圆锥的体积教案设计
小学六年级数学《圆锥的体积》教案优秀6篇
小学六年级数学《圆锥的体积》教案优秀6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!小学六年级数学《圆锥的体积》教案优秀6篇作为一名教职工,时常需要用到教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。
《圆锥的体积》教案设计
《圆锥的体积》教案设计•相关推荐《圆锥的体积》教案设计(通用13篇)作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教案,编写教案有利于我们科学、合理地支配课堂时间。
那么大家知道正规的教案是怎么写的吗?下面是小编为大家整理的《圆锥的体积》教案设计,希望能够帮助到大家。
《圆锥的体积》教案设计篇1教材分析:圆锥的体积是传统的教学内容,对这部分内容的编排,在内容和要求方面没有大的变化,实验教材的编排体现了新的教学理念,使得教材的面貌发生了较大的变化。
具体来说有这样几个变化:(1)加强了所学知识与现实生活的联系。
教材通过列举大量现实生活中具有圆锥体特征实物直观引入,让学生观察思考这些物体形状的共同的特点,并从实物中抽象出它们的几何图形。
当学生认识它们的主要特征后,又让学生从生活中寻找更多的具体如此特征的实物,从而加强所学知识与现实生活的联系,进一步感受几何知识在生活中的广泛应用。
(2)加强了对图形特征,体积、方法的探索过程。
在以往的教学中,这部分内容的编排更侧重于理解和掌握图形的特征、体积的计算方法,而对于促进学生空间观念的发展在学习素材和实践操作方面都显不够。
实验教材加强了动手实践、自主探索、,让学生经历知识的形成过程,使学生获得较多的有关自主探索和空间观念的训练机会。
(3)加强了学生在操作中对空间与图形问题的思考。
学情分析:加强了学习方法的引导,鼓励学生独立思考,培养学生的学习能力。
教材注意鼓励学生运用已有的知识对新学习的内容进行联想和猜测,再通过实验和推理验证,培养学生良好的学习和思考习惯。
如:联系圆柱体公式鼓励学生猜测圆锥体积的计算方法。
圆锥体积的教学是按照引出问题联想、猜测实验探究导出公式的思路设计的,在猜测的基础上进行试验和推理,使学生受到研究方法和思维方式的训练,发展和提高自主学习的能力。
教学目标:1、理解并掌握圆锥的体积的计算方法,能运用公式解决简单的实际问题。
2、提高学生实际应用的能力。
《圆锥的体积》教案精选6篇
《圆锥的体积》教案精选6篇小学六年级数学《圆锥的体积》教案篇一教学内容:教材第20页例2、练一练。
教学要求:使学生进-步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积公式解决-些简单的实际问题:教学重点:进-步掌握圆锥的体积计算方法。
教学难点:根据不同的条件计算圆锥的体积。
教学过程:一.铺垫孕伏:1.口算。
2.复习体积计算。
(1)提问:圆锥的体积怎样计算?(2)口答下列各圆锥的体积:①底面积3平方分米,高2分米。
②底面积4平方厘米,高4.5厘米。
3.引入新课。
今天这节课,我们练习圆锥体积的计算,通过练习,还要能应用圆锥体积计算的方法解决一些简单的实际问题。
二、自主探究:l.教学例2.出示例题,让学生读题。
提问:你们认为这道题要先求什么,再求这堆沙的重量?让学生说说为什么要先求体积,才能求这堆沙的重量?这里底面直径和高的数据怎样获得?指名板演,其他学生做在练习本上,集体订正。
2.组织练习。
(1)做练一练。
指名一人板演,其余学生做在练习本上,集体订正。
(2)讨论练习三第6题:圆柱和圆锥的体积和高分别相等,那么,圆柱的底面积和圆锥的底面积有什么关系?这道题,已知圆柱底面的周长,先求出什么?在怎样?理清思路后学生做在练习本上。
集体订正。
(3)讨论练习三第7题。
底面周长相等,底面积就相等吗?三、课堂小结这节课练习了圆锥的体积计算和应用:计算体积需要知道底面积和高。
如果没有告诉底面积,我们要先求半径算出底面积,再计算体积。
应用圆锥体积计算.有时候还可以计算出圆锥形物体的重量。
四、布置作业1.练习三第5题及数训。
2.出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据?怎样测量直径和高。
请同学们回去测量你用第167页图制作的圆锥,求出它的体积来。
3.思考练习三第8、9题。
小学六年级数学《圆锥的体积》教案篇二教学目标1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。
圆锥体积计算教案
圆锥体积计算教案一、教学目标通过本次课程,使学生掌握圆锥体积的计算方法,能够熟练应用公式进行计算,同时了解圆锥的性质和应用。
二、教学内容1. 圆锥的基本概念和属性介绍。
2. 圆锥体积的计算公式及实践应用。
三、教学过程1. 导入教师介绍圆锥体积的概念和实际应用,如建筑中的圆锥形顶部的设计,食品容器中的锥形设计等等。
提高学生对圆锥体积的认识和理解。
2. 讲解教师介绍圆锥的定义,性质及计算公式,包括圆锥的面积、侧面积和体积。
详细讲解圆锥体积计算的公式,及其实际应用方法和思路。
3. 理解与示范教师通过实际计算呈现圆锥体积的计算过程,帮助学生理解计算公式。
同时,分步骤演示计算过程,让学生跟随示范操作,加深学生对公式的理解。
4. 实践操作由学生进行圆锥体积计算的实践操作,巩固对公式的理解和运用能力。
教师提供实际问题的解决方法,引导学生寻找方法和策略。
5. 总结教师对本次圆锥体积计算课程进行总结,回顾所学的知识和技能,帮助学生理清思路和应用方法,实现全面掌握。
四、教学评价1.教师评价1)教学过程流畅,讲解透彻。
2)教师及时发现学生的理解和掌握情况,及时调整教学策略。
3)有耐心,鼓励学生提出疑问和思考。
2.学生评价1)学生主动参与,理解深刻。
2)学生对所学的知识和技能有了全面的掌握和了解。
3)学生在实践操作中掌握了实际应用方法和技巧。
五、教学反思通过本次圆锥体积计算教案,孩子们学会了圆锥体积的计算方法,对圆锥的性质和应用有了更深刻的理解。
教师在教学过程中通过丰富的教学方法和实用的应用问题,使孩子们在快乐中学习到知识。
在后续的教学过程中,我们需要针对不同层次和能力的学生重新设计教学策略,并且在教学方法、手段和方法上不断创新,以满足学生不断增长的需求和多样化的学习方法。
计算圆锥体积的公式教案
算圆锥体积的公式-教案一、教学目标通过本节课的学习,让学生能够掌握计算圆锥体积所需的公式,并能够熟练运用公式进行计算,从而提高学生的数学运算能力和解决实际问题的能力。
二、教学内容本节课教学内容为圆锥体积的计算公式。
三、教学重点1.掌握圆锥体积的计算公式。
2.能够熟练运用公式进行计算。
四、教学难点如何应用公式解决实际问题。
五、教学方法板书法、讲解法、演示法、研讨法等。
六、教学过程1.引入:通过图片和实例让学生了解什么是圆锥,介绍圆锥的形态特征以及圆锥的应用领域。
2.掌握计算圆锥体积的公式:(1)圆锥体积的定义:指在底面半径为R、高为h的圆锥形空间所围体积。
(2)计算公式:圆锥体积= 1/3 *底面积 *高= 1/3 *πR^2*h通过讲解公式的推导,让学生能够理解公式的原理和应用。
3.应用公式解决实际问题:(1)实例一:一个底面半径为6cm,高为8cm的圆锥,求圆锥的体积。
解析:由公式可得,圆锥体积= 1/3 * πR^2*h = 1/3*π*(6cm)^2*8cm = 1/3 *π*216cm^3≈ 226.1cm^3(2)实例二:一口高为20cm,底面半径为8cm的矿井,采煤机的斗也为圆锥形,直径为60cm、高为90cm,毛重50kg,表面积为多少?解析:采煤机斗的底面半径为30cm,高为90cm,故采煤机斗的体积为1/3 * π*(30cm)^2*90cm ≈ 254.47cm^3;采煤机斗的重量为50kg,1kg ≈ 1L,故重量为50L,表面积为50L/(0.25447L/cm^3) ≈ 196518.66 cm^2通过多个实例的演示,让学生能够熟练运用公式解决实际问题。
4.总结与拓展:巩固本节课所学知识,帮助学生加深对圆锥体积的认识,拓展学生的思维和应用能力。
七、教学评价通过上述教学过程,本节课的教学目标能够得到达成。
教学方法相应多样,能够满足不同学生的学习需求,掌握计算圆锥体积所需的公式并熟练运用的学生较多,课堂教学效果明显。
圆锥体积计算教案详解
圆锥体积计算教案详解
一、教学目标:
1.掌握圆锥体积计算的基本方法与技巧。
2.了解圆锥体积的应用场景。
3.培养学生的动手能力和分析解决问题的能力。
二、教学重点:
掌握圆锥体积计算的基本方法与技巧。
三、教学难点:
培养学生的动手能力和分析解决问题的能力。
四、教学步骤:
1.引入
老师向学生介绍圆锥体积的应用场景,如喷泉、工艺品、广告牌等。
同时向学生提出以下问题:如何计算圆锥的体积?请谈论自己的思路。
2.概念介绍
老师先向学生介绍圆锥的定义,并引导学生通过观察圆锥的特点,讨论圆锥体积的公式。
3.公式推导与应用
通过一个具体实例,梳理圆锥体积的计算公式,并引导学生分析圆锥体积的应用场景,解决实际问题。
4.练习
老师设计多个练习题,让学生动手计算圆锥的体积,并解答学生在计算过程中遇到的问题与疑惑。
五、教学评价:
教学评价旨在评估学生的学习情况,以帮助他们进行有针对性的学习。
过程中,可以有多种评价方式,比如考试、作业、小组讨论等等。
六、教学拓展:
在学生掌握圆锥体积计算的基本方法与技巧之后,可以引导学生进行更深入的拓展学习。
比如,探讨圆锥体积的最优解法、学习其他形状的体积计算等。
这些拓展知识可以为学生未来的数学和工程学习打下坚实的基础。
七、总结:
通过本次教学,学生可以获得扎实的圆锥体积计算基础,同时也能够运用所学知识解决实际问题。
更重要的是,教学过程中,学生的动手能力和分析解决问题的能力得到了锻炼和提升。
这些都是学生未来成功发展所需要的重要技能。
《圆锥的体积》教案优秀4篇
《圆锥的体积》教案优秀4篇《圆锥的体积》教学设计篇一教学过程:一、情境引入:(1)(老师出示铅锤):你有办法知道这个铅锤的体积吗?(2)学生发言:(把它放进盛水的量杯里,看水面升高多少)(3)教师评价:这种方法可行,你利用上升的这部分水的体积就是铅锤的体积,间接地求出了铅锤的体积。
真是一个爱动脑筋的孩子。
(4)提出疑问:是不是每一个圆锥体都可以这样测量呢?(学生思考后发言)(5)引入:如果每个圆锥都这样测,太麻烦了!类似圆锥的麦堆也能这样测吗?(学生发表看法),那我们今天就来共同探究解决这类问题的普遍方法。
(老师板书课题)设计意图:情景的创设,激发了学生学习的兴趣,使学生产生了自己想探索的需求,情绪高涨地积极投入到学习活动中去。
二、新课探究(一)、探究圆锥体积的计算公式。
1、大胆猜测:(1)圆锥的体积该怎样求呢?能不能通过我们已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)(2)圆锥和我们认识的哪种立体图形有共同点?(学生答:圆柱)为什么?(圆柱的底面是圆,圆锥的底面也是圆)(3)请你猜猜圆锥的体积和圆柱的体积有没有关系呢?有什么关系?(学生大胆猜测后,课件出示一个圆锥与3个底、高都不同的圆柱,其中一个圆柱与圆锥等底等高),请同学们猜一猜,哪一个圆锥的体积与这个圆柱的体积关系最密切?(学生答:等底等高的)(4)老师拿教具演示等底等高。
拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现这个圆锥和圆柱是等底等高的。
(5)学生用上面的方法验证自己做的圆锥与圆柱是否等底等高。
(把等底等高的放在桌上备用。
)2、试验探究圆锥和圆柱体积之间的关系我们通过试验来研究等底等高的圆锥体积和圆柱体积的关系。
(1)课件出示试验记录单:a、提问:我们做几次实验?选择一个圆柱和圆锥我们比较什么?b、通过实验,你发现了什么?(2)学生分组用等底等高的圆柱圆锥试验,做好记录。
教师在组间巡回指导。
(3)汇报交流:你们的试验结果都一样吗?这个试验说明了什么?(4)老师用等底等高的圆柱圆锥装红色水演示。
圆锥的体积教案7篇
圆锥的体积教案7篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作计划、述职报告、心得体会、发言稿、申请书、作文、工作总结、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work plans, job reports, reflections, speeches, application forms, essays, work summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!圆锥的体积教案7篇为了实现个性化教育,我们在写教案的时候一定要考虑学生的学习能力和学习需求,教案的撰写应当与实际的教学进度和学生的理解情况相匹配,下面是本店铺为您分享的圆锥的体积教案7篇,感谢您的参阅。
《圆锥的体积》数学教案(优秀9篇)
《圆锥的体积》数学教案(优秀9篇)【教学目标:】1、使学生探索并初步掌握圆锥体积的计算方法和推导过程;2、使学生会应用公式计算圆锥的体积并解决一些实际问题;3、提高学生实践操作、观察比较、抽象概括的能力,发展空间观念;【教学重点:】使学生初步掌握圆锥体积的计算方法并解决一些实际问题。
【教学难点:】探索圆锥体积的计算方法和推导过程。
【教具准备:】1、多媒体课件。
2、等底等高、等底不等高、等高不等底的圆锥和圆柱,沙、米,实验报告单;【教学过程:】一、创设情境,发现问题1、故事引入:爱迪生是一位伟大的发明家,他的一生有1000多项发明,当人们都说他是天才的时候,他却谦虚的说:天才=99%的汗水和1%的灵感。
孩子们,请记住这句话吧,你的未来一定会很出色的哦。
今天这节课我们就从爱迪生的一个小故事开始吧,有一天爱迪生让他的助手测量一个灯泡的体积,由于灯泡的形状很不规则,助手苦苦思考,还是没有答案,爱迪生用了一个非常巧妙的办法他将灯泡里装满水,然后将水倒入量筒中(教师拿出圆柱体量筒作演示),就得出了灯泡的体积。
你能说说爱迪生这样做的理由吗?师:因为圆柱体的体积等于底面积高。
(板书)2、提出问题,明确方向。
爱迪生帮他的助手解决了这个问题,现在请同学们帮打谷场上的农民伯伯们一个忙(用多媒体显示一堆圆锥体的小麦堆)请大家算算这堆小麦的体积。
看看谁是未来的爱迪生生:利用爱迪生的方法,利用一个圆柱体或长方体大桶来装这堆谷子,就能求出这堆谷子的体积了。
师:长方体的体积公式是什么呢?生:长宽高师:非常棒,其实呀不管是爱迪生,还是未来的爱迪生都是运用转化这一重要的数学思想来解决新的问题,今天我们同样能不能用转化的数学思想找到一种简单而又科学合理的方法计算出圆锥的体积的计算公式呢?板书:圆锥体积二、讨论问题,提出方案1、现在请同桌互相讨论一下,可以采取什么办法找到手中圆锥的体积。
比一比,哪个学习小组的方法多,方法好。
各小组汇报:把圆锥投入装了水的长方体、正方体或圆柱体的容器中,求出上升部分水的体积。
圆锥的体积 教学设计(三篇)
圆锥的体积教学设计(三篇)圆锥的体积教学设计篇一九年义务教育六年制小学数学第十二册p32页。
1、通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。
2、通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。
3、进一步培养学生将所学知识运用和服务于生活的能力。
灵活运用圆柱圆锥的有关知识解决实际问题。
同教学难点。
练习的过程是学生将所学知识内化、升华的过程,练习过程中既有基础知识的合理铺垫,又有不同程度的提高,练习的内容有明显的阶梯性。
力求使不同层次的学生都学有收获。
一、复习铺垫、内化知识。
1. 圆锥体的体积公式是什么?我们是如何推导的?2.圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。
(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。
(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。
(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。
圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。
3.求下列圆锥体的体积。
(1)底面半径4厘米,高6厘米。
(2)底面直径6分米,高8厘米。
(3)底面周长31.4厘米。
高12厘米。
4、教师根据学生练习中存在的问题,集体评讲。
同座位的同学先说一说圆锥体积公式的推导过程。
学生独立练习,互相批改,指出问题。
学生交流一下这几题在解题时要注意什么?二、丰富拓展、延伸练习。
1.拓展练习:(1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?(2)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?2.完成31页第5题。
讨论下列问题:(1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?(2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?3.分组讨论:圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?学生分组讨论,教师参与其中,以有疑问的方式参与讨论。
圆锥的体积教案(通用4篇)
圆锥的体积教案(通用4篇)圆锥的体积篇1教学目标:1、通过动手操作参与实验,发现等底等高的圆柱圆锥体积之间的关系,从而得出圆锥体积的计算公式。
2、能运用公式解答有关的实际问题。
3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。
教学过程一、创设情境,引发猜想1. 电脑呈现出动画情境(伴图配音)。
夏天,森林里闷热极了,小动物们都热得喘不过气来。
一只小白兔去“动物超市”购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。
这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。
小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。
(图中圆柱形和圆锥形的雪糕是等底等高的。
)2. 引导学生围绕问题展开讨论。
问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。
(小白兔这时和狐狸换雪糕,你觉得公平吗?)问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报)过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了“圆锥的体积“后,就会弄明白这个问题。
二、自主探索,操作实验下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。
出示思考题:(1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?(2)你们的小组是怎样进行实验的?1. 小组实验。
(1)学生分6组操作实验,教师巡回指导。
(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子等,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的,也有5倍关系的。
(2)同组的学生做完实验后,进行交流,并把实验结果写在长条黑板上。
六年级数学下册圆锥的体积教案(优秀5篇)
六年级数学下册圆锥的体积教案(优秀5篇)教学重点篇一圆锥体体积计算公式的推导过程.小学数学《圆锥的体积》教案篇二教学目标:1、渗透转化思想,培养学生的自主探索意识。
][2、初步学会用转化的数学思想和方法,解决实际问题的能力3、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
教学重点:掌握圆柱体积的计算公式。
教学难点:圆柱体积的计算公式的推导。
教学准备:主题图、圆柱形物体教学过程:一、复习:1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
二、新课:1、圆柱体积计算公式的推导:(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。
(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
(课件演示将圆柱细分,拼成一个长方体)(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)2、教学补充例题:(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。
它的体积是多少?(2)指名学生分别回答下面的问题:①这道题已知什么?求什么?②能不能根据公式直接计算?③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)(3)出示下面几种解答方案,让学生判断哪个是正确的.①V=Sh50×2.1=105(立方厘米)答:它的体积是105立方厘米。
关于《圆锥的体积》教学设计范文(精选6篇)
关于《圆锥的体积》教学设计范文(精选6篇)《圆锥的体积》教学设计1一、教学目标1、知识与技能理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。
2、过程与方法通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。
3、情感态度与价值观渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。
二、教学重、难点重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。
难点:理解圆锥体积公式的推导过程。
三、教具学具不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。
四、教学流程(一)创设情境,提出问题师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。
促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?生:我选择底面最大的;生:我选择高是最高的;生:我选择介于二者之间的。
师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?生:只要求出冰淇淋的体积就可以了。
师:冰淇淋是个什么形状?(圆锥体)生:你会求吗?师:通过这节课的学习,相信这个问题就很容易解答了。
下面我们一起来研究圆锥的体积。
并板书课题:圆锥的体积。
(二)设疑激趣,探求新知师:那么你能想办法求出圆锥的体积吗?(学生猜想求圆锥体积的方法。
)生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。
师:如果这样,你觉得行吗?教师根据学生的回答做出最后的评价;生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?小组中大家商量。
生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。
圆锥的体积教学设计优秀4篇
圆锥的体积教学设计篇8教学目的:使学生初步掌握圆锥体积的计算公式。
并能运用公式正确地计算圆锥的体积,发展学生的空间观念。
教学难点:圆锥的体积应用学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件教学时间:一课时教学过程:一、复习1、圆锥有什么特征?(课件出示)使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。
2、圆柱体积的计算公式是什么?指名学生回答,并板书公式:“圆柱的体积=底面积×高”。
同时渗透转化方法在数学学习中的应用。
二、导人新课出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。
板书课题:圆锥的体积三、新课1、教学圆锥体积的计算公式。
师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。
师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”学生分组实验。
汇报实验结果。
先在圆锥里装满水,然后倒入圆柱。
正好3次可以倒满。
多指名说接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。
请大家注意观察,看看能够倒几次正好把圆柱装满?问:把圆柱装满一共倒了几次?生:3次。
师:这说明了什么?生:这说明圆锥的体积是和它等底等高的圆柱的体积的。
多找几名同学说。
板书:圆锥的体积=1/3×圆柱体积师:圆柱的体积等于什么?生:等于“底面积×高”。
师:那么,圆锥的体积可以怎样表示呢?引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。
板书:圆锥的体积=1/3×底面积×高师:用字母应该怎样表示?然后板书字母公式:V=1/3SH师:在这个公式里你觉得哪里最应该注意?教学例1课件出示)一个圆锥的零件,底面积是19平方厘米,高是12厘米。
苏教版六年级数学下册第二单元《圆锥的体积》优秀教案
苏教版六年级数学下册第二单元《圆锥的体积》优秀教案一. 教材分析苏教版六年级数学下册第二单元《圆锥的体积》的优秀教案是根据教材内容进行设计的。
本节课主要让学生掌握圆锥的体积计算公式,并能够运用该公式解决实际问题。
教材通过生动的实例和图示,引导学生探究圆锥体积的计算方法,培养学生的空间想象能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了长方体和正方体的体积计算方法,对体积的概念有一定的了解。
同时,学生也具备了一定的观察、操作和实践能力。
然而,圆锥体积的计算较为抽象,需要学生能够理解和运用数学公式。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。
三. 教学目标1.让学生掌握圆锥的体积计算公式。
2.培养学生运用圆锥体积公式解决实际问题的能力。
3.培养学生的空间想象能力和团队合作精神。
四. 教学重难点1.圆锥体积公式的推导和理解。
2.运用圆锥体积公式解决实际问题。
五. 教学方法1.采用直观演示法,通过实物和图示,让学生直观地理解圆锥体积的计算方法。
2.采用探究式学习法,引导学生主动参与课堂讨论,提高学生的思维能力。
3.采用小组合作学习法,培养学生的团队合作精神和沟通能力。
六. 教学准备1.准备圆锥体积的实物模型和图示。
2.准备相关的练习题和实际问题。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)利用实物和图示,引导学生回顾长方体和正方体的体积计算方法。
然后,提出问题:“圆锥的体积如何计算呢?”激发学生的学习兴趣。
2.呈现(10分钟)呈现圆锥体积的计算公式,并进行解释。
引导学生理解圆锥体积公式的推导过程,通过图示和实例,让学生直观地感受圆锥体积的计算方法。
3.操练(10分钟)学生分组进行实践操作,运用圆锥体积公式计算给定的圆锥体积。
教师巡回指导,解答学生的问题,并给予反馈。
4.巩固(10分钟)学生独立完成相关的练习题,巩固圆锥体积的计算方法。
教师选取部分学生的作业进行讲解和分析,指出错误并进行纠正。
圆锥的体积教学设计[优秀范文五篇]
圆锥的体积教学设计[优秀范文五篇]第一篇:圆锥的体积教学设计圆锥的体积教学设计【教学内容】圆锥的体积(北师大版小学六年级数学课本第十一页至第十二页)【教材分析】圆锥体积公式的推导及圆锥体积公式的应用,按创设情境--实验探究--导出公式三个层次编排。
学生分组操作时,肯定能借助倒沙子的实验,亲身感受等底等高的圆柱与圆锥体积的3倍关系,但要注意对“等底等高”这一条件的强调。
【教学目标】1、结合具体情境和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。
2、经历“类比猜想----验证说明”的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并解决一些简单的实际问题。
3、培养学生自主探究的能力和小组合作学习的能力。
【教学重难点】重点:掌握圆锥体积的计算公式。
难点:正确探索出圆锥体积与圆柱体积之间的关系。
【教具学具】教具:等底等高的圆柱与圆锥、水,课件。
学具:学生自制的等底等高的圆柱与圆锥、细沙或大米【教学过程】一、创设情境,导入新课看,老师手里拿的是什么?(圆锥)回忆一下,圆锥有什么特征?这节课,我们就来研究一下圆锥的体积,齐读课题。
二、操作实验,自主探索1、提出问题:回忆一下我们学过圆柱的体积公式是什么?出示圆柱体,想一想圆柱体积的计算公式是怎样推导出来的?(指名回答,课件简单演示圆柱转化成长方体过程,帮助学生回忆。
)我们是把圆柱转化成已经学过的长方体推导出来的。
圆锥的体积该怎样求呢?能不能也通过学过的图形来推导呢?那应该转化为哪一个立体图形最合适呢?说说你的想法,它们的底面都与圆有关,正如这个同学所说,它们的形状具有一定的相似性,那么它们的体积也应该有着密切的联系。
2、大胆猜想:老师这儿现在就有一个圆柱和一个圆锥,大家观察一下它们有什么特点,对,它们等底等高。
很明显,圆柱的体积要大于圆锥的体积,那么你能不能进行一下大胆的猜测,圆柱和圆锥的体积可能存在着什么关系呢?圆柱体积等于3倍的圆锥体积,刚才大家对圆柱和圆锥的体积进行了大胆的猜测,那么这个猜测是否正确,我们应该怎么办呢?我们分小组验证一下,课前老师让大家准备了圆柱和圆锥,还有沙子。
圆锥的体积教学设计精品4篇
圆锥的体积教学设计篇1教学目的与要求:(1)掌握锥体的等积定值,锥体的体积公式。
(2)理解"割补法"求体积的思想,培养学生发现问题,解决问题的能力。
教学重点与难点:公式的推导过程,即"割补法"求体积。
教学方法:发现式教学教具:三棱柱模型、多媒体1、复习祖暅原理及柱体的体积公式。
2、等底面积等高的任意两个锥体的体积。
(类比于柱体体积公式的得出)。
首先研究等底面积等高的任意两个锥体体积之间的关系。
取任意两个锥体,设它们的底面积都是S,高都是h。
(创造祖暅原理的条件)把这两个锥体放在同一个平面α上。
这时它们的顶点都在和平面α的任意平面去截它们,截面分别与底面相似,设截面和底面顶点的距离是h,截面面积分别是S1、S2,那么:∵S1/S=h12/h2,S2/S=h12/h2,∴S1/S=S2/S,S1=S2。
根据祖日恒原理,这两个锥体的体积相等,由此得到下面的定理:定理,等底面积等高的两个锥体的体积相等。
3、三棱锥的体积公式为研究三棱锥的体积,可类比于初中三角形面积的求法。
在初中,学习三角形的面积公式之前,已知有平行四边形的面积公式,为此,将ΔABC"补"成和它同底等高的平行四边形ABDC,然后沿其对角线BC,将平行四边形"分"成两个三角形,由对称性,得到的ΔABC的面积为平行四边形面积的一半,即为:SΔABC=1/2ah,(a其底边长,h为高)而今,欲求三棱锥的体积,亦可类比地借助于已知的柱体体积公式。
能否将三棱锥"补"成一个底面积为S,高为h的三棱柱呢?[可以]以AA'为侧棱,以ΔABC为底面补成一个三棱柱。
也采用"分"的方法,这个三棱柱可分成怎样的三棱锥呢?(图形没有打印)[引导学生观察分析]将三棱柱分割成三个三棱锥,如图就是三棱锥1,和另两个三棱锥2、3。
三棱锥1、2的底ΔABA'、ΔB'A'B的面积相等,高也相等(顶点都是C)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆锥的体积》教案设计
类别:小学数学编号:
教学内容:
一、设计思路:
本课的教学设计紧紧扣住新课标的教学理念,从教法、学法的设计,数学思想和方法的渗透,时刻体现着以学生为主体的理念,本节课的教学思路体现在:
1、体现了数学与我们生活的密切联系。
让学生找一找身边见过的哪些物体是圆锥形状的,让学生进一步感知圆锥体在日常生活中的运用,让学生感受到数学就在我们身边培,养学生学习数学的兴趣。
2、体现解决问题策略的优化。
本课特别关注解决问题的多样化,引导学生从不同角度认识问题,寻求个性化解决问题的方法。
教材设计的练习,不仅加深了学生对圆锥的认识,而且较好地培养了学生的动手、测量的意识。
同时注重引导学生进行动手实践,自主探究,合作交流,在这一过程中,合理,适时运用电化媒体,渗透转化与优化的教学思想,引导学生掌握解决问题的方法与策略。
让学生充分感受到运用数学知识解决问题的无限快乐。
二、教学目标:
使学生初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积;进一步拓展学生的空间概念。
三、教学重点:
运用圆锥的体积公式正确地计算体积。
四、教学难点:
通过实验的方法,探究计算圆锥体积的公式。
五、教具学具准备:
1、课件,等底等高的圆柱和圆锥各1个。
2、适量的沙土(比圆柱的体积多;学生分组准备沙土。
)
六、教学过程:
(一)情境创设,质疑引入
1、同学们见过盖房子吗?工人用的小圆锥有什么特征?它的作用又是什么呢?
指名学生回答。
2、CAI课件演示;屏幕上呈现一个圆锥体;将它的底面、侧面、高和顶点闪烁或移出。
3、圆柱体积的计算公式是什么?
(V圆柱=sh=лr2×h)(中间x可以省略,加在上便于学生区别、记忆。
)
4、我们已经学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?
今天,我们就来探究圆锥体积的计算。
(板写课题:圆锥的体积)
【本环节通过一系列的问题情境,激发学生学习新知识的兴趣。
首先让学生结合前面所学的知识来谈谈自己对圆锥的认识,进而提出自己对圆锥还存在的问题。
这样不仅巩固了前面所学的知识,而且培
养了学生的问题意识。
】
(二)探索新知,寻找策略。
1、探究圆锥体积的计算公式。
教师:请同学们回忆一下,我们是怎样得到圆柱体积的计算公式的?
(1)指名学生陈述圆柱体积的计算公式的推导过程:
(CAI课件演示)
圆柱的体积=底面积×高
a. 屏幕上呈现一个圆柱体和长方体(近似的)(圆柱与长方体等底、等高)将圆柱底面积和长方体底面闪烁后移出。
b. 将移出的圆柱底面截拼成近似的长方形与移出的长方体底面重合。
2、教师:那么圆锥的体积怎么求呢?能不能也通过学过的图形来求呢?
【数学课程要关注学生的生活经验和已有的知识体验,当学生用旧知识不能解决新问题时,势必产生强烈的求知欲,他们在这一情境中敢猜想、要猜想、乐猜想,在猜想中交流,在交流中感悟,自然地提出了一个富有挑战性的数学问题,从而引发了学生进一步探究的强烈欲望。
】
学生分组交流、讨论;
我们可以通过实验的方法,得到计算圆锥体积的公式:
(1)学生分组动手操作实验
a. 让学生拿出等底等高的圆柱和圆锥各1个和比圆柱体积多的沙土。
b. 先在圆锥里装满沙土,然后倒入圆柱。
看几次正好把圆柱装满?这说明了什么?教师行间巡视,指导操作有困难的小组学生。
(2)CAI 课件演示。
a. 屏幕上出示等底,等高的蓝色的圆柱和红色的圆锥各1个;
b. 先在红色的圆锥里装满黄色沙土,然后倒入圆柱;
c. 记录,做3次正好把圆柱倒满,这说明了什么?
让学生说一说。
小结:这说明圆锥的体积是和它等底等高的圆柱体积的13。
(强调:等底等高)(板写:圆锥的体积=圆柱的体积×13
)。
d. 引导学生用“底面积×高”来代替“圆柱的体积”,于是得到,
圆锥的体积=底面积×高×13
(板书),然后得出字母公式: V 圆锥=13
sh (3)教师教具演示,巩固学生的操作效果。
【圆锥体积公式的推导,教师大胆放手,让学生自主探索,经历“再创造”的过程。
学生在教师的引导下,通过观察、实验、猜测、验证、推理与交流等
数学活动,积极主动地发现了等底等高的圆柱与圆锥体积间的关系,进而推导出圆锥体积的计算公式。
特别是数学交流体现得很充分,有学生与教师之间的交流、学生与学生之间的交流以及小组或大组的多向交流,这种交流是立体、交叉型的,它能催化学生的意义建构。
】
(三)自主探究
1、探讨例1
课件出示例题。
问:这道题已知什么?求什么?
已知圆锥的底面积和高应该怎样计算?
引导学生对照圆锥的体积公式代入数据,然后计算。
让学生独立完成课本14页的“练一练”第2题。
2、探究例2
课件出示例题
学生自主审题,教师引导点拔:这道题已知什么?求什么?让学生回答后,引导学生先算出沙堆的体积,再求得这堆沙的重量,强调最后的数据的取舍方法。
3、引导,组织学生讨论:怎样测量小麦堆的底面积和高。
a. 讨论后,先让学生说出自己的想法。
b. 教师介绍测量方法,边陈述边CAI课件演示。
①屏幕上呈现近似于圆锥形的小麦堆,用两根竹竿平行地放在小麦堆两侧,测得两根竹竿间的距离,就是底面直径。
②也可以用绳子在底部圆的周围量得小麦堆的周长,再推算出直径。
(C=лd d=c÷л)
测量小麦堆的高:将一根竹竿过小麦堆的顶部水平放置;另一根竹竿竖直与水平竹竿成直角,即可测得高。
(即课本上测量圆锥高的方法)
(四)矫正反馈
完成练一练第2题
【学生在前面猜想的基础上通过小组合作动手实验、具体操作,验证得出等底等高的圆锥与圆柱体积间的关系,使自己的猜想在这里得到了验证。
最后从等底等高的圆柱与圆锥体积间的关系及圆柱的体积公式中,得出了圆锥体的体积公式。
这个过程,让学生充分经历了知识的形成过程,体现了“动态生成”,为抽象的理论提供了感性材料。
】(五)迁移引用
1、基本练习:教材第5、7题
【练习设计由浅入深,由例题到实践应用,层次鲜明,并注重培养学生解决实际问题的能力,达到学以致用的目的。
】
2、变成、拓展题练习:
一个圆锥的底面周长为28.26厘米。
高是5厘米,它的体积是多少立方厘米?(提示:C =2лr
r=C ÷(2л))
V 圆锥=13
лr 2h (六)小结(多媒体显示)
1、要求圆锥的体积必须要知道哪些条件?(底面积和高)
2、如果分别知道圆锥的底面半径、底面直径、底面周长和高怎样求圆锥的体积?
(分别利用已知条件,先算出圆锥的底面积,再通过底面积和高(一般都告诉我们)求得圆锥的体积)
附:板书设计:圆锥的体积
圆锥的体积=底面积×高×13
V 圆锥=13
sh 七、教学反思:
本课在教学中注重运用新的教育教学理念——交流、合作、实践、探究;并适时运用多媒体课件,使同学们在轻松、愉悦的氛围中展开实验,从而探究出圆锥体积与圆柱体积之间关系(圆锥、圆柱等底等高),进而得出圆锥体积的计算公式。
同学们在学习了圆柱体积后,能够在老师的引导、帮助下,得出圆锥体积的计算,但同学们对于告诉“周长与高”,求圆锥体积及麦堆、沙堆等质量,存在一定的难度,所以在下次教学中要注重“周长
推导半径”的教学,以利于同学更好地计算圆锥体积,为日常生活、生产服务。