3.1.1频率与概率 课件(北师大版必修3)
合集下载
北师大版高中数学必修三311 频率与概率 课件
2021/7/25
9
二、频率与概率的联系与区别
区别:(1)频率本身是随机变化的,具有随机性,
试验前不能确定。 (2)概率是一个确定的数,客观存在的,与 试验次数无关。
联系: 频率是概率的近似值,概率是频率的稳
定值。(由频率估算出概率)
2021/7/25
10
❖
9、 人的价值,在招收诱惑的一瞬间被决定 。2021/8/232021/8/23Monday, August 23, 2021
10、低头要有勇气,抬头要有低气。* **8/23/2021 6:22:31 PM
11、人总是珍惜为得到。21.8.23**Aug-2123- Aug-21
12、人乱于心,不宽余请。***Monday, August 23, 2021
13、生气是拿别人做错的事来惩罚自 己。21.8.2321.8.23**August 23, 2021
理解:
(1)记作:
fn
( A)
m =
n
(2)频率的范围:0fn(A)1
(3)频率是随机的,在试验前不确定的,就算 做同样次数的试验频率都可能不同。
2021/7/25
3
随机事件在一次试验中是否发生 虽然不能事先确定,但是在大量重 复试验的情况下,它的发生是否会 呈现出一定的规律性呢?
2021/7/25
0.9
(2)这个射手射击一次,击中靶心的概率约是多少? 问:该射击手击中靶心的概率为90%,那他再射
击10次,一定会命中9次吗? 不一定,射击10次,相当于10次试验,试验具有随
机性,命中9次是随机事件。
思考讨论
如果某种彩票的中奖概率为1/1000,那么 买1000张这种彩票一定能中奖吗?
高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)
3、频率是概率的近似值,随着试 验次数的增加,频率会越来越接近 概率。
例2.某市统计近几年新生儿出生数及其中男婴数(单位:人) 如下: 时间 1999年 21840 11453 2000年 23070 12031 2001年 2002年 20094 19982 10297 10242
出生婴儿数 出生男婴数
(1)试计算男婴各年出生频率(精确到0.001); (2)该市男婴出生的概率约是多少? 11453 0.524 . 解题示范: (1)1999年男婴出生的频率为:
21840
同理可求得2000年、2001年和2002年男婴出生的频率分别为:
0.521,0.512,0.512. (2)各年男婴出生的频率在0.51~0.53之间,故该市男婴出生
还能举出生活中的随机事件、必然事件、不可能事件的实例吗?
随机事件,知道它发生的可能性很重要
怎么衡量这个可能性?用概率 概率是客观存在的 概率怎么来,最直接的方法就是试验(观察)
试验 • 每人取一枚硬币,做10次掷硬币试验 • 在书上记录实验结果
同桌比较一下,试验结果一样吗?为什么
• 小组长迅速统计本组结果 • 完成书上表格
的概率约是0.52.
练一练
指出下列事件是必然事件,不可能事件还是随机事件?
(1)我国东南沿海某地明年将3次受到热带气旋的侵袭; 随机事件 (2)若a为实数,则|a+1|+|a+2|=0; 不可能事件
(3)江苏地区每年1月份月平均气温低于7月份月平均气温;
必然事件 (4)发射1枚炮弹,命中目标. 随机事件
不可能事件
随机事件
数学理论
在一定条件下 必然事件:在一定条件下必然要发生的事件叫必然事件。
木柴燃烧,产生热量
例2.某市统计近几年新生儿出生数及其中男婴数(单位:人) 如下: 时间 1999年 21840 11453 2000年 23070 12031 2001年 2002年 20094 19982 10297 10242
出生婴儿数 出生男婴数
(1)试计算男婴各年出生频率(精确到0.001); (2)该市男婴出生的概率约是多少? 11453 0.524 . 解题示范: (1)1999年男婴出生的频率为:
21840
同理可求得2000年、2001年和2002年男婴出生的频率分别为:
0.521,0.512,0.512. (2)各年男婴出生的频率在0.51~0.53之间,故该市男婴出生
还能举出生活中的随机事件、必然事件、不可能事件的实例吗?
随机事件,知道它发生的可能性很重要
怎么衡量这个可能性?用概率 概率是客观存在的 概率怎么来,最直接的方法就是试验(观察)
试验 • 每人取一枚硬币,做10次掷硬币试验 • 在书上记录实验结果
同桌比较一下,试验结果一样吗?为什么
• 小组长迅速统计本组结果 • 完成书上表格
的概率约是0.52.
练一练
指出下列事件是必然事件,不可能事件还是随机事件?
(1)我国东南沿海某地明年将3次受到热带气旋的侵袭; 随机事件 (2)若a为实数,则|a+1|+|a+2|=0; 不可能事件
(3)江苏地区每年1月份月平均气温低于7月份月平均气温;
必然事件 (4)发射1枚炮弹,命中目标. 随机事件
不可能事件
随机事件
数学理论
在一定条件下 必然事件:在一定条件下必然要发生的事件叫必然事件。
木柴燃烧,产生热量
高中数学必修三北师大版 3.1.1-3.1.2 频率与概率 生活中的概率 课件(48张)
减小 . _____
3.随机事件的概率 (1)概率的统计意义 在相同的条件下,大量重复进行同一试验时,随机事件 A 发 生的频率 ____会在某个常数附近摆动,即随机事件 A 发生的频率 具有稳定性 ______.这时,这个常数叫作随机事件 A 的概率,记作 P(A).P(A)的范围是 0<P(A)<1.
频率是概率的估计值,随着试验次数的增加,频 率会越来越接近概率
探究点一
频率与概率的关系
某射手在同一条件下进行射击,结果如下表所示. 射击次数 n 击中靶心次数 m m 击中靶心频率 n (1)填写表中击中靶心的频率; (2)这个射手射击一次,击中靶心的概率约是多少? 10 20 50 100 200 500 8 19 44 92 178 455
1.(1)某人连续抛掷一枚均匀的硬币 24 000 次, 则正面向上的次数最有可能的是( A.12 012 C.13 012 )
B.11 012 D.14 000
(2)下列说法正确的是________. ①做 n 次随机试验,事件 A 发生 m 次,则事件 A 发生的频 m 率 n 就是事件 A 发生的概率; ②频率是不能脱离具体的试验次数的试验值,而概率是确定 性的不依赖于试验次数的理论值; ③频率是概率的近似值,概率是频率的稳定值.
2.随机事件的频率 (1)频率是一个变化的量,在大量重复试验时,它又会呈现出
稳定性 ,在_________ 一个常数 附近摆动,但随着试验次数的增加, ________ 越来越小 的趋势. 摆动的幅度具有_________ 较大 的情形, (2)随机事件的频率也可能出现偏离“常数”______
但是随着试验次数的增加,频率偏离“常数”的可能性就会
(2)①任何事件的概率都是区间[0,1]内的一个确定的数. ②小概率(接近 0)事件很少发生,但不代表一定不发生;大概 率(接近 1)事件经常发生,但不代表一定发生. ③任何事件的概率为 0≤P(A)≤1; 必然事件 E 的概率为 P(E) =1; 不可能事件 F 的概率为 P(F)=0.从这个意义上讲, 必然 事件和不可能事件可看成随机事件的两个极端情况.
高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)
3.1.1随机事件的概率
问题情境
木柴燃烧,产生热量
明天,地球还会转动
实心铁块丢入水中,铁块浮起
在00C下,这些雪融化
在一定条件下,事先就能断定发生或不发生某种 结果,这种现象就是确定性现象.
转盘转动后,指针指 向黄色区域
这两人各买1张彩票, 她们中奖了
在一定条件下,某种现象可能发生也可能不 发生,事先不能断定出现哪种结果,这种现象就 是随机现象.
还能举出生活中的随机事件、必然事件、不可能事件的实例吗?
随机事件,知道它发生的可能性很重要
怎么衡量这个可能性?用概率 概率是客观存在的 概率怎么来,最直接的方法就是试验(观察)
试验 • 每人取一枚硬币,做10次掷硬币试验 • 在书上记录实验结果
同桌比较一下,试验结果一样吗?为什么
• 小组长迅速统计本组结果 • 完成书上表格
0.4948
2000 10000
20000 13459 0.67295 10000 10000 66979 0.66979 0 0 随着试验次数的增加,频率稳定在[0,1]间的一个常数上
10021 0.50105 25050 0.501 49876 0.49876
数学理论
一般地,如果随机事件A在n次试验中发生了m次,当试 验的次数n很大时,我们可以将事件A发生的频率 作为事
出现正 面的频 率m n
摸到红 试验次 球的次 数(n) 数(m) 10 200 1000 4
摸到红 球的频 m 率 n 0.4 0.69 0.685 0.6565 0.6838
0.2 0.54
138
685 1313 6838
276
2557 4948
0.552 0.5114
问题情境
木柴燃烧,产生热量
明天,地球还会转动
实心铁块丢入水中,铁块浮起
在00C下,这些雪融化
在一定条件下,事先就能断定发生或不发生某种 结果,这种现象就是确定性现象.
转盘转动后,指针指 向黄色区域
这两人各买1张彩票, 她们中奖了
在一定条件下,某种现象可能发生也可能不 发生,事先不能断定出现哪种结果,这种现象就 是随机现象.
还能举出生活中的随机事件、必然事件、不可能事件的实例吗?
随机事件,知道它发生的可能性很重要
怎么衡量这个可能性?用概率 概率是客观存在的 概率怎么来,最直接的方法就是试验(观察)
试验 • 每人取一枚硬币,做10次掷硬币试验 • 在书上记录实验结果
同桌比较一下,试验结果一样吗?为什么
• 小组长迅速统计本组结果 • 完成书上表格
0.4948
2000 10000
20000 13459 0.67295 10000 10000 66979 0.66979 0 0 随着试验次数的增加,频率稳定在[0,1]间的一个常数上
10021 0.50105 25050 0.501 49876 0.49876
数学理论
一般地,如果随机事件A在n次试验中发生了m次,当试 验的次数n很大时,我们可以将事件A发生的频率 作为事
出现正 面的频 率m n
摸到红 试验次 球的次 数(n) 数(m) 10 200 1000 4
摸到红 球的频 m 率 n 0.4 0.69 0.685 0.6565 0.6838
0.2 0.54
138
685 1313 6838
276
2557 4948
0.552 0.5114
高中数学北师大版必修三3.1.1【教学课件】《频率与概率》
实心铁块丢入水中,铁块浮起
在-10C下,这些雪融化
不可能事件
不可能事件
北京师范大学出版社 | 必修三
转盘转动后,指针指向黄色区域。
这两人各买1张彩票,她们中奖了。
随机事件
随机事件
北京师范大学出版社 | 必修三
如何才能确定随机事件发生的可能性大小呢?
最直接的方法就是试验。
北京师范大学出版社 | 必修三
率m/n会稳定在某个常数p附近,那么事件A发生的概率P(A)=P
2.频率与概率的区别和联系: (1)频率是概率的近似值,随着试验次数的增加,频率会稳定在 概率附近。
(2)频率本身是随机的,在试验前不能确定。
(3)概率是一个确定的数,是客观存在的,与每次试验无关。
北京师范大学出版社 | 必修三
随堂练习
方法小结
北京师范大学出版社 | 必修三
课堂小结
1.概率的概念:一般地,在大量重复试验中,如果事件A发生的频率 m/n会稳定在某个常数p附近,那么事件A发生的概率P(A)=P 2.频率与概率的区别和联系: (1)频率是概率的近似值,随着试验次数的增加,频率会稳定
在概率附近。
(2)频率本身是随机的,在试验前不能确定。 (3)概率是一个确定的数,是客观存在的,与每次试验无关。
结论:
计算机模拟抛硬币实验
当抛掷硬币的次数很多时,出现正面的频率值是稳定
的,接近于常数0.5,在它左右摆动。
北京师范大学出版社 | 必修三
思考交流
在上面抛硬币的活动中,随着试验次数的增
加,出现正面朝上的频率在这个常数0.5附近的摆
动幅度是不是越来越小?
北京师范大学出版社 | 必修三
1.概率的概念:一般地,在大量重复试验中,如果事件A发生的频
高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)
试判断这些事件发生的可能性:
(1)木柴燃烧,产生热量 必然发生 (2)明天,地球仍会转动 必然发生 必然事件
(3)实心铁块丢入水中,铁块浮起 不可能发生 (4)在标准大气压00C以下,雪融化 不可能发生 (5)在刚才的图中转动转盘后,指针 指向黄色区域 可能发生也可能不发生 (6)两人各买1张彩票,均中奖 可能发生也可能不发生
件A发生的概率的近似值,
即
P ( A)
m n
,(其中P(A)为事件A发生的概率)
注意点:
1.随机事件A的概率范围 任何事件发生的概率都满足:0≤P(A)≤1
频率与概率的区别与联系
1、频率本身是随机的,在试验前 不能确定。做同样次数的重复试验 得到事件的频率会不同。 2、概率是一个确定的数,与每次 试验无关。是用来度量事件发生可 能性大小的量。
出现正 面的频 率m n
摸到红 试验次 球的次 数(n) 数(m) 10 200 1000 4
摸到红 球的频 m 率 n 0.4 0.69 0.685 0.6565 0.6838
0.2 0.54
138
685 1313 6838
276
2557 4948
0.552 0.5114
0.4948
2000 10000
20000 13459 0.67295 10000 10000 66979 0.66979 0 0 随着试验次数的增加,频率稳定在[0,1]间的一个常数上
10021 0.50105 25050 0.501 49876 0.49876
数学理论
一般地,如果随机事件A在n次试验中发生了m次,当试 验的次数n很大时,我们可以将事件A发生的频率 作为事
高一数学北师大版必修三 频率与概率 课件
2.下列随机事件中,一次试验各指什么?试写出试验的所有结
果.
(1)抛掷两枚质地均匀的硬币多次; (2)从集合A={a,b,c,d}中任取三个元素构成集合A的子集.
【解题指南】
1.根据随机试验的条件,按一定的顺序列出全部结果 .
2.根据一次试验就是将事件的条件实现一次,从而写出所有的 试验结果.
【解析】1.随机事件的条件为射击运动员射击10次.结果为中
主题二
试验பைடு நூலகம்重复试验的结果分析
把一枚硬币抛多次,观察其出现的结果,思考下面的问题:
1.在一次试验中可能出现几种试验结果?还有其他结果吗?
提示:试验中出现两种结果,没有其他结果,每一次试验的结
果不确定,但只有“正面向上”“反面向上”两种结果. 2.如果允许做大量重复试验,你认为结果如何? 提示:在大量重复试验后,随着试验次数的增加,出现“正面 向上”和出现“反面向上”的结果均等.
提示:不一定,摸到黄色球可能发生也可能不发生,是一个随 机事件.
2.从一不透明的装有10个大小、质地都相同的黄色乒乓球袋子 中摸出一球,是否一定摸到黄色球? 提示:一定会,摸到黄色球是必然事件. 3.从一不透明的装有10个大小、质地都相同的白色乒乓球袋子 中摸出一球,是否一定摸到黄色球?
提示:一定不会.摸到黄色球是不可能事件.
B,C只是一次试验过程,没有试验结果,不是事件.摸彩票中
头奖是一个事件.
2.选C.该事件可能发生,也可能不发生,故是一个随机事件 .
3.选C.②是必然事件;③是不可能事件.
【规律总结】判断随机事件要二看
判断一个事件是哪类事件要看两点:一看条件,因为三种事件
都是相对于一定条件而言的;二看结果是否发生,一定发生的 是必然事件;不一定发生的是随机事件;一定不发生的是不可 能事件.
果.
(1)抛掷两枚质地均匀的硬币多次; (2)从集合A={a,b,c,d}中任取三个元素构成集合A的子集.
【解题指南】
1.根据随机试验的条件,按一定的顺序列出全部结果 .
2.根据一次试验就是将事件的条件实现一次,从而写出所有的 试验结果.
【解析】1.随机事件的条件为射击运动员射击10次.结果为中
主题二
试验பைடு நூலகம்重复试验的结果分析
把一枚硬币抛多次,观察其出现的结果,思考下面的问题:
1.在一次试验中可能出现几种试验结果?还有其他结果吗?
提示:试验中出现两种结果,没有其他结果,每一次试验的结
果不确定,但只有“正面向上”“反面向上”两种结果. 2.如果允许做大量重复试验,你认为结果如何? 提示:在大量重复试验后,随着试验次数的增加,出现“正面 向上”和出现“反面向上”的结果均等.
提示:不一定,摸到黄色球可能发生也可能不发生,是一个随 机事件.
2.从一不透明的装有10个大小、质地都相同的黄色乒乓球袋子 中摸出一球,是否一定摸到黄色球? 提示:一定会,摸到黄色球是必然事件. 3.从一不透明的装有10个大小、质地都相同的白色乒乓球袋子 中摸出一球,是否一定摸到黄色球?
提示:一定不会.摸到黄色球是不可能事件.
B,C只是一次试验过程,没有试验结果,不是事件.摸彩票中
头奖是一个事件.
2.选C.该事件可能发生,也可能不发生,故是一个随机事件 .
3.选C.②是必然事件;③是不可能事件.
【规律总结】判断随机事件要二看
判断一个事件是哪类事件要看两点:一看条件,因为三种事件
都是相对于一定条件而言的;二看结果是否发生,一定发生的 是必然事件;不一定发生的是随机事件;一定不发生的是不可 能事件.
3.1.1频率与概率 课件(北师大版必修3)
③每个试验结果出现的频率之和不一定等于1;
④概率就是频率.
(A)①
(B)①②④
(C)①②
(D)③④
2.从存放号码分别为1,2,„,10的卡片的盒子中,有放回
地取100次,每次取一张卡片并记下号码,统计结果如下:
则取到号码为奇数的频率是(
)
(A)0.53
(B)0.5
(C)0.47
(D)0.37
3.已知随机事件A发生的频率是0.02,事件A出现了10次,那么
A发生的次数m的范围是0≤m≤n(注意等号可能成立),故其频
率范围为0≤
m ≤1. n
二、填空题(每题5分,共10分) 4.在12件同类产品中,有10件正品,2件次品,从中任意抽出3件, 下列事件中:①3件都是正品;②至少1件是次品;③3件都是次 品;④至少有1件是正品.随机事件有___;必然事件有___;
【解析】(1)2006年该市男婴出生的频率为 11 453 0.524. 21 840 同理可求得2007年、2008年和2009年该市男婴出生的频率分 别为0.521,0.512,0.513. (2)由以上计算可知,2006~2009年男婴出生的频率在 0.51-0.53之间,所以该市男婴出生的概率约为0.52.
2.下列说法: ①频率反映事件的频繁程度,概率反映事件发生的可能性大小; ②做n次随机试验,事件A发生m次,则事件A发生的频率 是事件A的概率; 就
m n
③百分率是频率,但不是概率;
④频率是不能脱离n次试验的实验值,而概率是具有确定性的 不依赖于试验次数的理论值; ⑤频率是概率的近似值,概率是频率的稳定值.
2.(5分)现在由于各方面的原因,学生的近视程度越来越严重, 某校利用简单随机抽样的方法调查了该校200名学生,其中近视 的学生有123人,若在这个学校中随机调查一名学生,则他近视 的概率是_________. 【解析】由频率与概率的关系知这名学生近视的概率为
3.1.1频率与概率课件ppt(北师大版必修三)
1.事件的有关概念:必然事件,不可能事件,确定事
件,随机事件.(重点)
2.概率的含义,频率与概率的区别与联系.(重难点)
3.列举出重复试验的结果.(重点)
课前探究学习 课堂讲练互动
自学导引
1.随机事件的频率
频率具有_______稳定性 ,这时,这个常数叫作随机事件A的概率,
记作P(A).P(A)的范围是___________0≤P(A).≤1
课前探究学习 课堂讲练互动
名师点睛
1.对随机事件的理解
(1)频率是一个变化的量,但在大量重复试验时,它又具有
_______稳定性 ,在____________一个“常数” 附近摆动.
(2)随着试验次数的增加,随机事件发生的频率摆动幅度具
有_________越来越小 的趋势.
(3)随机事件的频率也可能出现偏离“常数”______较大 的情形,
但是随着试验次数的增大,频率偏离“常数”的可能性会
_____减小 .
课前探究学习 课堂讲练互动
2.随机事件的Байду номын сангаас率
在相同的条件下,大量重复进行同一试验时,随机事件A
发生的_____频率会在某个常数附近摆动,即随机事件A发生的
(1)随机事件是指在一定条件下出现的某种结果,随着条件
的改变其结果也会不同.因此必须强调同一事件在相同的
条件下研究;
(2)随机事件可以重复地进行大量试验,每次试验结果不一
定相同,且无法预测下一次的结果,但随着试验的重复进
行,其结果呈现规律性.
课前探究学习 课堂讲练互动
§1 随机事件的概率
1.1 频率与概率
件,随机事件.(重点)
2.概率的含义,频率与概率的区别与联系.(重难点)
3.列举出重复试验的结果.(重点)
课前探究学习 课堂讲练互动
自学导引
1.随机事件的频率
频率具有_______稳定性 ,这时,这个常数叫作随机事件A的概率,
记作P(A).P(A)的范围是___________0≤P(A).≤1
课前探究学习 课堂讲练互动
名师点睛
1.对随机事件的理解
(1)频率是一个变化的量,但在大量重复试验时,它又具有
_______稳定性 ,在____________一个“常数” 附近摆动.
(2)随着试验次数的增加,随机事件发生的频率摆动幅度具
有_________越来越小 的趋势.
(3)随机事件的频率也可能出现偏离“常数”______较大 的情形,
但是随着试验次数的增大,频率偏离“常数”的可能性会
_____减小 .
课前探究学习 课堂讲练互动
2.随机事件的Байду номын сангаас率
在相同的条件下,大量重复进行同一试验时,随机事件A
发生的_____频率会在某个常数附近摆动,即随机事件A发生的
(1)随机事件是指在一定条件下出现的某种结果,随着条件
的改变其结果也会不同.因此必须强调同一事件在相同的
条件下研究;
(2)随机事件可以重复地进行大量试验,每次试验结果不一
定相同,且无法预测下一次的结果,但随着试验的重复进
行,其结果呈现规律性.
课前探究学习 课堂讲练互动
§1 随机事件的概率
1.1 频率与概率
高中数学北师大版必修三《3.1.1随机事件的概率》课件
3.1.1
随机事件的 概率
事件产生的可能性有 大小之分,可以比较
麦蒂投三分球命中 的可能性比姚明大
用数值来表示事件 产生的可能性—概率
事件产生的可能性有 大小之分,可以比较
用数值来表示事件 产生的可能性—概率
麦蒂投三分球命中 的可能性比姚明大
麦蒂投三分球命中的概率比 姚明投三分球命中的概率大
多样的概率问题推动了数学的发展
面向上的次数; • 每组做“抛硬币”游戏30次; • 运算每组正面向上的频率.
抛掷硬币的大量重复实验结果
抛掷次数 2048 4040 12000 24000 30000 72088
正面向上次数 1061 2048 6019 12012 14984 36124
频率 0.5181 0.5069 0.5016 0.5005 0.4996 0.5011
抛硬币猜正反面
产生中奖号码
如何估计概率
• 三分球命中率=三分球命中次数÷三分球总投篮次数
• 三分球命中率→三分球命中的概率 • (实验)的频率→(事件)的概率 • 三分球命中的概率是通过实验的方法来估计的; • 三分球命中的概率应当通过大量重复实验的方法来
估计.
数学实验
实验要求: • 两人一组,其中一人抛掷硬币,另一人记录硬币正
谢谢大家
记作P(A).
抛掷一枚硬币,有可能显现正面,也有可能显现反面;
抛掷一枚硬币显现正面的概率是0.5,所以抛掷两次时肯定有一次 显现正面;
抛掷一枚硬币显现正面的概率是0.5,所以抛掷12000次时,显现 正面的次数很有可能接近于6000次.
事件“甲乙两人采取‘石头剪刀布’的方式,甲获胜”是哪一类事件? 为了估计上述随机事件产生的概率,我们可以采取哪些方法? 设计恰当的数学实验,估计上述随机事件产生的概率.
随机事件的 概率
事件产生的可能性有 大小之分,可以比较
麦蒂投三分球命中 的可能性比姚明大
用数值来表示事件 产生的可能性—概率
事件产生的可能性有 大小之分,可以比较
用数值来表示事件 产生的可能性—概率
麦蒂投三分球命中 的可能性比姚明大
麦蒂投三分球命中的概率比 姚明投三分球命中的概率大
多样的概率问题推动了数学的发展
面向上的次数; • 每组做“抛硬币”游戏30次; • 运算每组正面向上的频率.
抛掷硬币的大量重复实验结果
抛掷次数 2048 4040 12000 24000 30000 72088
正面向上次数 1061 2048 6019 12012 14984 36124
频率 0.5181 0.5069 0.5016 0.5005 0.4996 0.5011
抛硬币猜正反面
产生中奖号码
如何估计概率
• 三分球命中率=三分球命中次数÷三分球总投篮次数
• 三分球命中率→三分球命中的概率 • (实验)的频率→(事件)的概率 • 三分球命中的概率是通过实验的方法来估计的; • 三分球命中的概率应当通过大量重复实验的方法来
估计.
数学实验
实验要求: • 两人一组,其中一人抛掷硬币,另一人记录硬币正
谢谢大家
记作P(A).
抛掷一枚硬币,有可能显现正面,也有可能显现反面;
抛掷一枚硬币显现正面的概率是0.5,所以抛掷两次时肯定有一次 显现正面;
抛掷一枚硬币显现正面的概率是0.5,所以抛掷12000次时,显现 正面的次数很有可能接近于6000次.
事件“甲乙两人采取‘石头剪刀布’的方式,甲获胜”是哪一类事件? 为了估计上述随机事件产生的概率,我们可以采取哪些方法? 设计恰当的数学实验,估计上述随机事件产生的概率.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
200 ,第二次从 n
保护区中捉到50只,观察每只大猩猩上是否有记号,共需观察 50次,其中带记号的大猩猩有4只,即事件A发生的频数m=4,由 概率的统计定义可知P(A)≈ 解得n≈2 500,即
4 ,∴ 200 4 . 50 n 50 =2 500.故估计保护区中有大猩猩2 500只.
26 =0.52; 50 (2)记“喜欢电脑游戏并认为作业多”为事件B,则
【解析】(1)记“认为作业多”为事件A,则P(A)=
P(B)=
18 =0.36. 50
7.某市统计的2006~2009年新生儿出生数及其中男婴数如表 所示:
(1)试计算男婴出生的频率(精确到0.001); (2)该市男婴出生的概率约是多少?
到4号签;
(5)某电话机在1分钟内接到2次呼叫;
(6)没有水分,种子能发芽.
【例2】下面的表中列出了10次试验掷硬币的试验结果,n为每 次试验抛掷硬币的次数,m为硬币正面向上的次数.计算每次试
验中“正面向上”这一事件的频率,并考查它的概率.
【练一练】1.下列说法正确的是(
)
①频数和频率都能反映一个对象在试验总次数中出现的频繁程 度; ②每个试验结果出现的频数之和等于试验的总次数;
2.(5分)现在由于各方面的原因,学生的近视程度越来越严重, 某校利用简单随机抽样的方法调查了该校200名学生,其中近视 的学生有123人,若在这个学校中随机调查一名学生,则他近视 的概率是_________. 【解析】由频率与概率的关系知这名学生近视的概率为
123 =0.615. 200
答案:0.615
③每个试验结果出现的频率之和不一定等于1;
④概率就是频率.
(A)①
(B)①②④
(C)①②
(D)③④
2.从存放号码分别为1,2,„,10的卡片的盒子中,有放回
地取100次,每次取一张卡片并记下号码,统计结果如下:
则取到号码为奇数的频率是(
)(A)0ຫໍສະໝຸດ 53(B)0.5(C)0.47
(D)0.37
3.已知随机事件A发生的频率是0.02,事件A出现了10次,那么
【解析】(1)2006年该市男婴出生的频率为 11 453 0.524. 21 840 同理可求得2007年、2008年和2009年该市男婴出生的频率分 别为0.521,0.512,0.513. (2)由以上计算可知,2006~2009年男婴出生的频率在 0.51-0.53之间,所以该市男婴出生的概率约为0.52.
其中正确的有( (A)2个
) (C)4个 (D)5个
(B)3个
【解析】选B.由频率和概率的定义及关系知,①④⑤正确, ②③不正确.
3.随机事件A的频率=
m =0 n m (C) >1 n
(A)
m 满足( ) n m (B) =1 n m (D)0≤ ≤1 n
【解析】选D.随机事件的结果是不确定的,在n次试验中,事件
3.(5分)人们的环保节约意识越来越强,某工厂为了节约用电, 规定每天的用电指标为1 000度,按照上个月的用电记录,30天 中有12天的用电量超过指标,若第2个月仍没有具体的节电措施, 则该月的第一天用电量超过指标的概率是_____. 【解析】由上个月的记录知,用电量超过指标的概率为
12 =0.4,所以该月的第一天用电量超过指标的概率是0.4. 30
课程目标设置
主题探究导学
典型例题精析
【例1】判断下列事件哪些是必然事件,哪些是不可能事件, 哪些是随机事件? (1)掷一枚骰子两次,所得点数之和大于12;
(2)如果a>b,那么a-b>0;
(3)掷一枚硬币,出现正面向上;
(4)从分别标有号数1,2,3,4,5的5张标签中任取一张,得
不可能事件有____.
【解析】由必然事件、不可能事件、随机事件的概念进行判断, 则①②为随机事件,③为不可能事件,④为必然事件. 答案:①② ④ ③
5.所给图表示某班21位同学衣服上口袋的数目,若任选一位同 学,则其衣服上口袋数目为5的概率是____.
【解题提示】根据所给图表找出衣服上口袋数目为5的人数,
A发生的次数m的范围是0≤m≤n(注意等号可能成立),故其频
率范围为0≤
m ≤1. n
二、填空题(每题5分,共10分) 4.在12件同类产品中,有10件正品,2件次品,从中任意抽出3件, 下列事件中:①3件都是正品;②至少1件是次品;③3件都是次 品;④至少有1件是正品.随机事件有___;必然事件有___;
4只,试根据上述数据估计保护区中大猩猩的数量.
【解题提示】可利用概率的稳定性求解,即利用标上记号
的大猩猩所占的频率是趋于稳定的,建立方程求解.
【解析】设保护区内的大猩猩数量为n,n是未知的,现在要估计 n的值,n的估计值记作 .
假设每只大猩猩被捉到的可能性是相等的,从保护区中任捉一 只,设事件A={带有记号的大猩猩},易知P(A)=
可能共进行了_______次试验.
知能巩固提高
一、选择题(每题5分,共15分) 1.下列事件中是随机事件的是( )
(A)若a、b、c都是实数,则a(bc)=(ab)c (B)没有水和空气,人也可以生存下去 (C)抛掷一枚硬币,反面朝上 (D)在标准大气压下,温度达到60℃时,水沸腾
【解析】选C.由必然事件、不可能事件、随机事件的定义知, A为必然事件,B、D为不可能事件,C为随机事件.
用频率估计概率.
【解析】由图可分析出,口袋数为5的有5号、6号、16号、17
号,共4位同学.∴任选一位同学,其衣服上口袋数目为5的概
率为P= 4 . 21 答案:4 21
三、解答题(6题12分,7题13分,共25分) 6.某班主任对全班50名学生进行了作业量多少的调查,统计数 据如下:
如果校长随机地问这个班的一名学生,下面事件发生的概率是 多少? (1)认为作业多; (2)喜欢电脑游戏并认为作业多.
答案:0.4
4.(15分)为了估计某自然保护区中大猩猩的数量,可以使用
以下方法:先从该保护区中捉到一定数量的大猩猩,例如200只,
给每只大猩猩标上记号,不影响其存活,然后放回保护区,经过
适当的时间,让其保护区的大猩猩充分混合,再从保护区中捉出
一定数量的大猩猩,例如50只,查看其中有记号的大猩猩,设有
1.(5分)据某医疗机构调查,某地区居民血型公布为:O型 50%,A型15%,B型30%,AB型5%,现有一血型为A的病人需要输血,
若在该地区任选一人,那么能为病人输血的概率为(
(A)65% (B)45% (C)20% (D)15%
)
【解析】选A.可以给病人输血的是O型和A型,因此概率为
50%+15%=65%.
2.下列说法: ①频率反映事件的频繁程度,概率反映事件发生的可能性大小; ②做n次随机试验,事件A发生m次,则事件A发生的频率 是事件A的概率;
m n
就
③百分率是频率,但不是概率;
④频率是不能脱离n次试验的实验值,而概率是具有确定性的 不依赖于试验次数的理论值; ⑤频率是概率的近似值,概率是频率的稳定值.
保护区中捉到50只,观察每只大猩猩上是否有记号,共需观察 50次,其中带记号的大猩猩有4只,即事件A发生的频数m=4,由 概率的统计定义可知P(A)≈ 解得n≈2 500,即
4 ,∴ 200 4 . 50 n 50 =2 500.故估计保护区中有大猩猩2 500只.
26 =0.52; 50 (2)记“喜欢电脑游戏并认为作业多”为事件B,则
【解析】(1)记“认为作业多”为事件A,则P(A)=
P(B)=
18 =0.36. 50
7.某市统计的2006~2009年新生儿出生数及其中男婴数如表 所示:
(1)试计算男婴出生的频率(精确到0.001); (2)该市男婴出生的概率约是多少?
到4号签;
(5)某电话机在1分钟内接到2次呼叫;
(6)没有水分,种子能发芽.
【例2】下面的表中列出了10次试验掷硬币的试验结果,n为每 次试验抛掷硬币的次数,m为硬币正面向上的次数.计算每次试
验中“正面向上”这一事件的频率,并考查它的概率.
【练一练】1.下列说法正确的是(
)
①频数和频率都能反映一个对象在试验总次数中出现的频繁程 度; ②每个试验结果出现的频数之和等于试验的总次数;
2.(5分)现在由于各方面的原因,学生的近视程度越来越严重, 某校利用简单随机抽样的方法调查了该校200名学生,其中近视 的学生有123人,若在这个学校中随机调查一名学生,则他近视 的概率是_________. 【解析】由频率与概率的关系知这名学生近视的概率为
123 =0.615. 200
答案:0.615
③每个试验结果出现的频率之和不一定等于1;
④概率就是频率.
(A)①
(B)①②④
(C)①②
(D)③④
2.从存放号码分别为1,2,„,10的卡片的盒子中,有放回
地取100次,每次取一张卡片并记下号码,统计结果如下:
则取到号码为奇数的频率是(
)(A)0ຫໍສະໝຸດ 53(B)0.5(C)0.47
(D)0.37
3.已知随机事件A发生的频率是0.02,事件A出现了10次,那么
【解析】(1)2006年该市男婴出生的频率为 11 453 0.524. 21 840 同理可求得2007年、2008年和2009年该市男婴出生的频率分 别为0.521,0.512,0.513. (2)由以上计算可知,2006~2009年男婴出生的频率在 0.51-0.53之间,所以该市男婴出生的概率约为0.52.
其中正确的有( (A)2个
) (C)4个 (D)5个
(B)3个
【解析】选B.由频率和概率的定义及关系知,①④⑤正确, ②③不正确.
3.随机事件A的频率=
m =0 n m (C) >1 n
(A)
m 满足( ) n m (B) =1 n m (D)0≤ ≤1 n
【解析】选D.随机事件的结果是不确定的,在n次试验中,事件
3.(5分)人们的环保节约意识越来越强,某工厂为了节约用电, 规定每天的用电指标为1 000度,按照上个月的用电记录,30天 中有12天的用电量超过指标,若第2个月仍没有具体的节电措施, 则该月的第一天用电量超过指标的概率是_____. 【解析】由上个月的记录知,用电量超过指标的概率为
12 =0.4,所以该月的第一天用电量超过指标的概率是0.4. 30
课程目标设置
主题探究导学
典型例题精析
【例1】判断下列事件哪些是必然事件,哪些是不可能事件, 哪些是随机事件? (1)掷一枚骰子两次,所得点数之和大于12;
(2)如果a>b,那么a-b>0;
(3)掷一枚硬币,出现正面向上;
(4)从分别标有号数1,2,3,4,5的5张标签中任取一张,得
不可能事件有____.
【解析】由必然事件、不可能事件、随机事件的概念进行判断, 则①②为随机事件,③为不可能事件,④为必然事件. 答案:①② ④ ③
5.所给图表示某班21位同学衣服上口袋的数目,若任选一位同 学,则其衣服上口袋数目为5的概率是____.
【解题提示】根据所给图表找出衣服上口袋数目为5的人数,
A发生的次数m的范围是0≤m≤n(注意等号可能成立),故其频
率范围为0≤
m ≤1. n
二、填空题(每题5分,共10分) 4.在12件同类产品中,有10件正品,2件次品,从中任意抽出3件, 下列事件中:①3件都是正品;②至少1件是次品;③3件都是次 品;④至少有1件是正品.随机事件有___;必然事件有___;
4只,试根据上述数据估计保护区中大猩猩的数量.
【解题提示】可利用概率的稳定性求解,即利用标上记号
的大猩猩所占的频率是趋于稳定的,建立方程求解.
【解析】设保护区内的大猩猩数量为n,n是未知的,现在要估计 n的值,n的估计值记作 .
假设每只大猩猩被捉到的可能性是相等的,从保护区中任捉一 只,设事件A={带有记号的大猩猩},易知P(A)=
可能共进行了_______次试验.
知能巩固提高
一、选择题(每题5分,共15分) 1.下列事件中是随机事件的是( )
(A)若a、b、c都是实数,则a(bc)=(ab)c (B)没有水和空气,人也可以生存下去 (C)抛掷一枚硬币,反面朝上 (D)在标准大气压下,温度达到60℃时,水沸腾
【解析】选C.由必然事件、不可能事件、随机事件的定义知, A为必然事件,B、D为不可能事件,C为随机事件.
用频率估计概率.
【解析】由图可分析出,口袋数为5的有5号、6号、16号、17
号,共4位同学.∴任选一位同学,其衣服上口袋数目为5的概
率为P= 4 . 21 答案:4 21
三、解答题(6题12分,7题13分,共25分) 6.某班主任对全班50名学生进行了作业量多少的调查,统计数 据如下:
如果校长随机地问这个班的一名学生,下面事件发生的概率是 多少? (1)认为作业多; (2)喜欢电脑游戏并认为作业多.
答案:0.4
4.(15分)为了估计某自然保护区中大猩猩的数量,可以使用
以下方法:先从该保护区中捉到一定数量的大猩猩,例如200只,
给每只大猩猩标上记号,不影响其存活,然后放回保护区,经过
适当的时间,让其保护区的大猩猩充分混合,再从保护区中捉出
一定数量的大猩猩,例如50只,查看其中有记号的大猩猩,设有
1.(5分)据某医疗机构调查,某地区居民血型公布为:O型 50%,A型15%,B型30%,AB型5%,现有一血型为A的病人需要输血,
若在该地区任选一人,那么能为病人输血的概率为(
(A)65% (B)45% (C)20% (D)15%
)
【解析】选A.可以给病人输血的是O型和A型,因此概率为
50%+15%=65%.
2.下列说法: ①频率反映事件的频繁程度,概率反映事件发生的可能性大小; ②做n次随机试验,事件A发生m次,则事件A发生的频率 是事件A的概率;
m n
就
③百分率是频率,但不是概率;
④频率是不能脱离n次试验的实验值,而概率是具有确定性的 不依赖于试验次数的理论值; ⑤频率是概率的近似值,概率是频率的稳定值.