2017-2018学年高中数学第1章统计4数据的数字特征教学案北师大版必修3
高中数学第一章统计数据的数字特征学案北师大版必修3
百度文库 - 好好学习,天天向上数据的数字特征-备课资料学习导航学习提示根据实际问题的需求,能够从数据中提取基本的数字特征,如平均数和标准差是本节重点考平均数、中位数、众数、极差、方差、标准差等.通过实例理解数据 查对象.信息科学技术是运算的主要标准差的意义和作用.学会根据不同要求选择不同的统计量来表达 工具.数据的信息.教材习题探讨方法点拨习题 1—4从上面的数据不易直接看出各1.(1)茎叶图.自的分布情况,为此可以将以上数27 31 8 9 43 4 5 6 7 7 8 9 50 0 1 2 2 3 4 5 60 1 4 82图 1-4-8据按不同方式进行表示,不同的统 计图都有各自的特点和用途,此题 可分别用茎叶图、折线图或条形图 来表示.折线图.个数100 80 60 40 200 1图 14-4-79 10 13 1619 22营业(2)该组数据的平均数 x =;中位数是 49;众数是 47、50、52. (3)该面包店每天生产的新鲜面包应该是在 50 个左右. 2.解:(1)男子 1500 m 速滑的冠军成绩的平均数是 1′″;中 位数是 1′″. 女子 1500 m 速滑的冠军成绩的平均数是 2′″;中位数是 2′″. (2)男子 1500 m 速滑冠军成绩的标准差是″;女子 1500 m 速-1百度文库 - 好好学习,天天向上滑冠军成绩的标准差是″.平均数和标准差是刻画一组数(3)从两方面描述:一方面男子速滑成绩优于女子速滑成绩; 据的数学特征中最重要的两个统计另一方面女子速滑冠军的成绩起伏较大,不稳定,而男子速滑冠军 量.的成绩起伏性小,稳定性大.3.解:(1)条形图.降水量(mm) 500 400 300 200 1000 图1 12-43-140 5 6 7 8 9 10 11 12月份折线图.选择用条形图和折线图来分别 表示两地的降水量.图形可以帮助我 们获取有用的信息,直观地理解各 自降水量的特征.降水量(mm) 500 400 300 200 1000 图11-24-3114 5 6 7 8 9 10 11 12月份(2)西安 2000 年月降水量的平均数是 44.9 mm,标准差是;桂林 2000 年月降水量的平均数是 171.3 mm,标准差是.(3)桂林的月降水量平均值大而且差别大,西安的降水量较小而且较平均.互动学习知识链接在一次中学生田径运动会上,参加男子跳高的 17 名运动员的成 绩如下表所示:在一组数据中出现次数最多的 数据叫众数.成绩-2百度文库 - 好好学习,天天向上(单位:m)人数23234111 将一组数据按大小次序排列,处分别求这些运动员成绩的众数、中位数和平均数(平均数的计 在最中间位置的数据(或最中间两算结果保留到小数点后第 2 位).个数据的平均数)叫这组数据的中解:在这 17 个数据中,出现了 4 次,出现的次数最多,即这 位数.组数据的众数是;上面表里的 17 个数据可看成按从小到大的顺序排列的,其中第 9 个数据是最中间的一个数据,即这组数据的中位数是;这组数据的平均数是1 x = 17 (×2+×3+…+×1)=(m).答:17 名运动员成绩的众数、中位数、平均数依次是 1.75 m、 1.70 m、1.69 m.在以上例子中,运动员成绩的众数是 1.75 m,说明成绩为 1.75 m 的人数最多;运动员成绩的中位数是 1.70 m,说明成绩在 1.70 m 以 下和 1.70 m 以上的人数各占一半;运动员成绩的平均数是 1.69 m, 说明所有参赛运动员的平均成绩是 1.69 m.知识总结 描述数据集中趋势的统计量有平均数、中位数和众数,平均数作为一组数据的代表,比 较靠得住和稳定,是反映数据集中趋势最常常利用的量;中位数更实际地描述了数据的中心, 它不受极端数据的影响;众数作为一组数据的代表,靠得住性较差,但由于其求法较简便, 所以在现场检查中常被用到. 刻画数据离散程度的统计量有极差、中位数和标准差,由于标准差能充分利用所得数据, 且仅用一个数值来刻画数据的离散程度,而且当该数值越大时,其离散程度也越大. 所以,在实际中,咱们往往应用平均数和标准差来刻画数据的集中和离散趋势.-3。
高中数学必修三:1.4数据的数字特征(2)+教案
1.4 数据的数字特征【教材版本】北师大版【教材分析】本节课的教学内容是高中数学《数学3》第一章§4数据的数字特征,教学课时为1课时.数据的信息除用统计图、统计表整理和分析之外,还可以用一些统计量来描述,也就是将多个数值转化为一个数值,使这个数值能够反映这组数据的某些重要的特征,这个数值就被称为数据的数字特征.在初中阶段,学生已经学习了反映数据集中程度的数字特征:平均数、中位数、众数;也学习了反映数据离散程度的数字特征:极差、方差,并简单提及标准差.本节课首先在学生已有的认知基础上,让学生在实际问题中复习上述统计量的概念,明确其计算方法.其次着重通过实例让学生理解数据标准差的意义和作用,学会计算数据的标准差,提高学生的运算能力.使学生理解不同数字特征所表达的意义,能够根据问题需要选择适当的数字特征来表达数据的信息.从而体会数学语言应用的多样性、简洁性,体会数学语言在实际生活中的应用.上节课学生从“形”上反映数据信息,本节课从“量”上反映数据信息的数字特征,锻炼了学生有意识地从“形”与“量”两个方面挖掘数据信息的能力,而且为后续学习用样本的基本数字特征来刻画反映总体的数字特征、从样本数据推断总体信息打下坚实的基础.【学情分析】对于学生而言,平均数、中位数、众数以及极差、方差等概念早已植根于学生已有的认知结构.学生在初中八年级上下学期陆续学习了上述的概念,不仅可以用笔计算一些给定数据的上述统计量,而且学生对于借助计算机、计算器等工具计算平均数、方差等一些统计量有了一定的学习和了解.但是学生在数字特征的掌握上还存在着一些问题:一方面在这些数字特征的意义掌握上还存在着一些问题.在上述数字特征的把握上精力分配上容易流于计算,不能真正地理解和明确不同数字特征所反映的数据的信息.另一方面,对于标准差的学习有待进一步深化.此节课的学习将在教师问题情境的精心选择上,通过实际题目的的计算和问题回答通过激发学生自主探究,积极思考,交流合作,配合教师的适时总结,不断完善学生对于不同数字特征概念以及意义的认识和理解,进而培养和锻炼能在具体的数据面前选用合适的数字特征来刻画数据的信息能力.提高学生合理应用数学语言表达统计相关问题,揭示其内部关系的能力.【教学目标】1.知识与技能(1)明确平均数、中位数、众数,极差、方差的概念和计算方法.掌握标准差的概念和计算方法.学会合理应用相关符号语言表示数据信息和特征,体会数字特征就是一种数学语言.(2)能够理解不同数字特征所表达的意义,能够根据问题需要选择适当的数字特征来表达数据的信息.能够准确合理地应用数学语言表示统计的数字特征.2.过程与方法教师通过选择具有代表性的例子,引导学生回顾和思考已学的数字特征的知识,在解决具体问题的基础上,引导学生通过合作交流探究给定的问题,自我总结各个数字特征的计算方法和所表达的数据的意义.搭配学生积极地思考,辅助教师的及时指导归纳,可以使学生主动地整理、完善和优化自身的关于数字特征的认知结构.体会对数学语言的合理应用,为后续的学习打下坚实的基础.3.情感、态度与价值观在教学过程中让学生经历从数据中提取信息,进行估计,做出推断的全过程.体会用数字特征来描述纷繁的数据的统计学意义.培养学生用数据说话的理性精神,选用合理数学语言准确地挖掘和解释数据信息的能力.教学过程中,通过学生主动思考和回答问题的方式,培养自我总结能力,合作交流的意识和能力,以及准确使用数学语言的能力.【重点难点】本节课的教学重点是数、中位数、众数、极差、方差、标准差的计算、意义和作用.本节课的教学难点是运用数据的数字特征表达数据的信息,能够通过问题的实际需要,选择合适的数字特征表达数据的信息进而解决问题.【教学过程】1.导入新课上两节课我们学习了用统计图表来整理和分析数据,今天我们将利用给定的数据计算一些“量”(统计量)来挖掘数据的信息,它们可以反映数据的集中程度或者离散状况.因为这些量能够反映数据的特点,我们把它们也叫做数据的数字特征.除过大家比较熟悉的那五种之外,我们今天还会学习到刻画数据离散程度较好的另一个数字特征—“标准差”.我们这节课的主要目标不光是要会计算这些“量”,更重要的是能够理解不同数字特征所表达的意义,能够根据问题需要选择适当的数字特征来表达数据的信息(出示课题)2.提出问题,温故求新2.1问题引入教师展现课件题目,以分析和评价考试成绩来激发学生的认知需要,然后在此基础上回忆复习数据的数字特征的概念、计算方法和意义.学生以小组讨论的形式思考交流.每次考完试后各科老师都要对班里学生的成绩进行分析,从中分析学生学习的情况,并与同级的其他班级作比较,进而为后续的教学提供指导.面对貌似杂乱的数据,我们运用所学的数字特征的知识能够让这些数据告诉我们什么有用的信息呢?回忆总结数据数字特征的计算方法和表达的意义,学生发言,教师总结.2.2 复习旧知平均数:一组数据的和与这组数据的个数的商称为这组数据的平均数.数据12,n x x x ⋅⋅⋅的平均数为121()n x nx x x =++⋅⋅⋅+ .平均数对数据有“取齐”的作用,代表该组数据的平均水平.中位数:一组数据按从小到大的顺序排成一列,处于中间位置的数称为这组数据的中位数.一组数据的中位数是唯一的,反映了数据的集中趋势.众数:一组数据中出现次数最多的数称为这组数据的众数.一组数据中的众数可能不止一个,也可能没有,反映了数据的集中趋势.极差:一组数据的最大值与最小值的差称为这组数据的极差,表示该组数据之间的差异情况.方差:方差是样本数据到平均数的平均距离,一般用s 2表示,通常用公式2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+-来计算.反映了数据的离散程度.方差越大,数据的离散程度越大.方差越小数据的离散程度越小.标准差:标准差等于方差的正的平方根,即s =据围绕平均数的波动程度的大小.3. 深化认知例1 某公司员工的月工资情况如表所示:(1)分别计算该公司员工月工资的平均数、中位数、和众数.(2)假设个别人的工资从8 000元提升到20 000元,从5000元提升到10 000元,那么新的平均数、中位数、众数又是多少?(3)公司经理会选取上面哪个数来代表该公司员工的月工资情况?税务官呢?工会领导呢?解:(1)经计算可以得出:该公司员工月工资的平均数为1373元,中位数为800元,众数为700元.(2)经计算可以得出:该公司员工月工资的平均数为1740元,中位数为800元,众数为700元.(3)公司经理为了显示本公司员工的收入高,采用平均数;而税务官希望取中位数,以便知道目前的所得税率对该公司的多数员工是否有利;工会领导则主张用众数,因为每月拿700元的员工最多.说明:问题(3)的回答不仅要能选对数字特征,还要引导学生反思为什么?知其然更要知其所以然.小组讨论后,由小组代表给出解释.最后由教师总结.对于学生来说,计算数值、以及数字的选取都不会有太大的障碍,主要问题在于学生的回答是否完整、准确,这是学生常犯的错误,故在这里老师要给出完整答案,作出示范.点评:平均数是将所有的数据都考虑进去得到的度量,它是反映数据平均水平最常用的统计量;对于非对称的数据集,中位数更实际地描述了数据的中心,中位数不受少数几个极端数据(即排序靠前或靠后的数据)的影响,在存在一些错误数据时,应该利用抗极端性很强的中位数来表示数据的中心值;众数通常用来表示分类变量的中心值.例2在上一节中,从甲、乙两个城市随机抽取的16台自动售货机的销售额可以用茎叶图表示,如图(1)甲乙两组数据的中位数、众数、极差分别是多少?(2)你能从图中分别比较甲乙两组数据平均数和方差的大小吗?说明:引导学生思考如何通过统计图表来获取数据数字特征;以及进一步引导学生反思统计图表和数据数字特征在整理和分析数据信息过程中的不同作用,并且能够根据具体问题有意识地运用这两种工具,即相应的数学语言去刻画和分析数据的信息.例3 甲、乙两台机床同时生产直径是40mm 的零件.为了检验产品质量,从两台机床生产的产品中各抽取10件进行测量,结果如下表所示(1)你能选择适当的数分别表示这两组数据的离散程度吗?(2)分别计算上面从甲、乙两台机床抽取的10件产品直径的标准差解:(1)参见课本27页.(2)经计算可以得出:==40mm x x 甲乙(),.=0161mm s 甲(),.=0077mm s 乙(). 说明:1.充分调动学生的能动性,发挥想象力,体会比较不同的表示方法.以不同方式表示数据的离散程度,选择方法和计算的过程就是应用数学语言来表示相应特征,这是对数学语言的总结和升华.2.体会刻画数据离散程度的三个原则:(1)应充分利用所得到的数据,以便提供更确切的信息;(2)仅用一个数值来刻画数据的离散程度;(3)对于不同的数据集,当离散程度大时,该数值亦大.3.标准差等于方差的正的平方根,即s 平均数的波动程度的大小.方差的单位是原始测量数据单位的平方,对数据中的极值较为敏感,标准差的单位与原始测量数据单位相同,可以减弱极值的影响.标准差更好的体现了数学语言在实际生活方面的联系,体现了数学语言的多个特征.4 巩固练习1、下面是一家快餐店的所有工作人员(共7人)一周的工资表:(1)计算所有人员一周的平均工资.(2)计算出的平均工资能反映所有工作人员这个周收入的一般水平吗?(3)去掉总经理的工资后,再计算剩余人员的平均工资,这能代表一般工作人员的收入水平吗?解:(1)所有人员一周的平均工资:750元.(2)计算出的平均工资不能反映所有工作人员这个周收入的一般水平.(3)去掉总经理的工资后,剩余人员的平均工资是375元,这能代表一般工作人员的收入水平.2、为了考察甲乙两种小麦的长势,分别从中抽取10株苗,测得苗高如下:哪种小麦长得比较整齐?解:因为s 甲=1.90,s 乙=3,97,所以甲种小麦长得比较整齐.5.课堂小结这节课首先带着问题复习了数据的数字特征的计算方法、意义和作用,然后通过不同的数字特征的对比,深化了对于数据数字特征的认识和理解.此节课最主要的目的就是在具体问题情境中理解不同数字特征的作用,能就具体问题选择不同的数字特征提取数据信息.体会数学语言在统计方面的应用.⎧⎨⎩集中趋势:平均数、中位数、众数数据的数字特征离散程度:极差、方差、标准差6.作业: 课本:P31 习题1—4,1、2题.【板书设计】精美句子1、善思则能“从无字句处读书”。
北师大版数学高一1.4数据的数字特征 学案必修3
五 课 后 巩 固 练 习为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在的人数是 .(2)这20名工人中一天生产该产品数量的中位数 .(3)这20名工人中一天生产该产品数量的平均数 .数据的数字特征自主学习1.众数—一组数中出现次数最多的数;在频率分布直方图中,我们取最高的那个小长方形横坐标的中点。
[)[)[)55,65,65,75,75,85[)45,55[)85,95[)55,75中位数——当一组数有奇数个时等于中间的数,当有偶数个时等于中间两数的平均数;在频率分布直方图中,是使图形左右两边面积相等的线所在的横坐标。
平均数——将所有数相加再除以这组数的个数;在频率分布直方图中,等于每个小长方形的面积乘以其底边中点的横坐标的和。
2. 答:(1)从频率分布直方图得到的众数和中位数与从数据中得到的不一样,因为频率分布直方图损失了一部分样本信息,所以不如原始数据准确。
(2)众数和中位数不受极端值的影响,平均数反应样本总体的信息,容易受极端值的影响。
3.例1.我们知道,77x x ==乙甲, 。
两个人射击的平均成绩是一样的。
那么,是否两个人就没有水平差距呢?直观上看,还是有差异的。
很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据。
例2解:90068908608509509608909006920910850900920900=+++++==+++++=乙甲x x ()()()()()()[]573106340090092090091090085090090090092090090061222222==-+-+-+-+-+-=甲s ()()()()()()[]14106840090089090086090085090095090096090089061222222==-+-+-+-+-+-=乙s乙甲乙甲,s s <=x x所以甲水稻的产量比较稳定。
高中数学必修三北师大版 数据的数字特征教案
1.4数据的数字特征(设计者阜阳三中侯斌斌)【教学背景分析】本节课是高中数学必修3,第一章第4节。
在初中,学生已经学习了平均数、中位数、众数、极差、方差等,并能解决简单的实际问题。
在这个基础上高中阶段还将进一步学习标准差,并在学习中不断地体会它们各自的特点,在具体的问题中根据情况有针对性地选择一些合适的数字特征。
【教学目标】1、知识与技能能结合具体情境理解不同数字特征的意义和作用,并能根据问题的需要选择适当的数字特征表达数据的信息,培养学生解决问题的能力。
2、过程与方法在分析和解决具体实际问题的过程中学会用恰当的统计量表示数据的方法,并能结合统计量对所给数据的分布情况作出合理的解释。
3、情感态度与价值观通过对现实生活和其他学中统计问题的分析和解决,体会用数学知识解决现实生活及各学问题的方法,认识数学的重要性。
【教学重、难点】教学重点:平均数、中位数、众数、极差、方差、标准差的计算、意义和作用。
教学难点:根据问题的需要选择适当的数字特征表达数据的信息。
【教学过程】教学环节一:创设情境引入新课教学内容提出问题:甲、乙两种玉米苗各抽10株,分别测得它们的株高如下(单位:cm)问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?教师点出课题:数据的数字特征师生互动:引导学生讨论、质疑、并提出问题设计意图:通过实例引起学生对平均数的实际意义产生质疑从而引出课题,引导学生从多角度观察数据的数字特征。
教学环节二:巩固复习 提出问题1、 什么叫平均数?有什么意义?2、 什么叫中位数?有什么意义?3、 什么叫众数?有什么意义?4、 什么叫极差?有什么意义?5、什么叫方差?有什么意义?讨论结果: 1、一组数据的和与这组数据的个数的商称为这组数据的平均数。
数据12,,,n x x x 的平均数为12nx x x x n+++= 。
平均数代表该组数据的平均水平。
2、一组数据按从小到大的顺序排成一列,处于中间位置的数称为这组数据的中位数。
高中数学第一章统计1.4数据的数字特征教案北师大版必修3
高中数学第一章统计1.4数据的数字特征教案北师大版必修3本节教材分析一、三维目标1、知识与技能(1) 通过实例体会标准差的意义和作用;(2)对一组数据,能够计算出数据的标准差;(3)能根据问题的需要选择适当的数字特征来表达数据的信息.2、过程与方法通过对现实生活的探究,感知应用数学知识解决问题的方法.3、情感态度与价值观通过对样本数据的分析过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系.二、教学重点:理解数据标准差的意义和作用,学会计算数据的标准差.三、教学难点:理解数据标准差的意义和作用.四、教学建议在选择适当的数字特征表示两组数据的离散程度时,学生很自然地会想到义务教育阶段时学习过的极差和方差.教科书除了极差和方差之外,还给出了其他两种刻画数据离散程度的方式(方法3和方法4).教师在教学时可以让学生自主思考,选择适当的数字特征来表示,在此基础上,再鼓励他们积极交流,并认真观察、比较不同刻画方式的异同.体会,刻画数据的离散程度的方式是多种多样的.通过上一节的学习,已经掌握了数据的一些数字特征——平均数、中位数、众数、极差、方差,本节将在此基础上,通过具体的实例,让学生理解标准差的意义以及标准差与方差的区别和联系,能选择适当的数字特征来表达数据的信息。
新课导入设计导入一甲、乙两位同学分别记录了他们10次的数学测试成绩,甲对乙说:“我的最高分是100分,而你的最高分是95分,所以我的数学成绩比你好.”而乙对甲说:“我的平均分是86分,你的平均分是80分,这说明我的数学比你好.”你认为他们谁的分析正确呢?导入二刻画数据的离散程度的度量,其理想形式应满足一下两条条原则:(1)应充分利用所得到的数据,以便提供更确切的信息;(2)仅用一个数值来刻画数据的离散程度;方差虽然满足以上条件,然而它有局限性:方差的单位是原始观测数据的平方,而刻画离散程度的一种理想度量应当具有与原始数据相同的单位.怎么解决这个问题呢?学好本节,你就知道了.【问题】 P26例2(1)观察茎叶图,我们不难看出:甲城市销售额的中位数为20,众数为10,18,30,极差为53;乙城市销售额的中位数为29,众数为23,34,极差为38.(2)从茎叶图中我们可以看出:甲城市的销售额分布主要在茎叶图的上方且相对较散,而乙城市的销售额分布则相对集中在茎叶图的中部.由此,我们可以估计:甲城市销售额的平均数比乙城市的小,而方差比乙城市的大.通过计算我们得到:甲城市销售额的平均数和方差分别为22.8和210.9,乙城市销售额的平均数和方差分别为28.6和115.2,这与上面的估计是一致的.教科书设计了这个问题,自然承接上一节统计图表的内容,并初步发展学生从统计图中获取数字特征的能力.【思考交流】 P26~27对一组数据,除了需要了解它们的集中趋势(平均水平)外,还常常需要了解它们的波动情况,即数据的离散性度量.在此问题中,甲、乙两台机床生产的10件产品直径的平均值都是40 mm,仅用平均水平还难以准确地刻画一组数据.为此,我们以问题的形式引导学生选择适当的数来分别表示这两组数据的离散程度.在选择适当的数来分别表示这两组数据的离散程度时,学生很自然地会想到义务教育阶段时学习过的极差和方差.教科书上除极差和方差之外,还给出了其他两种刻画数据离散程度的方式(方法3和方法4).教师在教学时可以先让学生自主思考,选择适当的数来表示,在此基础上,再鼓励他们积极交流,并认真观察、比较不同刻画方式之间的异同.显然,刻画数据离散程度的方式是多种多样的.【抽象概括】 P28通过上面的思考交流,学生经历了用不同的方式刻画数据离散程度的探索过程,并初步体会到方式是多种多样的.学生很自然地就会提出以下问题:究竟什么样的方式比较好?为此,教科书以抽象概括的形式,给出了刻画数据离散程度的度量的理想形式应满足的三条原则.因为极差对极值过于敏感,有时我们去掉最小的25%的数据与最大的25%的数据,然后求出剩下的中间数据的极差,这中间50%数据的极差,我们称之为四分位数极差(即Q3-Q1).方法3(即绝对差)满足理想形式的三条原则,它也是刻画数据离散程度的一种方法,但是在实际中,人们更多使用的是标准差.其主要原因是:从数学上来说,二次函数的性质比绝对值函数要好,比较方便运算和以后统计量分布的推导.如有学生提出这样的问题,只要向他们简单说明一下即可,无需作过多的解释.另外,在§9介绍最小二乘法中,在刻画样本点与直线之间的距离时,用的是平方而不是绝对值,也是出于类似的考虑.【例题】 P28例3在教学时,教师要通过该例让学生在具体的情境中,理解标准差的作用与意义,并能针对具体问题算出数据的标准差.【动手实践】 P29目的是要通过这个活动,让学生经历收集数据、整理数据、分析数据、作出推断的过程,进一步体会统计对决策的作用.在活动开始时,建议教师控制“开始”和“停止”之间的时间间隔在20秒以内,并且在增加时间间隔之前,可以先保持“开始”和“停止”之间的时间间隔不变,重复刚才的试验.此时,得到的平均值与确切的时间值应该会更接近,标准差也应该会比第一次的更小.这是因为经历了刚才的活动,学生已经积累了一定的经验,加之时间间隔又没有改变,他们估计的结果应该会比第一次更准确.随后,教师再增加“开始”和“停止”之间的时间间隔,重复试验,并让学生分析自己以及全班同学最后的估计结果.需要特别引起注意的是,对数据数字特征内容的评价,应当更多地关注对其本身意义的理解和在新情境中的应用,而不是记忆和使用的熟练程度.因此,在分析数据的过程中,教师要让学生理解数据的平均值和标准差在此处的意义,并在此基础上对全班同学的估计结果作出客观的评判.同时,这个活动还可以初步培养学生的估计能力.【练习】 P31小宇和志强在最近8场篮球比赛的平均得分分别是13分和12.75分,标准差分别是4.09和5.72,小宇的发挥相对来说更稳定一些.教师应该让学生在通过计算得到小宇和志强各自得分的平均数和标准差后,理解标准差在此处的意义:它体现了运动员场上发挥的稳定程度.【习题1―4】 P311.(1)可以用茎叶图等来表示数据,图略;(2)销售的新鲜面包数量的平均数和中位数都是49.5,众数是47, 50, 52;(3)根据以上结果,该面包店每天生产50个新鲜面包比较合理.2.为了运算方便,可以先将数据化成以秒为单位的形式进行计算,再将计算结果化成原有单位的形式.(1)近几届奥运会男子1 500 m速滑冠军成绩的平均数和中位数分别是1′54.17″,1′54.81″;女子的平均数和中位数分别是2′05.32″,2′03.42″;(2)近几届奥运会男、女1 500 m速滑冠军成绩的标准差分别是3.763 7″, 6.019 4″; (3)从上面的计算结果我们不难得出:近几届奥运会男子速滑的冠军成绩相比女子成绩优异而且比较稳定.。
北师大版高中数学必修3《一章 统计 4 数据的数字特征 4.1平均数、中位数、众数、极差、方差》优质课教案_7
《数据的数字特征》教学设计一、教学背景分析在初中学生已经学习过了平均数、中位数、众数、极差、方差等,并能解决简单的实际问题。
在这个基础上高中阶段还将进一步学习标准差,并在学习中不断地体会它们各自的特点,在具体的问题中根据情况有针对性地选择一些合适的数字特征。
二、教学目标1.知识与技能(1)能结合具体情境理解不同数字特征的意义,并能根据问题的需要选择适当的数字特征来表达数据的信息。
(2)通过实例理解数据标准差的意义和作用,学会计算数据的标准差。
在实际问题中,可以学会用合适的统计量表示数据的方法,并能结合统计量对所给数据的分布情况作出合理的解释。
3.情感、态度与价值观通过对现实生活和其他学科中统计问题的分析和解决,体会用数学知识解决现实生活及各学科问题的方法,认识数学的重要性。
三、教学重难点重点:能够计算数据的标准差,并理解掌握各个统计量的计算和意义作用。
难点:根据给定的数据,合理地选择统计量表示数据。
四、教学过程1、复习回顾利用一些实际生活的数据统计图片让学生回顾条形统计图、折线统计图、扇形统计图和茎叶图,并对他们适用的范围和作用掌握2、新知引人数据的特征除了利用统计图表外,还可以利用一些统计量来表示,比如:平均数、中位数、众数和极差、方差、标准差等来表示。
问题1:什么是平均数?它的意义是什么?解析:平均数就是一组数据的平均,代表该组数的平均水平。
设有n 个数据x1 ,x2, …,xn,则这组数据的平均数为:问题2:什么是中位数?它的意义是什么?解析:中位数是一组数据按照从小到大顺序排列时处于中间位置的数(或中间两个数的平均数).当一组数据中的个别数据变动较大时,可用中位数来描述其集中趋势.问题3:什么是众数?它的意义是什么?解析:众数是一组数据中出现次数最多的数.反映了数据的集中趋势. 问题4:什么是极差?它的意义是什么?解析:极差是一组数据中最大数与最小数之间的差.反映该组数据差异情况.问题5:什么是方差?它的意义是什么?解析:方差是一组数据中所有数与平均数的差的平方和的平均数.反映了数据的波动情况.方差越大,数据的离散程度越大;方差越小,nx x x x n +++= 21数据的离散程度越小.设有n 个数据x1,x2,…,xn ,这组数据的方差为: 问题6:什么是标准差?它的意义是什么?解析:标准差就是一组数据中所有数与平均数的差的平方和的平均数的算术平方根.可以刻画数据的稳定程度.3、巩固新知例1:这是本届世界杯第一轮比赛结果,计算该届世界杯一场比赛进球数的平均数、中位数、众数、极差、方差及标准差。
高中数学第一章统计4数据的数字特征教案北师大版必修3
§4 数据的数字特征整体设计教学分析在义务教育阶段,学生已经通过实例,学习了平均数、中位数、众数、极差、方差等,并能解决简单的实际问题.(由于义务教育阶段《大纲》中对统计部分的要求与《标准》的要求相差较大,若是承接现行《大纲》的话,建议先补充《标准》中第三学段相应部分的内容.)在这个基础上,高中阶段还将进一步学习标准差,并在学习中不断地体会它们各自的特点,在具体的问题中根据情况有针对性地选择一些合适的数字特征.三维目标1.能结合具体情境理解不同数字特征的意义,并能根据问题的需要选择适当的数字特征来表达数据的信息,培养学生解决问题的能力.2.通过实例理解数据标准差的意义和作用,学会计算数据的标准差,提高学生的运算能力. 重点难点教学重点:平均数、中位数、众数、极差、方差的计算、意义和作用.教学难点:根据问题的需要选择适当的数字特征来表达数据的信息.课时安排1课时教学过程导入新课思路1.中国女排与俄罗斯女排队员的身高、年龄如下表:中国女排俄罗斯女排号码身高/米年龄/岁号码身高/米年龄/岁2 1.83 25 2 1.90 263 1.83 24 4 1.84 334 1.86 245 1.94 276 1.85 247 1.88 257 1.82 25 8 1.92 298 1.96 23 9 1.90 299 1.82 29 10 1.80 2410 1.82 29 11 2.04 2412 1.78 24 12 1.80 1915 1.81 26 13 1.83 2816 1.81 24 14 1.85 2618 1.87 22 16 1.90 32怎样判断中国女排和俄罗斯女排的队员谁的身材更为高大?我们分别求出两队球员的平均身高,谁的平均身高数值大,谁的身材就更高大,教师点出课题:数据的数字特征.思路2.小明开设了一个生产玩具的小工厂,管理人员由小明、他的弟弟和六个亲戚组成.工作人员由五个领工和十个工人组成.工厂经营得很顺利,需要增加一个新工人,小亮需要一份工作,应征而来与小明交谈.小明说:“我们这里报酬不错,平均薪金是每周300元.你在学徒期每周75元,不过很快就可以加工资了.”小亮工作几天后找到小明说:“你欺骗了我,我已经找其他工人核对过了,没有一个人的工资超过每周100元,平均工资怎么可能是一周300元呢?”小明说:“小亮啊,不要激动,平均工资是300元,你看,这是一张工资表.”工资表如下:人员 小明 小明弟 亲戚 领工 工人 周工资 2 400 1 000 250 200 100 人数 1 1 6 5 10 合计 2 400 1 000 1 500 1 000 1 000 这到底是怎么了?教师点出课题:数据的数字特征.推进新课新知探究提出问题1.什么叫平均数?有什么意义?2.什么叫中位数?有什么意义?3.什么叫众数?有什么意义?4.什么叫极差?有什么意义?5.什么叫标准差?有什么意义?6.什么叫方差?有什么意义?讨论结果:1.一组数据的和与这组数据的个数的商称为这组数据的平均数.数据x 1,x 2,…,x n 的平均数为x =nx x x n +++ 21.平均数对数据有“取齐”的作用,代表该组数据的平均水平.任何一个数据的改变都会引起平均数的变化,这是众数和中位数都不具有的性质.2.一组数据按从小到大的顺序排成一列,处于中间位置的数称为这组数据的中位数.一组数据中的中位数是唯一的,反映了该组数据的集中趋势.3.一组数据中出现次数最多的数称为这组数据的众数.一组数据中的众数可能不止一个,也可能没有,反映了该组数据的集中趋势.4.一组数据的最大值与最小值的差称为这组数据的极差,表示该组数据之间的差异情况.5.标准差是样本数据到平均数的一种平均距离,一般用s 表示,通常用公式 s=])()()[(122221x x x x x x nn -++-+- 来计算. 可以用计算器或计算机计算标准差.标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度和离散程度的大小.标准差大,数据的离散程度大;标准差小,数据的离散程度小.取值范围是[0,+∞).样本数据x 1,x 2,…,x n 的标准差的计算步骤:①计算样本数据的平均数,用x 来表示;②计算每个样本数据与样本数据平均数的差:x i -x (i=1,2,…,n);③计算x i -x (i=1,2,…,n)的平方;④计算这n 个x i -x (i=1,2,…,n)的平方的平均数,即方差;⑤计算方差的算术平方根,即为样本标准差.6.方差等于标准差的平方,即s 2=n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2],与标准差的作用相同,描述一组数据围绕平均数波动的程度的大小.取值范围是[0,+∞).应用示例思路1例1 某公司员工的月工资情况如表所示:月工资/元 8 000 5 000 4 000 2 000 1 000 800 700 600 500 员工/人 1 2 4 6 12 8 20 5 2(1)分别计算该公司员工月工资的平均数、中位数和众数.(2)公司经理会选取上面哪个数来代表该公司员工的月工资情况?税务官呢?工会领导呢? 解:(1)经过简单计算可以得出:该公司员工的月工资平均数为1 373元,中位数为800元,众数为700元.(2)公司经理为了显示本公司员工的收入高,采用平均数1 373元作为月工资的代表;而税务官希望取中位数800元,以便知道目前的所得税率对该公司的多数员工是否有利;工会领导则主张用众数700元作为代表,因为每月拿700元的员工数最多.点评:平均数是将所有的数据都考虑进去得到的度量,它是反映数据平均水平最常用的统计量;中位数将观测数据分成相同数目的两部分,其中一部分都比这个数小而另一部分都比这个数大,对于非对称的数据集,中位数更实际地描述了数据的中心;当变量是分类变量时,众数往往经常被使用.变式训练1.下表为某班40名学生参加“环保知识竞赛”的得分统计表:分数 0 1 2 3 4 5 人数 4 7 10 x 8 y 请参照这个表解答下列问题:(1)用含x,y 的代数式表示该班参加“环保知识竞赛”的班平均分f ;(2)若该班这次竞赛的平均分为2.5分,求x,y 的值.解:(1)f=405953++y x ; (2)依题意,有⎩⎨⎧==⎩⎨⎧=+=+.4,7,11,4153y x y x y x 解得 2.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变.有关数据如下表所示:景点 A B C D E原价(元) 10 10 15 20 25 现价(元) 5 5 15 25 30 平均日人数(千人)1 123 2(1)该风景区调整前后这5个景点门票的平均收费不变,平均日总收入持平,问风景区是怎样计算的?(2)游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%,问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反映整体实际?解:(1)风景区是这样计算的: 调整前的平均价格:52520151010++++=16(元),调整后的平均价格:530251555++++=16(元), 因为调整前后的平均价格不变,平均日人数不变,所以平均日总收入不变.(2)游客是这样计算的:原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元),现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元), 所以平均日总收入增加了160160175-≈9.4%. (3)游客的说法较能反映整体实际.例2 甲、乙两台机床同时生产直径是40 mm 的零件.为了检验产品质量,从两台机床生产的产品中各抽取10件进行测量,结果如下表所示.甲机床直径/mm40.0 39.8 40.1 40.2 39.9 40.0 40.2 39.8 40.2 39.8 乙机床直径/mm40.0 40.0 39.9 40.0 39.9 40.1 40.1 40.1 40.0 39.9 分别计算上面从甲、乙两台机床抽取的10件产品直径的标准差.解:从数据很容易得到甲、乙两台机床生产的这10件产品直径的平均值x 甲=x 乙=40(mm).我们分别计算它们直径的标准差:s 甲=10/])408.39()408.39()4040[(222-++-+- =0.161(mm),s 乙=10/])409.39()4040()4040[(222-++-+- =0.077(mm).由上面的计算可以看出:甲、乙两台机床生产的产品直径的平均值相同,而甲机床生产的产品直径的标准差为0.161 mm,比乙机床的标准差0.077 mm 大,说明乙机床生产的零件要更标准些,即乙机床的生产过程更稳定一些.点评:对数据数字特征内容的评价,应当更多地关注对其本身意义的理解和在新情境中的应用,而不是记忆和使用的熟练程度.变式训练设有容量为n 的样本x 1,x 2,…,x n ,其标准差为s x ,另有容量为n 的样本y 1,y 2,…,y n ,其标准差为s y ,且y k =3x k +5(k=1,2,…,n),则下列关系正确的是( )A.s y =3s x +5B.s y =3s xC.s y =3s xD.s y =3s x +5 答案:B思路2例1 某企业员工的月工资如下(单位:元):800 800 800 800800 1 000 1 000 1 000 1 000 1 0001 000 1 000 1 000 1 000 1 000 1 2001 200 1 200 1 200 1 200 1 200 1 2001 200 1 200 1 200 1 200 1 200 1 2001 200 1 200 1 200 1 200 1 200 1 2001 200 1 500 1 500 1 500 1 500 1 500 1 500 1 5002 000 2 000 2 000 2 000 2 000 2 5002 500 2 500(1)计算该公司员工的月工资的平均数、中位数和众数;(2)假如你去这家企业应聘职位,你会如何看待员工的收入情况?分析:(1)根据平均数、中位数和众数的定义可以分别求得;(2)主要根据月工资的平均数来看待员工的收入情况,当然也要考虑中位数和众数.解:(1)公司员工的月工资的平均数为502500320005150071200201000108005⨯+⨯+⨯+⨯+⨯+⨯=1 320元, 中位数为1 200元,众数为1 200元.(2)由于该公司员工的月工资的中位数和众数与平均数比较接近,所以主要考虑月工资的平均数1 320元作为月工资的代表,这样以该公司月平均工资1 320元与同类企业的工资待遇作比较即可.点评:大多情况下人们会把眼光仅停留在工资表中的最大与最小值处,把最高工资作为一个单位工资的评价,这是一种错误的评价方式.变式训练1.已知10个数据:1 203,1 201,1 194,1 200,1 204,1 201,1 199,1 204,1 195,1 199,它们的平均数是( )A.1 400B.1 300C.1 200D.1 100答案:C2.某公司有15名员工,他们所在的部门及相应每人所创的年利润(万元)如下表所示:部门 A B C D E F G 人数 1 1 2 4 2 2 3 每人所创的年利润 20 5 2.5 2.1 1.5 1.5 2 根据表中提供的信息填空:(1)该公司每人所创的年利润的平均数是___________万元.(2)该公司每人所创的年利润的中位数是___________万元.(3)你认为应该使用平均数和中位数中哪一个来描述该公司每人所创的年利润的一般水平? 答案:(1)3.36 (2)2.1 (3)中位数.例2 对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:甲 60 80 70 90 70 乙 80 60 70 80 75(1)甲、乙的平均成绩谁最好?(2)谁的各门功课发展较平衡?分析:(1)利用公式计算平均数;(2)计算方差来分析.解:(1)51=甲x (60+80+70+90+70)=74,51=乙x (80+60+70+80+75)=73, ∴甲的平均成绩较好.(2)s 甲2=51 (142+62+42+162+42)=104,s 乙2=51(72+132+32+72+22)=56, ∵s 甲2>s 乙2,∴乙的各门功课发展较平衡.点评:平均数和方差是样本的两个重要数字特征,方差越大,表明数据越分散,相反地,方差越小,数据越集中、稳定;平均数越大表明数据的平均水平越高,平均数越小表明数据的平均水平越低.变式训练已知一个样本中含有5个数据3,5,7,4,6,则样本方差为( )A.1B.2C.3D.4 分析:564753++++=x =5,则方差s 2=51[(5-3)2+(5-5)2+(5-7)2+(5-4)2+(5-6)2]=2. 答案:B知能训练1.下列说法正确的是( )A.甲、乙两个班期末考试数学平均成绩相同,这表明这两个班数学学习情况一样B.期末考试数学成绩的方差甲班比乙班的小,这表明甲班的数学学习情况比乙班好C.期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习甲班比乙班好D.期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班比乙班好 答案:D2.在一次数学测验中,某小组14名学生分别与全班的平均分85分的差是:2,3,-3,-5,12,12, 8,2,-1,4,-10,-2,5,5,那么这个小组的平均分是—————分.( )A.97.2答案:B3.(2007海南高考,理11)甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表:甲的成绩环数 7 8 9 10频数 5 5 5 5乙的成绩环数 7 8 9 10频数 6 4 4 6丙的成绩环数 7 8 9 10频数 4 6 6 4s 1、s 2、s 3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )A.s 3>s 1>s 2B.s 2>s 1>s 3C.s 1>s 2>s 3D.s 2>s 3>s 1 分析:方法一:计算得x 甲=x 乙=x 丙=8.5,s 12=2025,s 22=2028, s 32=2021,则s 2>s 1>s 3; 方法二:可以计算三名运动员成绩的平均数都等于8.5,观察对比三个表格,相比之下丙的环数集中在8.5周围,比甲和乙要稳定,乙的环数比甲更分散,则有s 1>s 3,s 2>s 3.答案:B4.某人射击5次,分别为8,7,6,5,9环,这个人射击命中的平均环数为____________. 答案:75.华山鞋厂为了了解中学生穿鞋的鞋号情况,对某中学初二(1)班的20名男生所穿鞋号的统计如下表:鞋号 23.5 24 24.5 25 25.5 26 人数 3 4 4 7 1 1 那么这20名男生鞋号数据的平均数是___________,中位数是___________,众数是___________,在平均数,中位数和众数中,鞋厂最感兴趣的是___________.答案:24.55 24.5 25 众数6.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是___________.答案:-3拓展提升甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下(单位:cm):甲 25 41 40 37 22 14 19 39 21 42 乙 27 16 44 27 44 16 40 40 16 40 问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?解:(1)101甲x (25+41+40+37+22+14+19+39+21+42)=101×300=30(cm), x 乙=101(27+16+44+27+44+16+40+40+16+40)=101×310=31(cm). ∴x 甲<x 乙,即乙种玉米的苗长得高.(2)s 甲2=104.2(cm 2),s 乙2=128.8(cm 2).∴s 甲2<s 乙2,即甲种玉米的苗长得齐.课堂小结本节课学习了平均数、中位数、众数、极差、方差的计算、意义和作用.作业习题1-4 1、2.设计感想本节教学设计依据课程标准,在义务教育阶段的基础上,进一步掌握平均数、中位数、众数、极差、方差的计算、意义和作用,重在应用.。
2017-2018学年高中数学北师大版三教学案:第一章§4数据的数字特征含答案
[核心必知]1.众数、中位数、平均数(1)众数的定义:一组数据中重复出现次数最多的数称为这组数的众数,一组数据的众数可以是一个,也可以是多个.(2)中位数的定义及求法:把一组数据按从小到大的顺序排列,把处于最中间位置的那个数(或中间两数的平均数)称为这组数据的中位数.(3)平均数:①平均数的定义:如果有n个数x1、x2、…、x n,那么错误!=错误!,叫作这n个数的平均数.②平均数的分类:总体平均数:总体中所有个体的平均数叫总体平均数.样本平均数:样本中所有个体的平均数叫样本平均数.2.标准差、方差(1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s表示.s=错误!.(2)方差的求法:标准差的平方s2叫作方差.s2=错误![(x1-错误!)2+(x2-错误!)2+…+(x n-错误!)2].其中,x n是样本数据,n是样本容量,错误!是样本均值.(3)方差的简化计算公式:s2=错误![(x错误!+x错误!+…+x错误!)-n错误!2]=错误!(x错误!+x错误!+…+x错误!)-错误!2.3.极差一组数据的最大值与最小值的差称为这组数据的极差.4.数字特征的意义平均数、中位数和众数刻画了一组数据的集中趋势,极差、方差刻画了一组数据的离散程度.[问题思考]1.一组数据的众数一定存在吗?若存在,众数是唯一的吗?提示:不一定.若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数;不是,可以是一个,也可以是多个.2.如何确定一组数据的中位数?提示:(1)当数据个数为奇数时,中位数是按从小到大顺序排列的中间位置的那个数.(2)当数据个数为偶数时,中位数为排列在最中间的两个数的平均值.讲一讲1。
据报道,某公司的33名职工的月工资(单位:元)如下:(1)(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平,结合此问题谈一谈你的看法.[尝试解答](1)平均数是错误!=1 500+错误!≈1 500+591=2 091(元).中位数是1 500元,众数是1 500元.(2)新的平均数是错误!′=1500+错误!≈1 500+1 788=3 288(元).中位数是1 500元,众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.1.众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要的量.2.众数考查各个数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题.3.中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能在所给的数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述它的某种集中趋势.练一练1.某公司销售部有销售人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:(1)求这15位销售人员该月销售量的平均数、中位数及众数;(2)假设销售部负责人把月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较为合理的销售定额.解:(1)平均数为错误!(1 800×1+510×1+250×3+210×5+150×3+120×2)=320(件),中位数为210件,众数为210件.(2)不合理,因为15人中有13人的销售量未达到320件,也就是说,虽然320是这一组数据的平均数,但它却不能反映全体销售人员的销售水平.销售额定为210件更合理些,这是由于210既是中位数,又是众数,是大部分人都能达到的定额。
北师大版高中数学必修3《一章 统计 4 数据的数字特征 4.1平均数、中位数、众数、极差、方差》优质课教案_4
2.3.1平均数及其估计【学习目标】1.理解为什么能用样本数据的平均值估计总体的水平;2.掌握从实际问题中提取数据,利用样本数据计算其平均值,并对总体水平作出估计的方法.9.62 9.54 9.78 9.94 10.01 9.66 9.88 9.68 10.32 9.76 9.45 9.99 9.81 9.56 9.789.729.93 9.949.65 9.79 9.42 9.68 9.70 9.84 9.90 怎样利用这些数据对重力加速度进行估计?(设计目的是通过对重力加速度数据的估计帮助学生更好的理解这节课的内容,从具体到一般)活动二:合作探究我们常用算术平均数 (其中)21(n i a i ,,, =为n 个实验数据)作为重力加速度的“最理想”的近似值.处理实验数据的原则是使这个近似值与实验数据______________.设这个近似值为x ,它与n 个实验值)21(n i a i ,,, =的离差分别为1a x -,2a x -,3a x -,…,n a x -.由于上述离差有正有负,故不宜直接相加.可以考虑离差的平方和,即22221)()()(n a x a x a x -+⋯+-+-=22221212)(2n n a a a x a a a nx ⋯+++⋯++-.所以当=x 时,离差的平方和最小,故可用 作为表示这个物理量的理想近似值.(设计目的是通过学生之间合作探究的学习理解平均数即可以作为物理量的理想的近似值,解决活动一的问题,活动方式是学生讨论,教师指导)活动三:知识建构1.数据12n a a a ,,,的平均数或均值,一般记为__________________________a =;2.若取值为n x x x x ,,,, 321的频率分别为n p p p ,,, 21,则其平均数为________________________x=.(设计目的是帮助学生对平均数概念下定义,活动方式是学生讨论,教师指导)活动四:例题讲解例1.某校高一年级的甲、乙两个班级(均为50人)的语文测试成绩(总分:150分)如下,试确定这次考试中,哪个班的语文成绩更好一些.甲班112 86 106 84 100 105 98 102 94 10787 112 94 94 99 90 120 98 95 119108 100 96 115 111 104 95 108 111 105104 107 119 107 93 102 98 112 112 9992 102 93 84 94 94 100 90 84 114乙班116 95 109 96 106 98 108 99 110 10394 98 105 101 115 104 112 101 113 96108 100 110 98 107 87 108 106 103 97107 106 111 121 97 107 114 122 101 107107 111 114 106 104 104 95 111 111 110例2.下面是某校学生日睡眠时间(单位:h)的抽样频率分布表,试估计该校学生的日平均睡眠时间.例3.某单位年收入在10 000到15 000、15 000到20 000、20 000到25 000、25 000到30 000、30 000到35 000、35 000到40 000及40 000到50 000元之间的职工所占的比分别为10%,15%,20%,25%,15%,10%和5%,试估计该单位职工的平均年收入.(设计目的是通过例题帮助学生更好的理解平均数的定义,学生能够熟练的利用定义解题,这个环节是学生先小组讨论,再请学生上黑板板演,教师评讲点评)活动五:教学总结(设计目的是帮助学生更好的理解这节课的教学重点,和难点,设计方式是请学生回答,教师做补充) 活动六:当堂检测(设计目的是帮助学生利用概念熟练的解题,方式是学生板书,学生自己点评,教师补充)1.若一组数据54321x x x x x ,,,,的平均数是x ,则另一组数据432154321++++x x x x x ,,,,的平均数是 ____ .2.如果两组数n x x x x ,,,, 321和n y y y ,,, 21的样本平均数分别是x 和y ,那么一组数1122,,,n n x y x x y ++⋯+的平均数是 .3.有六个数4,x ,-1,y ,z ,6,它们的平均数为5, 则x ,y ,z 三个数的平均数为________.4.在一段时间里,一个学生记录了其中10天他每天完成家庭作业所需要的时间,结果如下(单位:分钟):80 70 70 70 60 60 80 60 60 70在这段时间里,该学生平均每天完成家庭作业所需时间是多少?5.为了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如下图,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)问参加这次测试的学生人数是多少? (3)问在这次测试中,学生跳绳次数的众数、 中位数、平均数各是多少?。
高中数学 第一章 统计 14 数据的数字特征教案1 北师大版必修3 教案
一、教材分析1、教学内容北师大版普通高中课程标准试验教科书数学必修3第1章《4.数据的数字特征》教学设计.2、内容分析《普通高中数学课程标准》中要求数学学习应倡导教师在学习中起主导作用,而学生是学习的主体,自主探索,动手实践,合作交流,阅读自学等学习数学的方式。
提高学生的数学思维能力是数学教育的基本目标之一,本节课将使学生经历数学知识产生的过程性体验,发展学生的数学思维。
《课标》提倡利用信息技术来呈现以往数学学习中难以呈现的课程内容,在教学评价中要求体现评价的多元化。
《课标》中对本节教学内容的要求是:1通过实例理解样本数据标准差的意义和作用,学会计算数据的标准差。
2、能根据实际问题的需求合理地选取样本,从样本数据中提取基本数字特征(如平均数、标准差),并作出合理的解释。
教材通过3个实例的分析,在初中统计学习的基础上理解平均数、众数、中位数、极差、方差、标准差,对数据的刻画特点,例1目的在于使学生理解不同的人根据需要会选择不同的统计量来说明数据,例2要求学生根据茎叶图的分布特征来估计两组数据数字特征的大小、例3是对标准差计算的复习.动手实践部分意义在于使学生体会一次完整收集数据、整理数据、分析数据、得到统计结论的完整统计活动。
二、学情分析1、基础知识:学生在初中已经学习了平均数、众数、中位数、极差、方差和标准差这几个数字特征,并且会给出一组数据,计算其这几个统计量。
2、学习能力和态度:在基础知识学习的基础上,本节学生要理解各个数字特征的特点,同时理解标准差对数据刻画的优势,并且更进一步理解各数字特征对数据刻画的意义。
三、教学目标1、知识与技能理解不同数字特征的意义和作用,并能根据问题的需要选择适当的数字特征来表达数据的信息。
2、过程与方法通过实例,能结合具体情境理解数据标准差的意义和作用,培养学生解决问题的能力,提高学生的运算能力。
3、情感、态度与价值观通过探求反映数据波动情况的统计量,培养学生开放性思维,培养学生的动手操作能力和实践能力。
高中数学第一章统计4数据的数字特征学案北师大版必修3(2021学年)
2017-2018版高中数学第一章统计 4 数据的数字特征学案北师大版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018版高中数学第一章统计 4 数据的数字特征学案北师大版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018版高中数学第一章统计 4 数据的数字特征学案北师大版必修3的全部内容。
4 数据的数字特征学习目标1.能合理地选取样本,并从中提取基本的数字特征.2.了解众数、中位数、平均数的概念,会计算方差和标准差.3。
进一步体会用样本估计总体的思想,会用样本的数字特征估计总体的数字特征.知识点一众数、中位数、平均数思考1平均数、中位数、众数中,哪个量与样本的每一个数据有关,它有何缺点?思考2 在电视大奖赛中,计算评委打分的平均值时,为什么要去掉一个最高分和一个最低分?梳理众数、中位数、平均数定义(1)众数:一组数据中出现次数________的数.(2)中位数:把一组数据按____________的顺序排列,处在________位置的数(或中间两个数的________)叫作这组数据的中位数.(3)平均数:如果n个数x1,x2,…,x n,那么x=________________叫作这n个数的平均数.知识点二方差、标准差思考1 当样本数据的标准差为0时,该组数据有何特点?思考2 标准差、方差的意义是什么?梳理标准差、方差的概念及计算公式(1)标准差是样本数据到平均数的一种_____________________,一般用s表示.s= ________________________________________________________________________。
北师大版高中数学必修3第一章1.4 数据的数字特征教案
1.4数据的数字特征教学目标知识与技能对数据的数字特征进行理解与感悟,由典例分析三数三差的概念与联系,会使用标准差进行计算。
过程与方法在解决一些实际问题,对数据进行分析时利用数据的数字特征进行分析与解决问题。
情感态度价值观由现实生活认识到数据的数字特征对数学数据分析的重要性,培养学生对数学数据的敏感程度,以便学生在后期学习能够更深的挖掘。
教学重点:理解各个统计量的意义和作用,掌握数据计算的标准差。
教学难点: 标准差的应用与理解,其他统计量的意义与计算。
教学过程:(一)情景引入小王去某公司应聘.公司经理说,我们这里报酬不错, 月平均工资是3000元,技术员A说,我的工资是1500元,在公司算中等收入,小王感觉待遇不错,第二天就去上班了.一周后,小王发现了问题,去找经理,“经理,你说的不对,我已问过其他技术员,没有一个技术员的工资超过3000元.经理说:“没错,平均工资确实是每月3000元.不信可看看公司的工资报表.”小王糊涂了,这是怎么回事呢?下表是该公司的月工资报表:经理是否忽悠了小王,为什么?(学生思考交流)(二)课堂探究数据的信息除了通过前面介绍的各种统计图表来加以整理和表达之外,还可以通过一些统计量来表述,也就是将多个数据“加工”为一个数值,使这个数值能够反映这组数据的某些重要的整体特征。
大家思考一下?初中时我们学习了几个特别的统计量呢?它们在刻画数据时,各有什么样的优点和缺点?请大家结合下面问题的解决。
思考1:什么叫平均数?有什么意义?提示:一组数据的和与这组数据的个数的商称为这组数据的平均数. 平均数对数据有“取齐”的作用,代表该组数据的平均水平.数据的平均数为 思考2.什么叫中位数?有什么意义?提示:一组数据按从小到大的顺序排成一列,处于中间位置的数(或中间两个数的平均数)称为这组数据的中位数.一组数据的中位数是唯一的,反映了数据的集中趋势.思考3.什么叫众数?有什么意义?提示:一组数据中出现次数最多的数称为这组数据的众数.一组数据中的众数可能不止一个,也可能没有,反映了数据的集中趋势. 思考4.什么叫极差?有什么意义? 员工 总工程师 工程师 技术员A 技术员B 技术员C 技术员D 技术员E 技术员F见习技术员G 工资 9000 7000 2800 2700 1500 1200 12001200 1200 n x x x 12,,,L n x x x x n12+++=L提示:一组数据的最大值与最小值的差称为这组数据的极差,表示该组数据之间的差异情况.思考5.什么叫方差?有什么意义?方差是样本数据到平均数的平均距离,一般用s2表示,通常用来计算.反应了数据的离散程度,方差越大,数据的离散程度越大;方差越小,数据的离散程度越小.(三)例题讲解例1 某公司员工的月工资情况如表所示:(1)分别计算该公司员工月工资的平均数、中位数和众数.(2)公司经理会选取上面哪个数来代表该公司员工的月工资情况?税务官呢?工会领导呢?解:(1)该公司员工的月工资平均数为即该公司员工月工资的平均数为1 373元.中位数为800元,众数为700元.(2)公司经理为了显示本公司员工的收入高,采用平均数1 373元作为月工资/元 8000 5000 4000 2000 1000 800 700 600 500 员工/人 1 2 4 6 12 8 20 5 2⎥⎦⎤⎢⎣⎡-++⎪⎭⎫ ⎝⎛-+-=---22212)()(1x x x x x x n S n Λ8 0001 5 0002 4 0004 2 0006 1 0001280087002060055002124612820521373⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯++++++++≈,月工资的代表;而税务官希望取月工资中位数800元,以便知道目前的所得税率对该公司的多数员工是否有利;工会领导则主张用众数700元作为代表,因为每月拿700元的员工数最多.例2 在上一节中,从甲、乙两个城市随机抽取的16台自动售货机的销售额可以用茎叶图表示,如图所示:(1)甲、乙两组数据的中位数、众数、极差分别是多少?(2)你能从图中分别比较甲、乙两组数据的平均数和方差的大小吗?解:(1) 观察茎叶图,我们不难看出:甲城市销售额的中位数为20,众数为10,18,30,极差为53;乙城市销售额的中位数为29,众数为23,34,极差为38. (2)从茎叶图中我们可以看出:甲城市销售额分布主要在茎叶图的上方且相对较散,而乙城市的销售额分布则相对集中在茎叶图的中部.由此,我们可以估计:甲城市销售额的平均数比乙城市的小,而方差比乙城市的大.例3 甲、乙两名战士在相同条件下各射击靶10次,每次命中的环数分别是:甲:8,6,7,8,6,5,9,10,4,7;乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算以上两组数据的平均数;(2)分别求出这两组数据的方差;(3)请根据这两名射击手的成绩估计这两名战士的射击情况. 注意:那么,在刻画数据的离散程度时,这个统计量应该满足哪些原则呢?(1)应充分利用所得到的数据,以便提供更确切的信息;(2)仅用一个数值来刻画数据的离散程度;(3)对于不同的数据集,当离散程度大时,该数值也大。
北师大版高中数学必修3《一章 统计 4 数据的数字特征 4.1平均数、中位数、众数、极差、方差》优质课教案_1
2.2.2用样本的数字特征估计总体的数字特征教学目标:知识与技能(1)正确理解样本数据标准差的意义和作用,学会计算数据的标准差。
(2)能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释。
(3)会用样本的基本数字特征估计总体的基本数字特征。
(4)形成对数据处理过程进行初步评价的意识。
在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法。
情感态度与价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辨证地理解数学知识与现实世界的联系。
重点与难点重点:用样本平均数和标准差估计总体的平均数与标准差。
难点:能应用相关知识解决简单的实际问题。
教学设想【创设情境】在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究。
——用样本的数字特征估计总体的数字特征(板出课题)。
【探究新知】<一>、众数、中位数、平均数〖探究〗:P62(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?(2)能否用一个数值来描写样本数据的离散程度?(让学生回忆初中所学的一些统计知识,思考后展开讨论)初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息。
例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t(最高的矩形的中点)(图略见课本第62页)它告诉我们,该市的月均用水量为2. 25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少。
北师大版高中数学必修3《一章 统计 4 数据的数字特征 4.1平均数、中位数、众数、极差、方差》优质课教案_2
1.3.1统计图表教材目标1、知识与技能:(1)通过实例初步体会分布的意义和作用,了解各种统计图表的概念;(2)结合具体的实际问题情境,灵活选用不同的统计图表。
2、过程与方法:(1)能够针对不同问题,得到恰当的统计图表;(2)在表示数据的过程中,复习几种统计图表(包括象形、条形、折线、扇形统计图),学习茎叶图,让学生体会它们各自的特点和用途.3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会用数学知识解决现实世界及各学科问题的方法,认识数学的重要性。
重点和难点:能根据问题的需要选择合适的统计图表,并能用自己的方式进行表示.一、问题提出【问题1】我们对50人的智商情况进行了调查,如果按照区间[80,85),[85,90),…[115,120)进行分组,得到的分布情况如下:(1)有多少人的智商在90~105之间? (2) 有多少人的智商低于100?(3) 有多少人的智商不低于100? 你还能从图中获得其他的信息吗?分析:由于已经学习过一些统计图表的知识,学生在回答上面几个问题时可能比较容易,教师还可以鼓励学生从这个统计图中获取更多的信息,并通过该问题初步体会分布的含义.(1) 38人的智商在90~105之间; (2) 29人的智商低于100; (3) 21人的智商不低于100.【问题2】下面是关于某个总体包含的所有学生的身高分布的几种表述,其中哪一种表述反映的总体信息较多?(1) 身高在160cm 以下的学生数占50%,不低于160cm 的学生数占50%。
(2) 身高在150cm 以下、150~160cm 之间,不低于160cm 的学生数分别占10%、40%、50%。
(3) 身高在150cm 以下、150~160cm 之间,160~170cm 之间 ,不低于170cm 的学生数分别占10%、40%、40%、10%。
160以下 不低于160 身高/cm10 20 50150以下不低于160身高/cm150-160分析:从该总体包含的所有学生的身高分布的几种表述(包括文字和统计图)来看,不难发现:从(1)~(3),反映的总体信息依次增多.就这个问题而言,说“身高在160 cm 以下的学生数占50%,不低于160 cm 的学生数占50%”,是身高分布一种很粗略的表述;说“身高在150 cm 以下、150~160 cm 之间、不低于160 cm 的学生数分别占10%,40%,50%”,则相对精确一些;而说“身高在150 cm 以下、150~160 cm 之间、160~170 cm 之间、不低于170 cm 的学生数分别占10%,40%,40%,10%”,表述就更精确了.(从每一种表述对应的统计图来看,这种越来越精确的趋势非常直观)通过这个问题,一方面让学生体会对于同样的数据,可以用不同的方式来表示;另一方面为学生进一步理解总体分布的意义,并会用样本的频率分布来估计总体的分布作一个铺垫. 二 、分析理解:图1-6是某学校学生的一幅真实的照片,图1-7是根据图1-6得到的一种象形统计图,图1-8则是学生比较熟悉的条形统计图.图1-7的实质与图1-8是一致的,但由于它非常形象、直观,容易使人很快就能了解它所要表达的是哪方面的信息.在教学时,可以让学生先观察图1-7,说说自己对它的第一感觉,它是如何表达信息的,然后再比较它和图1-8的异同.还可以鼓励学生课后自己去查找报刊或浏览网页,收集类似的统计图,分析它们的特点和用途,并进一步发展学生收集和分析数据的能力.【思考交流】2001年上海市居民的支出构成情况如下所示:0 10 20 50 150以下不低于170 身高/cm150-160 160-170观察并比较这两种统计图:(1)它们分别有什么特点?你觉得那种统计图更合适?(2)你还有其他表示2001年上海市居民的支出构成情况的方法吗?分析:这里给出了折线统计图和扇形统计图,分别表示2001年上海市居民的支出构成情况.可以先让学生通过思考,进一步体会它们各自的特点和用途,再鼓励他们用自己的方式来进行表示,并与同学进行交流.(1)折线统计图能够清晰地反映数据的变化情况,扇形统计图能清楚地表示出各部分在总体中所占的百分比.就此问题而言,用扇形统计图来表示数据更合适一些.(2)还可以用条形统计图来表示,条形统计图能清楚地表示出每个项目的具体数目.【例】有关部门从甲、乙两个城市所有的自动取货机中分别随机抽取了16台,记录下上午8:00-11:00间各自的销售情况(单位:元)甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41;乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23。
北师大版高中数学必修3《一章 统计 4 数据的数字特征 4.1平均数、中位数、众数、极差、方差》优质课教案_0
3.2全集与补集一教学目标1理解全集与补集的含义,会求解补集2能使用韦恩图表达全集和子集关系,体会直观图示对理解抽象概念的作用二教学重点全集与补集的概念及相应求解计算三教学难点集合的补集求解,韦恩图的应用四教学过程与方法1通过补集的学习,提高学生知识系统化的能力2渗透数形结合思想五情感态度与价值观1通过学习培养学生主动探究知识的意识2通过合作学习,培养学生积极参与的主体意识六教学过程1回顾A 与B 的交集A 与B 的并集2引入孙疃中学高一(5)班有70名同学,要从中选出60名同学组成方队参加体操比赛,你如何完成这件事?是否需要一一选出60人?3新知(1)在研究某些集合的时候,这些集合往往是某个给定集合的子集,这个给定的集合叫作全集,常用符号U 表示.全集含有我们所要研究的这些集合的全部元素(2)设U 是全集,A 是U 的一个子集,则由U 中所有不属于集合A 的元素组成的集合,叫作U 中子集A 的补集(或余集),记作CUA(3)补集性质===)(A C C A C A A C A U U U U4例题部分【例1】 指出下列集合对应表示的是图中的哪一部分 ?()()()())()(5)(4)(3)(21A C B C B A C A C B B C A B A U U U U U ),(,,例2{}{}{}{}{}{}?,641,6427531220147,365317,6,5,4,3,211=========B B C A C A U B A C A C B A U U U U U ,,,,,,,,,)已知全集(湖北)?()(?则,,,,,,)全集(例3 {}{}?,21,31=≤≤-=<=A C x x A x x U U 则)全集({}{}{}.))(,33,32,4)2(B A C B A C B A A C x x B x x A x x U U U U ,(,,求全集≤<-=<<-=≤=5课堂小结6作业布置习题1—3 A 组第6题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 数据的数字特征[核心必知]1.众数、中位数、平均数 (1)众数的定义:一组数据中重复出现次数最多的数称为这组数的众数,一组数据的众数可以是一个,也可以是多个.(2)中位数的定义及求法:把一组数据按从小到大的顺序排列,把处于最中间位置的那个数(或中间两数的平均数)称为这组数据的中位数.(3)平均数: ①平均数的定义:如果有n 个数x 1、x 2、…、x n ,那么x =x 1+x 2+…+x nn,叫作这n 个数的平均数.②平均数的分类:总体平均数:总体中所有个体的平均数叫总体平均数. 样本平均数:样本中所有个体的平均数叫样本平均数. 2.标准差、方差 (1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s 表示.s =1nx 1-x2+x 2-x2+…+x n -x2].(2)方差的求法:标准差的平方s 2叫作方差.s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].其中,x n 是样本数据,n 是样本容量,x 是样本均值. (3)方差的简化计算公式:s 2=1n[(x 21+x 22+…+x 2n )-n x 2]=1n(x21+x22+…+x2n)-x2.3.极差一组数据的最大值与最小值的差称为这组数据的极差.4.数字特征的意义平均数、中位数和众数刻画了一组数据的集中趋势,极差、方差刻画了一组数据的离散程度.[问题思考]1.一组数据的众数一定存在吗?若存在,众数是唯一的吗?提示:不一定.若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数;不是,可以是一个,也可以是多个.2.如何确定一组数据的中位数?提示:(1)当数据个数为奇数时,中位数是按从小到大顺序排列的中间位置的那个数.(2)当数据个数为偶数时,中位数为排列在最中间的两个数的平均值.讲一讲1.据报道,某公司的33名职工的月工资(单位:元)如下:(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平,结合此问题谈一谈你的看法.[尝试解答] (1)平均数是x=1 500+4 000+3 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+591=2 091(元).中位数是1 500元,众数是1 500元.(2)新的平均数是x′=1500+28 500+18 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+1 788=3 288(元).中位数是1 500元,众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.1.众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要的量.2.众数考查各个数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题.3.中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能在所给的数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述它的某种集中趋势.练一练1.某公司销售部有销售人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:(1)求这15位销售人员该月销售量的平均数、中位数及众数;(2)假设销售部负责人把月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较为合理的销售定额.解:(1)平均数为115(1 800×1+510×1+250×3+210×5+150×3+120×2)=320(件),中位数为210件,众数为210件.(2)不合理,因为15人中有13人的销售量未达到320件,也就是说,虽然320是这一组数据的平均数,但它却不能反映全体销售人员的销售水平.销售额定为210件更合理些,这是由于210既是中位数,又是众数,是大部分人都能达到的定额.讲一讲2.甲、乙两机床同时加工直径为100 cm的零件,为了检验质量,各从中抽取6件进行测量,分别记录数据为:甲:99 100 98 100 100 103 乙:99 100 102 99 100 100 (1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定. [尝试解答] (1)x 甲=16(99+100+98+100+100+103)=100,x 乙=16(99+100+102+99+100+100)=100,s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73,s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)两台机床所加工零件的直径的平均数相同,又s 2甲>s 2乙,所以乙机床加工零件的质量更稳定.在实际问题中,仅靠平均数不能完全反映问题,还要研究方差,方差描述了数据相对平均数的离散程度,在平均数相同的情况下,方差越大,离散程度越大,数据波动性越大,稳定性就越差;方差越小,数据越集中,质量越稳定.练一练2.对划艇运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:甲:27 38 30 37 35 31 乙:33 29 38 34 28 36根据以上数据,试估计两人最大速度的平均数和标准差,并判断他们谁更优秀. 解:x 甲=16×(27+38+30+37+35+31)=1986=33,s 2甲=16×[(27-33)2+(38-33)2+(30-33)2+(37-33)2+(35-33)2+(31-33)2]=946, s 甲=946≈3.96, x 乙=16×(33+29+38+34+28+36)=1986=33, s 2乙=16×[(33-33)2+(29-33)2+(38-33)2+(34-33)2+(28-33)2+(36-33)2]=766,s 乙=766≈3.56. 由上知,甲、乙两人最大速度的平均数均为33 m/s ,甲的标准差为3.96 m/s ,乙的标准差为3.56 m/s ,说明甲、乙两人的最大速度的平均值相同,但乙的成绩比甲的成绩更稳定,故乙比甲更优秀.讲一讲3.在一次科技知识竞赛中,两组学生的成绩如下表:已经算得两个组的平均分都是80分.请根据你所学过的统计知识,进一步判断这两个组在这次竞赛中的成绩谁优谁劣,并说明理由.[尝试解答] (1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较看,甲组成绩好些.(2)x 甲=12+5+10+13+14+6(50×2+60×5+70×10+80×13+90×14+100×6)=150×4 000=80(分), x 乙=14+4+16+2+12+12(50×4+60×4+70×16+80×2+90×12+100×12)=150×4 000=80(分).s 2甲=12+5+10+13+14+6[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=172,s 2乙=14+4+16+2+12+12[4×(50-80)2+4×(60-80)2+16×(70-80)2+2×(80-80)2+12×(90-80)2+12×(100-80)2]=256.∵s 2甲<s 2乙,∴甲组成绩较乙组成绩稳定,故甲组好些.(3)甲、乙两组成绩的中位数、平均数都是80分.其中,甲组成绩在80分以上(包括80分)的有33人,乙组成绩在80分以上(包括80分)的有26人.从这一角度看,甲组的成绩较好.(4)从成绩统计表看,甲组成绩大于等于90分的有20人,乙组成绩大于等于90分的有24人,∴乙组成绩集中在高分段的人数多.同时,乙组得满分的人数比甲组得满分的人数多6人.从这一角度看,乙组的成绩较好.要正确处理此类问题,首先要抓住问题中的关键词语,全方位地进行必要的计算、分析,而不能习惯性地仅从样本方差的大小去决定哪一组的成绩好,像这样的实际问题还得从实际的角度去分析,如本讲的“满分人数”;其次要在恰当地评估后,组织好正确的语言作出结论.练一练3.甲、乙两人在相同条件下各打靶10次,每次打靶的成绩情况如图所示:(1)请填写下表:(2)从下列三个不同角度对这次测试结果进行分析:①从平均数和中位数相结合看,谁的成绩好些?②从平均数和命中9环及9环以上的次数相结合看,谁的成绩好些?③从折线图中两人射击命中环数的走势看,谁更有潜力?解:(1)由图可知,甲打靶的成绩为:2,4,6,8,7,7,8,9,9,10;乙打靶的成绩为:9,5,7,8,7,6,8,6,7,7.甲的平均数是7,中位数是7.5,命中9环及9环以上的次数是3;乙的平均数是7,中位数是7,命中9环及9环以上的次数是1.(2)由(1)知,甲、乙的平均数相同.①甲、乙的平均数相同,甲的中位数比乙的中位数大,所以甲成绩较好.②甲、乙的平均数相同,甲命中9环及9环以上的次数比乙多,所以甲成绩较好.③从折线图中看,在后半部分,甲呈上升趋势,而乙呈下降趋势,故甲更有潜力.【解题高手】【多解题】一个球队所有队员的身高如下(单位:cm):178, 179, 181, 182, 176, 183, 176, 180, 183, 175, 181, 185, 180, 184,问这个球队的队员平均身高是多少?(精确到1 cm) [解] 法一:利用平均数的公式计算.x -=114×(178+179+181+…+180+184)=114×2 523≈180.法二:建立新数据,再利用平均数简化公式计算. 取a =180,将上面各数据同时减去180,得到一组数据: -2,-1,1,2,-4,3,-4,0,3,-5,1,5,0,4. x -′=114×(-2-1+1+2-4+3-4+0+3-5+1+5+0+4)=114×3=314≈0.2,∴x -=x -′+a =0.2+180≈180. 法三:利用加权平均数公式计算. x -=114×(185×1+184×1+183×2+182×1+181×2+180×2+179×1+178×1+176×2+175×1)=114×2 523≈180.法四:建立新数据(方法同法二),再利用加权平均数公式计算. x -′=114×[5×1+4×1+3×2+2×1+1×2+0×2+(-1)×1+(-2)×1+(-4)×2+(-5)×1]=114×3≈0.2. ∴x -=x -′+a =0.2+180≈180.1.已知一组数据为20,30,40,50,50,60,70,80,其中平均数,中位数和众数大小关系是( )A .平均数>中位数>众数B .平均数<中位数<众数C .中位数<众数<平均数D .众数=中位数=平均数解析:选D 可得出这组数据的平均数、中位数和众数均为50.2.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本方差为( )A.65 B.65C. 2 D .2 解析:选D ∵样本的平均数为1,即15×(a +0+1+2+3)=1,∴a =-1,∴样本方差s 2=15×[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.3.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92 解析:选A 将这组数据从小到大排列,得87,89,90,91,92,93,94,96. 故平均数x =87+89+90+91+92+93+94+968=91.5,中位数为91+922=91.5.4.(湖南高考)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.(注:方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)解析:该运动员五场比赛中的得分为8,9,10,13,15,平均得分x =8+9+10+13+155=11,方差s 2=15[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=6.8.答案:6.85.甲、乙两人在相同条件下练习射击,每人打5发子弹,命中环数如下:则两人射击成绩的稳定程度是________. 解析:∵x -甲=8,x -乙=8,s 2甲=1.2,s 2乙=1.6,∴s 2甲<s 2乙.∴甲稳定性强. 答案:甲比乙稳定6.某农科所为寻找高产稳定的油菜品种,选了三个不同的油菜品种进行试验,每一品种在五块试验田试种.每块试验田的面积为0.7公顷,产量情况如下表:解:x 1=21.0 kg ,x 2=21.0 kg ,x 3=20.48 kg ;s 21=0.572,s 22=2.572,s 23=3.5976,∴x 1=x 2>x 3,s 21<s 22<s 23. ∴第一个品种既高产又稳定.一、选择题1.在某项体育比赛中,七位裁判为一选手打出的分数为:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .92,2B .92,2.8C .93,2D .93,2.8解析:选B 去掉最高分95和最低分89后,剩余数据的平均数为x =90+90+93+94+935=92,方差为s 2=15×[(92-90)2+(92-90)2+(93-92)2+(94-92)2+(93-92)2]=15×(4+4+1+4+1)=2.8.2.已知一组数据为-3,5,7,x,11,且这组数据的众数为5,那么数据的中位数是( ) A .7 B .5 C .6 D .11解析:选B 这组数据的众数为5,则5出现的次数最多,∴x =5,那么这组数据按从小到大排列为-3,5,5,7,11,则中位数为5.3.如图所示,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为x A 和x B ,样本标准差分别为s A 和s B ,则( )A.x A >x B ,s A >s BB.x A <x B ,s A >s BC.x A >x B ,s A <s BD.x A <x B ,s A <s B 解析:选B A 中的数据都不大于B 中的数据,所以x A <x B ,但A 中的数据比B 中的数据波动幅度大,所以s A >s B .4.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e ,众数为m 0,平均数为x ,则( )A .m e =m 0=xB .m e =m 0<xC .m e <m 0<xD .m 0<m e <x解析:选D 易知中位数的值m e =5+62=5.5,众数m 0=5,平均数x =130×(3×2+4×3+5×10+6×6+7×3+8×2+9×2+10×2)≈6,所以m 0<m e <x .5.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A .57.2 3.6B .57.2 56.4C .62.8 63.6D .62.8 3.6 解析:选D 设该组数据为x 1,x 2,…,x n ,则1n(x 1+x 2+…+x n )=2.8,1n[(x 1-2.8)2+(x 2-2.8)2+…+(x n -2.8)2]=3.6,所以,所得新数据的平均数为1n [(x 1+60)+(x 2+60)+…+(x n +60)]=1n(x 1+x 2+…+x n )+60=2.8+60=62.8.所得新数据的方差为1n[(x 1+60-62.8)2+(x 2+60-62.8)2+…+(x n +60-62.8)2]=1n[(x 1-2.8)2+(x 2-2.8)2+…+(x n -2.8)2]=3.6. 二、填空题6.一个样本按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x =________.解析:由中位数的定义知x +172=16,∴x =15.答案:157.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如表所示:则以上两组数据的方差中较小的一个为s 2=________. 解析:计算可得两组数据的平均数均为7, 甲班的方差s 2甲=-2+02+02+-2+025=25; 乙班的方差s 2乙=-2+02+-2+02+-25=65. 则两组数据的方差中较小的一个为s 2甲=25.答案:258.(湖北高考)某学员在一次射击测试中射靶10次,命中环数如下:7, 8,7,9,5,4,9,10,7,4则(1)平均命中环数为________;(2)命中环数的标准差为________.解析:(1)由公式知,平均数为110(7+8+7+9+5+4+9+10+7+4)=7;(2)由公式知,s 2=110(0+1+0+4+4+9+4+9+0+9)=4⇒s =2.答案:(1)7 (2)2 三、解答题9.为了了解市民的环保意识,某校高一(1)班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况,有关数据如下表:(1)求这50户居民每天丢弃旧塑料袋的平均数、众数和中位数;(2)求这50户居民每天丢弃旧塑料袋的标准差.解:(1)平均数x=150×(2×6+3×16+4×15+5×13)=18550=3.7.众数是3,中位数是4.(2)这50户居民每天丢弃旧塑料袋的方差为s2=150×[6×(2-3.7)2+16×(3-3.7)2+15×(4-3.7)2+13×(5-3.7)2]=150×48.5=0.97,所以标准差s≈0.985.10.某校甲班、乙班各有49名学生,两班在一次数学测验中的成绩(满分100分)统计如下表:(1)请你对下面的一段话给予简要分析:甲了85分,在班里算是上游了!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,并提出教学建议.解:(1)由中位数可知,85分排在第25名之后,从名次上讲,85分不算是上游.但也不能单以班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得名次来判断学习成绩的好坏,小刚得了85分,说明他对这阶段的学习内容掌握较好.(2)甲班学生成绩的中位数为87分,说明高于或等于87分的学生占一半以上,而平均分为79分,标准差很大,说明低分也多,两极分化严重,建议对学习有困难的同学多给一些帮助;乙班学生成绩的中位数和平均分均为79分,标准差小,说明学生成绩之间差别较小,成绩很差的学生少,但成绩优异的学生也很少,建议采取措施提高优秀率.。