高中数学对数运算习题精编

合集下载

高中数学-对数的运算练习

高中数学-对数的运算练习

高中数学-对数的运算练习【选题明细表】知识点、方法题号对数的运算性质1,6,8,10,11,13换底公式2,7附加条件的对数式求值3,4,5,9与对数有关的方程问题121.下列等式成立的是( C )(A)log2(8-4)=log28-log24(B)=log2(C)log28=3log22(D)log2(8+4)=log28+log24解析:由对数的运算性质易知C正确.2.计算(log54)·(log1625)等于( B )(A)2 (B)1 (C)(D)解析:(log54)·(log1625)=×=×=1.故选B.3.设lg 2=a,lg 3=b,则log125等于( A )(A)(B)(C)(D)解析:因为lg 2=a,lg 3=b,则log125==.故选A.4.如果lg 2=m,lg 3=n,则等于( C )(A)(B)(C)(D)解析:因为lg 2=m,lg 3=n,所以===.故选C.5.若lg x=m,lg y=n,则lg -lg()2的值为( D )(A)m-2n-2 (B)m-2n-1(C)m-2n+1 (D)m-2n+2解析:因为lg x=m,lg y=n,所以lg -lg()2=lg x-2lg y+2=m-2n+2.故选D.6.(2017·上海高一月考)若lo2=a,则log123= .解析:lo2=a,可得2log32=a,log123===.答案:7.已知3a=5b=A,若+=2,则A= .解析:因为3a=5b=A>0,所以a=log3A,b=log5A.由+=log A3+log A5=log A15=2,得A2=15,A=.答案:8.计算下列各题:(1)0.008 +()2+(-16-0.75;(2)(lg 5)2+lg 2·lg 50+.解:(1)原式=(0.34++-24×(-0.75)=0.3+2-3+2-2-2-3=0.55.(2)原式=(lg 5)2+lg 2·lg(2×52)+2·=(lg 5)2+lg 2·(lg 2+2lg 5)+2=(lg 5+lg 2)2+2=1+2.9.已知lg 2=a,lg 3=b,则log36等于( B )(A) (B) (C) (D)解析:log36===,故选B.10.化简+log2,得( B )(A)2 (B)2-2log23(C)-2 (D)2log23-2解析:==2-log23,所以原式=2-log23+log23-1=2-2log23.11.下列给出了x与10x的七组近似对应值:组号一二三四五六七x 0.301 03 0.477 11 0.698 97 0.778 15 0.903 09 1.000 00 1.079 18 10x 2 3 5 6 8 10 12假设在上表的各组对应值中,有且仅有一组是错误的,它是第组.解析:由指数式与对数式的互化可知,10x=N⇔x=lg N,将已知表格转化为下表:组号一二三四五六七N 2 3 5 6 8 10 12lg N 0.301 03 0.477 11 0.698 97 0.778 15 0.903 09 1.000 00 1.079 18 因为lg 2+lg 5=0.301 03+0.698 97=1,所以第一组、第三组对应值正确.又显然第六组正确,因为lg 8=3lg 2=3×0.301 03=0.903 09,所以第五组对应值正确.因为lg 12=lg 2+lg 6=0.301 03+0.778 15=1.079 18,所以第四组、第七组对应值正确.所以只有第二组错误.答案:二12.已知a,b,c是△ABC的三边,并且关于x的二次方程x2-2x+lg(c2-b2)-2lg a+1=0有等根,试判断△ABC的形状.解:由题意知Δ=0,即(-2)2-4[lg(c2-b2)-2lg a+1]=0,2lg a-lg(c2-b2)=0,lg =0,=1,a2+b2=c2,故△ABC是直角三角形.13.地震的震级R与地震释放的能量E的关系为R=(lg E-11.4).A地地震级别为9.0级,B地地震级别为8.0级,那么A地地震的能量是B地地震能量的倍.解析:由R=(lg E-11.4),得R+11.4=lg E,故E=1.设A地和B地地震能量分别为E1,E2,则==1=10.即A地地震的能量是B地地震能量的10倍.答案:10【教师备用】求值:(1)2log2-lg 2-lg 5+;(2)lg 14-2lg+lg 7-lg 18;(3)计算:.解:(1)2log2-lg 2-lg 5+=2×-lg 10+()=1-1+=.(2)lg 14-2lg+lg 7-lg 18=lg[14÷()2×7÷18]=lg 1=0.(3)分子=lg 5(3+3lg 2)+3(lg 2)2=3lg 5+3lg 2(lg 5+lg 2)=3,分母=(lg 6+2)-lg 6+1=3, 所以原式=1.。

(完整版)对数的运算经典习题

(完整版)对数的运算经典习题

(完整版)对数的运算经典习题1. 对数的定义根据定义,若幂运算 $a^x=b$,则 $x$ 称为以 $a$ 为底 $b$ 的对数,记作 $\log_a b=x$。

其中,$a$ 叫做对数的底数,$b$ 叫做真数。

2. 对数的运算规律对数具有一些运算规律,以下是常见的对数运算规律:2.1 对数的乘法规律$\log_a (b\times c)=\log_a b+\log_a c$2.2 对数的除法规律$\log_a \frac{b}{c}=\log_a b-\log_a c$2.3 对数的幂运算规律$\log_a b^c=c\times \log_a b$3. 经典题3.1 题一已知 $\log_2 3\approx 1.59$,求 $\log_8 27$3.2 题二设 $a>1$,若 $\log_a 8=x$,求 $\log_{\sqrt{a}} 32$。

3.3 题三求证:$\log_2 5+\frac{1}{\log_5 2}=1$3.4 题四已知 $\log_2\sqrt{a}=k$,求 $\log_4 a$。

参考答案3.1 答案由对数的换底公式可知:$$\log_8 27=\frac{\log_2 27}{\log_2 8}=\frac{\log_2 (3^3)}{3}=\frac{3\log_2 3}{3}=\log_2 3\approx1.59$$3.2 答案由对数的换底公式可知:$$\log_{\sqrt{a}} 32=\frac{\log_2 32}{\log_2\sqrt{a}}=\frac{5}{\frac{1}{2}\log_2 a}=\frac{10}{\log_2 a}=\frac{10}{x}$$3.3 答案根据对数的定义可知:$$\log_2 5+\frac{1}{\log_5 2}=\frac{\log_2 5\times\log_2 2}{\log_2 2}+1=1$$3.4 答案由对数的性质可知:$$\log_4 a=\frac{\log_2 a}{\log_2 4}=\frac{k}{2}$$。

对数运算练习题(含答案)

对数运算练习题(含答案)

对数运算练习题1.将下列指数式改为对数式:(1)21164-⎛⎫= ⎪⎝⎭_________________ (2)3481x -=__________________ 2.将下列对数式改为指数式:(1)43log 4=___________________ (2)12log 5x =-______________3.33333713log log log 4log 242-++=___________ 4.1log log 2log log 2a a a a x m n p =--,则x =___________5.lg 0.06=_____________6.下列指数式与对数式互化不正确的一组是 ( )A 0101lg10==与B 132711127log 333-==-与 C 123log 9293==与 D 15log 5155==与 7.已知log 162x =,则x 的值为 ( )A 4-B 4C 4±D 148.下列各等式中,正确运用对数运算性质的是 ( )A (()22lg lg lg x x y =+B (()22lg lg lg 2lg x x y z =++C (2lg 2lg lg 2lg x x y z =+-D (21lg 2lg lg lg 2x x y z =++9.以下运算中结果正确的是 ( )A 1010log 2log 51+=B 444log 61log 2log 32== C 351log 2lg lg 2lg 5x y z ⎛⎫=+- ⎪⎝⎭D 21log 83==10.已知3log 2a =,那么33log 82log 6-,用a 表示是 ( )A 2a -B 52a -C ()231a a -+ D 231a a -- 11.计算:(1)()2lg 4lg5lg 20lg5++ (2)11lg9lg 24022361lg 27lg 35+--+ 12.已知log 2,log 3a a x y ==,求2x y a +的值13.设在海拔x 米处的大气压强是yPa ,已知kxy ce =,其中,c k 为常数,若沿海某地元旦那天,在海平面的大气压强为51.0110Pa ⨯,100米高空的大气压强是50.9010Pa ⨯,求8000米高空的大气压强(结果保留4为有效数字)答案:1.(1)14log 162=- (2)813log 4x =-2.(1)344= (2)512x -⎛⎫= ⎪⎝⎭3. 34.2n p5.1-6.C7.B8.D9.A 10.A11.(1)2 (2)1-12. 1213.44.01510Pa ⨯。

对数运算练习及答案

对数运算练习及答案

对数运算法则训练题1、lg 5·lg 8000+06.0lg 61lg )2(lg 23++ 2、 lg 2(x +10)-lg(x +10)3=4.3、23log 1log 66-=x .4、9-x -2×31-x =275、x )81(=128.6、5x+1=123-x .7、10log 5log )5(lg )2(lg 2233++·.10log 188、 (1)lg 25+lg2·lg50; (2)(log 43+log 83)(log 32+log 92). 9、求121log 8.0--=x x y 的定义域.10、log 1227=a,求log 616. 11、已知f(x)=1322+-x x a ,g(x)=522-+x x a (a >0且a ≠1), 确定x 的取值范围,使得f(x)>g(x).12、已知函数f(x)=321121x x ⎪⎭⎫ ⎝⎛+-. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0.13、求关于x 的方程a x +1=-x 2+2x +2a(a >0且a ≠1)的实数解的个数.14、求log 927的值. 15、设3a =4b =36,求a 2+b 1的值.16、log 2(x -1)+log 2x=1 17、4x +4-x -2x+2-2-x+2+6=018、24x+1-17×4x +8=0 19、22)223()223(=-++-x x ±220、01433214111=+⨯------x x21、042342222=-⨯--+-+x x x x22、log 2(x -1)=log 2(2x+1)23、log 2(x 2-5x -2)=224、log 16x+log 4x+log 2x=725、log 2[1+log 3(1+4log 3x)]=126、6x -3×2x -2×3x +6=027、lg(2x -1)2-lg(x -3)2=228、lg(y -1)-lgy=lg(2y -2)-lg(y+2)29、lg(x 2+1)-2lg(x+3)+lg2=030、lg 2x+3lgx -4=0部分答案2、解:原方程为lg 2(x +10)-3lg(x +10)-4=0,∴[lg(x +10)-4][lg(x +10)+1]=0.由lg(x +10)=4,得x +10=10000,∴x=9990.由lg(x +10)=-1,得x +10=0.1,∴x=-9.9.检验知: x=9990和-9.9都是原方程的解.3、解:原方程为36log log 626=x ,∴x 2=2,解得x=2或x=-2. 经检验,x=2是原方程的解, x=-2不合题意,舍去.4、解:原方程为2)3(x --6×3-x -27=0,∴(3-x +3)(3-x -9)=0.∵3-x +3≠0,∴由3-x -9=0得3-x =32.故x=-2是原方程的解.5、 解:原方程为x 32-=27,∴-3x=7,故x=-37为原方程的解. 6、解:方程两边取常用对数,得:(x +1)lg5=(x 2-1)lg3,(x +1)[lg5-(x -1)lg3]=0. ∴x +1=0或lg5-(x -1)lg3=0.故原方程的解为x 1=-1或x 2=1+5log 3. 8、 (1)1;(2)45 9、 函数的定义域应满足:⎪⎩⎪⎨⎧>≥-≠-,0,01log ,0128.0x x x 即⎪⎪⎩⎪⎪⎨⎧>≥≠,0,1log ,218.0x x x解得0<x ≤54且x ≠21,即函数的定义域为{x|0<x ≤54且x ≠21}. 10、 由已知,得a=log 1227=12log 27log 33=2log 2133+,∴log 32=a a 23- 于是log 616=6log 16log 33=2log 12log 433+=aa +-3)3(4. 11、 若a >1,则x <2或x >3;若0<a <1,则2<x <312、 (1)(-∞,0)∪(0,+∞);(2)是偶函数;(3)略.13、 2个14、 设log 927=x,根据对数的定义有9x =27,即32x =33,∴2x=3,x=23,即log 927=23.15、 对已知条件取以6为底的对数,得a 2=log 63, b1=log 62, 于是a 2+b1=log 63+log 62=log 66=1. 16、x=2 17、x=0 18、x=-21或x=23 19、x=±120、x=37 21、x=23 22、x ∈φ 23、x=-1或x=6 24、x=16 25、x=3 26、x=127、x=829或x=1231 28、y=2 29、x=-1或x=7 30、x=10或x=10-4。

高中数学对数与对数运算训练题(含答案)

高中数学对数与对数运算训练题(含答案)

高中数学对数与对数运算训练题(含答案)1.2-3=18化为对数式为()A.log182=-3 B.log18(-3)=2C.log218=-3 D.log2(-3)=18解析:选C.根据对数的定义可知选C.2.在b=log(a-2)(5-a)中,实数a的取值范围是() A.a>5或a B.2<a<3或3<a<5C.25 D.3<a<4解析:选B.5-a>0a-2>0且a-21,2<a<3或3<a<5. 3.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx,则x=10;④若e=lnx,则x=e2,其中正确的是()A.①③ B.②④C.①② D.③④解析:选C.lg(lg10)=lg1=0;ln(lne)=ln1=0,故①、②正确;若10=lgx,则x=1010,故③错误;若e=lnx,则x=ee,故④错误.4.方程log3(2x-1)=1的解为x=________.解析:2x-1=3,x=2.答案:21.logab=1成立的条件是()A.a=b B.a=b,且b0C.a0,且a D.a0,a=b1解析:选D.a0且a1,b0,a1=b.2.若loga7b=c,则a、b、c之间满足()A.b7=ac B.b=a7cC.b=7ac D.b=c7a解析:选B.loga7b=cac=7b,b=a7c.3.如果f(ex)=x,则f(e)=()A.1 B.eeC.2e D.0解析:选A.令ex=t(t0),则x=lnt,f(t)=lnt.f(e)=lne=1.4.方程2log3x=14的解是()A.x=19 B.x=x3C.x=3 D.x=9解析:选A.2log3x=2-2,log3x=-2,x=3-2=19. 5.若log2(log3x)=log3(log4y)=log4(log2z)=0,则x +y+z的值为()A.9 B.8C.7 D.6解析:选A.∵log2(log3x)=0,log3x=1,x=3.同理y=4,z=2.x+y+z=9.6.已知logax=2,logbx=1,logcx=4(a,b,c,x>0且1),则logx(abc)=()A.47B.27C.72D.74解析:选D.x=a2=b=c4,所以(abc)4=x7,所以abc=x74.即logx(abc)=74.7.若a0,a2=49,则log23a=________.解析:由a0,a2=(23)2,可知a=23,log23a=log2323=1.答案:18.若lg(lnx)=0,则x=________.解析:lnx=1,x=e.答案:e9.方程9x-63x-7=0的解是________.解析:设3x=t(t0),则原方程可化为t2-6t-7=0,解得t=7或t=-1(舍去),t=7,即3x=7. x=log37.答案:x=log3710.将下列指数式与对数式互化:(1)log216=4;(2)log1327=-3;(3)log3x=6(x>0); (4)43=64;(5)3-2=19; (6)(14)-2=16.解:(1)24=16.(2)(13)-3=27.(3)(3)6=x.(4)log464=3.(5)log319=-2.(6)log1416=-2.11.计算:23+log23+35-log39.解:原式=232log23+353log39=233+359=24+27=51. 12.已知logab=logba(a0,且a1;b0,且b1).求证:a=b或a=1b.证明:设logab=logba=k,则b=ak,a=bk,b=(bk)k=bk2.∵b0,且b1,k2=1,即k=1.当k=-1时,a=1b;当k=1时,a=b.a=b或a=1b,命题得证.。

高中数学必修一《对数函数》经典习题(含详细解析)

高中数学必修一《对数函数》经典习题(含详细解析)

高中数学必修一《对数函数》经典习题(含详细解析)一、选择题1.已知f=log3x,则f,f,f(2)的大小是( )A.f>f>f(2)B.f<f<f(2)C.f>f(2)>fD.f(2)>f>f2若log a2<log b2<0,则下列结论正确的是( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>13函数y=2+log2x(x≥1)的值域为( )A.(2,+∞)B.(-∞,2)C.[2,+∞)D.[3,+∞)4函数y=lo x,x∈(0,8]的值域是( )A.[-3,+∞)B.[3,+∞)C.(-∞,-3]D.(-∞,3]5.不等式log2(2x+3)>log2(5x-6)的解集为( )A.(-∞,3)B.C. D.6函数f(x)=lg是( )A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数7设a=log32,b=log52,c=log23,则( )A.a>c>bB.b>c>aC.c>b>aD.c>a>b8设a=log54,b=(log53)2,c=log45,则( )A.a<c<bB.b<c<aC.a<b<cD.b<a<c9.函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )A. B. C.2 D.410.若log a=log a,且|log b a|=-log b a,则a,b满足的关系式是( )A.a>1,且b>1B.a>1,且0<b<1C.0<a<1,且b>1D.0<a<1,且0<b<1二、填空题11若函数y=log3x的定义域是[1,27],则值域是.12已知实数a,b满足lo a=lo b,下列五个关系式:①a>b>1,②0<b<a<1,③b>a>1,④0<a<b<1,⑤a=b.其中可能成立的关系式序号为.13log a<1,则a的取值范围是.14不等式12log xx<的解集是.15函数y=log0.8(-x2+4x)的递减区间是.三、解答题16.比较下列各组值的大小.(1)log3π,log20.8.(2)1.10.9,log1.10.9,log0.70.8.(3)log53,log63,log73.17已知函数f(x)=+的定义域为A.(1)求集合A.(2)若函数g(x)=(log2x)2-2log2x-1,且x∈A,求函数g(x)的最大值、最小值和对应的x值.18已知函数f=log2(2+x2).(1)判断f的奇偶性.(2)求函数f的值域.19已知函数f(x)=log a(1-x)+log a(x+3),其中0<a<1.(1)求函数f(x)的定义域.(2)若函数f(x)的最小值为-4,求a的值.参考答案与解析1【解析】选 B.由函数f=log3x在(0,+∞)是单调增函数,且<<2,知f()<f()<f(2).2【解析】选B.log a2<log b2<0,如图所示,所以0<b<a<1.6【解析】选A.因为f(-x)=lg=lg=lg=lg=-lg=-f(x),所以f(-x)=-f(x),又函数的定义域为R,故该函数为奇函数.7【解析】选D.因为log32=<1,log52=<1,又log23>1,所以c最大.又1<log23<log25,所以>,即a>b,所以c>a>b.8【解析】选D.a=log54<1,log53<log54<1,b=(log53)2<log53<a,c=log45>1,故b<a<c.9【解析】选 B.无论a>1还是0<a<1,f(x)在[0,1]上都是单调函数,所以a=(a0+log a1)+(a+log a2),所以a=1+a+log a2,所以log a2=-1,所以a=.10【解析】选C.因为log a=log a,所以log a>0,所以0<a<1.因为|log b a|=-log b a,所以log b a<0,b>1.11【解析】因为1≤x≤27,所以log31≤log3x≤log327=3.所以值域为[0,3].答案:[0,3]12【解析】当a=b=1或a=,b=或a=2,b=3时,都有lo a=lo b.故②③⑤均可能成立.答案:②③⑤13【解析】①当a>1时,log a<0,故满足log a<1;②当0<a<1时,log a>0,所以log a<log a a,所以0<a<,综上①②,a∈∪(1,+∞).答案:∪(1,+∞)14【解析】因为<=x-1,且x>0.①当0<x<1时,由原不等式可得,lo x>-1,所以x<2,所以0<x<1;②当x>1时,由原不等式可得,lo x<-1,x>2,综上可得,不等式的解集为{x|0<x<1或x>2}.答案:(0,1)∪(2,+∞)15【解析】因为t=-x2+4x的递增区间为(-∞,2].但当x≤0时,t≤0.故只能取(0,2],即为f(x)的递减区间.答案:(0,2]16【解析】(1)因为log3π>log31=0,log20.8<log21=0,所以log3π>log20.8.(2)因为1.10.9>1.10=1,log1.10.9<log1.11=0,0=log0.71<log0.70.8<log0.70.7=1,所以1.10.9>log0.70.8>log1.10.9.(3)因为0<log35<log36<log37,所以log53>log63>log73.17【解析】(1)所以所以≤x≤4,所以集合A=.(2)设t=log2x,因为x∈,所以t∈[-1,2],所以y=t2-2t-1,t∈[-1,2].因为y=t2-2t-1的对称轴为t=1∈[-1,2],所以当t=1时,y有最小值-2.所以当t=-1时,y有最大值2.所以当x=2时,g(x)的最小值为-2.当x=时,g(x)的最大值为2.18【解析】(1)因为2+x2>0对任意x∈R都成立,所以函数f=log2(2+x2)的定义域是R.因为f(-x)=log2[2+(-x)2]=log2(2+x2)=f(x),所以函数f(x)是偶函数.(2)由x∈R得2+x2≥2,所以log2(2+x2)≥log22=1,即函数f=log2(2+x2)的值域为[1,+∞).19【解析】(1)要使函数有意义,则有解之得-3<x<1,所以函数的定义域为(-3,1).(2)函数可化为:f(x)=log a[(1-x)(x+3)]=log a(-x2-2x+3)=log a[-(x+1)2+4],因为-3<x<1,所以0<-(x+1)2+4≤4.因为0<a<1,所以log a[-(x+1)2+4]≥log a4,即f(x)min=log a4,由log a4=-4得a-4=4,所以a==.3【解析】选C.设y=2+t,t=log2x(x≥1),因为t=log2x在[1,+∞)上是单调增函数,所以t≥log21=0.所以y=2+log2x(x≥1)的值域为[2,+∞).4【解析】选A.因为0<x≤8,所以lo x≥-3,故选A.5【解析】选D.原不等式等价于解得<x<3,所以原不等式的解集为.。

专题02 指数运算与对数运算(解析版)-高考数学计算题型精练(新高考通用版)

专题02 指数运算与对数运算(解析版)-高考数学计算题型精练(新高考通用版)

指数与对数运算1.求值:(1))20.51π316-⎛⎫+- ⎪⎝⎭;(2)2ln 31274e log 9log 8lg 4lg 25-⋅++.【答案】(1)0(2)12【详解】(1)原式123493711041644⎛⎫=+-=+-= ⎪⎝⎭(2)原式ln923e log 3log 2lg10091212=+⋅+=++=.2.计算(1)1223182π4-⎛⎫-+ ⎪⎝⎭(2)2log 321log lg 2lg 528--+【答案】(1)5(2)1-【详解】(1)()1122222333132282π214154233--⎡⎤⎛⎫⎛⎫-++++-++=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(2)()2log 321log lg 2lg 523lg 2lg 5318--+=--++=-3.求值:(1)(213103531732248---⎛⎫⎛⎫++-⨯ ⎪ ⎪⎝⎭⎝⎭;(2)2ln3427elog 9log 8lg4lg25-⋅++.【答案】(1)3(2)10【详解】(1)(213103531732248---⎛⎫⎛⎫++-⨯ ⎪⎪⎝⎭⎝⎭()()1132533353122224--=+-⨯+⨯123233122222=+-⨯+⨯12331882+=+-+12=+3=;(2)原式ln 923elog 3log 2lg10091210=-⋅+=-+=;综上,(1)原式=3;(2)原式=10.4.计算:(1)341lg2lg 3lg5log 2log 94-+-⨯;(2)21log 3231lglog 3log log 52100+-⨯++.【答案】(1)2(2)4【详解】(1)341lg2lg 3lg5log 2log 94-+-⨯2232log 9lg2lg23lg5log 2log 4-=-+-⨯32lg22lg23lg5log 2log 3=++-⨯3(lg2lg5)1=+-3lg101=-31=-2=.(2)21log 3231lglog 3log log 52100+-⨯+2log 322222log log 512log 322log 5log 32=--⨯++⨯112622=--++4=.5.求下列各式的值:(1)()10.52332770.02721259-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+-;(2)55557log 352log log 7log 1.83-+-.【答案】(1)9100(2)2【详解】(1)原式210.5332333351053-⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+-⎢⎥⎢⎥⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦95510033=+-9100=(2)原式5555499log 35log log 7log 95=-+-5499log 35795⎛⎫=÷⨯÷ ⎪⎝⎭5log 252==6.计算:(2)()()2266661log 2log 33log 2log log 23⎛⎫++⨯ ⎪⎝⎭【答案】(1)4-(2)1【详解】(11128125lg 25lg10lg10-⨯⨯=⨯()2lg10112=⨯-4=-;(2)()()2266661log 2log 33log 2log log 23⎛⎫++⨯ ⎪⎝⎭()()226666log 2log 33log 2log =++⨯()()22666log 2log 33log 2log =++⨯()()226666log 2log 32log 2log 3=++⨯()266log 2log 3=+1=.7.计算或化简下列各式:(1)()1223164⎛⎫-+ ⎪⎝⎭(2)228393(log 3log 9)(log 4log 8log 2)(lg 2)lg 20lg5+++++⨯【答案】(1)3(2)172【详解】(1)原式221111111113332362362222255122ln e 333233422++⎛⎫⎛⎫⎛⎫=⨯-++⨯⨯=-++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)原式=()22233322log 3log 32log 2log 2log 2lg 2lg 20lg 533⎛⎫⎛⎫+++++⨯ ⎪⎪⎝⎭⎝⎭()()()22235915log 3log 2lg 2lg 20lg5lg 2lg 21lg5322=⨯++⨯=+++⨯()()()215151517lg 2lg 2lg5lg5lg 2lg 2lg5lg5lg 2lg52222=+++=+++=++=8.计算下列各式的值:(1)2237828-⎛⎫--+⎪⎝⎭;(2)2log 331log 27lg2100++.【答案】(1)1π4+(2)92【详解】(1)02237828-⎛⎫--+⎪⎝⎭()23321213π2=-+-+141π34=-+-+1π4=+;(2)21log 33223311l 2og 27lg 2log 3lg10ln e 332310092-++=+++=-=++.9.计算下列各式的值:(1)213112726-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭;(2)3332log 2log 32log 8-+.【答案】(1)5.5(2)0【详解】(1)原式230.52120.54 5.5=-+-=-+=;(2)原式3333348log 4log 32log 8log log 1032⨯=-+===.10.计算下列两个小题:(1)ln 31e2lg15lg 3++;(2)0.25608π+.【答案】(1)4(2)75【详解】(1)ln 3111e2lg15lg 3lg 2lg15lg 3lg 2154333⎛⎫++=+++=+⨯⨯= ⎪⎝⎭.(2)660.750.2650.25085221289π17=⨯+⨯+=+⨯=++.11.求下列式子的值:(1)()()12623129.684-⎛⎫+--- ⎪⎝⎭.(2)ln334lg252lg2log 16log 3e +-⋅+.【答案】(1)0(2)3【详解】(1)()()()()126203122332129.68931912412 1.05444--⎛⎫+--- ⎪⎝⎭⎛⎫⎡⎤+--- ⎪⎣⎦⎝⎭==+--=(2)ln33434lg252lg2log 16log 3e lg25lg42log log 33lg1002324233+-⋅++-⋅+=-+=-+==12.计算与化简:(1)453log 27log 8log 25⨯⨯(2)12271112333662228a a b a b ---⎛⎫⎛⎫⎛⎫⋅-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(3)10220.51392(0.01)54-⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭(4)222lg5lg8lg5lg20(lg2)3++⋅+.【答案】(1)9(2)b -(3)5140(4)3【详解】(1)原式3lg 33lg 22lg 592lg 2lg 5lg 3=⨯⨯=;(2)原式12711122363262328a b b-+--⎛⎫⎛⎫⎛⎫- ⎪==- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(3)原式131511421040=+⨯-=(4)原式()()22lg 52lg 2lg 5lg 52lg 2lg 2=++++()()22lg 5lg 2lg 2lg 5=+++2213=+=13.(1)21023213(2)(9.6)(3)(1.5)48---+;(2)log 535﹣2log 573+log 57﹣log 595.【答案】(1)12;(2)2【详解】解:(1)21023213(2)(9.6)(3)(1.5)48---+1﹣2327()8+2.25=32﹣1﹣2333(2⎡⎤⎢⎥⎣⎦+2.25=32﹣1﹣94+94=12;(2)log 535﹣2log 573+log 57﹣log 595=log 5[35÷(499)×7÷95]=log 5(35×949×7×59)=log 525=2.14.化简求值:(1)2133325-⎛⎫+ ⎪⎝⎭;(2)7log 2log lg 25lg 47++.【答案】(1)12-(2)112【详解】(1)原式1213331182212122-=-⨯+=-+=-.(2)原式331311log 3lg100222222=++=++=.15.化简或求值:(1)0.5207120.1π93-⎛⎫+-+⎪⎝⎭;(2)7lg142lg lg 7lg183-+-;【答案】(1)101;(2)0;(3)1.【详解】(1)0.5207120.1π93-⎛⎫+-+ ⎪⎝⎭1225151100110011019333⎛⎫=+-+=+-+= ⎪⎝⎭;(2)7lg142lg lg 7lg183-+-27lg14lg lg 7lg183⎛⎫=-+- ⎪⎝⎭9lg 1471849⎛⎫=⨯⨯÷ ⎪⎝⎭lg1=0=;(3211-=.16.计算:(1))()1211610.259-⎛⎫-- ⎪⎝⎭(2)25lg 42lg 5log 5log 8lg10++⨯+.【答案】(1)23-(2)6【详解】(1)原式4214333=--+=-(2)原式2lg 5lg8lg 4lg 51lg 2lg 5=++⨯+3222log 813log 26=++=+=17.计算下列各式的值:(1)()6221103321642e 453π-⎛⎫⎛⎫+--+⨯ ⎪ ⎪⎝⎭⎝⎭;(2)ln 2352log 27lg2lg5log 16log e ---⋅.【答案】(1)2023(2)2【详解】(1)()6221103321642e π453-⎛⎫⎛⎫+--+⨯ ⎪⎪⎝⎭⎝⎭611223243245⎛⎫=+-+⨯ ⎪⎝⎭232345=+⨯2023=.(2)()ln 235log 27lg2lg5log 16log e-+-⋅ln25=31log 16log e --⋅()ln 2521=24log 2log 5e =2222-⋅+-+=2.18.计算下列各题:(1)()20.5312816410.751627---⎛⎫⎛⎫+-÷+ ⎪ ⎪⎝⎭⎝⎭;(2)()70log 23log lg 25lg 479.8+++-.【答案】(1)94(2)132【详解】(1)原式20.523814279999116364416164⎛⎫⎛⎫⎛⎫=-÷+=-+= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)原式323100313log 3lg lg 4212lg 4lg 43422=++++=+-++=.19.化简求值(1)1131227(0.002)2)8--⎛⎫+- ⎪⎝⎭;(2)()266661log 3log 2log 18log 4⎡⎤-+⨯÷⎣⎦.【答案】(1)372-(2)1【详解】(1)原式)113131232271350010285002-⨯⎛⎫⎛⎫⎛⎫=+=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3372022=+-=-.(2)原式()()266666612log 3log 3log log 63log 43⎡⎤=-++⋅⨯÷⎢⎥⎣⎦()()()26666612log 3log 31log 31log 3log 4⎡⎤=-++-+÷⎣⎦()()22666612log 3log 31log 3log 4⎡⎤=-++-÷⎣⎦()666666621log 3log 6log 3log 212log 2log 2log 2--====.20.(1)计算:1222301322(2.5)3483-⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)已知7log 23log 27lg252lg27x a =++-,求33x xx xa a a a--++的值.【答案】(1)12;(2)739.【详解】(1)原式123232223333391991122222444212⎛⎫⎛⎫⎛⎫⎛⎫+=--+=-+=⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎡⎤⎡⎤=--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎭⎦⎝⎭.(2)()33log 32lg52lg2232lg5lg223223x a =++-=++-=+-=,所以()()()()3322331xx xx x xx xx x x xx xa a aa a a a a a a a a a a -------++⋅-++==+++()()()22222222117311131.39xxxxxx aaaa aa --⎛⎫⎛⎫=+-=+-=+-=+-= ⎪ ⎪⎝⎭⎝⎭21.求值:(1))1213250.02719-⎛⎫+-⎪⎝⎭;(2)2350.2log 27log 82log 10log 4⨯--.【答案】(1)4(2)7【详解】(1))()12131121233255351020.02710.31149310333---⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤+-=+-=+-=+=⎢⎥ ⎪ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.(2)()13322350.25555ln 3ln 23ln 33ln 2log 27log 82log 10log 42log 25log 22log 212log 292ln 2ln 3ln 2ln 3-⨯--=⨯-⨯-=⨯-++=-=.22.求值:()1220348π49-⎛⎫+-+ ⎪⎝⎭;(2)3323log 54log 2log 3log 4-+⋅.【答案】(1)172;(2)5.【详解】(11215321022532233317(2)(2)1[(]22122248(π4)()9-=++++-+=++=+.(2)322332332322log 454log 54log 2log 3log 4log log 3log 3log 23252log 3-+⋅=+⋅=+=+=.23.计算下列式子(1)()7l 0o 2g lg25+lg4l 79og .8+++-2334lo g log ⨯【答案】(1)132(2)8-【详解】(1)()7l 0o 2g lg25+lg4l 79og .8+++-3233133lg1002122122log =+++=+++=.(22334lo g log ⨯()222log lo 4lg100036281312g log =-⨯=--=-⨯-.24.计算:()031438162-⎛⎫---+ ⎪ ⎪⎝⎭;(2)223lg 2lg 5log log 64++-.【答案】(1)118(2)-2【详解】(1)原式()13314334311111122124488⨯⎛⎫⨯- ⎪⨯⎝⎭⎛⎫=---+=-++= ⎪⎝⎭(2)原式()22lg 25log 32log 312=⨯+---=-25.计算:223327-⋅+;(2)()()()221004lg 2log 2lg 5lg 23++-.【答案】(1)27-(2)1【详解】(1)依题意,223327⋅+()22233433=--⋅+(2224332=--⋅+(224272=--+231227=-+=-(2)()()()221004lg 2log 2lg 5lg 23++-()()4lg 2lg 2lg 5lg 2lg 5lg 23lg100⎛⎫=+++- ⎪⎝⎭4lg 2lg 2lg 5lg 232⎛⎫=++- ⎪⎝⎭43lg 25lg 322=⋅+52lg 2lg2=+25lg 2lg 2=+5lg 412⎛⎫=⋅= ⎪⎝⎭26.求值:(1)01310.0277-⎛⎫+- ⎪⎝⎭;(2)ln 21lg20lg4lg e 5-++.【答案】(1)73;(2)2.【详解】(1)()()111341334170.0270.3120.31273---⎛⎫+-+-=+-=⎪⎝⎭;(2)ln 21201lg20lg4lg e lg 2lg122545⎛⎫-++=⨯+=+= ⎪⎝⎭.27.求值:(1)))2202220223272264-⎛⎫-+-+ ⎪⎝⎭;(2)()9log 1620427log 9log 643lg 2lg 5lg 12022lg 5⨯++⨯+++.【答案】(1)3(2)7【详解】(1)原式()20222162113999++-=++=.(2)原式()3log 4223log 3log 43lg 2lg 5lg 2lg 524lg 2lg 5lg 2lg 5=⨯++⨯++=++++6lg 2lg5617=++=+=.28.计算(1))2log 3lg12lg1001-+-(2))0.523124-⎛⎫+⎪⎝⎭【答案】(1)2;(2)1π3-.【详解】(1))2log 3lg12lg1001-+-)32lg101=-+-321=-+2=;(2))0.523124-⎛⎫+ ⎪⎝⎭20.5233233π22-⎡⎤⎛⎫⎛⎫=+-+⎢⎥ ⎪⎪⎝⎭⎢⎥⎝⎭⎣⎦13π322-⎛⎫=+-+ ⎪⎝⎭1π3=-.29.计算下列各式的值:(1)11421481⎛⎫+ ⎪⎝⎭;(2)33252log 2log 12l 8og 5log -+⨯.【答案】(1)143(2)2【详解】(1)114211423314813⎛⎫ ⎪⎝⎭=+-=.(2)33252log 2log 12l 8og 5log -+⨯321log log 32381==-+=+.30.求下列各式的值:(1)134440.06425--⎛⎫---⋅⎪⎝⎭(2)2log 3232lg25lg8log 27log 223+-⨯+.【答案】(1)1516(2)2【详解】(1)原式1159151910.41621616=--⨯=--=.(2)原式()232lg52lg23log 3log 232lg5lg2332=+-⨯+=+-+=.31.求解下列问题:(1)2433641)27--⎛⎫++ ⎪⎝⎭;(2)2log 3491lg2log 27log 8100--⋅.【答案】(1)2916(2)74-【详解】(1)2433641)27--⎛⎫++ ⎪⎝⎭24333324123--⎡⎤⎛⎫⎛⎫=++⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦224123--⎛⎫=++ ⎪⎝⎭9129116416=++=.(2)2log 3491lg2log 27log 8100--⋅221233223lg10ln e 3log 3log 2-=-+-⋅2313323log 3log 2222=--+-⋅192324=--+-74=-.32.计算下列各式的值:(1)2log 23log lg 5lg 22++.(2)cos 20sin 50cos50cos70︒︒-︒︒.【答案】(1)72(2)12【详解】(1)2log 2317log lg 5lg 22lg10222++=++=;(2)cos 20sin 50cos50cos70cos 20sin 50cos50sin 20︒︒-︒︒=︒︒-︒︒()1sin 50202=︒-︒=.33.计算下列各式,写出演算过程(1)1222318324272-⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)5525lg 42lg 52log 10log 20log 5log 8++---⋅.【答案】(1)72(2)12-【详解】(1)解:原式23324344722392992⎡⎤⎛⎫=-+=+-+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(2)解:原式()225101ln 53ln 211lg 45log 213202ln 2ln 522=⨯+--⋅=+--=-.34.化简求值:(1)213240330.250.53π)0.0648---⎛⎫⨯--+ ⎪⎝⎭(2)2log 314319lg 25lg 2log 9log 822-++-⨯++.【答案】(1)7318;(2)4.【详解】(1)213240330.250.53π)0.0648---⎛⎫⨯---++ ⎪⎝⎭212433331132124225---⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯--++⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦45731129218=--++=;(2)2log 314319lg 25lg 2log 9log 822-++-⨯++2221221log 322233312log 3lg 5lg 2log 3log 2ln e 22=++-⨯++323314log 3lg 5lg 2log 33log 222=++-⨯++()32314lg 52log 33log 222=+⨯-⨯++41324=+-+=.35.求值:(1)()11202929.3log 443-⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭(2)5log 2lg2lg5lg15+++【答案】(1)1(2)3【详解】(1)()111222029233339.3log 412121432222-⎡⎤⎛⎫⎛⎫⎛⎫---+=--+=--+=⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.(2)5log 2lg 2lg 5lg15lg1002123+++=++=+=.36.化简求值:1020.5+(2)0.21log 53212lg5log 25lg 4-⎛⎫-++ ⎪⎝⎭.【答案】(1)3(2)2【详解】(1)原式3322=++=(2)原式155log 522lg5log 22lg 25=-++()15log 52112lg 5lg 2log 255-⎛⎫=+-+ ⎪⎝⎭151log 511552⎛⎫-+ ⎪⎝⎭=11255=-+2=37.计算下列各式的值:(1)1013352943-⎛⎫⎛⎫⨯-+ ⎪ ⎪⎝⎭⎝⎭(2)1433log lg 253log 3lg 43+-+【答案】(1)3(2)1【详解】(1)解:113352943-⎛⎫⎛⎫⨯-+ ⎪ ⎪⎝⎭⎝⎭112133334413355⎛⎫⎛⎫=⨯+⨯- ⎪ ⎪⎝⎭⎝⎭11213333443355+⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭;(2)1433log lg 253log 3lg 4+-+343331log 3log 32lg53log 32lg 24=-+-⨯+3312(lg5lg 2)44=-++-12lg101=-+=.38.化简求值:(1)312log 14lg 2lg529-⎛⎫++- ⎪⎝⎭;(2)71113sin cos tan 634πππ++.【答案】(1)32(2)1【详解】(1)原式()1220233lg 25211322-⎡⎤⎛⎫=+⨯-=+-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(2)原式πππsin πcos 4πtan2ππ634⎛⎫⎛⎫⎛⎫=++-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭πππsincos tan π634⎛⎫=-+++ ⎪⎝⎭11πtan 1224=-++=39.化简或求值(1)11034781(0.064)()()|0.1|816---++-(2)7lg142lg lg 7lg183-+-【答案】(1)3110(2)0(3)5π-【详解】(1)11034781(0.064)()()|0.1|816---++-1310.10.42=-++53112210=-++1310=+31.10=(2)27lg142lg lg 7lg1837lg14lg lg 7lg1839lg 1471849lg10.-+-⎛⎫=-+- ⎪⎝⎭⎛⎫=⨯⨯÷ ⎪⎝⎭==(3)325.πππ+=-+-=--=-40.计算求值(1)2ln 38916log 27log 6log 6e ⨯÷+;(2)419log 8log 34--【答案】(1)11(2)2-【详解】(1)2ln 38916log 27log 6log 6e⨯÷+ln92361log 3log 64log 2e 2=⨯⨯+62236log 22log 392log 3log 2911log 3=⨯+=⨯+=;(2)419log 8log 34--2331log 2log 322=---314222=+-=-.41.计算:(1)()110520.01321π---+;(2)3log 22log 8lg 2lg53++-.【答案】(1)5(2)2【详解】(1)()110520.01321102125π---+=---=;(2)()3log 22log 8lg 2lg 53lg 25223=+++-⨯-=.42.计算:(1)1123182427-⎛⎫-+ ⎛⎫ ⎪⎝⎪⎭⎝⎭(2)2lg 2lg 2lg5(lg5)+⋅+.【答案】(1)94(2)1【详解】(1)解:1123182427-⎛⎫-+ ⎛⎫ ⎪⎝⎪⎭⎝⎭1132233223-⎡⎤⎛⎫-⎢⎥ =⎪⎝⎭⎢⎥⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎣⎦1123223323232⎛⎫⨯⨯- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎛⎫= ⎪⎝⎝⎭⎭⎝⎭33992244-+==.(2)解:2lg 2lg 2lg5(lg5)+⋅+()lg 2lg5lg 2lg5=++()lg 2lg 5lg 25=+⋅⨯()lg 2lg 5lg 251=+=⨯=.43.化简求值:)2138227--⎛⎫++⎪⎝⎭;(2)3log 211lg 9lg 240292361lg 27lg 35+-+-+.【答案】π(2)3【详解】(1)原式2335259π32π3π4344⎛⎫⨯- ⎪⎝⎭⎛⎫=-+-=-+++-= ⎪⎝⎭.(2)原式32log 21lglg10lg 3lg 24083414336lg8lg10lg 9lg 5+-=+=+=-+=-+.44.求值:(1)230323(8)π)-+-;(2)()22824log 27(lg 5)(lg 2)lg 5lg log 16log 9+-+⨯.【答案】(1)2(2)0【详解】(1)2331032223(π)3313212-=-+⨯=-+=(2)()22824log 27(lg 5)(lg 2)lg 5lg log 16log 9+-+⨯32322222log 3(lg 5)(lg 2)2lg 5lg 2log 3=+-+⨯2(lg 5lg 2)1110=+-=-=45.计算:(1)ln 2lg252lg2e ++(2)()20.5133890.1252749--⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭【答案】(1)4(2)19【详解】(1)原式lg25lg42lg1002224=++=+=+=.(2)原式2132(0.5)3()332313724712939⨯⨯-⨯-⎛⎫⎛⎫⎛⎫=-+=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.46.(1)求值:3204161)++;(2)求值:5log 2lg25lg45log +++.【答案】(1)12;(2)112.【详解】(1)原式()343432132112=++=++=(2)原式()323lg 2542log 3=⨯++3lg10022=++112=47.求值:(1)()1430513π38-⎛⎫-- ⎪⎝⎭;(2)()2273log 8log 7log log 81+⨯.【答案】(1)4(2)5【详解】(1)()143015545143π32312381-+⎛⎫-- =+=⎝+⎭-⎪-=;(2)()2273274log 8log 7log log 813log 7log +⨯=+⨯273log 72l 5og 22==++=⨯.48.(1))1334ln 22811e 162022⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭(2)()314163log 4log 2log log 3⎛⎫+ ⎪⎝⎭【答案】(1)5;(2)12.【详解】(1)原式31442433333214152222⨯⎛⎫⎛⎫=++-=++-= ⎪ ⎪⎝⎭⎝⎭.(2)原式()(3344341log 4log 2log log log 2log 32=-=⨯=.49.计算:(1)212232327(1)(()[(3)]28--+⋅+-;(2)232lg5lg 4log 3log 4log +-⋅+【答案】(1)5(2)32【详解】(1)22122233323272349(1)()()[(3)]1()[()]3135283294--+⋅+-=+⋅+=+⨯+=(2)232lg5lg 4log 3log 4log +-⋅+lg 32lg 23332lg 52lg 22(lg 5lg 2)2lg 2lg 3222=+-⨯+=+-+=50.计算下列各式的值:(1)2ln 21elglg 202--;(2)232lg 25lg8log 27log 23+-⨯.【答案】(1)3.(2)1-.【详解】(1)22ln 2ln 2111e lg lg 20e (lg lg 20)4lg(20)4lg10413222--=-+=-⨯=-=-=.(2)2232323232lg 25lg8log 27log 2lg(258)log 27log 2lg103log 3log 22313+-⨯=⨯-⨯=-⨯=-=-.51.化简下列各式:(1)75sincos cos(5)tan 224ππππ++-+;(2)24log 32log 0.252lg 42lg 5⋅++++⋅【答案】(1)-1(2)1592【详解】(1)原式3sincos cos 11011122πππ=+++=-+-+=-.(2)原式421log 322242221log ln e 2lg 4lg55123)log (lg 24lg 4-=++++=++++1159281lg100222=-+++-=.52.计算下列各式的值:(1)()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭;(2)07log 2(9.8)log lg25lg47+-++.【答案】(1)3;(2)132【详解】(1)原式2323334122⎛⎫⨯-- ⎪⎝⎭⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭3=(2)原式()323log 3lg 25421=+⨯++3232=++132=53.计算求值:(1))()140231101108200-⎛⎫-++- ⎪⎝⎭;(2)(42log 923lg 2lg 250082log 9log 4⨯+⨯++⋅.【答案】(1)36(2)9【详解】(1)原式()()43431010220236⎡⎤=++-=+-=⎣⎦;(2)原式()2log 3212lg 32lg 2lg 22lg 528lg 524lg 2lg 3⎛⎫=++⨯++⋅ ⎪⎝⎭()22lg 2lg 52lg 22lg 5342lg 5lg 2lg 52lg 27=++++=+++()2lg 5lg 27279=++=+=.54.计算下列各式的值:(1)(332212234-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭(2)5log 3333322log 4log log 2527-++【答案】(1)1(2)6【详解】(1)(33332221392213424-⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭33233233331112222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-=+-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦(2)5log 3333322log 4log log 2527-++23332log 423log 27333627⎛⎫=÷⨯+=+=+= ⎪⎝⎭55.求下列各式的值:(1)1220.2531222854--⎛⎫⎛⎫+⨯ ⎪ ⎪⎝⎭⎝⎭;(2)158311lglog 9log 125log 10032+--.【答案】(1)56-(2)163-【详解】(1)()112112220.25344311315222812212544266---⎡⎤⎛⎫⎛⎫⎛⎫+⨯-=+⨯-⨯=+-=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.(2)3235158352311516lglog 9log 125log lg10log 9log 5log 22231003233--+--=---=---+=-.56.化简求值:())13320,0a b a b ->>;(2)7log 52225lg5lg 2lg 2lg5log 5log 47+++⨯+.【答案】(1)1(2)7【详解】(1)因为0,0a b >>()31332221b a ab --⎡⎤==⎢⎥⎣⎦,()31333222a a b b --=,所以原式332233221a b a b--==;(2)7log 52225lg5lg 2lg 2lg5log 5log 47+++⨯+()25lg 5lg 2lg 2lg 5log 5log 25=+++⨯+()25lg 5lg 2lg 2lg 5log 5log 25=+++⨯+lg 5lg 2157=+++=.57.计算:(1)21304816π27-⎛⎫-+ ⎪⎝⎭;(2)3ln 22552lg 4lg log 5log 4e 8++⋅+.【答案】(1)154-(2)11【详解】(1)解:原式()231344291521524344-⎡⎤⎛⎫=-+-=--=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(2)解:原式()32ln 25ln 52ln 2lg 4e 128118ln 2ln 5⎛⎫=⨯+⋅+=++= ⎪⎝⎭.58.计算:(1)5log 3311845log 11log 27log 2log 8-⋅++;(2)若33m m --=99m m -+的值.【答案】(1)116(2)9914m m -+=.【详解】(1)原式31122133log 113log 3log 2log 232=-⨯++131133326=-++=.(2)将等式33m m --=99212m m -+-=,则9914m m -+=.。

高中数学对数函数经典练习题及答案(优秀4篇)

高中数学对数函数经典练习题及答案(优秀4篇)

高中数学对数函数经典练习题及答案(优秀4篇)对数函数练习题篇一一、选择题1、下列函数(1)y= x (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x2-1中,是一次函数的有( )A.4个B.3个C.2个D.1个2、A 、B(x2,y2)是一次函数y=kx+2(k>0)图像上的不同的两点,若则( )A.t0 C.t>1 D. t≤13、直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的三角形最多有( )A. 5个B.6个C.7个D.8个4、把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是( )A.11 D.m0的解集是( )A.x>3B.-2-29.一次函数y=ax+1与y=bx-2的图象交于x轴上一点,那么a:b等于( )A. B.C. D.以上答案都不对10、函数y=kx+b,那么当y>1时,x的取值范围是:( )A、x>0B、x>2C、x212、在平面直角坐标系中,线段AB的端点A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则k的值不可能是( )A.5B.-5C.-2D.3二、填空题13、如果直线y = -2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.14、平面直角坐标系中,点A的坐标是(4,0),点P在直线y=-x+m上,且AP=OP=4.则m的值是。

15、直线y=kx+2经过点(1,4),则这条直线关于x轴对称的直线解析式为:。

16、已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x 轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为 .17、点A的坐标为(-2,0),点B在直线y=x-4上运动,当线段AB最短时,点B的坐标是___________。

18、已知三个一次函数y1=x,y2= x+1,y3=- x+5。

带答案对数与对数函数经典例题

带答案对数与对数函数经典例题

带答案对数与对数函数经典例题(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+l g5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.【变式2】已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即.类型四、换底公式的运用4.(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x∴,∴;方法二:.举一反三:【变式1】求值:(1);(2);(3).解:(1)(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用5.求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)举一反三:【变式1】求值:解:另解:设=m (m>0).∴,∴,∴,∴lg2=lgm,∴2=m,即.【变式2】已知:log23=a,log37=b,求:log4256=?解:∵∴,类型六、函数的定义域、值域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.6. 求下列函数的定义域:(1);(2).思路点拨:由对数函数的定义知:x2>0,4-x>0,解出不等式就可求出定义域.解:(1)因为x2>0,即x≠0,所以函数;(2)因为4-x>0,即x<4,所以函数.举一反三:【变式1】求下列函数的定义域.(1) y=(2) y=ln(a x-k·2x)(a>0且a¹1,kÎR).解:(1)因为,所以,所以函数的定义域为(1,)(,2).(2)因为a x-k·2x>0,所以()x>k.[1]当k≤0时,定义域为R;[2]当k>0时,(i)若a>2,则函数定义域为(k,+∞);(ii)若0<a<2,且a≠1,则函数定义域为(-∞,k);(iii)若a=2,则当0<k<1时,函数定义域为R;当k≥1时,此时不能构成函数,否则定义域为.【变式2】函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域.思路点拨:由-1≤x≤1,可得y=f(x)的定义域为[,2],再由≤log 2x≤2得y=f(log2x)的定义域为[,4].类型七、函数图象问题7.作出下列函数的图象:(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx.解:(1)如图(1);(2)如图(2);(3)如图(3).类型八、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.8. 比较下列各组数中的两个值大小:(1)log23.4,log28.5(2)log0.31.8,log0.32.7(3)log a5.1,log a5.9(a>0且a≠1)思路点拨:由数形结合的方法或利用函数的单调性来完成.(1)解法1:画出对数函数y=log2x的图象,横坐标为3.4的点在横坐标为8.5的点的下方,所以,log23.4<log28.5;解法2:由函数y=log2x在R+上是单调增函数,且3.4<8.5,所以log23.4<log28.5;解法3:直接用计算器计算得:log23.4≈1.8,log28.5≈3.1,所以log23.4<log28.5;(2)与第(1)小题类似,log0.3x在R+上是单调减函数,且1.8<2.7,所以log0.31.8>log0.32.7;(3)注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.解法1:当a>1时,y=log a x在(0,+∞)上是增函数,且5.1<5.9,所以,log a5.1<log a5.9当0<a<1时,y=log a x在(0,+∞)上是减函数,且5.1<5.9,所以,log a5.1>log a5.9解法2:转化为指数函数,再由指数函数的单调性判断大小,令b 1=log a5.1,则,令b2=log a5.9,则当a>1时,y=a x在R上是增函数,且5.1<5.9所以,b 1<b2,即当0<a<1时,y=a x在R上是减函数,且5.1<5.9所以,b 1>b2,即.举一反三:【变式1】(2011 天津理7)已知则()A.B.C.D.解析:另,,,在同一坐标系下作出三个函数图像,由图像可得又∵为单调递增函数,∴故选C.9. 证明函数上是增函数.思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对函数单调性比较同底数对数大小的方法.证明:设,且x<x2 则又∵y=log 2x在上是增函数即f(x1)<f(x2)∴函数f(x)=log 2(x2+1)在上是增函数.举一反三:【变式1】已知f(log a x)=(a>0且a≠1),试判断函数f(x)的单调性.解:设t=log a x(x∈R+,t∈R).当a>1时,t=log a x为增函数,若t1<t2,则0<x1<x2,∴f(t1)-f(t2)=,∵0<x1<x2,a>1,∴f(t1)<f(t2),∴f(t)在R上为增函数,当0<a<1时,同理可得f(t)在R上为增函数.∴不论a>1或0<a<1,f(x)在R上总是增函数.10.求函数y=(-x2+2x+3)的值域和单调区间.解:设t=-x2+2x+3,则t=-(x-1)2+4.∵y=t为减函数,且0<t≤4,∴y≥=-2,即函数的值域为[-2,+∞.再由:函数y=(-x2+2x+3)的定义域为-x2+2x+3>0,即-1<x<3.∴t=-x2+2x+3在-1,1)上递增而在[1,3)上递减,而y=t为减函数.∴函数y=(-x2+2x+3)的减区间为(-1,1),增区间为[1,3.类型九、函数的奇偶性11. 判断下列函数的奇偶性. (1)(2).(1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.解:由所以函数的定义域为:(-1,1)关于原点对称又所以函数是奇函数;总结升华:此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.(2)解:由所以函数的定义域为R关于原点对称又即f(-x)=-f(x);所以函数.总结升华:此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握.类型十、对数函数性质的综合应用12.已知函数f(x)=lg(ax2+2x+1).(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.思路点拨:与求函数定义域、值域的常规问题相比,本题属非常规问题,关键在于转化成常规问题.f(x)的定义域为R,即关于x的不等式ax2+2x+1>0的解集为R,这是不等式中的常规问题.f(x)的值域为R与ax2+2x+1恒为正值是不等价的,因为这里要求f(x)取遍一切实数,即要求u=ax2+2x+1取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,使u能取遍一切正数的条件是.解:(1)f(x)的定义域为R,即:关于x的不等式ax2+2x+1>0的解集为R,当a=0时,此不等式变为2x+1>0,其解集不是R;当a≠0时,有a>1.∴a的取值范围为a>1.(2)f(x)的值域为R,即u=ax2+2x+1能取遍一切正数a=0或0≤a≤1,∴a的取值范围为0≤a≤1.13.已知函数h(x)=2x(x∈R),它的反函数记作g(x),A、B、C三点在函数g(x)的图象上,它们的横坐标分别为a,a+4,a+8(a>1),记ΔABC的面积为S.(1)求S=f(a)的表达式;(2)求函数f(a)的值域;(3) 判断函数S=f(a)的单调性,并予以证明;(4)若S>2,求a的取值范围.解:(1)依题意有g(x)=log2x(x>0).并且A、B、C三点的坐标分别为A(a,log2a),B(a+4,log2(a+4)),C(a+8,log2(a+8)) (a>1),如图.∴A,C中点D的纵坐标为〔log2a+log2(a+8)〕∴S=|BD|·4·2=4|BD|=4log2(a+4)-2log2a-2log2(a+8).(2)把S=f(a)变形得:S=f(a)=2〔2log2(a+4)-log2a-log2(a+8)〕=2log2=2log2(1+).由于a>1时,a2+8a>9,∴1<1+<,又函数y=log2x在(0,+∞)上是增函数,∴0<2log2(1+)<2log2,即0<S<2log2.(3)S=f(a)在定义域(1,+∞)上是减函数,证明如下:任取a1,a2,使1<a1<a2<+∞,则:(1+)-(1+)=16()=16·,由a1>1,a2>1,且a2>a1,∴a1+a2+8>0,+8a2>0,+8a1>0,a1-a2<0,∴1<1+<1+,再由函数y=log2x在(0,+∞)上是增函数,于是可得f(a1)>f(a2)∴S=f(a)在(1,+∞)上是减函数.(4)由S>2,即得,解之可得:1<a<4-4.。

人教版高中数学第四章指数函数与对数函数考点精题训练

人教版高中数学第四章指数函数与对数函数考点精题训练

人教版高中数学第四章指数函数与对数函数考点精题训练单选题1、已知9m =10,a =10m −11,b =8m −9,则( ) A .a >0>b B .a >b >0C .b >a >0D .b >0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质)由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1, 令f ′(x)=0,解得x 0=m 11−m ,由m =log 910∈(1,1.5) 知x 0∈(0,1) . f(x) 在 (1,+∞) 上单调递增,所以f(10)>f(8) ,即 a >b , 又因为f(9)=9log 910−10=0 ,所以a >0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法; 法二:利用a,b 的形式构造函数f(x)=x m −x −1(x >1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.2、设a =30.7, b =(13)−0.8, c =log 0.70.8,则a,b,c 的大小关系为( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b 答案:D分析:利用指数函数与对数函数的性质,即可得出a,b,c 的大小关系. 因为a =30.7>1,b =(13)−0.8=30.8>30.7=a ,c =log 0.70.8<log 0.70.7=1, 所以c <1<a <b . 故选:D.小提示:本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:y =a x ,当a >1时,函数递增;当0<a <1时,函数递减; (2)利用对数函数的单调性:y =log a x ,当a >1时,函数递增;当0<a <1时,函数递减; (3)借助于中间值,例如:0或1等.3、中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =Wlog 2(1+SN ).它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至4000,则C大约增加了()附:lg2≈0.3010A.10%B.20%C.50%D.100%答案:B分析:根据题意,计算出log24000log21000的值即可;当SN =1000时,C=Wlog21000,当SN=4000时,C=Wlog24000,因为log24000log21000=lg4000lg1000=3+2lg23≈3.60203≈1.2所以将信噪比SN从1000提升至4000,则C大约增加了20%,故选:B.小提示:本题考查对数的运算,考查运算求解能力,求解时注意对数运算法则的运用.4、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h与其采摘后时间t(天)满足的函数关系式为ℎ=m⋅a t.若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果多长时间后失去40%新鲜度()A.25天B.30天C.35天D.40天答案:B分析:根据给定条件求出m及a10的值,再利用给定公式计算失去40%新鲜度对应的时间作答.依题意,{10%=m⋅a1020%=m⋅a20,解得m=120,a10=2,当ℎ=40%时,40%=120⋅a t,即40%=120⋅a10⋅a t−10,解得a t−10=4=(a10)2=a20,于是得t−10=20,解得t=30,所以采摘下来的这种水果30天后失去40%新鲜度.故选:B5、已知函数f (x )是奇函数,当x >0时,f (x )=2x +x 2,则f (2)+f (−1)=( ) A .11B .5C .−8D .−5 答案:B分析:利用奇函数的定义直接计算作答. 奇函数f (x ),当x >0时,f (x )=2x +x 2,所以f (2)+f (−1)=f(2)−f(1)=22+22−(21+12)=5. 故选:B6、设函数f (x )=ln |2x +1|﹣ln |2x ﹣1|,则f (x )( ) A .是偶函数,且在 (12,+∞)单调递增B .是奇函数,且在 (−12,12)单调递增 C .是偶函数,且在(−∞,−12)单调递增 D .是奇函数,且在 (−∞,−12)单调递增 答案:B分析:先求出f (x )的定义域结合奇偶函数的定义判断f (x )的奇偶性,设t =|2x+12x−1|,则y =ln t ,由复合函数的单调性判断f (x )的单调性,即可求出答案.解:由{2x +1≠02x −1≠0,得x ≠±12.又f (﹣x )=ln |﹣2x +1|﹣ln |﹣2x ﹣1|=﹣(ln |2x +1|﹣ln |2x ﹣1|)=﹣f (x ), ∴f (x )为奇函数,由f (x )=ln |2x +1|﹣ln |2x ﹣1|=ln |2x+12x−1|, ∵2x+12x−1=1+22x−1=1+1x−12.可得内层函数t =|2x+12x−1|的图象如图,在(﹣∞,−12),(12,+∞)上单调递减,在(−12,12)上单调递增,又对数式y =lnt 是定义域内的增函数,由复合函数的单调性可得,f (x )在(−12,12)上单调递增, 在(﹣∞,−12),(12,+∞)上单调递减. 故选:B .7、设f(x)={e x−1,x <3log 3(x −2),x ≥3,则f(f (11))的值是( )A .1B .eC .e 2D .e −1 答案:B分析:根据自变量的取值,代入分段函数解析式,运算即可得解. 由题意得f(11)=log 3(11−2)=log 39=2, 则f(f (11))=f (2)=e 2−1=e . 故选:B.小提示:本题考查了分段函数求值,考查了对数函数及指数函数求值,属于基础题. 8、设m ,n 都是正整数,且n >1,若a >0,则不正确的是( )A.a mn=√a mn B.(a12+a−12)2=a+a−1C.a−mn=√a mn D.a0=1答案:B解析:由指数运算公式直接计算并判断. 由m,n都是正整数,且n>1,a>0,、得(a 12+a−12)2=(a12)2+2a12⋅a−12+(a−12)2=a+a−1+2,故B选项错误,故选:B.9、已知f(x)={2x−x2,x≥5f(x+3),x<5,则f(4)+f(-4)=()A.63B.83C.86D.91答案:C分析:由给定条件求得f(-4)=f(5),f(4)=f(7),进而计算f(5)、f(7)的值,相加即可得解.依题意,当x<5时,f(x)=f(x+3),于是得f(-4)=f(-1)=f(2)=f(5),f(4)=f(7),当x≥5时,f(x)=2x-x2,则f(5)=25-52=7,f(7)=27-72=79,所以f(4)+f(-4)=86.故选:C10、中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是θ1℃,环境温度是θ0℃,则经过t分钟后物体的温度θ℃将满足θ=θ0+(θ1−θ0)e−kt,其中k是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,100℃的水应大约冷却( )分钟冲泡该绿茶(参考数据:ln2≈0.7,ln3≈1.1)A.3B.3.6C.4D.4.8答案:B分析:根据题意求出k的值,再将θ=80℃,θ1=100℃,θ0=20℃代入θ=θ0+(θ1−θ0)e−kt即可求得t的值.由题可知:50=20+(100−20)e−12k⇒(e−k)12=38⇒e−k=(38)112,冲泡绿茶时水温为80℃,故80=20+(100−20)⋅e−kt⇒(e−k)t=34⇒t⋅ln e−k=ln34⇒t=ln 3 4ln(38)112=12(ln3−2ln2)ln3−3ln2≈12(1.1−2×0.7)1.1−3×0.7=3.6.故选:B.多选题11、高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,也称取整函数,例如:[−3.7]=−4,[2.3]=2,已知f(x)=e xe x+1−12,则函数y=2[f(x)]+[f(−x)]的函数值可能为()A.−2B.−1C.0D.1答案:ABC分析:利用定义可知函数f(x)为奇函数,根据解析式可得f(x)∈(−12,12),分三种情况讨论f(x)可求得结果.因为f(x)=e xe x+1−12,所以f(−x)=e−xe−x+1−12=11+e x−12,所以f(x)+f(−x)=e xe x+1−12+1e x+1−12=0,即f(−x)=−f(x),因为f(x)=e xe x+1−12=e x+1−1e x+1−12=12+−1e x+1,因为e x>0,e x+1>1,所以0<1e x+1<1,所以−1<−1e x+1<0,所以−12<12+−1e x +1<12即f(x)∈(−12,12)当f(x)∈(−12,0)时,f(−x)∈(0,12),所以[f(x)]=−1,[f(−x)]=0,此时y =−2,当f(x)=0时,f(−x)=0,所以[f(x)]=0,[f(−x)]=0,此时y =0,当f(x)∈(0,12)时,f(−x)∈(−12,0),此时[f(x)]=0,[f(−x)]=−1,此时y =−1, 所以函数y =2[f(x)]+[f(−x)]的值域为{−2,−1,0}. 故选:ABC12、若函数f(x)的图像在R 上连续不断,且满足f(0)<0,f(1)>0,f(2)>0,则下列说法错误的是( ) A .f(x)在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点 B .f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点 C .f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点 D .f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点 答案:ABD解析:根据f (x )的图像在R 上连续不断,f (0)<0,f (1)>0,f (2)>0,结合零点存在定理,判断出在区间(0,1)和(1,2)上零点存在的情况,得到答案.由题知f (0)⋅f (1)<0,所以根据函数零点存在定理可得f (x )在区间(0,1)上一定有零点, 又f (1)⋅f (2)>0,无法判断f (x )在区间(1,2)上是否有零点,在区间(1,2)上可能有零点. 故选:ABD .13、下列各选项中,值为1的是( ) A .log 26·log 62B .log 62+log 64C .(2+√3)12⋅(2−√3)12D .(2+√3)12−(2−√3)12答案:AC解析:对选项逐一化简,由此确定符合题意的选项. 对于A 选项,根据log a b ⋅log b a =1可知,A 选项符合题意. 对于B 选项,原式=log 6(2×4)=log 68≠1,B 选项不符合题意.对于C 选项,原式=[(2+√3)⋅(2−√3)]12=112=1,C 选项符合题意.对于D 选项,由于[(2+√3)12−(2−√3)12]2=2+√3+2−√3−2(2+√3)12⋅(2−√3)12=4−2=2≠1,D 选项不符合题意. 故选:AC小提示:本小题主要考查对数、根式运算,属于基础题.14、已知函数f(x)=2x2x +1+m(m ∈R)则下列说法正确的是( ) A .f (x )的定义域为R .B .若f(x)为奇函数,则m =−12 C .f(x)在R 上单调递减D .若m =0,则f(x)的值域为(0,1) 答案:ABD分析:根据函数的定义域的求法,可判定A 正确;根据函数的奇偶性列出方程,求得m 的值,可判定B 正确,化简f(x)=−12x +1+m +1,结合指数函数的单调性,可判定C 错误;化简函数f(x)=1−12x +1,结合指数函数的值域,可判定D 正确.由题意,函数f(x)=2x2x +1+m(m ∈R),对于A 中,由2x +1≠0,所以函数f (x )的定义域为R ,所以A 正确;对于B 中,由函数f (x )为奇函数,则满足f (−x )=−f (x ),即2−x 2−x +1+m =−2x2x +1−m ,所以2m =−2x2x +1−2−x2−x +1=−2x2x +1−12x 12x+1=−2x2x +1−12x +1=−1,即m =−12,所以B 不正确;对于C 中,由f(x)=2x 2x +1+m =2x +1−12x +1+m =−12x +1+m +1,因为函数y =2x +1为单调递增函数,则y =−12x +1递增函数, 所以f (x )函数在R 上单调递减,所以C 不正确;对于D 中,当m =0时,可得f(x)=2x 2x +1=1−12x +1,因为2x +1>1,可得−1<−12x +1<0,所以1−12x +1∈(0,1), 即函数f (x )的值域为(0,1),所以D 正确. 故选:ABD.15、某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.以下判断正确的是( )A .该单位每月处理量为400吨时,才能使每吨的平均处理成本最低B .该单位每月最低可获利20000元C .该单位每月不获利,也不亏损D .每月需要国家至少补贴40000元才能使该单位不亏损 答案:AD分析:根据题意,列出平均处理成本表达式,结合基本不等式,可得最低成本;列出利润的表达式,根据二次函数图像与性质,即可得答案.由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80000x−200≥2√12x ⋅80000x−200=200,当且仅当12x =80000x,即x =400时等号成立,故该单位每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元,故A正确;设该单位每月获利为S元,则S=100x−y=100x−(12x2+80000−200x)=−12x2+300x−80000=−12(x−300)2−35000,因为x∈[400,600],所以S∈[−80000,−40000].故该单位每月不获利,需要国家每月至少补贴40000元才能不亏损,故D正确,BC错误,故选:AD小提示:本题考查基本不等式、二次函数的实际应用,难点在于根据题意,列出表达式,并结合已有知识进行求解,考查阅读理解,分析求值的能力,属中档题.双空题16、已知函数f(x)=ln(ax2+2x+1),若f(x)的定义域为R,则实数a的取值范围为______;若f(x)的值域为R,则实数a的取值范围为______.答案:(1,+∞)[0,1]分析:由f(x)的定义域为R知u=ax2+2x+1的图象恒在x轴的上方,由二次函数性质可构造不等式组求得结果;由f(x)的值域为R知u=ax2+2x+1要取遍所有的正数,由二次函数值域可构造不等式组求得结果.若f(x)的定义域为R,则u=ax2+2x+1的图象恒在x轴的上方,∴{a>0Δ=4−4a<0,解得:a>1,即实数a的取值范围是(1,+∞);若f(x)的值域为R,则u=ax2+2x+1要取遍所有的正数,∴a=0或{a>0Δ=4−4a≥0,解得:0≤a≤1,即实数a的取值范围是[0,1].所以答案是:(1,+∞);[0,1].17、若函数f(x)=ln(ax+11−x)+b是奇函数,则a=___________,b=___________.答案: 1 0分析:根据奇函数在x =0处有定义则f (0)=0可得b ,再根据奇函数的满足f (x )+f (−x )=0求解a 即可 因为函数f (x )=ln (ax+11−x )+b 是奇函数,故f (0)=0,即ln 1+b =0,即b =0.又f (x )+f (−x )=0,故ln (ax+11−x )+ln (−ax+11+x )=0,即(ax+11−x )⋅(−ax+11+x )=1,1−a 2x 21−x 2=1恒成立,故a 2=1,所以a =1或a =−1,当a =−1时f (x )=ln (−x+11−x)=ln (−1)无意义.当a =1时f (x )=ln (x+11−x )满足奇函数.故a =1 综上,a =1,b =0所以答案是:1;018、某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,要使这两项费用之和最小,仓库应建立在距离车站______km 处,最少费用为______万元.答案: 5 8解析:根据题意设出y 1和y 2的函数表达式,利用“在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元”列方程,由此求得y 1和y 2的解析式.利用基本不等式求得费用的最小值和建站位置.设仓库与车站距离为x ,依题意y 1=k 1x ,y 2=k 2x .由于“在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元”,所以2=k 110,8=k 2⋅10,解得k 1=20,k 2=45.所以y 1=20x ,y 2=45x ,所以总费用20x +45x ≥2√20x ⋅45x =8,当且仅当20x =45x ,即x =5时,取得最小值.所以答案是:(1)5;(2)8.小提示:本小题主要考查函数模型在实际生活中的运用,考查利用基本不等式求最值,属于基础题. 解答题19、(1)已知函数g (x )=(a +1)x−2+1(a >0)的图像恒过定点A ,且点A 又在函数f (x )=log √3(x +a )的图像上,求不等式g (x )>3的解集;(2)已知−1≤log 12x ≤1,求函数y =(14)x−1−4(12)x +2的最大值和最小值.答案:(1)(3,+∞);(2)y min =1,y max =54.分析:(1)结合指数函数性质首先求a 的值,再解指数不等式;(2)通过换元,设t =(12)x ,并且求变量的取值范围,转化为二次函数在定义域内的最大值和最小值.(1)由题意知定点A 的坐标为(2,2),∴2=log √3(2+a )解得a =1.∴g (x )=2x−2+1.∴由g (x )>3得,2x−2+1>3.∴2x−2>2.∴x −2>1.∴x >3.∴不等式g (x )>3的解集为(3,+∞).(2)由−1≤log 12x ≤1得12≤x ≤2令t =(12)x ,则14≤t ≤√22, y =4t 2−4t +2=4(t −12)2+1. ∴当t =12,即(12)x =12,x =1时,y min =1,当t =14,即(12)x =14,x =2时,y max =54. 小提示:本题考查指数函数与对数函数的图象与性质,考查求对数型函数的值域,求值域的方法是用换元法把函数转化为二次函数,然后求解.20、已知函数f(x)=2x −12x .(1)判断f(x)在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x的不等式f(log2x)<f(1).答案:(1)f(x)在R上是增函数,证明见解析;(2)(0,2).分析:(1)由题可判断函数为奇函数且为增函数,利用定义法的步骤证明即可;(2)利用函数f(x)的单调性及对数函数的单调性即解.(1)∵f(−x)=2−x−2x=−(2x−12x)=−f(x),则函数f(x)是奇函数,则当x⩾0时,设0⩽x1<x2,则f(x1)−f(x2)=2x1−12x1−2x2+12x2=2x1−2x2+2x2−2x12x12x2=(2x1−2x2)2x12x2−12x12x2,∵0⩽x1<x2,∴1⩽2x1<2x2,即2x1−2x2<0,2x12x2>1,则f(x1)−f(x2)<0,即f(x1)<f(x2),则f(x)在[0,+∞)上是增函数,∵f(x)是R上的奇函数,∴f(x)在R上是增函数.(2)∵f(x)在R上是增函数,∴不等式f(log2x)<f(1)等价为不等式log2x<1,即0<x<2.即不等式的解集为(0,2).。

高中数学《对数的运算》精选练习(含详细解析)

高中数学《对数的运算》精选练习(含详细解析)

高中数学《对数的运算》精选练习(含详细解析)一、选择题1.log153-log62+log155-log63等于( )A.-2B.0C.1D.2=(log153+log155)-(log62+log63)=log15(3×5)-log6(2×3)=log1515-log66=0.2.已知log89=a,log25=b,则lg3等于( )A. B. C. D.3.已知2x=72y=A,且+=2,则A的值是( )A.7B.7C.±7D.984已知ab=M(a>0,b>0,M≠1),log M b=x,则log M a的值为( ) A. B.1+x C.1-x D.x-15已知x,y为正实数,则( )A.2lgx+lgy=2lgx+2lgyB.2lg(x+y)=2lgx·2lgyC.2lgx·lgy=2lgx+2lgyD.2lg(xy)=2lgx·2lgy6若lga,lgb是方程2x2-4x+1=0的两个根,则的值等于( )A.2B.C.4D.二、填空题7.(log32+log92)·(log43+log83)= .8已知a=log32,则log316+log324= .(用a表示)9已知ln2=m,ln3=n,则log246= .(用m,n表示)10.若log34·log48·log8m=log416,则m= .11已知lgx+lgy=2lg(2x-3y),则lo的值为.三、解答题12一台机器原价20万元,由于磨损,该机器每年比上一年的价格降低8.75%,问经过多少年这台机器的价值为8万元?(lg2≈0.3010,lg9.125≈0.9602)13.(10分)(1)求(log23+log89)(log34+log98+log32)+(lg2)2+lg20×lg5的值. (2)若a,b,c∈N*,且满足a2+b2=c2,求log2+log2的值.参考答案与解析1【解析】选B.log153-log62+log155-log632【解析】选C.因为log89=a,所以=a,=a, 所以=a,所以log23=a,lg3===.3【解析】选B.由2x=72y=A可得,x=log2A,y=log7A,所以+=+=logA 2+2logA7=logA(2×72)=logA98=2,所以A2=98,所以A=7,故选B.4【解析】选C.logM a=logM=logMM-logMb=1-x,故选C.5【解析】选D.由指数与对数的运算性质可得2lgx+lgy=2lgx·2lgy,故A错.2lgx·2lgy=2(lgx+lgy)=2lgxy,故B错.2lgx·lgy=(2lgx)lgy,故C错.6【解析】选A.由根与系数的关系可知lga+lgb=2,lgalgb=,于是=(lga-lgb)2 =(lga+lgb)2-4lgalgb=22-4×=2.7解析】(log32+log92)·(log43+log83)=(log32+lo2)·(lo3+lo3) =·=log32×=×·log32·log23=×=. 答案:8【解析】log316+log324=log324+log3(23×3)=4log32+(3log32+log33)=5log32+log33=5a+.答案:5a+9【解析】log246===. 答案:10【解析】由已知得log34·log48·log8m=··=log3m,而log416=2,所以log3m=2,m=9.答案:911【解析】依题意可得:lg(xy)=lg(2x-3y)2, 即xy=(2x-3y)2,整理得:4-13+9=0,解得:=1或=,因为x>0,y>0,2x-3y>0,所以=,所以lo=2.答案:212【解析】设经过x年,这台机器的价值为8万元,则8=20(1-0.0875)x,即0.9125x=0.4,两边取以10为底的对数,得x===≈10(年),所以约经过10年这台机器的价值为8万元.13【解析】(1)原式=log23+log232log32+log32+log32+(lg2)2+(1+lg2)lg5=log23·log32+(lg2)2+lg2·lg5+lg5=+lg2(lg5+lg2)+lg5=+lg2+lg5=+1=.(2)因为a2+b2=c2,所以log2+log2=log2=log2=log2=log2=1.。

高一数学对数及运算测试题及答案

高一数学对数及运算测试题及答案

高一数学对数及运算测试题及答案1.log123+log124等于()A.7 B.12C.1 D.log127【解析】log123+log124=log12(3×4)=1.故选C.【答案】 C2.log52•log25的值为()A.12 B.1C.32 D.2【解析】log52•log25=log52•log55log52=1.故选B.【答案】 B3.已知lg2=a,lg7=b,那么log898=________.【解析】log898=lg98lg8=lg(72×2)lg23=lg72+lg23lg2=2lg7+lg23lg2=2b+a3a.【答案】2b+a3a4.设3x=4y=36,求2x+1y的值.【解析】(1)∵3x=36,4y=36,∴x=log336,y=log436,∴1x=1log336=1log3636log363=log363,1y=1log436=1log3636log364=log364,∴2x+1y=2log363+log364=log36(9×4)=1.一、选择题(每小题5分,共20分)1.(2009年湖南卷)log22的值为()A.-2 B.2C.-12 D.12【解析】log22=12log22=12.故选D.【答案】 D2.若lg 2=a,lg 3=b,则lg 15lg 12等于()A.1+a+b2a+bB.1+a+ba+2bC.1-a+b2a+bD.1-a+ba+2b¥资%源~网【答案】 C3.已知a=log32,用a表示log38-2log36是()A.a-2 B.5a-2C.3a-(1+a)2 D.3a-a2-1【解析】由log38-2log36=3log32-2(log32+log33)=3a-2(a+1)=a-2. 【答案】 A4.(log43+log83)(log32+log98)等于()A.56B.2512C.94 D.以上都不对【解析】原式=log33log34+log33log38•log32+log38log39=12log32+13log32•log32+3log322=56log32×52log32=2512.故选B.【答案】 B二、填空题(每小题5分,共10分)5.log327=________.【解析】log327=log3(3)6=6.【答案】 66.已知2x=5y=10,则1x+1y=________.【解析】由2x=5y=10得x=log210,y=log510,1x+1y=1log210+1log510=lg2+lg5=1.【答案】 1三、解答题(每小题10分,共20分)7.求下列各式的值:(1)(lg 5)2+lg 50•lg 2;(2)lg 14-2lg 73+lg 7-lg 18;(3)log1327-log139;(4)log89×log332.【解析】(1)原式=(lg 5)2+lg(10×5)lg 105=(lg 5)2+(1+lg 5)(1-lg 5)=(lg 5)2+1-(lg 5)2=1.(2)方法一:原式=lg(2×7)-2lg73+lg 7-lg(32×2)=lg 2+lg 7-2(lg 7-lg 3)+lg 7-(2lg 3+lg 2)=0方法二:原式=lg 14+lg732+lg 7-lg 18=lg14×7732×18=lg 1=0.(3)原式=log13279=log133=-1.(4)原式=lg9lg8×lg32lg3=2lg33lg2×5lg2lg3=103.8.已知m2=a,m3=b,m>0且m≠1,求2logma+logmb.【解析】由m2=a,m3=b,m>0且m≠1,得logma=2,logmb=3;∴2logma+logmb=2×2+3=7.9.(10分)已知ln a+ln b=2ln(a-2b),求log2ab的值.【解析】因为ln a+ln b=2ln(a-2b),解得ab=(a-2b)2.a2-5ab+4b2=0,解得a=b或a=4b,又a>0,b>0,a-2b>0所以a>2b>0,故a=4b,log2ab=log24=2,即log2ab的值是2.【答案】 2。

【新】高中必修一数学 对数及运算 (例题+练习题)【精编】

【新】高中必修一数学 对数及运算  (例题+练习题)【精编】

对数及运算【典型例题】:例1.将下列指数式化为对数式,对数式化为指数式.(1)54=645 (2)61264-=(3)1() 5.733m= (4)12log 164=- (5)10log 0.012=- (6)log 10 2.303e =例2.求下列各式中x 的值(1)642log 3x =- (2)log 86x = (3)lg100x = (4)2ln e x -=例3.计算:(1)2log 128 (2)4.0log 1 (3)2log (5724⨯) (4)(5)3log 5-3log 15 (6)25log 25+32log 64 (7) 2lg 2lg 2lg5lg5+⋅+(8)3log 422+ (9)4219432log 2log 3log -⋅经典练习 1.计算: (1)2log 161 (2)lg 0.0001 (3)a log 2+a log 21(a>0,a≠1)(4)3log 18-3log 2 (5)lg 41-lg 25 (6)25log 10+5log 0.25(7))]81(log [log log 346 (8)3log 12.05-2. 若0)](log [log log 235=x ,求x 的值;例4. 设lg 2a =,lg3b =,试用a 、b 表示5log 12.经典练习4:1.已知45log ,518,8log 3618求==ba (用含a ,b 的式子表示)2.已知 2log 3=a ,3log 7=b ,用 a,b 表示42log 56例5. 已知)2lg(2lg lg y x y x -=+求yx2log 的值经典练习5:(1)方程lg lg(3)1x x ++=的解x =________;(2)设12,x x 是方程0lg 2lg 2=++b x x 的两个根,则21x x ⋅的值是 .例6. 求下列各式中x 的取值范围:(1)1log (3)x x -+; (2)12log (32)x x -+经典练习6:已知对数 lg 11222+++x x ax 对任意的R x ∈都有意义,求实数 a 的取值范围;【巩固练习】: 一、基础训练题:1.). A. 1B. -1C. 2D. -22.25log ()a -(a ≠0)化简得结果是( ).A. -aB. a 2C. |a |D. a3.化简3log 1+的结果是( ).A.124.已知32()log f x x =, 则(8)f 的值等于( ).A. 1B. 2C. 8D. 12 5.化简3458log 4log 5log 8log 9⋅⋅⋅的结果是 ( ).A .1 B. 32C. 2D.3 6.已知a log 8=23,则a 等于 ( ) A 41 B 21C 2D 47.计算2(lg5)lg 2lg50+⋅= .8.若3a=2,则log 38-2log 36= . 9.若2510a b ==,则11a b+= .10已知x log 5a =,x log 3b =,求ba x 23+的值。

对数运算练习题(含答案)(可编辑修改word版)

对数运算练习题(含答案)(可编辑修改word版)

8 49 (lg 6)2- 2 lg 6 +1 4 5 23对数运算练习题1. 将下列指数式改为对数式:⎛ 1 ⎫-2 (1) ⎪ ⎝ ⎭= 16-3 (2) 81 4= x2. 将下列对数式改为指数式:(1) log 4 = 4(2) log 1 x = -523 7 13. 3log 3 2 - log 3 4 + 2 log 3 4 + log 3 =14. log a x = 2log a m - 2 log a n - log a p ,则 x =5. lg 0.06 +=6. 下列指数式与对数式互化不正确的一组是()-11 1 1A 100= 1与lg1 = 0B 27 3 = 与log 3 27 3 = - 31C log 3 9 = 2与92= 3D log 5 = 1与51= 57. 已知log x 16 = 2 ,则 x 的值为()A -4B 4C ±4D 148. 下列各等式中,正确运用对数运算性质的是()A lg (x 2 y z )= (lg x )2+ lg y + C lg (x 2 y z )= 2 lg x + lg y - 2 lg zB lg (x 2 y z )= (lg x )2+ lg y + 2 lg z D lg (x 2 y z)= 2 lg x + lg y + 1lg z9. 以下运算中结果正确的是()lg z3 log 28 a a 41 A log2 + log 5 = 1Blog 4 6= log 2 = 11010log 4 3 2C ⎛ log 1 ⎫35 5 ⎪ = 2 lg x + lg y - 2 l g zD 3log 2 8 = = ⎝ ⎭10. 已知 a = log 3 2 ,那么log 3 8 - 2 log 3 6 ,用 a 表示是( )A a - 2 C 3a - (1+ a )2B 5a - 2 D 3a - a 2 -111. 计算:(1) lg 4 + lg 5 l g 20 + (lg 5)21+ 1lg 9 - lg 240 (2) 2 1- 2 lg 27 + lg 36 3 512. 已知log 2 = x , log 3 = y ,求 a2x + y的值13. 设在海拔 x 米处的大气压强是 yPa ,已知 y = ce kx ,其中c , k 为常数,若沿海某地元旦那天,在海平面的大气压强为1.01⨯105 Pa ,100 米高空的大气压强是0.90 ⨯105 Pa ,求 8000米高空的大气压强(结果保留 4 为有效数字)3 3m3 2答案:1.(1)log1 16 =-24(2)log81 x =-43 2.(1)44 =⎛1 ⎫-5(2) ⎪=x⎝⎭3. 34.5. -1n2p6.C7.B8.D9.A 10.A11.(1)2 (2) -112. 1213. 4.015⨯104Pa8。

高中数学《对数》精选练习(含详细解析)

高中数学《对数》精选练习(含详细解析)

高中数学《对数》精选练习(含详细解析)一、选择题1.已知lo b=c,则有( )A.a2b=cB.a2c=bC.b c=2aD.c2a=b2.下列指数式与对数式互化不正确的一组是( )A.e0=1与ln1=0B.log8=-与=C.log39=2与=3D.log88=1与81=83.已知x2+y2-4x-2y+5=0,则log x(y x)的值为( )A.xB.yC.1D.04.使log(3a-1)(4-a)有意义的a的取值是( )A.<a<4B.<a<4且a≠C.a<4D.a>5.已知f(3x)=log2,则f(1)的值为( )A.1B.2C.-1D.6如果f(e x)=x,则f(e)= ( )A.1B.eC.2eD.e2二、填空题7若log2[lg(lnx)]=0,则x= .8有以下四个结论:①lg(lg10)=0;②lg(lne)=0;③若e=lnx,则x=e2;④ln(lg1)=0.其中正确的是( )A.①②B.①②③C.①②④D.②③④9计算+= .10若x>0,x2=,则= .11化简:lo(+)= .三、解答题12设log a2=m,log a3=n,求a3m+2n的值.13设M={0,1},N={lga,2a,a,11-a},是否存在a的值,使M∩N={1}?参考答案与解析1【解析】选B.根据指数与对数的关系的转化,有(a2)c=b,即a2c=b.2【解析】选C.由指数与对数的互化关系:a x=N⇔x=log a N可知A,B,D都正确,C中log39=2⇔32=9,所以C项错误.3【解析】选 D.由于x2+y2-4x-2y+5=0可得(x-2)2+(y-1)2=0,则x=2,y=1.故log x(y x)=log2(12)=0.4【解析】选B.由对数的定义可知解得<a<4且a≠.5【解析】选D.由f(3x)=log2,得f(x)=log2,f(1)=log2=.6【解析】选A.令e x=t,则x=lnt,所以f(t)=lnt.故f(e)=lne=1.7【解析】因为log2[lg(lnx)]=0.所以lg(lnx)=20=1,所以10=lnx,所以e10=x.答案:e108【解析】选A.可根据对数、常用对数和自然对数的概念以及对数式与指数式的转化,对各结论进行判断.由于1的对数等于0,底数的对数等于1,所以可判断①②均正确;③中应得到x=e e,故③错误;④中由于lg1=0,而0没有对数,所以此式不成立.综上可知,正确的结论是①②.9【解析】+=23×+=8×3+=25.答案:2510【解析】由x>0,x2=,可知x=,所以==.答案:11【解析】设lo(+)=x,则(-)x=+,又因为+=,所以x=-1.答案:-112【解题指南】将log a2=m,log a3=n表示成指数式,然后结合幂的运算性质进行运算.【解析】因为log a2=m,log a3=n,所以a m=2,a n=3,所以a3m+2n=(a m)3×(a n)2=23×32=8×9=72.13【解析】不存在a的值,使M∩N={1}成立.若lga=1,则a=10,此时11-a=1,从而11-a=lga=1,与集合元素的互异性矛盾; 若2a=1,则a=0,此时lga无意义;若a=1,此时lga=0,从而M∩N={0,1},与条件不符;若11-a=1,则a=10,从而lga=1,与集合元素的互异性矛盾.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数及对数的运算习题精编
一、利用对数的概念及定义(底数大于0且不等于1,真数大于0)解决问题
1、在)5(log 2a b a -=-中,实数a 的范围是( )
2、0)11(log 2
2>++a
a a 若,求a 的取值范围。

二、利用对数与指数的互化解决问题。

1、若1)12(log -=+x ,则x=______,若
,则y=________。

2、若x x x x 求,2)1735(log 2)12(=-+-。

3、?log ),0(943232=>=
a a a 则 4、3a =2,则log 38-2log 36
5、已知log a 2=m ,log a 3=n ,求a 2m +3n 的值
6、已知
,则_______。

7、解方程22)321(log 3+=⨯-x x
8、设a 、b 、c 都是正数,且c b a 643==,则( ) A 、 B 、 C 、 D 、
三、利用对数的运算性质解决问题(重点)。

1、计算:log 2(3+2)+log 2(2-3);
2、已知lg M +lg N =2lg(M -2N ),求log 2M N
的值
3、计算)5353lg(-++
4、计算lg25+lg2lg50+(lg2)2
5、计算5lg 2lg 3)5(lg )2(lg 33⨯++
6、计算22)2(lg 20lg 5lg 8lg 5
2)5(lg +++
7、已知lg a 和lg b 是关于x 的方程x 2-x +m =0的两个根,而关于x 的方程x 2-(lg a )x -(1+lg a )=0有两个相等的实数根,求实数a 、b 和m 的值.
8、已知log 18a m =,log 24a n =,0a >且1a ≠,求log 1.5a
四、利用换底公式解决问题(难点)
1、235111log log log 2589

2、()()4839log 3log 3log 2log 2++
3、5432log 4log 3log 2log 5
4、已知2log 3a =,3log 7b =,试用a ,b 表示42log 56
5、已知正数,,x y z 满足:346x y z ==,求证:1112z x y -=
6、若72=x ,则x=( )(保留四位小数)
7、已知log 2a x =,log 3b x =,log 6c x =,求log abc x 的值。

五、用换元法解决问题。

1、解方程125log log 25=-x x
2、解方程:2)3
13(log )13(log 133=-⨯--x x
3、解方程log 2 (2x -1) ·log 2 (2x+1 -2)=2
六、其它
1、设的值。

求b
a b a 12
,3643+==
2、2924)23(log )23(log 32
-++
3、若lga 、lgb 是方程01422=+-x x 的两个实根,求2)(lg )lg(b
a a
b ⋅的值
4、已知函数f(x)满足)1()(4,)2
1()(,4+=<=≥x f x f x x f x x 时,当则, 求)3log 2(2+f 的值。

5、已知的值。

的两实根,求是方程)log (log )lg(014lg )(lg 2,2a b ab x x b a b a +⋅=+-
思考:若f(x)=1+log x 3, g(x)=2log x 2, 试比较f(x)与g(x)的大小(为对数函数铺垫)。

相关文档
最新文档