第二组运筹学课程设计
运筹学课程设计范文
摘要
本文本着企业生产与需求同时考虑,相互影响的原则,利用线性规划的知识 对山东临沂景德地毯有限公司的生产及运输进行了初步规划。 论文首先对我国生产企业生产与运输方面的现状进行了基本概述, 然后以此 家地毯企业为例,讲解了进行生产和运输决策时可以采用的基本方法。本文首先 对这家企业的情况进行了部分说明,然后针对企业遇到的问题,建立模型,求解 对策。在对企业问题选择最优化模型时,选择了线性规划这一最为简单也最为实 用的方法,利用 lingo 软件对问题进行了相应的求解,并对结果进行了评述,形 成了对企业生产运输规划的一些基本建议。 本文意在通过对此家企业问题的解决方法来对企业的一些问题做出指导, 以 促进企业的发展壮大。
模型的建立 ………………………………………分析……………………………………… (10)
3.1 3.2 模型的最优解 ……………………………………………………… (10) 模型的分析与评价 ……………………………………………………(14)
第四章 结论与建议 ………………………………………………………(15)
1.3 研究的意义 企业利润问题是事关企业生死存亡的重大问题。 企业利润与产品质量存在巨 大关系,但是对于生产水平较为落后,且产品质量已经基本确定或产品质量难以 再获巨大提高的企业, 对产品生产和销售的准确把握则无疑是企业获得利润的法 宝。 而通过数学规划来计算最优情况下的生产量和销售量则是既实用又简单的方 法。 产品的生产和销售自商品经济产生之初便应该是一体的, 对两者进行统一考 虑才能对企业生产制定更好的决策,此种对供求关系,生产和销售限制条件统一 考虑的规划方法建立了关于生产与销售集中考虑的一般步骤, 对企业的更优决策 与发展必然具有一定的指导意义。
1.4 研究的主要方法和思路
运筹课程设计案例
运筹课程设计案例一、课程目标知识目标:1. 让学生掌握运筹学的基本概念,如线性规划、整数规划等,并能够理解其在实际问题中的应用。
2. 使学生了解运筹学中的常用方法与工具,如图表法、单纯形法等,并能运用这些方法解决简单的实际问题。
3. 引导学生理解优化问题的本质,培养他们运用数学语言描述现实问题的能力。
技能目标:1. 培养学生运用运筹学方法分析问题和解决问题的能力,特别是针对实际案例,能够设计出有效的优化方案。
2. 提高学生的数据处理和计算能力,使其能够熟练运用运筹学软件工具解决复杂的优化问题。
3. 培养学生的团队协作和沟通能力,通过小组讨论和报告,共享解决问题的思路和方法。
情感态度价值观目标:1. 培养学生对运筹学学科的兴趣,激发他们探索优化问题的热情,形成积极向上的学习态度。
2. 培养学生具有批判性思维和创新精神,面对复杂问题能够勇于挑战,寻求最佳解决方案。
3. 引导学生认识到运筹学在国家和企业发展中的重要作用,增强社会责任感和使命感。
本课程针对的学生特点是具有一定数学基础和逻辑思维能力的初中生。
在教学过程中,教师应注重理论联系实际,激发学生的兴趣和好奇心,注重培养学生的动手操作能力和实际应用能力。
通过本课程的学习,期望学生能够掌握基本的运筹学知识和方法,提高解决实际问题的能力,同时培养他们的团队合作精神和批判性思维。
二、教学内容1. 运筹学基本概念:介绍运筹学的定义、发展历程及其在现实生活中的应用,重点讲解线性规划和整数规划的基本原理。
教材章节:第一章 运筹学概述,第三节 线性规划2. 运筹学方法与工具:详细讲解图表法、单纯形法等常用优化方法,并通过实例分析展示这些方法在实际问题中的应用。
教材章节:第二章 线性规划的图解法与单纯形法,第四节 整数规划简介3. 运筹学案例分析:选择具有代表性的实际案例,如生产计划、物流配送等,让学生运用所学方法解决实际问题。
教材章节:第三章 运筹学应用案例分析4. 运筹学软件工具介绍:介绍运筹学软件(如Lingo、CPLEX等)的基本功能和使用方法,帮助学生提高优化问题的求解效率。
运筹学课程设计
摘要人力资源不仅决定着财富的形成,还是推动财富发展的主要力量。
随着科学技术的不断发展,知识技能的不断提高,人力资源对价值创造的贡献力度越来越大,社会经济发展对人力资源的依赖程度也越来越大。
我们这次课程设计就是通过运用整数线性规划的的方法,利用LINDO软件,分析公司尽量减少辞退人员时,相应的招工和培训计划,以及公司尽量减少费用时,相应的招工和培训计划,并分别计算两种不同方案时的费用与辞退人数进行比较分析,得出结论。
关键词:整数规划,辞退人数,最低费用目录1 问题的提出 (1)1.1 背景资料 (1)1.2 主要研究内容及问题 (2)2模型的建立 (3)2.1 符号约定 (3)2.2 建立目标函数 (3)2.3 建立约束函数 (4)2.3.1 不熟练员工的约束函数 (4)2.3.2 半熟练员工的约束函数 (4)2.3.3 熟练员工的约束函数 (5)2.3.4员工人数限制约束限制 (6)2.4 建立模型 (6)2.4.1第一个问题的模型 (6)2.4.2第二个问题的模型 (7)3 最优方案的确定 (8)3.1 模型求解及最优方案的确定 (8)3.1.1 模型的求解 (8)3.1.2 确定最优方案 (11)4结束语 (13)1 问题的提出1.1 背景资料一个公司需要以下三类人员:不熟练工人、半熟练工人和熟练工人。
据估计,当前以及以后三年需要的各类人员的人数如附表1-8。
不熟练半熟练熟练当前拥有2310 1810 1310第一年1310 1710 1310第二年810 2310 1810第三年0 2810 2810为满足以上人力需要,该公司考虑以下四种途径:1.招聘工人;2.培训工人;3.辞退多余工人;4.用短工。
每年都有自然离职的人员,在招聘的工人中,第一年离职的比例特别多,工作一年以上再离职的人数就很少了,离职人数的比例如附表1-9。
不熟练半熟练熟练工作不到一年26 19 12工作一年以上19 6 4 当前没有招工,现有的工人都已工作一年以上。
运筹学课程设计.
《运筹学》课程设计网络的数据传输最大流问题的模型探讨院(系)名称 xxxxxx专业班级xxxxx学号xxxxxx学生姓名 xxxxxx指导教师 xxxxxx2014年05 月26日课程设计任务书2013—2014学年第二学期专业班级:xxxxx 学号:xxxxx 姓名:xxxxx课程设计名称:运筹学设计题目:网络的数据传输最大流问题的模型探讨完成期限:自2014 年05 月19 日至2014年05 月26 日 1 周设计依据、要求及主要内容:一、设计目的一个网络中流量的最大值对企业尤为重要,而一个具体量化的解决方案的制定是一个很棘手的问题.本论文结合建模知识,建立实际最大流问题的合理正确的模型,利用线性规划和最大流的知识,对上述问题建立适当的数学模型,并借助LINGO软件求解.对上述问题给出一个量化可行的解决方案,从而使网络中的流量达到最大化,从而更好的合理的解决实际问题,将所学理论知识更好的服务于实践.二、设计要求结合实际问题的例子,以线性规划理论和最大流理论为基础,建立最大流问题的模型,利用LINGO软件求解,探讨网络中最大流的问题.给出一个最优化的解决方案,使网络中的流量达到最大.三、参考文献[1] 刁在筠,刘桂真,宿洁,马建华.运筹学[M].北京:高等教育出版社,2007.[2] 韩中庚,郭晓丽,杜剑平,宋留勇.实用运筹学[M].北京:清华大学出版社,2011.[3] 谢金星.数学模型与LINGO软件[M].北京:清华大学出版社,2005. 计划答辩时间:2014年05月26日指导教师(签字):教研室主任(签字):批准日期:年月日网络的数据传输最大流问题的探讨摘要网络最大流问题是网络的另一个基本问题.许多系统包含了流量问题.例如交通系统有车流量,金融系统有现金流,控制系统有信息流等.许多流问题主要是确定这类系统网络所能承受的最大流量以及如何达到这个最大流量.同样地,网络的数据传输最大流问题也采用了这样的原理,利用了线性规划模型求解了最大流问题.运用LINGO软件编程得到了求解结果为,计算机网络中,从节点1到节点9的最大传输带宽为14.2Mb/s.关键词:最大流,LINGO软件,模型目录1 问题重述 (1)2 探讨过程 (1)2.1 参考知识背景 (1)2.1.1 数学模型背景 (1)2.1.2 最大流问题背景 (2)2.1.3 LINGO软件背景 (2)2.2 建模过程 (3)2.2.1 模型假设 (3)2.2.2 符号说明 (3)2.2.3 问题分析 (3)2.2.4 建立最大流问题的模型 (4)2.2.5 模型求解 (5)3实际应用 (10)总结 (11)参考文献 (12)1问题重述分组交换技术在计算机网络发挥着重要的作用,从源节点到目的节点传送文件不再需要固定的一条“虚路径”,而是将文件分割为几个分组,再通过不同的路径传送到目的节点,目的节点再根据分组信息进行重组,还原文件,分组交换技术具有文件传输时不需要始终占用一条线路,不怕单条线路掉线,多路传输提高传输速率等优点.现在考察如图所示的网络,假设图中连接两个节点间的数字表示两交换机间的可用带宽,建立数学模型,计算从节点1到节点9的最大传输带宽是多少?图1 计算机网络带宽示意图(单位:Mb/s)2探讨过程本次设计在综合了解一定的数学模型、运筹学中的最大流、LINGO软件中一些知识的基础上,以图论理论为基础,对实际例子进行一定的分析后,建立合理的最大流问题模型.然后,利用LINGO软件求得结果.给出节点1到节点9的最大传输带宽是多少.2.1 参考知识背景2.1.1数学模型背景一提到数学,人们首先想到的是它的抽象和难懂,以及它的严密的推理和证明,也正是由于数学的高度抽象性,才决定了它也具有广泛的应用性.要运用数学方法解决实际问题,不论这个问题是来自工程、经济、金融还是社会、生命科学领域,都必须设法在数学与实际问题之间架设一座桥梁,首先要将这个实际问题化为一个相应的数学问题,其次对这个数学问题进行分析与计算,最后将所求的解答回归为现实,就是数学模型,而架设桥梁的过程,就称为数学建模,即为所考察的实际问题建立数学模型.当然,建立数学模型的过程一次成功的可能性不是很大.只有最后经过实践检验为有效的数学模型,才能算是成功的数学模型.2.1.2 最大流问题背景图论[1]是运筹学的一个重要分支,随着计算机的逐渐普及,它越来越急速的渗透到工农业生产、商业活动、军事行动和科学研究的各个方面.它是以图为研究对象的,这里所说的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应的两个事物之间具有的这种特定关系.图论其广阔的应用领域涵盖了人类学、计算机科学、化学、环境保护、流体动力学、心理学、社会学、交通管理、电信网络等领域.特别是在20世纪50年代以后,随着科学技术的发展和计算机的出现与广泛的应用,促使了运筹学的发展,图论的理论也得到了进一步的发展.特别是庞大的复杂工程系统和管理问题都可以转化为图的问题,从而可以解决很多工程设计和管理决策中的最优化问题.诸如像完成工程任务的时间最少、距离最短、费用最少、收益最大、成本最低等实际问题.因此,图论在数学、工程技术及经济等各个领域都受到了越来越广泛的重视.其中,最大流问题是是图论中最常见的问题.2.1.3 LINGO软件背景Lingo [3]是用来求解线性和非线性优化问题的简易工具.LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果.LINGO全称是Linear INteractive and General Optimizer的缩写---交互式的线性和通用优化求解器.它是一套设计用来帮助您快速,方便和有效的构建和求解线性,非线性,和整数最优化模型的功能全面的工具.包括功能强大的建模语言,建立和编辑问题的全功能环境,读取和写入Excel和数据库的功能,和一系列完全内置的求解程序.Lindo/Lingo软件作为著名的专业优化软件,其功能比较强、计算效果比较好,与那些包含部分优化功能的非专业软件相比,通常具有明显的优势.此外,Lindo/Lingo软件使用起来非常简便,很容易学会,在优化软件(尤其是运行于个人电脑上的优化软件)市场占有很大份额,在国外运筹学类的教科书中也被广泛用做教学软件.2.2建模过程2.2.1 模型假设(1)假设网络传输过程中没有流量损失.(2)假设网络传输没有中断.(3)假设网络信号良好.2.2.2 符号说明F:分组传输方式矩阵的表示f:从节点i到节点j的实际传输带宽ijC:容量矩阵()V f:网络传输带宽值p c f:边集,,2.2.3 问题分析网络的数据传输问题是关于图论中的最大流问题,如图1就是一个网络,各边上的数值代表该边的容量,其中标号为1的点为源,标号为9的点为汇,其他节点为中间顶点.实际中,可以把“网络”看成是水管组成的网络,“容量”看成是水管的单位时间的最大通过量,而“流”则是水管网络中流动的水,“源”是水管网络的水的注入口,“汇”是水管网络水的流出口.对于所有中间顶点,流入的总量应该等于流出的总量,一个网络的流量值定义为从源流出的总流量,不难得到网络的总流量也等于流入汇的总流量,综上所述,我们可以得到网络中的最大流的值.2.2.4 建立最大流问题的模型将此问题视为一个网络的最大流问题,寻找网络的最大流问题,事实上可以化为求解一个特殊的线性规划问题,即求一组函数{}{(,)}ij i j f f v v =在满足0(,)(,)f u v c u v ≤≤和(),;(,)(,)0,,,(),.s s t u V w V t V f v v f v u f w v v V v v v V f v v ∈∈=⎧⎪-==≠⎨⎪-=⎩∑∑的条件下,使()V f 有最大值的问题,即max V ,,=0,,,,..(),.0(,)j j ff i s ij ji i i s t UV w V i t ij ij i j V v v f f v V v v v s t V f v v f c v v V ∈∈⎧=⎧⎪⎪-∈≠⎨⎪⎨⎪-=⎩⎪⎪≤≤∈⎩∑∑将分组的传输方式用以下矩阵来刻画:111219212229919299f f f f f f F f f f ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,其中ij f 表示从节点i 到节点j 的实际传输带宽,记容量矩阵为:0 2.50 5.6 6.10000007.100 3.60000000000 3.400000 4.907.4000 2.40007.2 5.70000 3.80000 5.3 4.500000 3.800 6.7000000007.4000000000C ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,由此可以建立线性规划模型如下:max V (1)=(9)..0(1,9)0.ffij ki f j V k V V i f f V i s t i F C ∈∈⎧=⎧⎪⎪--=⎪⎨⎨⎪≠⎩⎪⎪≤≤⎩∑∑2.2.5 模型求解该模型的求解,采用LINGO软件,其相应的程序如下:MODEL:sets:nodes/1,2,3,4,5,6,7,8,9/; !节点集arcs(nodes,nodes):p,c,f; !边集endsetsdata:!邻接矩阵p=0,1,0,1,1,0,0,0,0, 1,0,1,0,1,1,0,0,0, 0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,1,0,0,1,1,0,1,0,1,1,0,0, 0,1,1,0,1,0,1,1,1, 0,0,0,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,1,1,0;!容量矩阵C=0,2.5,0,5.6,6.1,0,0,0,0, 0,0,7.1,0,0,3.6,0,0,0, 0,0,0,0,0,0,0,3.4,0, 0,0,0,0,4.9,0,7.4,0,0, 0,2.4,0,0,0,7.2,5.7,0,0,0,0,3.8,0,0,0,0,5.3,4.5,0,0,0,0,0,3.8,0,0,6.7, 0,0,0,0,0,0,0,0,7.4, 0,0,0,0,0,0,0,0,0;enddatamax=flow;@for(nodes(i)|i#ne#1#and#i#ne#@size(nodes): !去除源和汇@sum(nodes(j):p(i,j)*f(i,j)) !中间节点约束=@sum(nodes(j):p(j,i)*f(j,i)));@sum(nodes(i):p(1,i)*f(1,i))=flow; !源汇节点约束@for(arcs:@bnd(0,f,c)); !容量约束END运行该程序,得到运行结果如下:Global optimal solution found.Objective value: 14.20000Infeasibilities: 0.000000Total solver iterations: 11Variable Value Reduced CostFLOW 14.20000 0.000000P( 1, 1) 0.000000 0.000000P( 1, 2) 1.000000 0.000000P( 1, 3) 0.000000 0.000000P( 1, 4) 1.000000 0.000000P( 1, 5) 1.000000 0.000000P( 1, 6) 0.000000 0.000000P( 1, 7) 0.000000 0.000000 P( 1, 8) 0.000000 0.000000 P( 1, 9) 0.000000 0.000000 P( 2, 1) 1.000000 0.000000 P( 2, 2) 0.000000 0.000000 P( 2, 3) 1.000000 0.000000 P( 2, 4) 0.000000 0.000000 P( 2, 5) 1.000000 0.000000 P( 2, 6) 1.000000 0.000000 P( 2, 7) 0.000000 0.000000 P( 2, 8) 0.000000 0.000000 P( 2, 9) 0.000000 0.000000 P( 3, 1) 0.000000 0.000000 P( 3, 2) 1.000000 0.000000 P( 3, 3) 0.000000 0.000000 P( 3, 4) 0.000000 0.000000 P( 3, 5) 0.000000 0.000000 P( 3, 6) 1.000000 0.000000 P( 3, 7) 0.000000 0.000000 P( 3, 8) 1.000000 0.000000 P( 3, 9) 0.000000 0.000000 P( 4, 1) 1.000000 0.000000 P( 4, 2) 0.000000 0.000000 P( 4, 3) 0.000000 0.000000 P( 4, 4) 0.000000 0.000000 P( 4, 5) 1.000000 0.000000 P( 4, 6) 0.000000 0.000000 P( 4, 7) 1.000000 0.000000 P( 4, 8) 0.000000 0.000000 P( 4, 9) 0.000000 0.000000 P( 5, 1) 1.000000 0.000000 P( 5, 2) 1.000000 0.000000 P( 5, 3) 0.000000 0.000000 P( 5, 4) 1.000000 0.000000 P( 5, 5) 0.000000 0.000000 P( 5, 6) 1.000000 0.000000 P( 5, 7) 1.000000 0.000000 P( 5, 8) 0.000000 0.000000 P( 5, 9) 0.000000 0.000000 P( 6, 1) 0.000000 0.000000 P( 6, 2) 1.000000 0.000000 P( 6, 3) 1.000000 0.000000 P( 6, 4) 0.000000 0.000000 P( 6, 5) 1.000000 0.000000P( 6, 6) 0.000000 0.000000 P( 6, 7) 1.000000 0.000000 P( 6, 8) 1.000000 0.000000 P( 6, 9) 1.000000 0.000000 P( 7, 1) 0.000000 0.000000 P( 7, 2) 0.000000 0.000000 P( 7, 3) 0.000000 0.000000 P( 7, 4) 1.000000 0.000000 P( 7, 5) 1.000000 0.000000 P( 7, 6) 1.000000 0.000000 P( 7, 7) 0.000000 0.000000 P( 7, 8) 0.000000 0.000000 P( 7, 9) 1.000000 0.000000 P( 8, 1) 0.000000 0.000000 P( 8, 2) 0.000000 0.000000 P( 8, 3) 1.000000 0.000000 P( 8, 4) 0.000000 0.000000 P( 8, 5) 0.000000 0.000000 P( 8, 6) 1.000000 0.000000 P( 8, 7) 0.000000 0.000000 P( 8, 8) 0.000000 0.000000 P( 8, 9) 1.000000 0.000000 P( 9, 1) 0.000000 0.000000 P( 9, 2) 0.000000 0.000000 P( 9, 3) 0.000000 0.000000 P( 9, 4) 0.000000 0.000000 P( 9, 5) 0.000000 0.000000 P( 9, 6) 1.000000 0.000000 P( 9, 7) 1.000000 0.000000 P( 9, 8) 1.000000 0.000000 P( 9, 9) 0.000000 0.000000 C( 1, 1) 0.000000 0.000000 C( 1, 2) 2.500000 0.000000 C( 1, 3) 0.000000 0.000000 C( 1, 4) 5.600000 0.000000 C( 1, 5) 6.100000 0.000000 C( 1, 6) 0.000000 0.000000 C( 1, 7) 0.000000 0.000000 C( 1, 8) 0.000000 0.000000 C( 1, 9) 0.000000 0.000000 C( 2, 1) 0.000000 0.000000 C( 2, 2) 0.000000 0.000000 C( 2, 3) 7.100000 0.000000C( 2, 5) 0.000000 0.000000 C( 2, 6) 3.600000 0.000000 C( 2, 7) 0.000000 0.000000 C( 2, 8) 0.000000 0.000000 C( 2, 9) 0.000000 0.000000 C( 3, 1) 0.000000 0.000000 C( 3, 2) 0.000000 0.000000 C( 3, 3) 0.000000 0.000000 C( 3, 4) 0.000000 0.000000 C( 3, 5) 0.000000 0.000000 C( 3, 6) 0.000000 0.000000 C( 3, 7) 0.000000 0.000000 C( 3, 8) 3.400000 0.000000 C( 3, 9) 0.000000 0.000000 C( 4, 1) 0.000000 0.000000 C( 4, 2) 0.000000 0.000000 C( 4, 3) 0.000000 0.000000 C( 4, 4) 0.000000 0.000000 C( 4, 5) 4.900000 0.000000 C( 4, 6) 0.000000 0.000000 C( 4, 7) 7.400000 0.000000 C( 4, 8) 0.000000 0.000000 C( 4, 9) 0.000000 0.000000 C( 5, 1) 0.000000 0.000000 C( 5, 2) 2.400000 0.000000 C( 5, 3) 0.000000 0.000000 C( 5, 4) 0.000000 0.000000 C( 5, 5) 0.000000 0.000000 C( 5, 6) 7.200000 0.000000 C( 5, 7) 5.700000 0.000000 C( 5, 8) 0.000000 0.000000 C( 5, 9) 0.000000 0.000000 C( 6, 1) 0.000000 0.000000 C( 6, 2) 0.000000 0.000000 C( 6, 3) 3.800000 0.000000 C( 6, 4) 0.000000 0.000000 C( 6, 5) 0.000000 0.000000 C( 6, 6) 0.000000 0.000000 C( 6, 7) 0.000000 0.000000 C( 6, 8) 5.300000 0.000000 C( 6, 9) 4.500000 0.000000 C( 7, 1) 0.000000 0.000000 C( 7, 2) 0.000000 0.000000C( 7, 4) 0.000000 0.000000 C( 7, 5) 0.000000 0.000000 C( 7, 6) 3.800000 0.000000 C( 7, 7) 0.000000 0.000000 C( 7, 8) 0.000000 0.000000 C( 7, 9) 6.700000 0.000000 C( 8, 1) 0.000000 0.000000 C( 8, 2) 0.000000 0.000000 C( 8, 3) 0.000000 0.000000 C( 8, 4) 0.000000 0.000000 C( 8, 5) 0.000000 0.000000 C( 8, 6) 0.000000 0.000000 C( 8, 7) 0.000000 0.000000 C( 8, 8) 0.000000 0.000000 C( 8, 9) 7.400000 0.000000 C( 9, 1) 0.000000 0.000000 C( 9, 2) 0.000000 0.000000 C( 9, 3) 0.000000 0.000000 C( 9, 4) 0.000000 0.000000 C( 9, 5) 0.000000 0.000000 C( 9, 6) 0.000000 0.000000 C( 9, 7) 0.000000 0.000000 C( 9, 8) 0.000000 0.000000 C( 9, 9) 0.000000 0.000000 F( 1, 2) 2.500000 -1.000000 F( 1, 4) 5.600000 -1.000000 F( 1, 5) 6.100000 -1.000000 F( 2, 6) 3.600000 0.000000 F( 4, 5) 4.600000 0.000000 F( 4, 6) 0.000000 0.000000 F( 4, 7) 1.000000 0.000000 F( 5, 2) 1.100000 0.000000 F( 5, 6) 3.900000 0.000000 F( 5, 7) 5.700000 0.000000 F( 6, 8) 5.300000 0.000000 F( 6, 9) 2.200000 0.000000F( 7, 9) 6.700000 0.000000 F( 8, 9) 5.300000 0.000000Row Slack or Surplus Dual Price 1 14.20000 1.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 -1.000000由以上运行结果可知:F(1,2)=2.5, F(1,4)=5.6, F(1,5)=6.1, F(2,6)=2.5, F(4,5)=4.6, F(4,7)=1.0, F(5,6)=5.0, F(5,7)=5.7, F(6,8)=3.0, F(6,9)=4.5, F(7,9)=6.7,F(8,9)=3.0,其他的F(i,j)=0,最优值为14.2.结果显示,此时可得到最大流为14.2Mb/s,实际流量分布如下图所示:图2计算机网络流量示意图3实际应用根据实际情况可知,最大流问题是涉及怎样使得配送网络中物流量最大的问题,将实际问题按照最大流问题的一般假设和原理用网络描述并建立数学模型,用计算机程序进行求解,研究如何应用最大流问题应对企业物流配送,求解一个在资源稀缺的条件下最大限度的进行物流合理配送,做到反映及时,措施果断.根据具体数值和条件,建立新最大流问题的模型.模型确定后,同样可以运用LINGO软件进行求解,此时的模型更符合实际情况,也能更好更合理的服务于企业.总结运筹学涉及到许多领域的知识,可以解决许多实际问题.这门课对于我们来说非常重要,我们不仅能够学到理论知识,还可将它应用到实际中去,为我们解决很多问题.如本次课程设计就是用运筹学知识,通过对实际问题建立合理的数学模型,然后求解,给出了一个量化的生产计划,进而更好的服务于社会.一个合理有效的生产计划对企业尤为重要,而一个具体量化的生产计划的制定是一个很棘手的问题.本论文结合建模知识,建立实际生产问题的合理正确的模型,利用线性规划知识,对上述问题建立适当的数学模型,并借助LINGO软件求解.对上述问题给出一个量化可行的生产计划,从而使生产利润达到最大化,或消耗量最少,从而更好的合理的解决实际问题,将所学理论知识更好的服务于实践.在此过程中,我也走了不少弯路.刚开始一直找不到合适的软件去求解,看到周围的同学们都早早的做好后.更加急躁,曾试图放弃这个课题,再找一个简单的容易完成的课题.由于自己的急躁心理和急于求成的想法,导致最终仍一无所获.最后,静下心来发现自己处理事情的方式存在很大的问题.总将课程设计当做一项任务去完成,而没有将自己所学的知识与社会实践相结合,试图解决世纪问题的尝试与热情.有一次,一个上午辛辛苦苦一个框架后,不料电脑中毒数据全部丢失.但此时我已经可以心平气和的静下心从头再来.于是很快又建立了新的框架,然后认真的将此课题作为一种尝试,全身心的投入去完成.通过这次课程设计,我也发现了自身的很多不足之处,在以后的学习中,我会不断的完善自我,不断进取,能使自己更加熟练掌握数学这门学科,更加巧妙的用所学到的知识解决实际问题,使其最终服务于实践,造福社会.参考文献[1] 刁在筠,刘桂真,宿洁,马建华.运筹学[M].北京:高等教育出版社,2007.[2] 韩中庚,郭晓丽,杜剑平,宋留勇.实用运筹学[M].北京:清华大学出版社,2011.[3] 谢金星.数学模型与LINGO软件[M].北京:清华大学出版社,2005.。
《运筹学》课程设计报告
《运筹学》课程设计报告姓名:班级:学号:一、问题描述1、机型指派问题众所周知,机型指派优化设计是航空公司制定航班计划的重要内容,它要求在满足航班频率和时刻安排以及各级型飞机总数的约束条件下,将各级型飞机指派给相应的航班,使运行成本最小化。
本课程设计就是通过建立机型指派问题的数学模型,并应用优化软件Lindo/Lingo进行建模求解,同时给出决策建议,包括各机型执行的航班子集和相应的运行成本。
2、问题描述已知某航空公司航班频率和时刻安排如《运筹学课程设计指导书》中表1所示,航班需求数据和运输距离如表2所示,其中,OrignA/P表示起飞机场,Dep.T.表示起飞时间,Dest.A/P表示目标机场,Dist表示轮挡距离,Demand表示航班需求量,Std Dev.表示需求的标准差。
该航空公司的机队有两种机型:9架B737-800,座位数162;6架B757-200,座位数200。
飞八个机场:A, B, I, J, L, M, O, S.B737-800的CASM(座英里成本)是0.34元,B757-200是0.36元。
两种机型的 RASM(座英里收益)都是 1.2元。
以成本最小为目标进行机型指派,在成本方面不仅考虑运行成本,还必须考虑旅客溢出成本,否则将偏向于选取小飞机,使航空公司损失许多旅客。
旅客溢出成本是指旅客需求大于航班可提供座位数时,旅客流失到其他航空公司造成的损失。
旅客需求服从N(μ,σ)的正态分布。
如果机票工作做得好,溢出旅客并不全部损失,有部分溢出旅客将该成本航空公司其他航班,这种现象叫做“再获得(Recapture)”。
设有15%的溢出旅客被再获得。
将飞机指派到航班上去,并使飞机总成本最小。
二、分析建模1.目标函数以成本最小为求解目标。
该成本包括两个部分,第一是运输成本,其表达式为:机型1的架数*每架座位数*座英里成本*该航班的飞行距离+机型2的架数*每架座位数*座英里成本*该航班的飞行距离;第二个为旅客溢出成本,表达式为:机型1旅客溢出的期望值*机型1的架数*机型1的座英里收益*该航班的飞行距离*0.85+机型2旅客溢出的期望值*机型2的架数*机型2的座英里收益*该航班的飞行距离*0.85。
运筹学下篇课程设计
运筹学下篇课程设计一、课程目标知识目标:1. 理解运筹学基本概念,掌握线性规划、整数规划、非线性规划等核心模型;2. 学会运用运筹学方法解决实际问题,分析问题的约束条件和目标函数,建立数学模型;3. 了解运筹学在实际应用领域的案例,如生产计划、物流配送、项目管理等。
技能目标:1. 能够运用运筹学软件(如Lingo、CPLEX等)求解数学模型,并进行结果分析;2. 培养逻辑思维和解决问题的能力,提高团队协作和沟通表达能力;3. 学会运用运筹学方法进行数据分析和决策,提高数据敏感度和决策能力。
情感态度价值观目标:1. 培养对运筹学的兴趣,激发学生探索运筹学在实际生活中的应用;2. 树立正确的价值观,认识到运筹学在优化资源配置、提高效率等方面的重要性;3. 培养严谨、务实的学习态度,提高学生的自主学习能力和终身学习能力。
本课程针对高年级学生,结合学生特点和教学要求,注重理论与实践相结合,以培养学生解决实际问题的能力为核心。
课程目标旨在使学生在掌握运筹学基本知识的基础上,提高解决实际问题的能力,培养具备创新精神和实践能力的优秀人才。
通过本课程的学习,学生将能够更好地应对未来学习和工作中的挑战。
二、教学内容本课程教学内容主要包括以下几部分:1. 运筹学基本概念与理论:介绍线性规划、整数规划、非线性规划等基本概念、原理及求解方法,涉及课本第1-3章内容。
2. 运筹学方法与应用:分析运筹学在生产计划、物流配送、项目管理等领域的实际应用,结合课本第4-6章案例,使学生了解运筹学在实际问题中的运用。
3. 运筹学软件操作与模型求解:学习运用运筹学软件(如Lingo、CPLEX等)进行数学建模与求解,涵盖课本第7-8章内容。
4. 运筹学案例分析与实践:分析典型运筹学案例,引导学生运用所学知识解决实际问题,提高学生解决实际问题的能力,涉及课本第9-10章内容。
5. 运筹学前沿与发展趋势:介绍运筹学领域的前沿动态和发展趋势,激发学生探索未知、追求创新的兴趣,涵盖课本第11章内容。
《运筹学》课程设计教学大纲
《运筹学》课程教学大纲《运筹学》课程设计教学大纲课程编号:093210924课程学分:4学分总学时数:68学时开课单位:理学院包括两个教学大纲:《运筹学》课程教学大纲、《运筹学》课程设计教学大纲运筹学Operational Research教学大纲一、课程类别信息与计算科学、数学与应用数学专业必修课二、教学对象信息与计算科学、数学与应用数学专业大二学生三、教学目的在系统讲授运筹学基本理论的基础上,重在培养学生利用运筹学理论解决实际问题的创新实践能力,使学生掌握运筹学的思想方法以及它的模型结构和求解算法,培养学生对实际问题的建模能力和借助计算机软件迅速求解的能力。
四、课程教学基本要求及基本内容(一)运筹学基本理论第一章绪论教学要求:1.了解运筹学的发展历史;2.明确课程的学习要求。
主要内容:1.运筹学的发展历史2.课程的学习要求第二章线性规划模型教学要求:1.具有初步的建立实际问题线性规划模型的能力;2.准确、熟练的应用单纯形法计算四个以下决策变量的线性规划问题;3.熟练的应用数学软件计算线性规划问题;4.理解、掌握线性规划对偶问题的经济含义及对偶单纯形法;5.了解线性规划的灵敏度分析及其应用。
主要内容:1.线性规划问题的数学模型及标准形式2.线性规划模型的图解法3.线性规划模型的单纯形法4.线性规划的对偶理论5.灵敏度分析6.线性规划模型的典型实例第三章运输问题模型教学要求:1.理解掌握运输问题的本质,并能正确地建立实际运输问题的数学模型;2.熟练掌握求解运输问题的表上作业法;3.准确、熟练地将产销不平衡问题转化为产销平衡问题;4.熟练地应用数学软件解决运输问题。
主要内容:1.问题的概述2.运输问题模型3.表上作业法4.产销不平衡的运输问题5.运输问题模型典型实例第四章整数规划模型教学要求:1.理解掌握整数规划问题的本质,并能正确地建立实际整数规划问题的数学模型;2.能够借助数学软件应用分支定界法熟练求解整数规划问题;3.理解、掌握分配问题的本质,并能够熟练、正确地应用匈牙利法求解分配问题;4.熟练地应用逻辑变量建立数学模型,并利用隐枚举法求解0-1规划问题;5.熟练应用数学软件求解整数规划问题。
运筹学完整教案2
《运筹学》教案(本教案适用于32课时的班级)第一章线性规划与单纯形法1、教学计划第 1 次课 2 学时第 2 次课 2 学时第 3 次课 2 学时2、课件1.1线性规划问题及其数学模型线性规划模型的建立就是将现实问题用数学的语言表达出来。
例1:某工厂要安排生产Ⅰ、Ⅱ两种产品,每单位产品生产所需的设备、材料消耗及其利润如下表所示。
问应如何安排生产计划使工厂获利最多?解:设生产产品Ⅰ、Ⅱ的数量分别为1x 和2x 。
首先,我们的目标是要获得最大利润,即2132max x x z +=其次,该生产计划受到一系列现实条件的约束,设备台时约束:生产所用的设备台时不得超过所拥有的设备台时,即8221≤+x x原材料约束:生产所用的两种原材料A 、B 不得超过所用有的原材料总数,即1641≤x1242≤x非负约束:生产的产品数必然为非负的,即0,21≥x x由此可得该问题的数学规划模型:⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0,1241648232max 21212121x x x x x x x x z总结:线性规划的一般建模步骤如下: (1)确定决策变量确定决策变量就是将问题中的未知量用变量来表示,如例1中的1x 和2x 。
确定决策变量是建立数学规划模型的关键所在。
(2)确定目标函数确定目标函数就是将问题所追求的目标用决策变量的函数表示出来。
(3)确定约束条件将现实的约束用数学公式表示出来。
线性规划数学模型的特点(1)有一个追求的目标,该目标可表示为一组变量的线性函数,根据问题的不同,追求的目标可以是最大化,也可以是最小化。
(2)问题中的约束条件表示现实的限制,可以用线性等式或不等式表示。
(3)问题用一组决策变量表示一种方案,一般说来,问题有多种不同的备选方案,线性规划模型正式要在这众多的方案中找到最优的决策方案(使目标函数最大或最小),从选择方案的角度看,这是规划问题,从目标函数最大或最小的角度看,这是最优化问题。
运筹学物流运输课程设计
运筹学物流运输课程设计一、课程目标知识目标:1. 让学生掌握运筹学中物流运输的基本概念、原理和方法。
2. 使学生了解并能够运用线性规划、网络流等运筹学知识解决物流运输中的实际问题。
3. 帮助学生掌握物流运输中的成本分析、路径优化、货物分配等关键环节。
技能目标:1. 培养学生运用运筹学方法解决实际物流运输问题的能力。
2. 培养学生运用数学建模、数据分析等工具对物流运输问题进行研究和分析的能力。
3. 提高学生的团队协作和沟通能力,使其能够就物流运输问题进行有效讨论和交流。
情感态度价值观目标:1. 培养学生对物流运输行业的兴趣,激发他们探索物流领域知识的热情。
2. 培养学生具备良好的职业道德,关注环境保护和社会责任,将可持续发展理念融入物流运输实践。
3. 培养学生面对复杂问题时,保持积极乐观的心态,勇于克服困难,不断探索和进取。
课程性质分析:本课程为选修课,旨在帮助学生将运筹学知识应用于实际物流运输问题,提高解决实际问题的能力。
学生特点分析:学生具备一定的数学基础,具有较强的逻辑思维和分析能力,对实际问题充满好奇心。
教学要求:结合学生特点,注重理论与实践相结合,鼓励学生参与课堂讨论,提高其运用知识解决实际问题的能力。
通过本课程的学习,使学生能够达到上述课程目标,为未来的学习和工作打下坚实基础。
二、教学内容1. 物流运输基础概念:介绍物流运输的定义、功能、分类及其在国民经济中的地位和作用。
教材章节:第一章第一节2. 运筹学基本原理:讲解线性规划、整数规划、网络流等运筹学基本原理及其在物流运输中的应用。
教材章节:第二章3. 物流运输成本分析:分析物流运输成本构成、计算方法以及降低成本的有效途径。
教材章节:第三章第一节4. 路径优化与货物分配:介绍最短路径、最大流、最小费用流等算法,并应用于物流运输路径优化和货物分配问题。
教材章节:第三章第二节、第四章5. 物流运输实例分析:结合实际案例,分析物流运输中的问题,运用所学知识提出解决方案。
运筹学课程设计
运筹学 课程设计一、课程目标知识目标:1. 理解运筹学的基本概念,掌握线性规划、整数规划等基本模型;2. 学会运用图与网络分析解决问题,掌握关键路径法、最小生成树等算法;3. 了解库存管理、排队论等运筹学在实际生活中的应用。
技能目标:1. 能够运用运筹学方法解决实际问题,提高问题分析和解决能力;2. 培养逻辑思维和数学建模能力,提高数学素养;3. 提高团队协作和沟通能力,学会在小组讨论中分享观点、倾听他人意见。
情感态度价值观目标:1. 培养学生对运筹学的兴趣,激发学习热情;2. 培养学生的创新意识和实践能力,使其敢于面对挑战,勇于解决问题;3. 增强学生的社会责任感,认识到运筹学在国家和企业发展中的重要作用。
课程性质分析:本课程为高中年级的选修课程,旨在帮助学生掌握运筹学的基本知识和方法,提高解决实际问题的能力。
学生特点分析:高中年级的学生具有一定的数学基础和逻辑思维能力,对新鲜事物充满好奇,但可能对理论性较强的知识缺乏兴趣。
教学要求:1. 注重理论与实践相结合,提高课程的实用性;2. 采用案例教学,激发学生学习兴趣;3. 强化小组讨论和团队合作,培养学生的沟通能力和协作精神。
二、教学内容1. 运筹学基本概念:介绍运筹学的定义、发展历程、应用领域,使学生了解运筹学的基本框架。
教材章节:第一章 运筹学导论2. 线性规划:讲解线性规划的基本理论、数学模型以及求解方法,如单纯形法、对偶问题等。
教材章节:第二章 线性规划3. 整数规划:介绍整数规划的概念、分类以及求解方法,如分支定界法、割平面法等。
教材章节:第三章 整数规划4. 图与网络分析:讲解图的基本概念、最小生成树、最短路径、关键路径等算法。
教材章节:第四章 图与网络分析5. 库存管理:分析库存管理的基本原理,介绍库存控制、订货策略等。
教材章节:第五章 库存管理6. 排队论:介绍排队论的基本概念、排队系统性能指标,分析排队策略。
教材章节:第六章 排队论7. 运筹学应用案例:分析实际生活中的运筹学应用,如交通运输、生产调度等,提高学生运用运筹学方法解决实际问题的能力。
运筹学课程设计报告
运筹学课程设计报告运筹学是一门研究如何在限制条件下,通过优化方法来达到最佳决策的学科。
它是一门综合性强、应用广泛的学科,包括线性规划、整数规划、非线性规划、动态规划、图论等多个领域。
在实际生产和管理中,运筹学的应用十分广泛,如物流系统优化、供应链管理、生产调度、资源分配等方面都有用武之地。
本次课程设计的主要任务是通过一个实际案例来学习和应用运筹学的理论知识,掌握运筹学的分析方法和解决问题的实际操作能力。
案例背景某公司是一家生产和销售化妆品的企业,主要产品包括洗面奶、面霜、精华液等多个系列。
由于产品种类繁多,生产调度和物流配送非常复杂,需要考虑多个因素,如生产成本、物流成本、配送时间等。
为了实现最优化的生产和物流调度,公司希望运用运筹学的方法来规划生产和物流过程,降低成本,提高效率。
解决方案1. 线性规划模型针对生产调度问题,可以采用线性规划模型来求解最优化方案。
首先需要确定决策变量,如生产数量、生产时间等;然后确定目标函数和限制条件,如最小化生产成本、保证生产数量满足需求等。
2. 整数规划模型在物流配送方面,可以采用整数规划模型来求解最优化方案。
由于物流配送需要考虑多个因素,如配送时间、物流成本等,因此需要将决策变量离散化。
例如,将配送时间划分为几个时间段,将物流成本设定为整数等。
然后可以根据目标函数和限制条件来求解最优化方案。
3. 动态规划模型在面对复杂的生产调度和物流配送问题时,可以采用动态规划模型来求解最优化方案。
动态规划是一种递推算法,可以将问题分解成多个子问题来求解。
例如,在物流配送中,可以将整个配送过程分解为多个子过程,并通过动态规划算法来求解最优化方案。
4. 图论模型在物流配送中,可以采用图论模型来求解最优化方案。
图论是研究图和网络的学科,可以将物流配送过程表示为一个图,通过图的算法来求解最优化方案。
例如,可以采用最小生成树算法来求解最优的物流配送路线。
结论通过本次课程设计,我们学习了运筹学的理论知识,并应用到实际案例中,掌握了运筹学的分析方法和解决问题的实际操作能力。
运筹学课程设计方案模板
一、课程概述1. 课程名称:运筹学2. 课程代码:XXX3. 学分:XXX4. 学时:XXX5. 适用专业:XXX6. 教材:(选填)XXX二、课程目标1. 知识目标:(1)使学生掌握运筹学的基本概念、基本理论和基本方法;(2)使学生了解运筹学在实际问题中的应用;(3)使学生具备分析问题和解决问题的能力。
2. 能力与素质目标:(1)培养学生运用运筹学理论分析和解决实际问题的能力;(2)培养学生独立思考、创新意识和团队协作精神;(3)提高学生的综合素质,为今后从事相关工作奠定基础。
三、课程内容1. 运筹学基本概念2. 运筹学基本理论3. 运筹学基本方法4. 运筹学应用实例5. 运筹学软件介绍6. 运筹学课程设计四、教学方法与手段1. 讲授法:教师讲解运筹学的基本概念、基本理论和基本方法;2. 案例分析法:通过实际案例分析,使学生了解运筹学在实际问题中的应用;3. 讨论法:组织学生进行小组讨论,提高学生的团队协作能力和创新意识;4. 上机实验:利用运筹学软件进行上机实验,巩固所学知识;5. 课程设计:引导学生结合实际案例,运用所学知识进行课程设计。
五、课程评价1. 平时成绩:包括课堂表现、作业完成情况等,占总成绩的40%;2. 期中考试成绩:考察学生对课程知识的掌握程度,占总成绩的30%;3. 课程设计成绩:考察学生运用所学知识解决实际问题的能力,占总成绩的30%。
六、课程进度安排1. 第一周:介绍课程内容、教学方法和课程评价;2. 第二周至第四周:讲解运筹学基本概念、基本理论和基本方法;3. 第五周至第八周:分析运筹学应用实例,组织学生进行小组讨论;4. 第九周至第十一周:介绍运筹学软件,进行上机实验;5. 第十二周至第十三周:进行课程设计,完成课程设计报告;6. 第十四周:课程设计答辩,进行课程总结。
七、参考资料1. 《运筹学导论》2. 《运筹学应用》3. 运筹学相关软件(如LINDO、CPLEX等)八、课程特色1. 理论与实践相结合,使学生能够将所学知识应用于实际问题;2. 注重培养学生的创新意识和团队协作精神;3. 采用多种教学方法,提高学生的学习兴趣和积极性。
运筹学课设
目录1 摘要 ..........................................................................................................................................- 1 -2 正文 ..........................................................................................................................................- 1 -2.1研究背景.........................................................................................................................- 1 -2.1.1 研究意义与目的.................................................................................................- 1 -2.1.2 研究内容.............................................................................................................- 1 -2.1.3 研究的方法与思路.............................................................................................- 2 -2.2研究计划.........................................................................................................................- 2 -2.2.1 研究计划安排.....................................................................................................- 2 -2.2.2任务分配..............................................................................................................- 2 -2.3 资料的收集与整理........................................................................................................- 3 -2.3.1 资料的收集.........................................................................................................- 3 -2.3.2 资料的整理.........................................................................................................- 3 -2.4 论证或建模....................................................................................................................- 5 -2.5 计算 ...............................................................................................................................- 9 -2.6 结果的分析................................................................................................................. - 11 -3 结论 ....................................................................................................................................... - 13 -4 个人感悟................................................................................................................................ - 13 -5 参考文献................................................................................................................................ - 14 -西安友宝自动售货机配送方案——运筹学课设组长:应龙华组员:欧阳辉1 摘要友宝自动售货机是实行的是24小时联网管理,极大的方便了用户的购买,尤其是在白领和学生群里中尤为受欢迎。
运筹学 课程设计 案例C-2
中国计量学院经济与管理学院课程设计报告课程设计名称运筹学课程设计课程设计内容案例C-2 配料问题专业信息管理信息系统班级08信管1姓名王气正,王蕾,平毅,李飓学号0800702130,0800702107,0800702113,0800702139指导教师黄祖庆2010年 7 月 2 日目录小组人员详细分工 (1)一.问题描述 (2)二.建模分析 (3)三.程序设计 (7)1.安装应用软件 (7)2.熟悉WinQSB软件 (7)3.熟悉LINGO软件 (8)4.建立问题,输入数据对数学模型求解: (9)(1)按照肉用种鸡公司标准 (9)(2)按照肉用种鸡国家标准 (11)(3)原材料结构调整 (13)(4)求产蛋鸡的最优饲料配方方案 (15)(5)价格系数灵敏度分析 (17)四.结果分析 (19)(1)按照肉用种鸡公司标准配料结果分析 (19)(2)按照肉用种鸡国家标准配料结果分析 (19)(3)采购新原料后配料分析 (19)(4)求产蛋鸡的最优饲料配方方案分析 (20)(5)价格系数灵敏度分析结果分析 (20)小组人员详细分工一.问题描述【案例C-2】配料问题某饲料公司生产肉用种鸡配合饲料,每千克饲料所需营养质量要求如表C-4所示。
表C-4公司计划使用的原料有玉米,小麦,麦麸,米糠,豆饼,菜子饼,鱼粉,槐叶粉,DL-蛋氨酸,骨粉,碳酸钙和食盐等12种原料。
各原料的营养成分含量及价格见表C -5。
表C-5公司根据原料来源,还要求1吨配合饲料中原料的含量为:玉米不低于400 kg,小麦不低于100 kg,麦麸不低于100 kg,米糠不超过150 kg,豆饼不超过100 kg,菜子饼不低于30 kg,鱼粉不低于50 kg,槐叶粉不低于30 kg, DL-蛋氨酸,骨粉,碳酸钙适量。
(1)按照肉用种鸡公司标准,求1千克配合饲料中每种原料各配多少成本最低,建立数学模型并求解。
(2)按照肉用种鸡国家标准,求1千克配合饲料中每种原料各配多少成本最低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、定义与符号说明
x ij :第i月份签订的期限为j的合同(例 如代表一月份签订的期限为一个月的合 同)。
a j 期限为j个月所需支付的租金
x 1 1 x 1 2 x 1 3 x 1 4 x 1 5 x 1 6 15
5、模型的建立与求解
从所要解决的问题和对问题所作的假设出发,就 租金最优化建立线性规划模型。
2.1条件分析
各个月对仓库的需求都不同,当月签订的 面积不得少于当月对仓库面积的需求。 ⑴一月签订的面积>=15个单位面积(单位 面积是100,下同) ⑵二月签订的面积>=10个单位面积 ⑶三月签订的面积>=20个单位面积 ⑷四月签订的面积>=15个单位面积 ⑸五月签订的面积>=18个单位面积 ⑹六月签订的面积>=25个单位面积
表1 每个月的仓库需求数量
月份
1 2 34 5 6
所需仓库面积/100 15 10 20 15 18 25
表2 仓库的租用期和租金
租用期限
1个月 2个月 3个月 4个 5个 6个月 月月
合同期限内的租金/(元/100) 2800 4500 6000 7300 8400 9300
租用仓库最优化模型
一月15(100);二月10(100);三月20(100);四 月15(100);五月18(100);六月25(100).而租金 是随着期限越长折扣越大的,分别是连续租一个月是 2800(元/100);连续租两个月是4500(元/100);连 续租三个月是6000(元/100);四个月7300(元/100); 五个月8400(元/100);六个月9300(元/100)。 每个月的租用面积不少于实际需求。 可同时签订一份或多份期限不同面积不同的合同。 2解决问题 合理的签订合同,使租金尽可能少。
30 20 10
0 一月
三月
五月
面积需求量
签订期限越长折扣越大,即平均每月花费的租金就 越少,比例如下表所示:
10000 8000 6000 4000 2000 0 一个月
三个月 五个月
总租金 月均租金
3、模型的假设
在不考虑其它因素的情况下,我们不妨将 每个月可能的签约合同都设成一个变量, 例如一月份可以签六种合同,分别是:期 限为一个月的2800;期限为两个月的4500; 期限为三个月的6000……同理,二月份可 以签五种合同,其中期限为六个月的不能 签;三月份可以签四种合同;四月份可以 签三种合同;五月份可以签两种合同;六 月份只能签一种合同。
2、问题分析
仓库租用问题是一类带有约束的优化企业和个人的目 标。在签订合同是不仅要考虑到租用的面积,还有考虑到 怎样才能在保证足够的面积而租金尽可能的少,最大限度 的节省金钱。 租金=某期限折后单位租金×所需要的面积 对于本案例来说,降低租金可以以下方面考虑: ⑴尽可能地签订较长的租用期限,因为期限越长折扣越大。 ⑵在签订尽量长的期限时,要考虑到尽可能不浪费的面积, 以浪费最小的面积换取最大的折扣。 处理本问题的难点在于怎样在延长期限和浪费面积上找到 平衡点,以及应该如何假设自变量。特别是假设自变量, 如果无法找到自变量的对象,则解决不了本问题。
本章从背景资料中的各个条件综合考虑分 析,根据一定的实际情况出发建立的模型, 对模型的灵敏性进行了合理准确的分析。 最后,根据所建立的模型写了签订合同的 论证报告,并提出了合理性的建议。
步骤如下:
1、问题的提出
1基本条件 某部队因战备训练任务需要,在今后半年时间内需要租
用地方仓库存放军事物资。 如第一页的表格所示各个月对仓库的需求面积分别是:
摘要:本章建立了租用仓库的最优化签订 合同模型,为合理签订合同,减少部队的 租金支出提供最优化方案。在满足部队对 仓库面积需求的情况下,签订若干份合同, 使部队可以享受最大的折扣,但又要尽量 减少浪费多租用的面积,以此为原则制定 合同签订计划。同时,本章将对灵敏度进 行分析,以及对模型做出评价和改进。
运筹学课程设计
PPT制作: 设计讲解: 资料检索: 论证或分析建模: 后期数据校验:
租用仓库最优化模型
案例实际背景
租用仓库问题
某部队因备战训练任务需要,在今后半年内需要租用地 方仓库存放军事物资,已知每个月所需仓库的面积大小不 同,多租了不用造成浪费,少租了会影响训练任务的完成。 根据租用条件要求,仓库租用费用是随合同期限而定的, 期限越长折扣越大,具体每月的仓库需求量和租金额如表 1和表2所示,租用仓库的合同每月初都可办理,每份合同 具体规定租用面积数量和期限。因此,该部队可以根据实 际需求在任何一个月初办理租用合同,每次办理时可签订 一份,也可以签订若干份租用面积和期限不同的合同。试 问该部队在保障训练任务需求的情况下,如何办理仓库的 租用合同使总的租金最少?
首先一月份有六种签订合同的方式,分别是期限 为一个月的、两个月的、三个月、四个月、五个 月、六个月各一份。而六份合同租用的面积加起 来必须满足一月份需要的面积。
x 1 1 x 1 2x 1 3x 1 4x 1 5x 1 6 15
然后是二月份,其中一月份签订的六份合同中有 五份涉及到二月份所需要的面积(即期限分别是 两个月到五个月的五份合同),而二月份可以有 五种签订合同的方式,这十份合同签订的面积累 计起来必须满足二月份所需要的面积。
模型
针对问题,在不考虑背景给出的条件以外的限制 时,由于问题是求解怎样签订合同最优,所以不 妨将合同设成变量x。那么签订合同的所有方式都 是一个未知量,再加上约束条件,例如在一月签 订的合同,其面积必需满足一月份的需求。而租 金方面就用最小值min。这样就可以求出租用仓 库的最优化方案了!利用Lingo软件进行求解, 可以求出部队租用仓库所用的最少租金是186600 元。分别签订四份合同,一月份签一份为期6个月 的面积为15个单位的合同;三月份签订一份为期 1个月的面积为5个单位的合同;五月份签订一份 为期2个月的面积为3个单位的合同;和六月份签 订一份为期1个月的面积7个单位的合同。