函数的极值与导数(人教A版)
高中数学人教A版选修1-1习题:第三章3.3-3.3.2函数的极值与导数 Word版含答案
第三章导数及其应用3.3 导数在研究函数中的应用3.3.2 函数的极值与导数A级基础巩固一、选择题1.可导“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取得极值”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:对于f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出f(x)在x=0处取极值,反之成立.答案:B2.已知可导函数f(x),x∈R,且仅在x=1处,f(x)存在极小值,则( )A.当x∈(-∞,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0B.当x∈(-∞,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)>0C.当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0D.当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)<0解析:因为f(x)在x=1处存在极小值,所以x<1时,f′(x)<0,x>1时,f′(x)>0.答案:C3.函数y=x3-3x2-9x(-2<x<2)有( )A.极大值5,极小值-27B.极大值5,极小值-11C.极大值5,无极小值D.极小值-27,无极大值解析:由y′=3x2-6x-9=0,得x=-1或x=3,当x<-1或x>3时,y′>0;当-1<x<3时,y′<0.故当x=-1时,函数有极大值5;x取不到3,故无极小值.答案:C4.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为( ) A.-1<a<2 B.-3<a<6C.a<-1或a>2 D.a<-3或a>6解析:f′(x)=3x2+2ax+(a+6),因为f(x)既有极大值又有极小值,那么Δ=(2a)2-4×3×(a+6)>0,解得a>6或a<-3.答案:D5.设a∈R,若函数y=e x+ax,x∈R有大于零的极值点,则( )A.a<-1 B.a>-1C.a>-1eD.a<-1e解析:y′=e x+a=0,e x=-a,因为x>0,所以 e x>1,即-a>1,所以a<-1.答案:A二、填空题6.函数f(x)=x3-6x+a的极大值为________,极小值为________.解析:f′(x)=x2-6令f′(x)=0,得x=-2或x=2,所以f(x)极大值=f(-2)=a+42,f(x)极小值=f(2)=a-4 2.答案:a+42,a-4 2.7.已知函数y=x3+ax2+bx+27在x=-1处取极大值,在x=3处取极小值,则a=________,b=________.解析:y′=3x2+2ax+b,根据题意知,-1和3是方程3x2+2ax+b=0的两根,由根与系数的关系可求得a=-3,b=-9.经检验,符合题意.答案:-3 -98.已知函数f(x)=ax3+bx2+cx,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示.则下列说法中不正确的是________.①当x =32时,函数取得极小值;②f (x )有两个极值点;③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由图象可知当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点1和2,且当x =2时,函数取得极小值,当x =1时,函数取得极大值.故只有①不正确.答案:① 三、解答题9.已知f (x )=13x 3-12x 2-2x ,求f (x )的极大值与极小值.解:由已知得f (x )的定义域为R.f ′(x )=x 2-x -2=(x +1)(x -2).令f ′(x )=0,得x =-1或x =2.当x 变化时,f ′(x )与f (x )的变化情况如下表:↗↘↗因此,当x =-1时,f (x )取得极大值,且极大值为f (-1)=3×(-1)3-2×(-1)2-2×(-1)=76;当x =2时,f (x )取得极小值,且极小值为f (2)=13×23-12×22-2×2=-103.从而f (x )的极大值为76,极小值为-103.10.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处取极值10,求f (2)的值. 解:f ′(x )=3x 2+2ax +b .由题意得⎩⎪⎨⎪⎧f (1)=10,f ′(1)=0,即⎩⎪⎨⎪⎧a 2+a +b +1=10,2a +b +3=0, 解得⎩⎪⎨⎪⎧a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3. 当a =4,b =-11时,令f ′(x )=0,得x 1=1,x 2=-113.当x 变化时,f ′(x ),f (x )的变化情况如下表:↗↘↗当a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0, 所以 f (x )在x =1处没有极值,不合题意. 综上可知f (2)=18.B 级 能力提升1.等差数列{a n }中的a 1,a 4 031是函数f (x )=13x 3-4x 2+6x -1的极值点,则log 2a 2 016的值为( )A .2B .3C .4D .5解析:因为f ′(x )=x 2-8x +6,且a 1,a 4 031是函数f (x )=13x 3-4x 2+6x -1的极值点,所以a 1,a 4 031是方程x 2-8x +6=0的两个实数根,则a 1+a 4 031=8.而{a n }为等差数列,所以a 1+a 4 031=2a 2 016,即a 2 016=4,从而log 2a 2 016=log 24=2.故选A.答案:A2.若函数f (x )=x 3+3ax 2+3(a +2)x +1有极大值和极小值,则实数a 的取值范围是________.解析:函数f (x )为三次函数,其导函数f ′(x )=3x 2+6ax +3(a +2)为二次函数,要使函数f (x )既有极大值又有极小值,需f ′(x )=0有两个不等的实数根,所以Δ=(6a )2-4×3×3(a +2)>0,解得a <-1或a >2.答案:(-∞,-1)∪(2,+∞)3.设a 为实数,函数f (x )=x 3-x 2-x +a . (1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点? 解:(1)f ′(x )=3x 2-2x -1. 令f ′(x )=0,则x =-13或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:↗↘↗所以f (x )的极大值是f ⎝ ⎛⎭⎪⎫-3=27+a ,极小值是f (1)=a -1.(2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1, 由此可知,x 取足够大的正数时, 有f (x )>0,x 取足够小的负数时, 有f (x )<0,所以曲线y =f (x )与x 轴至少有一个定点.由(1)知f (x )最大值=f ⎝ ⎛⎭⎪⎫-13=527+a ,f (x )极小值=f (1)=a -1.因为曲线y =f (x )与x 轴仅有一个交点, 所以f (x )极大值<0或f (x )极小值>0, 即527+a <0或a -1>0,所以a <-527或a >1, 所以当a ∈⎝ ⎛⎭⎪⎫-∞,-527∪(1,+∞)时,曲线y =f (x )与x 轴仅有一个交点.。
人教a版数学【选修2-2】练习:1.3.2函数的极值与导数(含答案)
选修2-2 第一章 1.3 1.3.2一、选择题1.已知函数f (x )在点x 0处连续,下列命题中,正确的是( ) A .导数为零的点一定是极值点B .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极小值C .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值D .如果在点x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极大值 [答案] C[解析] 导数为0的点不一定是极值点,例如f (x )=x 3,f ′(x )=3x 2,f ′(0)=0,但x =0不是f (x )的极值点,故A 错;由极值的定义可知C 正确,故应选C.2.(2013·北师大附中高二期中)函数y =14x 4-13x 3的极值点的个数为( )A .0B .1C .2D .3[答案] B[解析] y ′=x 3-x 2=x 2(x -1),由y ′=0得x 1=0,x 2=1. 当x 变化时,y ′、y 的变化情况如下表3.函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则( )A .a -2b =0B .2a -b =0C .2a +b =0D .a +2b =0[答案] D[解析] y ′=3ax 2+2bx 由题设0和13是方程3ax 2+2bx =0的两根,∴a +2b =0.4.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9[答案] D[解析] f ′(x )=12x 2-2ax -2b =0的一根为x =1,即12-2a -2b =0. ∴a +b =6,∴ab ≤(a +b 2)2=9,当且仅当a =b =3时“=”号成立.5.已知实数a 、b 、c 、d 成等比数列,且曲线y =3x -x 3的极大值点坐标为(b ,c ),则ad 等于( )A .2B .1C .-1D .-2[答案] A[解析] ∵a 、b 、c 、d 成等比数列,∴ad =bc , 又(b ,c )为函数y =3x -x 3的极大值点, ∴c =3b -b 3,且0=3-3b 2,∴⎩⎪⎨⎪⎧ b =1,c =2,或⎩⎪⎨⎪⎧b =-1,c =-2.∴ad =2. 6.(2013·辽宁实验中学期中)函数f (x )=-x e x (a <b <1),则( )A .f (a )=f (b )B .f (a )<f (b )C .f (a )>f (b )D .f (a ),f (b )的大小关系不能确定[答案] C[解析] f ′(x )=(-x e x )′=(-x )′·e x -(-x )·(e x )′(e x )2=x -1e x. 当x <1时,f ′(x )<0,∴f (x )为减函数, ∵a <b <1,∴f (a )>f (b ). 二、填空题7.(2014·福建安溪一中、养正中学联考)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.[答案] 4x -y -3=0[解析] y ′|x =1=(3ln x +4)|x =1=4,∴切线方程为y -1=4(x -1),即4x -y -3=0. 8.(2014·河北冀州中学期中)若函数f (x )=x +a sin x 在R 上递增,则实数a 的取值范围为________.[答案] [-1,1][解析] f ′(x )=1+a cos x ,由条件知f ′(x )≥0在R 上恒成立,∴1+a cos x ≥0,a =0时显然成立;a >0时,∵-1a ≤cos x 恒成立,∴-1a ≤-1,∴a ≤1,∴0<a ≤1;a <0时,∵-1a≥cos x 恒成立,∴-1a≥1,∴a ≥-1,即-1≤a <0,综上知-1≤a ≤1.9.设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点,则常数a =________. [答案] -23[解析] f ′(x )=ax +2bx +1,由题意得⎩⎪⎨⎪⎧a +2b +1=0,a 2+4b +1=0.∴a =-23.三、解答题10.已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1时取得极值,且f (1)=-1. (1)试求常数a 、b 、c 的值;(2)试判断x =±1时函数取得极小值还是极大值,并说明理由. [解析] (1)由f ′(-1)=f ′(1)=0,得3a +2b +c =0,3a -2b +c =0. 又f (1)=-1,∴a +b +c =-1. ∴a =12,b =0,c =-32.(2)f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1).当x <-1或x >1时,f ′(x )>0;当-1<x <1时,f ′(x )<0,∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上为减函数.∴当x =-1时,函数取得极大值f (-1)=1;当x =1时,函数取得极小值f (1)=-1. [点评] 若函数f (x )在x 0处取得极值,则一定有f ′(x 0)=0,因此我们可根据极值得到两个方程,再由f (1)=-1得到一个方程,解上述方程组成的方程组可求出参数.一、选择题11.(2014·山东省德州市期中)已知函数f (x )=e x (sin x -cos x ),x ∈(0,2013π),则函数f (x )的极大值之和为( )A .e 2π(1-e 2012π)e 2π-1B .e π(1-e 2012π)1-e 2πC .e π(1-e 1006π)1-e 2πD .e π(1-e 1006π)1-e π[答案] B[解析] f ′(x )=2e x sin x ,令f ′(x )=0得sin x =0,∴x =k π,k ∈Z ,当2k π<x <2k π+π时,f ′(x )>0,f (x )单调递增,当(2k -1)π<x <2k π时,f ′(x )<0,f (x )单调递减,∴当x =(2k +1)π时,f (x )取到极大值,∵x ∈(0,2013π),∴0<(2k +1)π<2013π,∴0≤k <1006,k ∈Z .∴f (x )的极大值之和为S =f (π)+f (3π)+f (5π)+…+f (2011π)=e π+e 3π+e 5π+…+e 2011π=e π[1-(e 2π)1006]1-e 2π=e π(1-e 2012π)1-e 2π,故选B.12.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0B .0,427C .-427,0D .0,-427[答案] A[解析] f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0得,⎩⎪⎨⎪⎧ 3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x . 由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427.当x =1时f (x )取极小值0.13.(2014·西川中学高二期中)已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围是( )A .-1<a <2B .-3<a <6C .a <-3或a >6D .a <-1或a >2[答案] C[解析] f ′(x )=3x 2+2ax +a +6, ∵f (x )有极大值与极小值, ∴f ′(x )=0有两不等实根,∴Δ=4a 2-12(a +6)>0,∴a <-3或a >6. 二、填空题14.已知函数y =x 3+ax 2+bx +27在x =-1处有极大值,在x =3处有极小值,则a =________________,b =________.[答案] -3 -9[解析] y ′=3x 2+2ax +b ,方程y ′=0有根-1及3,由韦达定理应有⎩⎨⎧-1+3=-2a3,-3=b 3.∴⎩⎪⎨⎪⎧a =-3,b =-9.经检验a =-3,b =-9符合题意. 三、解答题15.(2013·新课标Ⅰ文,20)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. [解析] (1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4,故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x (x +2)-2x -4=4(x +2)(e x -12).令f ′(x )=0得,x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0. 故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).16.(2014·三峡名校联盟联考)已知函数f (x )=ln x +x 2+ax . (1)当a =-3时,求函数y =f (x )的极值点;(2)当a =-4时,求方程f (x )+x 2=0在(1,+∞)上的根的个数. [解析] (1)f (x )=ln x +x 2-3x ,f ′(x )=1x +2x -3,令f ′(x )=0,则x =1或x =12,由f ′(x )>0得0<x <12,或x >1,∴f (x )在(0,12)和(1,+∞)上单调递增,在(12,1)上单调递减,∴f (x )的极大值点x =12,极小值点x =1.(2)当a =-4时,f (x )+x 2=0,即ln x +2x 2-4x =0, 设g (x )=ln x +2x 2-4x ,则g ′(x )=1x +4x -4=4x 2-4x +1x ≥0,则g (x )在(0,+∞)上单调递增,又g (1)=-2<0,g (2)=ln2>0, 所以g (x )在(1,+∞)上有唯一实数根.17.(2014·温州八校联考)已知函数f (x )=-x 3+ax 2+b (a 、b ∈R ). (1)求函数f (x )的单调递增区间;(2)若对任意a ∈[3,4],函数f (x )在R 上都有三个零点,求实数b 的取值范围. [解析] (1)∵f (x )=-x 3+ax 2+b , ∴f ′(x )=-3x 2+2ax =-3x (x -2a 3).当a =0时,f ′(x )≤0函数f (x )没有单调递增区间; 当a >0时,令f ′(x )>0,得0<x <2a3,函数f (x )的单调递增区间为(0,23a );当a <0时,令f ′(x )>0,得2a3<x <0, 函数f (x )的单调递增区间为(23a,0).(2)由(1)知,a ∈[3,4]时,x 、f ′(x )、f (x )的取值变化情况如下:∴f (x )极小值=f (0)=b ,f (x )极大值=f (2a 3)=4a 327+b ,∵对任意a ∈[3,4],f (x )在R 上都有三个零点, ∴⎩⎪⎨⎪⎧ f (0)<0,f (2a 3)>0,即⎩⎪⎨⎪⎧b <0,4a 327+b >0.得-4a 327<b <0.∵对任意a ∈[3,4],b >-4a 327恒成立,∴b >(-4a 327)max =-4×3327=-4.∴实数b 的取值范围是(-4,0).。
函数的极值课件-2022-2023学年高二下学期数学人教A版(2019)选择性必修第二册
令��′() = ,解得 = − ,或 = .
当变化时,′() , 的变化情况如下表所示 .
x
(−∞, −)
′
+
y
单调递增
-1
(-1,3)
3
(, +∞)
0
-
0
+
单调递减
极小值
y
且 0 = 0 ,可知 d=0 .
∴ f′(x)先为负,再变为正,再变为负.
O
x
又 ′ = 3 2 + 2 +
∴ a<0
且 = 0 是在增区间内,即f ′ 0 > 0,
则c>0,对称轴 −
b
2a
> 0,可知b>0
综上, a<0,b>0,c>0,d=0 .
总结
函数的极值
函数f(x),f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做
(2)如果在 附近的左侧 ′ < ,右侧 ′ > ,那么( )是极小值.
课堂检测
判断正误
(1) 函数的极大值一定比极小值大.(
×)
(2) 对可导函数f(x),f′(x0)=0 是x0为极值点的充要条件.(
×
)
(3) 函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(
′ = ;而且在点 x=a 附近的左侧′ < ,右侧′ > .
把 a 叫做函数 y=f(x)的极小值点, f(a)叫做函数 y=f(x)的极小值;
y
a
O
人教新课标A版高二数学《选修1-1》3.3.2 函数的极值与导数
3 4
.
当x变化时,f(x),f′(x)的变化情况如下表:
x
(-∞,0)
0 0 不是 极值
3;∞) 4
f′(x)
f (x )
↘
↘
0
27 256
+ ↗
3 ) 4
由上表可知,函数f(x)在区间(-∞,0)上是减函数,在区间(0,
第三章 导数及其应用
§3.3 导数在研究函数中的应用
3.3.2 函数的极值与导数
1.了解函数极值的概念,会从几何的角度直观理 解函数的极值与导数的关系,并会灵活应用. 2.结合函数的图象,了解函数在某点处取得极值 的必要条件和充分条件.
3.会用导数求最高次幂不超过三次的多项式函数
的极大值、极小值.
题目类型一、求已知函数的极值 【技法点拨】 求函数极值的步骤 求定义域 确定函数f(x)的定义域 求导函数f′(x)
求导数
求方程的根 列表
求f′(x)在定义域内的所有根 用f′(x)=0的根将定义域分 成若干区间,列表 由各个区间内f′(x)的符号, 判断极值情况
求极值
【典例训练】(建议教师以第2题为例题重点讲解)
极值点时,函数f(x)在该区间内的极大值点与极小
值点是交替出现的.
2.极值点与导数为零的点的辨析
(1)可导函数的极值点是导数为零的点,但是导数
为零的点不一定是极值点,即“点x0是可导函数
f(x)的极值点”是“f′(x0)=0”的充分不必要条件; (2)可导函数f(x)在点x0处取得极值的充要条件是 f′(x0)=0,且在x0左侧和右侧f′(x)的符号不同. (3)如果在x0的两侧f′(x)的符号相同,则x0不是f(x) 的极值点.
高中数学 第一章 导数及其应用 1.3.2 函数的极值与导数课件 新人教A版选修2-2
高中数学 第一章 导数及其应用 1.3.2 函数的极值与导数课件 新人教A版选 修2-2
1.3.2 函数的极值与导数
目标定位
重点难点
1.了解函数在某点取得极值的必要条 重点:求函数极值的
件和充分条件 方法和步骤
2.理解极大值和极小值的概念 难点:函数极值的概
3.掌握求可导函数极大值和极小值的 念的理解
设f(x)在x0处连续且f′(x0)=0,判别f(x0)是极大(小)值的方 法:
(1)若在x0两侧f′(x)符号相同,则x0不是f(x)的极值点; (2)若在x0附近的左侧f′(x)>0,右侧f′(x)<0,则f(x0)是极 大值;
(3)若在x0附近的左侧f′(x)<0,右侧f′(x)>0,则f(x0)是极 小值.
解得ab==4-,11 或ab==3-. 3, 故a+b=-7或a+b=0.
【错因分析】可导函数在一点的导数值为0是函数在这 一点取得极值的必要条件,而非充分条件,本题忽略了对所得 两组解进行检验,从而出现了错误.
【正解】(接错解)当a=4,b=-11时, f(x)=x3+4x2-11x+16, 得f′(x)=3x2+8x-11=(3x+11)(x-1). 当x∈-131,1时,f′(x)<0; 当x∈(1,+∞)时,f′(x)>0.
(3) 如 果 f′(x) 在 点 x0 的 左 右 两 侧 符 号 不 变 , 则 f(x0) _不__是__极__值___.
1.函数f(x)=x3-3bx+3b在(0,1)内有极小值,则( )
A.0<b<1
B.b<0
C.b>0 【答案】A
D.b<12
2.已知函数y=x3-3x+2,则( ) A.y无极小值,也无极大值 B.y有极小值0,但无极大值 C.y有极小值0,极大值4 D.y有极大值4,但无极小值 【答案】C
函数的极值(第一课时)高二数学课件(人教A版2019选择性必修第二册)
练习
题型二:运用导数解决函数的极值问题
例2.求函数() = 2 − 的极值.
解:函数的定义域为,
’ () = 2 − + 2 − ∙ (−1) = 2 − − 2 − = (2 − ) − .
令 ’ () = 0,得(2 − ) − = 0,解得 = 0或 = 2.
(3)解方程 ’ () = 0得方程的根;
(4)利用方程 ’ () = 0的根将定义域分成若干个小开区间,列表,判定导函数在各
个小开区间的符号;
(5)确定函数的极值,如果 ’ ()的符号在0 处由正(负)变负(正),则()在0 处取
得极大(小)值.
练习
方法技巧:
2.已知函数极值求参数时的注意点:
答案:√,√,×.
辨析2.函数() = + 2
A.0
6
B.
答案:B.
C.
3
2
D.
在[0, ]上的极大值点为(
2
).
例析
1
l l 3
1
= 3
3
例5.求函数() = 3 − 4 + 4的极值.
解:因为()
− 4 + 4,所以
’ () = 2 − 4 = ( − 2)( + 2).
练习
变1.(多选)已知函数 = ’ ()的图象如图所示,则下列说
法正确的是(
).
A.函数()在区间(1, + ∞)上是增函数
B.函数()在区间(−1,1)上无单调性
C.函数()在 =
1
− 处取得极大值
2
D.函数()在 = 1处取极小值
高中数学 1.3.2 函数的极值与导数课件 新人教A版选修2
因此对于可导函数,导数为0是点为极值点的必 要而不充分条件.
(2)函数的导数不存在的点也可能是极值点. 如函数f(x)=|x|,在x=0处,左侧(x<0时)f′(x)= -1<0,右侧(x>0时)f′(x)=1>0,当x=0时f(x) =0是f(x)的极小值点,但f′(0)不存在.
.
• 极小值点、极大值点统称为极值点,> 极大值和极小值统
称为极值.极值反映了函数在某一点附近的大小情况,
刻画的是函数的局部性质.
<
减
• 2.求可导函数y=f(x)的极值的方法是:
• 解方程f′(x)=0.当f′(x0)=0时: • (1)如果在x0附近的左侧
,那么f(x0)是极大值; • (2)f′如(x)果<在0 x0附近的左侧
,那么f(x0)是极小值.
,右侧 f′(x)>0
,右侧 f′(x)<0
f′(x)>0
• [例1] 判断函数y=x3在x=0处能否取得极值. • [分析] 可由极值的定义来判断,也可由导数来判断. • [解析] 解法1:当x=0时,f(x)=0,在x=0的附近区域
内,f(x)有正有负,不存在f(0)>f(x)(或f(0)<f(x)),因此y= x3在x=0处取不到极值. • 解法2:y′=3x2,当x≠0时,y′>0, • 当y=0时,f(x)=0,因此y=x3在(-∞,+∞)上是增函数, 因为单调函数没有极值,所以y=x3在x=0处取不到极 值.
• 设函数y=f(x)在点x0及其附近可导,且f′(x0)=0. • (1)如果f′(x)的符号在点x0的左右由正变负,则f(x0)
为函数f(x)的极大值.
• (2)如果f′(x)的符号在点x0的左右由负变正,则f(x0) 为函数f(x)的极小值.
(新课标)高中数学《3.3.2-函数的极值与导数》课件-新人教A版选修1-1
规律方法 已知函数极值情况,逆向应用确定函数的解析式, 进而研究函数性质时注意两点: (1)常根据极值点处导数为 0 和极值两个条件列方程组,利用待 定系数法求解. (2)因为导数值等于零不是此点为极值点的充要条件,所以利用 待定系数法求解后必须验证根的合理性.
第18页,共29页。
第22页,共29页。
如图(1),此时曲线 f(x)与 x 轴恰有两个交点,即方程 f(x)=0 恰 好有两个实数根,所以 a+2=0,a=-2.(10 分) 如图(2),当极小值等于 0 时,有极大值大于 0,此时曲线 f(x) 与 x 轴恰有两个交点,即方程 f(x)=0 恰好有两个实数根,所以 a-2=0,a=2.综上,当 a=2,或 a=-2 时方程恰有两个实数 根.(12 分)
第8页,共29页。
2.极值点与导数的关系 (1)可导函数的极值点一定是导数为 0 的点,但导数为 0 的点不 一定是函数的极值点. (2)导数为 0 的点可能是函数的极值点,如 y=x2,y′(0)=0,x =0 是极小值.导数为 0 的点也可能不是函数的极值点,如 y =x3,y′(0)=0,x=0 不是极值点.
第23页,共29页。
【题后反思】 用求导的方法确定方程根的个数是一种很有效的 方法,它是通过函数的变化情况,运用数形结合的思想来确定 函数的图象与 x 轴的交点个数.
第24页,共29页。
【变式 3】 设函数 f(x)=x3-6x+5,x∈R. (1)求函数 f(x)的单调区间和极值; (2)若关于 x 的方程 f(x)=a 有三个不同的实数根,求实数 a 的取 值范围. 解 (1)f′(x)=3x2-6,令 f′(x)=0, 解得 x=- 2或 x= 2. 因为当 x> 2或 x<- 2时,f′(x)>0; 当- 2<x< 2时,f′(x)<0, 所以 f(x)的单调递增区间为(-∞,- 2),( 2,+∞); 单调递减区间为(- 2, 2).
人教A版选择性必修第二册5-3-2-1函数的极值课件(47张)
3.已知函数 f(x)的导数为 f′(x)=4x3-4x,且 f(x)的图象过点(1,-6),当函数 f(x)取得
极大值-5 时,x 的值应为( D )
A.1
B.0
C.-5
D.5
解析:设 f(x)=x4-2x2+c, 又 f(x)的图象过点(1,-6), 所以 c=-5.故 f(x)=x4-2x2-5. 又当 f′(x)=0 时,x=0 或 1 或-1, 所以当函数 f(x)取得极大值-5, 即 f(x)=-5 时,x=0.
2.极大值点与极大值 函数 y=f(x)在点 x=b 的函数值 f(b)比它在点 x=b 附近其他点的函数值都大,f′(b)= ____0____,而且在点 x=b 附近的左侧__f′_(x_)_>_0__,右侧__f_′(_x_)<_0__,就把____b____叫做函数 y =f(x)的极大值点,___f_(b_)___叫做函数 y=f(x)的极大值. 3.极小值点、极大值点统称为_极__值__点___;极小值、极大值统称为___极__ f′(x0)=0 的关系 一般来说,“f′(x0)=0”是“函数 y=f(x)在点 x0 处取得极值”的必要不充分条件.若 可导函数 y=f(x)在点 x0 处可导,且在点 x0 处取得极值,那么 f′(x0)=0;反之,若 f′(x0)=0, 则点 x0 不一定是函数 y=f(x)的极值点.
强研习·重点难点要突破
研习 1 求函数的极值(点) [典例 1] (1)(多选)已知函数 y=f(x),其导函数 y=f′(x)的图象如图所示,则 y=
f(x)( BCD )
A.在(-∞,0)上单调递减 C.在(4,+∞)上单调递减 (2)求函数 f(x)=x2e-x 的极值.
B.在 x=0 处取极大值 D.在 x=2 处取极小值
人教a版数学【选修2-2】1.3.2《函数的极值与导数》ppt课件
人教A版 · 选修2-2
路漫漫其修远兮 吾将上下而求索
第一章
导数及其应用
第一章
1.3 导数在研究函数中的应用
1.3.2 函数的极值与导数
1
自主预习学案
2
Hale Waihona Puke 典例探究学案3巩固提高学案
4
备 选 练 习
自主预习学案
1.掌握极值的概念,了解函数在某点取得极值的必要条件和 充分条件. 2.会用导数求不超过三次的多项式函数的极大值、极小值 ,及其他简单函数的极值.
2.一般地,已知函数y=f(x)及其定义域内一点x0,对于包含 x0在内的开区间内的所有点x,如果都有__________,则称函 f(x)<f(xf0()x)的一个 数f(x)在点x0处取得__________,并把x0称为函数 __________;如果都有 __________,则称函数f(x)在点x0处取 极大值 得________,并把x0称为函数f(x)的一个__________.极大值 f(,极大值点与极小值点统称为 x)>f(x0) 极大值点 与极小值统称为______ 极小值 极小值点 ________. 极值 极值点
重点:函数极值的概念与求法. 难点:函数的单调性与极值的综合应用.
函数的极值与导数的关系 思维导航 在函数的图象上,有的点左、右两侧函数的单调性相同,有 的点左、右两侧的单调性相反,有些情形下左增右减,在些 情况下左减右增,这些点对研究函数有何特殊意义?
新知导学
1.如图是函数y=f(x)的图象,在x=a邻近 的左侧f(x)单调 ..
极大值 极小值 - 0 4e 2 由上表可以看出,当x=0时,函数有极小值,且f(0)=0. 4 当x=2时,函数有极大值,且f(2)=e2.
高二数学(人教A版)《3.3.2函数的极值与导数》导学案
3.3.2函数的极值与导数[自学目标]:1.理解函数的极大值、极小值、极值点的意义;2.掌握函数极值的判别方法.进一步体验导数的作用.[重点]: 极大、极小值的概念和判别方法。
[难点]: 严格套用求极值的步骤[教材助读]一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有________我们就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0);如果对x 0附近的所有的点,都有________,我们就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0).利用导数判别函数的极大(小)值:一般地,当函数f (x )在点x 0处连续时,判别f (x 0)是极大(小)值的方法是:⑴如果在x 0附近的左侧f '(x )>0,右侧f '(x )<0,那么,f (x 0)是________⑵如果在x 0附近的左侧f '(x )<0,右侧f '(x )>0,那么,f (x 0)是________注意:导数为0的点不一定是极值点.[预习自测]1.函数y =f (x )的导数y /与函数值和极值之间的关系为( )A 、导数y /由负变正,则函数y 由减变为增,且有极大值B 、导数y /由负变正,则函数y 由增变为减,且有极大值C 、导数y /由正变负,则函数y 由增变为减,且有极小值D 、导数y /由正变负,则函数y 由增变为减,且有极大值2.求函数x e x y -=2的极值。
上与老师和同学探究解决。
[合作探究 展示点评]探究一:极值点两侧导数正负符号有何规律?1.求()31443f x x x =-+的极值 填写下表并求极值探究二:极值点处导数值(即切线斜率)有何特点?2.求y =(x 2-1)3+1的极值[当堂检测]1.求下列函数的极值:(1)2()62f x x x =-- (2)3()27f x x x =-(3)3()612f x x x =+- (4)3()3f x x x =-2.已知32()(0)f x ax bx cx a =++≠在x =±1时取得极值,且f (1)=-1,(1)试求常数a 、b 、c 的值;(2)试判断x =±1时函数取得极小值还是极大值,并说明理由.[拓展提升]1.函数2()ln 3f x a x bx x =++的极值点为11x =,22x =,则a = ,b = .★2.已知函数32()32f x x ax bx =-+在1x =处有极小值1-,试求,a b 的值,并求出()f x 的单调区间.★★3.已知某工厂生产x 件产品的成本为212500020040C x x =++(元),问:(1)要使平均成本最低,应生产多少件产品?(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?。
最新2019版高中数学 第一章 1.3.2 函数的极值与导数(一)教案 新人教A版选修2-2
1.3.2 函数的极值与导数(一)学习目标 1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件.知识点一函数的极值点和极值思考观察函数y=f(x)的图象,指出其极大值点和极小值点及极值.答案极大值点为e,g,i,极大值为f(e),f(g),f(i);极小值点为d,f,h,极小值为f(d),f(f),f(h).梳理(1)极小值点与极小值若函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,就把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)极大值点与极大值若函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,就把点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极大值点、极小值点统称为极值点;极大值、极小值统称为极值.知识点二函数极值的求法与步骤(1)求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时,①如果在x0附近的左侧函数单调递增,即f′(x)>0,在x0的右侧函数单调递减,即f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧函数单调递减,即f′(x)<0,在x0的右侧函数单调递增,即f′(x)>0,那么f(x0)是极小值.(2)求可导函数f(x)的极值的步骤①确定函数的定义区间,求导数f′(x);②求方程f′(x)=0的根;③列表;④利用f ′(x )与f (x )随x 的变化情况表,根据极值点左右两侧单调性的变化情况求极值.1.导数为0的点一定是极值点.( × ) 2.函数的极大值一定大于极小值.( × ) 3.函数y =f (x )一定有极大值和极小值.( × ) 4.极值点处的导数一定为0.( × )类型一 求函数的极值点和极值 命题角度1 不含参数的函数求极值 例1 求下列函数的极值. (1)f (x )=2x x 2+1-2;(2)f (x )=ln xx. 考点 函数在某点处取得极值的条件 题点 不含参数的函数求极值问题 解 (1)函数f (x )的定义域为R . f ′(x )=2(x 2+1)-4x 2(x 2+1)2=-2(x -1)(x +1)(x 2+1)2. 令f ′(x )=0,得x =-1或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可以看出,当x =-1时,函数有极小值,且极小值为f (-1)=-3; 当x =1时,函数有极大值,且极大值为f (1)=-1. (2)函数f (x )=ln xx的定义域为(0,+∞),且f ′(x )=1-ln x x2. 令f ′(x )=0,解得x =e.当x 变化时,f ′(x )与f (x )的变化情况如下表:↗因此,x =e 是函数的极大值点,极大值为f (e)=1e ,没有极小值.反思与感悟 函数极值和极值点的求解步骤 (1)确定函数的定义域. (2)求方程f ′(x )=0的根.(3)用方程f ′(x )=0的根顺次将函数的定义域分成若干个小开区间,并列成表格. (4)由f ′(x )在方程f ′(x )=0的根左右的符号,来判断f (x )在这个根处取极值的情况. 特别提醒:当实数根较多时,要充分利用表格,使极值点的确定一目了然. 跟踪训练1 求下列函数的极值点和极值. (1)f (x )=13x 3-x 2-3x +3;(2)f (x )=x 2e -x.考点 函数在某点处取得极值的条件 题点 不含参数的函数求极值问题 解 (1)f ′(x )=x 2-2x -3. 令f ′(x )=0,得x 1=-1,x 2=3,当x 变化时,f ′(x ),f (x )的变化情况如下表:↘由上表可以看出,当x =-1时,函数有极大值,且极大值f (-1)=143,当x =3时,函数有极小值,且极小值f (3)=-6. (2)函数f (x )的定义域为R .f ′(x )=2x e -x -x 2e -x =x (2-x )e -x .令f ′(x )=0,得x =0或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:当x =2时,函数有极大值,且极大值为f (2)=4e -2. 命题角度2 含参数的函数求极值例2 已知函数f (x )=(x 2+ax -2a 2+3a )e x(x ∈R ),当实数a ≠23时,求函数f (x )的单调区间与极值.考点 函数在某点处取得极值的条件 题点 含参数求极值问题解 f ′(x )=[x 2+(a +2)x -2a 2+4a ]e x. 令f ′(x )=0,解得x =-2a 或x =a -2, 由a ≠23知-2a ≠a -2.分以下两种情况讨论: ①若a >23,则-2a <a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )在(-∞,-2a ),(a -2,+∞)上是增函数,在(-2a ,a -2)上是减函数,函数f (x )在x =-2a 处取得极大值f (-2a ),且f (-2a )=3a e-2a,函数f (x )在x =a -2处取得极小值f (a -2),且f (a -2)=(4-3a )e a -2.②若a <23,则-2a >a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )在(-∞,a -2),(-2a ,+∞)上是增函数,在(a -2,-2a )上是减函数,函数f (x )在x =a -2处取得极大值f (a -2),且f (a -2)=(4-3a )e a -2,函数f (x )在x =-2a 处取得极小值f (-2a ),且f (-2a )=3a e-2a.反思与感悟 讨论参数应从f ′(x )=0的两根x 1,x 2相等与否入手进行. 跟踪训练2 已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.考点 函数在某点处取得极值的条件 题点 含参数求极值问题解 函数f (x )的定义域为(0,+∞),f ′(x )=1-a x. (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0),因而f (1)=1,f ′(1)=-1.所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax,x >0,知①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a . 又当x ∈(0,a )时,f ′(x )<0, 当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值. 类型二 利用函数的极值求参数例3 (1)已知函数f (x )的导数f ′(x )=a (x +1)(x -a ),若f (x )在x =a 处取到极大值,则a 的取值范围是( )A .(-∞,-1)B .(0,+∞)C .(0,1)D .(-1,0)(2)已知函数f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a =________,b =________. 考点 利用导数研究函数的极值 题点 已知极值点求参数 答案 (1)D (2)2 9解析 (1)若a <-1,因为f ′(x )=a (x +1)(x -a ), 所以f (x )在(-∞,a )上单调递减,在(a ,-1)上单调递增,所以f (x )在x =a 处取得极小值,与题意不符;若-1<a <0,则f (x )在(-1,a )上单调递增,在(a ,+∞)上单调递减,从而在x =a 处取得极大值.若a >0,则f (x )在(-1,a )上单调递减,在(a ,+∞)上单调递增,与题意不符,故选D. (2)因为f (x )在x =-1时有极值0,且f ′(x )=3x 2+6ax +b ,所以⎩⎪⎨⎪⎧f ′(-1)=0,f (-1)=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0,解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0, 所以f (x )在R 上为增函数,无极值,故舍去.当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x ∈(-3,-1)时,f (x )为减函数, 当x ∈(-1,+∞)时,f (x )为增函数,所以f (x )在x =-1处取得极小值,因此a =2,b =9. 反思与感悟 已知函数的极值求参数时应注意两点(1)待定系数法:常根据极值点处导数为0和极值两个条件列出方程组,用待定系数法求解. (2)验证:因为导数值为0不一定此点就是极值点,故利用上述方程组解出的解必须验证. 跟踪训练3 设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点. (1)试确定常数a 和b 的值;(2)判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由. 考点 利用导数研究函数的极值 题点 已知极值点求参数 解 (1)∵f (x )=a ln x +bx 2+x , ∴f ′(x )=ax+2bx +1,∴f ′(1)=f ′(2)=0,∴a +2b +1=0且a2+4b +1=0,解得a =-23,b =-16.(2)由(1)可知f (x )=-23ln x -16x 2+x ,且定义域是(0,+∞),f ′(x )=-23x -1-13x +1=-(x -1)(x -2)3x.当x ∈(0,1)时,f ′(x )<0;当x ∈(1,2)时,f ′(x )>0; 当x ∈(2,+∞)时,f ′(x )<0.故x =1是函数f (x )的极小值点,x =2是函数f (x )的极大值点.1.函数f (x )的定义域为R ,它的导函数y =f ′(x )的部分图象如图所示,则下面结论错误的是( )A .在(1,2)上函数f (x )为增函数B .在(3,4)上函数f (x )为减函数C .在(1,3)上函数f (x )有极大值D .x =3是函数f (x )在区间[1,5]上的极小值点 考点 函数极值的综合应用 题点 函数极值在函数图象上的应用 答案 D解析 根据导函数图象知,x ∈(1,2)时,f ′(x )>0,x ∈(2,4)时,f ′(x )<0,x ∈(4,5)时,f ′(x )>0.∴f (x )在(1,2),(4,5)上为增函数,在(2,4)上为减函数,x =2是f (x )在[1,5]上的极大值点,x =4是极小值点.故选D. 2.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 考点 函数在某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 D解析 函数f (x )=2x+ln x 的定义域为(0,+∞).f ′(x )=1x -2x2,令f ′(x )=0,即1x -2x2=0得,x =2,当x ∈(0,2)时,f ′(x )<0,当x ∈(2,+∞)时,f ′(x )>0. 因为x =2为f (x )的极小值点,故选D.3.函数f (x )=ax -1-ln x (a ≤0)在定义域内的极值点的个数为________. 考点 函数在某点处取得极值的条件 题点 判断极值点的个数 答案 0解析 因为x >0,f ′(x )=a -1x =ax -1x,所以当a ≤0时,f ′(x )<0在(0,+∞)上恒成立, 所以函数f (x )在(0,+∞)上单调递减, 所以f (x )在(0,+∞)上没有极值点.4.已知曲线f (x )=x 3+ax 2+bx +1在点(1,f (1))处的切线斜率为3,且x =23是y =f (x )的极值点,则a +b =________. 考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 -2解析 f ′(x )=3x 2+2ax +b ,由题意知⎩⎪⎨⎪⎧f ′(1)=3,f ′⎝ ⎛⎭⎪⎫23=0,即⎩⎪⎨⎪⎧3+2a +b =3,43+43a +b =0,解得⎩⎪⎨⎪⎧a =2,b =-4,则a +b =-2.5.已知函数f (x )=ax 2+b ln x 在x =1处有极值12.(1)求a ,b 的值;(2)判断f (x )的单调区间,并求极值. 考点 利用导数研究函数的极值 题点 已知极值(点)求参数 解 (1)f ′(x )=2ax +b x,由题意得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=12, 即⎩⎪⎨⎪⎧2a +b =0,a =12,∴a =12,b =-1.(2)由(1)得,f ′(x )=x -1x =x 2-1x =(x +1)(x -1)x.又f (x )的定义域为(0,+∞), 令f ′(x )=0,解得x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞).f (x )极小值=f (1)=12.1.求函数极值的步骤 (1)确定函数的定义域; (2)求导数f ′(x );(3)解方程f ′(x )=0得方程的根;(4)利用方程f ′(x )=0的根将定义域分成若干个小开区间,列表,判定导函数在各个小开区间的符号;(5)确定函数的极值,如果f ′(x )的符号在x 0处由正(负)变负(正),则f (x )在x 0处取得极大(小)值.2.已知函数极值,确定函数解析式中的参数时,注意两点(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证充分性.一、选择题1.下列函数中存在极值的是( ) A .y =1xB .y =x -e xC .y =2D .y =x 3考点 利用导数研究函数的极值 题点 极值存在性问题 答案 B解析 对于y =x -e x ,y ′=1-e x,令y ′=0,得x =0. 在区间(-∞,0)上,y ′>0; 在区间(0,+∞)上,y ′<0.故x =0为函数y =x -e x的极大值点.2.函数f (x )=ln x -x 在区间(0,e)上的极大值为( ) A .-e B .1-e C .-1D .0考点 函数在某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 C解析 f (x )的定义域为(0,+∞),f ′(x )=1x-1.令f ′(x )=0,得x =1.当x ∈(0,1)时,f ′(x )>0,当x ∈(1,e)时,f ′(x )<0, 故f (x )在x =1处取得极大值f (1)=ln 1-1=0-1=-1.3.已知函数f (x )=2x 3+ax 2+36x -24在x =2处有极值,则该函数的一个递增区间是( ) A .(2,3) B .(3,+∞) C .(2,+∞)D .(-∞,3)考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 B解析 因为f ′(x )=6x 2+2ax +36,且在x =2处有极值, 所以f ′(2)=0,即24+4a +36=0,解得a =-15, 所以f ′(x )=6x 2-30x +36 =6(x -2)(x -3), 由f ′(x )>0,得x <2或x >3.4.设三次函数f (x )的导函数为f ′(x ),函数y =xf ′(x )的图象的一部分如图所示,则( )A .f (x )极大值为f (3),极小值为f (-3)B .f (x )极大值为f (-3),极小值为f (3)C .f (x )极大值为f (-3),极小值为f (3)D .f (x )极大值为f (3),极小值为f (-3) 考点 函数极值的综合应用 题点 函数极值在函数图象上的应用 答案 D解析 当x <-3时,y =xf ′(x )>0,即f ′(x )<0; 当-3<x <3时,f ′(x )≥0;当x >3时,f ′(x )<0. ∴f (x )的极大值是f (3),f (x )的极小值是f (-3).5.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于点(1,0),则f (x )的( ) A .极大值为427,极小值为0B .极大值为0,极小值为427C .极小值为-427,极大值为0D .极大值为-427,极小值为0考点 函数某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 A解析 f ′(x )=3x 2-2px -q .由函数f (x )的图象与x 轴切于点(1,0),得p +q =1, ∴q =1-p ,① 3-2p -q =0,②联立①②,解得p =2,q =-1, ∴函数f (x )=x 3-2x 2+x ,则f ′(x )=3x 2-4x +1,令f ′(x )=0得x =1或x =13.当x ≤13时,f ′(x )≥0,f (x )单调递增,当13<x <1时,f ′(x )<0,f (x )单调递减,当x ≥1时,f ′(x )≥0,f (x )单调递增,∴f (x )极大值=f ⎝ ⎛⎭⎪⎫13=427,f (x )极小值=f (1)=0.故选A.6.设a <b ,函数y =(x -a )2(x -b )的图象可能是( )考点 函数极值的综合应用 题点 函数极值在函数图象上的应用 答案 C解析 y ′=(x -a )(3x -a -2b ),由y ′=0得x 1=a ,x 2=a +2b3.当x =a 时,y 取得极大值0, 当x =a +2b3时,y 取得极小值且极小值为负,故选C.7.已知函数f (x )=e x(sin x -cos x ),x ∈(0,2 017π),则函数f (x )的极大值之和为( ) A.e 2π(1-e 2 018π)e 2π-1B.e π(1-e 2 016π)1-e 2πC.e π(1-e 1 008π)1-e2πD.e π(1-e 1 008π)1-eπ考点 函数某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 B解析 f ′(x )=2e xsin x ,令f ′(x )=0得sin x =0, ∴x =k π,k ∈Z ,当2k π<x <2k π+π时,f ′(x )>0,f (x )单调递增, 当(2k -1)π<x <2k π时,f ′(x )<0,f (x )单调递减, ∴当x =(2k +1)π时,f (x )取到极大值, ∵x ∈(0,2 017π),∴0<(2k +1)π<2 017π, ∴0≤k <1 008,k ∈Z . ∴f (x )的极大值之和为S =f (π)+f (3π)+f (5π)+…+f (2 015π)=e π+e 3π+e 5π+…+e 2 015π=e π[1-(e 2π)1 008]1-e 2π=e π(1-e 2 016π)1-e2π,故选B.二、填空题8.函数y =x e x在其极值点处的切线方程为________. 考点 函数某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 y =-1e解析 令y ′=e x +x e x =(1+x )e x=0, 得x =-1,∴y =-1e,∴在极值点处的切线方程为y =-1e.9.若函数f (x )=(x -2)(x 2+c )在x =2处有极值,则函数f (x )的图象在x =1处的切线的斜率为________.考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 -5解析 ∵函数f (x )=(x -2)(x 2+c )在x =2处有极值, ∴f ′(x )=(x 2+c )+(x -2)×2x ,令f ′(2)=0,∴(c +4)+(2-2)×2×2=0,∴c =-4, ∴f ′(x )=(x 2-4)+(x -2)×2x .∴函数f (x )的图象在x =1处的切线的斜率为f ′(1)=(1-4)+(1-2)×2=-5.10.若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为________.考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 -1解析 函数f (x )=(x 2+ax -1)e x -1,则f ′(x )=(2x +a )e x -1+(x 2+ax -1)·ex -1=ex -1·[x 2+(a +2)x +a -1].由x =-2是函数f (x )的极值点,得f ′(-2)=e -3·(4-2a -4+a -1)=(-a -1)e -3=0,所以a =-1.所以f (x )=(x 2-x -1)ex -1,f ′(x )=e x -1·(x 2+x -2).由ex -1>0恒成立,得当x =-2或x =1时,f ′(x )=0,且x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0; 当x >1时,f ′(x )>0.所以x =1是函数f (x )的极小值点. 所以函数f (x )的极小值为f (1)=-1.11.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则f (-1)=________. 考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 30解析 由题意知⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,解得⎩⎪⎨⎪⎧a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3.经检验知,当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )≥0,不合题意.∴f (x )=x 3+4x 2-11x +16,则f (-1)=30. 三、解答题12.设函数f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.考点 函数在某点处取得极值的条件 题点 不含参数函数求极值 解 (1)f ′(x )=a x -12x 2+32. 由题意知,曲线在x =1处的切线斜率为0,即f ′(1)=0, 从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0),f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=(3x +1)(x -1)2x2. 令f ′(x )=0,解得x 1=1,x 2=-13(舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为单调递减函数;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为单调递增函数.故f (x )在x =1处取得极小值,极小值为f (1)=3.13.已知函数f (x )=x 3+12mx 2-2m 2x -4(m 为常数,且m >0)有极大值-52,求m 的值.考点 利用导数研究函数的极值 题点 已知极值(点)求参数解 ∵f ′(x )=3x 2+mx -2m 2=(x +m )(3x -2m ), 令f ′(x )=0,得x =-m 或x =23m .当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )有极大值f (-m )=-m 3+12m 3+2m 3-4=-52,∴m =1. 四、探究与拓展14.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )考点函数极值的综合应用题点函数极值在函数图象上的应用答案 C解析由题意可得f′(-2)=0,而且当x∈(-∞,-2)时,f′(x)<0,此时xf′(x)>0;排除B,D,当x∈(-2,+∞)时,f′(x)>0,此时若x∈(-2,0),xf′(x)<0,若x∈(0,+∞),xf′(x)>0,所以函数y=xf′(x)的图象可能是C.15.已知函数f(x)=(x2+ax+a)e x(a≤2,x∈R).(1)当a=1时,求f(x)的单调区间;(2)是否存在实数a,使f(x)的极大值为3?若存在,求出a的值,若不存在,请说明理由.考点利用导数研究函数的极值题点已知极值(点)求参数解(1)f(x)=(x2+x+1)e x,f′(x)=(2x+1)e x+(x2+x+1)e x=(x2+3x+2)e x.当f′(x)>0时,解得x<-2或x>-1,当f′(x)<0时,解得-2<x<-1,所以函数的单调递增区间为(-∞,-2),(-1,+∞);单调递减区间为(-2,-1).(2)令f′(x)=(2x+a)e x+(x2+ax+a)e x=[x2+(2+a)x+2a]e x=(x+a)(x+2)e x=0,得x=-a或x=-2.当a=2时,f′(x)≥0恒成立,函数无极值,故舍去;当a<2时,-a>-2.当x变化时,f′(x),f(x)的变化情况如下表:由表可知,f(x)极大值=f(-2)=(4-2a+a)e-2=3,解得a=4-3e2<2,所以存在实数a<2,使f(x)的极大值为3,此时a=4-3e2.。
高二数学人教A版选修1-1第三章3.3.2函数的极值与导数导学案(含答案)
内 容 标 准学 科素 养 1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用. 2.掌握函数极值的判定及求法. 3.掌握函数在某一点取得极值的条件.利用直观想象 提升逻辑推理 及数学运算[基础认识]知识点一 极值点与极值的概念 预习教材P 93-95,思考并完成以下问题 (1)观察函数f (x )=13x 3-2x 的图象.f ′(-2)的值是多少?在x =-2左、右两侧的f ′(x )有什么变化? f ′(2)的值是多少,在x =2左、右两侧的f ′(x )又有什么变化?提示:f ′(-2)=0,在x =-2的左侧f ′(x )>0,在x =-2的右侧f ′(x )<0;f ′(2)=0,在x =2的左侧f ′(x )<0,在x =2的右侧f ′(x )>0.(2)如图,函数f (x )在a ,b 点的函数值与它附近的函数值有什么关系?y =f (x )在a ,b 点的导数值是多少?在a ,b 附近,y =f (x )的导数的符号是什么?提示:可以发现,函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0.类似地,函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0.知识梳理 极值点与极值的概念(1)极小值点与极小值如图,函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则把点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.(2)极大值点与极大值如(1)中图,函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 的左侧f ′(x )>0,右侧f ′(x )<0,则把点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极大值点、极小值点统称为极值点,极大值和极小值统称为极值.知识点二 求函数y =f (x )的极值的方法 知识梳理 解方程f ′(x )=0,当f ′(x 0)=0时:(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是________. (2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是________. 提示:(1)极大值 (2)极小值[自我检测]1.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点 答案:C2.已知函数f (x )=x +1x ,则f (x )( )A .有极大值2,极小值-2B .有极大值-2,极小值2C .无极大值,但有极小值-2D .有极大值2,无极小值 答案:B探究一极值与极值点的判断与求解[教材P98习题3.3A组4题]如图是导函数y=f′(x)的图象,在标记的点中,在哪一点处:(1)导函数y=f′(x)有极大值?(2)导函数y=f′(x)有极小值?(3)函数y=f(x)有极大值?(4)函数y=f(x)有极小值?解析:(1)点x2处f′(x)有极大值.(2)点x1、x4处f′(x)有极小值.(3)点x3处f(x)有极大值.(4)点x5处f(x)有极小值.[例1](1)已知函数y=f(x),其导函数y=f′(x)的图象如图所示,则y=f(x)()A.在(-∞,0)上为减函数B.在x=0处取极小值C.在(4,+∞)上为减函数D.在x=2处取极大值[解析]由导函数的图象可知:当x∈(-∞,0)∪(2,4)时,f′(x)>0,当x∈(0,2)∪(4,+∞)时,f′(x)<0,因此f(x)在(-∞,0),(2,4)上为增函数,在(0,2),(4,+∞)上为减函数,所以在x=0处取得极大值,在x =2处取得极小值,在x=4处取得极大值,故选C.[答案] C(2)求下列函数的极值:①f(x)=2x3+3x2-12x+1;②f(x)=x2-2ln x.[解析]①函数f(x)=2x3+3x2-12x+1的定义域为R,f′(x)=6x2+6x-12=6(x+2)(x-1),解方程6(x+2)(x-1)=0,得x1=-2,x2=1.当x变化时,f′(x)与f(x)的变化情况如下表:x (-∞,-2)-2 (-2,1) 1 (1,+∞)f ′(x ) +0 - 0 + f (x )极大值21极小值-6所以当x 当x =1时,f (x )取极小值-6.②函数f (x )=x 2-2ln x 的定义域为(0,+∞), f ′(x )=2x -2x =2(x +1)(x -1)x ,解方程2(x +1)(x -1)x =0,得x 1=1,x 2=-1(舍去).当x 变化时,f ′(x )与f (x )的变化情况如下表:x (0,1) 1 (1,+∞)f ′(x ) -0 + f (x )极小值1因此当x =1时,f (方法技巧 1.通过导函数值的正负确定函数单调性,然后进一步明确导函数图象与x 轴交点的横坐标是极大值点还是极小值点.2.求可导函数f (x )的极值的步骤 (1)确定函数的定义域,求导数f ′(x ). (2)求f (x )的拐点,即求方程f ′(x )=0的根.(3)利用f ′(x )与f (x )随x 的变化情况表,根据极值点左右两侧单调性的变化情况求极值.特别提醒:在判断f ′(x )的符号时,借助图象也可判断f ′(x )各因式的符号,还可用特殊值法判断. 跟踪探究 1.如图为y =f (x )的导函数的图象,则下列判断正确的是( )①f (x )在(-3,-1)上为增函数;②x =-1是f (x )的极小值点;③f (x )在(2,4)上为减函数,在(-1,2)上为增函数;④x =2是f (x )的极小值点.A .①②③B .②③C .③④D .①③④解析:由f ′(x )的图象知,-3<x <-1时,f ′(x )<0;f ′(-1)=0; -1<x <2时,f ′(x )>0;f ′(2)=0;2<x <4时,f ′(x )<0故f (x )在(-3,-1)和(2,4)上是减函数,在(-1,2)上是增函数,f (-1)是极小值,f (2)是极大值,所以②③正确,故选B.答案:B2.判断下列函数有无极值,如果有极值,请求出极值;如果没有极值,请说明理由. (1)y =13x 3+4;(2)y =e xx (x >0).解析:(1)f ′(x )=x 2. 令f ′(x )=0,解得x =0.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,0)0 (0,+∞)f ′(x ) + 0 + f (x )单调递增无极值单调递增(2)y ′=e x ·x -e x x 2=e x (x -1)x 2,令y ′=0,得x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,1) 1 (1,+∞)f ′(x ) - 0 + f (x )单调递减极小值单调递增探究二 利用函数极值确定参数的值[教材P 110复习参考题A 组7题]已知函数f (x )=x (x -c )2在x =2处有极大值,求c 的值.解析:∵f (x )=x 3-2cx 2+c 2x , ∴f ′(x )=3x 2-4cx +c 2.∴f ′(2)=0,即3×4-8c +c 2=0,得c =2,或c =6. 但c =2时,f (2)是极小值,不合题意,舍去,所以c =6.[例2] (1)已知函数f (x )=x 3+3ax 2+bx +a 2在x =-1处有极值0,则a =________,b =________. (2)若函数f (x )=13x 3-x 2+ax -1有极值点,则a 的取值范围为________.[解析] (1)∵f ′(x )=3x 2+6ax +b ,且函数f (x )在x =-1处有极值0,∴⎩⎪⎨⎪⎧f ′(-1)=0,f (-1)=0, 即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0,解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0,此时函数f (x )在R 上为增函数,无极值,故舍去.当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x ∈(-∞,-3)时,f ′(x )>0, 此时f (x )为增函数;当x ∈(-3,-1)时,f ′(x )<0, 此时f (x )为减函数;当x ∈(-1,+∞)时,f ′(x )>0, 此时f (x )为增函数.故f (x )在x =-1处取得极小值, ∴a =2,b =9.(2)∵f ′(x )=x 2-2x +a ,由题意得方程x 2-2x +a =0有两个不同的实数根, ∴Δ=4-4a >0,解得a <1. [答案] (1)2 9 (2)(-∞,1)方法技巧 已知函数极值的情况,逆向应用确定函数的解析式时,应注意以下两点: (1)根据极值点处导数为0和极值两个条件列方程组,利用待定系数法求解.(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.跟踪探究 3.已知函数f (x )=ax 3+bx 2+cx (a ≠0)在x =±1处取得极值,且f (1)=-1. (1)求常数a ,b ,c 的值;(2)判断x =±1是函数的极大值点还是极小值点,试说明理由,并求出极值. 解析:(1)f ′(x )=3ax 2+2bx +c , ∵x =±1是函数f (x )的极值点,∴x =±1是方程f ′(x )=3ax 2+2bx +c =0的两根, 由根与系数的关系,得⎩⎨⎧-2b3a=0, ①c3a =-1, ②又f (1)=-1,∴a +b +c =-1.③ 由①②③解得a =12,b =0,c =-32.(2)由(1)知f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1),当x <-1或x >1时,f ′(x )>0, 当-1<x <1时,f ′(x )<0,∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数, 在(-1,1)上是减函数,∴当x =-1时,函数取得极大值f (-1)=1, 当x =1时,函数取得极小值f (1)=-1. 探究三 函数极值的综合应用[例3] 已知函数f (x )=x 3-3ax -1(a ≠0).若函数f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.[解析] 因为f (x )在x =-1处取得极值且f ′(x )=3x 2-3a , 所以f ′(-1)=3×(-1)2-3a =0, 所以a =1,所以f (x )=x 3-3x -1,f ′(x )=3x 2-3, 由f ′(x )=0,解得x 1=-1,x 2=1. 当x <-1时,f ′(x )>0; 当-1<x <1时,f ′(x )<0; 当x >1时,f ′(x )>0.所以f (x )的单调增区间为(-∞,-1),(1,+∞);单调减区间为(-1,1), f (x )在x =-1处取得极大值f (-1)=1, 在x =1处取得极小值f (1)=-3. 作出f (x )的大致图象如图所示.因为直线y =m 与函数y =f (x )的图象有三个不同的交点,结合f (x )的图象可知,m 的取值范围是(-3,1). 方法技巧 利用导数可以判断函数的单调性,研究函数的极值情况,并能在此基础上画出函数的大致图象,从直观上判断函数图象与x 轴的交点或两个函数图象的交点的个数,从而为研究方程根的个数问题提供了方便.延伸探究 若本例“三个不同的交点”改为“两个不同的交点”,结果如何?改为“一个交点”呢? 解析:由本例解析可知当m =-3或m =1时,直线y =m 与y =f (x )的图象有两个不同的交点;当m <-3或m >1时,直线y =m 与y =f (x )的图象只有一个交点.跟踪探究 4.已知函数f (x )=x 3-6x 2+9x +3,若函数y =f (x )的图象与y =13f ′(x )+5x +m 的图象有三个不同的交点,求实数m 的取值范围.解析:由f (x )=x 3-6x 2+9x +3, 可得f ′(x )=3x 2-12x +9,∴13f ′(x )+5x +m =13(3x 2-12x +9)+5x +m =x 2+x +3+m ,则由题意可得x 3-6x 2+9x +3=x 2+x +3+m 有三个不相等的实根,即g (x )=x 3-7x 2+8x -m 的图象与x 轴有三个不同的交点.∵g ′(x )=3x 2-14x +8 =(3x -2)(x -4),∴令g ′(x )=0,得x =23或x =4.当x 变化时,g (x ),g ′(x )的变化情况如下表:则函数g (x )的极大值为g ⎝⎛⎭⎫23=6827-m ,极小值为g (4)=-16-m . ∵由y =f (x )的图象与y =13f ′(x )+5x +m 的图象有三个不同交点,得⎩⎪⎨⎪⎧g ⎝⎛⎭⎫23=6827-m >0,g (4)=-16-m <0, 解得-16<m <6827.即m 的取值范围为⎝⎛⎭⎫-16,6827.[课后小结](1)在极值的定义中,取得极值的点称为极值点,极值点指的是自变量的值,极值指的是函数值. (2)函数的极值是函数的局部性质.可导函数f (x )在点x =x 0处取得极值的充要条件是f ′(x 0)=0且在x =x 0两侧f ′(x )符号相反.(3)利用函数的极值可以确定参数的值,解决一些方程的解和图象的交点问题.[素养培优]1.误把导函数的零点当作函数的极值点求函数f (x )=x 4-x 3的极值,并说明是极小值还是极大值.易错分析 本题易错将导数为零的点都认为是极值点,其实不然,导数为零仅是零点是极值点的必要不充分条件,错解中还有一个误区就是认为极大值一定大于极小值.事实上,极值仅描述函数在该点附近的局部特征,极大值未必一定大于极小值.考查逻辑推理及数学运算.自我纠正 f ′(x )=4x 3-3x 2,令f ′(x )=0, 即4x 3-3x 2=0时,得x 1=0,x 2=34.当x 变化时,f (x ),f ′(x )的变化情况如下表:由上表可知函数f (x )在区间(-∞,0)上是减函数,在区间⎝⎛⎭⎫0,34上还是减函数,所以x =0不是函数的极值点,而函数f (x )在区间⎝⎛⎭⎫0,34上是减函数,在区间⎝⎛⎭⎫34,+∞上是增函数,所以函数f (x )在x =34处取得极小值,极小值为-27256.2.误把切点当作函数的极值点已知函数f (x )=ax 4+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x -2,求f (x )的解析式. 易错分析 本题错在将切点当做极值点,得到f ′(1)=0的错误结论.其实,虽然切点和极值点都与导数有关,但它们却是两个完全不同的概念,不能混为一谈.考查逻辑推理及数学运算的学科素养.自我纠正 f ′(1)表示函数f (x )的图象在点(1,-1)处的切线斜率,应有f ′(1)=1,再联立f (0)=1,f (1)=-1便可得到正确答案:a =52,b =-92,c =1,因此f (x )=52x 4-92x 2+1.。
【课件】函数的极值课件-高二下学期数学人教A版(2019)选择性必修第二册
情境
苏轼在《题西林壁》中这
样写道:“横看成岭侧成
峰,远近高低各不同”,
描述的就是庐山的高低起
伏,错落有致。各个山峰
的顶端,虽然不是群山的
最高处,但它却是其附近
的最高点。
那么,在数学上,这种
现象如何来刻画呢?
探 究
• 思考1:从单调性的变化来看,
图中哪些点比较特殊?
极值
• 思考2:这些点处的函数值有
-
f(x)
单调递减
极小值0
单调递增
极大值4e-2
单调递减
因此,当x=0时,f(x)有极小值,并且极小值为f(0)=0;当x=2时,f(x)有极大值,并
4
且极大值为f(2)= e2
.
(2) (-∞,-1)∪(2,+∞) [f ′(x)=3x2+6ax+3(a+2),∵函数f (x)既有
极大值又有极小值,∴方程f ′(x)=0有两个不相等的实根,∴Δ=36a2-36(a
f '( x)
+
0
+
f ( x) 单调递增
y f ( x )
y
单调递增
f ( x6 )既不是极大值也不是极小值.
a x1 O
x2
x3
x4 x5
x6
b
x
问题4 导数值为0的点一定是函数的极值点吗?
那么,极值存在的条件是什么?
若函数有极值点,则在极值点处导数为0,但导数为0的
点可能不是函数的极值点.也就是说,“f'(c)=0”是“f (x)在
=3
当
= 2,
时,f'(x)=3x2+12x+9=3(x+3)(x+1),令 f'(x)>0 得 x<-3 或 x>-1;
高中数学人教A版 选择性必修第二册 函数的极值与导数 课件
f (x)在x 2, x 1取得极值
f (2) 0且f (1) 0
a 1 ,b 1,经检验符合题意 32
f (x) 1 x3 1 x2 2x 32
你能画出它的大致图像吗?
你学会了什么?
看我来记忆
结论:根据导数定函数,两侧互异有极值, 先正后负为极大,先负后正为极小。
“不识庐山真面目,只缘身在此 山中”讲的是为什么不能辨别庐 山的真面目呢?它其实就是我
对于不导函数f(x)有可能存在极值点,例如 f (x) x
例1 求函数 f (x) 1 x3 4x 4 的极值.
3
定义域 求导函数f '(x) 求f '(x)的零点
列表断号 下结论
例2 求函数 f (x) ln x 1 x2 的极值.
2
解:定义域0,
你考虑定义域了吗?
f (x) 1 x 1 x2 (1 x)(1 x)
x
x
x
f (x) 0, x 1, x 1(舍)
(0, 1) +
1 (1, +∞)
0
-
单调递增
单调递减
极大值f (x) 1 ,无极小值 2
你写了无极小值吗?
思考:已知函数 f x ax3 bx2 2x 在 x 2, x 1 处取得极值。
Hale Waihona Puke 求函数 f x 的解析式。 解: f (x) 3ax2 2bx 2
的函数值f(b)比它在x=b附近其他的函数值_都__大_,且_f′__(b_)_=__0;而且在x=b
的左侧__f′__(_x_)_>_0,右侧_f_′__(_x_)<_0_,则把b叫做函数y=f(x)的极大值点,f(b) 叫做函数y=f(x)的极大值.
人教A版高考总复习数学精品课件 第四章 一元函数的导数及其应用 第三节 利用导数研究函数的极值、最值
强基础 固本增分
1.函数的极值
函数极值反映的是函数局部的性质
取得极值的条件
极值
函数y=f(x)在点x=a的函数值f(a)比它在点x=a
f(a)叫做
附近其他点的函数值都 小
f'(a)=0
函数
y=f(x)的
在点x=a附近的左侧 f'(x)<0 ,右侧 f'(x)>0 极小值
函数y=f(x)在点x=b的函数值f(b)比它在点x=b
提示 必要不充分条件.当f'(x0)=0时,f(x)不一定在x=x0处取得极值,例如函数
f(x)=x3;但当f(x)在x=x0处取得极值时,由极值定义可知必有f'(x0)=0.
2.函数的最值
反映的是函数整体的性质
(1)一般地,如果在区间[a,b]上函数y=f(x)的图象是一条
连续不断
的曲
线,那么它必有最大值和最小值.
故
1+
g(t)min=g(2)= 2 =1,解得
a=1;
当√1 + >2,即 a>3 时,当 2≤x<√1 + 时,g'(x)<0,g(x)单调递减,
当 x>√1 + 时,g'(x)>0,g(x)单调递增,
故 g(x)min=g(√1 + )=2√1 + -2=1,解得
上,a=1.
5
a=4,不符合
x> ,所以函数 f(x)
, + ∞ 上单调递增,f(x)在区间(0,+∞)上不
存在最大值,不符合题意.当 a<0 时,若 b≥0,则 x>0 时,f'(x)<0,f(x)在区间(0,+∞)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的极值与导数(人教A版)一、单选题(共10道,每道10分)
1.设函数,则( )
A.为的极大值点
B.为的极小值点
C.为的极大值点
D.为的极小值点
2.设函数,则( )
A.为的极小值点
B.为的极大值点
C.为的极大值点
D.为的极小值点
3.已知函数在处有极值,则的值为( )
A. B.
C. D.
4.函数的图象如图所示,则的值为( )
A. B.
C. D.
5.若函数存在极值,则实数的取值范围是( )
A. B.
C. D.
6.设函数的导函数,那么下列说法正确的是( )
A.若,则是函数的极值点
B.若是函数的极值点,则
C.若是函数的极值点,则可能不存在
D.若有一个实根,则函数有一个极大值点
7.已知函数的图象与轴恰有两个公共点,则=( )
A. B.
C. D.
8.在中,分别为所对的边,若函数
有极值点,则的范围是( )
A. B.
C. D.
9.已知函数在内有极小值,则实数的取值范围是( )
A. B.
C. D.
10.若函数在区间上有极值点,则实数的取值范围是( )
A. B.
C. D.。