芝诺的四个悖论
之诺悖论
一、历史追溯芝诺的运动论辨全部得自亚里士多德在《物理学》中的转述,有四个:1、二分法。
物体在到达目的地之前必须先到达全程的一半,这个要求可以无限的进行下去,所以,如果它起动了,它永远到不了终点,或者,它根本起动不了。
2、阿喀琉斯(一译阿基里斯)。
快跑者永远赶不上慢跑者,因为追赶者必须首先跑到被追者的出发点,而当它到达被追者的出发点,又有新的出发点在等着它,有无限个这样的出发点。
3、飞矢不动。
任何东西占据一个与自身相等的处所时是静止的,飞着的箭在任何一个瞬间总是占据与自身相等的处所,所以也是静止的。
4、运动场。
两列物体B、C相对于一列静止物体A相向运动,B越过A的数目是越过C的一半,所以一半时间等于一倍时间。
四个论辨可分成两组,前两个假定时空是连续的,后两个假定时空是分立的,每组的第一个论证绝对运动不可能,第二个论证相对运动不可能。
关于多的论辨得自辛普里丘在《〈物理学〉注释》的转述,大意是:如果事物是多,那么大会大到无限大,小会小到零,因为任何数量都可以无限分割,若分割的结果等于零,则总和是零,若分割结果不是零,则无限总和是无限大。
以上转述从哲学史角度看都过于粗疏,不过对于讨论其哲学含义则差不多够了。
19、20世纪之交的绝对唯心主义者象布拉德雷(Bradley,F.H)全盘接受芝诺的论证和结论。
他视运动、时间空间为幻象,芝诺论辩正好符合他的主张,当然全盘接受。
在《现象与实在》中他写道:“时间与空间一样,已被最明显不过的证明为不是实在,而是一个矛盾的假象。
”除布拉德雷之外,哲学史上大部分哲学家认为芝诺的结论是荒谬的,其论证有问题。
不过,在不断检查其论证毛病的过程中,人们反倒发现了芝诺论辨的深刻之处。
常常是人们自以为解决了芝诺悖论,不多久就又发现其实并没有解决。
已知最早的批评来自亚里士多德。
关于二分法,他说,虽然不可能在有限的时间越过无限的点,但若把时间在结构上看成与空间完全一样,也可以无限分割,那么在无限的时间点中越过无限的空间点是可能的;关于阿喀琉斯,他说,如慢者永远领先当然无法追上,但若允许越过一个距离,那就可以追上了;关于飞矢不动,他说,这个论证的前提是时间的不连续性,若不承认这个前提,其结论也就不再成立了;关于运动场,他说,相对于运动物体与相对于静止物体的速度当然是不一样的,越过同样距离所花的时间当然也不一样。
芝诺悖论
作为一个的女王,她把键牛皮切成细细的 条子,并决定用它围成面积最大的土地。
伟大的类比——开普勒
2、“阿基里斯追鬼”悖论
阿基里斯是古希腊神话中的善跑英雄,让乌龟在 阿基里斯前100米处,与阿基里斯一同起跑,阿基里 斯的速度是乌龟的10倍。最初起跑时,阿基里斯与乌 龟的距离为100米,当阿基里斯跑完100米时,乌龟前 进了10米,这时阿基里斯与乌龟的距离为10米,当阿 基里斯跑完100米时,乌龟前进了1米,这时阿基里斯 与乌龟的距离为1米 …..,这样阿基里斯与乌龟的距离 渐次为100,10,1,0.1,0.01,…..按线段无限可分 理论,他们之间的距离永远不为零。因此善跑的阿基 里斯追不上乌龟。
解析:拥有最高德行的人如同水一样,具 有宽广的胸怀、谦逊的品德、与世无争的情 操、宽厚诚实的作风。具体地讲就是心胸要 像水渊一样,宽广无边、清湛悠然;要像水 的流势一样谦虚卑下,不可处处与人争高低, 要择地而居。对人要亲切自然,以诚相待, 老厚道。为人处世重诺守信,如同潮汐一般, 起落守时。
《道德经》第二十七八章 善行无辙—— “瞒天过海”
芝诺悖论
1、“二分说”悖论:运动是不可 能的 一个物体从甲地到乙地,永远不能到达。 因为从甲地到乙地,首先要通过道路的一半, 但是要通过一半,必须通过一半的一半,即 道路的四分之一,要通过道路的四分之一, 必须通过八分之一。这样分下去,永无止境。 芝诺的结论是此物体根本不能开始运动,因 为它被道路的无限分割阻碍着。
“一尺之棰,日取其半,万世不竭。”
意大利的裴波那契在《算盘书》中写了这 样一个问题: 7个老妇同赴罗马,每人有7匹骡,每匹 骡驮7个袋,每个袋盛7个面包,每个面包带 有7把小刀,每把小刀放在7个鞘之中,问各 有多少?
古代的数学迷宫——图形数
芝诺悖论
我想,如果你说的是埃利亚的芝诺,但是令我不解的是,芝诺何时与存在主义有了直接的联系了呢?现今的哲学界,对芝诺的研究主要是关于他的四个悖论,题中谈到的是其中三个:其一,阿基里斯追不上乌龟。
资料如下:阿基里斯(Achilles,并非荷马史诗《伊里亚特》中的英雄阿基里斯,而是古希腊奥运会中的一名长跑冠军)追龟说.“这个论点的意思是说:一个跑得最快的人永远追不上一个跑得最慢的人.因为追赶者首先必须跑到被追者的起跑点,因此走得慢的人永远领先.”伯内特解释说,当阿基里斯到达乌龟的起跑点时,乌龟已经走在前面一小段路了,阿基里斯又必须赶过这一小段路,而乌龟又向前走了.这样,阿基里斯可无限接近它,但不能追到它.亚里士多德指出这个论证和前面的二分法是一回事.“区别只在于:这里加上的距离不是用二分法划分的.由这个论证得到的结论是:跑得慢的人不可能被赶上.而这个结论是根据和二分法同样的原理得到的——因为在这两个论证里得到的结论都是因为无论以二分法还是以非二分法取量时都达不到终结.在第二个论证里说最快的人也追不上最慢的人,这样说只是把问题说得更明白些罢了——因此,对这个论证的解决方法也必然是同一个方法.认为在运动中领先的东西不能被追上这个想法是错误的.因为在它领先的时间内是不能被赶上的,但是,如果芝诺允许它能越过所规定的有限的距离的话,那么它也是可以被赶上的.”其二,飞矢不动。
资料如下:如果任何事物,当它是在一个和自己大小相同的空间里时(没有越出它),它是静止着.如果位移的事物总是在‘现在’里占有这样一个空间,那么飞着的箭是不动的.”亚里士多德接着批驳说:“他的这个说法是错误的,因为时间不是由不可分的‘现在’组成的,正如别的任何量都不是由不可分的部分组合成的那样.”又说:“这个结论是因为把时间当作是由‘现在’组成的而引起的,如果不肯定这个前提,这个结论是不会出现的.”其三,运动场悖论。
资料如下:“第四个是关于运动场上运动物体的论点:跑道上有两排物体,大小相同且数目相同,一排从终点排到中间点,另一排从中间点排到起点.它们以相同的速度沿相反方向作运动.芝诺认为从这里可以说明:一半时间和整个时间相等”.亚里士多德接着指出:“这里错误在于他把一个运动物体经过另一运动物体所花的时间,看做等同于以相同速度经过相同大小的静止物体所花的时间.事实上这两者是不相等的.”他的证明可用下面的图解来表示,其中A,B,C代表大小相同的物体.A A A A A A A AB B B B—→ B B B B—→←—C C C C ←—C C C CAAAA为一排静止物体,而BBBB和CCCC分别代表以相同速度作相反方向运动的物体.于是当第一个B到达最末一个C的同时,第一个C也达到了最末一个B.这时第一个C已经经过了所有的B,而第一个B只经过了所有的A中的一半.因为经过每个物体的时间是相等的,所以一半时间和整个时间相等.这个错误结论是从上述错误假定得出的.事实上,芝诺的三个悖论都根源于第一个悖论,即著名的“二分说”:(资料)“运动不存在.理由是:位移事物在达到目的地之前必须先抵达一半处.”J.伯内特(Burnet)解释说:即不可能在有限的时间内通过无限多个点.在你走完全程之前必须先走过给定距离的一半,为此又必须走过一半的一半,等等,直至无穷.亚里士多德批评芝诺在这里犯了错误:“他主张一个事物不可能在有限的时间里通过无限的事物,或者分别地和无限的事物相接触.须知长度和时间被说成是“无限的”有两种涵义,并且一般地说,一切连续事物被说成是“无限的”都有两种涵义:或分起来的无限,或延伸上的无限.因此,一方面,事物在有限的时间里不能和数量上无限的事物相接触,另一方面,却能和分起来无限的事物相接触,因为时间本身分起来也是无限的.因此,通过一个无限的事物是在无限的时间里而不是在有限的时间里进行的,和无限的事物接触是在无限数的而不是在有限数的现在上进行的.”如果以我们现在的哲学思路,从唯物辩证法里很容易找到芝诺提出四个悖论的原因:芝诺单纯强调量变,忽略了度和质变,从而走向形而上学,使自己的理论在逻辑上成立,却不符合事实。
关于“芝诺悖论”的一些思考
关于“芝诺悖论”的一些思考王玉峰北京大学哲学系现在流传下来而广为人所知的所谓“芝诺悖论”共有九个:四个是关于运动的,三个是指向“多”的,一个是反对空间观念的,另一个则试图表明感觉是不可靠的。
[1]这些芝诺“悖论”长久以来就引起了人们的广泛兴趣,其中尤以关于所谓运动的那四个悖论最为著名。
而芝诺反对运动的那些论证其原著已经佚失,现有资料来自亚里士多德在《物理学》中的论述,主要是该书第六卷第九章。
[2]根据亚里士多德的记载,这四个所谓关于运动的悖论分别是:两分法,阿喀琉斯,飞矢不动和运动场。
[3]亚里士多德在其《物理学》中分别反驳了芝诺,指出了芝诺的这些“悖论”都是“错误”的。
后来的大多数学者们基本上是继承了亚里士多德的看法,而近代以来也有一些数学家和逻辑学家们借助于当时的数学和逻辑学成就,主要是微积分理论,来试图“解决”这些“悖论”。
表面上看来,这些学者们似乎是“解决”了这些“悖论”,可是带有悖谬性的是,正是通过这些“悖论”的“解决”,芝诺由一个哲学家变成了一个没有常识的人。
而在本文中,笔者则通过对芝诺关于所谓运动的这四个“悖论”的重新诠释,来试图恢复芝诺作为一个严肃的哲学家的本来面目。
根据这四个悖论的内容,我把它们分成两组来分别加以论述,那就是两分法和阿喀琉斯一组,飞矢不动和运动场一组。
我将表明芝诺的这两组悖论分别是针对当时在数学和物理学中流行的错误“前提”的,所以他的这些“悖论”没有什么所谓的“逻辑”错误。
(一)两分法与阿喀琉斯根据亚里士多德的记载,所谓的“两分法”是指,一个位移的事物在达到目的地之前必须先抵达一半处,可是这种一再二分的一半是为数无限的,因此不可能走完为数无限的路程,因此运动不存在。
[4]有人认为这和中国古代哲学中的“一尺之棰,日取其半,万世不竭”的道理是一样的。
[5]而“阿喀琉斯”的悖论意思是说:“一个跑得最快的人永远追不上一个跑得最慢的人。
因为追赶的人必须首先跑到被追的人的出发点,因此走的慢的人必然永远领先。
芝诺曾提出四个运动的不可分性的哲学悖论有什么
B、C两个列队开始移动,如下图所示相对于观众席A,B和C分别向右和左各移动了一个距离单位.
□□□□
■■■■
▲▲▲▲
而此时,对B而言C移动了两个距离单位.也就是,队列既可以在一瞬间(一个最小时间单位)里移动一个距离单位,也可以在半个最小时间单位里移动一个距离单位,这就产生了半个时间单位等于一个时间单位的矛盾.因此队列是移动不了的.
二分法悖论:
这也是芝诺提出的一个悖论:当一个物体行进一段距离到达D,它必须首先到达距离D的二分之一,然后是四分之一、八分之一、十六分之一、以至可以无穷地划分下去.因此,这个物体永远也到达不了D.这些结论在实践中不存在,但是在逻辑上无可挑剔.
芝诺甚至认为:“不可能有从一地到另一地的运动,因为如果有这样的运动,就会有‘完善的无限’,而这是不可能的.”如果阿基里斯事实上在T时追上了乌龟,那么,“这是一种不合逻辑的现象,因而决不是真理,而仅仅是一种欺骗”.这就是说感官是不可靠的,没有逻辑可靠.
有人用物理语言描述这个问题说,在阿基里斯悖论中使用了两种不同的时间度量.一般度量方法是:假设阿基里斯与乌龟在开始时的距离为S,速度分别为V1和V2.当时间T=S/(V1-V2)时,阿基里斯就赶上了乌龟.
但是芝诺的测量方法不同:阿基里斯将逐次到达乌龟在前一次的出发点,这个时间为T'.对于任何T',可能无限缩短,但阿基里斯永远在乌龟的后面.关键是这个T'无法度量T=S/(V1-V2)以后的时间.
数学十大著名悖论
十大数学著名悖论1. 二分法悖论概述:运动的不可分性,由古希腊哲学家芝诺提出。
每次到达一个点都需要先到达中点,形成无限过程,直到19世纪数学家解决了无限过程的问题。
脑洞:无限二分16寸芝士乳酪蛋糕却不能吃的快感,探讨物质、时间和空间的无限可分性。
2. 飞矢不动概述:箭在瞬间位置不动,暗示了时间的瞬间性。
关联到量子力学和相对论,强调运动在特定时刻的相对性。
脑洞:看到漂亮妞心动3秒,上去要电话惨遭拒绝。
咳咳,飞矢不动,我没心动。
3. 忒修斯之船概述:船上的木头逐渐替换,引发同一性的哲学争议。
讨论木头替换后船是否仍然是原来的船。
脑洞:人体细胞每七年更新一次,七年后,镜子里是另一个你。
4. 托里拆利小号概述:体积有限的物体,表面积可以无限。
源自17世纪的几何悖论,涉及到平凡的几何图形和无限的概念。
脑洞:平胸不一定能为国家省布料的时候。
5. 有趣数悖论概述:将数字的特征定义为有趣或无趣,涉及质数、斐波那契数列等。
引出无趣数概念,研究整数的有趣属性。
脑洞:n只青蛙n张嘴,2n只眼睛4n条腿,你想起数列是个什么鬼了吗?6. 球与花瓶概述:无限个球和一个花瓶进行操作,放10个球再取出1个,引发花瓶内球的数量无限和可变的讨论。
脑洞:小学奥林匹克暗袋摸球概率题终极版。
7. 土豆悖论概述:土豆的含水量和干物质之间的矛盾,涉及百分比的计算。
展示了百分比在特定情境下的谬误。
脑洞:理科生们笑到内伤。
8. 饮酒悖论概述:酒吧里的人是否都在喝酒,引出实质条件的悖论。
通过逻辑演绎表明酒吧中的每个人都在喝酒。
脑洞:一人喝酒导致全场人喝酒,数学的实质条件逻辑。
9. 理发师悖论概述:小城理发师的承诺,引出对自己刮脸的矛盾。
赫赫有名的罗素悖论,影响了数学领域的发展。
脑洞:对于不刮胡子的女理发师不成立。
10. 祖父悖论概述:通过时光机回到过去,引发关于杀死祖父的时间旅行悖论。
涉及对时间和平行宇宙的思考。
脑洞:时间旅行中的命运操纵与平行宇宙的可能性。
论芝诺悖论
芝诺悖论摘要巴门尼德的学生芝诺在哲学上被亚里士多德誉为辩证法的创始人,他曾提出四个悖论:二分法、阿基里和乌龟赛跑、飞矢不动、一倍的时间等于一半的时间。
《西方哲学通史》中作者对芝诺的四个悖论是这样描述的:“第一个悖论指出运动的路程是无限可分的,第二个悖论则侧重说明运动的时间是无限可分的,第三个悖论说明运动路程和时间的无限可分性造成的速度是静止的,第四个悖论纯属数学游戏。
”但是通过不同时代人们的论证,证明芝诺的四个悖论是荒谬的,虽然人们论证了芝诺悖论的不合理性,但是这并不能抹杀芝诺的四个悖论在哲学上、数学上、思维方法上的伟大意义。
关键字:芝诺悖论;时间;运动;有限性;无限性AbstractsParmenides’ student, Zeno was called the founder of dialectics in philosophy by Aristotle, he put forward four tense paradoxes: dichotomy, Aki racing with tortoise, the moving arrow is unmoved, and a time is equal to half of the time. It is described that:”the first paradox is the distance of movement is divided limitlessly; the second is puts particular emphasis on the time of movement is divided infinitely; the fourth is just a numbers game” in The History of Western Philosophy by Zhao Dunhua. However, it is proved ridiculous by scholars of separated epochs, although Zeno’s Paradoxes are unreasonable, there is great significance to Zeno’s Paradoxes on philosophy, math, and the way of thinking.Key words: Zeno’s Paradoxes; time; movement; limitations; unlimitedness1.概述1.1芝诺简介芝诺(Zenon)生活在古代希腊的埃利亚城邦,他是埃利亚学派的著名哲学家巴门尼德(Parmenides)的学生和朋友,关于他的生平,缺少可靠的文字记载。
芝诺的四个悖论
3、芝诺的四个悖论第一个悖论是阿基里斯与乌龟悖论;希腊战士阿基里斯跟乌龟赛跑;乌龟说;如果它比阿基里斯先跑10米;那么阿基里斯永远都追不上它;因为只要阿基里斯跑了10米;这时乌龟就又多跑了几米;若阿基里斯再跑到乌龟曾经停留的点;乌龟一定又跑到阿基里斯前面去了;看似有理;但要怎么说明为何如此呢第二个是二分法悖论;是说你永远不可能抵达终点;因为你为了抵达终点;必得先跑完全程的一半;而要跑到全程的一半;你又得跑完一半的一半……如此一来;你永远跑不到终点;甚至可以说你根本无法起跑;因为若要起跑一小段距离;你就得移动那一小段距离的一半;似乎永远无法开步跑第三则是飞矢悖论;在任一时刻;飞矢会占据着与它同等长度的空间;就这个瞬间而言;飞矢可说是静止不动的;如果每一个“任一时刻”飞矢都静止不动;那么飞矢应该一直不动..怎么可能如此飞矢应该不断往前飞啊第四是竞技场悖论;假设时间有最小不可分割的单位这是自古以来的基本假设;现在有3辆车子;在单位时间内;一号车向左移一个车身;二号车不动;三号车向右移一个车身;于是一号和三号便相差两个车身;那么一号和三号车在过程中相差一个车身时;需要花费基本单位元时间的一半;但这与基本的单位时间假设相冲突..林兹要阐释这四个芝诺悖论;所持的基本论点是;对运动中的物体而言;并没有所谓的“任一时刻会位于某个确定位置”;因为物体的位置会随时间不停地改变..他解释道︰“这样想应该比较能够理解;无论时间间隔多么小;或者物体在某段时间间隔中运动得有多慢;它还是在运动状态中;位置还是不断在改变;因此;无论时间间隔有多短;运动物体没有所谓在任一时刻、某一瞬间拥有确定的相对位置这回事..”从芝诺到牛顿乃至于今天的物理学家;在讨论运动的本质时;无不假设“运动中的物体之间具有确定的相对位置”;而林兹则认为;便是因为假设时间可以冻结在任一时刻;此时运动中的物体位在一个确定的位置上;因此芝诺悖论中那种不可能发生的情况才会成立..林兹也指出;无论如何;某段时间间隔一定可以用一个时间范围来表示;不能只说是“一瞬间”的单一时刻:“举例来说;如果有两个独立事件分别测得发生在1小时或10秒钟;这两个数值应是指两事件分别发生在1-1.99999……小时之间;以及10-10.0099999……秒之间..”因此;林兹可以很直接地解决类似“飞矢悖论”的问题..一位着名的牛津大学数学家评论道:“这真令人既惊讶又意外;不过他是对的..”林兹继续将他所提出的概念推到物理学的其它方面;包括量子力学及霍金所建构的宇宙学..物理学的物质是量子论的;分到一定程度后;就得到了量子元;而量子元是不可再分的..物理学的物质能量有两种物理形式组成;一种是量化物质;即后面提到的电磁质量;一种是连续物质;这种物质是无限可分的;可以永无穷尽的分割下去;即后面提到的引力质量..量化物质和连续物质可以相互转化并且守恒不灭;这就与数学思想的有限和无限;局部无限和整体无限联系起来了..汤川秀树认为:在古代印度有将时间本身也作为“不知道它是什么实体”来考虑的倾向..并且;还同样地认为;时间也存在有不可分割的最小单位;将它称之为“刹那”..将这种“刹那”用今天的时间单位来度量的话;大约为十分之一秒……基本粒子理论今后进一步的发展;说不定会是古印度物质观的思想经过某种形式的复活吧..把印度的极微观与古希腊的原子论观点相比较;不难看出;前者要较后者更为接近现代科学的观点..。
古希腊哲学家芝诺德四大数学悖论
古希腊哲学家芝诺德四大数学悖论古希腊哲学家芝诺的四大数学悖论 1,二分法悖论:任何一个物体要想由A点运动到B点,必须首先到达AB中点C,随后需要到达CB中点D,再随后要到达DB 中点E。
依此类推。
这个二分过程可以无限地进行下去,这样的中点有无限多个。
所以,该物体永远也到不了终点B。
不仅如此,我们会得出运动是不可能发生的,或者说这种旅行连开始都有困难。
因为在进行后半段路程之前,必须先完成前半段路程,而在此之前又必须先完成前1/4路程......因此,物体根本不能开始运动,因为它被道路无限分割阻碍着。
2,阿基里斯追龟悖论:如果让乌龟先行一段路程,那么阿基里斯将永远追不上乌龟。
乌龟先行了一段距离,阿基里斯为了赶上乌龟,必须要到达乌龟的出发点A。
但当阿基里斯到达A点时,乌龟已经向前进到了B点。
而当阿基里斯到达B点时,乌龟又已经到了B前面的C点...........依此类推,两者虽越来越接近,但阿基里斯永远落在乌龟的后面而追不上乌龟。
3、飞矢不动悖论:任何一个东西呆在一个地方那不叫运动,可是飞动着的箭在任何一个时刻不也是呆在一个地方吗,既然飞矢在任何一个时刻都能呆在一个地方,那飞矢当然是不动的。
4、运动场悖论: 芝诺提出这一悖论可能是针对时间存在着最小单位一说,现在的普朗克—惠勒时间 Planck-Wheeler time)。
对此,他做出如下论证:设想有三列实体,最初它们首尾对齐。
设想在最小时间单元内,C列不动,A列向左移动一位,B列向右移动一位。
相对B而言,A移动了两位。
就是说,我们应该有一个能让B相对于A移动一位的时间。
自然,这时间是单元时间的一半,但单元时间是假定不可分的,那么这两个时间就是相同的了,即最小时间单元与他的一半相等。
8个芝诺悖论
8个芝诺悖论芝诺悖论指的是一系列希腊哲学家芝诺提出的几个关于无限、分割和运动的悖论。
这些悖论挑战了人们对逻辑和数学的普遍理解,并引发了无数思考和讨论。
下面将简要介绍八个著名的芝诺悖论。
1.阿喀琉斯与乌龟:这个悖论描述了一个赛跑场景,乌龟得先行10米,阿喀琉斯从起点开始追赶它。
尽管乌龟的速度较慢,但阿喀琉斯每次追及乌龟所用的时间也会越来越短。
然而,按照数学推理,阿喀琉斯似乎永远无法赶上乌龟,因为每次追及乌龟前都要走过一半的距离,而这一过程可以无限分割。
2.亚刚与乌龟:这个悖论与阿喀琉斯与乌龟类似,描述了一个亚刚与乌龟辩论数学问题的场景。
乌龟先声称亚刚错误,亚刚回应称他可以从第一个指称错的地方开始讲起。
然后乌龟指向亚刚的最开始的陈述,并声称亚刚又犯了一个错误。
这样的对话可以无限延伸下去,让人无法得到一个确定的结论。
3.拐角堆:这个悖论挑战了人们对数量的理解。
芝诺提出,如果你从一个角落不断堆积一个小石子,最终你会得到一个庞大的堆。
然而,当你只加入一颗石子时,它是否能改变一个区域的本质性质?这个问题引发了对于数量和界限的思考。
4.海峡:这个悖论描述了一艘船从一个海港到另一个海港的航行。
假设在航行过程中需要经过一个狭窄的海峡。
当船只通过海峡时,我们可以根据时间的不断分割来描述更精确的位置。
然而,在船通过海峡的瞬间,船只似乎既在海峡内又在海峡外,这引发了无限的矛盾。
5.两个相等的线段:这个悖论说明了无限分割的问题。
假设有两个长度相等的线段,你可以分割它们无数次。
然而,每次分割后,你得到的两个新线段不可能完全相等,即使它们的长度差距非常小。
这个问题引发了对于连续和离散的思考。
6.飞矢:这个悖论关注了运动的本质。
当我们观察一把飞出的箭矢时,我们可以对其位置进行快照,然后在下一时刻再次观察。
然而,根据芝诺的推理,瞬间拍下的照片只能代表这个瞬间箭矢的位置,而不是箭矢在运动中的姿态。
因此,箭矢似乎永远在不动,这与我们的感觉相矛盾。
古希腊数学家芝诺提出的运动不可分性的哲学悖论
古希腊数学家芝诺提出的运动不可分性的哲学悖论古希腊数学家芝诺提出的运动不可分性的哲学悖论古希腊的数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论。
这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。
芝诺提出这些悖论是为了支持他老师巴门尼德[1]关于“存在”不动、是一的学说。
这些悖论中最著名的两个是:“阿喀琉斯跑不过乌龟”和“飞矢不动”。
这些方法现在可以用微积分(无限)的概念解释。
其实四大悖论的关键就是人们没有了解自然界的一个重要概念即“率”的概念。
讨论任何“变化”的问题的时候,忽略了变化发生的时候,另一个条件也在同时变化。
例如讨论距离的变化的时候,如果你只考虑长度的变化,而忽略了在长度变化时另一个条件“时间”必定也在变化。
这就是速率。
在速度变化时,有了加速度的概念。
加速度变化时,照样可以用加速度变化的多少和时间变化的多少来表示。
哲学是认识世界的方法和理论。
虽然我们一旦发现了率的概念,立刻就可以破解所谓“单一条件变化悖论”,但是悖论的意义就在于激发人们寻找世界真像的好奇心。
在这四大经典悖论中,我们发现世界的变化并不是单一条件独立变化的,而是多条件同时变化的,这是事实。
我们可以用距离除以时间来定义速度,但是速度本身是现实的独立的存在,而不依靠距离和时间。
利用距离和时间来表示,仅仅是人们用自己能够感知的概念来表示难以感知和表示的事物罢了。
比如我们天天坐汽车,但是我们难以直接感知汽车加速度的变化。
但是简单的公式就可以表明这个变化了。
[1] 爱利亚的巴门尼德(Παρμεν?δη?),公元前5世纪的古希腊哲学家,最重要的“前苏格拉底”哲学家之一。
生于爱利亚(?λ?α,位于现在意大利南部沿岸),主要著作是用韵文写成的《论自然》,如今只剩下残篇,他认为真实变动不居,世间的一切变化都是幻象,因此人不可凭感官来认识真实。
8个芝诺悖论
8个芝诺悖论芝诺悖论是指一系列逻辑悖论,源于古希腊哲学家芝诺所提出的哲学思想。
这些悖论在某种程度上挑战了我们的直觉和理解,同时也拓展了我们对于真理和相对论的理解。
这里将为您介绍8个芝诺悖论,希望您能够在这些悖论中找到答案。
1.塞菲尔德悖论这个悖论来源于芝诺的一个学生菲尔德。
他认为,所有的数字都是相等的,这是真理。
然而,如果这个数字为3,那么这个学生就会认为有两个数字不相等,一个是3,一个是其他数字。
此时,这个学生就会陷入自相矛盾的境地。
2.奥古斯都悖论这个悖论来源于芝诺的学生奥古斯都。
他认为,存在比真实更大的真实。
换句话说,存在一个与现实世界相辅相成的真实世界。
这个悖论表明了我们对真实世界的认知可能存在局限。
3.巴门尼德悖论这个悖论来源于芝诺的学生巴门尼德。
他认为,我们可以通过思维导图来了解宇宙的运作。
然而,这个观点与现实世界的复杂性相悖,因为宇宙的运作似乎超出了人类思维的范畴。
4.奥义达米亚斯悖论这个悖论来源于芝诺的学生奥义达米亚斯。
他认为,所有的三角形都是等腰的。
这个观点似乎符合我们的直觉,因为我们常常觉得直角三角形中的两个锐角是相等的。
然而,这个悖论会让我们思考一个更为复杂的问题:是否存在一种非等腰三角形?5.尼采悖论这个悖论来源于芝诺的学生尼采。
他认为,我们的直觉和理解并非绝对的真理,而是受到个人经验和文化背景的限制。
这个观点提醒我们要谨慎对待自己的认知,同时也表明了我们对真理的追求是一个永无止境的过程。
6.伽利略悖论这个悖论来源于芝诺的学生伽利略。
他认为,教会和政府可以干涉科学,以保护它们的尊严。
这个观点似乎表明了科学和权力之间的冲突,也暗示了我们需要思考如何平衡科学和权力的关系。
7.康德悖论这个悖论来源于芝诺的学生康德。
他认为,我们可以通过道德法则来评判自己的行为是否符合道德规范。
这个观点似乎表明了道德判断的必要性和可能性,但同时也提出了一个哲学问题:我们如何评判他人的行为是否符合道德规范?8.海德格尔悖论这个悖论来源于芝诺的学生海德格尔。
8个芝诺悖论
8个芝诺悖论芝诺悖论是哲学上的一类问题,由古希腊哲学家芝诺创立。
它们主要探讨一些看似合理的陈述却导致自相矛盾或不可理解的结果,挑战了我们对逻辑和数学的直觉。
本文将介绍8个著名的芝诺悖论,并对其进行分析和解释。
1.阿喀琉斯与乌龟赛跑悖论(Achilles and the Tortoise Paradox)这个悖论中,阿喀琉斯与乌龟赛跑,阿喀琉斯需要先走到乌龟的起点位置,乌龟则会相对较慢地往前爬。
但是,在乌龟爬行的过程中,阿喀琉斯还要等待乌龟前进一段距离,而这段距离可以被无限地分割,所以阿喀琉斯永远也无法赶超乌龟。
这个悖论挑战了无穷性和运动中连续性的概念。
2.箭与飞行悖论(Arrow Paradox)这个悖论思考了箭射出的瞬间,箭头在空中的位置。
在任何瞬间,箭头都是静止的,因为它只能在一个点上存在。
然而,在连续的瞬间中,箭头又从一个点瞬间移动到了下一个点。
因此,在运动中的瞬间,箭头既是静止的又在运动,这显然是不合理的。
3.亚刻西斯悖论(The Paradox of Achilles and theTortoise's Brother)这个悖论是阿喀琉斯与乌龟悖论的变体,乌龟的弟弟亚刻西斯也参加了赛跑。
与乌龟类似,亚刻西斯在比赛中也会相对较慢地前进。
在这个悖论中,亚刻西斯之所以可以在同样的情况下超过原本领先的阿喀琉斯,并不是因为他更快。
4.车轮悖论(The Wheel Paradox)这个悖论探讨了车轮上不同点的运动速度。
设想车轮在某一瞬间是静止的,那么车轮上的每个点都是静止的。
但实际上,车轮是在不断旋转的。
因此,车轮上的每个点在不断运动,这就产生了一个矛盾。
5.诅咒悖论(The Liar Paradox)这个悖论涉及到自指问题。
一个人说:“我正在说谎。
”如果他说的是真话,那么他正在说谎。
但如果他说的是谎话,那么他也在说谎。
无论是真话还是谎话,他都在说谎,这就产生了一个自相矛盾的陈述。
6.麦克马洪悖论(McMahon Paradox)这个悖论是关于两个非常相似的命题之间的矛盾。
悖论大师芝诺-数学史话
悖论大师芝诺-数学史话在毕达哥拉斯之后,古希腊又诞生了一位哲学家--巴门尼德,巴门尼德实际上也是一位受到毕达哥拉斯学派影响的哲学家,他提出了”存在”不动,是一的学说。
不过我们今天要说的不是巴门尼德,而是他的学生,著名的悖论大师--芝诺。
巴门尼德据说芝诺是一个自学成才的乡村孩子,后来才认识了巴门尼德,并且把巴门尼德的学说奉为圭臬。
为了捍卫巴门尼德的学说,芝诺提出了著名的芝诺悖论,即运动悖论和多悖论,以表明运动和多是不可能的。
芝诺芝诺的运动论辨全部来自亚里士多德在《物理学》中的转述,一共有四个:1、二分法悖论。
运动是不可能的,因为运动的物体在到达目的地之前必须到达路程的中间点,而在他到达中间点之前,他又必须到达路程的四分之一点,如此下去,没有穷尽。
因此运动甚至永远不可能开始。
二分法悖论2、阿喀琉斯追不上乌龟悖论。
奔跑中的阿喀琉斯永远也不可能超过在他前面慢慢爬行的乌龟,因为他必须首先到达乌龟的出发点,而当他到达那一点时,乌龟又向前爬了,所以仍然在他前面。
重复这个论点,我们很容易看到乌龟永远在前面。
阿喀琉斯追乌龟悖论3、飞矢不动悖论。
飞矢在任何瞬间都是既非静止也非运动的。
如果瞬间是不可分的,箭就不可能运动,因为如果它动了,瞬间就立即可分了,但是时间是由瞬间组成的,如果箭在任意瞬间都是不动的,那么它在任何时间内也不能动,因此它总是保持静止。
飞矢不动悖论4、运动场悖论。
即一半的时间可以等于两倍的时间。
这个问题稍微有点复杂,我们可以考虑有三行物体:运动场悖论其中的一行(A)静止,而其他两行B,C以等速向相反方向运动。
当他们都在路程中的同一距离时,B通过A中的一个物体时,就将通过C中的两个物体,因此它通过A的时间是它通过C 的时间的两倍,但B和C到达A的位置所需的时间相同,因此两倍的时间等于一半的时间。
四个论辨可分成两组,前两个假定时空是连续的,后两个假定时空是分立的,每组的第一个论证绝对运动不可能,第二个论证相对运动不可能。
论芝诺悖论
论芝诺悖论芝诺悖论摘要巴门尼德的学生芝诺在哲学上被亚里士多德誉为辩证法的创始人,他曾提出四个悖论:二分法、阿基里和乌龟赛跑、飞矢不动、一倍的时间等于一半的时间。
《西方哲学通史》中作者对芝诺的四个悖论是这样描述的:“第一个悖论指出运动的路程是无限可分的,第二个悖论则侧重说明运动的时间是无限可分的,第三个悖论说明运动路程和时间的无限可分性造成的速度是静止的,第四个悖论纯属数学游戏。
”但是通过不同时代人们的论证,证明芝诺的四个悖论是荒谬的,虽然人们论证了芝诺悖论的不合理性,但是这并不能抹杀芝诺的四个悖论在哲学上、数学上、思维方法上的伟大意义。
关键字:芝诺悖论;时间;运动;有限性;无限性AbstractsParmenides’ student, Zeno was called the founder of dialectics in philosophy by Aristotle, he put forward four tense paradoxes: dichotomy, Aki racing with tortoise, the moving arrow is unmoved, and a time is equal to half of the time. It is described that:”the first paradox is the distance of movement is divided limitlessly; the second is puts particular emphasis on the time of movement is divided infinitely; the fourth is just a numbers game” in The History of Western Philosophy by Zhao Dunhua. However, it is proved ridiculous by scholars of separated epochs, although Zeno’s Paradoxes are unreasonable, there is great significance to Zeno’s Paradoxes on philosophy, math, and the way of thinking.Key words: Zeno’s Paradoxes; time; movement; limitations; unlimitedness1.概述1.1芝诺简介芝诺(Zenon)生活在古代希腊的埃利亚城邦,他是埃利亚学派的著名哲学家巴门尼德(Parmenides)的学生和朋友,关于他的生平,缺少可靠的文字记载。
芝诺悖论——精选推荐
芝诺悖论芝诺悖论,为极限的诞⽣莫定了基础9 ⼈参与 2018年11⽉16⽇ 15:57 分类 : 科学百科评论芝诺悖论是由古代希腊著名的哲学家芝诺提出的⼀系列的关于运动的不可分性的哲学悖论,早在2500年前,古希腊哲学家芝诺(Zeno)提出了涉及⽆穷的四个著名运动悖论和多的悖论,其似是⽽⾮的论证虽然长期引起争论,但是似乎并没有得到令⼈信服的解决。
芝诺悖论被记录在亚⾥⼠多德的《物理学》⼀书中,所以被后⼈所知,芝诺悖论的提出是为了⽀持芝诺的⽼师巴门尼德关于“存在”不动,是⼀的学说。
芝诺悖论是芝诺反对存在运动的论证其中最为著名的两个是“阿基⾥斯追乌龟”和“飞⽮不动”。
芝诺悖论⼀阿基⾥斯追不上乌龟古希腊⼈⼗分喜欢辩论,芝诺就是⼀个很有才能的雄辩家。
芝诺就提出了著名的阿基⾥斯追不上乌龟的悖论。
芝诺有⼀天对他的学⽣说,⼤家都知道荷马史诗中善于跑步的英雄阿基⾥斯吗?阿基⾥斯是当时世界上跑得最快的⼈,但是我认为,阿基⾥斯还追不上⼀只乌龟。
但是芝诺的学⽣都不相信。
于是芝诺说道:假如派阿基⾥斯和乌龟赛跑,阿基⾥斯的速度是乌龟的10倍。
乌龟先出发,⾛了 100⽶,然后阿基⾥斯就开始追赶乌龟。
当阿基⾥斯跑完100⽶时,乌龟⼜向前爬了 10⽶;阿基⾥斯跑完这10⽶,乌龟⼜向前爬了 1⽶;阿基⾥斯跑完这 1⽶,乌龟⼜向前爬了 0.1⽶。
所以这样下去的话,阿基⾥斯速度再快,但是⾛过⼀段距离总需要⼀些时间,⽽在这段时间内,乌龟⼜会向前⾛⼀段距离,这样⼀来说话,阿基⾥斯永远也追不上乌龟。
学⽣们听了后,都觉得芝诺的说法是错的,但是⼜⽆法指出芝诺的错误。
这个问题也是数学史上著名的阿基⾥斯难题。
其实,我们应该可以想到,这个结论肯定是不对的,阿基⾥斯⼀定是会超过乌龟的,但是⼈们当时却不知道这个芝诺悖论错在哪⾥。
芝诺悖论的问題当时虽然没有得到解决,但是⾯却解决了,可以采⽤微积分也就是⽆限的概念来解决。
⼈们从芝诺悖论中得到了很⼤的启发,也锻炼了⼈们的逻辑思维程度和能⼒,芝诺悖论为极限的诞⽣莫定了基础。
芝诺的四个著名悖论
芝诺的四个著名悖论
芝诺悖论是由古希腊哲学家芝诺(Zenon of Elea)于公元前5世纪提出的四个著名悖论,它们都围绕着运动的问题,包括“分割悖论”、“球形悖论”、“鹰飞悖论”、“站立悖论”。
1.分割悖论:芝诺认为物体在到达一定点之前,必须要先经历一半的路程,而再经历剩下一半的路程,而这样又是无法实现的,以此来拒绝运动的可能性。
2.球形悖论:如果一个物体在一个圆形路径上运动,它必须到达弧线的中间点才能继续向前,但这样的情况也有可能不存在,不可能到达弧线的中间点,从而拒绝了物体运动的可能性。
3.鹰飞悖论:芝诺认为,一只鹰在空中飞行时,它必须先经历一小段时间,然后才可以继续飞行,而这也是不可能的,从而拒绝了物体运动的可能性。
4.站立悖论:芝诺认为,一个人站立时,他必须先站立一段时间,然后才能继续站立,而这也是不可能的,从而拒绝了物体运动的可能性。
芝诺悖论的认识
芝诺悖论的认识引言芝诺悖论是古希腊哲学家芝诺提出的一系列悖论,它们挑战了我们对于时间、空间和无限的直觉和理解。
这些悖论引发了人们对于逻辑和数学的深度思考,对于哲学和数学领域的发展产生了重要影响。
芝诺悖论的概述芝诺悖论是一系列看似矛盾和荒谬的陈述,但却能通过推理得出合理的结论。
它们挑战了我们对于现实世界的感知和理解,引发了人们对于逻辑和数学的思考。
悖论一:亚基里斯与乌龟赛跑在这个悖论中,亚基里斯与乌龟进行一场赛跑。
乌龟比亚基里斯慢,但亚基里斯必须先给乌龟一个头脑的优势。
然而,根据芝诺的推理,亚基里斯将永远无法超过乌龟,因为每当亚基里斯到达乌龟之前,乌龟已经前进了一段距离。
悖论二:阿喀琉斯与乌龟赛跑这个悖论类似于前一个悖论,但加入了连续性的概念。
根据芝诺的推理,亚基里斯将永远无法超过乌龟,因为在每次追赶乌龟之前,他都必须先赶上乌龟前一刻的位置,而乌龟又会在这一刻前进一段距离。
悖论三:无限齐次线段这个悖论涉及到无限的概念。
根据芝诺的推理,如果我们有一个长度为1的线段,我们可以无限次地将其分成两半。
这意味着我们可以得到无限多个长度为1/2、1/4、1/8等的线段,而它们的总和应该是无限大。
然而,这与我们对于有限和无限的理解相矛盾。
悖论四:阿喀琉斯与乌龟的箭矢在这个悖论中,亚基里斯试图射中乌龟。
然而,根据芝诺的推理,箭矢在射中乌龟之前必须先到达射出箭矢的位置,而在那之前箭矢已经前进了一段距离。
这意味着箭矢永远无法射中乌龟。
芝诺悖论的意义和影响芝诺悖论挑战了我们对于时间、空间和无限的直觉和理解,引发了人们对于逻辑和数学的深度思考。
它们对于哲学和数学领域的发展产生了重要影响。
对于逻辑的影响芝诺悖论迫使人们重新审视逻辑的基础和推理的有效性。
它们揭示了一些常识和直觉可能会导致矛盾和荒谬的结论。
人们开始思考如何修正逻辑系统,以避免这些悖论的出现。
对于数学的影响芝诺悖论对于数学的发展也产生了重要影响。
它们引发了人们对于无限的思考,导致了对于无穷集合和无限序列的研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、芝诺的四个悖论
第一个悖论是阿基里斯与乌龟悖论,希腊战士阿基里斯跟乌龟赛跑,乌龟说,如果它比阿基里斯先跑10米,那么阿基里斯永远都追不上它,因为只要阿基里斯跑了10米,这时乌龟就又多跑了几米,若阿基里斯再跑到乌龟曾经停留的点,乌龟一定又跑到阿基里斯前面去了;看似有理,但要怎么说明为何如此呢?第二个是二分法悖论,是说你永远不可能抵达终点,因为你为了抵达终点,必得先跑完全程的一半,而要跑到全程的一半,你又得跑完一半的一半……如此一来,你永远跑不到终点;甚至可以说你根本无法起跑,因为若要起跑一小段距离,你就得移动那一小段距离的一半,似乎永远无法开步跑?第三则是飞矢悖论,在任一时刻,飞矢会占据着与它同等长度的空间,就这个瞬间而言,飞矢可说是静止不动的;如果每一个“任一时刻”飞矢都静止不动,那么飞矢应该一直不动。
怎么可能如此?飞矢应该不断往前飞啊!第四是竞技场悖论,假设时间有最小不可分割的单位(这是自古以来的基本假设),现在有3辆车子,在单位时间内,一号车向左移一个车身,二号车不动,三号车向右移一个车身,于是一号和三号便相差两个车身,那么一号和三号车在过程中相差一个车身时,需要花费基本单位元时间的一半,但这与基本的单位时间假设相冲突。
林兹要阐释这四个芝诺悖论,所持的基本论点是,对运动中的物体而言,并没有所谓的“任一时刻会位于某个确定位置”,因为物体的位置会随时间不停地改变。
他解释道︰“这样想应该比较能够理解,无论时间间隔多么小,或者物体在某段时间间隔中运动得有多慢,它还是在运动状态中,位置还是不断在改变,因此,无论时间间隔有多短,运动物体没有所谓在任一时刻、某一瞬间拥有确定的相对位置这回事。
”从芝诺到牛顿乃至于今天的物理学家,在讨论运动的本质时,无不假设“运动中的物体之间具有确定的相对位置”,而林兹则认为,便是因为假设时间可以冻结在任一时刻,此时运动中的物体位在一个确定的位置上,因此芝诺悖论中
那种不可能发生的情况才会成立。
林兹也指出,无论如何,某段时间间隔一定可以用一个时间范围来表示,不能只说是“一瞬间”的单一时刻:“举例来说,如果有两个独立事件分别测得发生在1小时或10秒钟,这两个数值应是指两事件分别发生在1-1.99999……小时之间,以及10-10.0099999……秒之间。
”因此,林兹可以很直接地解决类似“飞矢悖论”的问题。
一位着名的牛津大学数学家评论道:“这真令人既惊讶又意外,不过他是对的。
”林兹继续将他所提出的概念推到物理学的其它方面,包括量子力学及霍金所建构的宇宙学。
物理学的物质是量子论的,分到一定程度后,就得到了量子元,而量子元是不可再分的。
物理学的物质(能量)有两种物理形式组成,一种是量化物质,即后面提到的电磁质量;一种是连续物质,这种物质是无限可分的,可以永无穷尽的分割下去,即后面提到的引力质量。
量化物质和连续物质可以相互转化并且守恒不灭,这就与数学思想的有限和无限,局部无限和整体无限联系起来了。
汤川秀树认为:在古代印度有将时间本身也作为“不知道它是什么实体”来考虑的倾向。
并且,还同样地认为,时间也存在有不可分割的最小单位,将它称之为“刹那”。
将这种“刹那”用今天的时间单位来度量的话,大约为十分之一秒……关于基本粒子理论今后进一步的发展,说不定会是古印度物质观的思想经过某种形式的复活吧。
把印度的极微观与古希腊的原子论观点相比较,不难看出,前者要较后者更为接近现代科学的观点。