概率统计总复习(修改)

合集下载

概率统计试卷复习资料

概率统计试卷复习资料

总复习一、填空题(每题3分)1、已知事件A 与B 独立,且5.0)(=A P ,7.0)(=B P ,则=)(AUB P2、设X 服从正态分布)3.2(2N ,且21C) X (=≤P ,则=C 3、设每次试验中成功的概率为P )1(<<P o ,则在二次重复独立试验中,至少失败一次的概率为 。

4、评价估计量优劣的三条标准是无偏性,一致性和 性。

5、已知随机变量X 服从),(2σμN ,则X 的概率密度函数为6、设X 1,…,X n 是总体X 的一个样本,且X 的期望μ=EX 和方差2σ=DX 均未知,则2σ的无偏估计是=∧2σ7、设X 服从二项分布),(p n B ,则)(X E =8、若X 与Y 独立,且6)(=X D ,3)(=Y D ,则)2(Y X D -=9、设X 服从),(2σμN ,则≤≥-)3(σμX P10、一口袋中装有8只球,在这6只球上分别标有-1,1,1,1,1,3,,3,3这样的数字,现从这只口袋中任取一球,用随机变量X 表示取得的球上标明的数字,求:(1)X 的概率分布律;(2)X 的概率分布函数;(3))34(-X E .11.袋中有4个乒乓球, 其中3个是黄球, 1个是白球. 今有两人依次随机地从袋中各取一球, 取后不放回, 则第2个人取得黄球的概率是 . 12、对事件,A B 和C ,已知1()()()5P A P B P C ,()()0P AB P BC ,1()8P AC ,则,A B ,C 中至少有一个发生的概率是_________.13、已知随机变量X 在区间[ 5,15 ]上服从均匀分布,则EX= .14、中心极限定理告诉我们,若随机变量X 服从参数为1000,0.06的二项分布,则X 也近似服从参数为___ __和______的正态分布.15、设(X 1,X 2,...,X n )是取自正态总体N (μ,σ2)的简单随机样本,统计量∑==n i i X n T 121,则T 的数学期望ET=16、设X 表示独立射击目标10次所击中目标的次数,每次击中的概率为0.3,则X 2的数学期望E(X 2)= .17、设随机变量X 服从正态分布N(2,0.22),已知标准正态分布函数值 Φ(2.5)=0.9938,则P{2<X<2.5}=___ .18、设随机变量X 和Y 满足DX =25, DY =9, ρXY =0.4, 则D (X-Y) =19 、设总体X 的概率密度为,,020)(⎩⎨⎧<<=其它x Ax x f 则A=20、若随机变量X 服从参数为1=λ的分布,则大数定律告诉我们:∑=ni i X n 11依概率收敛于21 ,设总体X 服从),(2σμN 分布,X 1,…,X n 是X 的一个样本,则统计量n / X σμ- 服从分布;)(1_1222X XS nni i-=∑=οο 服从 分布;212)(1μο-∑=ni iX服从 分布二,单选1 .若随机变量X 具有性质)()(X D X E =,则X 服从 分布 a 、正态 b 、二项 c 、泊松 d 、均匀2、若)()(1)(B P A P B A P -=+,则A 与B a 、互不相容 b 、独立c 、为对立事件d 、为任意事件3、设随机变量X 服从)2,1(2N ,12-=X Y ,则Y 服从 分布 a 、)4,2(2N b 、)4,1(2N c 、)4,1(N d 、)4,2(N4、设A 与B 为两个随机事件,若0)(=AB P ,则下列命题正确的是 a 、A 、B 互不相容 b 、AB 未必是不可能事件 c 、A ,B 独立 d 、0)(=A P 或0)(=B P5、从总体X 中抽取样本X ,X 2,若X 服从)1,(θN 分布,则θ的估计量中,最有效的是a 、217671X X + b 、212121X X + c 、215451X X + d 、216561X X +6、“A 、B 、C 三事件恰有一个发生”可表为 a 、C U B U A b 、C B Ac 、ABCd 、C B A C B A C B U U A7、5.0)(=A P ,8.0)(=B P ,9.0)(=AUB P ,则B A 与的关系是 a 、互不相容 b 、独立 c 、B A ⊃ d 、A B ⊃8、设随机变量X 服从分布, 则2)] X [E() X (=D a 、均匀 b 、标准正态 c 、二项 d 、泊松9、设),(y x F 是随机变量Y), X (的分布函数,则下列式子 成立。

概率论与数理统计考研复习资料

概率论与数理统计考研复习资料

概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德•摩根律B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率.(1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+…2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) .(4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件.(1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kkii i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX kk P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0) 三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数). 2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(xx dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布 (1)X ~U (a,b) 区间(a,b)上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . (2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0). (3)X~N (μ,σ2)参数为μ,σ的正态分布222)(21)(σμσπ--=x ex f -∞<x<∞, σ>0. 特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(zα)=1-α , z 1- α= -z α.四.随机变量X 的函数Y= g (X)的分布 1.若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=0y h y h f y f X Y其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布 一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质(1)非负性 0≤p i j ≤1 .(2)归一性∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y ,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),(则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y) 关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i·( i =1,2,…) 归一性11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p·j( j =1,2,…) 归一性11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y ,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j= p i ··p ·j( i ,j =1,2,…)对一切x i ,y j成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X(x)f Y(y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称,}{},{jj i j j i p p y Y P y Y x X P ∙=====P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X)∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2D(X) . 2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X)1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p)2.X~ b (n,p) (0<p<1) n p n p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/12 5.X 服从参数为θ的指数分布 θ θ2 6.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E {[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l}第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i XX n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==n i ki k X X n B 1)(1( k=1,2,…),}{},{∙=====i j i i j i p p x X P y Y x X P二.抽样分布 即统计量的分布 1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2/n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) .③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2Y S22则212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点.注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意:.).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p (x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,Xn的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧kθθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.文 - 汉语汉字 编辑词条文,wen ,从玄从爻。

概率论与统计原理复习资料

概率论与统计原理复习资料

一、填空题1、设A,B,C为三个事件,则下列事件“B发生而A与C至少有一个发生”,“A,B,C中至少有两个发生”,“A,B,C中至少有一个发生”,“A,B,C中不多于一个发生”,“A,B,C中恰好有一个发生”,“A,B,C中恰好有两个发生”分别可表示为、、、、、。

参考答案:B(A+C,AB+AC+BC,A +B+C,CB+BA+CA,AB C+AC B+A BC,A+CABBA+CBC考核知识点:事件的关系及运算2、从0,1,2,…,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为、、。

参考答案:,,考核知识点:古典型概率3、同时抛掷3枚均匀的硬币,则3枚正面都向上的概率为,恰好有2枚正面向上的概率为。

参考答案:1/8,3/8考核知识点:古典型概率4、箱中有60个黑球和40个白球,从中任意连接不放回取出k个球,则第k次取出黑球的概率为。

参考答案:考核知识点:古典型概率5、假设某商店获利15万元以下的概率为,获利10万元以下的概率为,获利5万元以下的概率为,则该商店获利5~10万元的概率为,获利10~15万元的概率为。

参考答案:,考核知识点:概率的性质6、设袋中有6个球,其中4白2黑。

用不放回两种方法取球,则取到的两个球都是白球的概率为;取到的两个球颜色相同的概率为;取到的两个球中至少有一个是白球的概率为。

参考答案:,7/15,14/15考核知识点:古典型概率和概率的性质7、设事件A,B互不相容,已知P(A)= ,P(B)= ,则P(A+B)= ;P(A+B)= ;P(A B)= ;P(BA)= 。

参考答案:,,,考核知识点:概率的性质8、甲、乙、丙三人各射一次靶子,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为,,,则恰有一人中靶的概率为;至少有一人中靶的概率为。

参考答案:(1);(2)考核知识点:事件的独立性9、每次试验的成功率为p(0< p <1),则在5次重复试验中至少成功一次的概率为。

概率论与数理统计总复习

概率论与数理统计总复习

概率论与数理统计总复习1、研究和揭示随机现象 统计规律性的科学。

随机现象:是在个别试验中结果呈现不确定性,但在大量重复试验中结果又具有统计规律性的现象。

2、互斥的或互不相容的事件:A B φ⋂=3、逆事件或对立事件:φ=⋂=⋃B A S B A 且4、德∙摩根律:B A B A ⋂=⋃,B A B A ⋃=⋂5、在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值/A n n 称为事件A 发生的频率,并记为()n f A 。

6、概率的性质(1)非负性:(A)0P ≥; (2)规范性:(S)1P =;(3)有限可加性:设A 1,A 2,…,A n ,是n 个两两互不相容的事件,即A i A j =φ,(i ≠j), i , j =1, 2, …, n , 则有∑==ni i n A P A A P 11)()...((4)()0P φ=;(5)单调不减性:若事件A ⊂B ,则P(B)≥P(A) (6)对于任一事件A ,P(A)≤1 (7)差事件概率:对于任意两事件A 和B ,()()()P B A P B P AB -=-(8)互补性(逆事件的概率):对于任一事件A ,有 P(A )=1-P(A) (9)加法公式:P(A ⋃B)=P(A)+P(B)-P(AB))()()()()()()()(321323121321321A A A P A A P A A P A A P A P A P A P A A A P +---++=⋃⋃7、古典概型中的概率: ()()()N A P A N S =①乘法原理:设完成一件事需分两步, 第一步有n 1种方法,第二步有n 2种方法, 则完成这件事共有n 1n 2种方法。

例:从甲、乙两班各选一个代表。

②加法原理:设完成一件事可有两类方法,第一类有n 1种方法,第二类有n 2种方法,则完成这件事共有n 1+n 2种方法。

概率统计总复习

概率统计总复习
0 0
X 0 T ~ T (n 1) S n
接受域
x 0 s n
t
2

( 2未知)
待估参数
枢轴量及其分布 置信区间
T X 0 ~ T (n 1) S n

( x t
2
( 2未知)
s x t ) 2 n
s , n
原假设 备择假设 检验统计量及其在 H0为真时的分布 H0 H1
s s /m s /n
2 0 2 x 2 y
第八章 1. 方差分析 基本概念(因子、水平、指标); 方差分析表; 总均值、各水平均值、误差方差的 点估计; 各水平均值的区间估计。
2. 一元线性回归分析 线性回归模型; 拟合回归方程; 回归方程的显著性; 回归系数的经济含义。
未知 m,n充 分大
1 , 2
1 2 1 2 1 2
1 2 u 1 2 1 2
x y
2 2 sx s y m n
{u u1 } {u u } {| u | u1 / 2 }
近似 t检 验
未知 m,n不 很大
2 2
右侧检验
(V V1 )
根据样本值计算,并作出相应的判断.
1. 正态总体参数的假设检验 单个正态总体 两个正态总体
2. 大样本检验 单个总体 两个总体
假设检验与置信区间对照
原假设 备择假设 检验统计量及其在 H0为真时的分布 H1 H0 接受域
x 0 u1
0
《数理统计》复习
各 章比 重
第 五 章
(20)
第 六 章
(35)
第 七 章
(15)
第 八 章

概率统计B总复习

概率统计B总复习

X −µ
σ
-λx
~ N (0,1) 。分布函数 F ( x ) = P ( X ≤ x ) = Φ (
x−µ
σ
)
(当x>0),EX=1/λ , DX=1/λ2
示例
■1、设X的分布律为: X pk
−1 0 1 0.2 0.5 k
,求X 2–2X的分布律以及P (-0.5< X <2), E(X), D(X)。
2.分布函数 F ( x) = P( X ≤ x) =

x
−∞
f ( x)dx , 是一个连续函数。F (–∞)=0, F (+∞)=1;此时
(经管类总复习) 1
P ( a < X ≤ b)=P ( a < X < b) = P (a ≤ X ≤ b) = P ( a ≤ X < b) = F (b) − F ( a )
第 2、4 章
知识点
一、离散型:1.分布律
随机变量的分布、数字特征
L L
X P
x1 p1
x2 L xn p2 L pn
(2)
基本性质: (1) p k ≥ 0

∑p
k =1

k
= 1 (必须满足这两个性质才能作为随机变量的分布律)

2.分布函数 F ( x ) = P ( X ≤ x ) , 3.数学期望 E (X) =
∫∫
D
f ( x, y )dxdy
3.随机变量的独立性(1)对离散型:X,Y 相互独立 ⇔ p ij = p i. p. j (对所有 i, j) (2)对连续型:X, Y 相互独立 ⇔ f ( x, y ) = f X ( x) f Y ( y ) (对所有公共连续点(x, y))

大学概率论与数理统计复习资料

大学概率论与数理统计复习资料

知识点:概率的性质事件运算古典概率常用公式(2)P(A BP P(A) P(B)- P(AB)(加法定理)nnP(U A) Y p(A)i d innP(U A)=l-n [1-P(A)]i di d(3) P(B/A)二 P(AB)/P(A) (4)P(AB)二 P(A)P(B/A)二P(B)P(A/B) P(AB)二 P(A)P(B) (A 与B 独立时)P(AB)二0(A,B 互不相容时)(5) P (A- Bp P(ABp P(A)- P(AB)P(A- B)二 P(AB)二 P(A) - P(B)(当B A 时)n(6) P (B)八 P(A i )P(B/A i )(全概率公式)i=1(其中A ,,A 2 A n 为"的一个划分,且P(A i 0)) (7) P (A /B) = nP(A)P(B/A)(逆概率公式)迟 P(A i )P(B/A)事件的独立性条件概率全概率与贝叶斯公式(1)P(Ap r/nP(AP L(A)/L(S)(设A,4…A 两两互斥,有限可加性)(A ,4, A 相互独立时)i =1应用举例1、已知事件A, B 满足P(AB) = P(AB),且P(A) = 0.6 ,贝卩P(B)=()。

2、已知事件A,B 相互独立,P(A) =k, P(B) =0.2, P(0 B)=0.6,贝k - ()。

3、已知事件A,B 互不相容,P(A) =0.3, P(B) = 0.5,则 P(A B)=()。

4、若P(A) =0.3, P(B)=0.4 ,P(AB) = 0.5, P(BA B)=( )。

5、A, B,C是三个随机事件,C B,事件AUC - B与A的关系是6、5张数字卡片上分别写着1, 2, 3, 4, 5,从中任取3张,某日他抛一枚硬币决定乘地铁还是乘汽车。

(1 )试求他在5:40〜5:50到家的概率;(2)结果他是5:47到家的。

试求他是乘地铁回家的概率。

(完整版)概率论与数理统计复习题带答案讲解

(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)

概率统计复习提纲(百度文库)解析

概率统计复习提纲(百度文库)解析

《概率论与数理统计》总复习提纲第一块随机事件及其概率内容提要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,几何概率,条件概率,与条件概率有关的三个公式,事件的独立性,贝努里试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为.1)试验可在相同的条件下重复进行;2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果;3)每次试验前不能确定哪一个结果会出现.(2)样本空间:随机试验的所有可能结果组成的集合称为的样本空间记为Ω;试验的每一个可能结果,即Ω中的元素,称为样本点,记为.(3)随机事件:在一定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的子集,必然事件(记为)和不可能事件(记为).2、事件的关系与运算(1)包含关系与相等:“事件发生必导致发生”,记为或;且.(2)互不相容性:;互为对立事件且.(3)独立性:(1)设为事件,若有,则称事件与相互独立. 等价于:若().(2)多个事件的独立:设是n个事件,如果对任意的,任意的,具有等式,称个事件相互独立.3、事件的运算(1)和事件(并):“事件与至少有一个发生”,记为.(2)积事件(交):“事件与同时发生”,记为或.(3)差事件、对立事件(余事件):“事件发生而不发生”,记为称为与的差事件;称为的对立事件;易知:.4、事件的运算法则1) 交换律:,;2) 结合律:,;3) 分配律:,;4) 对偶(De Morgan)律:,,可推广5、概率的概念(1)概率的公理化定义:(2)频率的定义:事件在次重复试验中出现次,则比值称为事件在次重复试验中出现的频率,记为,即.(3)统计概率:称为事件的(统计)概率.在实际问题中,当很大时,取(4)古典概率:若试验的基本结果数为有限个,且每个事件发生的可能性相等,则(试验对应古典概型)事件发生的概率为:.(5)几何概率:若试验基本结果数无限,随机点落在某区域g的概率与区域g的测度(长度、面积、体积等)成正比,而与其位置及形状无关,则(试验对应几何概型),“在区域中随机地取一点落在区域中”这一事件发生的概率为:.(6)主观概率:人们根据经验对该事件发生的可能性所给出的个人信念.6、概率的基本性质(1)不可能事件概率零:=0.(2)有限可加性:设是n个两两互不相容的事件,即=,(),则有=+.(3)单调不减性:若事件,且.(4)互逆性:且.(5)加法公式:对任意两事件,有-;此性质可推广到任意个事件的情形.(6)可分性:对任意两事件,有,且7、条件概率与乘法公式(1)条件概率:设是两个事件,即,则称为事件发生的条件下事件发生的条件概率.(2)乘法公式:设且则称为事件的概率乘法公式.8、全概率公式与贝叶斯(Bayes)公式(1)全概率公式:设是的一个划分,且,,则对任何事件,有称为全概率公式.(2)贝叶斯(Bayes)公式:设是的一个划分,且,则对任何事件,有称为贝叶斯公式或逆概率公式.9、贝努里(Bernoulli)概型(1)只有两个可能结果的试验称为贝努里试验,常记为.也叫做“成功—失败”试验,“成功”的概率常用表示,其中=“成功”.(2)把重复独立地进行次,所得的试验称为重贝努里试验,记为.(3)把重复独立地进行可列多次,所得的试验称为可列重贝努里试验,记为.以上三种贝努里试验统称为贝努里概型.(4)中成功次的概率是:其中.疑难分析1、必然事件与不可能事件必然事件是在一定条件下必然发生的事件,不可能事件指的是在一定条件下必然不发生的事件.它们都不具有随机性,是确定性的现象,但为研究的方便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件与必有一个事件发生,且至多有一个事件发生,则、为互逆事件;如果两个事件与不能同时发生,则、为互斥事件.因而,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,而互斥适用与多个事件的情形.作为互斥事件在一次试验中两者可以都不发生,而互逆事件必发生一个且只发生一个.3、两事件独立与两事件互斥两事件、独立,则与中任一个事件的发生与另一个事件的发生无关,这时;而两事件互斥,则其中任一个事件的发生必然导致另一个事件不发生,这两事件的发生是有影响的,这时.可以用图形作一直观解释.在图1.1左边的正方形中,图1.1,表示样本空间中两事件的独立关系,而在右边的正方形中,,表示样本空间中两事件的互斥关系.4、条件概率与积事件概率是在样本空间内,事件的概率,而是在试验增加了新条件发生后的缩减的样本空间中计算事件的概率.虽然、都发生,但两者是不同的,一般说来,当、同时发生时,常用,而在有包含关系或明确的主从关系时,用.如袋中有9个白球1个红球,作不放回抽样,每次任取一球,取2次,求:(1)第二次才取到白球的概率;(2)第一次取到的是白球的条件下,第二次取到白球的概率.问题(1)求的就是一个积事件概率的问题,而问题(2)求的就是一个条件概率的问题.5、全概率公式与贝叶斯(Bayes)公式当所求的事件概率为许多因素引发的某种结果,而该结果又不能简单地看作这诸多事件之和时,可考虑用全概率公式,在对样本空间进行划分时,一定要注意它必须满足的两个条件.贝叶斯公式用于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第二块随机变量及其分布内容提要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设是随机试验的样本空间,如果对于试验的每一个可能结果,都有唯一的实数与之对应,则称为定义在上的随机变量,简记为.随机变量通常用大写字母等表示.2、离散型随机变量及其分布列如果随机变量只能取有限个或可列个可能值,则称为离散型随机变量.如果的一切可能值为,并且取的概率为,则称为离散型随机变量的概率函数(概率分布或分布律).也称分布列,常记为其中.常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为,分布列为或(2)二项分布:记为,概率函数(3)泊松分布,记为,概率函数泊松定理设是一常数,是任意正整数,设,则对于任一固定的非负整数,有.当很大且很小时,二项分布可以用泊松分布近似代替,即,其中(4)超几何分布:记为,概率函数,其中为正整数,且.当很大,且较小时,有(5)几何分布:记为,概率函数.3、分布函数及其性质分布函数的定义:设为随机变量,为任意实数,函数称为随机变量的分布函数.分布函数完整地描述了随机变量取值的统计规律性,具有以下性质:(1)有界性;(2)单调性如果,则;(3)右连续,即;(4)极限性;(5)完美性.4、连续型随机变量及其分布分布如果对于随机变量的分布函数,存在非负函数,使对于任一实数,有,则称为连续型随机变量.函数称为的概率密度函数.概率密度函数具有以下性质:(1);(2);(3);(4);(5)如果在处连续,则.常用连续型随机变量的分布:(1)均匀分布:记为,概率密度为分布函数为(2)指数分布:记为,概率密度为分布函数为(3)正态分布:记为,概率密度为,相应的分布函数为当时,即时,称服从标准正态分布.这时分别用和表示的密度函数和分布函数,即具有性质:①.②一般正态分布的分布函数与标准正态分布的分布函数有关系:.5、随机变量函数的分布(1)离散型随机变量函数的分布设为离散型随机变量,其分布列为(表2-2):表2-2…………则任为离散型随机变量,其分布列为(表2-3):表2-3…………有相同值时,要合并为一项,对应的概率相加.(2)连续型随机变量函数的分布设为离散型随机变量,概率密度为,则的概率密度有两种方法可求.1)定理法:若在的取值区间内有连续导数,且单调时,是连续型随机变量,其概率密度为.其中是的反函数.2)分布函数法:先求的分布函数然后求.疑难分析1、随机变量与普通函数随机变量是定义在随机试验的样本空间上,对试验的每一个可能结果,都有唯一的实数与之对应.从定义可知:普通函数的取值是按一定法则给定的,而随机变量的取值是由统计规律性给出的,具有随机性;又普通函数的定义域是一个区间,而随机变量的定义域是样本空间.2、分布函数的连续性定义左连续或右连续只是一种习惯.有的书籍定义分布函数左连续,但大多数书籍定义分布函数为右连续. 左连续与右连续的区别在于计算时,点的概率是否计算在内.对于连续型随机变量,由于,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于,则定义左连续或右连续时值就不相同,这时,就要注意对定义左连续还是右连续.第三块多维随机变量及其分布内容提要基本内容:多维随机变量及其分布函数二维离散型随机变量的联合分布列,二维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独立性和不相关性,常用多维随机变量,随机向量函数的分布.1、二维随机变量及其联合分布函数为n维(n元)随机变量或随机向量.联合分布函数的定义设随机变量,为随机向量的联合分布函数二维联合分布函数具有以下基本性质:(1)单调性是变量或的非减函数;(2)有界性;(3)极限性(3)连续性关于右连续,关于也右连续;(4)非负性对任意点,若,则.式表示随机点落在区域内的概率为:.2、二维离散型随机变量及其联合分布列如果二维随机变量所有可能取值是有限对或可列对,则称为二维离散型随机变量.设为二维离散型随机变量,它的所有可能取值为将或表3.1称为的联合分布列.表3.1……┇┇…………┇┇…┇………┇┇…┇…联合分布列具有下列性质:(1);(2).3、二维连续型随机变量及其概率密度函数如果存在一个非负函数,使得二维随机变量的分布函数对任意实数有,则称是二维连续型随机变量,称为的联合密度函数(或概率密度函数).联合密度函数具有下列性质:(1)非负性对一切实数,有;(2)规范性;(3)在任意平面域上,取值的概率;(4)如果在处连续,则.4、二维随机变量的边缘分布设为二维随机变量,则称分别为关于和关于的边缘(边际)分布函数.当为离散型随机变量,则称分别为关于和关于的边缘分布列.当为连续型随机变量,则称分别为关于和关于的边缘密度函数.5、二维随机变量的条件分布(了解)(1)离散型随机变量的条件分布设为二维离散型随机变量,其联合分布律和边缘分布列分别为,则当固定,且时,称为条件下随机变量的条件分布律.同理,有(2)连续型随机变量的条件分布设为二维连续型随机变量,其联合密度函数和边缘密度函数分别为:.则当时,在和的连续点处,在条件下,的条件概率密度函数为.同理,.6、随机变量的独立性设及分别是的联合分布函数及边缘分布函数.如果对任何实数有则称随机变量与相互独立.设为二维离散型随机变量,与相互独立的充要条件是.设为二维连续型随机变量,与相互独立的充要条件是对几乎一切实数,有.7、两个随机变量函数的分布设二维随机变量的联合概率密度函数为,是的函数,则的分布函数为.(1)的分布若为离散型随机变量,联合分布列为,则的概率函数为:或.若为连续型随机变量,概率密度函数为,则的概率函数为:.(2)的分布若为连续型随机变量,概率密度函数为,则的概率函数为:.8.最大值与最小值的分布则9.数理统计中常用的分布(1)正态分布:(2):(3):(4):疑难分析1、事件表示事件与的积事件,为什么不一定等于?如同仅当事件相互独立时,才有一样,这里依乘法原理.只有事件与相互独立时,才有,因为.2、二维随机变量的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯一确定边缘分布,因而也唯一确定条件分布.反之,边缘分布与条件分布都不能唯一确定联合分布.但由知,一个条件分布和它对应的边缘分布,能唯一确定联合分布.但是,如果相互独立,则,即.说明当独立时,边缘分布也唯一确定联合分布,从而条件分布也唯一确定联合分布.3、两个随机变量相互独立的概念与两个事件相互独立是否相同?为什么?两个随机变量相互独立,是指组成二维随机变量的两个分量中一个分量的取值不受另一个分量取值的影响,满足.而两个事件的独立性,是指一个事件的发生不受另一个事件发生的影响,故有.两者可以说不是一个问题.但是,组成二维随机变量的两个分量是同一试验的样本空间上的两个一维随机变量,而也是一个试验的样本空间的两个事件.因此,若把“”、“”看作两个事件,那么两者的意义近乎一致,从而独立性的定义几乎是相同的.第四块随机变量的数字特征内容提要基本内容:随机变量的数学期望和方差、标准差及其性质,随机变量函数的数学期望,原点矩和中心矩,协方差和相关系数及其性质.1、随机变量的数学期望设离散型随机变量的分布列为,如果级数绝对收敛,则称级数的和为随机变量的数学期望.设连续型随机变量的密度函数为,如果广义积分绝对收敛,则称此积分值为随机变量的数学期望.数学期望有如下性质:(1)设是常数,则;(2)设是常数,则;(3)若是随机变量,则;对任意个随机变量,有;(4)若相互独立,则;对任意个相互独立的随机变量,有.2、随机变量函数的数学期望设离散型随机变量的分布律为,则的函数的数学期望为,式中级数绝对收敛.设连续型随机变量的密度函数为,则的函数的数学期望为,式中积分绝对收敛.3、随机变量的方差设是一个随机变量,则称为的方差.称为的标准差或均方差.计算方差也常用公式.方差具有如下性质:(1)设是常数,则;(2)设是常数,则;(3)若相互独立,则;对任意个相互独立的随机变量,有;(4)的充要条件是:存在常数,使.4、几种常见分布的数学期望与方差(1);(2);(3);(4);(5);(6);(7);(8).5、矩设是随机变量,则称为的阶原点矩.如果存在,则称为的阶中心矩.设是二维随机变量,则称为的阶混合原点矩;称为的阶混合中心矩.6、协方差与相关系数随机变量的协方差为.它是1+1阶混合中心矩,有计算公式:.随机变量的相关系数为.相关系数具有如下性质:(1);(2)存在常数,使=1,即与以概率1线性相关;(3)若独立,则,即不相关.反之,不一定成立.(4)(Schwarz inequality) 设(X,Y)是二维随机变量,若X与Y的方差都存在,则疑难分析1、随机变量的数字特征在概率论中有什么意义?知道一个随机变量的分布函数,就掌握了这个随机变量的统计规律性.但求得一个随机变量的分布函数是不容易的,而且往往也没有这个必要.随机变量的数字特征则比较简单易求,也能满足我们研究分析具体问题的需要,所以在概率论中很多的应用,同时也刻画了随机变量的某些特征,有重要的实际意义.例如,数学期望反映了随机变量取值的平均值,表现为具体问题中的平均长度、平均时间、平均成绩、期望利润、期望成本等;方差反映了随机变量取值的波动程度;偏态系数、峰态系数则反映了随机变量取值的对称性和集中性.因此,在不同的问题上考察不同的数字特征,可以简单而切实地解决我们面临的实际问题.2、在数学期望定义中为什么要求级数和广义积分绝对收敛?首先,数学期望是一个有限值;其次,数学期望反映随机变量取值的平均值.因此,对级数和广义积分来说,绝对收敛保证了值的存在,且对级数来说,又与项的次序无关,从而更便于运算求值.而由于连续型随机变量可以离散化,从而广义积分与无穷级数有同样的意义.要求级数和广义积分绝对收敛是为了保证数学期望的存在与求出.3、相关系数反映了随机变量和之间的什么关系?相关系数是用随机变量和的协方差和标准差来定义的,它反映了随机变量和之间的相关程度.当时,称与依概率1线性相关;当时,称与不相关;当时,又分为强相关与弱相关.4、两个随机变量与相互独立和不相关是一种什么样的关系?(1)若、相互独立,则、不相关.因为、独立,则,故,从而,所以、不相关.(2)若、不相关,则、不一定独立.如:因为,,知、不相关.但,,,知、不独立.(3)若、相关,则、一定不独立.可由反证法说明.(4)若、不相关,则、不一定不相关.因为、不独立,,但若时,可以有,从而可以有、不相关.但是,也有特殊情况,如服从二维正态分布时,、不相关与、独立是等价的.第五块大数定律和中心极限定理内容提要基本内容:切比雪夫(Chebyshev)不等式,切比雪夫大数定律,伯努里(Bernoulli)大数定律,辛钦(Khinchine)大数定律,棣莫弗-拉普拉斯(De Moivre-Laplace)定理,列维-林维德伯格(Levy-Lindberg)定理.1、切贝雪夫不等式设随机变量的数学期望,方差,则对任意正数,有不等式或成立.2、大数定律(1)切贝雪夫大数定律:设是相互独立的随机变量序列,数学期望和方差都存在,且,则对任意给定的,有.(2)贝努利大数定律:设是次重复独立试验中事件发生的次数,是事件在一次试验中发生的概率,则对于任意给定的,有.贝努利大数定理给出了当很大时,发生的频率依概率收敛于的概率,证明了频率的稳定性.(3)辛钦大数定律:设相互独立,服从同一分布的随机变量序列,且(),则对任意给定的,有3、中心极限定律(1)林德贝格-勒维中心极限定理:设是独立同分布的随机变量序列,有有限的数学期望和方差,,.则对任意实数,随机变量的分布函数满足.(2)李雅普诺夫定理:设是不同分布且相互独立的随机变量,它们分别有数学期望和方差:,.记,若存在正数,,使得当时,有, 则随机变量的分布函数对于任意的,满足.当很大时,.(3)德莫佛—拉普拉斯定理:设随机变量服从参数为的二项分布,则对于任意的,恒有.疑难分析1、依概率收敛的意义是什么?依概率收敛即依概率1收敛.随机变量序列依概率收敛于,说明对于任给的,当很大时,事件“”的概率接近于1.但正因为是概率,所以不排除小概率事件“”发生.依概率收敛是不确定现象中关于收敛的一种说法.2、大数定律在概率论中有何意义?大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律.3、中心极限定理有何实际意义?许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据.4、大数定律与中心极限定理有何异同?相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.古今名言敏而好学,不耻下问——孔子业精于勤,荒于嬉;行成于思,毁于随——韩愈兴于《诗》,立于礼,成于乐——孔子己所不欲,勿施于人——孔子读书破万卷,下笔如有神——杜甫读书有三到,谓心到,眼到,口到——朱熹立身以立学为先,立学以读书为本——欧阳修读万卷书,行万里路——刘彝黑发不知勤学早,白首方悔读书迟——颜真卿书卷多情似故人,晨昏忧乐每相亲——于谦书犹药也,善读之可以医愚——刘向莫等闲,白了少年头,空悲切——岳飞发奋识遍天下字,立志读尽人间书——苏轼鸟欲高飞先振翅,人求上进先读书——李苦禅立志宜思真品格,读书须尽苦功夫——阮元非淡泊无以明志,非宁静无以致远——诸葛亮熟读唐诗三百首,不会作诗也会吟——孙洙《唐诗三百首序》书到用时方恨少,事非经过不知难——陆游问渠那得清如许,为有源头活水来——朱熹旧书不厌百回读,熟读精思子自知——苏轼书痴者文必工,艺痴者技必良——蒲松龄声明访问者可将本资料提供的内容用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律的规定,不得侵犯本文档及相关权利人的合法权利。

概率统计考试总复习一

概率统计考试总复习一

总复习 一.填空题1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)A (p ==,则(1) 若B A ,互斥,则=)B -A (p 0.5 ; (2) 若B A ,独立,则=)B A (p 0.65 ; (3) 若2.0)(=⋅B A p ,则=)B A (p 3/7 .2、 A 、B 是两个随机事件,已知0.125P(AB)0.5,)B (p ,52.0)A (p ===,则=)B -A (p 0.125 ;=)B A (p 0.875 ;=)B A (p 0.25 .3、袋子中有大小相同的红球7只,黑球3只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为:7/15 。

(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 21/50 。

(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 21/55 .4、袋子中有大小相同的5只白球, 4只红球, 3只黑球, 在其中任取2只。

(1)4只中恰有2只白球1只红球1只黑球的概率为:412131425C C C C . (2) 4只中至少有2只红球的概率为:4124814381C C C C +-. (3 4只中没有白球的概率为:41247C C5、10把钥匙中有板有3把能打开门,今任取2把,能将门打开的概率为:112237372210108(1)15C C C C C C +=-或 6、设离散型随机变量X 的概率分布P{X=0}=0.2,P{X=1}=0.3,P{X=2}=0.5, 则P{X ≤1.5}= 0.5 . 7.设随机变量X~U(0,1),则2-3X的概率密度函数为:112()(3Y y f y ⎧-<<⎪=⎨⎪⎩参考教材P61例2)其他8、设随机变量X 的分布函数为01(1)(),{1}00xx x e F x P X x -≥⎧-+=≤=⎨<⎩则1(1)12F e -=-.9、设X~N(1,2),Y~N(0,3),Z~N(2,1),且X,Y ,Z 独立,则 P{0≤2X+3Y-Z ≤6}=0.3413(提示:2X+3Y-Z~N(0,36))10、设随机变量X 服从泊松分布}8{}7{),(===X P X p λπ,则{}=XE 811、设随机变量X 服从B (2,0. 8)的二项分布,则{}==2X p 0.64 , Y 服从B (8,0. 8)的二项分布, 且X 与Y 相互独立,则}1{≥+Y X P =1- 0.210,=+)(Y X E 8 。

范文:概率论与数理统计复习

范文:概率论与数理统计复习

概率论与数理统计复习概率论与数理统计复习一、概率论的基本概念:1、事件的运算律:交换律:,;结合律:,;分配律:,;德·摩根法则:,;减法运算:。

2、概率的性质:性质1;性质2(有限可加性)当个事件两两互不相容时,;性质3对于任意一个事件,;性质4当事件满足时,,;性质5对于任意两个随机事件,;性质6对于任意一个事件;性质7(广义加法法则)对于任意两个事件,。

3、条件概率:在已知发生的条件下,事件的概率为:()。

注意:所有概率的性质对条件概率依然适用,但使用公式必须在同一条件下进行。

4、全概率公式与贝叶斯公式:设个事件构成样本空间的一个划分,是一个事件,当()时,全概率公式:;贝叶斯公式:当时,,。

应用全概率公式和贝叶斯公式计算事件的概率或其在已知条件下的条件概率时,关键的问题是找到一个完备事件组,使得能且仅能与之一同时发生,然后运用古典概型、概率的加法和乘法法则计算出和,,并套用全概率公式或贝叶斯公式即可。

若一个较复杂的事件是由多种“原因”产生的样本点构成时,多考虑用全概率公式,而这些样本点就构成一个完备事件组;若已知试验结果而要追查“原因”时,往往使用贝叶斯公式,这些“原因”的全体即是所求的完备事件组。

5、随机事件的独立性:事件独立性的结论:(1)事件与独立;(2)若事件与独立,则与,与,与中的每一对事件都相互独立;(3)若事件与独立,且,,则,;(4)若事件相互独立,则;(5)若事件相互独立,则。

注意:(1)事件相互独立只要求满足,而事件互斥(互不相容)只要求,这两个概念前一个与事件的概率有关,后一个与事件有关,两者之间没有必然的联系;(2)如果事件相互独立,则与不相关,反之一般不成立。

(3)对于任意个随机事件,相互独立则两两独立,反之未必;(4)对于任意个相互独立的随机事件,它们中任意一部分事件的运算结果(和、差、积、逆等)与其他一部分事件或它们的运算结果都相互独立,如:与,与,与都相互独立;6、贝努利概型与二项概率公式:设一次试验中事件发生的概率为,则重贝努利试验中,事件恰好发生次的概率为,。

概率论与数理统计复习

概率论与数理统计复习

概率统计综合复习一一、填空:1.已知()0.3,()0.5,(/)0.2P A P B P A B ===,则()P A B ⋃= _ ___。

2.设某批产品有4%是废品,而合格品中的75%是一等品,则任取一件产品是一等品的概率是 。

3.设1231()()()3P A P A P A ===,且三事件123,,A A A 相互独立,则三事件中至少发生一个的概率为 ,三事件中恰好发生一个的概率为 。

4.袋中装有1个黑球和2个白球,从中任取2个,则取得的黑球数X 的分布函数()F x = ,()E X = 。

5.设X (4,0.5),b Y 在区间[0,2] 上服从均匀分布,已知X 与Y 相互独立,则(3)D X Y -= _ _。

6.设2(2,)X N σ ,且{0}0.2P X ≤=,那么{24}P X <<= _ ___。

7.设随机变量X 服从参数为2的泊松分布,用切比雪夫不等式估计:{24}P X -≥≤ 。

8.设一批产品的某一指标2(,)X N μσ ,从中随机抽取容量为25的样本,测得样本方差的观测值2100s =,则总体方差2σ的95%的置信区间为 。

二、单项选择:1.甲、乙二人射击,A 、B 分别表示甲、乙击中目标,则AB 表示( )。

A.两人都没击中B.至少一人没击中C.两人都击中D.至少一人击中2.设,A B 为两个随机事件,且,则下列式子正确的是( )A.()()P A B P A ⋃=B.()()P AB P A =C.(/)()P B A P B =D.()()()P B A P B P A -=- 3.设123,(,4)X X X N μμ,是来自总体的样本,未知参数的下列无偏估计量中最有效的是 ( ).A.123111424X X X ++ B. 131122X X + C. 123122555X X X ++ D. 123111333X X X ++ 4.设某种电子管的寿命X ,方差为()D X a =,则10个电子管的平均寿命X 的方差()D X 是( ) A .a B. 10a C. 0.1a D. 0.2a5.在假设检验问题中,犯第一类错误是指( )A .原假设0H 成立,经检验接受0HB .原假设0H 成立,经检验拒绝0HC .原假设0H 不成立,经检验接受0HD .原假设0H 不成立,经检验拒绝0H 三、设一批混合麦种中一、二、三、四等品分别占60%、20%、15%、5%,,四个等级的发芽率依次为,0.98,0.95,0.9,0.85 求:1.这批麦种的发芽率;2.若取一粒能发芽,它是二等品的概率是多少?四、已知随机变量X 的概率密度函数为,01()0,cx x f x ⎧≤<=⎨⎩其它,求:1.常数c ; 2.{0.40.7}P X <≤; 3.方差()D X五、设二维随机变量(,)X Y 的联合密度函数(2)2,0,0(,)0x y e x y f x y -+⎧>>=⎨⎩,其它 ,1.求,X Y 的边缘密度函数;2.判断,X Y 是否相互独立、是否不相关;3.求概率{1}P X Y +≤六、设总体X 的密度函数为(1),01()0,x x f x θθ⎧+<<=⎨⎩其它,其中0θ>是未知参数,12,,,n X X X 是从该总体中抽取的一个样本,12,,,n x x x 是其样本观测值,试求参数θ 的最大似然估计量。

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

概率论与数理统计复习资料(改)

概率论与数理统计复习资料(改)

一、 基础理论1. 在个别试验中呈现出不确定性 ,而在大量重复试验或观察中又具有 统计规律性 的现象,称为随机现象 。

2. 随机现象的每一种结果称为随机事件 ,它的取值称为随机变量 。

3. 根据试验或观测得到的有限信息,对整体做出一定概率的推断,称为统计推断。

4. 在数理统计中常把研究对象的全体称为 总体 。

5. 从母体中抽取若干数量个体来观测母体某种数量指标的取样过程称为 抽样 。

6. 精密度 一在相同条件下,几次测定结果彼此相符合的程度,即平行测定结果相互接近程度。

7. 抽样调查是按照 随机原则 ,从总体中抽取部分单位进行观察用以推算总体数量特征的一种统计调查方式。

8. 集中趋势 是指一组数据向其中心值靠扰的倾向。

9. 总体方差是各个数据与其算术平均数 的高差平方的平均数,通常以σ2表示。

10. 按随机变量取值的特点不同,通常把随机变量分为两类,即离散型随机变量 和连续型随机变量 。

11. 设样本X1,X2,……Xn 来自N(m ,1.69),则对检验H0:m =35,采用的检验量是12. 客观现象之间的数量联系可以归纳为两种不同的类型,一种是 函数关系 ,另一种是 相关关系 。

13. 按变量之间关系的 密切程度 不同,可分为完全相关、不完全相关和不相关。

14. 相关分析 是研究一个变量一个变量与另一个变量式另一组变量之间相关方向和相关密切程度的统计分析方法。

15. 回归分析 是指根据相关关系的具体形态,选择一个适合的数学模型来近似地表达变量间平均变化关系的统计分析方法。

16. 最小二乘法 就是寻找参数β0和β1的估计值β-0和β-1。

使因变量实际值与估计值的残差平方和达到最小。

17. 略18. 略19. 根据抽取样本的方法不同,有 重复抽样 和 不重复抽样 两种具体抽样方法。

20. 以样本指标去估计总体指标有 点估计 和 区间估计 两种方法。

21. 点估计就是用样本指标去直接估计总体指标,它没有考虑抽样误差 ;而区间估计就是根据样本指标和抽样误差去推断总体指标的 可能范围 ,并能够说明估计的 可靠性 ,所以 区间估计 是样本指标推断总体指标的主要方法。

《概率论与数理统计》总复习资料

《概率论与数理统计》总复习资料

《概率论与数理统计》总复习资料概率论部分1.古典概型中计算概率用到的基本的计数方法。

例1:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数:915C n ==5005事件B 包含的样本点:563514C C C r ==240,则P (B )=240/5005=0.048例2:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数}。

若允许千位数为0,此时个位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个。

其中,千位数为0的“四位偶数”有多少个?此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A 种选法;从而共有428A =224个。

因此410283945)(A A A B P -==2296/5040=0.4562.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。

例1:事件A 与B 相互独立,且P (A )=0.5,P (B )=0.6,求:P (AB ),P (A -B ),P (A B )解:P (AB )=P (A )P (B )=0.3,P (A -B )=P (A )-P (AB )=0.2,P (A B )=P (A )+P (B )-P (AB )=0.8例2:若P (A )=0.4,P (B )=0.7,P (AB )=0.3,求:P (A -B ),P (A B ),)|(B A P ,)|(B A P ,)|(B A P 解:P (A -B )=0.1,P (A B )=0.8,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,|(B A P =)(1)()()(B P B A P B P B A P -==2/33.准确地选择和运用全概率公式与贝叶斯公式。

《概率论与数理统计》复习-知识归纳整理

《概率论与数理统计》复习-知识归纳整理

《概率论与数理统计》复习大纲第一章 随机事件与概率基本概念随机试验E----指试验可在相同条件下重复举行,试验的结果具有多种可能性(每次试验有且仅有一个结果闪现,且事先知道试验可能闪现的一切结果,但不能预知每次试验确实切结果。

样本点ω ---随机试验E的每一具可能闪现的结果样本空间Ω----随机试验E的样本点的全体随机事件-----由样本空间中的若干个样本点组成的集合,即随机事件是样本空间的一具子集。

必然事件---每次试验中必然发生的事件。

不可能事件∅--每次试验中一定不发生的事件。

事件之间的关系包含A⊂B相等A=B对立事件,也称A的逆事件互斥事件AB=∅也称不相容事件A,B相互独立P(AB)=P(A)P(B)例1事件A,B互为对立事件等价于( D )A、A,B互不相容B、A,B相互独立C、A∪B=ΩD、A,B构成对样本空间的一具剖分例2设P(A)=0,B为任一事件,则(C )A、A=∅B、A⊂BC、A与B相互独立D、A与B互不相容事件之间的运算事件的交AB或A ∩B 例1设事件A、B满足A B¯=∅,由此推导不出(D)A、A⊂BB、A¯⊃B¯C、A B=BD、A B=B例2若事件B与A满足B – A=B,则一定有(B)A、A=∅B、AB=∅C、AB¯=∅D、B=A¯事件的并A∪B事件的差A-B 注意:A-B= A B= A-AB = (A∪B)-BA1,A2,…,An构成Ω的一具完备事件组(或分斥)−−指A1,A2,…,An两两互不相容,且∪i=1nAi=Ω运算法则交换律A∪B=B∪A A∩B=B∩A结合律(A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C)分配律(A∪B)∩C=(AC)∪(BC) (A∩B)∪C=(A∪C)∩(B∪C) 对偶律A∪B=A∩B A∩B=A∪B文氏图事件与集合论的对应关系表记号概率论集合论Ω样本空间,必然事件全集∅不可能事件空集ω基本事件元素A 事件全集中的一具子集A A的对立事件A的补集A⊂B 事件A发生导致事件B发生A是B的子集A=B 事件A与事件B相等A与B相等A∪B 事件A与事件B至少有一具发生A与B的并集AB 事件A与事件B并且发生A与B的交集知识归纳整理A-B事件A 发生但事件B 不发生A 与B 的差集 AB=∅ 事件A 与事件B 互不相容(互斥) A 与B 没有相同的元素古典概型 古典概型的前提是Ω={ω1,ω2, ω3,…, ωn ,}, n 为有限正整数,且每个样本点ωi 出现的可能性相等。

统计与概率 四年级上册数学总复习

统计与概率 四年级上册数学总复习
同桌互相说一说。
2.结合教材第100页统计与概率第2题,复习“可能性大小”的知识。
要想使获得最高分(或者一等奖)的可能性增大,如何修改下面两个游戏的游戏规则?
思考:
为什么把得5分的靶心面积加大,得最高分的可能性就大了?
独立思考并说说想法。
【巩固练习】
教材第105页第1题。
独立思考,全班汇报。
教材第105页第2题。
资源
准备
优教通 希沃白板
落 实 目 标
信息技术应用
自主
调整
【温故知新】
1.回顾整理本单元知识,用自己喜欢的方法形成知识网络。集体交流。
2.回答下面的问题。
(1)你们今天有可能上体育课吗?
(2)你觉得今天会下雨吗?
指定学生说一说,再集体订正。
【导学释疑】
1.结合教材,复习“不确定性”的知识。
关于“不确定性”你能举出一些生活中的例子吗?
说说哪个盒子容易判断,为什么。
【拓展延伸】Leabharlann 教材第105页第3题。在袋子中放入6个不同颜色的球,如果要分别达到下面的要求,该怎样放?
每次任意摸一个球,摸30次,摸到蓝球的次数比红球的多。( )
任意摸一个球,可能是红球,也可能是蓝球或黄球。( )
【课堂总结】
说一说本节课你复习了什么?




统计与概率
不确定性 游戏规则
课题
统计与概率
所属单元
总复习
课时
第3 课时
教学
目标
1.知道生活中一些事情发生的不确定性,感受简单的随机现象。
2.理解随机想象结果发生的可能性是有大有小的,能对一些简单的随机现象发生的可能性大小作出定性描述。

概率统计公式大全(复习重点)汇总

概率统计公式大全(复习重点)汇总

概率统计公式大全(复习重点)汇总第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但和随机事件在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事①关系:件的关系与运算如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A Y B,或者A+B。

【教育资料】三年级下册数学试题总复习统计与概率练习北师大版学习专用(可编辑修改word版)

【教育资料】三年级下册数学试题总复习统计与概率练习北师大版学习专用(可编辑修改word版)

数据的整理和表示知识点一、收集和整理数据收集和整理数据的方法不唯一,可以采用不同的符号表示分类整理的结果。

知识点二、用整理数据的结果解决问题从整理数据的结果中获取信息,便于分析问题和解决问题。

【典型例题】类型一、收集和整理数据例 1、下面是同学们记录本班同学出生季节的情况。

1、用画“×”的方式分类整理上表中的调查情况。

2、在()季出生的同学最多。

举一反三:1、下面是调查某幼儿园中班同学喜欢吃的水果情况。

1、根据数据涂上你喜欢的颜色。

(1 个口代表1 名同学)2、根据数据题。

(1)(2)喜欢吃()的最多,喜欢吃()的最少。

类型二、用整理数据的结果解决问题例 2、三(1)班同学去春游,下面是老师调查同学们希望去的地方。

1、用画“正”字的方法整理上表中的数据。

2、根据数据涂上你喜欢的颜色。

(1 个口代表1 名同学)芙蓉古城南郊公园3、根据数据回答问题。

(1)希望去()的同学最多,希望去()的同学最少。

(2)希望去游乐场的同学比希望去芙蓉古城的同学多( )人。

(3)希望去游乐场和南郊公园的同学共有()人。

(4)如果你是老师,你会带领同学们去哪里出游?举一反三:2、小明班的同学上学、放学都会有家长接送,但接送的方式不同,小明调查了本班同学上学、放学家长接送方式情况如下:(1)用画“○”的方式整理上表。

小明班同学上学、放学家长接送方式小轿车2、小明班共有多少名学生?3、从整理的图中你发现了什么?你提出什么建议?【巩固练习】一、下面是某城市十二月份的天气情况。

1、根据上表情况,数一数,涂一涂。

2、填一填3、回答问题。

( ()最少, (2)()和( )一样多。

(1)) 天 最 多 ,(3)比多()天。

4、你还能提出哪些数学问题?二、下面是同学们喜欢的课外书的调查统计表。

《少儿百科全书》 正 《IQ 博士》 正 正 《宠物小精灵》正《奥特曼》正1、用画“×”的方式分类整理上表中的调查情况。

2、回答问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计复习一、填空题1.设A 、B 、C 是三个随机事件,用A 、B 、C 的运算关系表示事件仅B 发生( )2.设事件A 、B 相互独立,()0.7,()0.4,P AB P A ==则=)(B P ( ) 3.已知()31=A P ,21)(=B P ,A 与B 互斥,求=)(A B P ( ). 4.在区间(0,1)中随机地取两个数,则两数之差的绝对值小于21的概率为( ) 5.设在一次试验中,事件A 发生的概率为p ,现进行n 次独立试验,则A 至少发生一次的概率为( )6.A 与B 为互不相容事件,P (A )=0.2,P (B )=0.3,则=+)(B A P7.设随机变量X 服从参数为λ的泊松分布,则=)(X E ( );设随机变量~(,)Y U 01,则()E Y =( ).8.设随机变量X ~...01305035015⎡⎣⎢⎤⎦⎥,则P X ()<=2( ) 9.已知随机变量⎥⎦⎤⎢⎣⎡-5.05.05.05.05201~X ,那么=)(X E ( ) 10.设X 为随机变量,已知2)(=X D ,那么D X ()35-=( )11.=-)23(,]10,0[Y X E Y X 则上的均匀分布都服从区间与设随机变量 ( )12.设随机变量X 的概率密度为⎩⎨⎧≤≤=其它,010,)(x kx x ϕ,常数k 为( ) 13.设连续型随机变量X 的概率密度为R x x A x f ∈+=,1)(2,则A =( ) 14.设随机变量X 的概率密度为⎩⎨⎧≤≤=其它,010,)(2x Ax x f ,常数A 为( )15.已知随机变量)9,2(~N X ,则=)(X σ( )16.设随机变量X 服从参数为λ的泊松分布,则=)(X D ( )17.设X ~4),36,6(=n N ,则_X 服从的分布为( )18.已知一批零件的长度)1,(~μN X ,从中随机抽取16个零件,得到长度的平均值为40,。

则μ的置信水平为95.01=-α的置信区间是( )19.设n X X X ,,,21 为取自总体的样本值,i X ~).(2σμN ,则=)(X E ( )20.设随机变量X 的数学期望为)(X E ,标准差为0)(>X σ,设随机变量)()(X X E X X σ-=*,则=*)(X E ( ) 21.设随机变量X 服从正态分布)0(),(2>σσμN ,且二次方程042=++X y y 无实根的概率为5.0,则=μ( ).22. 设随机变量~(0,4)X N , ),,,(1621X X X 是其容量为16的样本,则样本均值~X ( )分布.23.设随机变量),(~2σμN X ,当2σ未知时,为检验假设00:μμ=H 需构造统计量( )二、选择题1.设A 、B 是两个事件,则A B 表示A A 、B 都发生 B A 、B 都不发生C A 、B 中恰有一个发生D A 、B 中至少有一个发生生2.P(A)=0.8, P(B)=0.7, ()0.56P AB =,说明 ( )A . A 与B 互不相容; B. P(A+B)= P(A)+ P(B)C .A 与B 互相独立;D .P(AB)=03. 设B A ,互不相容,且0)()(>>B P A P ,则=)(AB PA. 0.1B. 1C. 0D. 0.54.设1)(0,1)(0<<<<B P A P ,且1)()(=+B A P B A P 则( )A. A ,B 互不相容B. A ,B 相互独立C. A ,B 不相互独立D. A ,B 互逆5.设A ,B ,C 为三个事件,则表示“A ,B ,C 中至少一个发生”:A. AB AC BCB. A B CC. ABC ABC ABCD. A B C6. 已知 28.0)(=A p ,3.0)(=B P , 35.0)(=B A P ,则=⋃)(B A PA.58.0B.475.0C.84.0D.685.07.同时抛掷3枚硬币,则恰好有两枚正面向上的概率为( )A 0.375B 0.5C 0.25D 0.1258.设,A B 为随机事件且0(),A B P B ⊂>,则下列选项必然成立的是( )A.()(|)P A P A B <B.()(|)P A P A B ≤C.()(|)P A P A B >D.()(|)P A P A B ≥9. 设A ,B 是两个随机事件,则一定有A .()1P AB ⋃= B.()1P A B ⋃= C.()0P A B ⋃= D.()1()P A B P AB ⋃=-10. 设A 、B 是两个随机事件, 3.0)(,4.0)(==AB P B P ,则=)(B A P ( )A 0.12 B 0.75 C 0.3 D 0.411. 设连续型随机变量X 的概率密度为)(x f ,分布函数为)(x F ,则下列选项正确的是( )A )()(x f x X P ==B )()(x F x X P ==C )()(x F x X P =<D 1)(0≤≤x f12. 设,X ~).2(2σN ,则随着σ的增大, )2(σ<-X P ( )A 增大B 减少C 保持不变 D 增减不定13.无论2σ是否已知,正态总体均值μ的置信区间的中心都是( )A X B 2σ C μ D 2S14.从总体中抽取样本,,21X X 下面总体均值μ的估计量中哪一个最有效( )A 11X m =B 22X m =C 2134341X X m += D 2143132X X m +=15. 从总体中抽取样本,,21X X 下面总体均值μ的估计量中哪一个最有效( ) A 2113231X X m += B 22X m = C 2134341X X m += D 2142121X X m +=16.设,8)4(,20)2(2==X E X E 求=+)23(X D A 50 B 52 C 54 D 5617. 设随机变量X ~)14.1(-N ,Y ~)16.5(N ,且X 与Y 相互独立,则)(Y X D +等于( )A 30B 2C 15D 118. 设随机变量X 的概率分布为 则t 为( ) A 1 B 0.6 C 4 D 0.519. 若随机变量),2(~2σN X , 且3.0)42(=<<X P , 则(0)P X <=( )A. 0.3B.0.1C.0.2D.0.520. 设随机变量n X X X ,,,21 相互独立,且都服从标准正态分布)1,0(N ,则∑=ni i X 12服从的分布为() A )(n t B )1(-n t C )(2n χ D )1(2-n χ21.设随机变量),1(~2σN X ,若2)(2=X E ,则σ等于( ) A.1 B.2 C.0 D.322. 设A 与B 相互独立的随机变量X 和Y,方差分别为4和9,则D(X+Y)= ( )A 5 B 11 C 12D 13 23.设n X X X ,,,21 是来自总体X 的简单随机样本,其中μ未知,则下面不是统计量的是A.i XB. ∑==ni i X n X 11C. 212)(11X X n S ni i --=∑= D. 21)(1μ-∑=ni i X n24. ),(~2σμN X ,2,σμ未知,n X X X ,,,21 为样本,则为统计量的是( )A.∑=n i i X 11σB. ∑=n i i X 121σ C. μn X ni i -∑=1 D. ∑=ni i X n 11 25. 在所有的两位数10~39中任取一个数,这个数能被2或3整除的概率为( )A. 2/3B. 23/30C.17/30D.13/3027. 设随机变量)3,0(~2N X ,921,,,X X X 为9的样本,则)(~292221921X X X X X X +++++ 分布A.)9,0(2NB.)1,0(NC. )9(tD.)9,9(F28. 设)4,2(~N X ,且)1,0(~N b aX +,则( )A.2,2-==b aB.1,2-=-=b aC.1,21-==b a D.1,21==b a 三简答题1.设,6.0)(,3.0)(,4.0)(=⋃==B A P B P A P 求)(B A P 。

2.假设有两箱同种零件:第一箱50件,其中10件一等品;第二箱30件,其中18件一等品,现从两箱中任意挑一箱,然后从该箱中随机取一个零件,试求取出的零件是一等品的概率。

3.已知)2,1(~2N X 求)8.56.1(≤≤-X P 以及)56.4(≥X P 。

(结果表示为的)(x Φ形式)4. 从0,1,2,…,9这十个数字中任意选出3个不同的数字。

试求事件A=“三个数字中不含0和5”的概率5.某商店从四个工厂进同一品种商品,进货量分别为20%,45%,25%,10%,经检验发现都有次品,次品率分别为5%,3%,1%,4%,问此时该商品的总次品率是多少?6. .已知随机变量X 的概率分布是:求 (1) F(x ) , (2)P(X ≤0) , (3)若12-=X Y ,求P(Y=3).7. 设随机变量X 有以下分布律试求随机变量2)1(-=X Y 分布律8. 设随机变量X ~⎪⎩⎪⎨⎧<<-≤≤-+=其它,010,101,1)(x x x x x f 求)(),(X D X E9.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他001)(ππx x f ,求)(),(X D X E10.设二维随机变量(),X Y 共有六个取正概率的点,它们是:()1,1-、()2,1-、()2,0、()2,2、()3,1、()3,2,并且取得它们的概率相同.求:(1)(),X Y 联合分布律;(2)X 的边缘分布。

11..设(X ,Y )的概率密度为()⎩⎨⎧≤≤≤≤= 01y 0,1x 0Axy y ,x f 其它, 求(1)常数A ; (2)()()y f ,x f Y X ,并判断X 与Y 的独立性 .12.设随机变量Y X ,相互独立,)1,0(~),1,0(~N Y N X ,求随机变量Y X Z +=概率密度函数.13.一袋中有5个乒乓球,编号为1,2,3,4,5,在其中同时取三个,以X 表示取出的三个球中的最大号码,试求X 的分布律.14.设连续随机变量X 的分布函数为()22,0;0,0.x A Be x F x x -⎧⎪+>=⎨⎪ ≤⎩ [1]求系数A 和B [2]求()12P X <<.四解答题1. 化肥厂用自动打包机包装化肥,某日测得9包化肥的质量(kg )如下:49.7,49.8,50.3,50.5,49.7,50.1,49.9,50.5,50.4。

相关文档
最新文档