(整理)集成运放电路的设计
集成运算放大器的设计方法
集成运算放大器的设计方法运算放大器电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
详解运放七大应用电路设计
详解运放七大应用电路设计运放(Operational Amplifier,简称OPAMP)是一种高增益、直流耦合、差分放大器电路,常用于各种模拟电路和信号处理电路中。
它具备高增益、高输入阻抗、低输出阻抗、宽带宽等特点,适用于各种应用场景。
以下是运放的七大应用电路设计:1. 反相放大器(Inverting Amplifier):用于放大输入信号,但输出信号与输入信号具有180度相位差。
在反相放大器中,输入信号通过一个电阻R1作用在运放的反相端,而反相端还通过一个电阻R2与运放的输出端相连。
这种电路可以得到具有指定放大倍数的输出信号。
2. 同相放大器(Non-Inverting Amplifier):该电路与反相放大器结构类似,但是反相输入引脚和接地相连,而非反相输入引脚通过一个电阻与输出端相连。
同相放大器输出信号与输入信号相位相同。
3. 集成运放比例器(Integrator):该电路可将输入信号积分,输出信号与输入信号成正比。
集成运放比例器的电路还包括一个电容器,它与运放的反相输入端连接。
当输入信号施加到运放的非反相输入端时,电容器开始充电,导致运放的输出电压变化。
4. 集成运放微分器(Differentiator):该电路可对输入信号进行微分,输出信号与输入信号的导数成正比。
微分器电路使用一个电容器连接到运放的反相输入端,而电容器的另一端通过一个电阻与运放的输出端相连。
当输入信号通过电容器时,运放的输出电压变化,产生与输入信号的导数成正比的输出信号。
5. 增益调节器(Gain Adjuster):该电路可以通过改变反馈电阻值Rf来调整放大倍数。
增益调节器电路结合了反相放大器和用变阻器替代常规反馈电阻的电路设计。
通过改变变阻器的阻值,可以调节输出信号的放大倍数。
7. 限幅放大器(Clamp Amplifier):该电路可以将输入信号限制在一个特定范围内,并且不受输入信号的变化影响。
限幅放大器电路使用二极管来限制输入信号的范围。
集成运放应用电路设计360例
集成运放应用电路设计360例集成运放(Operational Amplifier,简称Op-amp)是现代电子技术中常用的一种电子器件。
它是一种高增益、直流耦合放大器,能够在很宽的频带内传输信号。
它具有输入阻抗极高、输入电阻极低、输出阻抗极低、增益高、频率响应宽广、抗干扰能力强等特点。
因此,集成运放被广泛应用于各种电子设备和电路中,包括放大器、滤波器、振荡器、比较器和积分器等。
本文将介绍360个集成运放应用电路设计,具体内容如下:1.放大器电路:集成运放最基本的应用之一就是作为放大器使用。
通过调整集成运放的反馈电阻和输入电阻,可以实现不同的放大倍数。
比如,放大器电路可以用于音频放大、信号调理、传感器信号放大等。
2.滤波器电路:集成运放可以组成各种滤波器电路,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
滤波器电路可以用于信号处理、音频处理、通信等领域。
3.比较器电路:比较器是一种将输入信号与参考电压进行比较,并产生开关型输出信号的电路。
集成运放可以很方便地组成比较器电路,常用于电压比较、数字信号处理等应用。
4.仪器放大器电路:仪器放大器是一种专门用于放大微弱信号、提供高的共模抑制比和高输入阻抗的放大器。
通过集成运放,可以设计出高性能的仪器放大器电路,用于传感器信号放大、生物电信号处理等。
5.积分器电路:积分器电路可以对输入信号进行积分操作,常用于信号处理、电力电子等领域。
通过集成运放,可以很方便地实现积分器电路的设计。
6.振荡器电路:振荡器是一种能产生固定频率、稳定振幅的信号源。
集成运放可以作为振荡器电路的关键部件,实现正弦波振荡器、方波振荡器、三角波振荡器等。
7.波形发生器电路:通过集成运放,可以设计出各种波形发生器电路,包括正弦波发生器、方波发生器、三角波发生器和脉冲波发生器等。
8.限幅器电路:限幅器是一种将输入信号限制在一定范围内的电路。
通过集成运放,可以设计出各种限幅器电路,用于信号处理、电压调节等。
集成放大电路实验原理
集成放大电路实验原理
集成放大电路实验原理:
集成放大电路是一种电子电路,能够将输入信号放大并输出。
它通常由一个差分放大器和一个输出级组成。
差分放大器是集成放大电路的核心部分,它由两个相同但互相反向连接的晶体管组成。
这两个晶体管分别将输入信号加到它们的基极上,并将输出信号从它们的集电极输出。
差分放大器通过放大输入信号的差值来实现放大功能。
输出级是用来增加放大器的输出功率的部分,它通常由一个功率放大器组成。
功率放大器将差分放大器的输出信号放大到足够的水平,以便能够驱动外部负载。
在实验过程中,需要将待放大的信号输入到差分放大器的输入端,并将输出信号连接到输出级。
为了使放大器工作正常,通常会对其进行偏置设置,以使晶体管在适当的工作点上工作。
在实验中,可以对不同的输入信号进行测试和观察,以研究放大器的放大性能和线性度。
还可以改变偏置设置和调整放大倍数,以获得更好的放大效果。
总之,集成放大电路实验原理是通过差分放大器和输出级的组合,将输入信号放大并输出。
实验中可以测试不同的输入信号和调整放大倍数,以研究放大器的性能。
运放电路设计
运放电路设计运放电路设计是电路设计中的一类重要电路,用于处理模拟信号和控制系统中的反馈和信号放大。
运放电路常常被应用于成像、信号传输和音频放大等方面。
在设计运放电路时,需要考虑增益、带宽、噪声和稳定性等因素。
下面是有关运放电路设计的详细说明。
一、运放电路的基本类型在设计运放电路时,有几种基本类型的运放电路可供选择。
这些基本类型的电路可根据所需的功能进行选择。
下面列举了一些常见的运放电路类型:1.反变器运放电路:反变器运放电路将输入信号的相反值输出。
这种电路的增益取决于输入电阻和反馈电阻的比值,因此很容易对电路进行调整。
3.仪表放大器运放电路:仪表放大器运放电路将两个输入信号相减,以消除共模噪声。
这种电路常常应用于精密测量和仪器设备中。
4.积分放大器运放电路:积分放大器运放电路可以将输入信号进行积分,以获得输出信号。
这种电路常常应用于滤波和调整电路信号频率。
在设计运放电路时,需要注意以下几个方面:1.选择合适的运放芯片:不同的运放芯片有不同的性能特点,因此需要根据具体需求进行选择。
例如,对于高精度应用,需要使用低噪声和高增益的芯片。
2.设置适当的增益:在设计运放电路时,应根据需要进行精确调整。
为了达到最佳性能,应设置适当的增益。
3.选择合适的反馈配置:不同的反馈配置可以产生不同的电路行为。
以反转放大器电路为例,正反馈可以产生中断振荡,而负反馈可以平稳地放大信号。
4.考虑噪声:在运放电路中,噪声是一个重要的考量因素。
可以通过使用低噪声部件和滤波技术来降低噪声。
5.考虑稳定性:运放电路在频率响应或增益等方面需要稳定,以确保电路正常工作。
可以使用容差电阻或电容和反馈电路等技术来确保电路稳定。
三、总结运放电路设计是电路设计中的一项广泛应用技术,应用于各种领域。
在运放电路设计过程中,需要注意选择合适的运放芯片、设置适当的增益、选择合适的反馈配置、考虑噪声和稳定性等因素。
通过遵循这些基本设计原则,可以确保运放电路具有高性能和可靠性。
集成运算放大器电路原理
若单端输出时的负载接在一个输出端和地之间,计算Aud 时,总负载为R′L=RC‖RL。
b. 差模输入电阻 c. 差模输出电阻
Rid
Uid Iid
2Uid1 Iid
2rbe
双端输出时为 单端输出时为
Rod2RC Ro d(单) RC
K
第六章 集成运算放大器电路原理
2、共模抑制特性 共模信号: Ui1=Ui2=Uic
V4
IC 1Ir4IB 1(15)
IC 2IC 3IC 41(1 1( 15)5 )4IrIr
一般β1(1+β5)>>4 容易满足,IC2、IC3、IC4更接近 Ir,并 且受β的温度影响也小。
K
第六章 集成运算放大器电路原理
多集电极晶体管镜像电流源
UCC V2
V1
UCC V3
Rr
Ir
IC1 IC2
K
第六章 集成运算放大器电路原理
6.1 集成运算放大器的电路特点
集成运放:多级放大电路。
输
中
输
电路设计上的主要特点: Ui 入
间
出
级
级
级 Uo
(1) 高增益直接耦合。
(2) 用有源器件代替无源元件。
电流源电路
(3) 利用对称结构改善电路性能。 集成运放电路框图
理想运放:电压增益高、 输入电阻大、 输出电阻小、 工 作点漂移小、失调电压和失调电流为零等特点。
K
第六章 集成运算放大器电路原理
第六章 集成运算放大器电路原理
集成运算放大器是采用微电子技术,将晶体管、电阻、 电容及连线制作在硅片上的电路。
本章介绍集成运放的单元电路和典型集成运放芯片, 重点是差动放大器、恒流源和互补跟随输出级电路。掌握 不同输入输出类型的差动放大器的动特性分析:差(共) 模电压增益、输入输出电阻以及共模抑制比的求法;理解 恒流源的原理,熟悉几种典型恒流源的电路原理图。
集成运算放大器基本运算电路
集成运算放大器的基本运算电路集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
基本运算电路(1)反相比例运算电路电路如图1所示,对于理想运放,该电路的输出电压与输入电压之间的关系为uO=-ui图1 反相比例运算电路为了减小输入偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1||RF。
(2)同相比例运算电路图2是同相比例运算电路,它的输出电压与输入电压之间的关系为)ui当R1→∞时,uO=ui,即得到如图3所示的电压跟随器。
图中R2=RF,用以减小漂移和起保护作用。
一般RF取10KΩ,RF太小起不到保护作用,太大则影响跟随性。
图2 同相比例运算电路图3 电压跟随器(3)反相加法电路电路如图4所示。
图4 反相加法运算电路输出电压与输入电压之间的关系为uO=()R3=R1||R2||RF (4) 减法运算电路对于图5所示的减法运算电路,当R1=R2,R3=RF时,有如下关系式uO=(ui2-ui1)图5 减法运算电路(5)积分运算电路反相积分电路如图6所示。
在理想化条件下,输出电压uo等于uo(t)= —式中“—”号表示输出信号与输入信号反相。
uc(o)是t=0时刻电容C两端的电压值,即初始值。
图6 积分运算电路如果ui(t)是幅值为E的阶跃电压,并设uc(o)=0,则—即输出电压uo(t)随时间增长而线性下降。
显然时间常数R1C的数值大,达到给定的uo值所需的时间就长。
积分输出电压所能达到的最大值受集成运放最大输出范围的限制。
在进行积分运算之前,首先应对运放调零。
为了便于调节,将图中K1闭合,通过电阻R2的负反馈作用帮助实现调零。
但在完成调零后,应将K1打开,以免因R2的接入造成积分误差。
K2的设置一方面为积分电容放电提供通路,同时可实现积分电容初始电压uc(o)=0。
模电课件第四章集成运算放大电路
§4.1集成运算放大电路概述 一、集成运放的电路结构特点
集成运算放大电路:高电压放大倍数的直接耦合多级放大电路。
2019/7/28
模电课件
二、集成运放的电路组成
1、输入级:运算放大器的输入级通常是差分放大电路,其主 要功能是抑制共模干扰和温漂,双极型运放中差分管通常采 用CC-CB复合管,以便拓展通频带。 2、中间级:电压放大,要求:放大倍数要尽可能大,通常采 用共201射9/7/2或8 共源电路,并采用恒模电流课源件 负载和复合管以增加电压 放大倍数。
工作在放大状态。
当T0与 T1特性参数完全一致时,由U BE0 = U BE1可推得
IB0 = IB1 = IB IC0 = IC1 = Io 由基极输入回路得,
Io
IR
VCC
U BE R
I0 2IB
I0
2
I0
所以,I0
1 1 2
IR
基准电流
输出电流
当
时,I0 IR 。
在集成运放电路中通常只能制作小容量(几十pF)电容,不能 制作大201容9/7/量28 电解电容,级间通常模采电课用件 直接耦合。
四、以电流源为有源负载的放大电路
在集成运放的共射(共源)放大电路中,为了提高电压放大 倍数,常用电流源电路取代Rc (或Rd ),这样在电源电压不 变的情况下,既获得合适的静态电流,又可以得到很大的等效 的Rc(或 Rd )。
(1) 运放电路的结构分解 输入级是一个差动放大电路,主要由T1、T3(共集-共基组合)
和T2、T4组成。中间放大级由T16、T17、T13组成共集—共射电路; 输出级由T14、T18 、 T19组成互补输出电路。
《电工电子》教学课件03集成运算放大器构成的运算电路的设计
(一)输入级:一般是由BJT、JFET或MOSFET组成 的高性能差分放大电路,它必须对共模信号有很强的 抑制力,而且采用双端输入双端输出的形式。
(二)电压放大级: 提供高的电压增益,以保证运
放的运算精度。中间级的电路形式多为差分电路和带 有源负载的高增益放大器。
图 (b)为集成运算放大器的电压传输特性曲线。集 成运算放大器的电压传输特性是指开环时,输出电 压与差模输入电压之间的关系。在线性区uo Aod (uP uN。) 由于Aod高达几十万倍,所以集成运放工作在线性 区时的最大输入电压Up-Un的数值仅为几十~一 百多μV。当其大于此值时,集成运放的输出不是, +Uom就是-Uom,即集成运放工作在非线性区。
(三)输出级:一般是由电压跟随器或互补电压跟随 器所组成,以降低输出电阻,提高带负载能力。
(四)偏置电路:提供稳定的几乎不随温度而变化的 偏置电流,以稳定工作点。
3.1.2 集成运算放大器的符号和电压传输特性
(a)
(b)
图 (a) 为运算放大器的符号。 运算放大器的符号中有 三个引线端,两个输入端,一个输出端。一个称为同相 输入端,即该端输入信号变化的极性与输出端相同,用 符号‘+’表示;另一个称为反相输入端,即该端输入信 号变化的极性与输出端相反,用符号“-”表示。输出端 在输入端的另一侧,在符号边框内标有‘+’号。大多数 型号的集成运放均为两组电源供电。
和电容元件位置互换,便得到图所示的微微分,即实现 了微分运算。
vO
iR R
iC R
RC
dvC dt
RC
dvi dt
3.2.4 微分电路的作用 微分电路的应用是很广泛的,在线性系统中,除
课题1集成运算放大器的设计
三、三极管放大电路的设计
1、试设计一个三极管放大电路,带宽 20Hz--20KHz,负载5.1K,放大倍数 20-60倍,输入电阻约1.8K,输出电 阻约2K,电源12V。
设计思路
1)带宽20Hz—20KHz,可采用低频管9014. 2)放大倍数20-60倍,可采用共射放大电路,
共射放大电路的特点是放大倍数较高,输入 阻抗和输出阻抗适中,输入输出反相,可用 于前置级、中间级或末级,是最常用的基本 放大电路。 3)采用分压式共射放大电路,静态工作点稳定, 对三极管要求低。
2、电子电路设计
电子电路设计:依据事先提供的技 术指标和功能,综合运用电子技术 平台所提供的知识,对电路进行硬 件、软件设计,达到用最少的、最 节省的器件,实现电路的功能。
2.1电子电路设计的基本原则
1、尽量提高性价比 2、设计中的“软”与“硬” 3、设计中的“简”与“繁” 4、采用器件的考虑 新器件、“大路货”、现成的模块或组
集成运算放大电路的设计
OP37参数
Op37芯片与OP07芯片 相似,但其各项指标性能均优 于OP07,OP37具有非常低 的输入失调电压(10nV )。
OP37输入偏置电流为10 nA,失调电流为7nA。开环 增益1.8万倍(85dB),共模 抑制比CMRR为126dB。
OP37参数
主要特点: ◆ 低输入失调电压:10nV(最大) ◆ 低失调电压温漂:0.2nV/℃(最大) ◆ 低失调电压时漂:0.2uV/月(最大) ◆ 低噪声:80nV P-P(最大) ◆ 宽输入电压范围:±12V ◆ 宽电源电压范围:3V~22V ◆ 单位增益带宽:63MHz
NE5532参数
NE5532/SE5532/SA5532/NE553 2A/SE5532A/SA5532A是一种双 运放高性能低噪声运算放大器。
集成运算放大电路简介
六、输入偏置电流 IIB
定义:输出电压等于零时,两个输入端偏置电流的
平均值。
七、差模输入电阻 rid
定义:
一般集成运放为几兆欧。
八、共模抑制比 KCMR
定义:
多数集成运放在 80 dB 以上,高质量的可达 160 dB。
九、最大共模输入电压 UIcmax
输入级能正常放大差模信号情况下允许输入的最 大共模信号。
接入30pF的校正电容起 相位补偿的作用,防止电路 产生自激振荡。
30pF
IC13 +VCC
R7
T15
R8
T16
T17
-VEE
图 4.3.1-3 中间级示意图
4. 输出级
T14、 T18 、T19准互补 对称电路;
D1、 D2 、R9、R10为 过流保护电路;
T15 、R7、R8为输出级 设置合适的静态工作点。
图设计考虑了热效应的影响,减小了失调电压、失调电流及 它们的温漂,增大了共模抑制比和输入电阻。
• 第四代产品:采用了斩波稳零和动态稳零技术,使各性能
指标参数更加理想化,一般情况下不需要调零就能正常工作 ,大大提高了精度。
4.5 集成运放的种类及选择
4.5.2 集成运放的种类 一、按工作原理分类
1.电压放大型:F007、F324、C14573 2.电流放大型:LM3900、F1900 3.跨导型:LM3080、F3080 4.互阻型:AD8009、AD8011
IC13
D1
R7
R8 T15
uI
D2
T18
+VCC
T14
R9 uO
R10
T19
-VEE 图4.3.1-4 F007输出级
集成运放的基本运算电路实验报告
集成运放的基本运算电路实验报告实验报告:集成运放的基本运算电路实验目的:1. 了解集成运放的基本原理和性质;2. 学习基本运算电路的设计和实现方法;3. 实验验证运算放大器的基本运算电路,包括反相放大器、非反相放大器、求和放大器和差分放大器。
实验器材:1. 集成运放(可以使用LM741等常见型号);2. 电阻(包括不同阻值的固定电阻和可变电阻);3. 电源(正负双电源,供应电压根据集成运放的需求确定);4. 示波器;5. 信号源。
实验步骤:1. 反相放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口连接到信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
2. 非反相放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口连接到信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
3. 求和放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口连接到不同信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
4. 差分放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口分别连接到两个信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
实验结果:1. 反相放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
2. 非反相放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
3. 求和放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
4. 差分放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
实验分析:1. 通过对实验结果的观察和分析,可以验证集成运放的基本运算电路的原理和性质。
2. 在实验中可以调整电阻的数值来改变放大倍数或增益,验证运算放大器的增益特性。
集成运放的典型电路-完整版课件
典型的集成运放 双极型集成运放 F007 CMOS 集成运放 C14573
4.3.1 双极型集成运放 F007
一、引脚
(a)
(b)
连
接
示
意
图
图 4.3.1 F007 的引脚及连接示意图
二、电路原理图
图 4.3.2 F007 电路原理图
偏置电路
基准电流:
VT8
I REF
4. 输出级
VT14、 VT18 、VT19 准互补对称电路;
VD1、 VD2 、R9、 R10 过载保护电路;
VT15 、R7、R8 为功 率管提供静态基流。
IC13
VD1
R7
+VCC
VT14
R9 uo
R8
uI
VT15
VD2
VT18
R10
VT19
-VEE 图 4.3.7 F007 输出级
原理电路
VCC
VEE
- UBE12 R5
- UBE11
I8
至输入级
基准电流产生各放
VT9
I3,4 IC9 IC10
VT10
VT12
+VCC
VT13
R5 IREF
IC12
VT11 至中间级
大级所需的偏置电流。
R4
各路偏置电流的关系:
图 4.3.3 F007 的偏置电路-VCC I3, 4
IREF
I11 微电流源 IC10
IC12 镜像电流源 IC13
镜像电流源
IC9
IC8
中间级
输出级
输入级
2. 输入级 VT1、VT2、VT3、VT4 组成共集 - 共基差分放大电路电 路;VT1、VT2 基极接收差分输入信号。
(整理)通用型集成运放一般由几部分电路组成
习 题3.1 通用型集成运放一般由几部分电路组成,每一部分常采用哪种基本电路?通常对每一部分性能的要求分别是什么?解:通用型集成运放由输入级、中间级、输出级和偏置电路等四个部分组成。
通常,输入级为差分放大电路,中间级为共射放大电路,输出级为互补电路,偏置电路为电流源电路。
对输入级的要求:输入电阻大,温漂小,放大倍数尽可能大。
对中间级的要求:放大倍数大,一切措施几乎都是为了增大放大倍数。
对输出级的要求:带负载能力强,最大不失真输出电压尽可能大。
对偏置电路的要求:提供的静态电流稳定。
3.2 已知一个集成运放的开环差模增益A o d 为100dB ,最大输出电压峰-峰值U o p p =±14V ,分别计算差模输入电压u I (即u P -u N )为10μV 、100μV 、1mV 、1V 和-10μV 、-100μV 、-1mV 、-1V 时的输出电压u O 。
解:根据集成运放的开环差模增益,可求出开环差模放大倍数5od od 10dB 100lg 20==A A当集成运放工作在线性区时,输出电压u O =A o d u I ;当A o d u I 超过±14V 时,u O 不是+14V ,就是-14V 。
故u I (即u P -u N )为10μV 、100μV 、1mV 、1V 和-10μV 、-100μV 、-1mV 、-1V 时,u O 分别为1V 、10V 、14V 、14V 、-1V 、-10V 、-14V 、-14V 。
3.3 已知几个集成运放的参数如表P3.3所示,试分别说明它们各属于哪种类型的运放。
表P3.3解:A 1为通用型运放,A 2为高精度型运放,A 3为高阻型运放,A 4为高速型运放。
3.4 多路电流源电路如图P4.4所示,已知所有晶体管的特性均相同,U B E 均为0.7V 。
试求I C 1、I C 2各为多少。
图P 3.4解:因为T 1、T 2、T 3的特性均相同,且U B E 均相同,所以它们的基极、集电极电流均相等,设集电极电流为I C 。
集成运放相位补偿电路设计的详细解析
集成运放相位补偿电路设计的详细解析集成运放相位补偿电路是一种常用的电路设计,可以用来解决运放在高频下的相位失真问题。
本文将详细解析集成运放相位补偿电路的设计原理和步骤。
我们需要了解相位失真的原因。
在高频信号传输中,电路中的电感和电容会对信号的相位产生影响,导致信号的相位失真。
为了解决这个问题,我们可以通过设计相位补偿电路来补偿信号的相位失真。
相位补偿电路的设计步骤如下:1. 确定相位失真的频率范围:首先,我们需要确定电路中相位失真发生的频率范围。
可以通过测量电路的频率响应来确定相位失真的频率范围。
2. 选择合适的相位补偿网络:根据相位失真的频率范围,我们可以选择合适的相位补偿网络。
常用的相位补偿网络包括RC网络和LC 网络。
选择相位补偿网络时,需要考虑相位补偿的范围、带宽和阻抗匹配等因素。
3. 计算相位补偿网络的参数:根据相位补偿网络的类型,我们可以通过计算来确定相位补偿网络的参数。
例如,对于RC网络,我们可以通过计算电阻和电容的数值来确定相位补偿网络的参数。
4. 绘制相位补偿电路的电路图:根据相位补偿网络的参数,我们可以绘制相位补偿电路的电路图。
在电路图中,相位补偿网络应与运放的输入端和反馈电路相连接。
5. 进行电路仿真和调试:在设计完成后,我们可以使用电路仿真软件来验证相位补偿电路的性能。
通过仿真,我们可以观察信号的相位失真情况,并进行必要的调整和优化。
总结起来,集成运放相位补偿电路设计的步骤包括确定相位失真频率范围、选择相位补偿网络、计算网络参数、绘制电路图和进行仿真调试。
通过这些步骤,我们可以设计出满足要求的相位补偿电路,有效解决运放在高频下的相位失真问题。
相位补偿电路的设计原理和步骤在电子工程中有着广泛的应用,特别是在高频信号传输和放大领域。
通过合理的相位补偿电路设计,可以提高电路的相位准确性和信号质量,从而实现更好的信号传输和放大效果。
因此,掌握相位补偿电路设计的原理和方法对于电子工程师来说是非常重要的。
运算放大器应用电路设计
运算放大器应用电路设计运算放大器应用电路设计,听起来好像挺高深的,实际上它就像是你家里那台电风扇的“转速调节器”,在电路里做着翻江倒海的“大动作”。
说白了,运算放大器就像一个“超级耳朵”,能听见非常微弱的信号,放大后传到你能听见的范围。
而它的应用呢,就无所不在,从你手里的手机到路边的交通信号灯,从医疗仪器到家用电器,简直无孔不入。
那我们今天就来聊聊运算放大器究竟是怎么工作的,又是怎么在电路设计中给我们带来一场“电流与信号”的魔法秀。
首先要说的就是运算放大器的工作原理。
你可以把它想象成一个巨大的放大镜,任何输入的信号,它都能放大到让你瞠目结舌。
比如你给它输入一个只有毫伏级别的微弱信号,它能让这个信号变得像大海里的海浪一样汹涌澎湃,让你听见它的存在。
这种“放大”是没有上限的,只要电源充足,它就能继续放大。
大家最常见的运算放大器就是那种8脚的小黑芯片,它看起来普普通通,但里面却是大有乾坤。
它的内部结构其实很简单,两个输入端,一个输出端,还有它的“电源”,这些组件一搭配,魔法就发生了。
接下来说说应用。
运算放大器最常见的用途就是做放大器,这一点大伙儿应该不陌生。
比方说,大家听过吉他音响的“音量调节”吧?你会发现,吉他声音小的时候需要增大音量。
这个时候,运算放大器就大显身手了,它可以让吉他的音频信号从最小的声音放大到震耳欲聋的程度。
可别小看了这小小的操作,它涉及到电流、电压、频率等等,简直是电路中最重要的“桥梁”之一。
再比如说医疗仪器,比如心电图(ECG)。
你可能不知道,心电图里的每一波脉冲,都是通过运算放大器的作用放大的。
因为人体的生物电信号极其微弱,连个小小的“震动”都不足以触动电表。
如果没有运算放大器,心电图的显示屏上可能啥也看不见。
是的,简直就像是“看不见摸不着”的幽灵信号,运算放大器帮助放大这些微弱的脉冲,让它们呈现出清晰的波形。
想想看,要是连心跳都听不清,那多吓人!再聊聊在音频处理中的应用。
比如,你家里的音响系统,里面可能就有一个运算放大器,它负责把你手机或电视里的信号“拉大”,让它通过音响播放得更响亮更清晰。
(整理)集成运放电路的设计
一设计目的1.集成运算放大电路当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系,在线性应用方面,可组成比例、加法、减法、积分、微分等模拟运算电路。
2.本课程设计通过Mulitisim编写程序几种运算放大电路仿真程序,通过输入不同类型与幅度的波形信号,测量输出波形信号对电路进行验证,并利用Protel软件对实现对积累运算放大电路的设计,并最终实现PCB版图形式。
二设计工具:计算机,Mulitisim,Protel软件三设计任务及步骤要求1)通过Mulitisim编写程序运算放大电路仿真程序,通过输入不同类型与幅度的波形信号,测量输出波形信号对电路进行验证。
输入电压波形可以任意选取,并且可对输入波形的运算进行实时显示,并进行比较;2)对设计完成的运算放大电路功能验证无误后,通过Protel软件对首先对电路进行原理图SCH设计,要求:所有运算放大电路在一张原理图上;输入输出信号需预留接口;3)设计完成原理图SCH后,利用Protel软件设计完成印制板图PCB,要求:至少为双层PCB板;四设计内容1集成运算放大器放大电路概述集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。
集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。
集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。
2集成运放芯片的选取和介绍由于LM324具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,而本次电子设计实验对精度要求不是非常高,LM324完全满足要求,因此我们这里选用LM 324作为运放元件LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图。
集成运放应用电路设计360例
集成运放应用电路设计360例(原创版)目录1.集成运放简介及其应用2.集成运放应用电路设计 360 例的内容概述3.集成运放应用电路设计的基本准则和须知4.集成运放应用电路设计的具体实例5.总结与展望正文一、集成运放简介及其应用集成运放,即集成运算放大器,是一种模拟电路,具有高增益、差分输入、输出电压有限等特性。
它在电子电路设计中有着广泛的应用,例如在信号放大、滤波、模拟计算等领域均有运放的身影。
集成运放的应用电路设计,不仅要熟悉其内部结构和原理,还需要掌握一定的电路设计技巧。
二、集成运放应用电路设计 360 例的内容概述《集成运放应用电路设计 360 例》这本书全面系统地阐述了集成运算放大器 360 种应用电路的设计公式、设计步骤及元器件的选择。
内容包括集成运放应用电路设计须知,集成运放调零、相位补偿与保护电路的设计,运算电路、放大电路的设计,信号处理电路的设计,波形产生电路的设计,测量电路的设计,电源电路及其他电路的设计等方面。
三、集成运放应用电路设计的基本准则和须知在进行集成运放应用电路设计时,需要遵循一些基本的设计准则,例如选择合适的运放型号,合理安排电路布局,注意元器件的参数匹配等。
此外,还需要了解一些电路设计须知,例如集成运放的内部框图、分类和图形符号,引脚功能、封装及命名方法,参数等。
四、集成运放应用电路设计的具体实例书中给出了丰富的集成运放应用电路设计实例,如运算电路、放大电路、滤波电路、波形产生电路等。
这些实例都是实际应用中常见的电路,通过学习这些实例,可以掌握集成运放应用电路设计的基本方法和技巧。
五、总结与展望集成运放应用电路设计是一个复杂而又富有挑战性的领域,需要不断学习和实践。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一设计目的1.集成运算放大电路当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系,在线性应用方面,可组成比例、加法、减法、积分、微分等模拟运算电路。
2.本课程设计通过Mulitisim编写程序几种运算放大电路仿真程序,通过输入不同类型与幅度的波形信号,测量输出波形信号对电路进行验证,并利用Protel软件对实现对积累运算放大电路的设计,并最终实现PCB版图形式。
二设计工具:计算机,Mulitisim,Protel软件三设计任务及步骤要求1)通过Mulitisim编写程序运算放大电路仿真程序,通过输入不同类型与幅度的波形信号,测量输出波形信号对电路进行验证。
输入电压波形可以任意选取,并且可对输入波形的运算进行实时显示,并进行比较;2)对设计完成的运算放大电路功能验证无误后,通过Protel软件对首先对电路进行原理图SCH设计,要求:所有运算放大电路在一张原理图上;输入输出信号需预留接口;3)设计完成原理图SCH后,利用Protel软件设计完成印制板图PCB,要求:至少为双层PCB板;四设计内容1集成运算放大器放大电路概述集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。
集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。
集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。
2集成运放芯片的选取和介绍由于LM324具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,而本次电子设计实验对精度要求不是非常高,LM324完全满足要求,因此我们这里选用LM 324作为运放元件LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
每一组运算放大器可如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324的引脚排列见图。
3运放电路基本原理及其Mulitisim仿真3.1.同相比例运放电路同向比例运放电路组成如图1所示,将输入电阻R1接地,并且将输入信号加载道+输入端。
u ou i+-+R fR 1图1电压在通过由反馈电阻R f 和输入电阻R 1组成的分压电路的时候产生压降,中间位置的电压V -为:out f V R R R V ))/((11+=- (8)根据理想运放的性质1,运放的输入电压△V 为零,因此V in =V -。
重新排列公式in f out V R R V )/1(1+= (9)通用运放的闭环增益为G=1+R f /R 1,并且不会改变输入信号的符号。
从中可以看出电路的输入阻抗Z i 很大。
A R R R Z Z f in i ))/((11+= (10)式中,Z in 为实际运放的输入阻抗(大约为20m Ω,且由于电路的开环增益A 很大,输出阻抗Z 0趋紧于零,因此,同向比例运放电路能够以有限的增益有效地对输入电路进行缓冲。
同相比例运放电路仿真电路图输入电压输出电压所以输出放大倍数: 310/28= 11 = 电压输入输出波形图如下i oVRR V)1(12+=3.2.反比例运放电路图2中所示的电路是最常见的运放电路,它显示出了如何在牺牲增益的条件下获得稳定,线性的放大器。
标号为R f的反馈电阻用于将输出信号反馈作用于输入端,反馈电阻连接到负输入端表示电路为负反馈连接。
输入电压V1通过输入电阻R1产生了一个输入电路i1。
电压差△V加载在+、—输入端之间,放大器的正输入端接地。
图2利用回路公式计算传输特性:输入回路:+VV∆=iR(2)111反馈回路:V R i V f f out ∆+-= (3)求和节点in f i i i +-=1 (4)增益公式:V A V out ∆∙-= (5)由以上4个式子可以得到输出:Z R V Z i V in out /)/(/11-= (6)式中,闭环阻抗Z=1/R f +1/AR f +1/R f 。
反馈电阻和输入电阻通常都较大)(Ωk 级,并且A 很大(大于100000),因此Z=1/R f 。
更进一步,△V 通常很小(几微伏)且放大器的输入阻抗Z in 很大(大约ΩM 10),那么输入输入电流(I in =△V/Z in )非常小,可以认为为零。
则传输曲线变为:111)()/(V G V R R V f out -=-= (7)式中,R f /R 1的比值称为闭环增益G ,负号表示输出反向。
闭环增益可以通过选择两个电阻R f 和R 1来设定。
反比例运算仿真电路图输入电压输出电压所以输出放大倍数-337/28 = -12 =输入输出电压波形i oVRRV12-=3.3运放微分电路经调试选取C1=1uf Rf=2k 可调 R2=1k运算微分电路图R fU iR 2U oC 1foi R U dt dU C -=1dtdU C R U if o 1-=max 1)(dtdU U C R i oM f ≤输入输出电压波形图3.4运放积分电路图4图4为运放积分电路示意图。
在运放积分电路中,用电容器替换反馈电阻。
理想电容器能够存储电荷(Q),并且没有漏电流。
输入电流通过求和节点对反馈电容器C f 进行充电。
电容器上的电压等于V out ,电容器存储电荷Q=CV ,即Q=C f V out ,并且电流I=dQ/dt ,可以得到)/(dt dV C i out f f = (11)将运放看做理想运放,i 1=V in /R 1,且i 1=I f ,则)/(/1dt dV C R V out f in -= (12)用积分的形势表达:⎰-=dt V C R V in f out )/1(1 (13)输出电压为输入电压的积分乘以一个比例系数(1/R 1C f )。
R 的电位是欧姆,C 的单位是法拉,RC 的单位是秒。
例如,一个1uF 的电容器和一个1M Ω的电阻组成的积分电路的时间常数为1秒。
假设输入电压恒定,那么输入电压项可以从积分号中提出来,公式变为:常数+-=t C R V V f in out )/(1 (14)其中常数由初始条件确定,如在t=0时刻,V out =V 0。
输入电压和时间为斜率为—(V in /R 1C f )的直线。
例如,当V in =—1V ,C=1uF 并且R=1M Ω,则斜率为1vot/sec 。
在运放达到饱和以前,输出电压按这个比例线性地变化。
通过在反馈电容器上加载初始电压,能够得到积分的常数项。
同样可以在积分开始或t=0时,定义初始条件V out (0)=V constant ,输出电压则从初始电压开始增加或减少。
通常情况下,初始电压设定为零。
在反馈电容器上连接一根短接线,并在积分开始时移走,可以实现初始电压为零。
经调试这里选取C=1uf R =100k 可调 Rf=100k运放积分电路图输入输出波形3.5运放加减法电路图5图5为运放加法电路原理图。
运放加法电路是反相比例电路的变形,带有两个或更多的输入信号。
各个输入电压V i 通过各自的输入电阻R i 连接到各自的输入电阻R i 连接到运放的-输入引脚。
运放加法电路满足克希荷夫第二定律,即在任意瞬时,电路中任意节点流入流出的电流和为零。
在V -这一点,01=++in f i i i 。
而且理想运放没有输入电流、没有偏置电流。
在这种连接情况下,-输入端通常称为求和节点(V s )。
这个点的另一个表述为:在求和节点上,所有的电流和为零。
对于输入回路1111/R V i = (15)对于输入回路2222/R V i = (16)对于反馈回路)/(f out f R V i -= (17)根据以上式子可得输出)()/(2211R V R R V R V f f out --= (18)如果R 1=R 2=R ,那么电路模拟了一个真实的加法电路。
)()/(21V V R R V f out +∙-= (19)在R f /R=1/2的特殊情况下,输出电压为输入电压的平均值。
4.SCH原理图5.PCB印制板图五.六.心得体会在这次实践课程我复习和掌握了六种基本集成运算放大电路的特性,并且熟练了Mulitisim的使用.在电路设计的过程中,通过参考书和网上教学视频我学会了绘制简单的PCB电路板,这也是设计过程中最大的收获.我想实践课的过程就是自学,不断尝试和探索的过程,而以后的学习和生活更需要靠自学能力来提高自己.而这需要的是静心和敢于探索的精神.因此在以后的学习过程中,需要踏实下来努力学习并熟练掌握电路设计软件的使用,通过多实践不段提高自己的电路设计水平.争取获得一技之长.。