,一个一个同学说每一小题的答案,小珂你开始。
生:(1)是真命题;
生:(2)不是命题;
生:(3)是真命题;
生:(4)是真命题;
生:(5)是真命题;
生:(6)不是命题;
生:(7)不是命题;
生:(8)不是命题;
生:(9)是假命题;
生:(10)是假命题;
师:好,同学们都掌握的很好。
我们再来学习下一个知识点,再看看下面这个练习。
3、观察下列命题,你发现他们有什么共同特点和结构特征?
①如果两个角相等,那么它们是对顶角.
②如果a>b,b>c,那么a=c .
小结:命题由________和_________两个部分组成。
师:上面这两个句子前面说的都是条件,后面说的都是结论,由此可知命题由题设和结论两个部分组成。
同学们来尝试找找下面练习的题设和结论。
生:(完成练习)
4、指出下列命题的题设和结论:
(1)两直线平行,内错角相等;
(2)若∠A=∠B,∠B=∠C,则∠A=∠C。
(3)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补。
师:小东,你来说说你的答案,同学看他说的怎么样啊。
生:……
师:同学们这节课的知识点我们已经学习完了,现在大家来简单回忆一下我们刚才学习的知识点,首先我们学习的是命题,什么叫命题呢?(生一起回答)然后学习真假命题,什么叫真命题、假命题?(生一起回答)再学习的命题的组成部分,命题由……(生回答)
师:好,我们来完成下面的练习。
堂上练习:
一:基础题
1、下列语句中,不是命题的句子是()
A.过一点做已知直线的垂线;
B.钝角小于90°;
C.两点确定一条直线;
D.凡平角都相等。
2、命题是一件事情的句子,命题都是由和两部分组成。
3、命题“若a≠b,则a2≠b2”的题设是,结论是。
4、下列命题中,真命题是()
A 互补的两个角相等,则此两角都是直角;
B 直线是一平角;
C 不相交的两直线叫做平行线;
D 和为180°的两个角叫做邻补角。
5、观察下面几个句子是否命题 ,是否真命题
(1)如果a//b,b//c,那么a//c;
(2)两条直线相交,有几个交点?
(3)如果两个角不相等,那么这两个角不是对顶角;
二:提高题
1、指出下列命题中的题设和结论,并将其改写成“如果…那么…”的形式。
(1)平行于同一直线的两条直线平行.
(2)对顶角相等.
师:小贤同学,说说你的答案,看看跟大家的是否一下。
生:(说自己答案,然后对对答案)
师,这节课就上到这里,今天的作业是《学习辅导》P9—10 5.3.2命题、定理。