数列通项公式与求和的常见解法

合集下载

(完整word版)数列的通项公式与求和的常见方法

(完整word版)数列的通项公式与求和的常见方法

常见数列通项公式的求法类型一:公式法1(或定义法)1()n n a a p p +-=为常数1()n na q q a +=为非零常数 例1. 已知数列{}n a 满足11a =,12n n a a +-=*()n N ∈,求数列{}n a 的通项公式。

例2.已知数列{}n a 满足12a =,13n na a += *()n N ∈,求数列{}n a 的通项公式。

变式练习:1.已知数列{}n a 满足12a =,110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。

2.已知数列{}n a 满足16a =-,13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。

3. 已知数列{}n a 满足11a =,212=a ,11112n n na a a -++=(2)n ≥,求数列{}n a 的通项公式。

4.已知数列{}n a 满足11a =,13n n a a +=*()n N ∈,求数列{}n a 的通项公式。

类型二:(累加法))(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解例:已知数列{}n a 满足121n n a a n +=++*()n N ∈,11a =,求数列{}n a 的通项公式。

变式练习:1.已知数列{}n a 满足211=a ,n a a n n 21+=+,*()n N ∈求数列{}n a 的通项公式。

2.已知数列{}n a 满足11a =,11(1)n n a a n n -=+-,(2)n ≥,求数列{}n a 的通项公式。

3.已知数列{}n a 满足1231nn n a a +=+⨯+, *()n N ∈,13a =,求数列{}n a 的通项公式。

4.已知数列{}n a 中,12a =,11ln(1)n n a a n+=++,求数列{}n a 的通项公式。

求数列通项公式+求数列前 N项和的常用方法

求数列通项公式+求数列前    N项和的常用方法
例题2:求数列
的前n项和Sn 解:
点拨:这道题只要经过简单整理,就可以很明显 的看出:这个数列可以分解成两个数列,一个等差 数列,一个等比数列,再分别运用公式求和,最后 把两个数列的和再求和。 三.用裂项相消法求数列的前n项和
裂项相消法是将数列的一项拆成两项或多项,使 得前后项相抵消,留下有限项,从而求出数列的前 n项和。
例题3:求数列
(n∈N*)的和 解:
点拨:此题先通过求数列的通项找到可以裂项的 规律,再把数列的每一项拆开之后,中间部分的项 相互抵消,再把剩下的项整理成最后的结果即可。
四.用错位相减法求数列的前n项和 错位相减法是一种常用的数列求和方法,应用于
等比数列与等差数列相乘的形式。即若在数列 {an·bn}中,{an}成等差数列,{bn}成等比数列,在 和式的两边同乘以公比,再与原式错位相减整理后 即可以求出前n项和。
例题4:求数列{nan}(n∈N*)的和 解:设 Sn = a + 2a2 + 3a3 + … + nan①
则:aSn = a2 + 2a3 + … + (n-1)an + nan+1② ①-②得:(1-a)Sn = a + a2 + a3 + … + an nan+1③ 若a = 1则:Sn = 1 + 2 + 3 + … + n =
求数列 前N项和的常用方法 核心提示:求数列的前n项和要借助于通项公式,即先有通项公式, 再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为 基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律, 找到适合的方法解题。
一.用倒序相加法求数列的前n项和

数列求和与求通项公式方法总结

数列求和与求通项公式方法总结

数列求和与求通项公式方法总结数列是数学中的一种重要概念,它是由一列按照一定规律排列的数字所组成的序列。

在数列中,求和与求通项公式是两个重要的问题,本文将对这两个问题的方法进行总结。

首先,我们来讨论数列的求和问题。

数列的求和是指对一个给定的数列中的所有元素进行求和的操作。

数列求和的方法主要有以下几种。

1.等差数列求和公式:对于一个等差数列,其通项公式为An=a1+(n-1)d,其中a1为首项,d为公差,n为项数。

等差数列求和的公式为Sn=[(a1+an)n]/2,其中an为末项。

这个公式适用于等差数列的求和问题,可以更快地求得数列的和。

2.等差数列求和差法:对于一个等差数列,当项数为n时,可以通过求和的差法Sn=(a1+an)(n/2)来求得数列的和。

这个方法适用于项数较多且公差较小的等差数列。

3.等比数列求和公式:对于一个等比数列,其通项公式为An=a1*r^(n-1),其中a1为首项,r为公比,n为项数。

等比数列求和的公式为Sn=a1*(1-r^n)/(1-r),其中r不等于1、这个公式适用于等比数列的求和问题,可以轻松地求得数列的和。

4.等比数列求和减法:对于一个等比数列,当公比r满足,r,<1时,可以通过求和的减法Sn=a1/(1-r)来求得数列的和。

这个方法适用于公比绝对值小于1的等比数列。

其次,我们来讨论数列的求通项公式问题。

数列的通项公式是指能够根据数列的位置n来快速计算出数列中相应位置上的数值的公式。

数列求通项公式的方法主要有以下几种。

1.等差数列通项公式:对于一个等差数列,其通项公式为An=a1+(n-1)d,其中a1为首项,d为公差,n为项数。

通过这个公式,我们可以直接根据位置n来计算出数列中第n项的数值。

2.等比数列通项公式:对于一个等比数列,其通项公式为An=a1*r^(n-1),其中a1为首项,r为公比,n为项数。

通过这个公式,我们可以直接根据位置n来计算出数列中第n项的数值。

数列求和公式七个方法

数列求和公式七个方法

数列求和公式七个方法数列求和是数学中常见的问题之一、下面将介绍七种常用的数列求和方法,包括等差数列求和、等比数列求和、等差数列二次项求和、递归数列求和、斐波那契数列求和、等差数列部分项求和、正弦数列求和。

一、等差数列求和:等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。

从首项到第n项的和Sn可以通过以下公式计算:Sn = (n/2)(a1 + an)其中,n为项数,a1为首项,an为末项,Sn为和。

二、等比数列求和:等比数列的通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比,n为项数。

从首项到第n项的和Sn可以通过以下公式计算:Sn=a1(q^n-1)/(q-1)其中,n为项数,a1为首项,q为公比,Sn为和。

三、等差数列二次项求和:对于等差数列的二次项和,可以通过对等差数列求和公式进行二次求和得到。

Sn=(n/6)*(2a1+(n-1)d)(a1+(n-1)d+d)其中,n为项数,a1为首项,d为公差,Sn为和。

四、递归数列求和:递归数列是一种特殊的数列,其中每一项都是前一项的函数。

递归数列的求和可以通过编写一个递归函数来实现。

例如,对于斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(1)=1,F(2)=1可以编写一个递归函数,将前两个项相加,并递归调用函数来求和。

五、斐波那契数列求和:斐波那契数列是一种特殊的递归数列,其中前两个项为1,从第三项开始每一项都是前两项的和。

斐波那契数列求和可以通过编写一个循环来实现,累加每一项的值。

六、等差数列部分项求和:对于等差数列的部分项求和,可以通过求解两个和的差来实现。

设Sn为从第m项到第n项的和,Sm为从第1项到第m-1项的和,Sn 可以通过以下公式计算:Sn = Sn - Sm = (n-m+1)(a1 + an) / 2其中,m和n为项数,a1为首项,an为末项。

七、正弦数列求和:正弦数列是一种特殊的数列,其中每一项的值由正弦函数确定。

数列求和及数列通项公式的基本方法和技巧

数列求和及数列通项公式的基本方法和技巧

数列求和的基本方法和技巧一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n nna a a n S n n 2)1(2)(11-+=+=2、 等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn[例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0) 解: ∵x≠0∴该数列是首项为1,公比为x 2的等比数列而且有n+3项 当x 2=1 即x =±1时 和为n+3评注:(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项. 对应高考考题:设数列1,(1+2),…,(1+2+1222-⋯+n ),……的前顶和为ns,则ns的值。

错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。

需要我们的学生认真掌握好这种方法。

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。

[例] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S (1≠x )………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ 注意、1 要考虑 当公比x 为值1时为特殊情况 2 错位相减时要注意末项此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。

数列通项公式和求和综合常见题型归纳

数列通项公式和求和综合常见题型归纳
2 S . =1 x 2 +4 x 2 +… +( 3 n一5 ) ×2 一 +( 3 n一2 ) ×2
第 二 步 : 变 形 得 到 A n一 | L= B , 即 : 数 列 { j 是 一 求和 :
个 以 =。 为首项 ,以 B为公差的等差数列 .


配凑等差数 列法求通项公式和错位 相减 求和
1 .配凑等 差数列法求通项公 式的 常见模型 递推公式形如 : + l = A・ +曰・ A ,A≠l ,B#O .
得 : 数 列 { 喜 ) 是 一 个 以 = 1 为 首 项 , 以 3 为 公 差 的 等
差数列 , 由 一=1 +( 凡一1 ) ×3=3 n一2= % =( 3 n一2 )‘ 2 一 , n∈

3, n∈ N .
2 4 硅 教 育 论 坛[ 2 0 1 4 年 第4 期 ]
比较系数 : ( A一1 ) p k jp
( A —1 ) q— p=6 j g=
T ,

=7×2 +3 一( n +3 ) , . n ∈N .
( 2 ) 由 瓯=7 X 2 n +3 一t 一( n+3 ) , n∈ N ,下可用分组求和法
式. = +3 j 一
1 =2
3・ 2 n
( 2 ) 当f( n ) =k n 4 - b , k ≠0时 , ‰+ I =A・ ‰+ k n+ b ,
设: + 1 +q ( n+1 ) +q =A ・ ( a n + p n+ q ) . 还原 : a n + l = A・ % +( A 一1 p n+( A 一1 ) q— P .
具体作 法 :第一步 :递推公式 两边 同时除以 A ,则原 递推

数列的通项公式与求和的常用方法

数列的通项公式与求和的常用方法
∴an=a1+(n-1)d=2+4(n-1),即通项公式为an=4n-2
解法三
由已知得,(n∈N*) ①, 所以有 ②, 由②式得, 整理得Sn+1-2·+2-Sn=0, 解得, 由于数列{an}为正项数列,而, 因而, 即{Sn}是以为首项,以为公差的等差数列
所以= +(n-1) =n,Sn=2n2, 故an=即an=4n-2(n∈N*)
对任意正整数n都成立,其中m为常数,且m<-1
(1)求证 {an}是等比数列;
(2)设数列{an}的公比q=f(m),数列{bn}满足 b1=a1,bn=f(bn-1)(n≥2,n∈N*) 试问当m为何值时,成立?
6 已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145
(1)求数列{bn}的通项bn; (2)设数列{an}的通项an=loga(1+)(其中a>0且a≠1),记Sn是数列{an}的 前n项和,试比较Sn与logabn+1的大小,并证明你的结论
②假设当n=k时,结论成立,即有ak=4k-2,由题意,有,将ak=4k -2
代入上式,解得2k=,得Sk=2k2, 由题意,有,Sk+1=Sk+ak+1, 将Sk=2k2代入得()2=2(ak+1+2k2), 整理得ak+12-4ak+1+4-16k2=0,由ak+1>0,解得ak+1=2+4k, 所以ak+1=2+4k=4(k+1)-2, 即当n=k+1时,上述结论成立
(1)求数列{an}的通项公式; (2)设Sn=|a1|+|a2|+…+|an|,求Sn; (3)设bn=(n∈N*),Tn=b1+b2+……+bn(n∈N*),是否存在最大的整数m, 使得对任意n∈N*均有Tn>成立?若存在,求出m的值;若不存在,说 明理由

求数列通项公式与数列求和的几种方法

求数列通项公式与数列求和的几种方法

求数列通项公式与数列求和的几种方法数列是由一定规律形成的数的序列,通常可以用数学公式表示。

数列的通项公式是指能够表示数列中任意一项的公式。

数列的求和是指将数列中所有项相加的过程。

在数学中,有多种方法可以求解数列的通项公式和数列的求和问题。

下面将介绍一些常见的方法。

一、通过递推关系求解通项公式与求和递推关系是指数列中相邻项之间的数学关系。

通过观察数列中的规律,可以找到数列的递推关系,从而求解通项公式和数列的求和。

1.1等差数列等差数列是指数列中相邻项之间的差是一个常数。

设数列的第一项为a1,公差为d,则等差数列的递推关系可以表示为:an = a1 + (n-1)d。

通过该递推关系,可以求解等差数列的通项公式和求和。

1.2等比数列等比数列是指数列中相邻项之间的比是一个常数。

设数列的第一项为a1,公比为r,则等比数列的递推关系可以表示为:an = a1 * r^(n-1)。

通过该递推关系,可以求解等比数列的通项公式和求和。

1.3斐波那契数列斐波那契数列是指数列中的每一项都是前两项的和。

设数列的第一项为a1,第二项为a2,则斐波那契数列的递推关系可以表示为:an = an-1 + an-2、通过该递推关系,可以求解斐波那契数列的通项公式和求和。

二、通过数学工具求解通项公式与求和2.1代数方法对于一些特定的数列,可以使用代数方法求解通项公式和求和。

例如,对于等差数列和等比数列,可以使用代数方法推导出通项公式和求和公式。

2.2比较系数法比较系数法是一种常用的方法,适用于具体的数列。

通过对比数列中的系数和常数,可以列方程组求解通项公式和求和。

2.3拆分合并法对于一些数列,可以通过拆分合并法求解通项公式和求和。

该方法将数列分为不同的部分进行拆分和合并,从而得到整个数列的通项公式和求和。

三、通过数学工具和技巧求解通项公式与求和3.1差分法差分法是一种常见的求解通项公式和求和的方法。

对于一些特殊的数列,可以通过数列和数列之间的差值来推导出数列的特征,进而求解通项公式和求和。

数列求通项公式及求和的方法

数列求通项公式及求和的方法

数列求通项公式及求和的方法数列是指按照一定规律排列的一组数。

解决数列问题,首先需要找到数列的通项公式,然后可以利用通项公式求出数列的各项,再利用求和公式求出数列的和。

找到数列的通项公式的方法有多种,常见的方法包括等差数列的通项公式和等比数列的通项公式。

一、等差数列的通项公式及求和方法等差数列是指数列中的每一项与它前一项的差值相等的数列。

我们可以通过数列中的两项之间的关系来求出等差数列的通项公式。

设等差数列的第一项为a₁,公差为d,第n项为aₙ,则等差数列的通项公式为:aₙ=a₁+(n-1)d。

求等差数列的和,我们可以利用求和公式。

设等差数列的第一项为a₁,公差为d,共有n项,其中首项为a₁,末项为aₙ,求和公式为:Sn=n/2*(a₁+aₙ)。

二、等比数列的通项公式及求和方法等比数列是指数列中的每一项与它前一项的比值相等的数列。

我们可以通过数列中的两项之间的关系来求出等比数列的通项公式。

设等比数列的第一项为a₁,公比为q,第n项为aₙ,则等比数列的通项公式为:aₙ=a₁*q^(n-1)。

求等比数列的和,我们可以利用求和公式。

设等比数列的第一项为a₁,公比为q,共有n项,其中首项为a₁,末项为aₙ,求和公式为:Sn=a₁(q^n-1)/(q-1)。

除了等差数列和等比数列之外,还有其他种类的数列,如等差数列与等比数列交替出现的数列、斐波那契数列等。

这些数列有着特定的规律,可以通过观察数列中的数字之间的关系来确定其通项公式和求和公式。

在实际应用中,数列的求通项公式和求和公式可以帮助我们计算数列的任意项和总和,进而解决与数列相关的问题。

在数学、物理、经济等领域中,数列经常被运用到,掌握数列的通项公式和求和公式对于解决实际问题非常重要。

总结起来,数列问题的解决方法主要包括找到数列的通项公式和求和公式。

通过运用这些公式,我们可以计算数列的任意项和总和,进而解决与数列相关的问题。

而在确定通项公式和求和公式时,我们可以通过观察数列中的数字之间的关系来推导,常见的数列类型包括等差数列、等比数列等。

数列通项公式及数列求和的常用方

数列通项公式及数列求和的常用方

数列通项公式及数列求和的常用方法邓 飞一.通项公式求法1. 迭乘法:1()n n a a f n += 型例1 已知数列{}n a 满足112(1)53n n n a n a a +=+= ,,求数列{}n a 的通项公式。

解:因为112(1)53n n n a n a a +=+= ,,所以0n a ≠,则12(1)5n n na n a +=+,故132112211221(1)1(1)(2)2112[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n --------+-+++-=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯ 所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯2. 迭加法:1()n n a a f n +=+ 型例2 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n , 则,211112-+=a a 312123-+=a a ,413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=. 3. 待定系数法:1n n a pa q +=+ 型――转化为1()n n a x p a x ++=+ 型。

(等比型)例3 已知数列{}n a 满足11236n n a a a +=+=,,求数列{}n a 的通项公式。

解:设12()n n a x a x ++=+ 比较系数得3,x = 所以 132(3)n n a a ++=+ 又13639a +=+=,则数列{3}n a +是以9为首项,2为公比的等比数列, 则1392n n a -+= ,故1923n n a -=- 。

(完整版)数列通项公式及其求和公式

(完整版)数列通项公式及其求和公式

一、数列通项公式的求法(1)已知数列的前n 项和n S ,求通项n a ; (2)数学归纳法:先猜后证;(3)叠加法(迭加法):112211()()()n n n n n a a a a a a a a ---=-+-++-+L ;叠乘法(迭乘法):1223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=-----ΛΛ. 【叠加法主要应用于数列{}n a 满足1()n n a a f n +=+,其中()f n 是等差数列或等比数列的条件下,可把这个式子变成1()n n a a f n +-=,代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出n a ,从而求出n s 】(4)构造法(待定系数法):形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列;【用构造法求数列的通项或前n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前n 项和.】 (5)涉及递推公式的问题,常借助于“迭代法”解决.【根据递推公式求通项公式的常见类型】 ①1+1=,()n n a a a a f n =+型,其中()f n 是可以和数列,用累加法求通项公式,即1思路(叠加法)1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑例题1:已知11a =,1n n a a n -=+,求n a解:∵1n n a a n -=+ ∴1n n a a n --=,依次类推有:122321122n n n n a a n a a n a a -----=--=--=、、…∴将各式叠加并整理得12n n i a a n =-=∑,121(1)2n nn i i n n a a n n ==+=+==∑∑ 思路(转化法)1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n na a f n p p p ---=+,我们令n n n a b p =,那么问题就可以转化为类型一进行求解了.例题: 已知12a =,1142n n n a a ++=+,求n a解:∵1142n n n a a ++=+ ∴142nn n a a -=+,则111442nn n nn a a --⎛⎫=+ ⎪⎝⎭, ∵令4n n na b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,依此类推有11212n n n b b ---⎛⎫-= ⎪⎝⎭、22312n n n b b ---⎛⎫-= ⎪⎝⎭、…、22112b b ⎛⎫-= ⎪⎝⎭∴各式叠加得1212nnn i b b =⎛⎫-= ⎪⎝⎭∑,即122111*********n n n n n n n n i i i b b ===⎛⎫⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑ ∴1441422n nnn n n n a b ⎡⎤⎛⎫=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦②1+1=,()n n a a a a f n =⋅型,其中()f n 是可以求积数列,用累乘法求通项公式,即1(2)(1)f f a思路(叠乘法):1(1)n n a f n a -=-,依次类推有:12(2)n n a f n a --=-、23(3)n n a f n a --=-、…、21(1)af a =, 将各式叠乘并整理得1(1)(2)(3)na f f f a =⋅⋅⋅…(2)(1)f n f n ⋅-⋅-,即(1)(2)(3)n a f f f =⋅⋅⋅…1(2)(1)f n f n a ⋅-⋅-⋅例题:已知11a =,111n n n a a n --=+,求n a . 解:∵111n n n a a n --=+ ∴111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a = ∵11a =∴将各式叠乘并整理得112311n a n n n a n n n ---=⋅⋅⋅+-…2143⋅⋅,即12311n n n n a n n n ---=⋅⋅⋅+- (212)43(1)n n ⋅⋅=+ ③1+1=,n n a a a pa q =+型(其中p q 、是常数),可以采用待定系数法、换元法求通项公式,即1()11n n q q a p a p p +-=---,设1n n qba p=--,则1n n b pb +=.利用②的方法求出n b 进而求出n a 当1p =时,数列{}n a 是等差数列;当0,0p q ≠=时,数列{}n a 是等比数列; 当0p ≠且1,0p q ≠≠时,可以将递推关系转化为111n n q q a p a p p +⎛⎫+=+ ⎪--⎝⎭,则数列1nq a p ⎧⎫+⎨⎬-⎩⎭是以11qa p +-为首项,p 为公比的等比数列.思路(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1qp μ=-,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1111n n q q a a p p p -⎛⎫+=+ ⎪--⎝⎭,即1111n nq qa a p p p -⎛⎫=++ ⎪--⎝⎭ 例题:已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式 解:设()12n n a a μμ++=+,即3μ=∵11a =∴数列{}3n a +是以134a +=为首项、2为公比的等比数列∴113422n n n a -++=⋅=,即123n n a +=-④1+1=,n n n a a a pa q =+型,其中p q 、是常数且0,1q q ≠≠,111n n n n a a p q q q q ++=⋅+,设n n n a b q =,则11n np b b q q+=⋅+思路(构造法):11n n n a pa rq --=+,设11n n n n a a q q μλμ--⎛⎫+=+ ⎪⎝⎭,则()11n n q p q rq λμλ-=⎧⎪⎨-=⎪⎩,从而解得p q r p q λμ⎧=⎪⎪⎨⎪=⎪-⎩那么n na r qp q ⎧⎫+⎨⎬-⎩⎭是以1a r q p q +-为首项,p q 为公比的等比数列 例题:已知11a =,112n n n a a --=-+,求n a 。

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。

求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。

一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。

例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。

1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。

二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。

例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。

2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。

例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。

3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。

4.1公式和差公式是指通过首项、末项和项数计算公差的公式。

已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。

数列求和与求通项公式方法总结(已打)

数列求和与求通项公式方法总结(已打)
11、已知等比数列 中,各项都是正数,且 , 成等差数列,则
12、已知 为等比数列, , ,则 。
13、已知 得三边长成公比为 的等比数列,则其最大角的余弦值为_________.
14、已知等比数列 为递增数列,且 ,则数列的通项公式 _____.
15、等比数列{ }的前n项和为Sn,若S3+3S2=0,则公比 =_______
(Ⅰ)求 的值;(Ⅱ)求数列 的通项公式.
(1)求数列 的通项公式;
(2)记 ,求数列 的前n项和 。
数列练习题(近三年各地高考题选编)
一、填空题
1、在等差数列 中, ,则 的前5项和 =。
2、等差数列 中, ,则数列 的公差为。
3、在等差数列 中,已知 =16,则 。
4、如果等差数列 中, + + =12,那么 + +•••…+ =。
5、 为等差数列, 为其前 项和.若 , ,则 ________.
(1)求数列 、 的通项公式;
(2)设 ,数列 的前 项和为 ,问 > 的最小正整数 是多少
2、(2012广州一模)已知等差数列 的公差 ,它的前 项和为 ,若 ,且 , , 成等比数列.
(1)求数列 的通项公式;
(2)设数列 的前 项和为 ,求证: .
3、(2012惠州三模)已知函数 ,且数列 是首项为 ,公差为2的等差数列.
6、{an}的前n项和为Sn,且Sn= ,n∈N﹡,数列{bn}满足an=4log2bn+3,n∈N﹡.
(1)求an,bn;
(2)求数列{an·bn}的前n项和Tn.
7、已知 是等差数列,其前 项和为 , 是等比数列,且 .
(I)求数列 与 的通项公式;

数列求通项公式及求和的方法

数列求通项公式及求和的方法

数列求通项公式及求和的方法数列专题-数列求通项公式及求和的方法考点1:求通项公式1、公式法:已知数列{an}为等差或等比数列,可根据通项公式an=a1+(n-1)d或an=a1qn-1进行求解。

例1:已知{an}是一个等差数列,且a2=1,a5=-5,求{an}的通项公式。

变式:已知等差数列{an}中,a10=28,S6=51,求{an}的通项公式。

2、前n项和法:已知数列{an}的前n项和Sn的解析式,可求出an。

例2:已知数列{an}的前n项和Sn=2n-1,求通项an。

变式:已知下列数列{an}的前n项和Sn的公式为Sn=3n2-2n(n∈N*),求{an}的通项公式。

3、Sn与an的关系式法:已知数列{an}的前n项和Sn与通项an的关系式,可求出an。

例3:已知数列{an}的前n项和Sn满足an+1=Sn,其中a1=1,求an。

变式:已知{an}中,an+1=nan,且a1=2,求{an}的通项公式。

4、累加法:当数列{an}中有an-an-1=f(n),即第n项与第n-1项的差是个有“规律”的数时,可用这种方法。

例4:a1=0,an+1=an+2(n-1),求通项an。

变式:已知数列{an}的首项a1=1,且an=an-1+3(n≥2),求通项an。

5、累乘法:当数列{an}中有an/an-1=f(n),即第n项与第n-1项的商是个有“规律”的数时,可用这种方法。

例5:a1=1,an=an-1(n),求通项an。

6、构造法:1)配常数法:在数列{an}中有an=kan-1+b(k、b均为常数且k≠),从表面形式上来看an是关于an-1的“一次函数”的形式,可用下面的方法:一般化方法:设an+m=k(an-1+m),则{an+m}成等比数列。

例6:已知a1=1,an=2an-1+1(n2),求通项an。

2)配一次函数法:在数列{an}中有an=kan-1+bn+c(k、b、c均为常数且k≠),可用下面的方法:一般化方法:设an+tn+u=k(an-1+t(n-1)+u),则{an+tn+u}成等比数列。

求数列通项公式、数列求和问题的常用方法

求数列通项公式、数列求和问题的常用方法

求数列通项公式、数列求和问题的常用方法一、求数列通项公式的三种常用方法2;3.n n S a ⎧⎪⎨⎪⎩1、利用与的关系;、累加(乘)法、构造法(或配凑法、待定系数法)1、利用n n S a 与的关系求通项公式:1-11-1=1;=-.-n n n n n S a S S S S S ⎧⎨≥⎩ , 当n 时利用 ,当n 2时注意:当也适合时,则无需分段(合二为一)。

例1、设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,11a b =且2211().b a a b -= (Ⅰ)求数列}{n a 和}{n b 的通项公式;解:(1),24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当当;2,111===S a n 时也满足上式。

故{a n }的通项公式为42,n a n =-设{b n }的公比为q , 111, 4, .4b qd b d q ==∴=则 故1111122,44n n n n b b q ---==⨯= 12{}.4n n n b b -=即的通项公式为例2、数列}{n a 的前n 项和为S n ,且111,3, 1,2,3,n n a S a n +=== ,求: (1)2a 的值。

(2)数列}{n a 的通项公式; 解:(1)由得,,3,2,1,31,111 ===+n S a a n n .313131112===a S a 111234222211()(2),3344,(2), (33)114,()(2).3331,1,,{}14(), 2.33n n n n n n n n n n n n a a S S a n a a n a a a a q a a n n a a n +-+---=-=≥=≥===≥=⎧⎪=⎨≥⎪⎩(2)由得即,,,是以为首项,为公比的等比数列又所以所以数列的通项公式为例3、(09广东四校文期末)已知函数 f (x ) = a x 2 + bx -23 的图象关于直线x =-32对称, 且过定点(1,0);对于正数列{a n },若其前n 项和S n 满足S n = f (a n ) (n ∈ N *)(Ⅰ)求a , b 的值;(Ⅱ)求数列{a n } 的通项公式;(Ⅰ)∵函数 f (x ) 的图象关于关于直线x =-32对称,∴a ≠0,-b 2a =-32, ∴ b =3a ①∵其图象过点(1,0),则a +b -23=0 ②由①②得a = 16 , b = 12. 4分(Ⅱ)由(Ⅰ)得2112()623f x x x =+- ,∴()n n S f a ==2112623n n a a +- 当n ≥2时,1n S -=211112623n n a a --+- .两式相减得 2211111()622n n n n n a a a a a --=-+-∴221111()()062n n n n a a a a ----+= ,∴11()(3)0n n n n a a a a --+--= 0,n a >∴ 13n n a a --=,∴{}n a 是公差为3的等差数列,且22111111112340623a s a a a a ==+-∴--=∴a 1 = 4 (a 1 =-1舍去)∴a n =3n+1 9分2、累加(乘)法:11-111 12-1. 2 3+2. 3 2-1.14 .(n+1)n n n n n n n n n a a n a a n a a a a n ++++=+=+=+=+例如:、 、、、 n 1112. 2 .+1n n n n a a na a n ++==例如:、 、 3、配凑法或待定系数法或构造法:111 12 1. 2 2 1. 3 3 2.n n n n n n a a a a a a +++=+=+=+例如:、 、、11+111111+12+1 1.+1=2--------2.221,=2{}=1=21=.2n n n n n n n nn n n n n n a a a a a a a b b a b b b a a q b ++++=+=+∴=+++==+ 解:方法一配凑法(或拆配法) 即 令则有, 故是以为首项,以为公比的。

数列通项公式与求和的常见解法

数列通项公式与求和的常见解法

数列通项公式与求和的常见解法数列通项公式是指一个数列中,每一项与它的序号之间的关系表达式。

常见的数列通项公式包括等差数列、等比数列、斐波那契数列等。

求和则是指将数列中的所有项相加的过程,常见的求和方法有逐项相加法、数列求和公式法以及数列分组求和法等。

下面将详细介绍这些数列通项公式和求和的常见解法。

一、等差数列的通项公式与求和等差数列是指数列中的任意两个相邻项之间的差值保持不变。

等差数列的通项公式为:an = a1 + (n - 1)d,其中an表示第n项,a1表示首项,d表示公差。

以等差数列1,4,7,10,13...为例,首项a1 = 1,公差d = 4 -1 = 3,第n项可以表示为an = 1 + (n - 1)3等差数列的求和可以使用数列求和公式Sn = n(a1 + an) / 2,其中Sn表示前n项和。

二、等比数列的通项公式与求和等比数列是指数列中的任意两个相邻项之间的比值保持不变。

等比数列的通项公式为:an = a1 * r^(n - 1),其中an表示第n项,a1表示首项,r表示公比。

以等比数列2,6,18,54,162...为例,首项a1 = 2,公比r = 6/ 2 = 3,第n项可以表示为an = 2 * 3^(n - 1)。

等比数列的求和可以使用数列求和公式Sn=a1*(1-r^n)/(1-r),其中Sn表示前n项和。

三、斐波那契数列的通项公式与求和斐波那契数列是指数列中的每一项都是前两项的和,通常以F(n)表示第n项,a1=1,a2=1、斐波那契数列的通项公式可以使用递归形式表示:Fn=Fn-1+Fn-2斐波那契数列的求和可以使用迭代方式进行计算,将每一项逐个相加即可得到和。

四、逐项相加求和法逐项相加法是最基本的求和方法,对于数列中的每一项逐个相加得到和。

即S = a1 + a2 + a3 + ... + an,其中S表示和。

逐项相加法的计算量较大,对于项数较多的数列效率较低。

数列的通项公式和求和公式

数列的通项公式和求和公式

数列的通项公式和求和公式数列是数学中常见的概念,它是由一系列按照一定规律排列的数字组成。

在数列的研究中,通项公式和求和公式是两个重要的概念。

本文将详细介绍数列的通项公式和求和公式,并探讨它们的应用。

一、数列的通项公式数列的通项公式是一个能够直接推算出数列的第n项的公式,通过这个公式我们可以快速计算数列的任意项。

常见的数列有等差数列和等比数列,它们的通项公式如下:1. 等差数列的通项公式等差数列的通项公式为:an = a1 + (n - 1)d其中,an表示等差数列的第n项,a1为首项,n为项数,d为公差。

2. 等比数列的通项公式等比数列的通项公式为:an = a1 * r^(n - 1)其中,an表示等比数列的第n项,a1为首项,n为项数,r为公比。

除了等差数列和等比数列,还有其他类型的数列,它们的通项公式根据数列的规律有所不同。

通过找出数列的规律并利用递推关系,我们可以得到数列的通项公式,从而方便计算数列的各项值。

二、数列的求和公式求和公式是用来计算数列前n项和的公式,它可以帮助我们快速求解数列的和。

常见的数列求和公式如下:1. 等差数列的求和公式等差数列的求和公式为:S = (n/2) * (a1 + an)其中,S表示等差数列的前n项和,n为项数,a1为首项,an为末项。

2. 等比数列的求和公式等比数列的求和公式为:S = a1 * (1 - r^n) / (1 - r)其中,S表示等比数列的前n项和,n为项数,a1为首项,r为公比。

对于其他类型的数列,其求和公式也有所不同。

我们可以通过找出数列的和与前一项之间的递推关系,从而得到数列的求和公式,从而快速求解数列的和。

三、数列公式的应用数列的通项公式和求和公式在数学中有着广泛的应用。

比如,在预测数值规律方面,我们可以利用通项公式来计算未知项的值,从而推断出数列的任意项。

在实际问题中,数列的通项公式和求和公式也经常被应用于求解具体的数值。

此外,数列的通项公式和求和公式也在数学的相关领域中起到重要的作用,比如在微积分中用于求解积分,或在概率论中用于计算概率等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列通项公式的十种求法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n na a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。

二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L所以数列{}n a 的通项公式为2n a n =。

评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。

例3 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-L L L所以3 1.nn a n =+-评注:本题解题的关键是把递推关系式1231n n n a a +=+⨯+转化为1231nn n a a +-=⨯+,进而求出11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+L ,即得数列{}n a 的通项公式。

例4 已知数列{}n a 满足1132313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++L L L因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯-评注:本题解题的关键是把递推关系式13231nn n a a +=+⨯+转化为111213333n n n n n a a +++-=+,进而求出112232*********()()()()333333333n n n n n n n n n n n n a a a a a a a a a -----------+-+-++-+L ,即得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式,最后再求数列{}n a 的通项公式。

三、累乘法例5 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式。

解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯L L L L 所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯评注:本题解题的关键是把递推关系12(1)5nn n a n a +=+⨯转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅L ,即得数列{}n a 的通项公式。

例6 (2004年全国I 第15题,原题是填空题)已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥L ,,求{}n a 的通项公式。

解:因为123123(1)(2)n n a a a a n a n -=++++-≥L ①所以1123123(1)n n n a a a a n a na +-=++++-+L ②用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=L L ③由123123(1)(2)n n a a a a n a n -=++++-≥L ,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=L 。

所以,{}n a 的通项公式为!.2n n a =评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为11(2)n na n n a +=+≥,进而求出132122n n n n a a a a a a a ---⋅⋅⋅⋅L ,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式。

四、待定系数法例7 已知数列{}n a 满足112356nn n a a a +=+⨯=,,求数列{}n a 的通项公式。

解:设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n nn n a x a x ++⨯+⨯=+⨯,等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅,两边除以5n ,得352,1,x x x +==-则代入④式得1152(5)n n n n a a ++-=-⑤由1156510a -=-=≠及⑤式得50nn a -≠,则11525n n nn a a ++-=-,则数列{5}nn a -是以1151a -=为首项,以2为公比的等比数列,则152n n n a --=,故125n n n a -=+。

评注:本题解题的关键是把递推关系式1235n n n a a +=+⨯转化为1152(5)n nn n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列{5}nn a -的通项公式,最后再求出数列{}n a 的通项公式。

例8 已知数列{}n a 满足1135241nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解:设1123(2)n n n n a x y a x y +++⨯+=+⨯+⑥将13524nn n a a +=+⨯+代入⑥式,得1352423(2)n n n n n a x y a x y ++⨯++⨯+=+⨯+整理得(52)24323nnx y x y +⨯++=⨯+。

令52343x x y y +=⎧⎨+=⎩,则52x y =⎧⎨=⎩,代入⑥式得115223(522)n n n n a a +++⨯+=+⨯+⑦由11522112130a +⨯+=+=≠及⑦式,得5220nn a +⨯+≠,则115223522n n nn a a +++⨯+=+⨯+, 故数列{522}n n a +⨯+是以1152211213a +⨯+=+=为首项,以3为公比的等比数列,因此1522133n n n a -+⨯+=⨯,则1133522n nn a -=⨯-⨯-。

评注:本题解题的关键是把递推关系式13524nn n a a +=+⨯+转化为115223(522)n n n n a a +++⨯+=+⨯+,从而可知数列{522}n n a +⨯+是等比数列,进而求出数列{522}nn a +⨯+的通项公式,最后再求数列{}n a 的通项公式。

例9 已知数列{}n a 满足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式。

解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++ ⑧将212345n n a a n n +=+++代入⑧式,得2222345(1)(1)2()n n a n n x n y n z a xn yn z ++++++++=+++,则 222(3)(24)(5)2222n n a x n x y n x y z a xn yn z +++++++++=+++等式两边消去2n a ,得22(3)(24)(5)222x n x y n x y z xn yn z ++++++++=++,解方程组3224252x xx y y x y z z+=⎧⎪++=⎨⎪+++=⎩,则31018x y z =⎧⎪=⎨⎪=⎩,代入⑧式,得2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ ⑨由213110118131320a +⨯+⨯+=+=≠及⑨式,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为以21311011813132a +⨯+⨯+=+=为首项,以2为公比的等比数列,因此2131018322n n a n n -+++=⨯,则42231018n n a n n +=---。

相关文档
最新文档