2009中考数学第一轮复习 分式和二次根式专题训练

合集下载

中考数学总复习:分式与二次根式知识讲解和巩固训练(含答案解析)

中考数学总复习:分式与二次根式知识讲解和巩固训练(含答案解析)

中考总复习:分式与二次根式【考纲要求】1. 了解分式的概念,会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会解简单的可化为一元一次方程的分式方程;2. 利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算.【知识网络】【考点梳理】考点一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点诠释:分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B≠0时,分式有意义;当分式有意义时,B≠0.②当B=0时,分式无意义;当分式无意义时,B=0.③当B≠0且A = 0时,分式的值为零.考点二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算错误!未找到引用源。

±错误!未找到引用源。

=错误!未找到引用源。

同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.要点诠释:约分需明确的问题:(1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;(2)约分的关键是确定分式的分子和分母的公因式,其思考过程与分解因式中提取公因式时确定公因式的思考过程相似;在此,公因式是分子、分母系数的最大公约数和相同字母最低次幂的积.通分注意事项:(1)通分的关键是确定最简公分母;最简公分母应为各分母系数的最小公倍数与所有因式的最高次幂的积.(2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.(3)确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积.考点三、分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.要点诠释:解分式方程注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤:(1)审——仔细审题,找出等量关系;(2)设——合理设未知数;(3)列——根据等量关系列出方程;(4)解——解出方程;(5)验——检验增根;(6)答——答题.考点四、二次根式的主要性质 1.0(0)a a ≥≥; 2.()2(0)a a a =≥; 3.2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;4. 积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;5. 商的算术平方根的性质:(00)a a a b b b=≥>,. 6.若0a b >≥,则a b >.要点诠释:与的异同点:(1)不同点:与表示的意义是不同的,表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根;在中,而中a 可以是正实数,0,负实数.但与都是非负数,即,.因而它的运算的结果是有差别的,,而(2)相同点:当被开方数都是非负数,即时,=;时,无意义, 而.考点五、二次根式的运算1.二次根式的乘除运算(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意知道每一步运算的算理;2.二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质;3.二次根式的混合运算(1)对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;(2)二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.要点诠释:怎样快速准确地进行二次根式的混合运算.1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.(1)加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于理解和掌握.在运算过程中,对于各个根式不一定要先化简,可以先乘除,进行约分,达到化简的目的,但最后结果一定要化简. 例如82627⎛⎫+⨯ ⎪ ⎪⎝⎭,没有必要先对827进行化简,使计算繁琐,可以先根据乘法分配律进行乘法运算,884266262327273⎛⎫+⨯=⨯+⨯=+ ⎪ ⎪⎝⎭,通过约分达到化简目的; (2)多项式的乘法法则及乘法公式在二次根式的混合运算中同样适用. 如:()()()()223232321+-=-=,利用了平方差公式.所以,在进行二次根式的混合运算时,借助乘法公式,会使运算简化.【典型例题】类型一、分式的意义1.使代数式12-x x 有意义的x 的取值范围是( ) A.0≥x B.21≠x C.0≥x 且21≠x D.一切实数 【答案】C ; 【解析】解不等式组0210x x ≥⎧⎨-≠⎩得0≥x 且21≠x ,故选C . 【点评】代数式有意义,就是要使代数式中的分式的分母不为零;代数式中的二次根式的被开方数是非负数,即需要x 中的x ≥0;分母中的2x-1≠0.【变式】当x 取何值时,分式12922---x x x 有意义?值为零? 【答案】当2120x x --≠时,分式12922---x x x 有意义,即-34x x ≠≠且时,分式12922---x x x 有意义. 当29=0x -且2120x x --≠时,分式12922---x x x 值为零, 解得=3x ±,且-34x x ≠≠,,即=3x 时,分式12922---x x x 值为零. 类型二、分式的性质2.已知14x x+=,求下列各式的值. (1)221x x +; (2)2421x x x ++. 【答案与解析】(1)因为14x x +=,所以2214x x ⎛⎫+= ⎪⎝⎭. 即221216x x ++=.所以22114x x+=. (2)4242222222111114115x x x x x x x x x x++=++=++=+=, 所以2421115x x x =++. 【点评】观察(1)和已知条件可知,将已知等式两边分别平方再整理,即可求出(1)的值;对于(2),直接求值很困难,根据其特点和已知条件,能够求出其倒数的值,这样便可求出(2)的值.举一反三:【变式】已知111,a b a b+=+求b a a b +的值. 【答案】 由111,a b a b +=+得1,a b ab a b +=+ 所以2(),a b ab +=即22a b ab +=-. 所以221b a a b ab a b ab ab +-+===-.。

初中数学 中考复习二次根式专题练习(含答案)

初中数学 中考复习二次根式专题练习(含答案)

二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。

(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。

满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。

(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。

中考《分式与二次根式》经典例题及解析

中考《分式与二次根式》经典例题及解析

分式与二次根式一、分式 1.分式的定义(1)一般地,整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称AB为分式. (2)分式AB中,A 叫做分子,B 叫做分母. 【注】①若B ≠0,则A B 有意义;②若B =0,则A B 无意义;③若A =0且B ≠0,则AB=0.2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为(0)A A C C B B C ⋅=≠⋅或(0)A A C C B B C÷=≠÷,其中A ,B ,C 均为整式. 3.约分及约分法则(1)约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.(2)约分法则:把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分. 【注】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式.4.最简分式分子、分母没有公因式的分式叫做最简分式.【注】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式. 5.通分及通分法则(1)通分:根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分. (2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积); ②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式; ③若分母是多项式,则先分解因式,再通分.【注】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.6.最简公分母:几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母. 7.分式的运算(1)分式的加减 ①同分母的分式相加减②异分母的分式相加减法则:先通分,变为用式子表示为:a c ad bcb d bd bd ±=±=(2)分式的乘法乘法法则:分式乘分式,用分子的积作为积(3)分式的除法除法法则:分式除以分式,把除式的分子用式子表示为:a c a d a db d bc b⋅÷=⋅=⋅.(4)分式的乘方乘方法则:分式的乘方,把分子、分母分别(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫混合运算顺序:先算乘方,再算乘除,最后二、二次根式1.二次根式的有关概念 (1)二次根式的概念形如)0(≥a a 的式子叫做二次根式.其中【注】被开方数a 只能是非负数.即要使二(2)最简二次根式:被开方数所含因数是简二次根式.(3)同类二次根式: 化成最简二次根式后2.二次根式的性质(1)a ≥ 0(a ≥0);(2))(2=a(40,0)a b =≥≥3.二次根式的运算 (1)二次根式的加减合并同类二次根式:在二次根式的加减运算类二次根式合并成一个二次根式.相加减法则:分母不变,分子相加减.用式子表示为变为同分母的分式,然后再加减. ad bcbd±. 作为积的分子,分母的积作为积的分母.用式子表示分子、分母颠倒位置后与被除式相乘. c母分别乘方.用式子表示为:()(nn n a a n b b=为正整数运算叫做分式的混合运算.最后算加减.有括号的,先算括号里的. ”叫做二次根号,二次根号下的数要使二次根式a 有意义,则a ≥0.因数是整数,因式是整式,不含能开得尽方的因数或根式后,被开方数相同的几个二次根式,叫做同类二)0(≥a a ; (3(0)0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩;;(50,0)a b ≥>. 减运算中,把几个二次根式化为最简二次根式后,表示为:a c a cb b b±±=. 子表示为:a c a cb d b d⋅⋅=⋅. 正整数,0)b ≠.下的数叫做被开方数.因数或因式的二次根式,叫做最同类二次根式. ,若有同类二次根式,可把同(2)二次根式的乘除0,0)a b =≥≥0,0)a b ≥>. (3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的. 在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.经典例题 分式的有关概念1.若式子111x --在实数范围内有意义,则x 的取值范围是__________. 【答案】1x ≠【分析】由分式有意义的条件可得答案.【解析】解:由题意得:10,x -≠ 1,x ∴≠ 故答案为:1x ≠【点睛】本题考查的是分式有意义的条件,掌握分式有意义的条件是解题的关键. 2.若分式11x +的值不存在,则x =__________. 【答案】-1【分析】根据分式无意义的条件列出关于x 的方程,求出x 的值即可. 【解析】∵分式11x +的值不存在,∴x+1=0,解得:x=-1,故答案为:-1. 【点睛】本题考查的是分式无意义的条件,熟知分式无意义的条件是分母等于零是解答此题的关键. 3.分式52x x +-的值是零,则x 的值为( ) A .5 B .2 C .-2 D .-5【答案】D【分析】分式的值为零:分子等于零,且分母不等于零.【解析】解:依题意,得x+5=0,且x-2≠0,解得,x=-5,且x≠2,即答案为x=-5.故选:D .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.1.要使分式11x -有意义,则x 的取值范围是( ) A .1x > B .1x ≠C .1x =D .0x ≠【答案】B【分析】根据分式有意义的条件即可解答.【解析】根据题意可知,10x -≠,即1x ≠.故选:B .【点睛】本题考查了分式有意义的条件,熟知分式有意义,分母不为0是解决问题的关键.2.当1x =时,下列分式没有意义的是( ) A .1x x+ B .1x x - C .1x x- D .1x x + 【答案】B【分析】由分式有意义的条件分母不能为零判断即可. 【解析】1xx -,当x=1时,分母为零,分式无意义.故选B. 【点睛】本题考查分式有意义的条件,关键在于牢记有意义条件. 3.方程3101x +=-的解为__________. 【答案】x=-2【分析】先用异分母分式加法法则运算,然后利用分式为零的条件解答即可.【解析】解:3101x +=- 31011x x x -+=-- 201x x +=- 则:2010x x +=⎧⎨-≠⎩,解得x=-2. 故答案为x=-2.【点睛】本题考查了异分母分式加法法则和分式为零的条件,掌握分式为零的条件是解答本题的关键.经典例题 分式的基本性质1.若a b ¹,则下列分式化简正确的是( )A .22a ab b+=+ B .22a a b b -=-C .22a a b b=D .1212aa b b = 【答案】D【分析】根据a ≠b ,可以判断各个选项中的式子是否正确,从而可以解答本题. 【解析】∵a ≠b ,∴22a a b b +≠+,选项A 错误;22a ab b-≠-,选项B 错误; 22a a b b ≠,选项C 错误;1212a ab b =,选项D 正确;故选:D . 【点睛】本题考查分式的性质,解答本题的关键是明确分式的性质.1.分式13-x可变形为( ) A .13x + B .-13x+ C .31-x D .1-3x - 【答案】D【分析】根据分式的基本性质逐项进行判断即可. 【解析】A.13x +≠13-x ,故A 选项错误;B. -13x +=13-x -≠13-x,故B 选项错误;C. 65x ==-13-x ,故C 选项错误;D. 1-3x -=1x-3)-(=13-x ,故D 选项正确,故选D. 【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.经典例题 分式的约分与通分1. 关于分式的约分或通分,下列哪个说法正确 A .211x x +-约分的结果是1x B .分式211x -与11x -的最简公分母是x -1C .22x x 约分的结果是1D .化简221x x --211x -的结果是1【答案】D 【解析】A 、211x x +-=11x -,故本选项错误; B 、分式211x -与11x -的最简公分母是x 2-1,故本选项错误; C 、22x x =2x ,故本选项错误;D 、221x x --211x -=1,故本选项正确,故选D . 【点睛】本题主要考查分式的通分和约分,这是分式的重要知识点,应当熟练掌握.2.下列分式中,最简分式是( )A .2211x x -+B .211x x +-C .2222x xy y x xy-+- D .236212x x -+【答案】A【解析】选项A 为最简分式;选项B 化简可得原式==;选项C 化简可得原式==;选项D 化简可得原式==,故答案选A. 考点:最简分式.1.分式22x x -与282x x -的最简公分母是_______,方程228122-=--x x x x的解是____________. 【答案】()2x x - x=-4【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解. 【解析】解:∵()222x x x x -=-,∴分式22x x -与282x x-的最简公分母是()2x x -, 方程228122-=--x x x x,去分母得:()2282x x x -=-,去括号得:22282x x x -=-, 移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4. 【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法. 2.化简:2121x x x +++=_____. 【答案】11x + 【分析】先将分母因式分解,再根据分式的基本性质约分即可. 【解析】2121x x x +++=21(1)x x ++=11x +.故答案为:11x +. 【点睛】本题考查了分式的除法以及利用完全平方公式因式分解,解答本题的关键是掌握分式的基本性质以及因式分解的方法.经典例题 分式的运算1. 下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.229216926x x x x x -+-+++ 2(3)(3)21(3)2(3)x x x x x +-+=-++ 第一步32132(3)x x x x -+=-++ 第二步 2(3)212(3)2(3)x x x x -+=-++ 第三步26(21)2(3)x x x --+=+ 第四步26212(3)x x x --+=+ 第五步526x =-+ 第六步任务一:填空:①以上化简步骤中,第_____步是进行分式的通分,通分的依据是____________________或填为_____________________________;②第_____步开始出现错误,这一步错误的原因是_____________________________________; 任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议. 【答案】任务一:①三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;②五;括号前是“-”号,去掉括号后,括号里的第二项没有变号;任务二:726x -+;任务三:最后结果应化为最简分式或整式,答案不唯一,详见解析.【分析】先把能够分解因式的分子或分母分解因式,化简第一个分式,再通分化为同分母分式,按照同分母分式的加减法进行运算,注意最后的结果必为最简分式或整式.【解析】任务一:①三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;故答案为:三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;②五;括号前是“-”号,去掉括号后,括号里的第二项没有变号;故答案为:五;括号前是“-”号,去掉括号后,括号里的第二项没有变号;任务二:解;229216926x x x x x -+-+++2(3)(3)21(3)2(3)x x x x x +-+=-++ 32132(3)x x x x -+=-++ 2(3)212(3)2(3)x x x x -+=-++26(21)2(3)x x x --+=+26212(3)x x x ---=+ 726x =-+.任务三:解:答案不唯一,如:最后结果应化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;分式化简不能与解分式方程混淆,等.【点睛】本题考查的是有理数的混合运算,分式的化简,掌握以上两种以上是解题的关键.2.先化简,(22444x x x ++-﹣x ﹣2)÷22x x +-,然后从﹣2≤x ≤2范围内选取一个合适的整数作为x 的值代入求值.【答案】﹣x +3,2【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算可得.【解析】解:原式=()()()()2222-2x x x x ⎡⎤+-+⎢⎥+⎢⎥⎣⎦×22x x -+=2242222x x x x x x ⎛⎫+---⨯⎪--+⎝⎭ =26222x x x x x -++-⨯-+ =()()23222x x x x x +---⨯-+=﹣(x -3)=﹣x+3∵x ≠ ±2,∴可取x =1,则原式=﹣1+3=2.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.1.计算:212(111a aa a a +-+÷++ 【答案】2a a + 【分析】先把括号里通分,再把除法转化为乘法,然后约分化简即可.【解析】解:212(1)11a a a a a +-+÷++2(1)(1)1112a a a a a a -+++=⋅++211(2)a a a a a +=⋅++2a a =+. 【点睛】分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式. 2.先化简:2124244x x x x x x x -+-⎛⎫-÷⎪--+⎝⎭,然后选择一个合适的x 值代入求值. 【答案】化简结果是:2x x-,选择x =1时代入求值为-1. 【分析】先根据分式混合运算的法则把原式进行化简,再选出合适的x 的值代入进行计算即可【解析】解:原式2124244x x x x x x x -+-⎛⎫⎛⎫=-÷ ⎪ ⎪--+⎝⎭⎝⎭2(1)(2)(2)4(2)(2)(2)x x x x x x x x x x ⎡⎤-+--=-÷⎢⎥---⎣⎦ 2224(2)(2)4x x x x x x x --+-=⋅--24(2)(2)4x x x x x--=⋅--2x x -=. 当x=1时代入,原式=1211-==-.故答案为:化简结果是2x x-,选择x =1时代入求值为-1. 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键,最后在选择合适的x 求值时要保证选取的x 不能使得分母为0.经典例题 二次根式的概念与性质1.在实数范围内有意义,则x 的取值范围是( ) A .2x ≠ B .2x ≥C .2x ≤D .2x ≠-【答案】C【分析】根据二次根式里面被开方数420x -≥即可求解.【解析】解:由题意知:被开方数420x -≥,解得:2x ≤,故选:C . 【点睛】本题考查了二次根式有意义的条件,必须保证被开方数大于等于0.2.已知3y =+-,则2xy 的值为( )A .15-B .15C .152-D .152【答案】A【解析】由3y =-,得250{520x x -≥-≥,解得 2.5{3x y ==-.2xy (=2×2.5×-)3=-,故选.15A 【点睛】本题考查的是二次根式有意义的条件,一元一次不等式组的解法,以及有理数的乘法运算,掌握以上知识是解题的关键.1.在实数范围内有意义,则x 的取值范围是( ) A .2x ≠ B .2x ≥C .2x ≤D .2x ≠-【答案】B【分析】根据二次根式里面被开方数240x -≥即可求解.【解析】解:由题意知:被开方数240x -≥,解得:2x ≥,故选:B . 【点睛】本题考查了二次根式有意义的条件,必须保证被开方数大于等于0.2.函数13y x =+-的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥ C .3x ≠D .2x >,且3x ≠【答案】A【分析】根据分式与二次根式的性质即可求解.【解析】依题意可得x-3≠0,x-2≥0解得2x ≥,且3x ≠故选A .【点睛】此题主要考查函数的自变量取值,解题的关键是熟知分式与二次根式的性质.经典例题1.下列各式是最简二次根式的是( )A BC D 【答案】A【分析】根据最简二次根式的定义即可求出答案.【解析】解:A B =C a =,不是最简二次根式,故选项错误;D =故选A.【点睛】本题考查最简二次根式,解题的关1.下列二次根式是最简二次根式的是AB【答案】D【分析】根据最简二次根式的概念逐一进行【解析】A.=,故A 选项不符合C.=,故C 选项不符合题意;【点睛】本题考查最简二次根式的识别,经典例题1.实数a 、b 在数轴上的位置如图所示A .2- B .0【答案】A【分析】根据实数a 和b 在数轴上的位置得【解析】由数轴可知-2<a <-1,1<b+-=【点睛】此题主要考查了实数与数轴之间的判断数的符号以及绝对值的大小,再根据运1.已知实数a 在数轴上的对应点位置如图A .32a -B .1-【答案】D【分析】根据数轴上a 点的位置,判断出【解析】解:由图知:1<a <2,∴a−1原式=a−1-2a -=a−1+(a−2)=题的关键是正确理解最简二次根式的定义,本题属于( ) CD一进行判断即可. 不符合题意;B. =,故B 选项不符合题意;D. 是最简二次根式,符合题意,故选D. ,熟练掌握二次根式的化简以及最简二次根式的概+-的结果是C .2a -D .2b位置得出其取值范围,再利用二次根式的性质和绝对<2,∴a+1<0,b-1>0,a-b <0, 11a b a b ++---=()()(11a b a b -++-+-之间的对应关系,以及二次根式的性质,要求学生正根据运算法则进行判断.置如图所示,则化简|1|a -的结果是(C .1D .23a -断出(a−1)和(a−2)的符号,再根据非负数的性质>0,a−2<0, 2a−3.故选D.题属于基础题型.合题意; 式的概念是解题的关键.结果是( ). 和绝对值的性质即可求出答案. )=-2故选A.学生正确根据数在数轴上的位置( )的性质进行化简.【点睛】此题主要考查了二次根式的性质与化简,正确得出a−1>0,a−2<0是解题关键. 经典例题 二次根式的运算1.下列计算中,正确的是( )A =B .2+=C =D .2= 【答案】C【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【解析】解:A 不是同类二次根式,不能合并,此选项计算错误;B .2不是同类二次根式,不能合并,此选项错误;C ==,此选项计算正确;D .2不是同类二次根式,不能合并,此选项错误;故选:C .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.2. “分母有理化”7==+,设x =->,故0x >,由22332x ==-=,解得x =,即= )A .5+B .5+C .5D .5-【答案】D和2323+-进行化简,然后再进行合并即可.【解析】设x =<∴0x <,∴266x =--++,∴212236x =-⨯=,∴x =,5=-,∴原式5=-5=-D . 【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.1.计算:2+-=______.【分析】先将乘方展开,然后用平方差公式计算即可.【解析】解:2=+=22⎡⎤-⎢⎥⎣⎦.【点睛】本题考查了二次根式的混合运算以及平方差公式的应用,掌握二次根式混合运算的运算法则和平方差公式是解答本题的关键.2.下列等式成立的是( )A.3+=B=C= D3= 【答案】D【分析】根据二次根式的运算法则即可逐一判断.【解析】解:A 、3和A 错误;B=B 错误; C===,故C 错误;D3=,正确;故选:D . 【点睛】本题考查了二次根式的运算,解题的关键是掌握基本的运算法则.经典例题1.设2a =+,则( )A .23a <<B .34a <<C .45a <<D .56a << 【答案】C的范围,再得出a 的范围即可.【解析】解:∵4<7<9,∴23<<,∴425<<,即45a <<,故选C.【点睛】本题考查了无理数的估算,解题的关键是掌握无理数的估算方法.2-【答案】<【分析】利用分子有理化即可比较大小.【解析】=-+==-=++<故答案为:<.【点睛】此题考查的是实数的比较大小,掌握利用分子有理化比较大小是解决此题的关键.1.的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【答案】B【分析】因为224225<<在4到5之间,由此可得出答案.【解析】解:∵224225<<,∴45<<.故选:B【点睛】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.2. 下列各数中,比3大比4小的无理数是( )A.3.14 B.103CD【答案】C【分析】根据无理数的定义找出无理数,再估算无理数的范围即可求解.【解析】,而17>42,32<12<42>4,3<4∴选项中比3大比4.故选:C.【点睛】此题主要考查了无理数的定义和估算,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.。

中考数学一轮复习数学二次根式的专项培优练习题(及解析

中考数学一轮复习数学二次根式的专项培优练习题(及解析

一、选择题1.5﹣x ,则x 的取值范围是( ) A .为任意实数 B .0≤x≤5 C .x≥5 D .x≤5 2.下列式子中,是二次根式的是( )A B CD .x3.下列各式计算正确的是( )A .6232126()b a b a b a---⋅=B .(3xy )2÷(xy )=3xyC =D .2x •3x 5=6x 64.有意义,则x 的取值范围是( ) A .x≠2B .x >-2C .x <-2D .x≠-25.已知226a b ab +=,且a>b>0,则a ba b+-的值为( )A B C .2D .±26. )A .30 B .C .30D .7.化简二次根式 )A B C D 8.若化简1682+-x x -1x -的结果为5-2x ,则x 的取值范围是( ) A .为任意实数 B .1≤x≤4C .x≥1D .x≤49.下列各式计算正确的是( )A B .C .D10.230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对二、填空题11.使函数212y x x=+有意义的自变量x 的取值范围为_____________12.已知112a b +=,求535a ab b a ab b++=-+_____.13.化简并计算:...+=________.(结果中分母不含根式)14.2==________.15.甲容器中装有浓度为a ,乙容器中装有浓度为b ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.16.已知函数1x f xx,那么1f _____.17.10=,则222516x y +=______.18.若实数x ,y ,m 满足等式()223x y m +-=m+4的算术平方根为________. 19.若实数a =,则代数式244a a -+的值为___.20. (a ≥0)的结果是_________.三、解答题21.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1= ,= ; (2⋅⋅⋅+的值.【答案】(12)9 【分析】(1)仿照例子,由1+=的值;由1+=的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案.【详解】 解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.22.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==25384532++====-进行分母有理化. (3)利用所需知识判断:若a =,2b =a b,的关系是 . (4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019 【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(22243743--==--(3)∵2a===,2b=-,∴a和b互为相反数;(4))1 ++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.23.已知m,n满足m4n=3+.【答案】12015【解析】【分析】由43m n+=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n+=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.24.小明在解决问题:已知2a2﹣8a+1的值,他是这样分析与解的:∵=2∴a﹣2=∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a -=-= , ∴2212a a -+= ,即221a a -=∴原式=24(2)14115a a -+=⨯+= 解法二∴ 原式=24(211)1a a -+-+24(1)3a =--211)3=--4235=⨯-=点睛:(1得22=-=-a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.25.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可. 【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.26.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22mm-+ 1. 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --)=221m m --()÷241m m --=221m m --()•122m m m --+-()() =﹣22m m -+=22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.27.先化简,再求值:221()a ba b a b b a-÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案. 【详解】 解:原式1()()a b a b aa b a b b a b b--=⨯-⨯+-+()()a b a b a b b a b -=--++()b bb a =-+1a b=-+,当a =2b =原式12==-.【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.28.计算:(1)-(2)【答案】(1)21【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的乘除法则运算,再合并即可.【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的性质得出5-x≥0,求出即可.【详解】==-=-,|5|5x x∴5-x≥0,解得:x≤5,故选D.【点睛】本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.2.A解析:A【分析】a≥0)的式子叫做二次根式,据此可得结论.【详解】解:A 是二次根式,符合题意; B是三次根式,不合题意;C 、当x <0D 、x 属于整式,不合题意; 故选:A . 【点睛】此题考查二次根式的定义,关键是根据二次根式的定义理解被开方数是非负数.3.D解析:D 【分析】依据单项式乘以单项式、单项式除以单项式以及二次根式的加法法则对各项分别计算出结果,再进行判断即可得到结果. 【详解】A. 2321526()b a b a b a---⋅=,故选项A 错误;B. (3xy )2÷(xy )=9xy ,故选项B 错误;C 错误; D. 2x •3x 5=6x 6,正确. 故选:D . 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.B解析:B 【分析】根据二次根式的被开方数是非负数,且分母不能为零,可得答案. 【详解】有意义,得: 20x +>,解得:2x >-. 故选:B . 【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.5.A解析:A【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案. 【详解】∵a 2+b 2=6ab , ∴(a+b )2=8ab ,(a-b )2=4ab , ∵a >b >0,∴∴a b a b +-= 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.6.C解析:C 【解析】故选C .点睛:此题主要考查了二次根式的化简,解题关键是利用分数的通分求和,然后把其分母有理化即可求解,比较简单,但是易出错,是常考题.7.B解析:B 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可 【详解】2202a a aa a +-∴+<∴<-a a ∴==•=-故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.8.B解析:B【解析】【分析】先把多项式化简为|x-4|-|1-x|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】-=|x-4|-|1-x|,解:原式1x当x≤1时,此时1-x≥0,x-4<0,∴(4-x)-(1-x)=3,不符合题意,当1≤x≤4时,此时1-x≤0,x-4≤0,∴(4-x)-(x-1)=5-2x,符合题意,当x≥4时,此时x-4≥0,1-x<0,∴(x-4)-(x-1)=-3,不符合题意,∴x的取值范围为:1≤x≤4故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.9.D解析:D【解析】不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知,故不正确;根据二次根式的性质,可知,故不正确;==,故正确.3故选D.10.B解析:B【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】-=,x30=,=0∴x=-2或x=3,又∵2030x x +≥⎧⎨-≥⎩, ∴x=3,故选B.【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键.二、填空题11.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x 的取值范围为【点睛】 解析:11,022x x -≤≤≠ 【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤①当0x <时,120x +≥解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】 本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 12.13【解析】【分析】由得a+b=2ab ,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】 由112a b +=得a+b=2ab ,然后再变形535a ab b a ab b++-+,最后代入求解即可. 【详解】 解:∵112a b+= ∴a+b=2ab ∴()5353510ab 3===132ab a b ab a ab b ab a ab b a b ab ab+++++-++-- 故答案为13.【点睛】 本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 13.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案.【详解】解:原式===【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.14.【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m=,n=,那么m−n=2①,m2+n2=()2+()2=34②.由①得,m=2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m n那么m−n =2①,m 2+n 2=2+2=34②.由①得,m =2+n ③,将③代入②得:n 2+2n−15=0,解得:n =−5(舍去)或n =3,因此可得出,m =5,n =3(m≥0,n≥0).n +2m =13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.15.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m 即可.【详解】解:根据题意,甲容器中纯果汁含量为akg ,乙容器【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利=,求出m 即可.【详解】, 甲容器倒出mkg 果汁中含有纯果汁makg ,乙容器倒出mkg 果汁中含有纯果汁mbkg ,,=,整理得,-6b =5ma -5mb ,∴(a -b )=5m (a -b ),∴m =5.故答案为:5【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.16.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时,.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x=,代入原函数即可解答.【详解】因为函数1xf xx,所以当1x=时,211()2221f x.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 17.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.18.3【解析】【分析】先根据二次根式有意义的条件得出x+y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m =5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x +y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:35302302x y m x y m x y +--=⎧⎪+-=⎨⎪+=⎩,解得:x =1,y =1,m =5,∴==3.故答案为3.【点睛】 本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.19.3∵ =,∴=(a-2)2==3,故答案为3.解析:3【解析】∵a =∴244a a -+=(a-2)2=()222+=3, 故答案为3.20.4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a ,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.解析:4a【解析】【分析】根据二次根式乘法法则进行计算即可得.)0a ≥===4a ,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

中考一轮复习 数学专题03 分式及二次根式(老师版)

中考一轮复习 数学专题03 分式及二次根式(老师版)

专题03 分式及二次根式一、单选题1.(2022年山东青岛)计算 )A B .1 C D .3【答案】B【解析】【分析】再合并即可. 【详解】解:94321故选:B .【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.2.(2020年湖北黄石)函数13y x =-x 的取值范围是( ) A .2x ≥,且3x ≠B .2x ≥C .3x ≠D .2x >,且3x ≠ 【答案】A【解析】【分析】根据分式与二次根式的性质即可求解.【详解】依题意可得x -3≠0,x -2≥0解得2x ≥,且3x ≠故选A .【点睛】此题主要考查函数的自变量取值,解题的关键是熟知分式与二次根式的性质. 3.(2020年山东淄博)化简222a b ab a b b a ++--的结果是( )A .a +bB .a ﹣bC .2()a b a b +-D .2()a b a b-+ 【答案】B【解析】【分析】 根据同分母分式相加减的运算法则计算即可.同分母分式相加减,分母不变,分子相加减.【详解】 解:原式222a b ab a b a b+=--- 222a b ab a b+-=- 2()a b a b-=- a b =-.故选:B .【点睛】本题主要考查了分式的加减,解题的关键是熟记运算法则.4.(2021年黑龙江绥化)定义一种新的运算:如果0a ≠.则有2||a b a ab b -=++-▲,那么1()22-▲的值是( )A .3-B .5C .34-D .32【答案】B【解析】【分析】根据题意列出算式,求解即可【详解】2||a b a ab b -=++-▲ 2111()2=()()2|2|222-∴--+-⨯+-▲ 412=-+=5.故选B .【点睛】本题考查了新定义运算、负指数幂的运算,绝对值的计算,解决本题的关键是牢记公式与定义,本题虽属于基础题,但其计算中容易出现符号错误,因此应加强符号运算意识,提高运算能力与技巧等. 本号资料皆来源于@微信:数#学5.(2021年广西桂林)若分式23x x -+的值等于0,则x 的值是( ) A .2B .﹣2C .3D .﹣3【答案】A【解析】【分析】 根据分式的值为0的条件:分子为0,分母不为0性质即可求解.【详解】由题意可得:20x -=且30x +≠,解得2,3x x =≠-.故选A .【点睛】此题主要考查分式为零的条件,解题的关键是熟知分式的性质.6.(2022年福建福州)函数y =x 的取值范围是( ) A .2x <B .2x >C .2x ≥D .2x ≠ 【答案】B【解析】【分析】 使函数y =20x -≥且20x -≠, 然后解不等组即可. 【详解】解:根据题意得:20x -≥且20x -≠,解得x > 2.故选B .【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1) 当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负. 7.(2022年天津市)计算1122a a a ++++的结果是( )A .1B .22a +C .2a +D .2a a + 【答案】A【解析】【分析】 利用同分母分式的加法法则计算,约分得到结果即可.【详解】 解:1121222a a a a a +++==+++. 故选:A .【点睛】本题主要考查了分式的加减,解题的关键是掌握分式加减运算顺序和运算法则.8.(2022年山西)化简21639a a ---的结果是( ) A .13a + B .3a -C .3a +D .13a - 【答案】A【解析】【分析】先利用平方差公式通分,再约分化简即可.【详解】 解:()()()()21636313933333a a a a a a a a a +---===---+-++, 故选A .【点睛】本题考查分式的化简及平方差公式,属于基础题,掌握通分、约分等基本步骤是解题的关键.9.(2022a 的取值范围是( )A .1a >B .1a ≥C .1a <D .1a ≤【答案】B【解析】【分析】根据二次根式中的被开方数是非负数求解可得.【详解】a-≥0,根据题意知1a≥,解得1故选:B.【点睛】本题主要考查二次根式有意义的条件,解题的关键是掌握二次根式的双重非负性.10.(2021)C.D.A.6B.【答案】D【解析】【分析】由题意化简为最简二次根式后依据二次根式的乘法运算法则进行运算即可得出答案.【详解】故选:D.【点睛】本题考查二次根式的乘法运算,熟练掌握二次根式的乘法运算法则是解题的关键.11.(2021)A B C.D2【答案】D【解析】【分析】根据二次根式的化简方法即可得.【详解】解:原式==故选:D.【点睛】本题考查了二次根式的化简,熟练掌握化简方法是解题关键.12.(2020x的取值范围是()A.x≤-3B.x>3C.x≥3D.x=3【答案】C【解析】【分析】根据二次根式有意义的条件:被开方数≥0,即可求出结论.【详解】x-≥解:由题意可得260x≥解得:3故选C.【点睛】此题考查的是二次根式有意义的条件,掌握二次根式有意义的条件:被开方数≥0,是解题关键.x应满足的条件为()13.(2022A.1x≠-B.1x>-C.1x<-D.x≤-1【答案】B【解析】【分析】根据分式分母不为0及二次根式中被开方数大于等于0即可求解.【详解】x+>,解:由题意可知:10∴1x>-,故选:B.【点睛】本题考察了分式及二次根式有意义的条件,属于基础题.本号资料*皆来源于微信:数学14.(2022广东广州)下列运算正确的是( )A 2=B .11a a a a +-=(0a ≠)C D .235a a a ⋅= 【答案】D【解析】【分析】根据求一个数的立方根,分式的加减,二次根式的加法,同底数幂的乘法运算,逐项分析判断即可求解.【详解】A.2=-,故该选项不正确,不符合题意; B.111a a a +-=(0a ≠),故该选项不正确,不符合题意;C. =D.235a a a ⋅=,故该选项正确,符合题意;故选D【点睛】本题考查了求一个数的立方根,分式的加减,二次根式的加法,同底数幂的乘法运算,正确的计算是解题的关键.15.(2022年内蒙古呼和浩特)下列运算正确的是( )A 2=±B .222()m n m n +=+C .1211-=--x x xD .2229332-÷=-y x xy x y【答案】D【解析】【分析】分别根据二次根式乘法法则,完全平方公式,异分母分式加减法法则以及分式除法法则计算出各项结果后,再进行判断即可.【详解】解:A. 2=,故此计算错误,不符合题意; B. 222()2m n m mn n +=++,故此计算错误,不符合题意; C. 1221(1)x x x x x --=---,故此计算错误,不符合题意; D. 22223933322y x x xy xy =x y y-÷=--,计算正确,符合题意, 故选:D .【点睛】本题主要考查了二次根式乘法,完全平方公式,异分母分式加减法以及分式除法,熟练掌握相关运算法则是解答本题的关键.16.(2022年湖北恩施)函数y 的自变量x 的取值范围是( ) A .3x ≠B .3x ≥C .1x ≥-且3x ≠D .1x ≥-【答案】C【解析】【分析】根据分式有意义的条件与二次根式有意义的条件得出不等式组,解不等式组即可求解.【详解】解: ∴10,30x x +≥-≠,解得1x ≥-且3x ≠,故选C .【点睛】本题考查了求函数自变量的取值范围,掌握分式有意义的条件与二次根式有意义的条件是解题的关键. 17.(2022年山东威海)试卷上一个正确的式子(11a b a b ++-)÷★=2a b +被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( )A .a a b -B .a b a -C .a a b +D .224a a b - 【答案】A【解析】【分析】根据分式的混合运算法则先计算括号内的,然后计算除法即可.【详解】 解:11a b a b ⎛⎫+÷ ⎪+-⎝⎭∴=2a b +()()a b a ba b a b -++÷+-∴=2a b +∴=()()22aa b a b a b ÷+-+ =aa b -,故选A .【点睛】题目主要考查分式的混合运算,熟练掌握运算法则是解题关键.18.(2022年河北省)若x 和y 互为倒数,则112x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的值是() A .1 B .2 C .3 D .4【答案】B【解析】【分析】 先将112x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭化简,再利用互为倒数,相乘为1,算出结果,即可【详解】112111221212121x y y x xy x y x y xy xy xyxy xy ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭=-⋅+⋅-=-+-=-+∴x 和y 互为倒数∴1xy =1212112xy xy -+=-+= 故选:B【点睛】本题考查代数式的化简,注意互为倒数即相乘为119.(2022年内蒙古乌海)若分式11x x --的值等于0,则x 的值为( ) A .﹣1B .0C .1D .±1【答案】A【解析】【分析】根据分式的值为0的条件即可得出答案.【详解】解:根据题意,|x |−1=0,x −1≠0,∴x =−1,故选:A .【点睛】本题考查了分式的值为0的条件,掌握分式的值为0的条件:分子等于0且分母不等于0是解题的关键.20.(2021年广西百色)当x =﹣2时,分式2232796x x x -++的值是( ) A .﹣15B .﹣3C .3D .15【答案】A【解析】【分析】 先把分子分母进行分解因式,然后化简,最后把2x =-代入到分式中进行正确的计算即可得到答案.【详解】 解:2232796x x x -++ ()()22393x x -=+()()()23333x x x +-+= ()333x x -=+ 把2x =-代入上式中原式()3231523--==--+故选A.【点睛】本题主要考查了分式的化简求值,解题的关键在于能够熟练掌握相关知识点进行求解运算.21.(2021年湖北黄石)函数()02y x =-的自变量x 的取值范围是( ) A .1x ≥-B .2x >C .1x >-且2x ≠D .1x ≠-且2x ≠【答案】C【解析】【分析】根据被开方数大于等于0,分母不为0以及零次幂的底数不为0,列式计算即可得解.【详解】 解:函数()02y x =-的自变量x 的取值范围是: 10x +>且20x -≠,解得:1x >-且2x ≠,故选:C .【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.22.(2022年辽宁大连)下列计算正确的是( )A 2=B 3=-C .=D .21)3=【答案】C【解析】【分析】分别化简二次根式判断即可.【详解】AB 3=,故该项错误,不符合题意; 本号资料皆*来源于微信:数学C 、=D 、221)13=+=+故选:C .【点睛】本题考查了二次根式的混合运算,正确利用二次根式运算法则是解题的关键.23.(2022年内蒙古通辽)下列命题:∴()3235m n m n ⋅=;∴数据1,3,3,5的方差为2;∴因式分解()()3422x x x x x -=+-;∴平分弦的直径垂直于弦;∴1≥x .其中假命题的个数是( )A .1B .3C .2D .4【答案】C【解析】【分析】根据积的乘方,方差的计算,多项的因式分解,垂径定理的推论,二次根式有意义的条件,逐项判断即可求解.【详解】解:∴()3362m n m n ⋅=,故原命题是假命题; ∴数据1,3,3,5的平均数为()1133534+++= ,所以方差为()()()()222211333335324⎡⎤-+-+-+-=⎣⎦,是真命题; ∴()()()324422x x x x x x x -=-=+-,是真命题;∴平分弦(不是直径)的直径垂直于弦,故原命题是假命题;* 本号资料皆来源于微信#:数学∴10x -≥,即1≥x ,是真命题;∴假命题的个数是2.故选:C【点睛】本题主要考查了积的乘方,方差的计算,多项的因式分解,垂径定理的推论,二次根式有意义的条件,熟练掌握相关知识点是解题的关键.24.(20222x -在实数范围内有意义,则x 的取值范围是( ) A .1x >-B .1x -C .1x -且0x ≠D .1x -且0x ≠ 【答案】C【解析】【分析】根据二次根式被开方数不能为负数,负整数指数幂的底数不等于0,计算求值即可;【详解】解:由题意得:x +1≥0且x ≠0,∴x ≥-1且x ≠0,故选: C .【点睛】本题考查了二次根式的定义,负整数指数幂的定义,掌握其定义是解题关键.25.(2022333=,…,6666633n ++++++=个根号,一般地,对于正整数a ,b ,如果满足n b b b b b a a ++++++=个根号时,称(),a b 为一组完美方根数对.如上面()3,6是一组完美方根数对.则下面4个结论:∴()4,12是完美方根数对;∴()9,91是完美方根数对;∴若(),380a 是完美方根数对,则20a =;∴若(),x y 是完美方根数对,则点(),P x y 在抛物线2yx x 上.其中正确的结论有( ) A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据定义逐项分析判断即可.【详解】 解:1244+=,∴()4,12是完美方根数对;故∴正确;109≠∴()9,91不是完美方根数对;故∴不正确;若(),380a a =即2380a a =+解得20a =或19a =-a 是正整数则20a =故∴正确;若(),x y x =2y x x ∴+=, 即2y x x故∴正确故选C【点睛】本题考查了求算术平方根,解一元二次方程,二次函数的定义,理解定义是解题的关键.26.(2022的值应在( )A .10和11之间B .9和10之间C .8和9之间D .7和8之间【答案】B【解析】【分析】6=【详解】6=∴43,∴910<,故选:B .【点睛】本题考查了二次根式混合运算及无理数的估算,熟练掌握无理数估算方法是解题的关键.27.(2022年内蒙古包头、巴彦淖尔)若1x =,则代数式222x x -+的值为( )A.7B .4C .3D .3- 【答案】C【解析】【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.28.(2021年湖南娄底)2,5,m ) 本号资料皆来*源于微信*:数学第*六感 A .210m -B .102m -C .10D .4【答案】D【解析】【分析】 先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+,解得:37x ,374m m =-+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简.29.(2021年广东)设6a ,小数部分为b ,则(2a b 的值是( )A .6B .C .12D .【答案】A【解析】【分析】a 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∴34<,∴263<<,∴62a =,∴小数部分624b ==∴(((22244416106a b =⨯==-=.故选:A .【点睛】本题考查了二次根式的运算,正确确定6a 与小数部分b 的值是解题关键.30.(2021年广西贺州)如{}1,2,M x =,我们叫集合M ,其中1,2,x 叫做集合M 的元素.集合中的元素具有确定性(如x 必然存在),互异性(如1x ≠,2x ≠),无序性(即改变元素的顺序,集合不变).若集合{},1,2N x =,我们说M N .已知集合{}1,0,A a =,集合1,,b B a a a ⎧⎫=⎨⎬⎩⎭,若A B =,则b a -的值是( ) A .-1 B .0 C .1 D .2【答案】C【解析】【分析】根据集合的确定性、互异性、无序性,对于集合B 的元素通过分析,与A 的元素对应分类讨论即可.【详解】解:∴集合B 的元素1,ba a ,a ,可得,∴0a ≠, ∴10≠a ,0ba =,∴0b =, 当11a =时,1a =,{}1,0,1A =,{}1,1,0B =,不满足互异性,情况不存在, 当1a a =时,1a =±,1a =(舍),1a =-时,{}1,0,1A =-,{}1,1,0B =-,满足题意,此时,=1b a -.故选:C【点睛】本题考查集合的互异性、确定性、无序性。

北师大初中数学中考总复习:分式与二次根式--巩固练习(基础)(精选)

北师大初中数学中考总复习:分式与二次根式--巩固练习(基础)(精选)

中考总复习:分式与二次根式—巩固练习(基础)【巩固练习】一、选择题1. 下列各式与x y相等的是( ) A .22x y B. 22y x ++ C. 2xy y D. 2x y x+ 2.(2015•泰安)化简:(a+)(1﹣)的结果等于( )A .a ﹣2B .a+2C .D .3.若分式211x x -+的值是0,则x 为( ) A .0 B.1 C.-1 D.±14.下列计算正确的是 ( )2712A. 82 2 B.941362C. (2+5)(2-5) 1 D.3 2 2--==-=-== 5.在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000 个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用 乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个 甲型包装箱可装x 个鸡蛋,根据题意下列方程正确的是( )A .x 10000-5010000+x =10 B .5010000-x -x 10000=10 C .x 10000-5010000-x =10 D .5010000+x -x 10000=10 6.函数123y x x =-+-中自变量x 的取值范围是( ) A. x ≤2 B. x =3 C. x <2且x ≠3 D. x ≤2且x ≠3二、填空题7.(2014春•张家港市校级期末)下列分式中,不属于最简分式的,请在括号内写出化简后的结果,否则请在括号内打“√”.① ② ③ ④ ⑤ .8.化简212293m m +-+的结果是__________. 9.某同学步行前往学校时的行进速度是6千米/时,从学校返回时行进速度为4千米/时,那么该同学往返学校的平均速度是____________千米/时.10.在223,,,,22x a ab a b x+中,是最简二次根式的有 个. 11. 若最简二次根式3235x x x ++与是同类二次根式,则x 的值为 .12.(1)把2225727-化简的结果是 . (2)估计的运算结果应在 之间.(填整数)三、解答题13.(2015•南京)计算:(﹣)÷.14.(1)已知:512a +=,求5361a a a a+++的值. (2)已知:2225-152x x --=,求2225-15x x +-的值.15.在“情系海啸”捐款活动中,某同学对甲、乙两班捐款情况进行统计,得到如下三条信息.信息1:甲班共捐款300 元, 乙班共挡捐款232 元.信息2: 乙班平均每人捐款钱数是甲班平均每人捐款钱数的45. 信息3 : 甲班比乙班多2人.请根据以上三条信息,求出甲班平均每人捐款多少元.16.已知2228442142x x y x x x y y x x ++=-+-++-+,求的值.【答案与解析】一、选择题1.【答案】C ; 【解析】化简2xy y =x y. 2.【答案】B ; 【解析】•=•=a+2.故选B .3.【答案】B ; 【解析】分式的值为0,则210,10,x x ⎧-=⎨+≠⎩解得1x =.4.【答案】A ;【解析】根据具体选项,应先进行化简,再计算. A 选项中,82222-=-=2, B 选若可化为3323333--=,C 选项逆用平方差公式可求得255+()(2-)=4-5=-1,而D 选项应将分子、分母都乘2,得62232-12-=.故选A. 5.【答案】B ;【解析】设每个甲型包装箱可装x 个鸡蛋,5010000-x -x10000=10. 故选B .6.【答案】A ;【解析】2-x ≥0,∴x ≤2,3不在x ≤2的范围内.二、填空题7.【答案】×,√,×,×,√; 【解析】①=; ②是最简分式; ③==;④=﹣1; ⑤是最简分式; 只有②⑤是最简分式.故答案为:×,√,×,×,√.8.【答案】23m -;【解析】找到最简公分母为(m +3)(m -3),再通分.]9.【答案】4.8;【解析】平均速度=总路程÷总时间,设从学校到家的路程为s ,则2242424 4.8325546ss s s s s s s ====++. 10.【答案】3; 【解析】223,,2ab a b +是最简二次根式. 11.【答案】-1;【解析】根据题意得x +3=3x +5,解得x =-1.12.【答案】(1)833; (2)3和4; 【解析】(1) 22257(257)(257)32188 3.2727327-+-⨯=== (2)18323,132323 4.2⨯+=++因为<<,∴<< 三、解答题13.【答案与解析】解:(﹣)÷=[﹣]×=[﹣]×=× =.14.【答案与解析】(1)∵25353,122a a ++=+= ∴a 2=a +1 原式=5326a a a a ++=526(1)a a a a ++=546a a a +=46(1)a a a +=66a a=1 (2)∵2222(25-15)(25-15)10x x x x --∙+-= ∴221025-1552x x +-==.15.【答案与解析】设甲班平均每人捐款x 元,则乙班平均每人捐款45x 元. 根据题意, 得300232245x x =+,解这个方程得5x =. 经检验,5x =是原方程解.答:甲班平均每人捐款5元.16.【答案与解析】由二次根式的定义及分式性质,得2240,4,2,20,x x x x ⎧-⎪-∴=⎨⎪+⎩≥≥0≠22222872442,22277214222142277142214214.22y x y y x ++∴=-+-+=+∴+-=+-=+-=-。

中考备考数学一轮复习 二次根式 练习题

中考备考数学一轮复习 二次根式 练习题

中考备考数学一轮复习 二次根式 练习题一、单选题1.(2022·湖北武汉·统考中考真题)下列各式计算正确的是( ) A 235B .3331=C 236=D 1226=2.(2021·湖北荆门·统考中考真题)下列运算正确的是( ) A .235x xB 2()x x -=C .23()x x x -+=D .22(1)21x x x -+=-+3.(2021·湖北襄阳·3x +x 的取值范围是( ) A .3x ≥-B .3x ≥C .3x ≤-D .3x >-4.(2021·湖北恩施·232-这三个实数中任选两数相乘,所有积中小于2的有( )个. A .0B .1C .2D .3二、填空题5.(2022·湖北武汉·统考中考真题)计算()22-的结果是_________.6.(2022·湖北荆州·统考中考真题)若32的整数部分为a ,小数部分为b ,则代数式()22a b ⋅的值是______.7.(2021·湖北黄冈·51-这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设51a -=51b +=则1ab =,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b=+++.则1210S S S +++=____.8.(2021·湖北荆州·统考中考真题)已知:(10132a -⎛⎫=+ ⎪⎝⎭,)(3232b =a b +_____________.9.(2021·湖北黄冈·2x +x 的取值范围是______. 10.(2022·湖北武汉·2(-4)_______________11.(2022·湖北黄冈·统考二模)若y =xy =_____.12.(2022·湖北随州·x 的取值范围是______.13.(2022·湖北孝感·统考模拟预测)那么x 的值可以是_________(只需写出一个)三、解答题14.(2022·湖北十堰·统考中考真题)计算:1202212(1)3-⎛⎫+- ⎪⎝⎭.15.(2022·湖北襄阳·统考中考真题)先化简,再求值:(a +2b )2+(a +2b )(a -2b )+2a (b -a ),其中a,b16.(2022·湖北恩施·统考中考真题)先化简,再求值:22111x x x x --÷-,其中x =17.(2021·湖北荆门·统考中考真题)先化简,再求值:22214244x x x x x x x x +-⎛⎫⋅- ⎪---+⎝⎭,其中3x = 18.(2021·湖北恩施·统考中考真题)先化简,再求值:222414816a a a a a ---÷+++,其中2a =.19.(2021·湖北荆州·统考中考真题)先化简,再求值:2221211a a a a a ++⎛⎫÷+ ⎪--⎝⎭,其中a =20.(2021·湖北黄石·统考中考真题)先化简,再求值:2111a a a -⎛⎫÷ ⎪⎝⎭-,其中31a.21.(2021·湖北襄阳·统考中考真题)先化简,再求值:2211x x x x x ++⎛⎫÷- ⎪⎝⎭,其中1x =.22.(2022·湖北咸宁·统考一模)计算:21|3|()2---23.(2022·湖北襄阳·统考二模)先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中1,1x y ==.24.(2022·湖北襄阳·统考一模)先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =.25.(2022·湖北随州·统考一模)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a .26.(2022·湖北恩施·统考一模)先化简,再求值:22491369x x x x ⎛⎫÷--++ ⎝⎭+⎪,其中3x =.27.(2022·湖北十堰·统考一模)计算:1122-⎛⎫⎪⎝⎭.28.(2022·湖北宜昌·统考一模)计算:01282⎛⎫- ⎪⎝⎭参考答案:1.C【分析】由合并同类二次根式判断A ,B ,由二次根式的乘除法判断C ,D .【详解】解:A ≠B 、原计算错误,该选项不符合题意;C =D 22= 故选:C .【点睛】本题考查合并同类二次根式,二次根式的乘法,二次根式的乘方运算,掌握以上知识是解题关键. 2.D【分析】根据相应运算的基本法则逐一计算判断即可 【详解】∵()236x x -=,∵A 计算错误;||x =, ∵B 计算错误; ∵2()x -+x 无法运算, ∵C 计算错误; ∵22(1)21x x x -+=-+, ∵D 计算正确; 故选D .【点睛】本题考查了幂的乘方,二次根式的化简,完全平方公式,熟练掌握各类公式的计算法则是解题的关键. 3.A【分析】根据二次根式有意义的条件,列出不等式,即可求解.【详解】∵ ∵x +3≥0,即:3x ≥-, 故选A .【点睛】本题主要考查二次根式有意义的条件,掌握二次根式的被开方式是非负数,是解题的关键. 4.C【分析】根据题意分别求出这三个实数中任意两数的积,进而问题可求解. 【详解】解:由题意得:(326,222,326-=-=---=∵所有积中小于2的有6,2--两个; 故选C .【点睛】本题主要考查二次根式的乘法运算,熟练掌握二次根式的乘法运算是解题的关键. 5.2【分析】根据二次根式的性质进行化简即可. 2(2)2-. 故答案为:2.()()2(0000a a a a a a a ⎧⎪==⎨⎪-⎩>)<.6.2【分析】先由122<得到1322<,进而得出a 和b ,代入()22a b ⋅求解即可. 【详解】解:∵ 122<, ∵1322<<,∵ 32的整数部分为a ,小数部分为b , ∵1a =,32122b ==∵()((222222242a b ⋅=⨯=-=, 故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 7.10【分析】先根据1ab =求出1111n n nS a b =+++(n 为正整数)的值,从而可得1210,,,S S S 的值,再求和即可得. 【详解】解:1ab =,111111()1n n n n n n n a S a b a a b ∴=+=+++++(n 为正整数),11()n n n n a a a ab =+++, 111n n n a a a =+++, 1=,12101S S S ===∴=, 则121010S S S +++=,故答案为:10.【点睛】本题考查了二次根式的运算、分式的运算,正确发现一般规律是解题关键. 8.2【分析】利用负整数指数幂和零指数幂求出a 的值,利用平方差公式,求出b 的值,进而即可求解.【详解】解:∵(112213a -⎛⎫=+ =⎪+⎝=⎭,221b ==-=,2, 故答案是:2.【点睛】本题主要考查二次根式求值,熟练掌握负整数指数幂和零指数幂以及平方差公式,是解题的关键. 9.x ≥-2【分析】根据二次根式有意义的条件:被开方数为非负数,列不等式求解即可. 【详解】由题意可知x +2≥0, ∵x ≥-2.故答案为:x ≥-2.【点睛】此题主要考查了二次根式有意义的条件,明确被开方数为非负数是解题关键. 10.4【分析】根据二次根式的性质进行求解即可.44-=,故答案为:4.a =是解题的关键. 11.【分析】根据二次根式有意义的条件得到x 和y 的值后可以得到解答. 【详解】解:由题意可得:x -2=2-x=0, ∵x=2,=∵xy=故答案为【点睛】本题考查二次根式的应用,熟练掌握二次根式有意义的条件是解题关键. 12.2x ≤且1x ≠【分析】根据二次根式和分式有意义的条件即可得出答案.【详解】解:根据题意得:2-x≥0,且x+1≠0,∵x≤2且x≠1,故答案为:x≤2且x≠1.【点睛】本题考查了二次根式和分式有意义的条件,掌握二次根式中的被开方数是非负数和分母≠0是解题的关键.13.3-(答案不唯一)5x+2x+5=2,解得x即可.5x+25x+x+5=2,解得,x=-3,故答案为:-3(答案不唯一).【点睛】本题考查了同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式,此题是开放题,只要满足题意即可.145【分析】根据负整数指数幂、乘方、绝对值的性质化简后计算即可.【详解】解:12022 125(1)3-⎛⎫+--⎪⎝⎭3521=-5【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、绝对值的性质化简.15.6,6ab【分析】直接利用完全平方公式、平方差公式化简,进而合并同类项,再把已知数据代入得出答案.【详解】解:原式=2222244422a b ab a b ab a+++-+-6ab=;a32b32,∵原式63232=6=【点睛】此题主要考查了二次根式的混合运算与整式的混合运算——化简求值,正确掌握整式的混合运算法则是解题关键.16.1x 【分析】先将除法转化为乘法,根据分式的性质约分,然后根据分式的减法进行化简,最后代入字母的值即可求解. 【详解】解:原式=()()21111x x xx x +-⋅-- 11x x=+- 1x xx +-= 1x=;当x ===. 【点睛】本题考查了分式的化简求值,分母有理化,正确的计算是解题的关键.17.21(2)x -;3+【分析】根据分式的减法和乘法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题. 【详解】2221()4244x x x x x x x x +-⋅----+ 22221(2)(2)(1)4(2)(2)4(2)(2)x x x x x x x x x x x x x x x x x ⎡⎤⎡⎤+-+--=⋅-=-⎢⎥⎢⎥------⎣⎦⎣⎦22414(2)(2)x x x x x x -=⋅=---将3x =3===+ 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18.22-+a , 【分析】先对分式进行化简,然后再代入进行求解即可.【详解】解:原式=()()()242421142222a a a a a a a a +-+-+-⨯=-=-+++;把2a 代入得:原式==【点睛】本题主要考查二次根式的运算及分式的化简求值,熟练掌握分式的运算及二次根式的运算是解题的关键. 19.1a a +6+3【分析】先计算括号内的加法,然后化除法为乘法进行化简,继而把23a =【详解】解:原式=()()21111a a a a a ++⎛⎫÷ ⎪--⎝⎭ ()()211=1+1a a a a a +-⎛⎫ ⎪-⎝⎭1=a a+ 当3a =232316+3+【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则. 20.11a +3【分析】先算括号内的减法,再把除法化为乘法,然后因式分解,约分化简,代入求值,再将结果化为最简二次根式即可. 【详解】解:原式=1(1)(1)()aa a a a a1(1)(1)a aa a a1=1a +, 将31a 代入,原式33113==-+【点睛】本题主要考查分式的化简求值,掌握因式分解,分式的通分,约分,二次根式的化简是解题的关键. 21.11x x +-;12【分析】将被除数中分子因式分解,括号里先通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,然后约分,得到最简结果,代入x 的值计算即可. 【详解】解:原式()2211x x xx x +⎛⎫=÷- ⎪⎝⎭, ()2211x x xx+-=÷,()()()2111x xx x x +=⋅+-,11x x +=-.当1x =时,原式1===【点睛】此题主要考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应先将多项式因式分解后再约分. 22.1-【分析】由21|3|3)2-=--==【详解】解:21|3|()2---34=-+1=-【点睛】本题考查实数的混合运算,涉及绝对值、负整指数幂、算术平方根等知识,是重要考点,掌握相关知识是解题关键. 23.9xy ,9.【分析】先按照完全平方公式、平方差公式、多项式乘以多项式计算整式的乘法,再合并同类项即可.【详解】解:2(2)()()5()x y x y x y x x y ++-+-- 222224455x xy y x y x xy =+++--+9.xy =当1,1x y ==上式)9119.==【点睛】本题考查的是整式的化简求值,同时考查了二次根式的混合运算,掌握完全平方公式与平方差公式进行简便运算是解题的关键.24【分析】根据分式的运算法则进行化简,再代入求解.【详解】解:原式=21(1)32(3)x x x x --⎛⎫÷⎪++⎝⎭212(3)3(1)x x x x -+⎛⎫=⋅ ⎪+-⎝⎭21x =- 将21x =22=. 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.25.13a +3【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值. 【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭ 212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭ 2311(3)a a a a ++=⋅++ 13a =+, 当33=a 时,原式33333==-+ 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.26323+【分析】先通分,再约分化简成最简形式,然后代入已知数值计算即可.【详解】(1﹣43x +)÷22969x x x -++ =234(3)3(3)(3)x x x x x +-+⋅++- =13x x -- 当33x =331323233333+-++=+- 【点睛】本题主要考查了分式化简求值,将分式化简成最简形式是解题的关键. 27.3【分析】先计算负整数指数幂、化最简二次根式、去绝对值,再进行加减计算即可. 【详解】解:原式=22323-=3-【点睛】本题考查二次根式的混合运算,涉及负整数指数幂、化最简二次根式和去绝对值.掌握二次根式的混合运算法则是解题关键.28.1-【分析】根据零指数幂,二次根式以及绝对值的性质,求解即可.【详解】解:1 22⎛⎫- ⎪⎝⎭21=-1=-【点睛】此题考查了实数的有关运算,涉及了零指数幂,二次根式的化简以及绝对值的性质,解题的关键是熟练掌握相关运算法则.。

中考数学一轮复习二次根式知识点及练习题及答案

中考数学一轮复习二次根式知识点及练习题及答案

一、选择题1.下列计算正确的是( ) A .()25-=﹣5 B .4y =2y C .822aaa=D .235+=2.二次根式1x -中字母x 的取值可以是( ) A .2B .0C .12-D .-13.若实数m 、n 满足等式402n m -+=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长( ) A .12B .10C .8D .6 4.下列计算正确的是( )A .325+=B .2222+=C .2651-=D .822-=5.计算:()555+=( )A .55+B .555+C .525+D .105 6.式子2x -在实数范围内有意义,则x 的取值范围是( ) A .0x <B .0xC .2xD .2x7.“分母有理化”是我们常用的一种化简的方法,如:23(23)(23)74323(23)(23)+++==+--+,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于3535+--,设3535x =+--,易知3535+>-,故0x >,由22(3535)35352(35)(35)2x =+--=++--+-=,解得2x =,即35352+--=.根据以上方法,化简3263363332-+--++后的结果为( ) A .536+ B .56+ C .56- D .536- 8.若实数a ,b 满足+=3,﹣=3k ,则k 的取值范围是( )A .﹣3≤k ≤2B .﹣3≤k ≤3C .﹣1≤k ≤1D .k ≥﹣19.下列二次根式中,最简二次根式是( ) A 23a B 13C 2.5D 22a b -10.使式子2124x x ++-成立的x 的取值范围是( ) A .x≥﹣2B .x >﹣2C .x >﹣2,且x ≠2D .x≥﹣2,且x ≠2二、填空题11.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.12.已知a 73+a 3+5a 2﹣4a ﹣6的值为_____. 13.下面是一个按某种规律排列的数阵:11第行325 62第行7223 10 11 233第行 13154 1732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示). 14.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--+-=+---m+4的算术平方根为________.15.已知|a ﹣20072008a -=a ,则a ﹣20072的值是_____. 16.11882. 17.若a 、b 为实数,且b 2211a a -+-+4,则a+b =_____. 18.3a ,小数部分是b 3a b -=______. 191262_____.20.12a 1-能合并成一项,则a =______.三、解答题21.1123124231372831-+-1【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法.【详解】22-+=1)2(3+⨯=121.【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.若x,y为实数,且y12.求xyyx++2-xyyx+-2的值.【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x≥0且4x﹣1≥0,解得x=14,此时y=12.即可代入求解.【详解】解:要使y有意义,必须140410xx-≥⎧⎨-≤⎩,即1414xx⎧≤⎪⎪⎨⎪≥⎪⎩∴x=14.当x=14时,y=12.又∵xyyx++2-xyyx+-2=-|∵x=14,y=12,∴xy<yx.∴+当x=14,y=12时,原式=.【点睛】(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.计算:21)3)(3--【答案】.【解析】【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算.【详解】解:原式2222]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.24.阅读下面的解答过程,然后作答:m和n,使m2+n2=a 且,则a可变为m2+n2+2mn,即变成(m+n)2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==25.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.26.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得 【分析】根据整式的运算公式进行化简即可求解. 【详解】(()69x x x x +--+=22369x x x --++ =6x+6把1x=代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.27.一样的式子,其实我==3==,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2.【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式2n+++=12.考点:分母有理化.28.计算(1))(12112-⨯--⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值.【答案】(1)28-;(2)17. 【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得. 【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y==,1122x y ∴+=+=,()11119112224xy =⨯=⨯-=,则()222x xy y x y xy ++=+-,22=-,192=-, 17=. 【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】根据二次根式的性质对A 、B 进行判断;利用分母有理化对C 进行判断;利用二次根式的加减法对D 进行判断. 【详解】解:A 、原式=5,所以A 选项错误;B 、原式=,所以B 选项错误;Ca =,所以C 选项正确;D D 选项错误. 故选:C . 【点睛】本题主要考查了二次根式的性质以及合并同类项法则,正确化简各式是解题的关键.2.A解析:A 【分析】根据二次根式有意义,被开方数非负列出不等式,求解,再依此选择合适的选项. 【详解】 解:由题意得: x-1≥0 解之:x≥1.1>. 故选:A . 【点睛】本题考查二次根式有意义的条件.理解二次根式有意义,被开方数非负是解题关键.3.B解析:B 【分析】先根据绝对值的非负性、二次根式的非负性求出m 、n 的值,再根据三角形的三边关系、等腰三角形的定义求出第三边长,然后根据三角形的周长公式即可得. 【详解】由题意得:20,40m n -=-=, 解得2,4m n ==,设等腰ABC 的第三边长为a ,,m n 恰好是等腰ABC 的两条边的边长,n m a n m ∴-<<+,即26a <<,又ABC 是等腰三角形, 4a n ∴==,++=,则ABC的周长为24410故选:B.【点睛】本题考查了绝对值的非负性、二次根式的非负性、三角形的三边关系、等腰三角形的定义等知识点,根据三角形的三边关系和等腰三角形的定义求出第三边长是解题关键.4.D解析:D【分析】直接利用二次根式的加减运算法则计算得出答案.【详解】解:AB、无法计算,故此选项错误;C、D,正确.故选:D.【点睛】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.5.B解析:B【分析】根据乘法分配律可以解答本题.【详解】)5=5+故选:B.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.6.D解析:D【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】x-≥,即:20x,解得:2故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键.7.D解析:D 【分析】根据题中给的方法分别对633633--+和3232-+进行化简,然后再进行合并即可. 【详解】设633633x =--+,且633633-<+, ∴0x <,∴26332(633)(633)633x =---+++, ∴212236x =-⨯=, ∴6x =-, ∵3252632-=-+, ∴原式5266=--536=-, 故选D . 【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.8.C解析:C 【解析】依据二次根式有意义的条件即可求得k 的范围. 解:若实数a ,b 满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤-≤0 ②+②可得﹣3≤﹣≤3,又有﹣=3k ,即﹣3≤3k ≤3,化简可得﹣1≤k ≤1.故选C .点睛:本题主要考查了二次根式的意义和性质.解题的关键在于二次根式具有双非负性,即≥0(a ≥0),利用其非负性即可得到0≤≤3,0≤≤3,并对0≤≤3变形得到﹣3≤-≤0,进而即可转化为关于k 的不等式组,求出k 的取值范围.9.A解析:A 【解析】试题分析:最简二次根式是指不能继续化简的二次根式,A 、原式=;B 、是最简二次根式,不能化简;C 、原式=;D 、原式=. 考点:最简二次根式 10.C解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】解:由题意得:2x -40≠,2x ∴≠±,又∵20x +≥,∴x ≥-2.∴x 的取值范围是:x>-2且2x ≠.故选C.【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.二、填空题11.﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣b|+=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b . 故答案为﹣2b .点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣()2a b +=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a .b 都是数轴上的实数,注意符号的变换. 12.-4【分析】先将a 进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a=-=-=-3时,原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(解析:-4【分析】先将a进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】-3时,解:当a原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(a+3)2-7a+3=7a-7-7a+3=-4.故答案为:-4.【点睛】本题综合运用了二次根式的化简,提公因式及完全平方公式法分解因式,熟练掌握分母有理化的方法及因式分解的方法是解题的关键.13.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.14.3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m=5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:35302302x y mx y mx y+--=⎧⎪+-=⎨⎪+=⎩,解得:x=1,y=1,m=5,∴==3.故答案为3.【点睛】本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.15.2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007|+=a,∴a≥2008,解析:2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007=a,∴a≥2008,∴a﹣2007=a,=2007,两边同平方,得:a﹣2008=20072,∴a﹣20072=2008.故答案为:2008.点睛:解决此题的关键是能够得到a的取值范围,从而化简绝对值并变形.16.【解析】【详解】根据二次根式的性质和二次根式的化简,可知==.故答案为.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.【解析】【详解】22.故答案为2. 【点睛】 此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.17.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.18.【详解】若的整数部分为a,小数部分为b,∴a=1,b=,∴a-b==1.故答案为1.解析:【详解】a,小数部分为b,∴a=1,b1,∴-b1)=1.故答案为1.19.6【分析】利用二次根式乘除法法则进行计算即可.【详解】===6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.解析:6【分析】==进行计算即可.【详解】=6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

分式方程和二次根式试题和答案

分式方程和二次根式试题和答案

分式方程和二次根式专项讲解一.知识框架二.知识概念1、分式:形如BA,A 、B 是整式,B 中含有未知数且B 不等于0的整式叫做分式。

其中A叫做分式的分子,B 叫做分式的分母。

分式方程的意义:分母中含有未知数的方程叫做分式方程.二次根式:一般地,形如√ā(a≥0)的代数式叫做二次根式。

当a >0时,√a 表示a 的算数平方根,其中√0=0 2、分式有意义的条件:分母不等于03、分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。

用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C 为整式,且C≠0) 5、最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6、分式的四则运算:①同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加 减.用字母表示为:cba cbc a ±=± ②异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:bdbcad d c b a ±=± ③分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:bdacd c b a =* ④分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.bc ad d c b a =÷(2).除以一个分式,等于乘以这个分式的倒数: cd b a d c b a *=÷ 7、 理解并掌握下列结论: (1)()0≥a a 是非负数; (2)()()02≥=a a a ; (3)()02≥=a a a ;三、知识讲解【例1】(2009年黔东南州)当x_____时,11+x 有意义.(1-≠x )★直通中考:1、(2009年漳州)若分式12x -无意义,则实数x 的值是 x=2 . 2、(2009年天津市)若分式22221x x x x --++的值为0,则x 的值等于 x=2 .3、(2010安徽芜湖)要使式子a +2a有意义,a 的取值范围是( B ) A .a ≠0 B .a >-2且a ≠0 C .a >-2或a ≠0 D .a ≥-2且a ≠0 4、已知有意义,则在平面直角坐标系中,点P (m ,n )位于第 __四__ 象限.【例2】(2009年成都)分式方程2131x x =+的解是 x=2 ★直通中考:1、(2009年潍坊)方程3123x x =+的解是 .(x=9) 2、(2009宁夏)解分式方程:1233x x x +=--.(37=x ) 【例3】(2009 年佛山市)化简:2211xyx y x y x y⎛⎫+÷ ⎪-+-⎝⎭ (y 2)★直通中考:1、(2009年湖南长沙)分式111(1)a a a +++的计算结果是( C ) A .11a + B .1a a +C .1aD .1a a+ 2、(2009年佳木斯)计算21111a a a ⎛⎫+÷ ⎪--⎝⎭= (1+a a) 3、(2009年成都)化简:22221369x y x y x y x xy y +--÷--+=_______ (yx y -2) 4、(2010广东广州)若a <1,化简2(1)1a --=( D )A .a ﹣2B .2﹣aC .aD .﹣a5、已知2<x <5,化简2(2)x -+2(5)x -=________.(3) 【例4】(2009年内江市)已知25350x x --=,则22152525x x x x ----=__________.(528) ★直通中考:1、(2009烟台市)设0a b >>,2260a b ab +-=,则a bb a+-的值等于.(2) 2、(2009年枣庄市)已知a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P = Q (填“>”、“<”或“=”).3、(2011·呼和浩特)若x 2-3x +1=0,则x 2x 4+x 2+1的值为________.(81)4、(2011·乐山)若m 为正实数,且m -1m =3,则m 2-1m2=________.(53)5、(2010四川广安)若|2|20x y y -++=,则xy 的值为( A ) A .8 B . 2 C .5 D .6-6、已知522+-+-=x x y ,则x y =________.(52) 【例5】(2009年河北)已知a = 2,1-=b ,求2221a b a ab --+÷1a的值.解:化简后1++b a ,代入可得2112=+-★直通中考:1、(2009年莆田)先化简,再求值:2244242x x x x x x +++÷---,其中1x =.解:化简后x -,代入可得-12、(2009年衡阳市)先化简,再求值:212)14(-÷-+-a a a a a ,其中31=a .解:化简后13-a ,代入可得01313=-⨯3、(2011年中考)已知x 是一元二次方程0132=-+x x 的实数根,求代数式⎪⎭⎫ ⎝⎛--+÷--2526332x x x x x 的值.解:化简后)3(31+x x ,因为0132=-+x x 可化为1)3(=+x x ,故原式可得314、(2009湖北省荆门市)已知x =2+3,y =2-3,计算代数式2211()()x y x y x y x y x y+----+的值.解:化简后xy 4-,代入可得()()34-32324-=-+5、如图,点A 的坐标为(﹣,0),点B 在直线y=x 上运动,当线段AB 最短时点B 的坐为( A )A .(﹣,﹣)B .(﹣,﹣)C .(,)D . (0,0)6、如图所示,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为__4_______.【例6】(2009年安顺)下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的统计图表如下: 依据上列图表,回答下列问题:(1) 其中观看足球比赛的门票有_50__张;观看乒乓球比赛的门票占全部门票的_20_%;(2) 公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地完全相同且充分洗匀),问员工小华抽到男篮门票的概率是 ;(103)(3) 若购买乒乓球门票的总款数占全部门票总款数的61,求每张乒乓球门票的价格。

中考数学(通用)复习重点题型训练:化简求值课件(整式、分式、二次根式的化简)

中考数学(通用)复习重点题型训练:化简求值课件(整式、分式、二次根式的化简)
2
【解析】原式=(x2-9y2+4y2-4xy+x2+5y2-5xy2-2x2+x2y)
÷ ( 1 xy) =(-4xy-5xy2+x2y)÷ ( 1 xy) =8+10y-2x,当
2
2
x=95,y=220时,原式=8+10×220-2×95=2 018.
【题型二】 分式的化简求值
3.(202X·河南二模)先化简,再求值: ( 1 1 )
ab ab
b , 其中实数a,b满足(a-2)2+|b-2a|=0.
a2 2ab b2
【解析】
(
a
1
b
a
1
) b
a2
b 2ab
b2
a b (a b) (a b)2 (a b)(a b) b
2b
(a b)2
(a b)(a b) b
2a 2b, ab
∵(a-2)2+|b-2a|=0,
1,其中a=
12 ( 4)0 (1)1 tan 30. 3
【解析】原式=
a2
a
a 1
2a(a 1)(a 1) (a 1)2
a(a 1)(a 1)(a 1) a 1 (a 1)2
=a,
a=2 3 1 3 3 5 3 2. 33
【题型三】二次根式的化简求值
7.(202X·松江区期中)先化简,再求值:已知x= 1 ,
a b
2 0,解得 2a 0,
a b
2, 4,
原式 2 2 2 4 4 2 .
24
63
4.(202X·重庆沙坪坝月考)先化简,再求值: 3m
3m
(m 2 5 ) 9 6m m2 ,其中m是方程x2=6-2x的解.

浙教版备考中考数学一轮专题4分式与二次根式

浙教版备考中考数学一轮专题4分式与二次根式

4.如果分式
中的 x 和 y 都扩大 3 倍,那么分式的值( )
A. 扩大 3 倍
B. 不变
C. 缩小 3 倍
D. 缩小 6 倍
5.化简
的结果是( )
A. x-1
B. x+1
C. 1-x
D. -x-1
6.解分式方程 -
=3,去分母后所得的方程是( )
A. 1-2(3x+1)=3
B. 1-2(3x+1)=2x
答案解析部分
一、选择题
1.【解析】【解答】解:根据分式的定义, , ,

是分式,所以这些代数式中分式的
个数是 4. 故答案为:D.
【分析】此题考查分式的定义:形如 , A、B 是整式,B 中含有字母且 B≠0 的式子叫做分式. 其中 A 叫
做分式的分子,B 叫做分式的分母. 根据分式的定义逐一判断即可. 这里注意 的分母 π 是无理数而不是含
C. 1-2(3x+1)=6x
D. 1-6x+2=6x
7.已知 a<b<0,x=
,y=
,则下列结论正确的是( )
A. x<y
B. x>y
C. x=y
D. 无法确定
8.关于 x 的方程
=2+ 无解,则 m 的值为( )
A. -5
B. -8
C. -2
D. 5
9.要使式子
有意义,a 的取值范围是( )
A. a≠0
17.如果 x+ =3,则
的值为________.
18.若|a-b+1|与
互为相反数,则 a=________,b=________.
19.河堤横断面如图所示,堤高 BC=5 米,迎水坡 AB 的坡比是 1∶2,则 AB 的长是________.

中考总复习:分式与二次根式--巩固练习(提高)

中考总复习:分式与二次根式--巩固练习(提高)
4.【答案】D; 【解析】本题可逆用公式(ab)m=ambm 及平方差公式,将原式化为
( 2 1)( 2 1) 2012 ( 2 1) 2 1.
故选 D.
5.【答案】A;
【解析】设小玲步行的平均速度为 x 米/分,则骑自行车的速度为 4x 米/分,依题意,得 2800 - 2800 =30 . x 4x
8.若 m= 2011 ,则 m5 2m4 2011m3 的值是
.
2012 1
9. 下列各式:①
a b
a
;②
b
3 4
3
;③
4
5
5
;④
93
2b 1 3a 3a
6ab(a>0,b≥0). 其中正
确的是
(填序号).
x 3
10.当 x=__________时,分式
的值为 0.
x3
11.(1)若 x 1- 1 x (x y)2 ,则 x y 的值为
11.【答案】(1)2; (2) 5 3 ; 3
【解析】(1)由 x 1 1 x ,知 x=1,∴(x+y)2=0,∴y=-1,∴x-y=2.
(2) x y 5, xy 3, x>0, y>0, 原式 xy xy x y xy 5 3.
y x xy
3
12.【答案】

【解析】(1)
=
5x 1
0
和x
0 ,求
x4
1 x4
的值.
14.(2015)设 a=
,b=2,c= .
(1)当 a 有意义时,求 x 的取值范围. (2)若 a、b、c 为 Rt△ABC 三边长,求 x 的值.
15.一项工程,甲、乙两公司合做,12 天可以完成,共需付工费 102000 元;如果甲、乙两公司单独完 成此项公程,乙公司所用时间甲公司的 1.5 倍,乙公司每天的施工费比甲公司每天的施工费少 1500 元. (1)甲、乙公司单独完成此项工程,各需多少天? (2)若让一个公司单独完成这项工程,哪个公司施工费较少?

中考数学一轮复习习题分类三分式与二次根式试题(共3页)

中考数学一轮复习习题分类三分式与二次根式试题(共3页)

〔分式(fēnshì)与二次根式〕
15.化简求值:[﹣]•,其中x=+1.
16.化简求值:,其中.
1、先化简,再求值:,其中
1、当分式有意义时,x的取值范围是 .
2、先化简,再求值:其中
1、假设,那么=〔〕
A. B. C.D.1、,求的值.
1、一筐苹果(píngguǒ)总重千克,筐本身重千克,假设将苹果平均分成份,那么每份重______千克.
1、化简: .
2、计算: = .
3、假设分式的值是0,那么b的值是〔〕。

A. 1
B.-1
C.±1
D. 2
4、先化简:,再从1,-1和三个数中选一个你认为适宜的数作为的值代入求值。

5、使分式有意义的x的取值是〔〕。

≠0 B. x≠±3 C. x≠-3 D. x≠3
6、计算:+2sin60°= 。

7、先化简再求值:选一个使原代数式有意义的数带入求值.
8、先化简,再求值:,其中。

9、先化简再求值:,其中.
10、先化简,再求值:,其中(qízhōng)
11、先化简,再求值:,其中.
12、化简分式的结果是。

7.要使分式的值是0,你认为x可获得数是〔〕
A.9 B.±3 C.-3 D.3
15.化简求值:,其中.
内容总结
(1)5、使分式有意义的x的取值是〔〕
(2)7、先化简再求值:选一个使原代数式有意义的数带入求值. 先化简,再求值:,其中。

北师大初中数学中考总复习:分式与二次根式--巩固练习(基础)-精编

北师大初中数学中考总复习:分式与二次根式--巩固练习(基础)-精编

中考总复习:分式与二次根式—巩固练习(基础)【巩固练习】一、选择题1. 下列各式与x y相等的是( ) A .22x y B. 22y x ++ C. 2xy y D. 2x y x+ 2.(2015•泰安)化简:(a+)(1﹣)的结果等于( ) A .a ﹣2 B .a+2 C . D .3.若分式211x x -+的值是0,则x 为( ) A .0 B.1 C.-1 D.±14.下列计算正确的是 ( )2712A. 82 2 B.941362C. (2+5)(2-5) 1 D.3 2 2--==-=-== 5.在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000 个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用 乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个 甲型包装箱可装x 个鸡蛋,根据题意下列方程正确的是( )A .x 10000-5010000+x =10 B .5010000-x -x 10000=10 C .x 10000-5010000-x =10 D .5010000+x -x 10000=10 6.函数123y x x =-+-中自变量x 的取值范围是( ) A. x ≤2B. x =3C. x <2且x ≠3D. x ≤2且x ≠3二、填空题 7.(2014春•张家港市校级期末)下列分式中,不属于最简分式的,请在括号内写出化简后的结果,否则请在括号内打“√”. ① ② ③ ④ ⑤ .8.化简212293m m +-+的结果是__________.9.某同学步行前往学校时的行进速度是6千米/时,从学校返回时行进速度为4千米/时,那么该同学往返学校的平均速度是____________千米/时.10.在223,,,,22x a ab a b x+中,是最简二次根式的有 个. 11. 若最简二次根式3235x x x ++与是同类二次根式,则x 的值为 .12.(1)把2225727-化简的结果是 . (2)估计的运算结果应在 之间.(填整数)三、解答题13.(2015•南京)计算:(﹣)÷.14.(1)已知:512a +=,求5361a a a a +++的值. (2)已知:2225-152x x --=,求2225-15x x +-的值.15.在“情系海啸”捐款活动中,某同学对甲、乙两班捐款情况进行统计,得到如下三条信息.信息1:甲班共捐款300 元, 乙班共挡捐款232 元.信息2: 乙班平均每人捐款钱数是甲班平均每人捐款钱数的45. 信息3 : 甲班比乙班多2人.请根据以上三条信息,求出甲班平均每人捐款多少元.16.已知2228442142x x y x x x y y x x ++=-+-++-+,求的值.【答案与解析】一、选择题1.【答案】C ; 【解析】化简2xy y =x y. 2.【答案】B ;【解析】•=•=a+2.故选B .3.【答案】B ; 【解析】分式的值为0,则210,10,x x ⎧-=⎨+≠⎩解得1x =.4.【答案】A ;【解析】根据具体选项,应先进行化简,再计算. A 选项中,82222-=-=2, B 选若可化为3323333--=,C 选项逆用平方差公式可求得255+()(2-)=4-5=-1,而D 选项应将分子、分母都乘2,得62232-12-=.故选A. 5.【答案】B ;【解析】设每个甲型包装箱可装x 个鸡蛋,5010000-x -x10000=10. 故选B .6.【答案】A ;【解析】2-x ≥0,∴x ≤2,3不在x ≤2的范围内.二、填空题7.【答案】×,√,×,×,√; 【解析】①=; ②是最简分式; ③==;④=﹣1; ⑤是最简分式; 只有②⑤是最简分式.故答案为:×,√,×,×,√.8.【答案】23m -;【解析】找到最简公分母为(m +3)(m -3),再通分.]9.【答案】4.8;【解析】平均速度=总路程÷总时间,设从学校到家的路程为s ,则2242424 4.8325546ss s s s s s s ====++. 10.【答案】3; 【解析】223,,2ab a b +是最简二次根式. 11.【答案】-1;【解析】根据题意得x +3=3x +5,解得x =-1.12.【答案】(1)833; (2)3和4; 【解析】(1) 22257(257)(257)32188 3.2727327-+-⨯=== (2)18323,132323 4.2⨯+=++因为<<,∴<< 三、解答题13.【答案与解析】解:(﹣)÷ =[﹣]× =[﹣]× =× =.14.【答案与解析】(1)∵25353,122a a ++=+= ∴a 2=a +1 原式=5326a a a a ++=526(1)a a a a ++=546a a a +=46(1)a a a +=66a a=1 (2)∵2222(25-15)(25-15)10x x x x --∙+-= ∴221025-1552x x +-==.15.【答案与解析】设甲班平均每人捐款x 元,则乙班平均每人捐款45x 元. 根据题意, 得300232245x x =+,解这个方程得5x =. 经检验,5x =是原方程解.答:甲班平均每人捐款5元.16.【答案与解析】由二次根式的定义及分式性质,得2240,4,2,20,x x x x ⎧-⎪-∴=⎨⎪+⎩≥≥0≠22222872442,22277214222142277142214214.22y x y y x ++∴=-+-+=+∴+-=+-=+-=-。

2009年中考数学试题分类汇编—二次根式

2009年中考数学试题分类汇编—二次根式

2009年中考数学试题分类汇编一二次根式.-9芜湖)已知|a • 1|「厂F =0,则a _b =1 x —3(D) y = . x -3问题的答案是(只需填字母):(2)如果一个数与,2相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).(1) A 、D 、E ;注:每填对一个得1分,每填错一个扣1分,但本小题总分最少0分.注:无"a 为有理数” 扣1分;写x = J2a 视同x = .V 2(2009,肇庆) 函数 y = x 「2的自变量x 的取值范围是()C A . x 2B . x 2C . x > 2D . x < 2(2008,天津)化简:58 -. 8 =.丘(2009, (2009, 莆田)若•.(a -3)2 =3-a ,则a 与3的大小关系是()Ba :: 3 B . a _ 3 C .a 3 D . a _3(2009, A . .3+ 3= 6 B . ,3 — 3= 0 1(2009,兰州)函数y =2 — x + 中自变量x-3.x = 3C厦门)下列计算正确的是( C . 3 3= 9x 的取值范围是(A . x < 2(2009, 庆阳) 1使一在实数范围内有意义的x 应满足的条件是(2009, 广州) F 列函数中,自变量 x 的取值范围是x >3的是(.(-3)2— 3(A)(2009, 佛山)(i ) 有这样一个问题:2与下列哪些数相乘,结果是有理数?(2)设这个数为x ,则xr 2二a ( a 为有理数),所以a「2 (a 为有理数)(2009,新疆)若X =用 _n, y = m Jn,则xy 的值是()DA . 2 . m B. 2 一nC. m nD. m - n' 1 丫(2009,肇庆)计算:丄sin4 5° G/2009)0I 2丿解:原式=-2 2 12=1_ f 1屮(2009,梧州)计算: A2 - 2sin 60:12丿解:原式=2、3 • 2 -2 32=2 3 2 - . 3=•、3 2(2009,玉林)计算.3 $的结果是()CA . 9B . -9C . 3D . -3(2009,贺州)下列根式中不是最简二次根式的是().AA . 、2B . .6C . 、8D . 、10(2009,南宁)要使式子X 1x有意义,X的取值氾围是()DA . X = 1B . X=0C . x -1 且x = 0D . X > -1且x = 0(2009,白色)在函数y =・、2x -1中,自变量x的取值范围是__________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009中考数学第一轮复习分式和二次根式专题训练一、填空题:(每题3 分,共36 分)
1、当x____时,分式
x2
x-3
有意义。

2、当____时,a-2有意义。

3、计算:
a2
a-1
-a-1=____。

4、化简:(x2-xy)÷x-y
xy
=____。

5、分式
b
2a2

4a
3bc

a
5c2
的最简公分母是____。

6、比较大小:23____32。

7、已知x+2y
2y

5
2
,则
x+y
y
的值是____。

8、若最简根式x+1和y3是同类根式,则x+y=____。

9、仿照20.5=22·0.5=4×0.5=2的做法,化简31
3
=____。

10、当2<x<3 时,(2-x)2-(x-3)2=____。

11、若3的小数部分是a,则a=____。

12、若=1-x+x-1+2成立,则x+y=____。

二、选择题:(每题4 分,共24 分)
1、下列各式中,属于分式的是()
A、x-y
2
B、
2
x+y
C、
1
2
x+D、
x
2
2、对于分式
1
x-1
总有()
A、1
x-1=
x-1
(x-1)2
B、
1
x-1

x+1
x2-1
C、
1
x-1

12
(x-1)2
D、
1
x-1

1
1-x
3、下列根式中,属最简二次根式的是()
A、27
B、x2+1
C、1
2
D、a2b 4、可以与18合并的二次根式是()
A、27
B、6
C、1
3
D、8
5、如果分式
2x
x+y
中的x 和都扩大为原来的2 倍,那么分式的值()
y
y
y
A、扩大2 倍
B、扩大4 倍
C、不变
D、缩小2 倍6、当x<0 时,|x2-x|等于()
A、0
B、-2x
C、2x
D、-2x或0
三、计算:(每题 6 分,共24 分)
1、(
b
2a2
)3÷(
2b2
3a
)0×(-
b
a
)-22、(
x2
x-2

4
2-x

x+2
2x
3、8-4
2
+124、(32-23)2
四、计算:(每题 6 分,共24 分)
1、x
x+y -
y
y-x

2xy
x2-y2
2、
x2-1
x2+4x+4
÷(x+1)·
x2+3x+2
x-1
3、20+5
5

1
3
·124、4b
a
b

2
a a
5b3-3ab (1
ab
+4ab)
五、解答题:(每题8 分,共32 分)
1、某人在环形跑道上跑步,共跑两圈,第一圈的速度是x 米/分钟,第二圈的速度是米/分钟(x>),则他平均一分钟跑的路程是多少?
y y
2、若菱形的两条对角线的长分别为 32+23 和 32-23,求菱形的面积。

3、如图,是某住宅的平面结构示意图,图中标明了有关尺寸(墙体厚度忽略不计,单位:m ),房主计划把卧室以外的地面都铺上地砖,如果他选用的地砖的价格是 a 元/m 2,则买砖至少需要多少元?若每平方米需砖 b 块,则他应该买多少块砖?(用含 a ,x ,的代数式表示)。

六、(10分)某同学作业本上做了这么一道题:“当 a
时,
试求 a +
a 2-2a +1
的值”,其中
是被墨水弄污的,该同学所求得的答案为1
2
,请你判断该同学答案是
否正确,说出你的道理。

y
答案
(三)
一、1、≠32、a≥23、
1
a-1
4、x2y
5、30a2bc2
6、<
7、2
8、4
9、310、111、3-112、3
二、1、B2、A3、B4、D5、C6、B
三、1、=b3
8a6
·1×
a3
b2

b
8a4
2、=
x+2
x-2
·
2x
x+2

2x
x-2
3、=22-22+23=23
4、=18-126+12=30-126
四、1、=x2-xy
x2-y2

xy+y2
x2-y2

2xy
x2-y2

(x+y)2
x2-y2

x+y
x-y
2、
x+1
x+2
3、=2+1-2=1
4、4ab+2ab ab-3ab-6ab ab=ab-4ab ab
五、1、
2
1
x

1
y
2、
1
2
(32+23) (32-23)=1
2
(18-12)=3
3、解:2x·4y+x·2y+xy=8xy+2xy+xy=11xy①11axy元②11bxy 块
六、a+(a-1)2=a+| a-1 |当a≥1 时,上式=2a-12a-1=1
2
时,a=
3
4
(不合题
意)
当a<1时,上式=1∴该同学答案不对。

相关文档
最新文档