专科高数第11章微分方程答案
高数下册第11章解析

则 1时级数收敛; 1 时级数发散; 1时失效.
(5) 根值审敛法 (柯西判别法)
设 un 是正项级数,
n1
如果lim n n
un
(为数或 ),
则 1时级数收敛; 1时级数发散; 1时失效.
3、交错级数及其审敛法
定义 正 、负项相间的级数称为交错级数.
(1)n1un或 (1)nun (其中un 0)
如果级数 an x n 在x x0处发散,则它在满足
n0
不等式 x x0 的一切x 处发散.
推论
如果幂级数 an x n 不是仅在x 0 一点收敛,也
n0
不是在整个数轴上都收敛,则必有一个完全确定
的正数 R 存在,它具有下列性质:
当 x R时,幂级数绝对收敛;
当 x R时,幂级数发散;
函数
1、常数项级数
定义
un u1 u2 u3 un
n1
n
级数的部分和 sn u1 u2 un ui
i 1
级数的收敛与发散
常数项级数收敛(发散)
lim
n
sn
存在(不存在).
收敛级数的基本性质
性质1: 级数的每一项同乘一个不为零的常数, 敛散性不变.
性质2:收敛级数可以逐项相加与逐项相减.
(2)
讨论
lim
n
Rn
0
或
f
(n) ( x)
M,
则级数在收敛区间内收敛于 f ( x).
b.间接法 根据唯一性, 利用常见展开式, 通过 变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积 分等方法,求展开式.
(4) 常见函数展开式
e x 1 x 1 x2 1 xn x (,)
高等数学 第11章 微分方程习题详解

第十一章 微分方程习题详解第十一章 微分方程 习 题 11—11.判断下列方程是几阶微分方程?(1)23d tan 3sin 1;d y y t t t t ⎛⎫=++ ⎪⎝⎭(2)(76)d ()d 0;x y x x y y -++=(3)2()20;x y yy x ''''-+= (4)422()0'''''++=xy y x y .解 微分方程中所出现的未知函数导数(或微分)的最高阶数,叫做微分方程的阶.所以有:(1)一阶微分方程; (2)一阶微分方程; (3)三阶微分方程; (4)三阶微分方程. 2.指出下列各题中的函数是否为所给微分方程的解: (1)2'=xy y ,25=y x ;(2)0''+=y y ,3sin 4cos =-y x x ; (3)20'''-+=y y y ,2e =x y x ;(4)2()()20'''''-++-=xy x y x y yy y ,ln()=y xy .解 (1)将10'=y x 代入所给微分方程的左边,得左边210=x 22()5x ==右边,故25=y x 是微分方程2'=xy y 的解.(2)将3cos 4sin '=+y x x ,3sin 4cos ''=-+y x x 代入所给微分方程的左边,得左边(3sin 4cos )(3sin 4cos )0=-++-==x x x x 右边,故3sin 4cos =-y x x 是微分方程0''+=y y 的解.(3)将2e =x y x ,22e e '=+x x y x x ,22e 4e e ''=++x x x y x x 代入微分方程的左边,得左边222(2e 4e e )2(2e e )e 2e 0=++-++=≠x x x x x x x x x x x x (右边),故2e =x y x 不是所给微分方程20'''-+=y y y 的解.(4)对方程ln()=y xy 的两边关于x 求导,得 1''=+y y x y,即 ''=+xyy y xy .再对x 求导,得2()''''''''++=++yy x y xyy y y xy ,即2()()20'''''-++-=xy x y x y yy y ,故ln()=y xy 是所给微分方程的解.3.确定下列各函数关系式中所含参数,使函数满足所给的初始条件. (1)22-=x y C , 05==x y ;(2)2120()e ,0==+=x x y C C x y ,01='=x y .解 (1)将0=x ,5=y 代入微分方程,得220525=-=-C所以,所求函数为2225-=y x .(2)222212122e 2()e (22)e '=++=++x x x y C C C x C C C x ,将00==x y,01='=x y 分别代入212()e =+x y C C x 和2122(22)e '=++x y C C C x ,得10=C ,21=C ,所以,所求函数为2e =x y x .4.能否适当地选取常数λ,使函数e λ=x y 成为方程90''-=y y 的解.解 因为e λλ'=x y ,2e λλ''=x y ,所以为使函数e λ=x y 成为方程 90''-=y y 的解,只须满足2e 9e 0λλλ-=x x ,即2(9)e 0λλ-=x .而e 0λ≠x ,因此必有290λ-=,即3λ=或3λ=-,从而当3λ=,或3λ=-时,函数33e ,e -==x x y y 均为方程90''-=y y 的解.5.消去下列各式中的任意常数12,,C C C ,写出相应的微分方程. (1)2;y Cx C =+ (2)()tan ;y x x C =+ (3)12e e ;x x xy C C -=+ (4)212()y C C x -=.解 注意到,含一个任意常数及两个变量的关系式对应于一阶微分方程;含两个独立常数的式子对应于二阶微分方程.(1)由2=+y Cx C 两边对x 求导,得'=y C ,代入原关系式2y Cx C =+,得所求的微分方程为2()''+=y xy y .(2)由tan()=+y x x C 两边对x 求导,得2tan()sec ()'=+++y x C x x C ,即 2tan()tan ()'=++++y x C x x x C .而tan()=+yx C x,故所求的微分方程为 2⎛⎫'=++ ⎪⎝⎭y y y x x x x ,化简得 22'=++xy y x y .(3)由12e e -=+x x xy C C 两边对x 求导,得 12e e -'+=-x x y xy C C ,两边再对x 求导,得12e e -''''++=+x x y y xy C C ,可得所求的微分方程为2'''+=xy y xy .(4)由212()-=y C C x 两边对x 求导,得122()'-⋅=y C y C ,将212()-=y C C x代,并化简得12'=-xy y C ,对上式两边再对x 求导,得22''''+=y xy y ,故第十一章 微分方程习题详解所求的微分方程为20'''+=xy y .习 题 11—21.求下列微分方程的通解或特解:(1)ln 0;xy y y '-= (2)cos sin d sin cos d 0;x y x x y y += (3)22();y xy y y '''-=+ (4)(1)d ()d 0;x y x y xy y ++-= (5)23yy xy x '=-,01;x y == (6)22sin d (3)cos d 0x y x x y y ++=,16x y=π=. 解 (1)分离变量,得11d d ln =y x y y x,两端积分,得 ln(ln )ln ln =+y x C ,即 ln =y Cx ,所以原方程的通解为 e C x y =.注 该等式中的x 与C 等本应写为||x 与||C 等,去绝对值符号时会出现±号;但这些±号可认为含于最后答案的任意常数C 中去了,这样书写比较简洁些,可避开绝对值与正负号的冗繁讨论,使注意力集中到解法方面,本书都做这样的处理.(2)原方程分离变量,得cos cos d d sin sin =-y xy x y x,两端积分,得 ln(sin )ln(sin )ln =-+y x C ,即 ln(sin sin )ln ⋅=y x C ,故原方程的通解为 sin sin ⋅=y x C .(3)原方程可化成 2d (1)2d -+=yx y x ,分离变量,得 212d d 1=-+y x y x ,两端积分,得 12ln(1)-=-+-x C y, 即 12ln(1)=++y x C是原方程的通解.(4)分离变量,得d d 11=+-y x y x y x ,两边积分,得 ln(1)ln(1)ln -+=+-+y y x x C ,即 e (1)(1)y x C y x -=+- 是原方程的通解.(5)分离变量,得2d d 31=-y y x x y ,两端积分,得2211ln(31)ln 62-=+y x C , 即 211262(31)ex y C -=.由定解条件01==x y,知16(31)-=C ,即162=C ,故所求特解为 21112662(31)2x y e-=,即223312e -=x y .(6)将方程两边同除以2(3)sin 0+≠x y ,得22cos d d 03sin +=+x yx y x y,两端积分,得 122cos d d 3sin +=+⎰⎰x yx y C x y ,积分后得 2ln(3)ln(sin )ln ++=x y C (其中1ln =C C ),从而有2(3)sin +=x y C ,代入初始条件16=π=x y,得 4sin 26π==C .因此,所求方程满足初始条件的特解为 2(3)sin 2+=x y ,即 2arcsi 3n2y x =+. 2.一曲线过点0(2,3)M 在两坐标轴间任意点处的切线被切点所平分,求此曲线的方程. 解 设曲线的方程为()y y x =,过点(,)M x y 的切线与x 轴和y 轴的交点分别为(2,0)A x 及(0,2)B y ,则点(,)M x y 就是该切线AB 的中点.于是有22'=-yy x ,即xy y '=-,且(2)3=y , 分离变量后,有11d d =-y x y x,积分得 ln ln ln =-y C x ,即 =C y x .由定解条件23==x y ,有6=C ,故 6=y x为所求的曲线. 3.一粒质量为20克的子弹以速度0200v =(米/秒)打进一块厚度为10厘米的木板,然后穿过木板以速度180v =(米/秒)离开木板.若该木板对子弹的阻力与运动速度的平方成正比(比例系数为k ),问子弹穿过木板的时间.解 依题意有2d d =-vmkv t,0200==t v , 即 21d d -=kv t v m,两端积分,得 10.02=+=+k kt C t C v m (其中20克=0.02千克), 代入定解条件0200==t v ,得1200=C ,故有200100001=+v kt .第十一章 微分方程习题详解设子弹穿过木板的时间为T 秒,则2000.1d 100001Tt kt =+⎰200ln(100001)10000=+Tkt k 1ln(100001)50=+kT k, 又已知=t T 时,180==v v 米/秒,于是20080100001=+kT ,从而,0.00015=kT ,为此有 0.1ln(1.51)500.00015=+⨯T,所以0.10.0075ln 2.5=⨯T 0.000750.00080.9162≈=(秒), 故子弹穿过木板运动持续了0.0008=T (秒).4.求下列齐次方程的通解或特解:(1)0;xy y '- (2)22()d d 0;x y x xy y +-= (3)332()d 3d 0;x y x xy y +-= (4)(12e )d 2e (1)d 0;x x yyxx y y++-=(5)22d d yx xy y x=-,11;x y == (6)22(3)d 2d 0y x y xy x -+=, 01x y==.解 (1)原方程变形,得'=+y y x ,令=yu x,即=y ux ,有''=+y u xu ,则原方程可进一步化为'+=u xu u分离变量,得1d =u x x ,两端积分得ln(ln ln +=+u x C ,即u Cx ,将=yu x代入上式并整理,得原方程的通解为2y Cx .(2)原方程变形,得22d d +=y x y x xy,即21d d x xy y x y ⎛⎫+ ⎪⎝⎭=. 令=yu x,即=y ux ,有''=+y u xu ,则原方程可进一步化为 21+'+=u u xu u, 即 1d d =u u x x ,两端积分,得 211ln 2=+u x C ,将=yu x代入并整理,得原方程的通解22(2ln )=+y x x C (其中12=C C ).(3)原方程变形,得332d d 3+=y x y x xy ,即32d 1()d 3()+=y y x x y x , 令=y ux ,有d d d d =+y uu x x x,则原方程可进一步化为 32d 1d 3++=u u u x x u , 即 3231d d 12u u x u x=-,两端积分,得311ln(12)ln ln 22--=-u x C , 即 23(12)-=x u C ,将=yu x代入上式并整理,得原方程的通解为 332-=x y Cx .(4)显然,原方程是一个齐次方程,又注意到方程的左端可以看成是以xy为变量的函数,故令=x u y ,即=x uy ,有d d d d =+x u u y y y,则原方程可化为 d ()(12e )2e (1)0d +++-=u u uu yu y, 整理并分离变量,得2e 11d d 2e +=-+u uu y u y, 两端积分,得ln(2e )ln ln +=-+u u y C ,第十一章 微分方程习题详解即 2e +=u C u y .将 =xu y代入并整理,得原方程的通解为 2e +=xy y x C .(5)原方程可化为2d d ⎛⎫=- ⎪⎝⎭y y y x x x . 令=yu x,有d d d d =+y u u x x x ,则原方程可进一步化为2d d +=-uu xu u x, 即 211d d -=u x u x ,两端积分,得 1ln =+x C u ,将=yu x代入,得 ln =+xx C y, 代入初始条件11==x y,得 1ln11=-=C .因此,所求方程满足初始条件的特解为1ln =+xy x.(6)原方程可写成22d 1320d -+=x x x y y y.令=x u y ,即=x uy ,有d d d d =+x uu y y y,则原方程成为 2d 132()0d -++=uu u u yy, 分离变量,得221d d 1=-u u y u y,两端积分,得 2ln(1)ln ln -=+u y C ,即 21-=u Cy ,代入=xu y并整理,得通解 223-=x y Cy .由初始条件01==x y,得1=-C .于是所求特解为322=-y y x .5.设有连结原点O 和(1,1)A 的一段向上凸的曲线弧OA ,对于OA 上任一点(,)P x y ,曲线弧OP 与直线段OP 所围成图形的面积为2x ,求曲线弧OA 的方程.解 设曲线弧的方程为()=y y x ,依题意有201()d ()2-=⎰xy x x xy x x ,上式两端对x 求导,11()()()222'--=y x y x xy x x ,即得微分方程4'=-yy x, 令=yu x,有d d d d =+y u u x x x ,则微分方程可化为d 4d +=-u u xu x ,即d 4d =-u x x, 积分得4ln =-+u x C ,因=yu x,故有 (4ln )=-+y x x C .又因曲线过点(1,1)A ,故1=C .于是得曲线弧的方程是(14ln )=+y x x .6.化下列方程为齐次方程,并求出通解:(1)(1)d (41)d 0--++-=x y x y x y ; (2)()d (334)d 0+++-=x y x x y y . 解 (1)原方程可写成d 1d 41-++=+-y x y x y x , 令10410x y y x --=+-=⎧⎨⎩,解得交点为1=x ,0=y .作坐标平移变换1=+x X ,=y Y ,有d d d d d(1)d ==+y Y Yx X X, 所以原方程可进一步化为d d 4-=+Y Y XX Y X(※) 这是齐次方程.设=Y u X ,则=Y uX ,d d d d =+Y u u X X X,于是(※)式可化为 1d d 41YY X Y X X-=⋅+, 即第十一章 微分方程习题详解d 1d 41-+=+u u u XX u , 变量分离,得2411d d 41+=-+u u X u X, 两端积分,得2111ln(41)arctan(2)ln 22++=-+u u X C , 即 22ln (41)arctan(2)⎡⎤++=⎣⎦X u u C 1(2)=C C ,将1==-Y y u X x 代入,得原方程的通解为 222ln 4(1)arctan1⎡⎤+-+=⎣⎦-yy x C x . (2)原方程可写成d d 43()+=-+y x yx x y , 该方程属于d ()d =++yf ax by c x类型,一般可令=++u ax by c . 令=+u x y ,有d d 1d d =-y u x x,则原方程可化为 d 1d 43-=-u ux u, 即34d 2d 2-=-u u x u ,积分得 32ln 22+-=+u u x C ,将=+u x y 代入上式,得原方程的通解为32ln 2+++-=x y x y C .习 题 11—31.求下列微分方程的通解:(1)22e -'+=x y xy x ; (2)23'-=xy y x ; (3)d tan 5d yx y x-=; (4)1ln '+=y y x x ; (5)2(6)d 2d 0-+=y x y y x ; (6)d 32d ρρθ+=. 解 (1) ()d ()d e ()e d -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰p x x p x x y q x x C ()222d 2d e e e d e d x x x xx x x x C x x C ---⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰2221e e 2x x C x --=+. (2)原方程可化为3'-=y y x x, 故通解为33d d 3321e e d ---⎡⎤⎛⎫⎰⎰=+=-=-⎢⎥ ⎪⎝⎭⎣⎦⎰x x x x y x x C x C Cx x x .(3)原方程可化为d cos 5cos d sin sin -=y x x y x x x, 故通解为cos cos d d sin sin 5cos e e d sin ⎛⎫- ⎪⎝⎭⎡⎤⎰⎰=+⎢⎥⎢⎥⎣⎦⎰x x x x x x x y x C x 25cos sin d sin 5sin x x x C C x x ⎡⎤=+=-⎢⎥⎣⎦⎰. (4)所给方程的通解为()11d d ln ln 1e ed ln d ln -⎡⎤⎰⎰=+=+⎢⎥⎣⎦⎰⎰x xx x x x y x C x x C x1(ln )ln ln -=-+=+C xx x x C x x x. (5)方程可化为 2d 6d 2x x y y y -=,即 d 31d 2x x y y y -=-,故通解为 33d d 1e e d 2-⎡⎤⎰⎰=-+⎢⎥⎢⎥⎣⎦⎰y yy y x y y C3211d 2y y C y ⎛⎫=-+ ⎪⎝⎭⎰312⎛⎫=+ ⎪⎝⎭y C y . (6)()3d 3d 33e 2e d e 2e d θθθθρθθ--⎡⎤⎰⎰=+=+⎢⎥⎣⎦⎰⎰C C 33322e e e 33C C θθθ--⎛⎫=+=+ ⎪⎝⎭.2.求下列微分方程的特解: (1)d tan sec d yy x x x -=,00x y ==; (2)cos d cot 5e d x y y x x +=,24π==-x y ; (3)23d 231d y x y x x -+=,10x y ==.第十一章 微分方程习题详解解 (1)tan d tan d e sec e d -⎛⎫⎰⎰=⋅+ ⎪⎝⎭⎰x xx x y x x C ()lncos lncos e sec ed -=+⎰x xx x C()1sec cos d cos x x x C x=⋅+⎰cos +=x Cx, 代入初始条件0,0==x y ,得0=C .故所求特解为 cos =xy x. (2) cot d cot d cos e 5e e d -⎛⎫⎰⎰=⋅+ ⎪⎝⎭⎰x x x x x y x C ()cos 15esin d sin xx x C x=⋅+⎰()cos 15e sin =-+x C x, 代入初始条件,42π==-x y ,得1C =,故所求特解为cos 15e sin -=xy x, 即 cos sin 5e 1+=x y x .(3) 332323d d ee d ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭⎡⎤⎰⎰=+⎢⎥⎢⎥⎣⎦⎰x x x x x x y x C 22113ln 3ln e e d ⎛⎫-++ ⎪⎝⎭⎡⎤=+⎢⎥⎢⎥⎣⎦⎰x x xx x C 222211113332e 11e d ee d 2x x x x x x C x C x x --⎛⎫⎡⎤⎛⎫⎪=+=-+⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎣⎦⎪⎝⎭⎰⎰ 2221133311e e e 22x x x x x C Cx -⎛⎫=+=+ ⎪ ⎪⎝⎭,代入初始条件1,0==x y ,得12e=-C ,故所求特解为 21311e 2-⎛⎫=- ⎪ ⎪⎝⎭x x y . 3.求一曲线的方程,这曲线通过原点,并且它在点(,)x y 处的切线斜率等于2+x y . 解 设曲线方程为()=y y x ,依题意有2'=+y x y ,即2'-=y y x .从而有()d de 2e d e2ed --⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰x x xxy x x C x x Ce (2e 2e )22e x x x x x C x C --=--+=--+. 由0=x ,0=y ,得2=C .故所求曲线的方程为2(e 1)=--x y x .4.设曲线积分2()d [2()]d +-⎰Lyf x x xf x x y 在右半平面(0>x )内与路径无关,其中()f x 可导,且(1)1=f ,求()f x .解 依题意及曲线积分与路径无关的条件,有2[2()][()]0∂-∂-=∂∂xf x x yf x x y,即 2()2()2()0'+--=f x xf x x f x .记()=y f x ,即得微分方程及初始条件为112'+=y y x,11==x y . 于是,)11d d22e e d -⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰x xx x y x C x C23⎫=⎪⎭C x 代入初始条件 1,1==x y ,得13=C ,从而有 2()3=f x x5.求下列伯努利方程的通解:(1)2d ;d yx y xy x+= (2)42323;y y x y x '+=(3)4d 11(12);d 33y y x y x +=- (4)3d [(1ln )]d 0-++=x y y xy x x . 解 (1)方程可以化为21d 11d --+=y y y x x. 令1-=z y ,则2d d d d -=-z y y x x ,即2d d d d -=-y z y x x .代入方程,得d 11d -+=z z x x,即 d 11d -=-z z x x, 其通解为11d de (e )d ln -⎛⎫⎰⎰=-+=- ⎪⎝⎭⎰x xx x z x C Cx x x ,所以原方程的通解为1ln =-Cx x x y. (2)原方程化为41233d 23d --+=y yy x x x. 令13-=z y ,则43d 1d d 3d -=-z y y x x ,即43d d 3d d -=-y z y x x .代入方程,得2d 233d -+=z z x x x,即2d 2d 3-=-z z x x x,第十一章 微分方程习题详解其通解为22d d 233e (e )d -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰x x x xz x x C2433()d ⎡⎤=-+⎢⎥⎣⎦⎰x x x C273337⎛⎫=- ⎪⎝⎭x C x .所以原方程的通解为 12733337-=-yCx x .(3)原方程化为4311(12)33--'+=-y y y x .令3-=z y ,则43-''=-z y y ,于是原方程化为21z x z '-=-,其通解为d d 21e ()e d e ()e 21d x x x x z x C x x x C --⎡⎤⎰⎰⎡⎤=+=+⎢⎥⎣⎦⎣--⎦⎰⎰ e (21)e 21e x x xx C x C -⎡⎤=--+=--+⎣⎦,所以原方程的通解为 321e -=--+x y x C .(4)原方程化为31(1ln )'-=+y y x y x ,即3211ln --'-=+y y y x x. 令2-=z y ,则32-''=-z y y ,则原方程化为22(1ln )'+=-+z z x x,其通解为 22d de 2(1ln )e d -⎡⎤⎰⎰=-++⎢⎥⎣⎦⎰x xx x z x x C222(1ln )d x x x x C -⎡⎤=-++⎣⎦⎰233221(1ln )d 33x x x x x C x -⎡⎤=-++⋅+⎢⎥⎣⎦⎰23322(1ln )39x x x x C -⎡⎤=-+++⎢⎥⎣⎦222(1ln )39x x x Cx -=-+++,所以原方程的通解为 2222(1ln )39--=-+++y x x x Cx ,或写成233242ln 93=--+x x x x C y .习 题 11—41.求下列全微分方程的通解:(1)21d ()d 0;2xy x x y y ++= (2)3222(36)d (46)d 0;x xy x y x y y +++=(3)e d (e 2)d 0;y y x x y y +-= (4)(cos cos )sin sin 0x y x y y x y '+-+=. 解 (1)易知,=P xy ,21()2=+Q x y .因为∂∂==∂∂P Q x y x ,所以原给定的方程为全微分方程.而21(,)0d ()d 2x yu x y s x t t =++⎰⎰22221111()2224x y y x y y =+=+,于是,所求方程的通解为221124+=x y y C . (2)易知,2236=+P x xy ,3246=+Q y x y .因为12∂∂==∂∂P Qxy y x, 所以原给定的方程为全微分方程.而2320(,)3d (46)d xyu x y s s t x t t =++⎰⎰34223x y x y =++, 于是,所求方程的通解为 34223++=x y x y C .(3)易知,e y P =,e 2y Q x y =-.因为 e y P Qy x∂∂==∂∂,原方程为全微分方程.将原方程的左端重新组合,得2(e d e d )2d d(e )y y y x x y y y x y +-=-,于是,所求方程的通解为 2e y x y C -=.(4)原方程可化为(cos cos )d (sin sin )d 0x y x y y x y x ++-+=,易知,sin sin P y x y =-+,cos cos Q x y x =+.因为 sin cos P Qx y y x∂∂=-+=∂∂,原方程为全微分方程.方程的左端重新组合,得(cos d sin d )(cos d sin d )0x y y y x x y y x x ++-=, d(sin )d(cos )d(sin cos )0x y y x x y y x +=+=,于是,所求方程的通解为 sin cos x y y x C +=.第十一章 微分方程习题详解2.用观察法求出下列方程的积分因子,并求其通解:(1)2()d d 0;x y x x y =-+ (2)22(3)d (13)d 0y x y x xy y -+-=. 解 (1)用21x 乘方程,便得到了全微分方程 211d d 0⎛⎫+-= ⎪⎝⎭y x y x x ,将方程左端重新组合,得2d d d d 0-⎛⎫+=-= ⎪⎝⎭y x x y y x x x x . 于是,通解为 -=yx C x. (2)原方程可化为232d 3d d 3d 0xy x y x y xy y -+-=,即232d d 3(d d )0xy x y y x xy y +-+=,用21y 乘方程,便得到了全微分方程 21d d 3(d d )0+-+=x x y y x x y y , 221111d d 3d()d 3022x xy x xy y y ⎛⎫⎛⎫⎛⎫--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是,原方程的通解为21132--=x xy C y. 3.用积分因子法解下列一阶线性方程:(1)24ln xy y x '+=; (2)tan y y x x '-=. 解 (1)将原方程写成24ln '+=xy y x x, 此方程两端乘以2d 2eμ⎰==xx x 后变成224ln '+=x y xy x x ,即 2()4ln '=x y x x ,两端积分,得2224ln d 2ln ==-+⎰x y x x x x x x C ,于是,原方程的通解为 22ln 1=-+C y x x . (2)方程两端乘以tan d e cos μ-⎰==x xx ,则方程变为cos sin cos '-=y x y x x x ,即 (cos )cos '=y x x x ,两端积分,得cos cos d sin cos ==++⎰y x x x x x x x C ,于是,原方程的通解为 tan 1cos =++Cy x x x.习 题 11—51.求下列微分方程的通解: (1)211y x ''=+; (2)e x y x '''=; (3)(5)(4)10y y x -=.解(1)1121d arctan 1'=+=++⎰y x C x C x , ()212121arctan d arctan ln(1)2y x C x C x x x C x C =++=-+++⎰.(2)11e d e e ''=+=-+⎰x x x y x x C x C ,1212(e e )d e 2e x x x x y x C x C x C x C '=-++=-++⎰, 2112323(e 2e )d e 3e 2x x x x C y x C x C x C x x C x C =-+++=-+++⎰. (作为最后的结果,这里12C 也可以直接写成1C ). (3)令(4)=z y ,则有d 10d -=z z x x,可知=z Cx ,从而有 44d d =yCx x , 再逐次积分,即得原方程的通解53212345=++++y C x C x C x C x C .2.求下列微分方程的通解:(1);y y x '''=+ (2)0;xy y '''+= (3)310;y y ''-= (4)()3y y y ''''=+. 解 (1)令'=y p ,则'''=y p ,且原方程化为'-=p p x .利用一阶线性方程的求解公式,得()d d 11e e d eed x x xxp x x C x x C --⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰()11e e e 1e x x x x x C x C --=--+=--+.第十一章 微分方程习题详解即11e x p x C =--+,再积分,得通解21121(1e )d e 2x x y x C x x x C C =--+=--++⎰.(2)令'=y p ,则'''=y p ,且原方程化为0'+=xp p ,分离变量,得d d =-p xp x,积分得 11ln ln ln =+p C x,即 1=C p x,再积分,得通解 112d ln ==+⎰C y x C x C x .(3)令'=y p ,则d d ''=py py,且原方程化为 3d 10d -=py py, 分离变量,得 31d d =p p y y ,积分得 2121=-+p C y ,故'==y p , 再分离变量,得d =±x .由于||sgn()=y y y ,故上式两端积分,sgn()d =±⎰y x,即12sgn(=±+y C x C ,两边平方,得()221121-=+C y C x C .(4)令'=y p ,则d d ''=p y py ,且原方程化为3d d =+ppp p y,即 2d (1)0d ⎡⎤-+=⎢⎥⎣⎦p p p y . 若0≡p ,则≡y C .≡y C 是原方程的解,但不是通解. 若0≡p ,由于p 的连续性,必在x 的某区间有0≠p .于是2d (1)0d -+=pp y,分离变量,得2d d 1=+py p ,积分得 1arctan =-p y C ,即()1tan =-p y C ,亦即 ()1cot d d -=y C y x .积分得()12ln sin ln -=+y C x C .即 ()12sin e -=x y C C ,也可写成()21arcsin e =+x y C C .由于当20=C 时,1=y C ,故前面所得的解≡y C 也包含在这个通解之内.3.求下列初值问题的解:(1)sin ''=+y x x ,(0)1=y ,(0)2'=-y ; (2)2(1)2'''+=x y xy ,(0)1=y ,(0)3'=y ; (3)2e y y ''=,(0)0=y ,(0)0'=y ; (4)()21'''+=y y ,(0)0=y ,(0)0'=y .解 (1)易知,211cos 2'=-+y x x C ,3121sin 6=-++y x x C x C .由初值条件(0)2'=-y ,知1201-=-+C ,得11=-C ;由(0)1=y ,知21000=-++C ,得21=C .故特解为31sin 16=--+y x x x .(2)令'=y p ,则'''=y p ,且原方程化为2(1)2'+=x p xp ,变量分离,得212d d 1=+x p x p x,两端积分,得 21(1)'==+y p C x .再两端积分,得 3121()3=++y C x x C .由初值条件(0)3y '=,有213(10)=+C ,解得,13=C ,由初值条件(0)1y =,有22113(00)3=+⋅+C ,解得,21=C ,故所给初值条件的微分方程的特解为 331=++y x x .(3)令'=y p ,则d d py py ''=,且原方程化为 2d e d y ppy=,即2d e d y p p y =,第十一章 微分方程习题详解两端积分得22111e 22yp C =+. 代入初始条件(0)0=y ,(0)0y '=,得 112C =-,从而22111e 222y p =-,即22e 1y p =-,亦即 '=y .分离变量后积分d =±⎰x ,即d -=⎰y x ,得2arcsin(e )-=+y x C ,代入初始条件(0)0y =,得2π=2C .于是,符合所给初值条件的特解为 e sin -π⎛⎫=⎪2⎝⎭y x , 即 lncos lnsec =-=y x x .(4)令'=y p ,则d d py py''=,且原方程化为 2d 1d ppp y+=, 分离变量,得2d d 1pp y p =-,两端积分,得 211ln(1)2--=+p y C , 代入初始条件(0)0y =,(0)0y '=,得 10=C .从而,21ln(1)2=--y p ,即'==y p再分离变量,得d =±y x d =±y y x .两端积分,得2arch(e )=±+y x C ,代入初始条件(0)0=y ,得20=C ,从而有满足所给初始条件的特解为arch(e )=±y x ,即e ch()ch()=±=y x x ,或写成 ln ch()=y x .4.试求''=y x 的经过点(0,1)M 且在此点与直线112=+y x 相切的积分曲线. 解 由于直线112=+y x 在(0,1)M 处的切线斜率为12,依题设知,所求积分曲线是初值问题''=y x ,01==x y ,012='=x y 的解.由''=y x ,积分得2112'=+y x C ,再积分,得 21216=++y x C x C ,代入初始条件01==x y ,012='=x y ,解得 112=C ,21=C ,于是所求积分曲线的方程为 211162=++y x x .5.对任意的0>x ,曲线()=y f x 上的点(,())x f x 处的切线在y 轴上的截距等于1()d xf t t x ⎰, 且()=y f x 存在二阶导数,求()f x 的表达式.解 设曲线的方程为()=y f x ,其中()=y f x 有二阶导数,则在点(,())M x f x 处的切线方程为()()()'-=-Y f x f x X x ,令0=X ,知切线在y 轴上的截距为()()'=-Y f x xf x ,据题意,有1()d ()()'=-⎰x f t t f x xf x x ,即20()()()d '-=⎰x xf x x f x f t t . 两端求导,得2()()2()()()''''+--=f x xf x xf x x f x f x ,即[]()()0x f x xf x '''+=,已知0>x ,故有()()0f x xf x '''+=,令'=y p ,则'''=y p ,且原方程化为d 0d pp xx+=, 分离变量,得11d d =-p x p x,两端积分,得 1ln ln ln =-p C x ,即1'==C y p x.第十一章 微分方程习题详解再对两端积分,得12ln =+y C x C ,即12()ln =+f x C x C .习 题 11—61.下列函数组中,在定义的区间内,哪些是线性无关的. (1)e x ,e ;x - (2)23sin x ,21cos ;x - (3)cos2x ,sin 2;x (4)ln x x ,ln x . 解 (1)因为1e x y =,2e x y -=满足:212e e exx x y y -==≠常数, 所以函数组e x ,e x -是线性无关的.(2)因为213sin y x =,221cos y x =-满足:21223sin 31cos y x y x==-, 所以函数组23sin x ,21cos -x 是线性相关的.(3)因为1cos2y x =,2sin 2y x =满足:12cos2cot 2sin 2y x x y x==≠常数, 所以函数组cos2x ,sin 2x 是线性无关的.(4)因为1ln y x x =,2ln y x =满足:12ln ln y x x x y x==≠常数, 所以函数组ln x x ,ln x 是线性无关的.2.验证1cos y x ω=及2sin y x ω=都是方程20y y ω''+=的解,并写出该方程的通解. 证明 由1cos y x ω=,得1sin y x ωω'=-,21cos y x ωω''=-; 由2sin y x ω=,得1cos y x ωω'=,21sin y x ωω''=-. 可见,2sin 0i y x ωω''+= (1,2)i =,故1cos y x ω=及2sin y x ω=都是方程20y y ω''+=的解.又因为12cot y x y ω=≠常数,故1cos y x ω=与2sin y x ω=线性无关.于是所给方程的通解为 1212cos sin y y y C x C x ωω=+=+.3.验证21e x y =及22e x y x =都是微分方程24(42)0y xy x y '''-+-=的解,并写出该方程的通解.证明 由21e x y =,得212e x y x '=,221(24)e x y x ''=+; 由22e x y x =,得222(12)e x y x '=+,232(64)e x y x x ''=+. 因为2222221114(42)(24)e 42e (42)e 0x x x y xy x y x x x x '''-+-=+-⋅+-=; 22223222224(42)(64)e 4(12)e (42)e 0x x x y xy x y x x x x x x '''-+-=+-⋅++-=, 所以21e x y =及22e x y x =都是方程24(42)0y xy x y '''-+-=的解.又因为21y x y =≠常数,故21e x y =与22e x y x =线性无关,于是所给方程的通解为 21212()e x y y y C C x =+=+.4.若13y =,223y x =+,22e 3x y x =++都是方程()()()y P x y Q x y f x '''++=(()0)f x ≠的特解,当()P x ,()Q x ,()f x 都是连续函数时,求此方程的通解.解 因为221y y x -=,32e x y y -=,所以2x 及e x 都是方程()()()y P x y Q x y f x '''++=对应齐次方程的特解.又因为32221e xy y y y x -=≠-常数,所以21y y -与32y y -线性无关.因此,所给方程()()()y P x y Q x y f x '''++=的通解为212e 3x y C x C =++.习 题 11—71.求下列微分方程的通解.(1)40;y y '''-= (2)3100;y y y '''--= (3)960;y y y '''++= (4)0;y y ''+=(5)6250;y y y '''-+= (6)(4)5360''+-=y y y .解 (1)所给方程对应的特征方程为240r r -=,解之,得10r =,24r =,所以原方程的通解为412e x y C C =+.(2)所给方程对应的特征方程为23100r r --=解之,得15r =,22r =-,所以原方程的通解为第十一章 微分方程习题详解5212e e x x y C C -=+.(3)所给方程对应的特征方程为29610r r ++=解之,得 1213r r ==-,所以原方程的通解为1312()ex y C C x -=+.(4)所给方程对应的特征方程为210r +=,解之,得 1i r =,2i r =-,所以原方程的通解为12cos sin y C x C x =+.(5)所给方程对应的特征方程为26250r r -+=,解之,得 134i r =-,234i r =+,所以原方程的通解为312e (cos 4sin 4)x y C x C x =+.(6)所给方程对应的特征方程为425360r r +-=,解之,得 1,22r =±,3,43i r =±,所以原方程的通解为221234e e cos3sin3x x y C C C x C x -=+++.2.求下列微分方程满足所给初始条件的特解: (1)00430,6,10==''''-+===x x y y y y y ; (2)00440,2,0==''''++===x x y y y y y ; (3)00250,2,5=='''+===x x y y y y ; (4)004130,0,3==''''-+===x x y y y y y .解 (1)所给方程对应的特征方程为2430r r -+=,解之,得 11r =,23r =,所以原方程的通解为312e e x x y C C =+,从而,312e 3e x x y C C '=+,代入初始条件006,10x x y y =='==,得12126,310,C C C C +=⎧⎨+=⎩ 解得124,2,C C =⎧⎨=⎩ 故所求特解为34e 2e x x y =+.(2)所给方程对应的特征方程为24410r r ++=,解之,得 1,212r =-,所以原方程的通解为1212()ex y C C x -=+,从而,12211221211e ee 22x x x C C C x y ----'=-, 代入初始条件002,0x x y y =='==,得1122,10,2C C C =⎧⎪⎨-+=⎪⎩ 解得,122,1,C C =⎧⎨=⎩ 故所求特解为12(2)ex y x -=+.(3)所给方程对应的特征方程为2250r +=,解之,得 1,25i r =±,所以原方程的通解为12cos5sin5y C x C x =+,从而,125sin55cos5y C x C x '=-+,代入初始条件002,5x x y y =='==,得122,55,C C =⎧⎨=⎩ 解得,122,1,C C =⎧⎨=⎩ 故所求特解为2cos5sin5y x x =+.(4)所给方程对应的特征方程为24130r r -+=,解之,得 1,223i r =±,所以原方程的通解为212e (cos3sin 3)x y C x C x =+,从而,21221e [(23)cos3(23)sin3]x y C C x C C x '=++-,代入初始条件000,3x x y y =='==,得1120,233,C C C =⎧⎨+=⎩ 解得120,1,C C =⎧⎨=⎩ 故所求特解为2e sin3x y x =.3.设圆柱形浮筒,直径为0.5米,铅直放在水中,当稍向下压后突然放开,浮筒在水第十一章 微分方程习题详解中上下振动的周期为2秒,求浮筒的质量.解 设x 轴的正向铅直向下,原点在水面处.平衡状态下浮筒上一点A 在水平面处,又设在时刻t ,点A 的位置为()x x t =,此时它受到的恢复力的大小为21000||gV g R x ρ=π排水(R 是浮筒的半径),恢复力的方向与位移方向相反,故有21000mx g R x ''=-π,其中m 是浮筒的质量.记221000g R mωπ=,则得微分方程20x x ω''+=.其对应的特征方程为220r ω+=,解得1,2i r ω=±,故12cos sin sin()x C t C t A t ωωωϕ=+=+,A 1sin C Aϕ=. 由于振动周期22T ωπ==,故ω=π,即221000g R m π=π,从中解出浮筒的质量为 21000195gR m =≈π(千克).习 题 11—81.求下列微分方程的特解*y 的形式(不必求出待定系数). (1)2331;y y x ''-=+ (2);y y x '''+= (3)2e ;x y y y '''-+= (4)23e ;x y y y -'''--= (5)32e ;x y y y x '''-+= (6)22(3)e ;x y y x x '''-=+- (7)276e sin ;x y y y x '''++= (8)245e sin ;x y y y x '''-+= (9)2222e cos ;x y y y x x '''-+= (10)22e sin x y y y x x '''-+=.解 (1)2()31f x x =+属于e ()λx m P x 型(其中,2()31m P x x =+,0λ=),对应齐次方程的特征方程为230r -=.易知,0λ=不是特征方程的根,所以特解*y 的形式为*2y Ax Bx C =++ (这里A 、B 和C 为待定系数).(2)()f x x =属于e ()λx m P x 型(其中,()m P x x =,0λ=),对应齐次方程的特征方程为20r r +=.易知,0λ=是特征方程的一个单根,所以特解*y 的形式为*2()y x Ax B Ax Bx =+=+ (这里A 和B 为待定系数).(3)()e x f x =属于e ()λx m P x 型(其中,()1m P x =,1λ=),对应齐次方程的特征方程为2210r r -+=,易知,1λ=是特征方程的二重根,所以特解*y 的形式为*2e x y Ax = (其中A 为待定系数).(4)()e x f x -=属于e ()λx m P x 型(其中,()1m P x =,1λ=-),对应齐次方程的特征方程为2230r r --=,易知,1λ=-是特征方程的一个单根,所以特解*y 的形式为*e x y Ax -= (其中A 为待定系数).(5)()e x f x x =属于e ()λx m P x 型(其中,()m P x x =,1λ=),对应齐次方程的特征方程为2320r r -+=,易知,1λ=是特征方程的一个单根,所以特解*y 的形式为*2()e ()e x x y x Ax B Ax Bx =+=+ (其中A 和B 为待定系数).(6)2()(3)e x f x x x =+-是e ()λx m P x 型(其中,2()3m P x x x =+-,1λ=),对应齐次方程的特征方程为220r r -=,易知,1λ=是不是特征方程的根,所以特解*y 的形式为*2()e x y Ax Bx C =++ (其中A 、B 和C 为待定系数).(7)2()e sin x f x x =属于[]e ()cos ()sin x l n P x x P x x λωω+型(其中2λ=,1ω=,()0l P x =,()1n P x =).对应齐次方程的特征方程为2760r r ++=,易知,i 2i λω+=+不是特征方程的根,所以应设其特解为*2e (cos sin )x y A x B x =+ (其中A 、B 为待定系数).(8)2()e sin x f x x =属于[]e ()cos ()sin x l n P x x P x x λωω+型(其中2λ=,1ω=,()0l P x =,()1n P x =).对应齐次方程的特征方程为2450r r -+=,易知,i 2i λω+=+是特征方程的根,所以应设其特解为*2e [cos sin )]x y x A x B x =+ (其中A 和B 为待定系数).(9)由2()2e cos xf x x x =属于[]e ()cos ()sin x l n P x x P x x λωω+型(其中2λ=,1ω=,()2l P x x =,()0n P x =),对应齐次方程的特征方程为2220r r -+=,易知,i 2i λω+=+不是特征方程的根,所以应设其特解为*2e [()cos ()sin )]x y Ax B x Cx D x =+++ (其中A 、B 、C 和D 为待定系数).(10)()e sin x f x x x =属于[]e ()cos ()sin x l n P x x P x x λωω+型(其中1λ=,1ω=,()0l P x =,()n P x x =).对应齐次方程的特征方程为2220r r -+=,易知,i 1i λω±=±是特征方程的根,所以应设其特解为[]*e ()cos ()sin )x y x Ax B x Cx D x =+++(其中A 、B 、C 和D 为待定系数).2.求下列各微分方程的通解.(1)22e ;x y y y '''+-= (2)323e ;x y y y x -'''++= (3)369(1)e ;x y y y x '''-+=+ (4)e cos ''+=+x y y x .解 (1)()2e x f x =是e ()λx m P x 型(其中,()2m P x =,1λ=),对应齐次方程的特征方第十一章 微分方程习题详解程为2210r r +-=,解得 112r =,21r =-,故对应齐次方程的通解为 1212e e x x Y C C -=+.因为1λ=不是特征方程的根,所以特解*y 的形式为*e x y A =,代入原方程得2e e e 2e x x x x A A A +-=.消去e x ,有1A =,即 *e x y =,故原方程的通解为1*212e e e x x x y Y y C C -=+=++.(2)()3e x f x x -=是e ()λx m P x 型(其中,()3m P x x =,1λ=-),对应齐次方程的特征方程为 2320r r ++=,解得 11r =-,22r =-,故对应齐次方程的通解为212e e x x Y C C --=+.因为1λ=-是特征方程的单根,所以特解*y 的形式为*2()e ()e x x y x Ax B Ax Bx --=+=+,代入原方程并消去e x -,得2(2)3Ax A B x ++=.比较系数,得32A =,3B =-,即 *233e 2x y x x -⎛⎫=- ⎪⎝⎭,故原方程的通解为 *22123e e 3e 2x x x y Y y C C x x ---⎛⎫=+=++- ⎪⎝⎭.(3)3()(1)e x f x x =+是e ()λx m P x 型(其中,()1m P x x =+,3λ=),对应齐次方程的特征方程为 2690r r -+=,解得 1,23r =,故对应齐次方程的通解为312()e x Y C C x =+.因为3λ=是特征方程的二重根,所以特解*y 的形式为*23323()e ()e x x y x Ax B Ax Bx =+=+,代入原方程并消去e x ,得621Ax B x +=+.比较系数,得16A =,12B =,即 *32311e 62x y x x ⎛⎫=+ ⎪⎝⎭,故原方程的通解为*33231211()e e 62x x y Y y C C x x x ⎛⎫=+=+++ ⎪⎝⎭.(4)原方程对应的齐次方程的特征方程为210r +=,解得1,2i r =±,故对应齐次方程的通解为。
第十一章习题解答

第十一章习题解答 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】第十一章 微分方程习题11-11.说出下列各微分方程的阶数:(1)20dy dy x y dx dx ⎛⎫+-= ⎪⎝⎭; (2)220d Q dQ Q L Rdt dt C -+=; (3)220xy y x y '''''++= ; (4)()d (76)0x y y x y dx ++-=; (5)2sin y y y x '''++= ; (6)2d sin .d ρρθθ+= 解:(1)一阶;(2)二阶;(3)三阶;(4)一阶;(5)二阶;(6)一阶. 2.指出下列各函数是否为所给微分方程的解: (1)22 , 5;xy y y x '==(2)0 , 3sin 4cos ;y y y x x ''+==-(3)221, ;y x y y x''=+=(4)21221 , sin cos .2x x d y y e y C x C x e dx +==++解:(1)∵ 10 y x '=,代入方程得 21025x x x ⋅=⋅∴25y x =是方程的解.(2)∵ 3cos 4sin ,3sin 4cos y x x y x x '''=+=-+,代入方程,得∴ 3sin 4cos y x x =-是方程的解. (3)∵ 2312,y y x x '''=-=,代入方程,得 23221x x x≠+ ∴1y x=是方程的解. (4)∵ 21212211cos sin ,sin cos 22x x dy d y C x C x e C x C x e dx dx =-+=--+,代入方程, 得 121sin cos 2x C x C x e ⎛⎫--++ ⎪⎝⎭121sin cos 2x x C x C x e e ⎛⎫++= ⎪⎝⎭∴121sin cos 2x y C x C x e =++是方程的解.3.在下列各题中,验证所给二元方程所确定的函数为所给微分方程的解: (1)()2222 , ;x y y x y x xy y C '-=--+= (2)()220 , ln().xy x y xy yy y y xy '''''-++-==解:(1)在二元方程22 x xy y C -+=的两边同时对x 求导,得 移项后即得 ()22 x y y x y '-=-故二元方程22x xy y C -+=所确定的函数是所给微分方程的解.(2)在 ln()y xy =两边对x 求导,得11 ()y y y xy xy x y '''=+=+, 即 yy xy x'=-()()()()()232223122 y xy x y y xy xy y yxy xy xyy xy x xy x xy x ''--+-'--+-+-''===---,代入微分方程,得故 ln()y xy =所确定的函数是所给微分方程的解.4.在下列各题中,确定函数关系式中所含的参数,使函数满足所给的初始条件: (1)2220 , |1;x x xy y C y =-+==(2)()1200 , |0 , |1;x x x y C C x e y y =='=+== (3)1200cos sin , | 1 , |.t t x C t C t x x ωωω=='=+== 解:(1)∵ 0 |1x y ==∴222 =0011C -+=即 221x xy y -+=(2)()122 x y C C x C e '=++,由00 |0 , |1x x y y =='==,得 11201C C C =⎧⎨+=⎩∴12 =0 , =1C C , x y xe =(3)12sin cos x C t C t ωωωω'=-+,由00| 1 , |t t x x ω=='==,得 121C C ωω=⎧⎨=⎩∴12 =1 , =1C C , cos sin x t t ωω=+5.写出由下列条件确定的曲线所满足的微分方程:(1)曲线在点(,)x y 处切线的斜率等于该点横坐标的平方;(2)曲线上点(,)P x y 处的法线与x 轴的交点为Q ,且线段PQ 被y 轴平分. 解:(1)设曲线的方程为()y y x =,则曲线上点(,)x y 处切线的斜率为y ',由条件知2y x '=,此即为所求曲线的微分方程.(2)设曲线的方程为()y y x =,则曲线上点(,)P x y 处法线的斜率为1y -',由条件知线段PQ 中点的横坐标为0,所以Q 的坐标为(,0)x -,则有 即所求曲线的微分方程为 20yy x '+=.习题11-21.求下列微分方程的通解:(1)ln 0;xy y y '-= (2)23550;x x y '+-= (3'= (4)2();y xy a y y '''-=+ (5)cos sin d sin cos d 0;x y x x y y += (6)2d (4)d 0.y x x x y +-= 解:(1)原方程可写为ln 0dyxy y dx-=,分离变量,得d 1,ln y dx y y x = 两端积分,得 11ln dy dx y y x=⎰⎰ 即 ln ln ln ln ln y x C Cx =+=,亦即ln y Cx = ,故通解为Cx y e = (2)原方程可写为235dy x x dx =+,两端分离变量并积分,得 23()5dy x x dx =+⎰⎰, 故通解为231125y x x C =++ .(3)原方程可写为dy dx =,两端分离变量并积分,得=,故通解为arcsin arcsin y x C =+.(4)原方程可写为21dy ay dx x a=--,两端分离变量并积分,得211ady dx y x a =--⎰⎰,故通解为1ln 1a x a C y=+-+. (5)分离变量,得cos cos d d sin sin y x y x y x =- ,两端积分,得 cos cos d d sin sin y xy x y x=-⎰⎰ , 1ln sin ln sin y x C =-+,1ln sin sin x y C ⋅=,故通解为sin sin x y C = ,其中1C C e =±为任意常数. (6)分离变量,得,24dx dyx x y=-积分,得 1144dy dx x x y ⎛⎫+= ⎪-⎝⎭⎰⎰, 即 4ln ln(4)ln ln x x C y --+=,故通解为4(4)x y Cx -=. 2.求下列微分方程满足所给初始条件的特解:(1)20,|0;x y x y e y -='== (2)0cos sin d cos sin d ,|;4x x y y y x x y π===(3)2sin ln ,|;x y x y y y e π='== (4)0cos d (1)sin d 0,|;4xx y x e y y y π-=++==(5)2d 2d 0,|1;x x y y x y =+== (6)220(+)d ()d 0,| 1.x xy x x x y y y y =+-==解:(1)分离变量并积分得, 2y x e dy e dx =⎰,即通解为 212y x e e C =+,由条件0|0x y ==,得112C =+, 12C =,故满足初始条件的特解 21(1)2y x e e =+ .(2)分离变量并积分得,sin sin d d cos cos y xy x y x=⎰⎰, 即 ln(cos )ln(cos )ln y x C -=--, 亦即通解为cos cos y C x =,由条件0|4x y π==,得 coscos 04C π=,C =,故满足初始条件的特解 cos 0x y -=. (3)分离变量并积分得,1csc ln dy xdx y y=⎰⎰, 即ln(ln )ln(tan )ln 2x y C =+,亦即通解为ln tan 2xy C =,由条件2|x y e π==,得ln tan 4e C π=,1C =,故满足初始条件的特解ln tan2xy =. (4)分离变量并积分得,tan 1x xe ydy dx e-=+⎰⎰,通解为(1)sec xe y C +=,由条件0|4x y π==,得C =(1)sec x e y +=.(5)分离变量并积分得,12dy dx y x=-⎰⎰,通解为2x y C =由条件2|1x y ==,得4C =,故满足初始条件的特解24x y =. (6)分离变量并积分得,2211y x dy dx y x=+-⎰⎰,通解为22(1)(1)x y C -+= 由条件0|1x y ==,得2C =,故满足初始条件的特解22(1)(1)2x y -+=. 3.求下列齐次方程的通解:(1)0;xy y '-= (2)d ln ;d y yxy x x= (3)22()d d 0;x y x xy y +-= (4)332()d 3d 0;x y x xy y +-=(5) ;y xyy e x '=+ (6)(12)d 21d 0.x xy y x e x e y y ⎛⎫++-= ⎪⎝⎭解:(1)原方程可写为dy y dx x =y u x =,则 ,y ux =d d ,d d y u u x x x =+代入原方程,得dd uu xu x +=+1dx x =,积分得 ln(ln ln u x C =+,即u Cx =,亦即y Cx x +=,原方程的通解2y Cx =.(2)原方程可写为d ln d y y y x x x =,令y u x =,则 ,y ux =d d ,d d y uu x x x=+ 代入原方程,得d ln d uu xu u x+=,分离变量积分得 ()11ln 1du dx u u x =-⎰⎰, 即 ln(ln 1)ln ln u x C -=+,亦即 ln 1y Cx x =+,原方程的通解ln 1yCx x=+. (3)原方程可写为d d y y x x x y =+,令y u x =,则 ,y ux =d d ,d d y uu x x x=+ 代入原方程,得d 1d u u xu x u +=+,分离变量积分得 1udu dx x=⎰⎰, 即 22ln u x C =+,,将yu x =代入上式得原方程的通解22(2ln )y x x C =+.(4)原方程可写为22d d 33y y x x x y =+,令y u x =,则 ,y ux =d d ,d d y uu x x x=+代入原方程,得2d 1d 33u u u x x u+=+,分离变量积分得 233112u du dx u x =-⎰⎰, 即 311ln(12)ln 2u x C --=+,亦即 3221C u x =-,其中1C C e =,将yu x =代入上式,得原方程的通解332x y Cx -=. (5)令y u x =,则 ,y ux =d d ,d d y u y u x x x '==+代入原方程,得d d u uu x e u x+=+,即 ln ueCx --=,将yu x=代入上式,得原方程的通解ln 0yx e Cx -+=.(6)原方程可写为12d d 12xy xyx ey x ye ⎛⎫- ⎪⎝⎭=+,令x u y =,则 ,x u y =d d ,d d x u u y y y =+ 代入原方程,得d 2(1)dy 12u uu e u u y e -+=+,分离变量积分得 1212u u e du dy u e y +=-+⎰⎰, 即 ln(2)ln ln u u e y C +=-+,亦即 (2)u y u e C +=,将yu x=代入上式,得原方程的通解2x yx ye C +=4.求下列线性微分方程的通解:(1)d ;d x yy e x-+= (2)232;xy y x x '+=++ (3)tan sin 2;y y x x '+= (4)d 32;d ρρθ+=(5)ln d (ln )d 0;y y x x y y +-= (6)2d (6)20.d yy x y x -+=解:(1)原方程是()1P x =,()x Q x e -=的一阶非齐次线性方程.由通解公式得原方程的通解为()()dx dxx x xx x y e e e dx C eee dx C e x C -----⎛⎫⎰⎰=⋅+=⋅+=+ ⎪⎝⎭⎰⎰.(2)原方程可化为123y y x x x '+=++,它是1()P x x =,2()3Q x x x=++的一阶非齐次线性方程.由通解公式得原方程的通解为()11221332dx dx x x y e x e dx C x x dx C x x -⎡⎤⎛⎫⎰⎰⎡⎤=++⋅+=+++⎢⎥ ⎪⎣⎦⎝⎭⎣⎦⎰⎰213232C x x x =+++; (3)原方程是()tan P x x =,()sin 2Q x x =的一阶非齐次线性方程.由通解公式得原方程的通解为tan tan 2sin 2sin 2cos cos 2cos cos xdx xdx x y e x e dx C x dx C C x x x -⎛⎫⎛⎫⎰⎰=⋅+=+=- ⎪ ⎪⎝⎭⎝⎭⎰⎰. (4)原方程是()3P θ=,()2Q θ=的一阶非齐次线性方程.由通解公式得333332223333d d C C Ce e d e e dx e θθθθθρθ---⎛⎫⎛⎫⎰⎰=⋅+=+=+ ⎪ ⎪⎝⎭⎝⎭⎰⎰ ,即原方程的通解为 332Ce θρ-=+. (5)原方程可化为1=ln dx x dy y y y +,它是1()ln P y y y =,1()Q y y=的一阶非齐次线性方程.由通解公式得112ln ln 11111ln ln 2ln 2ln 22dy dyy y y y C C C x e e dy ydy y y y y y -⎛⎫⎛⎫⎰⎰⎛⎫=⋅+=⋅+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰, 即原方程的通解为22ln ln x y y C =+.(6)原方程可化为3=2dx x y dy y --,它是3()P y y =-,()2yQ y =-的一阶非齐次线性方程.由通解公式得33323311222dy dy y y y y x e e dy C y dy C y Cy y -⎡⎤⎛⎫⎰⎰⎛⎫=-⋅+=-⋅+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎰⎰. 5.求下列微分方程满足所给初始条件的特解: (1)0d tan sec ,|0;d x y y x x y x =-== (2)21d 4,| 2 ;d x y yx y x x=+== (3)cos 2d cot 5,|4;d x x y y xe y x π=+==- (4)0d 38,| 2 d x yy y x =+==.解:(1)由公式可得一阶线性微分方程通解为()tan tan 11sec sec cos cos cos xdxxdx y e x e dx C x xdx C x C x x -⎡⎤⎰⎰⎡⎤=⋅+=⋅+=+⎢⎥⎣⎦⎣⎦⎰⎰由0|0x y ==得0C =,故特解为cos xy x=. (2)由公式可得一阶线性微分方程通解为由12x y==得1C =,故特解为31y x x=+. (3) 由公式可得一阶线性微分方程通解为 由24x yπ==得1C =,故特解为cos 151sin x y e x⎡⎤=-+⎣⎦,即 cos sin 51x y x e +=. (4)由公式可得一阶线性微分方程通解为由0| 2 x y ==得23C =-,故特解为32(4)3x y e -=-.6.求下列伯努利方程的通解:(1)2d (cos sin );d y y y x x x +=- (2)33d 22 .d yxy x y x+= 解:方程两边同除以2y ,得21d cos sin d yy y x x x --+=- 令1z y =,2d d y dz y x dx -=-,则原方程变为sin cos dzz x x dx-=-,故将1z y =代入上式,得原方程通解为1sin x Ce x y =-.1sin x x Ce y=-+; (2)方程两边同除以3y ,得323d 22d yy xy x x--+= 令21z y =,3d 1d 2y dz y x dx -=-,则原方程变为344dz xz x dx-=-,故 将21z y =代入上式,得原方程通解为222212x y Ce x -=++. 7.用适合的变量代换将下列方程化为可分离变量的方程,然后求出通解: (1)2d ();d yx y x=+ (2)d 11;d y x x y =+- (3)(ln ln );xy y y x y '+=+ (4)212x y y e +-'=-.解:(1)令u x y =+,则1dy du dx dx =-,从而原方程可化为21du u dx=+,分离变量积分得21dudx u=+⎰⎰,即arctan x u C =+. 将u x y =+代入,得原方程的通解为arctan()x x y C =++,即tan()y x x C =-++.(2)令u x y =-,则1dy du dx dx =-,从而原方程可化为1du dx u -=,分离变量积分得udu dx =-⎰⎰,即2112x u C +=. 将u x y =-代入,得原方程的通解为2()2x y x C -=-+ (其中12C C =).(3)令u xy =,则2,duxuu dydx y x dx x-==,从而原方程可化为21()ln du u u u x u x dx x x x -+=,分离变量积分得ln dx dux u u =⎰⎰,即 ln ln ln(ln )x C u +=,亦即C x u e =,将u xy =代入,得原方程的通解为1C x y e x=.(4)令21u x y =+-,则2dy du y dx dx '==-,从而原方程可化为u du e dx=,分离变量积分得udx e du -=⎰⎰,即u e C x -=-. 将21u x y =+-代入,得原方程的通解为12ln y x C x =---.8.判别下列方程中哪些是全微分方程,并求全微分方程的通解:(1)(cos cos )d (sin sin )d 0x y x y y y x x ++-=; (2)2()0x y dx xdy --=; (3)22()0x y dx xydy ++= ; (4)22(1)20e d e d θθρρθ++=. 解:(1)这里(,)sin sin , (,)cos cos P x y y y x Q x y x y x =-=+,cos sin P Q y x y x∂∂=-=∂∂,所以(1)是全微分方程.取000 , 0x y ==, 根据公式00(,)(,)(,)x yx y u x y P x y dx Q x y dy =+⎰⎰,有于是全微分方程的通解为sin cos x y y x C +=.. (2)这里2(,),(,)P x y x y Q x y x =-=-,于是有1P Qy x∂∂=-=∂∂,所以(2)是全微分方程.取000 , 0x y ==,根据公式00(,)(,)(,)xy x y u x y P x y dx Q x y dy =+⎰⎰,有于是全微分方程的通解为33x xy C =+.(3)这里22(,),(,),P x y x y Q x y xy =+=2P y y ∂=∂,Q y x∂=∂,显然P Q y x ∂∂≠∂∂,所以(3)不是全微分方程.(4)22(1)20e d e d θθρρθ++=.这里22(,)1,(,)2P e Q e θθρθρθρ=+=,显然22P Qe θθρ∂∂==∂∂,所以(4)是全微分方程,取000 , 0ρθ==,根据公式00(,)(,)(,)u P d Q d ρθρθρθρθρρθθ=+⎰⎰ ,有于是全微分方程的通解为2(1)e C θρ+=.9.求一曲线的方程,这曲线通过原点,并且它在点(,)x y 处的切线斜率等于2x y +.9. 2(1)x y e x =--.解:设曲线的方程为()y y x =,由题意知2y x y '=+,0|0x y ==,于是()()222122dx dx x x x x xy e x e dx C e xe dx C e x e C Ce x ---⎛⎫⎰⎰⎡⎤=⋅+=+=-++=-- ⎪⎣⎦⎝⎭⎰⎰由0|0x y ==,得2C =,于是所求曲线的方程为2(1)x y e x =--10.质量为lg (克)的质点受外力作用作直线运动,这外力和时间成正比,和质点运动的速度成反比.在10s t =时,速度等于50cm/s ,外力为24g cm/s ⋅,问从运动开始经过了一分钟后的速度是多少解 :已知t F k v =⋅,并且10t s =时50/v cm s =,4/F g cm s =⋅,故10450k =⋅,从而20k =,因此20t F v =⋅.又由牛顿定律F ma =,即201t dvv dt⋅=⋅,故20vdv tdt =,积分得221102v t C =+,即v ,再代入初始条件得2250C =,因此所求特解为v 60t s =时269.3(/)v cm s ==≈.11.镭的衰变有如下的规律:镭的衰变速度与它的现存量R 成正比.由经验材料得知,镭经过1600年后,只余原始量0R 的一半.试求镭的量R 与时间t 的函数关系. 解: 设比例系数0λ>,则由题意可得dR R dt λ=-⋅.分离变量积分可得dR dt Rλ=-⎰⎰,即1ln R t C λ=-+,从而1()C t R C e C e λ-=⋅=,因为0t =时0R R =,所以0R C =,即0t R R e λ-=⋅.又因为1600t =时02R R =,所以1600002R R e λ-=⋅,从而ln 21600λ=,因此镭的量R 与时间t 的函数关系为ln 20.000433160000t t R R eR e --==,.时间以年为单位.12.设有连结点(0,0)O 和(1,1)A 的一段向上凸的曲线弧OA ,对于OA 上任一点(,)P x y ,曲线弧OP 与直线段OP 所围图形的面积为2x ,求曲线弧OA 的方程.解: 曲线弧OA 的方程为()y y x =,由题意得 两边求导得11()()()222y x y x xy x x '--=,即4yy x'=-, 令y u x =,则 ,y ux =d d ,d d y u u x x x =+上式可化为4dux dx=-,分离变量积分得4ln u x C =-+.将yu x=代入,得 4ln y x x Cx =-+.由于(1,1)A 在曲线上,因此(1)1y =,代入得1C =,从而曲线弧OA 的方程为(14ln )y x x =-,01x <≤;当0x =时0y =.13.设有一质量为m 的质点作直线运动.从速度等于零的时刻起,有一个与运动方向一致、大小与时间成正比(比例系数为1k )的力作用于它,此外还受一与速度成正比(比例系数为2k )的阻力作用.求质点运动的速度与时间的函数关系. 解 由牛顿定律知12dv mk t k v dt =-,即21kk dv v t dt m m+=,因此 由0t =时0v =得122k m C k =,故22211122222kkkt t t m mm k k m k m v e te e k k k -⎛⎫=-+ ⎪⎝⎭,即质点运动的速度与时间的函数关系为211222(1)kt m k k mv t e k k -=--.习题11-31.求下列各微分方程的通解:(1)2290;4d y x dx -= (2);x y xe '''=(3)2(1)2;x y xy '''+= (4)220.1y y y'''-=- 解:(1)原方程变形,得2294d y x dx =,对所给方程接连积分两次,得2198y x C '=+, 31238y x C x C =++ ,这就是所求的通解.(2)对所给方程接连积分三次,得 2123(3)x y x e C x C x C =-+++. 这就是所求的通解.(3)令(),y p x y p ''''==,原方程可化为2(1)2x p xp '+=,即221dp xdx p x =+,积分得21ln ln(1)ln p x C =++,亦即21(1)p C x =+,21(1)y C x '=+,所以就是原方程的通解.(4)令()y p y '=,则dpy p dy ''=,原方程化为2201dp p p dy y -=-,即201dp p p dy y ⎡⎤-=⎢⎥-⎣⎦, 当0p =时,得原方程的一个解为y C =,它不是通解; 当0p ≠时,约去p ,分离变量积分,得2(1)p y C -=,即2(1)dy Cp dx y ==-,从而2(1)y dy Cdx -=,积分得312(1)y C x C -=+,其中13C C =,因此原方程的通解为312(1)y C x C -=+.2.求下列各微分方程满足所给初始条件的特解: (1)111, |||0 ;x x x x y e y y y ===''''''====(2)00| 1 , | 2 ;x x y y y =='''=== (3)2000 , ||0 ;y x x y e y y =='''-=== (4)31110 , | 1 , |0 x x y y y y =='''+===.解:(1)1+C x x y e dx e ''==⎰,由1|0 x y =''=得,1C e =-,即x y e e ''=-,2()+C x x y e e dx e ex '=-=-⎰,由1|0 x y ='=得,20C =,即x y e ex '=-,23()+C 2x x e y e ex dx e x =-=-⎰,由1|0 x y ==得,32eC =-,故222x e ey e x =-- 为 原方程的所求特解 .(2)令()y p y '=,那末 dp y pdy ''=,得dppdy=,即pdp =, 积分得3221122p y C =+,由00 | 1 , |2x x y y =='==得10C =,从而342y p y '==±,又y ''=,可知342y y '=,即342y dy dx -=,积分得14242y x C =+,由0 | 1 x y ==,得24C =,所以4112y x ⎛⎫=+ ⎪⎝⎭为所求特解.(3)令()y p y '=,那末dp y pdy ''=,得20y dpp e dy-=,即2y pdp e dy =,积分得2211122yp e C =+,由000x x y y=='==得112C =-,从而22()1,y y e y ''=-=dx =±y dx -=±,积分得2arcsin y e x C --=±+,由00x y==,得22C π=-,所以sin()cos 2y e x x π-=±+=,原方程特解为lnsec y x =. (4) 令y p '=,则dp y pdy ''=,原方程变为31dpy pdy=-,从而3pdp y dy -=-,积分得2121p C y =+,即2121()y C y'=+,由111,0x x y y =='==得11C =-,从而221()1y y'=-,即y '=dx =±,积分得2x C =±+,再由11x y ==得21C =,因此所求特解为(1)x =±-,即221(1)y x -=-亦即222x y x +=,或y =(舍去y =,因为11x y ==).3.试求y x ''=的经过点(0,1)M 且在此点与直线12xy =+相切的积分曲线. 解:由积分曲线经过点(0,1)M 知,01x y ==,又由积分曲线在点(0,1)M 与直线12x y =+相切知,012x y ='=. 对方程y x ''=积分得,2112y xdx x C '==+⎰,利用条件012x y ='=,从而112C =,即21122y x '=+,再积分得,3262x x y C =++,利用条件01x y==,从而21C =,于是3162x xy =++.4.下列函数组在其定义区间内哪些是线性无关的(1)2cos , ;x x (2)22,5 ;x x (3)22,3;x x e e (4)2sin ,1 ;x (5)cos 2,cos sin ;x x x (6)22,;x x e xe (7)ln ,2ln ;x x (8)1212,().x x e e λλλλ≠ 解:(1)、(4)、(5)、(6)、(8)线性无关.因为:对于定义在区间I 上的两个函数1()y x 与2()y x ,如果1()y x 与2()y x 在区间I 上线性相关,则存在两个不全为0的常数12 , k k ,使得对于∀x I ∈恒有1122()()0k y x k y x +=成立,即12()()y x y x 或21()()y x y x 恒为常数.因而如果12()()y x y x 或21()()y x y x 均不为常数,则称1()y x 与2()y x 在区间I 上一定线性无关.(1)、(4)、(5)、(6)、(8)中的两个函数之比均不为常数,所以这五组函数均线性无关.相反地(2)(3)(7)线性相关.5.验证21x y e -=及62x y e -=都是方程8120y y y '''++=的解,并写出该方程的通解. 解: 因为21x y e -=,22112,4x x y e y e --'''=-=,62x y e -=,66226,36x x y e y e --'''=-=,所以21x y e -=和 62x y e -=都是已知方程的解.由于24162xx x y e e y e--==不为常数,因此1y 与2y 线性无关,所给方程的通解为2612x x y C e C e --=+.6.验证1sin y x =及2cos y x =都是方程0y y ''+=的解,并写出该方程的通解. 解: 因为1sin y x =,11cos ,sin y x y x '''==-,2cos y x =,22sin ,cos y x y x '''=-=-,所以1sin y x =何2cos y x =都是已知方程的解.由于12tan y x y =不为常数,因此1y 与2y 线性无关,所给方程的通解为12sin cos y C x C x =+.7.求下列微分方程的通解:(1)3100;y y y '''--= (2)40;y y '''-= (3)20; y y ''+= (4)8160;y y y '''++=(5)22d d 690;d d x xx t t-+= (6)220y y y '''++=.解:(1)特征方程为23100r r --=,解得122,5r r =-=,故方程的通解2512x x y C e C e -=+.(2)特征方程为240r r -=,特征根为120,4r r ==,故方程的通解为412x y C C e =+.(3)特征方程为220r +=,解得1,2r =,故方程的通解12y C C =+.(4)特征方程为28160r r ++=,特征根为124r r ==-,故方程的通解为412()x y C C x e -=+.(5)特征方程为2690r r -+=,特征根为123r r ==,故方程的通解为312()t x C C t e =+.(6)特征方程为2220r r ++=,特征根为1,221i 21r -±==-±⨯,故方程的通解为12(cos sin )x y e C x C x -=+.8.求下列微分方程满足所给初始条件的特解: (1)00680,|1,|6;x x y y y y y ==''''-+=== (2)00440,|2,|0;x x y y y y y ==''''++=== (3)00340,|0,|5;x x y y y y y ==''''--===- (4)006130,|3,|1x x y y y y y ==''''++===-.解:(1)特征方程为2680r r -+=,特征根为122,4r r ==,故方程的通解为2412x x y C e C e =+代入初始条件00|1,|6x x y y =='==,得12121246C C C C +=⎧⎨+=⎩,解之得1212C C =-⎧⎨=⎩,从而所求特解为242x x y e e =-+.(2)特征方程为24410r r ++=,特征根为121,3r r ==,故方程的通解为312x x y C e C e =+代入初始条件002,0x x y y =='==,得12126310C C C C +=⎧⎨+=⎩,解之得1242C C =⎧⎨=⎩,从而所求特解为342x x y e e =+.(3) 特征方程为2340r r --=,特征根为121,4r r =-=,故方程的通解为412x x y C e C e -=+代入初始条件000,5x x y y =='==-,得1212045C C C C +=⎧⎨-+=-⎩,解之得1211C C =⎧⎨=-⎩, 从而所求特解为4x x y e e -=-(4)特征方程为26130r r ++=,特征根为1,232i r ==-±,故方程的通解为312(cos 2sin 2)x y e C x C x -=+代入初始条件00|3,|1x x y y =='==-,得1123321C C C =⎧⎨-+=-⎩,解之得1234C C =⎧⎨=⎩,从而所求特解为3(3cos 24sin 2)x y e x x -=+.9.写出下列各微分方程的待定特解的形式(不用解出): (1)355;x y y y e '''-+= (2)3;y y '''-=(3)2276(521);x y y y x x e '''-+=-- (4)369(1)x y y y x e '''-+=+.解(1)特征方程为2350r r -+=,解得1,2331i 2122r ±==±⨯. 又因为()5x f x e =,1λ=是特征根,故待定特解的形式为*x y ae =. (2)特征方程为20r r -=,特征根为120,1r r ==.又因为()3f x =,0λ=是特征根,故待定特解的形式为*y ax =. (3)特征方程为2760r r -+=,特征根为1216r r ==.又因为22()(521)x f x x x e =--, 2λ=不是特征根,故待定特解的形式为*22()x y ax bx c e =++.(4) 特征方程为2690r r -+=,特征根为123r r ==.又因为3()(1)x f x x e =+,3λ=是特征根,故待定特解的形式为*23()x y x ax b e =+. 10.求下列各微分方程满足已给初始条件的特解: (1)sin 20, |1, |1;x x y y x y y ππ=='''++=== (2)00325, |1, |2;x x y y y y y ==''''-+=== (3)004, |0, |1;x x x y y xe y y =='''-=== (4)0045, |1, |0x x y y y y ==''''-===.解:(1)特征方程为210r +=,解得1,2i r =±,对应齐次方程的通解为12cos sin y C x C x =+因()sin 2f x x =-,i 2i αβ±=±不是特征根,所以设原方程的特解为*cos 2sin 2y A x B x =+,*()2sin 22cos 2y A x B x '=-+,*()4cos 24sin 2y A x B x ''=--,代入原方程得3cos23sin 2sin 20A x B x x --+=,30 , 310A B -=-+=,即10,3A B ==, *1sin 23y x =.故原方程的通解为又122sin cos cos 23y C x C x x '=-++,代入初始条件1,1x x yy ππ=='==,得112211 1,2313C C C C =-⎧⎪⇒=-=-⎨=+⎪⎩,从而所求特解为11cos sin sin 233y x x x =--+.(2)特征方程为210r +=,解得121,2r r ==,对应齐次方程的通解为 因()5f x =,0λ=不是特征根,所以设原方程的特解为*y A =, 代入原方程 ,得 25A = 即 52A =,*52y =.故原方程的通解为 又2122x x y C e C e '=+,代入初始条件00 |1, |2x x y y =='==,得121212517 5,2222C C C C C C ⎧++=⎪⇒=-=⎨⎪+=⎩, 从而所求特解为275522x x y e e =-++.(3)特征方程为2320r r -+=,解得121,1r r ==-,对应齐次的通解为 而()4x f x xe =-,1λ=是特征方程的单根,故可设原方程的特解为 代入原方程整理得比较系数,得1,1A B ==-,所以*(1)x y x x e =-.故原方程的通解为 将条件00,1x x yy =='==代入,得12121211 , 111C C C C C C +=⎧⇒==-⎨--=-⎩, 从而所求特解为2()x x x y e e x x e -=-+-.(4)特征方程为240r r -=,解得120,4r r ==,对应齐次方程的通解为412x y C C e =+ 因()5f x =,0λ=是特征方程的单根,所以设原方程的特解为*y Ax =,代入原方程 ,得 45A -= 即 54A =-,*54y x =-.故原方程的通解为又42544x y C e '=-,代入初始条件00|1, |0x x y y =='==,得121221115 ,51616404C C C C C +=⎧⎪⇒==⎨-=⎪⎩, 从而所求特解为4115516164x y e x =+-. 11.设函数()x ϕ连续,且满足求()x ϕ.解: 方程两边同时对x 求导,得0()()xx x e t dt ϕϕ'=-⎰,()()x x e x ϕϕ''=-,(0) 1 , (0)1ϕϕ'== 从而 ()()x x x e ϕϕ''+=又该方程对应齐次方程的特征方程为210r +=,特征根为1,2i r =±,故齐次方程的通解为 通过观察易知*12x e ϕ=为方程()()x x x e ϕϕ''+=的一个特解,从而该方程的通解为 将初始条件(0)1,(0)1ϕϕ'==代入,得11221112 1212C C C C ⎧=+⎪⎪⇒==⎨⎪=+⎪⎩, 故总习题十一1.单项选择题:(1)下列微分方程中是线性方程的是( ).(A ) cos()y y e x '+= (B ) 22x xy y x y e '''+-=(C )()250y y '+= (D )sin 8y y x ''+=(2)下列方程中是一阶微分方程的是( ).(A ) 2()20x y yy x ''++= (B ) ()()245750y y y x '''+-+=(C )0xy y y '''++= (D )(4)5cos 0y y x '+-=(3)微分方程20ydy dx -=的通解是( ).(A ) 2y x C -= (B ) 2y x C +=(C )y x C =+ (D )y x C =-+(4)微分方程0y y ''+=满足初始条件001 , 1x x y y =='==的特解是( ).(A ) cos y x = (B ) sin y x =(C )cos sin y x x =+ (D )12cos sin y C x C x =+(5)下列函数是微分方程20y y y '''-+=的解是( ).(A ) 2x x e (B ) 2x x e -(C ) x xe - (D ) x xe解:(1)(B ) ; (2)(A ); (3)(A ); (4)(C ); (5)(D ).2.填空题:(1)以22()1x C y ++=(其中C 为任意常数)为通解的微分方程为22(1)1y y '+=. (2)以212x x y C e C e =+(其中1C 、2C 为任意常数)为通解的二阶常系数齐次线性微分方程为320y y y '''-+=.(3)微分方程x y y e -'=的通解为y x e e C =+.(4)方程cot 2sin y y x x x '-=的通解为2()sin y x C x =+.(5) 设方程()()()y p x y q x y f x '''++=的三个特解是2123 ,,x x y x y e y e ===,则此方程的通解为2212()()x x x y C x e C x e e =-+-+.3.求下列微分方程的通解:(1)2(12)(1)0y xdx x dy +++=; (2)x y y x +'=-; (3)d d 2(ln )y y x y x =- ; (4)5d d y y xy x-=; (5)20y y y '''+-=; (6)22x y y y e '''+-= ;(7)sin y y x ''+=; (8)25sin 2y y y x '''++=.解:(1)分离变量积分,得 21121x dy dx y x=-++⎰⎰, 即 ()2ln 12ln(1)ln y x C +=-++,亦即 2(1)(12)x y C ++=故原方程所求通解为 2(1)(12)x y C ++=.(2) 原方程变形为11y y x'+=-,这是一阶线性方程,其通解为 即原方程通解为22xy x C +=.(3)原方程变形为d 22ln d x y x y y y+=,这是一阶线性方程,其通解为 即原方程通解为21ln 2x Cy y -=+-. (4)这是5n =的伯努利方程. 方程两端同除以5y ,得54dy y y x dx ---=,令4z y -=,便有44dz z x dx+=-,此方程为一阶非齐次线性方程,其通解为 将4z y -=代入,得原方程的通解为4414x y Ce x --=-+. (5)特征方程为220r r +-=,解得122,1r r =-=,故方程的通解、212x x y C e C e -=+.(6)特征方程为2210r r +-=,解得1211,2r r =-=,对应齐次的通解为 而()2x f x e =,1λ=不是特征方程的根,故可设原方程的特解为代入原方程整理得 1A =,所以*x y e = 故原方程的通解为212x x x y C e C e e -=++.(7)特征方程为210r +=,解得1,2i r =±,对应齐次方程的通解为因()sin f x x =,i i αβ±=±是特征根,所以设原方程的特解为()*cos sin y x A x B x =+,又 ()*()sin cos cos sin y x A x B x A x B x '=-+++,()*()2(cos sin )cos sin y B x A x x A x B x ''=--+,代入原方程,得()()2(cos sin )cos sin cos sin sin B x A x x A x B x x A x B x x --+++=,21, 20A B -==, 即1,02A B =-=, *1cos 2y x x =-.故原方程的通解为 (8)25sin 2y y y x '''++=其特征方程为2250r r ++=,特征根为1,212r i =-±,从而其对应齐次方程的通解为12(cos 2sin 2)x y e C x C x -=+.又()sin 2f x x =,i 2i αβ±=±不是特征根,所以设原方程的特解为*cos 2sin 2y A x B x =+,*()2sin 22cos 2y A x B x '=-+,*()4cos 24sin 2y A x B x ''=--,代入原方程得()()4cos24sin 2sin 2A B x B A x x ++-=,4041 , 411717A B A B B A +=⎧⇒=-=⎨-=⎩,所以*41cos 2sin 21717y x x =-+. 故原方程的通解为1241(cos 2sin 2)cos 2sin 21717x y e C x C x x x -=+-+. 4.求下列微分方程满足所给初始条件的特解:(1)222(3+2)d (2)d 0 , 1x xy y x x xy y x -+-==时1y =;(2)2cos , 0y y y x x '''++==时30 , 2y y '==.解:(1)222(,)3+2 ,(,)2P x y x xy y Q x y x xy =-=-,于是有22P Q x y y x∂∂=-=∂∂,所以方程(1)是全微分方程.因为 所以方程(1)的通解为322x x y xy C +-=,又1x =时,1y =,从而1C =于是原方程的特解为3221x x y xy +-=.(2)特征方程为2210r r ++=,解得121r r ==-,对应齐次方程的通解为因()cos f x x =,i i αβ±=±不是特征根,所以设原方程的特解为*cos sin y A x B x =+,又 *()sin cos y A x B x '=-+,()*()cos sin y A x B x ''=-+,代入原方程,得()cos sin A x B x -+2sin 2cos A x B x -++cos sin cos A x B x x +=,20, 21A B -==, 即10,2A B ==, *1sin 2y x =.故原方程的通解为1sin 2x y xe x -=+ 由条件0x =时30 , 2y y '==,得210 1322C C =⎧⎪⇒⎨+=⎪⎩121,0C C == 所以原方程的特解为1sin 2x y xe x -=+. 5.已知某曲线经过点(1,1),它的切线在纵轴上的截距等于切点的横坐标,求它的方程.解:设曲线的方程为()y y x =,其上任一点(,)x y 处的切线方程为()Y y y X x '-=-,切线在纵轴上的截距为y xy '-,由题意有y xy x '-=,即1y y x'-=-,其通解为 又因为曲线过点(1,1) ,所以1C =,从而所求曲线方程为(1ln )y x x =-.6.设可导函数()x ϕ满足求()x ϕ.解:方程两边同时对x 求导得即()cos ()sin 1x x x x ϕϕ'+=,亦即()tan ()sec x x x x ϕϕ'+=,其通解为在0()cos 2()sin 1xx x t tdt x ϕϕ+=+⎰中,令0x =得(0)1ϕ=,故 因此()cos sin x x x ϕ=+.7.一链条挂在一钉子上,起动时一端离开钉子8m,另一端离开钉子12m ,分别在以下两种情况下求链条滑下来所需要的时间:(1)若不计钉子对链条产生的摩擦力;(2)若摩擦力为1m 长的链条的重量.解: (1) 设在时刻t 时,较长的一段链条垂下 m x ,且设链条的密度为ρ,则向下拉链条的作用力由牛顿第二定律可知202(10)x g x ρρ''=-,即 10g x x g ''-=- 该方程对应的齐次方程的特征方程为2010g r -=,特征根为1,2r =程的通解为通过观察知*10x =为非齐次方程10g x x g ''-=-的一个特解,因而原方程的通解为又12x e '=且(0)12,(0)0x x '==,可得1212122 10C C C C C C +=⎧⇒==⎨-+=⎩,因此10x e=++;当20x =,即链条全部滑下来,有10e =+,解得所需时间t =+(秒). (2) 此时向下拉链条的作用力变为(20)1(221)F x g x g g g x ρρρρ=---⋅=-.由牛顿第二定律可知20(221)x g x ρρ''=-,即 1.0510g x x g ''-=-.类似于(1)中解法可得此方程通解为 1210.5t t x C e C =++由初始条件得1234C C ==,因而所求特解为 3310.544x e =++当20x =时有39.54e ⎛⎫=+ ⎪ ⎪⎝⎭,解之得所需时间为193t +=(秒).。
高等数学下册 第十一章 综合练习题答案

第十一章自测题参考答案一、填空题: 1.()⎰Γ++ds R Q P γβαcos cos cos 切向量2.()⎰⎰∑++dS R Q P γβαcos cos cos 法向量3.⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D dxdy y P x Q 4. 0 5. π4 6. π2 7. 0 8.()⎰⎰101,dy y x f dx , ()⎰⎰-110,dy y x f dx , 09.()⎰-Lds x x y x P 22,二、选择题:1.C2.C3.A4.A5.D 三、计算题:1.解 由于曲线L 表达式中x ,y, z 是对称的,所以⎰Lds x 2=⎰Lds y 2=⎰Lds z 2,故⎰L ds x 2=()⎰++ds z y x 22231=3223223131a a a ds a L ππ=⋅=⎰. 2.解 原式=()[](){}⎰+---π20sin cos 1cos 12dt t t t()⎰+=π202sin sindt t t =π202sin 2121⎪⎭⎫ ⎝⎛-t t =π 3.解 记222:y x a z S --=,D :xoy 平面上圆域222a y x ≤+原式=()dxdy y z x z y x a y x D222221⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+--++⎰⎰ =()⎰⎰--⋅--++Ddxdy yx a y x a y x a2222221注意到积分区域D 关于坐标轴的对称性及被积函数的奇偶性知⎰⎰--Ddxdy yx a x 222=⎰⎰--Ddxdy yx a y 222=0,所以原式=⎰⎰Ddxdy a=2aa π⋅=3a π.4.解 利用高斯公式原式=()⎰⎰⎰Ω++dxdydz z y x 2其中Ω为S 所围成的空间区域。
由Ω关于坐标平面的对称性知⎰⎰⎰Ωxdxdydz =⎰⎰⎰Ωydxdydz =0,所以,原式=⎰⎰⎰Ωzdxdydz 2=⎰⎰⎰+1222y x D zdz dxdy xy=()⎰⎰--xyD dxdy y x 221=()⎰⎰-12201ρρρθπd d=2412ππ=⋅5.解 原式=()()[]()⎰+--π202222sin cos 1cos 1dt t a t a t a=()⎰-π20253cos 12dt t a =⎰π20253sin 8dt at=du u a⎰π53sin 16=315256a 6.解 ()()()()()x f y x Q y x f e y x P x -=+=,,,要使曲线积分与路径无关,当且仅当xQ y P ∂∂=∂∂,即()()x f x f e x '-=+ 解此微分方程可得()x xe Cex f 21-=-,又()210=f ,所以C =1,故()x x e e x f 21-=- 现在计算从()0,0A 到()1,1B 的曲线积分的值.由于积分与路径无关,故选取有向折线________CB AC +进行积分,其中()0,1C 。
高等数学 课后习题答案第十一章

习题十一1.设L 为xOy 面内直线x =a 上的一段,证明:(),d 0L P x y x =⎰其中P (x ,y )在L 上连续. 证:设L 是直线x =a 上由(a ,b 1)到(a ,b 2)这一段,则 L :12x ab t b y t =⎧≤≤⎨=⎩,始点参数为t =b 1,终点参数为t =b 2故()()()221d ,d d 0d 0d b b L b b a P x y x P a,t t P a,t t t ⎛⎫=⋅=⋅= ⎪⎝⎭⎰⎰⎰2.设L 为xOy 面内x 轴上从点(a ,0)到点(b ,0)的一段直线,证明:()(),d 0d bLaP x y x P x,x=⎰⎰,其中P (x ,y )在L 上连续.证:L :0x xa xb y =⎧≤≤⎨=⎩,起点参数为x =a ,终点参数为x =b .故()(),d ,0d bL a P x y x P x x=⎰⎰3.计算下列对坐标的曲线积分:(1)()22d -⎰Lx y x,其中L 是抛物线y =x 2上从点(0,0)到点(2,4)的一段弧;(2)d L xy x ⎰其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(3)d d L y x x y +⎰,其中L 为圆周x =R cos t ,y =R sin t 上对应t 从0到π2的一段弧; (4)()()22d d Lx y x x y yx y +--+⎰,其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);(5)2d d d x x z y y z Γ+-⎰,其中Γ为曲线x =kθ,y =a cos θ,z =a sin θ上对应θ从0到π的一段弧; (6)()322d 3d ++-⎰x x zy x y z Γ,其中Γ是从点(3,2,1)到点(0,0,0)的一段直线;(7)d d d L x y y z -+⎰,其中Γ为有向闭拆线ABCA ,这里A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1);(8)()()222d 2d L x xy x y xy y-+-⎰,其中L 是抛物线y =x 2上从点(-1,1)到点(1,1)的段弧.解:(1)L :y =x 2,x 从0变到2,()()22222435001156d d 3515L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰ (2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t =+⎧≤≤⎨=⎩ L 2的方程为y =0(0≤x ≤2a )故()()()()()12π20π320ππ32203d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2LL L axy x xy x xy xa a t a a t t x a t t ta t t t ta =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰(3)()π20π220π220d d sin sin cos cos d cos 2d 1sin 220Ly x x y R t R t R tR t tRt tR t +=-+⎡⎤⎣⎦=⎡⎤=⎢⎥⎣⎦=⎰⎰⎰(4)圆周的参数方程为:x =a cos t ,y =a sin t ,t :0→2π.故 ()()()()()()222π202π220d d 1cos sin sin cos sin cos d 1d 2πLx y x x y yx y a t a t a t a t a t a t t a a t a +--+=+---⎡⎤⎣⎦=-=-⎰⎰⎰(5)()()()2π22π3220π3320332d d d sin sin cos cos d d 131ππ3x x z y y zk k a a a a k a k a k a Γθθθθθθθθθθ+-=⋅+⋅--=-⎡⎤=-⎢⎥⎣⎦=-⎰⎰⎰(6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x t y t z t t 从1→0.故()032210314127334292d 87d 1874874t t t t t tt tt ⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰(7)AB BC CA Γ=++(如图11-2所示)图11-21:0y x AB z =-⎧⎨=⎩,x 从0→1()01d d d 112AB x y y z dx -+=--=-⎡⎤⎣⎦⎰⎰. 0:1x BC y z =⎧⎨=-⎩,z 从0→1()()()1010120d d d 112d 12232BC x y y z z dz z zz z -+=--+-⎡⎤⎣⎦=-⎡⎤=-⎢⎥⎣⎦=⎰⎰⎰0:1y CA z x =⎧⎨=-⎩,x 从0→1[]1d d d 1001CAx y y z dx -+=-+=⎰⎰.故()()d d d d d d 312122LABBCCAx y y zx y y z-+=++-+=-++=⎰⎰⎰⎰(8)()()()122421123541222d 224d 1415x x x x x x x xxx x x x--⎡⎤=-⋅+-⋅⋅⎣⎦=-+-=-⎰⎰4.计算()()d d Lx y x y x y ++-⎰,其中L 是(1)抛物线y 2=x 上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (4)曲线x =2t 2+t +1,y =t 2+1上从点(1,1)到点(4,2)的一段弧.解:(1)L :2x y y y ⎧=⎨=⎩,y :1→2,故()()()()()2221232124321d d 21d 2d 111232343L x y x y x yy y y y y yy y y yy y y ++-⎡⎤=+⋅+-⋅⎣⎦=++⎡⎤=++⎢⎥⎣⎦=⎰⎰⎰(2)从(1,1)到(4,2)的直线段方程为x =3y -2,y :1→2故()()()()()2121221d d 32332d 104d 5411L x y x y x y y y y y y y yy y ++-=-+⋅+-+⎡⎤⎣⎦=-⎡⎤=-⎣⎦=⎰⎰⎰(3)设从点(1,1) 到点(1,2)的线段为L 1,从点(1,2)到(4,2)的线段为L 2,则L =L 1+L 2.且L 1:1x y y =⎧⎨=⎩,y :1→2;L 2:2x x y =⎧⎨=⎩,x :1→4;故()()()()()12122211d d 101d 1d 212L x y x y x yy y y y y y y ++-=+⋅+-⎡⎤⎣⎦⎡⎤=-=-⎢⎥⎣⎦=⎰⎰⎰()()()()()()24144211d d 220d 12d 22272L x y x y x yx x x x x x ++-=++-⋅⎡⎤⎣⎦⎡⎤=+=+⎢⎥⎣⎦=⎰⎰⎰ 从而()()()()()12d d d d 1271422LL L x y x y x y x y x y x y++-=+++-=+=⎰⎰⎰(4)易得起点(1,1)对应的参数t 1=0,终点(4,2)对应的参数t 2=1,故()()()()()()122132014320d d 32412d 10592d 10592432323L x y x y x y t t t tt t tt t t tt t t t ++-⎡⎤=++++--⋅⎣⎦=+++⎡⎤=+++⎢⎥⎣⎦=⎰⎰⎰ 5.设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a ,0)沿椭圆移动到B (0,b ),求力所做的功.解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t =⎧⎨=⎩,t :0→π2()()()()π2022π20π222022d d cos sin sin cos d sin 2d 2cos 2222LW kx x ky yka t t kb t b t t k b a t tk b a t k b a =+=-+⋅⎡⎤⎣⎦-=--⎡⎤=⎢⎥⎣⎦-=⎰⎰⎰(其中k 为比例系数)6.计算对坐标的曲线积分:(1)d Lxyz z⎰,Γ为x 2+y 2+z 2=1与y =z 相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅲ、Ⅳ封限;(2)()()()222222d d d Lyz x z x y x y z-+-+-⎰,Γ为x 2+y 2+z 2=1在第Ⅰ封限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 解:(1)Γ:2221x y z y z ⎧++=⎨=⎩ 即2221x z y z ⎧+=⎨=⎩其参数方程为:cos 2sin 22sin 2x t y t z t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π故:2π2π2202π202π0222d cos sin sin cos d 2222sin cos d 42sin 2d 1621cos 4d 1622π16xyz z t t t t t t t t t t ttΓ=⋅⋅⋅==-==⎰⎰⎰⎰⎰(2)如图11-3所示.图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x t y t z =⎧⎪=⎨⎪=⎩ t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sincos d 2sin d 24233yz x z x y x y zt t t t tt t tt tΓ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334y z x z x y x y zy z x z x y x y zΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰7.应用格林公式计算下列积分:(1)()()d d 24356+-++-⎰x y x y x y Γ, 其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界;(2)()()222d d cos 2sin e sin 2e x x L x yx y x xy x y x x y ++--⎰,其中L 为正向星形线()2223330x y a a +=>;(3)()()3222d d 2cos 12sin 3+--+⎰L x y xy y x y x x y ,其中L 为抛物线2x =πy 2上由点(0,0)到(π2,1)的一段弧;(4)()()22d d sin Lx yx y x y --+⎰,L 是圆周22y x x =-上由点(0,0)到(1,1)的一段弧;(5)()()d d e sin e cos xx Lx yy my y m +--⎰,其中m 为常数,L 为由点(a ,0)到(0,0)经过圆x 2+y 2=ax上半部分的路线(a 为正数).图11-4解:(1)L 所围区域D 如图11-4所示,P =2x -y +4,Q =3x +5y -6,3Q x ∂=∂,1P y ∂=-∂,由格林公式得()()d d 24356d d 4d d 4d d 1432212LD DDx yx y x y Q P x y x y x yx y+-++-∂∂⎛⎫-= ⎪∂∂⎝⎭===⨯⨯⨯=⎰⎰⎰⎰⎰⎰⎰(2)P =x 2y cos x +2xy sin x -y 2e x ,Q =x 2sin x -2y e x ,则2cos 2sin 2e xPx x x x y y ∂=+-∂, 2cos 2sin 2e xQx x x x y x ∂=+-∂.从而P Q y x ∂∂=∂∂,由格林公式得. ()()222d d cos 2sin e sin 2e d d 0++--∂∂⎛⎫-= ⎪∂∂⎝⎭=⎰⎰⎰x x LD x yxy x xy x y x x y Q P x y x y(3)如图11-5所示,记OA ,AB ,BO 围成的区域为D .(其中BO =-L )图11-5P =2xy 3-y 2cos x ,Q =1-2y sin x +3x 2y 2 262cos Pxy y x y ∂=-∂,262cos Q xy y x x ∂=-∂ 由格林公式有:d d d d 0L OA AB D Q P P x Q y x y x y -++∂∂⎛⎫-+== ⎪∂∂⎝⎭⎰⎰⎰故π21220012202d d d d d d d d ππd d 12sin 3243d 12π4π4++=+=+++⎛⎫=+-+⋅⋅ ⎪⎝⎭⎛⎫=-+ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰LOA AB OA ABP x Q y P x Q yP x Q y P x Q yO x yy y y y y(4)L 、AB 、BO 及D 如图11-6所示.图11-6由格林公式有d d d d ++∂∂⎛⎫-+=- ⎪∂∂⎝⎭⎰⎰⎰L AB BO D Q P P x Q y x y x y而P =x 2-y ,Q =-(x +sin 2y ).1∂=-∂Py ,1∂=-∂Q x ,即,0∂∂-=∂∂Q P x y于是()d d d d 0+++++=+=⎰⎰⎰⎰LABBOL AB BOP x Q y P x Q y从而()()()()()()()22222211220011300d d d d sin d d d d sin sin d d 1sin 131sin 232471sin 264L LBA OB P x Q y x y x y x y x y x y x y x y x y x y y x xy x y y +=--+=-+--+-+=-++⎡⎤⎡⎤=+-+⎢⎥⎢⎥⎣⎦⎣⎦=-+⎰⎰⎰⎰⎰⎰(5)L ,OA 如图11-7所示.图11-7P =e x sin y -my , Q =e x cos y -m , e cos x Py m y ∂=-∂,e cos x Q y x ∂=∂ 由格林公式得:22d d d d d d d d 1π22π8L OA D DDQ P P x Q y x y x y m x ym x ya m m a +∂∂⎛⎫-+= ⎪∂∂⎝⎭==⎛⎫=⋅⋅ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰于是:()()[]220202πd d d d 8πd 0e sin 00e cos08π0d 8π8+=-+=-+⋅⋅-⋅⋅-=-=⎰⎰⎰⎰L OA a x x a m aP x Q y P x Q y m a xm m m a xm a8.利用曲线积分,求下列曲线所围成的图形的面积:(1)星形线x =a cos 3t ,y =a sin 3t ; (2)双纽线r 2=a 2cos2θ; (3)圆x 2+y 2=2ax . 解:(1) ()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8LA y x a t a t tt a t t t a t t t a t t t a tt t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰(2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得 cos cos 2x a θ=sin cos 2y a θ=从而x d y -y d x =a 2cos2θd θ.于是面积为:[]π24π4π24π4212d d 2cos 2d sin 22LA x y y xa a a θθθ--=⋅-===⎰⎰(3)圆x 2+y 2=2ax 的参数方程为 cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩故()()[]()2π022π021d d 21d a+acos sin 2d 1cos 2πcos sin L A x y y x a a a a a θθθθθθθ=-=-=+=⋅-⎰⎰⎰ 9.证明下列曲线积分与路径无关,并计算积分值: (1)()()()()1,10,0d d x y x y --⎰;(2)()()()()3,423221,2d d 663x yxy y x y xy +--⎰;(3)()()1,221,1d d x y x x y -⎰沿在右半平面的路径;(4)()()6,81,0⎰沿不通过原点的路径;证:(1)P =x -y ,Q =y -x .显然P ,Q 在xOy 面内有连续偏导数,且1P Q y x ∂∂==-∂∂,故积分与路径无关.取L 为从(0,0)到(1,1)的直线段,则L 的方程为:y =x ,x :0→1.于是()()()()11,100,00d 0d d x x y x y ==--⎰⎰(2) P =6xy 2-y 3,Q =6x 2y -3xy 2.显然P ,Q 在xOy 面内有连续偏导数,且2123Pxy y y ∂=-∂,2123Q xy yx ∂=-∂,有P Q y x ∂∂=∂∂,所以积分与路径无关. 取L 为从(1,2)→(1,4)→(3,4)的折线,则()()()()()()[]3,423221,2432214323212d d 663d d 63966434864236x yxyy x y xy y xy y x y y x x +--=+--=+⎡⎤--⎣⎦=⎰⎰⎰(3)2y P x =,1Q x =-,P ,Q 在右半平面内有连续偏导数,且21P y x ∂=∂,21Q x x ∂=∂,在右半平面内恒有P Q y x ∂∂=∂∂,故在右半平面内积分与路径无关. 取L 为从(1,1)到(1,2)的直线段,则()()()21,2211,1d d d 11x y x x y y -==--⎰⎰(4) P =,Q =P Q y x ∂∂=∂∂分在不含原点的区域内与路径无关, 取L 为从(1,0)→(6,0)→(6,8)的折线,则()()686,8101,0801529x y=+⎡=+⎣=⎰⎰⎰10.验证下列P (x ,y )d x +Q (x ,y )d y 在整个xOy 面内是某一函数u (x ,y )的全微分,并求这样的一个函数u (x ,y ):(1)(x +2y )d x +(2x +y )d y ; (2)2xy d x +x 2d y ;(3)(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y ; (4)(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y . 解:证:(1)P =x +2y ,Q =2x +y . 2P Q y x ∂∂==∂∂,所以(x +2y )d x +(2x +y )d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()()()()(),0,0022022d d ,22d d 2222222x y xy yu x yx y x y x y x x yx y x y xy x y xy =+++=++⎡⎤=++⎢⎥⎣⎦=++⎰⎰⎰(2)P =2xy ,Q =x 2, 2P Q x y x ∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()(),20,02022d d ,0d d x y xy u xy x x yx y x x yx y=+=+=⎰⎰⎰(3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y ,2316∂∂=+=∂∂P Q x xy y x ,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y是某个定义在整个xOy 面内函数u (x ,y )的全微分, ()()()()()(),22320,03200322d ,38812e 0d d 812e 412e 12e 12x y y xyy y y u x x y x y x y x x y y x y x x y y x y x y y =++++=+++=++-+⎰⎰⎰(4)P =2x cos y +y 2cos x ,Q =2y sin x -x 2sin y ,2sin 2cos Px y y x y ∂=-+∂,2cos 2sin Q y x x yx ∂=-∂, 有P Q y x ∂∂=∂∂,故(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y 是某一个定义在整个xOy 面内的函数u (x ,y )的全微分, ()()()()()(),220,020022d d ,2cos cos 2sin sin 2d d 2sin sin sin cos x y xyu x y x y x y y x y x x y x x yy x x y y x x y=++-=+-=+⎰⎰⎰11.证明:22d d x x y yx y ++在整个xOy 平面内除y 的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数.证:22x P x y =+,22y Q x y =+,显然G 是单连通的,P 和Q 在G 内具有一阶连续偏导数,并且.()2222∂∂-==∂∂+P Q xy y x x y ,(x ,y )∈G因此22d d x x y y x y ++在开区域G 内是某个二元函数u (x ,y )的全微分.由()()22222222d d 11ln 22d x y x x y y d x y x y x y ++⎡⎤==+⎢⎥++⎣⎦ 知()()221ln ,2u x y x y =+.12.设在半平面x >0中有力()3kF xi yj r =-+构成力场,其中k为常数,r =,证明:在此力场中场力所做的功与所取的路径无关. 证:场力沿路径L 所作的功为.33d d L k k W x x y y r r =--⎰ 其中3kx P r =-,3kyQ r =-,则P 、Q 在单连通区域x >0内具有一阶连续偏导数,并且 53(0)P kxy Q x y r x ∂∂==>∂∂因此以上积分与路径无关,即力场中场力所做的功与路径无关.13.当Σ为xOy 面内的一个闭区域时,曲面积分()d d ,,R x yx y z ∑⎰⎰与二重积分有什么关系?解:因为Σ:z =0,在xOy 面上的投影区域就是Σ故()()d d d d ,,,,0R x y R x yx y z x y ∑∑=±⎰⎰⎰⎰当Σ取的是上侧时为正号,Σ取的是下侧时为负号. 14.计算下列对坐标的曲面积分: (1)22d d x y z x y∑⎰⎰,其中Σ是球面x 2+y 2+z 2=R 2的下半部分的下侧;(2)d d d d d d z x y x y z y z x ∑++⎰⎰,其中Σ是柱面x 2+y 2=1被平面z =0及z =3所截得的在第Ⅰ封限内的部分的前侧;(3)()()()d d 2d d d d ,,,,,,f x y z f y z x f z x y x y z x y z x y z ∑+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰,其中f (x ,y ,z )为连续函数,Σ是平面x -y +z =1在第Ⅳ封限部分的上侧;(4)d d d d d d xz x y xy y z yz z x ∑++⎰⎰,其中Σ是平面x =0,y =0,z =0,x +y +z =1所围成的空间区域的整个边界曲面的外侧;(5)()()()d d d d d d y z z x x y y z x y z x ∑++---⎰⎰,其中Σ为曲面22z x y =+与平面z =h (h >0)所围成的立体的整个边界曲面,取外侧为正向; (6)()()22d d d d d d +++-⎰⎰y y z x z x x yy xz x z ∑,其中Σ为x =y =z =0,x =y =z =a 所围成的正方体表面,取外侧为正向;解:(1)Σ:222z R x y =---,下侧,Σ在xOy 面上的投影区域D xy 为:x 2+y 2≤R 2.()()()()()()()()()()22222222π42222002π222222222002π35422222222200354*******d d d d d cos sin d 1sin 2d d 81d d 1cos421612422π1635xyD RR R xy z x y x y x yR x y r r rR r R r R R r r R R R r R R r R r R r R R R r R r ∑θθθθθθθ=----=---=-⋅-⎡⎤+--⎣⎦⎡⎤=----+---⎣⎦=-⋅-+--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰()72220772π105RR r R ⎡⎤-⎢⎥⎣⎦=(2)Σ如图11-8所示,Σ在xOy 面的投影为一段弧,图11-8故d d 0z x y ∑=⎰⎰,Σ在yOz 面上的投影D yz ={(y ,z )|0≤y ≤1,0≤z ≤3},此时Σ可表示为:21x y =-(y ,z )∈D yz,故23202d d 1d d d 1d 31d yzD x y z y y zz y yy y∑=-=-=-⎰⎰⎰⎰⎰⎰⎰Σ在xOz 面上的投影为D xz ={(x ,z )|0≤x ≤1,0≤z ≤3},此时Σ可表示为:21y x =-(x ,z )∈D xz, 故23202d d 1d d d 1d 31d xzD y z x x z xz x xx x∑=-=-=-⎰⎰⎰⎰⎰⎰⎰因此:120120d d d d d d 231d 61d π643π2z x y x y z y z xx x x x∑++⎡⎤=-⎢⎥⎣⎦=-=⋅=⎰⎰⎰⎰(3)Σ如图11-9所示,平面x -y +z =1上侧的法向量为 n ={1,-1,1},n 的方向余弦为1cos 3α=,1cos 3β-=,1cos 3γ=,图11-9由两类曲面积分之间的联系可得:()()()()()()()()()d d 2d d d d ,,,,,,cos d (2)cos d ()d d cos cos d d (2)d d ()d d cos cos (2)()d d d d 1d d xyD f x y z f y z x f z x y x y z x y z x y z s f y s f z x yf x x y f y x y f z x y f x f y f z x y f x x yx y z x yx y x y ∑∑∑∑∑αβαβγγ+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦=+++++=+++++=-+++⎡⎤+⎣⎦=-+=+-⎡⎤--⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰d d 111212xyD x y==⨯⨯=⎰⎰⎰⎰(4)如图11-10所示:图11-10Σ=Σ1+Σ2+Σ3+Σ4.其方程分别为Σ1:z =0,Σ2:x =0,Σ3:y =0,Σ4:x +y +z =1,故()()123441100d d 000d d d d 11d d 124xyD xxz x yxz x yx x yx y x x y x y ∑∑∑∑∑∑-=+++=+++=--==--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由积分变元的轮换对称性可知.1d d dzd 24xy y z yz x ∑∑==⎰⎰⎰⎰因此.d d dyd d d 113248xz x y xy z yz z x ∑++=⨯=⎰⎰(5)记Σ所围成的立体为Ω,由高斯公式有:()()()()()()d d d d d d d d d 0d d d 0y z z x x yy z x y z x y z x y z x x y z x y z x y z ∑ΩΩ++---∂∂⎛⎫--∂-=++ ⎪∂∂∂⎝⎭==⎰⎰⎰⎰⎰⎰⎰⎰(6)记Σ所围的立方体为Ω, P =y (x -z ),Q =x 2,R =y 2+xz . 由高斯公式有()()()()()22200204d d d d d d d d d d d d d d d d d d 2d 2a aaaaaaay y z x z x x yyxz x z P Q R x y z x y z x y zx y x y z x y x a yx y y a x xy a a x ax a ∑ΩΩ+++-∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=+=+=+⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰15.设某流体的流速V =(k ,y ,0),求单位时间内从球面x 2+y 2+z 2=4的内部流过球面的流量. 解:设球体为Ω,球面为Σ,则流量3d d d d d d d 432d d d π2π33k y z y z xP Q x y z x y x y z ∑ΩΩΦ=+∂∂⎛⎫+= ⎪∂∂⎝⎭==⋅=⎰⎰⎰⎰⎰⎰⎰⎰(由高斯公式)16.利用高斯公式,计算下列曲面积分:(1)222d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ为平面x =0,y =0,z =0,x =a ,y =a ,z =a 所围成的立体的表面的外侧;(2)333d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ为球面x 2+y 2+z 2=a 2的外侧; (3)()()2232d d d d d d 2xz y z z x x yxy z xy y z ∑++-+⎰⎰,其中Σ为上半球体x 2+y 2≤a 2,0z ≤的表面外侧;(4)d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ是界于z =0和z =3之间的圆柱体x 2+y 2=9的整个表面的外侧;解:(1)由高斯公式()()22204d d d d d d d 2222d 6d 6d d d 3aaax y z y z x z x yvx y z vx y z x v x x y za ∑ΩΩΩ++=++=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰对称性(2)由高斯公式:()3332222ππ405d d d d d d d 3d 3d d sin d 12π5ax y z y z x z x yP Q R v x y z v x y z r ra ∑ΩΩθϕϕ++∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(3)由高斯公式得 ()()()2232222π2π222024π05d d d d d d 2d d d d sin d 2πsin d d 2π5aaxz y z z x x yxy z xy y z P Q R v x y z v z x y r r rr ra ∑ΩΩθϕϕϕϕ++-+∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=++=⋅==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(4)由高斯公式得: 2d d d d d d d 3d 3π3381πx y z y z x z x yP Q R v x y z v∑ΩΩ++∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭==⋅⋅⋅=⎰⎰⎰⎰⎰⎰⎰⎰17.利用斯托克斯公式,计算下列曲线积分:(1)d d d y x z y x zΓ++⎰,其中Γ为圆周x 2+y 2+z 2=a 2,x +y +z =0,若从x 轴的正向看去,这圆周是取逆时针的方向;(2)()()()222222d d d x y zyz x y z x Γ++---⎰,其中Γ是用平面32x y z ++=截立方体:0≤x ≤1,0≤y ≤1,0≤z ≤1的表面所得的截痕,若从Ox 轴的正向看去,取逆时针方向; (3)23d d d y x xz y yz z Γ++⎰,其中Γ是圆周x 2+y 2=2z ,z =2,若从z 轴正向看去,这圆周是取逆时针方向;(4)22d 3d d +-⎰y x x y z zΓ,其中Γ是圆周x 2+y 2+z 2=9,z =0,若从z 轴正向看去,这圆周是取逆时针方向.解:(1)取Σ为平面x +y +z =0被Γ所围成部分的上侧,Σ的面积为πa 2(大圆面积),Σ的单位法向量为{}cos ,cos ,cos n αβγ==. 由斯托克斯公式22d d d cos cos cos d d πy x z y x zR Q Q P P R s y z x y z x ss a a Γ∑∑∑αβγ++⎡∂∂∂∂⎤⎛⎫⎛⎫∂∂⎛⎫--=++- ⎪⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎣⎦====⎰⎰⎰⎰⎰⎰⎰(2)记为Σ为平面32x y z ++=被Γ所围成部分的上侧,可求得Σ的面积为(是一个边长为2的正六边形);Σ的单位法向量为{}cos ,cos ,cos αβγ==n .由斯托克斯公式()()()(((()222222d d d2222d22d3d23292x y zy z x yz xy z x y sz xsx y zsΓ∑∑∑++---⎡+----=--⎢⎣=++===-⎰⎰⎰⎰⎰(3)取Σ:z=2,D xy:x2+y2≤4的上侧,由斯托克斯公式得:()()()2223d d dd d0d d d d3d d35d d5π220π-+=++--+=-+=-=-⨯⨯=-⎰⎰⎰⎰⎰⎰⎰xyDy x xz y yz zy z z x x yzz xx yzx yΓ∑∑(4)圆周x2+y2+z2=9,z=0实际就是xOy面上的圆x2+y2=9,z=0,取Σ:z=0,D xy:x2+y2≤9由斯托克斯公式得:()()()222d3d dd d d d d d000032d dd dπ39π+-=++---===⋅=⎰⎰⎰⎰⎰⎰⎰xyDy x x y z zy z z x x yx yx yΓ∑∑18.把对坐标的曲线积分()()d d,,LP x Q yx y x y+⎰化成对弧长的曲线积分,其中L为:(1)在xOy面内沿直线从点(0,0)到点(1,1);(2)沿抛物线y=x2从点(0,0)到点(1,1);(3)沿上半圆周x2+y2=2x从点(0,0)到点(1,1).解:(1)L的方向余弦πcos cos cos42αβ===,故()()d d,,dLP x Q yx y x yP x Qs++=⎰⎰(2)曲线y =x 2上点(x ,y )处的切向量T ={1,2x }.其方向余弦为cos α=,cos β=故()()d d ,,d 2,,LP x Q yx y x y P x xQ x y x y s++=⎰⎰(3)上半圆周上任一点处的切向量为⎧⎨⎩其方向余弦为cos α=cos 1x β=-故()()()()()d d ,,d ,,1LLP x Q yx y x y s Q x y x y x +⎤=+-⎦⎰⎰ 19.设Γ为曲线x =t ,y =t 2,z =t 3上相应于t 从0变到1的曲线弧,把对坐标的曲线积分d d d P x Q y R z Γ++⎰化成对弧长的曲线积分.解:由x =t ,y =t 2,z =t 3得d x =d t ,d y =2t d t =2x d t ,d z =3t 2dt =3y d t ,d s t =.故d cos d d cos d d cos d x s y s z s αβγ======因而d d d P x Q x R x s ΓΓ++=⎰⎰20.把对坐标的曲面积分 ()()()d d d d d d ,,,,,,P y z Q z x R x y x y z x y z x y z ∑++⎰⎰化成对面积的曲面积分,其中:(1) Σ是平面326x y ++=在第Ⅰ封限的部分的上侧; (2) Σ是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧.解:(1)平面Σ:326x y ++=上侧的法向量为n ={3,2,,单位向量为n 0={35,25,},即方向余弦为3cos 5α=,2cos5β=,cos γ=.因此:()()()()d d d d d d ,,,,,,d cos cos cos 32d 555P y z Q z x R x y x y z x y z x y z sP Q R sP Q R ∑∑∑αβγ++=++⎛⎫=++ ⎪⎝⎭⎰⎰⎰⎰⎰⎰(2)Σ:F (x ,y ,z )=z +x 2+y 2-8=0,Σ上侧的法向量n ={ F x ,F y ,F z }={ 2x ,2y ,1}其方向余弦:cos α=cos β=cos γ=故()()()()d d d d d d ,,,,,,d cos cos cos P y z Q z x R x y x y z x y z x y z sP Q R s∑∑∑αβγ++=++=⎰⎰⎰⎰⎰⎰。
高数答案第11章

第十一章 曲线积分与曲面积分 (09级下学期用) § 1 对弧长的曲线积分 1设 L 关于x 轴对称,1L 表示L 在x 轴上侧的部分,当()y x f ,关于y 是偶函数时,()=⎰Lds y x f ,( B )()⎰1,L ds y x f C 。
()⎰-1,2L ds y x f D.ABC 都不对2、设L 是以点()()()()1,0,0,1,1,0,0,1--D C B A 为顶点的正方形边界,则⎰+Lyx ds =( C )A 。
24 D 。
223、有物质沿曲线L :()103,2,32≤≤===t t z t y t x 分布,其线密度为,2y =μ,则它的质量=m ( A )++1421dt t t t B 。
⎰++104221dt t t tC 。
⎰++1421dt t t D.⎰++1421dt t t t4.求,⎰Lxds 其中L 为由2,x y x y ==所围区域的整个边界解:,⎰Lxds =()22155121241111+-=++⎰⎰xdx dy yy 5.,ds y L⎰其中L 为双纽线)0)(()(222222>-=+a y x a y x解:原积分=()()222sin 4sin 442022'2441-==+=⎰⎰⎰a d ad r r r ds y L χππθθθθθ6.⎰+Lds y x ,22 其中L 为()022>=+a axy x原积分222cos 2a adt t a ==⎰π7.,2⎰Lds x 其中L 为球面2222a z y x =++与平面0=-y x 的交线解:将y x =代入方程2222a z y x =++得2222a z x =+于是L 的参数方程:ta z t a y t a x sin ,sin 2,cos 2===,又adt ds =原积分=⎰=ππ203222cos 2a adt t a 8、求均匀弧()0,sin ,cos ≤<∞-===t e z t e y t e x t t t 的重心坐标33,30===⎰∞-dt e M dt e ds tt,523cos 100==⎰∞-dt e t e Mx t t ,21,5100=-=z y§2 对坐标的曲线积分 一、选择题1。
中北大学高数习题 第十一章-2答案

a
o
a
a
y
2 3 2 ( cos ) |0
1 5
r |0
5 a
x
6 5
a
5
机动
目录
上页
下页
返回
结束
2. 计算曲面积分 其中为曲线
ze
x0
y
(0 y a )绕
z 轴旋转而成的曲面的下侧.
a
解: 依题意画图.补一平面 1 : z e
原式=
( x y a ) 取其上侧.
0 0 0 a b c
z
c
o
a
b
y
2 dx [( x y ) z
0 0
a
b
1
x
a b
0 0 2 2 a a 1 2 1 2 1 2 1 2 b 2 [cxy c y c y ] |0 dx 2 [cbx cb c b]dx 0 0 2 2 2 2
z ] |0 dy 2 dx [( x y )c
1 2
Dyz 2 2 2 R y z dydz D R y z dydz
2 2 2
yz
3 2 1 2 3 2 2 2 R 2 2 2 ( ) ( R r ) |0 R 2 d R r rdr 0 0 3 2 3 2 3 ydzdx R .为计算 zdxdy, 类似可得: 3
z
解: 依题意画图.其中: : z x y 取上侧.
2 2 1
2 : z 1
1
取下侧.
2
3
1
2
3 : x y 4
高数第11章自测题答案

第十一章参考答案 一 1(先表示.)2cos :,02sin 2x t L t y tπ=⎧≤≤⎨=⎩.(再求)Lxds ⎰=222cos 4sin t tππ⋅==⎰4;解1 (先表示.)2cos :,:02sin 2x t L t y tπ=⎧→⎨=⎩.(再求)Ldx dy +⎰22cos sin (cos sin )11d t d t t t ππ=+=+=-=⎰0.解2 因为P Qy x∂∂=∂∂在D 内恒成立,所以1001L dx dy dx dy +=+⎰⎰⎰=0;:z ∑=∑在xOy 面上的投影区域22:4,0,0xy D x y x y +≤≥≥.dS ===12244xyD dxdy π∑==⨯⨯=⎰⎰2π;解1xyD dxdy dxdy π∑=-=-⎰⎰⎰⎰ ,由于积分变量的对称性知dydz dzdx dxdy ∑∑∑==⎰⎰⎰⎰⎰⎰,所以dydz dzdx dxdy ∑++⎰⎰=-3π;解2 利用高斯公式法 补充:221:0,4z x y ∑=+≤取下侧; 222:0,4x y z ∑=+≤取后侧; 223:0,4y x z ∑=+≤取左侧.12300dydz dzdx dxdy dxdydz -∑+∑+∑+∑Ω++==⎰⎰⎰⎰⎰ ,1xyD dydz dzdx dxdy dxdy π∑++=-=-⎰⎰⎰⎰,同理23dydz dzdx dxdy dydz dzdx dxdy π∑∑++=++=-⎰⎰⎰⎰所以03()3dydz dzdx dxdy ππ-∑++=--=⎰⎰,而dydz dzdx dxdy ∑++⎰⎰=-3π;2.22()LLx y ds ds L +==⎰⎰ 的弧长=2π.3.路径为:(0,0)(1,0)(1,1)→→(1,1)(0,0)y d x x d y +⎰110dx dy =+=⎰⎰1;4. 利用格林公式,L -为逆时针方向.Ly d x x d y --⎰2xyD dxdy =-⎰⎰=-2π,所以Lydx xdy -⎰ =2π;5. 利用高斯公式x d y d zy d z d xz d x ∑++⎰⎰ 1333dxdydz πΩ==⨯=⎰⎰⎰ π二 1.因为dS =,所以22xyD dS x dS ∑=⎰⎰. B 与C 相同,而C与D 不同,所以选D;2.由格林公式知,应选B三 1. 第一类曲线积分,曲线方程化为参数方程:cos :,021sin x tL t y tπ=⎧≤≤⎨=-+⎩22()Lx y ds +⎰202(1sin )t dt π=--+=⎰4π;2.(空间曲线)线段AB:(0,0,1),0,1,,:01s x y z t t ====→112ABxdx ydy zdz tdt ++==⎰⎰.类似 线段BC:(1,1,1),,1,1,:01s x t y t z t t ===+=+→13(23)22BC xdx ydy zdz t dt ++=+=+⎰⎰. 线段CA:(1,1,2),,1,2,:10s x t y t z t t =---=-=-=--→1(61)4CAxdx ydy zdz t dt -++=-=-⎰⎰. 所以0Lxdx ydy zdz ++=⎰3. 第二类曲线积分,曲线方程化为参数方程: 2cos :,:02sin x tL t y tπ=⎧→⎨=⎩224L ydx xdyx y -++⎰ 22202cos 2sin 4t t dt π+==⎰π; 4. 第一类曲面积分. ∑:1()z x y =-+;;:1,0,0xy dS D x y x y =+≤≥≥xzdS ∑⎰⎰110(1xdx x x y -=--=⎰⎰;5. 第二类曲面积分. ∑:z =下侧; 222:xy D x y R +≤zdxdy ∑⎰⎰20xyD d d πθρ=-=⎰⎰⎰⎰=323R π; 6. 解1 因为y P Q e y x∂∂==∂∂在xOy 面恒成立,所以()(2)y y L e x dx xe y dy ++-⎰与路径无关,于是选(0,0)(2,0)O A →直线段,则()(2)y y Le x dx xe y dy ++-⎰2(1)4x dx =+=⎰.解2 用参数方程表示L :1cos ,:0sin x tt y t π=+⎧→⎨=⎩.()(2)y y Le x dx xe y dy ++-⎰=0sin sin {(1cos )(sin )[(1cos )2sin ]cos }t t e t t t e t t dt π++-++-⎰ =sin 2sin sin [(sin cos )sin 3cos sin cos ]t t t te te t t t te dt π-+--+⎰=sin 2sin 03[cos cos sin ]42tt tet t e π+-+=.7. 解1 因为324P Q x y y x∂∂==-∂∂在xOy 面恒成立,所以 423(23)(4)Lxy y dx x xy dy -++-⎰与路径无关,于是选(1,0)(2,0)(2,1)A C B →→路径,423(23)(4)L xy ydx x xy dy -++-⎰21313(48)dx y dy =+-⎰⎰=5.解2 以x 作参数,L :2(1),:12y x x =-→423(23)(4)Lxy y dx x xy dy -++-⎰8. 利用高斯公式 ,0,P x y Q R x y ===-,()x y dxdy xydydz ∑-+⎰⎰0ydv Ω==⎰⎰⎰(因为y 是奇函数,且Ω关于xOz 面对称).9. 补221:0,(1)z x y ∑=+≤,下侧,利用高斯公式12221(2)()()I yx dydz z y dzdx x z dxdy ∑+∑=++-+-⎰⎰ =012222(2)()()I y x dydz z y dzdx x z dxdy∑=++-+-⎰⎰212220cos 4xyD x dxdy d d ππθρθρρ=-=-=-⎰⎰⎰⎰.222(2)()()yx dydz z y dzdx x z dxdy ∑++-+-⎰⎰12I I =-=π/4。
高数A第11章大作业答案

L2
L2
16a 3 2 cos 4 (1 cos 2 )d
0
2
a3
21
1.求 xydx 其中L为圆周( x a ) 2 y 2 a 2 (a 0)及x轴所
L
围成的在第一象限的区 域的整个边界( L取逆时针方向)
x a(1 cos ) (2)设 (0 ) y a sin xydx xydx xydx xydx
(2)
注:当曲面与 yoz 面垂直时积分为零。
对坐标xoz的曲面积分计算公式
Q x , y( x , z ), z dxdz 取右侧 D yz Qdxdz Q x , y( x , z ), z dxdz 取左侧 D yz
n 0 i 1
lim [ P ( i , i )xi Q( i , i )yi ]
L Pdx Qdy L ( P cos Q cos )ds
L f ( x, y )ds
f [, ] dt
2 2
LPdx Qdy
2 4
P Q 1 2, 2 1 3 y x
12
一、选择题
3.设I R 2 x 2 y 2 dS,其中 : z R 2 x 2 y 2,则I的值为
在xoy面上的投影域为 Dxy : x 2 y 2 R2
曲 面 积 分
对面积的曲面积分
对坐标的曲面积分
n
n 定 f ( x, y , z )dS lim R( i ,i , i )(Si ) xy f ( i ,i , i )Si R( x , y, z )dxdy lim 0 0 i 1 i 1 义
高等数学课后习题答案--第十一章.

《高等数学》习题参考资料第五篇概率论与数理统计第十一章概率论§ 1 概率习题1. 设一个工人生产了5 个零件, 用Ai表示“第i个零件是正品”,i=1,2,3,4,5,试用Ai表示下列事件:(1)没有一个次品;(2)最多有3个次品;(3)只有2个次品;(4)至少有3个次品.【答案】 (1) B1=A1A2A3A4A5;(2) B2=A1A2+A1A3+A1A4+A1A5 +A2A3+A2A4+A2A5 +A3A4+A3A5+A4A5;(3) B3=A1A2A3A4A5+A1A23A45 +A12A3A45+1A2A3A45+A1A234A5+A12A34A5+1A2A34A5+1A23A4A5+A123A4A5+12A3A4A5;(4) B4=+12345 +A12345+1A2345 +12A345+123A45+1234A5+A1A2345+A12A345+A123A45+A1234A5+1A234A5+1A23A45+1A2A345+123A4A5+12A34A5+12A3A45.2. 已知P(B)=0.3, p(A∪B)=0.6, 求P(A).【答案】 P(A)=P(A∪B)−P(B)=0.3.3. 如果事件A和B同时出现的概率P(AB)=0, 则下列结论成立的是:(1) A与B互逆; (2) AB为不可能事件; (3) P(A)=0或P(B)=0; (4)AB未必是不可能事件.【解】(1) 和(2)成立. (3),(4) 不成立.2184. 已知P(A∩B)=P(∩), 且P(A)=p, 求P(B).【答案】P(B)=1−p.5. 设事件A,B的概率分别为P(A)=和P(B)=, 且P(AB)=12141, 求P(B)和10P(A)【解】P(B)=P(B)−P(AB)=32; P(A)=P(A)−P(AB)=.2056. 对任意三个事件A,B,C, 试证P(A∪B∪C)=P(A)+P(B)+P(C)−P(AB)−P(BC)−P(AC)+P(ABC).并把这个结论推广到n个事件的情况【解】 P(A∪B∪C)=P(A∪B)+P(C)−P((A∪B)∩C)=P(A)+P(B)−P(AB)+P(C)−P(AC∪BC)=P(A)+P(B)+P(C)−P(AB)−P(BC)−P(AC)+P(ABC).7. 十把钥匙, 其中有3把能打开房门, 现从中任取2把, 求能打开房门的概率.11C3C7+C328 【答案】 p==.215C108. 甲、乙、丙各自向同一个目标射击一次, 已知它们的命中率分别为0.7 ,0.8 和0.75, 求目标被击中2次的概率.【解】设A,B,C分别表示甲乙丙射中目标的事件,p=P(AB+P(A)+P(BC)=0.7×0.8×0.25+0.7×0.2×0.75+0.3×0.8×0.75=0.14+0.105+0.18=0.425.9. 男人的性染色体为(x,y), 女人为(x,x). 当生殖细胞作成数分裂时. 这时染色体分配在两个细胞中. 如果某种遗传病和隐性遗传病都在染色体x上, 把这种染219色体记为x*. 对于男人, 性染色体为x*,y时为隐性遗传病患者. 对于女人, 性染色体为x*,x*时, 为隐性遗传病患者, 性染色体为(x*,x)或(x,x*)时为隐性遗传病携带者. 讨论子女为隐性遗传病患者(A1)和隐性遗传病携带者(A2)的概率.【解】除去父母均为正常者之外, 列表如下:父母子女儿 P(A1) P(A2) P(A1+A2)111(x,y) (x*,x) (x,y),(x*,y) (x,x),(x,x*) 44211**(x,y) (x*,x*) (x*,y),(x*,y) (x,x),(x,x) 12211(x*,y) (x,x) (x,y),(x,y) (x*,x),(x*,x) 0 22113(x*,y) (x*,x) (x*,y),(x,y) (x*,x*),(x*,x) 244(x*,y) (x*,x*) (x*,y),(x*,y) (x*,x*),(x*,x*) 1 0 1()()10. 若班上有40个同学, 每个人的生日是一年365天中的哪一天是等可能的.试求班上至少有两位同学的生日在同一天的事件A的概率.【解】此问题也类似一个分房问题. 把365天看作365个房间, 事件A的对立事件是“没有两个同学在同一天生日”的事件, 它就相当于每个同学占据一天的日子一样. 于是按例10知N! P(A)=(N−n)!⋅NnN=365,n=40, 因而365!N!1=−=1−0.109=0.891,P(A)=1−P(A)=1−(N−n)!⋅Nn(365−40)!⋅36540即班上至少有两个同学在同一天生日的可能性达到89%.若n =20, 则概率就接近0.5.若n = 50, 则概率达到97%.若n = 100, 则概率几乎达到1.11. 从 0,1,2,L,9十个数字中任取3个组成三位数, 问这个三位数是偶数的概率.111C92P2+C4C8C841【答案】p==181C9P12. 某人写了3封信, 并分别在3 个信封上写了这3封信的地址, 如果他任意地将3 张信纸装入3个信封中, 求没有一封信的信封和信纸是配对的概率..220【解】设A表示”至少有一封信的信封和信纸是配对”的事件. Ai表示”第i个111信封和自己的信纸配对”的事件. P(Ai)=, P(AiAj)==, i≠j,33!611P(A1A2A3)==. A=A1+A2+A3, 于是3!6P(A1+A2+A3)=P(A1)+P(A2)+P(A3) −P(A1A2)−P(A2A3)−P(A1A3)+P(A1A2A3) 11141=3×−3×+=,因此P()=1−P(A)=.3666313. 设100个成品中有3 个是次品, 任取5个, 求其次品数分别为 0 , 1 ,2 , 3 的概率. i5−iC3C97, i=0,1,2,3. 【答案】 pi=5C10014. 设一个口袋里有十个硬币, 其中五分的有2个, 二分的有3 个, 一分的有5 个, 若从中任取5个硬币, 问其总值大于10 分的概率.23131122C2C8+C2C3C5+C2C3C5126 【答案】 p===0.55252C1015. 设100件产品中有5件次品, 现从中随意地抽取10 件, 求这10 件中恰有3件次品的概率.37C5C 【答案】 p=1095.C10016. 电路由元件A 和两个并联的元件B和C串联而成. 设元件A , B , C 损坏的概率分别是0.3 ,0.2 , 0.25 . 求电路发生故障的概率.【解】E=A∪(B∩C),P(E)=P(A)+P(BC)−P(ABC)=0.3+0.05−0.015=0.33522117. 设100件零件中, 次品率为10%, 先后从中各任取1个, 第一次取出的零件不放回, 求第二次取得正品的概率.【答案】p=989190×+×=0.91099109918. 设口袋中有a个黑球, b个白球 (b>2), 球的大小和质地一样, 甲, 乙,丙三人依次从口袋中任取一个球, 取后不放回, 分别求出三人各自取得白球的概率.【答案】19. 设12个乒乓球中有9个是新的, 3个是旧的, 第一次比赛取出了3 个, 用完后放回, 第二次比赛又取出3 个球, 求第二次比赛取出的3 个球中有2个是新球的概率. 031212121123012C3C9C6C6C3C9C5C7C32C9C4C8C3C9C3C91377= 【答案】p=.+++333333333025C12C12C12C12C12C12C12C12b.a+b20. 设10个考签中有4个是难题, 三个人参加抽签考试, 不重复地抽取, 每个人抽一题, 甲先, 乙次, 丙最后, 证明三个人抽到难题的概率是相同的.【解】本题类似18题, 每个人抽到难题的概率都是42=.10521. 两封信随机地投入到4个邮筒里. 求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.1C2⋅33221 【答案】 p1=2=, p2=2=.484422. 二维随机点(m,n)在区域|m|<1,|n|<1中等可能地出现, 求方程x2+mx+n=0的两个根都是正根的概率222【答案】 n>0且 m<0且m2−4n>0,p=1.4823. 把长度为a的铁丝任意折成三段, 求它们可以构成一个三角形的概率.【解】设三段为x,y,a−x−y, 于是0<x<a, 0<y<a, ; 根据三角形两边和大于第三边, 则符合条件的是0<x<aaa, 0<y<, <x+y<a, 如图.22221 a 12 2 因此所求概率p==.24a224. 从(0,1)中随机地取两个数, 求下列事件的概率 (1) 两数之和小于(2) 两数之积小于; (3) 同时满足前两个条件.146;51441−××255=17=0.68; 【解】 (1) p=125(2)p=1111×1+1=(1+ln4)=0.567;4444x6−1011 5 5 −x dx+6−+6+ −x dx=0.593.4x 6 10 6106+1 (3) p=×1+15525. Buffon问题在平面上画出等距离a的平行线, 向此平面随机地投掷一根长为l(l<a)的针. 试求针与平行线相交的概率.223【解】以M表示针的中点, x表示M与最近的平行线的距离, t表示针与a平行线的夹角, 显然0≤x≤, 0≤t≤π, 针与平行线相交的充分必要条件是2l0<x<sint, 于是2lπsintdt∫02l=P(A)=aπaπ×226. 设有 Ai(i=1,2,3,4,5)五个相同元件构成图11.1.2所示系统, 每一个元件能正常工作的概率是p, 各元件是否正常工作是相互独立的, 问此系统能正常工作(接通)的概率?【解】将系统分成两种情况讨论,一是A3正常, 二是A3不正常, 记B为系统正常工作,Ai表示Ai元件正常工作,A3正常时相当于右图于是P(B|A3)=P((A1∪A4)∩(A2∪A5))=P(A1∪A4)P(A2∪A5)=(1−P(1)P(4))(1−P(2)P(5))=p2(2−p)2,224A3不正常时, 相当于右图P(B|3)=P((A1∩A4)∪(A2∩A5))=P(A1A2)+P(A4A5)−P(A1A2A4A5)=p2(2−p2),于是根据全概率公式,P(B)=P(A3)P(B|A3)+P(3)P(B|3)=p⋅p2(2−p)2+(1−p)⋅p2(2−p2)=p2(2p3−5p2+2p+2)《高等数学》习题参考资料第十一章概率论§ 2 条件概率全概率公式 Bayes公式习题1. 袋中有4个白球, 2个黑球, 连取2 个球, 取后不放回, 如果已知第一个是白球, 问第二个是白球的概率?3 【答案】.52. A,B为两随机事件, 且B⊂A, 则下列哪个式子是正确的: (1)P(A∪B)=P(A); (2)P(AB)=P(A); (3)P(B−A)=P(A)−P(B).(4)P(B|A)=P(B).【答案】(1) 是正确的. 其余是错误的2253. 用三个机床加工同一种零件, 零件由各机床加工的概率分别是0.5 ,0.35 , 0.15 , 各机床加工的零件为合格品的概率分别是0.95 , 0.92 , 0.96 ,求全部产品的合格率. 【解】p=0.5×0.95+0.35×0.92+0.15×0.96=0.941.4. 设有10 箱同样规格的产品, 其中5 箱是甲厂的产品, 次品率是是乙厂的产品, 次品率是1; 3 箱1011; 2 箱是丙厂的产品, 次品率是. 今在这10 箱产1520品中任选1箱, 再从中任取1件产品, 问它是次品的概率是多少? 又若已知取得的一件产品是次品, 它是甲厂的产品的概率是多少?【解】(1) p=∑P(Ai)P(E|Ai)=i=1351312125⋅+⋅+⋅=;(2) .1010101510202585. 有2 个口袋. 甲袋中装有2 个白球, 1个黑球; 乙袋中装有1个白球, 2个黑球. 由甲袋任取1 个球放入乙袋, 再从乙袋中任取1 个球, 求取到白球的概率.【解】p=21115⋅+⋅=.3234126. 设每次射击时命中率为0.2 , 问至少需进行多少次独立的射击, 才能使至少击中一次的概率不小于0.9 .【解】射击n次, 至少击中一次的概率为p=1−(1−0.2)n, 91−0.8n=0., 于是n=ln0.1=10.3, 因此取n=11次.ln0.87. 某设备由A , B 两个部件串联而成, 两个部件中任何一个失灵, 该设备就失灵. 若使用1000小时后, 部件A失灵的概率是0.1, 部件B 失灵的概率是0.3,若两个部件是否失灵是相互独立的, 求这个设备使用1000小时后不失灵的概率.226【解】p=1−(1−0.1)(1−0.3)=0.37.8. 某种牌号的电子元件使用到1000小时的概率为0.9, 使用到1500小时的概率为0.3, 今有该种牌号的一个电子元件已使用了1000小时, 问该电子元件能用到1500小时的概率.【解】条件概率p=139. 甲、乙两人独立地对同一目标进行射击一发子弹, 他们的命中率分别是0.7和0.8, 现在目标被命中一发, 求它是甲射中的概率.【解】利用Bayes公式: p=10. 设三次独立试验中, 事件A出现的概率相等. 若已知A至少出现一次的概率等于0.7×0.214=.0.7×0.2+0.8×0.33819, 求事件A在一次试验中出现的概率.27 191, p=;273 【解】1−(1−p)3=11. 上海电脑型体育彩票共有36个号码 (自01, 02, 03 到 36) 可供选择,每注选7个号码, 每期开奖开出七个号码. 若彩票的七个号与开奖的七个号一样(不论次序), 则中特等奖. 假定每期彩票销售4,500,000元, 有300个销售点,平均每个销售点销售15000元. 问每期彩票至少开出一个一等奖的概率是多少?经多少期彩票销售才能使至少开出一个特等奖的概率达到0.95.【解】解上海电脑型福利彩票共有36个号可供选择, 每注7个号, 因此共有7C36=8347680 (记为M) 种(注). 每次销售6,000,000元, 有300个销售点, 平均每个销售点销售20000元, 即10000张彩票. 在一个销售点售出的彩票中, 中一等奖的可能概率为100001 1 M−1 kx~B(10000,), p1=∑C1000 MMM k=1=0.001197220461.k10000−k M−1 =1− M 10000227各销售点的销售可以看作的相互独立的. 300个销售点至少有一个点销售的彩票中一等奖的概率是p300=1−(1−p1)300=1−(1−0.001197220461)300≈0.3018919036.即每期开奖至少产生一个一等奖的概率约0.302. 因此, 在k期彩票中至少产生一个一等奖的概率Pk是P=1−(1−p300)k=1−(0.63893742)k.k椐此易计算出p3 := 0.5126450857, p4 := 0.7624851875 , p5 := 0.8341889864p6 := 0.8842459889, p7 := 0.9191911877, p8 := 0.9435867139p9 := 0.9606174282, p10 := 0.9725067078, p11 := 0.9808067101若要使中奖概率达到0.95 则有k>8, 即开奖12. 在长达11年的时间里,从得克萨斯州的一个县中有870人被要求作为可能的大陪审团的陪审员,该县的人口中有墨西哥血统的美国人占79%,但只有339个有墨西哥血统的美国人被选为履行大陪审团陪审员的职责.如何用来概率模型确定:大陪审团陪审员的选择对有墨西哥血统的美国人来说并非没有种族歧视.【解】若没有种族偏见则339个或更少的墨西哥血统的美国人被选为陪审员的概率为∑n=0339−nC[n0.79p]C[8700.21p]C870p,其中p是该县的人口数, p是个很大的数,若p=10000, 则此概率为0.20848×10−161, 几乎为0.13. 某场比赛进行五局, 并以五战三胜决定胜负. 若已知甲方在每一局中的胜率为0.6, 求甲方在比赛中获胜的概率是多少?【解】获胜有三种情况: 3:0, 3:1, 3:2, 于是p(A1)=p3=0.216,P(A2)=C32p2(1−p)⋅p=0.259,22 P(A3)=C4p(1−p)2⋅p=0.207,因此 p=P(A1)+P(A2)+P(A3)=0.682.22814. 假设有三张形状完全相同, 但所涂颜色不同的卡片, 第一张两面全是红色, 第二张两面全是黑色, 第三张是一面红一面黑, 将这三张卡片放在帽子里经充分混合后, 随机地取出一张放在桌上, 如果取出的卡片朝上的一面是红的, 那么它的另一面为黑的概率是多少.1 【解】 . 注意两面全是红色的卡片有正反面向上两种可能, 因此符合“卡片3朝上的一面是红的”条件的情况有三种, 另一面为黑的仅一种情况.15. 若选择题有m种答案, 考生可能知道答案, 也可能瞎猜. 设考生知道正确答案的概率是p , 瞎猜的概率是1−p, 考生瞎猜猜对的概率为问他确实知道正确答案的概率是多少.1, 如果已知考生答对了,m【解】mp.1+(m−1)p16. 瓷杯成箱出售, 每箱20只, 假设各箱含0, 1, 及 2只残次品的概率分别为0.8,0.1, 0.1, 一顾客欲购一箱瓷杯, 购买时, 任取一箱, 从中任意地察看4只, 若无残次品,则就买下, 否则退回. 试求: (1) 顾客买下该箱的概率; (2) 在顾客买下该箱的瓷杯中,确实没有残次品的概率.【解】 (1) 44895; (2) .47511217. 在n双不同的鞋中任取2r 只(r<n), 求 (1) 其中没有成双的概率; (2) 恰好有2 双的概率; (3) 有r双的概率.2r 【解】样本点总数有C2n. (1) 可以先从n双中取出2r双, 再从每双中任取r22rCn一只, 于是p1=; (2) 先从n双中任取2双, 再从n−2双中取出2r−4双,2rC2n r2r−2n22r−2CnCn−1再从每双中任取一只, 于是p2=; (3) p3=2r.2rC2nC2n229《高等数学》习题参考资料第十一章概率论§3 一维随机变量习题1. 设有m件产品, 其中n件为次品, 从中任取k件 (k<m), 记取得的次品数为ξ, 试写出ξ的概率分布.【解】根据题意认为n≤m, 由于有较多的未知参数, 因此应该讨论这些参数的不同情况.2. 设离散型随机变量ξ以正的概率只取 1, 2 , 3 , 又设P(ξ=1)=0.4,P(ξ=3)=0.5. (1)计算P(ξ=2); (2) 求ξ的分布和分布函数.【解】(1)P(ξ=2)=0.1,(2) 分布律: ξ=ip1230.40.10.5x≤1 0, 0.4,1<x≤2 分布函数F(x)= 0.5,2<x≤33<x 1,2303. 设随机变量ξ的密度函数为 A x∈[−2,2],4−x2, ϕ(x)= 2π x∉[−2,2], 0,求 (1) 系数A 的值; (2) ξ的分布函数F(x), 并作图.【解】(1) A=1;0, x 1 (2) F(x)= 2π+4arcsin+x4−x2 ,2 4π 1, x≤−2−2<x<2x≥24. 从学校到市中心广场共有六个十字路口, 假定在各个十字路口遇到红灯的事件是相互独立的, 且概率都是0.4. 以ξ表示遇到的红灯数, 求随机变量ξ的分布. 以η表示汽车行驶过程中在第一次停止前所经过的路口数, 求η的分布.【解】011C60.650.4234560.6635C620.640.42C60.630.43C640.640.44C60.610.450.46012345 6∗0.660.40.4⋅0.60.4⋅0.620.4⋅0.630.4⋅0.640.4⋅0.65∗假定过了6站后停下.5. 设某种疫苗中所含细菌数服从Poisson分布. 设1毫升疫苗中平均含有一个细菌, 把这种疫苗放入5只试管中, 每只试管放2毫升. 试求: (1) 5 只试管中都有细菌的概率; (2) 至少有3 只试管中有细菌的概率 (提示: λ=2). 【解】每只试管中有细菌的概率为p, 记ξ表示细菌个数, η表示有细菌的试管20−2数, 于是p=P(ξ≥1)=1−P(ξ=0)=1−e≈0.8647,0!(1) 5 只试管中都有细菌的概率为P(η=5)=p5=0.86475≈0.4833;231(2) 记q=1−p, 至少有3 只试管中有细菌的概率332550P(η≥3) =C5pq+C54p4q1+C5pq=0.4834+0.3782+0.1184=0.980.6. 某乘客在某公交车站候车的时间 (以分计) ξ服从指数分布, 其概率密度函数x 1−5 ϕξ(x)= 5e,x>0,x≤0 0,某乘客在候公交车时, 若等车超过 10 分钟, 他就离开而乘出租车. 该乘客一个星期要乘车 5 次, 若以η 表示一周内他乘出租车的次数, 写出η的分布律, 【解】每天等车时间超过10分钟的概率p=∫ϕξ(x)dx=∫−∞101001edx=−e5−x5−x1050=1−e−2于是η的分布律:η=kP(=k)011C5pq423332C5pq45q5C52p2q3C54p4qp57. 设随机变量ξ服从N(0,1), 那么Φ0(0),ϕ0(0),P(ξ=0)各取什么值, 它们各表示什么意思?【解】Φ0(0)=0, ϕ0(0)=12, P(ξ=0)无意义.8. 设随机变量ξ服从N(0,1), 求P(ξ<2.5), P(ξ≥−1), P(−1.5≤ξ≤1). 【解】P(ξ<2.5)=0.99379, P(ξ≥−1)=2×0.841345-1=0.68269,P(−1.5≤ξ≤1)=0.5-(1-0.933193)=0.433193.2329. 设随机变量ξ服从N(−1,16), 求P(ξ>−1.5), P(ξ<8), P(|ξ|<4). 【解】P(ξ>−1.5)=0.5478, P(ξ<8)=0.988, P(|ξ|<4)=0.668.10. 设随机变量ξ服从N(0,1),求a值, 分别使(1)P(|ξ|<a)=0.975, (2)P(ξ>−a)=0.975,(3)P(ξ<a)=0.975.【答案】 (1)a=2.24, (2) a=1.96, (3) a=1.96.11. 设随机变量ξ的概率分布密度为ϕ(x)=e−|x|,12求 (1) 随机变量ξ的分布函数F(x); (2) P(a≤ξ≤b), P(ξ≥a), P(ξ≤b), 其中 a<0,b>0.1xx≤0 2e,【解】(1) F(x)= ,1−x 1−e,x>0 21111 (2) P(a≤ξ≤b)=1−e−b−ea, P(ξ≥a)=1−ea, P(ξ≤b)=1−e−b.222212. 设某商品的月销售量服从参数为7的Poisson分布,. 问在月初商店要进货多少此商品, 才能保证当月不脱销的概率为0.999.【解】不脱销表示商店到月末还有货. 设月销售量为ξ因此问题是求 k ,使P(ξ>k)≤0.001, 即P(ξ≤k)≥0.999, 计算λ=7的Poisson分布值,P(ξ≥16)=0.002407, 000958P(ξ>16)=0.,001448P(ξ=16)=0.>0.001,P(ξ=17)=0.000596<0.001, 因此k=17, 月初的最少进货应该是k−1=16个单位.13. 设某地在任何长为t(周)的时间内发生地震的次数n(t)服从参数为λt的Poisson 分布. (1) 若T表示直到下一次地震发生所需的时间(周), 求T的概率分布. (2) 求相邻三周内至少发生3次地震的概率. (3) 在连续8周无地震的情况下, 下8周仍无地震的概率’233(λt)k−kt 【解】 P(n(t)=k)=e.表示在t时间间隔内发生k次地震.k!(1) P(T≥t)=P(n(t)=0)=e−λt, 它表示在t时间间隔内不发生地震的概率,于是T的分布函数F(t): t≤0时,F(t)=0; t>0时, F(t)=P(T<t) =1−P(T≥t)1−e−λtt>0=1−e. 即F(t)= , 即T服从参数为λ的指数分布;≤0t0这表明Poisson过程的来到间隔服从指数分布;(2) 相邻三周内至少发生3次地震, 即在3周时间内发生三次以上地震P(n(3)≥3)=1−P(n(3)<3)=1−P(n(3)=0)−P(n(3)=1)−P(n(3)=2)−λt9λ2e−2λ9=1−e−3λe−=1−(1+3λ+λ2)e−3λ;22P("T≥16"⋅"T≥8")P("T≥16"⋅)e−16λ(3) P("t≥16"|"T≥8")= = =−8λ =e−8λ.P("T≥8")P("T≥8")e这说明指数分布具有无记忆性.3λ−3λ14. 设有800万个质点独立地散布在容积为2千立方米的一个水池中, 每一个质点在水池各处是等可能的. 求从这个水池中任取的1 升(0.001立方米)水中含有质点个数ξ的分布密度.8,000,000=4即np=λ=4,2,000×1,0001或解: 一个质点落在1升水中的概率是p=,8,000,000个质点相当于2,000,000 8,000,000次Bernoulli试验, 于是1升水中含有质点数ξ,服从的分布【解】在一升水中平均有质点 pk=Ck8000000p(1−p)k8000000−k(np)k−np4k−4≈e=ek!k!15. 某射手有6发子弹, 命中率为0.85, 如果命中了, 就停止射击, 如果不命中, 就一直射下去, 直到子弹用完为止. 求耗用子弹数ξ的分布律.【答案】ξpk1p2pq3pq24pq35pq46, 其中 p=0.85, q=0.15.q516. 某市每天耗电量不超过一百万千瓦小时, 该市每天的耗电率(天耗电量/百万千瓦小时) ξ的密度函数是23412x(1−x)2,ϕ(x)= 0,x∈(0,1],x∉(0,1].如果该市发电厂每天供电量为80万千瓦小时, 则任一天供电量不够需要的概率是多少?【解】P(ξ>0.8)=1−P(ξ≤0.8)=1−∫12x(1−x)2dx=0.0272.00.817. 某仪器装有三只独立工作的同型号电子元件,其寿命(小时)都服从同一指数分布,其密度函数为1x 1−600 ef(x)= 600 0x>0x≤0试求在仪器使用的最初200小时内,至少有一只电子元件损坏的概率。
工科类本科《高等数学》第11,12章自测题参考答案

工科类本科《高等数学》第11,12章自测题参考答案1. 若L 是抛物线 x y =2上从点A )1,1(-到点B )1,1(的一段弧,则()Lx y dx +=⎰43;(3)Lx y dy -=⎰ 2 . 解:L 的方程为2,x y y =从-1变到1,而2dx ydy =,于是()1111232211104()222043Lx y dx yy ydy y dy y dy y dy ---+=+⋅=+=+=⎰⎰⎰⎰⎰.()1111222111(3)33602Lx y dy y y dy y dy ydy y dy ----=-=-=-=⎰⎰⎰⎰⎰.注意:定积分的积分区间关于原点对称,考虑被积函数的奇偶性可以简化计算. 2.已知L 为圆周 122=+y x 沿逆时针方向,则曲线积分()(sin )xLey dx y x dy -++⎰=2π.解:计算封闭曲线积分,一般考虑用格林公式,这里(),sin ,112x Q P P e y Q y x x y ∂∂=-=+-=--=∂∂.于是()222211(sin )222xLx y x y ey dx y x dy dxdy dxdy π+≤+≤-++===⎰⎰⎰⎰⎰.注意:221x y dxdy +≤⎰⎰等于圆域221x y+≤的面积.3.若曲线积分()3222(cos )1sin 30Laxy y x dx ay x x y dy -+-+=⎰,则a =__2___.解:依题意,有Q P x y∂∂=∂∂,这里3222cos ,1sin 3,P axy y x Q ay x x y =-=-+2232cos ,cos 6.P Q axy y x ay x xy y x ∂∂=-=-+∂∂比较可得2a =. 4.若22xdy aydxx y-+在右半平面0x >内是某个函数的全微分,则a =__1__. 解:依题意,有Q P x y∂∂=∂∂,这里2222,,ay xP Q x y x y -==++ ()()()()()()2222222222222222222222,.a x y ay y x y x x P ax ay Q x y y x x y x y x y x y -++⋅+-⋅∂-+∂-+====∂∂++++ 比较可得1a =. 5.将()1x f x x +=展开为x 的幂级数1xx=+()1231, 1.n n x x x x x --+-+-+<或1xx=+()111,1n n n x x ∞-=-<∑.解:当1x <时,()()11x x f x x x =+--=为首项是x 公比为x -的等比级数,所以()()1123111, 1.1n n nn n xx x x x x x x∞--==-+-+-+=-<+∑6. 幂级数∑∞=1n 3n n x n的收敛半径R= 13,收敛域是11-33⎡⎫⎪⎢⎣⎭,.解:n n 113311,lim lim 33n n n n n n a n a R n a n +→∞→∞++===⋅=收敛半径,收敛区间是11-33⎛⎫⎪⎝⎭,,而当13x =-时,级数n 1131(1)n n n n x n n ∞∞===-∑∑是条件收敛的交错级数;当13x =时,级数n 1131n n n x n n∞∞===∑∑是发散的调和级数.故收敛域是11-33⎡⎫⎪⎢⎣⎭,.7.下列级数发散的是( A ).A.11ln 1n n ∞=⎛⎫+ ⎪⎝⎭∑; B. 211n n∞=∑; C. 115n n ∞=∑; D. 111(1)2n nn ∞-=-∑. 解:A.1ln 1n u n ⎛⎫=+ ⎪⎝⎭,取1n v n =,由lim 1n n nu v →∞=,而调和级数11n n ∞=∑发散,故11ln 1n n ∞=⎛⎫+ ⎪⎝⎭∑发散.B 选项是p 级数,21p =>,故211n n∞=∑收敛.C 选项是公比为15q =的等比级数,由115q =<知115n n ∞=∑收敛.D选项是交错级数,而正项级数11111(1)22n n n n n ∞∞-==-=∑∑115q ⎛⎫=< ⎪⎝⎭是收敛的等比级数,故111(1)2n n n ∞-=-∑绝对收敛.8.下列级数收敛的是( C ). A.11sin n n ∞=∑; B. 1n ∞= C. 115n n ∞=∑;D. n ∞=解:A 选项1sin n u n =,取1n v n =,由lim 1n n nu v →∞=,而调和级数11n n ∞=∑发散,故11sin n n ∞=∑发散.B选项15nn u -==,由0lim 510n n u →∞==≠知级数n ∞=. C 选项是公比为15q =的等比级数,由115q =<知115n n ∞=∑收敛. D选项1151n n n∞∞===∑是p 级数,115p =<,故n ∞=. 9.计算曲线积分22(3)(3),Lx y dx y x dy +++⎰其中L 是从O(0, 0)沿上半圆224(0)x y x y +=≥到A(4,0)的曲线段.解:已知22(,)3,(,)3P x y x y Q x y y x =+=+,则3,3P Qy x∂∂==∂∂.因为P Qy x∂∂=∂∂,所以曲线积分与路径无关.选取x 轴上直线段OA 路径,此时0,y x =从0 到4,0dy =,于是44222300164(3)(3)33Lx y dx y x dy x dx x +++===⎰⎰. 10.计算曲线积分3(2)(2)Ly x dy x y dx +-+⎰其中L 是从A(2, 0)沿上半圆222(0)x y x y +=≥到O(0,0)的曲线段.解: 已知3(,)(2),(,)2P x y x y Q x y y x =-+=+,则2,2,4P Q Q P y x x y∂∂∂∂=-=-=∂∂∂∂. 为了使用格林公式,添加辅助直线段OA ,记它与L 所围成的区域为D,D 是上半圆域222,0x y x y +≤≥,且边界封闭曲线方向是规定的正向. 而直线段OA 方程为:0,y x =从0到2,此时0dy =.则 3(2)(2)Ly x dy x y dx +-+⎰33(2)(2)(2)(2)L OAOAy x dy x y dx y x dy x y dx +=+-+-+-+⎰⎰()2342001444D Ddxdy x dx dxdy x =--=+⎰⎰⎰⎰⎰1442 4.2ππ=⋅+=+(注Ddxdy ⎰⎰等于上半圆域D 的面积)11.设dy y xy x dx y xy x du )32()23(2222+--+-=,求原函数),(y x u . 解法一:已知2222(,)32,(,)(23)P x y x xy y Q x y x xy y =-+=--+, 而22,22P Q x y x y y x ∂∂=-+=-+∂∂.因为P Qy x∂∂=∂∂,所以曲线积分L Pdx Qdy +⎰与路径无关.取折线路线0AB :(0,0)(,0)(,)O A x B x y →→.其中直线段OA 方程为:0,y x =从0到x ,此时0dy =;直线段AB 方程为:,x x y =从0到y ,此时0dx =.则原函数 (,)OAB OAABu x y Pdx Qdy C Pdx Qdy Pdx Qdy C =++=++++⎰⎰⎰22203(23)xy x dx x xy y dy C =+--++⎰⎰3223x x y xy y C =-+-+解法二:已知2222(32),(23)u ux xy y x xy y x y∂∂=-+=--+∂∂,两式子分别对,x y 两边积分,有 22322(,)(32)()u x y x xy y dx x x y xy y ϕ=-+=-++⎰,22223(,)(23)()u x y x xy y dy x y xy y x ψ=--+=-+-+⎰.从而,有 322223()()x x y xy y x y xy y x ϕψ-++=-+-+, 比较上式两边,有 33(),()y y C x x C ϕψ=-+=+.故 3223(,)u x y x x y xy y C =-+-+. 解法三:依题意,知2232u x xy y x ∂=-+∂(1), 22(23)ux xy y y∂=--+∂(2).(1)式两边对x 积分,得 22322(,)(32)()u x y x xy y dx x x y xy y ϕ=-+=-++⎰(3)(3)式两边对y 求偏导,得22()ux xy y yϕ∂'=-++∂ (4). 比较(2)、(4)式,得 2()3y y ϕ'=-,两边对y 积分,得 3()y y C ϕ=-+. 故 3223(,)u x y x x y xy y C =-+-+. 12.判别下列正项级数的敛散性:(1)12sin 3nn n π∞=∑;(2)2121n n n n ∞=+-∑;(3)13!n nn n n ∞=⋅∑;(4)121nn n n ∞=⎛⎫ ⎪+⎝⎭∑. 解:(1)()22sin2333nnn n nn u n πππ⎛⎫=⋅=→∞ ⎪⎝⎭,取23nn v ⎛⎫= ⎪⎝⎭.由23lim lim 23nn n n n nu v ππ→∞→∞⎛⎫ ⎪⎝⎭==⎛⎫ ⎪⎝⎭,又已知等比级数122133n n q ∞=⎛⎫⎛⎫=< ⎪ ⎪⎝⎭⎝⎭∑收敛. 因此根据正项级数的比较判别法知 级数2sin3n nπ∑收敛.(2)221n n u n n =+-,取1n v n =. 由22lim lim 121n n n nu n v n n →∞→∞==+-,又已知调和级数1n ∑发散.因此根据正项级数的比较判别法知 级数221nn n +-∑发散.(3)13!n nn n n∞=⋅∑ 解:3!n n n n u n ⋅=,因为 ()()11131!13lim lim 3lim 3lim 13!1111nn n n n n n n n n n nn u n n u n n e n n +++→∞→∞→∞→∞⋅+⎛⎫=⋅===> ⎪⋅+⎝⎭+⎛⎫+ ⎪⎝⎭, 所以根据正项级数的比值判别法知 级数3!n nn n ⋅∑发散.(4)21n n n ⎛⎫ ⎪+⎝⎭∑ 解:21nn n u n ⎛⎫= ⎪+⎝⎭,因为1lim 1212n n n n →∞==<+, 所以根据正项级数的根值判别法知 级数21nn n ⎛⎫⎪+⎝⎭∑收敛.13.求下列幂级数的和函数:(1)111n n x n -∞=+∑;(2)11n n nx ∞-=∑. 解:(1)此幂级数的收敛半径为1,收敛区间为(1,1)-.设幂级数的和函数为()s x ,则11()1n n x s x n -∞==+∑ (1x <), 1(0)2s =对121()1n n x x s x n +∞==+∑逐项求导,得()1211()11n n n n x x x s x x n x +∞∞=='⎛⎫'=== ⎪+-⎝⎭∑∑ ()11x -<< 对上式从0到x 积分,得 ()[]2000111()1ln(1).111xx x t t x s x dt dt dt x x t t t --⎛⎫⎛⎫==-=--=-+- ⎪ ⎪---⎝⎭⎝⎭⎰⎰⎰ 于是当0x ≠时,有 2ln(1)()x x s x x +-=-.从而 和函数2ln(1),01;()1,0.2x x x xs x x +-⎧-<<⎪⎪=⎨⎪=⎪⎩.特殊的,当1x =-时,级数()()112111n nn n n n-∞∞==--=+∑∑收敛.所以2ln(1)()x x s x x +-=-在1x =-也成立.(2)此幂级数的收敛半径为1,收敛区间为(1,1)-.设和函数为()s x ,则11()n n s x nx∞-==∑ (1x <).对上式从0到x 逐项积分,得111()1x xn n n n xs t dt nt dt x x∞∞-=====-∑∑⎰⎰ 对上式求导,得22(1)(1)1()1(1)(1)x x x s x x x x '--⋅-⎛⎫=== ⎪---⎝⎭,1x <.。
高等数学 第十一章 微分方程

第十一章微分方程教学要求1.了解微分方程及其解、通解、初始条件和特解的概念。
2.掌握变量可分离的方程及一阶线性方程的解法。
3.会解齐次方程、伯努利方程,会用简单的变量代换解某些微分方程。
4.会用降阶法解下列形式的微分方程:x(fy)n(=)),y'=''。
y,y(f='',)y,x(fy'5.理解线性微分方程解的性质及解的结构定理。
6.掌握二阶常系数齐次线性微分方程的解法,并会求解某些高于二阶的常系数齐次线性微分方程。
7.会求自由项为多项式,指数函数,正弦函数,余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。
教学重点常微分方程的基本概念,常微分方程的通解、特解及初始条件,可分离变量的微分方程的解法,齐次方程的解法,三种可降阶的二阶微分方程的求法,二阶常系数齐次线性微分方程的征方程, 特征根, 及对应于特征根的三种情况,通解的三种不同形式。
教学难点微分方程的通解概念的理解,可分离变量的微分方程的解法,齐次方程的解法,根据特征根的三种不同情况,得到三种不同形式的通解教学内容第一节微分方程的基本概念一、微分方程的定义二、微分方程的解第二节一阶微分方程一、可分离变量的微分方程二、齐次方程三、一阶线性微分方程四、伯努利方程第三节可降价的二阶微分方程一、)(''x f y =型的微分方程二、)',(''y x f y =型的微分方程三、)',(''y y f y =型的微分方程第四节 二阶常系数微分方程一、二阶常系数齐次线性微分方程1.二阶常系数齐次线性方程解的结构;2.二阶常系数齐次线性方程的解法二、二阶常系数非齐次线性微分方程1. x n e x p x f α)()(=型;2. x N x M x f ββsin cos )(+=型。
(完整版)华东理工大学高等数学(下册)第11章作业答案.doc

第 11章(之1)(总第59次)教材内容:§11. 1 多元函数1.解下列各题:** ( 1) . 函数 f (x, y) ln( x2 y 2 ).1 连续区域是答: x2 y 2 1函数 f (x, y) xyy2x2 y 2 0** ( 2) . x 2x 2 y 2 ,则()0 0(A) 处处连续(B) 处处有极限,但不连续(C) 仅在( 0,0 )点连续(D) 除( 0,0 )点外处处连续答:( A)**2. 画出下列二元函数的定义域:(1)u x y ;解:定义域为:( x, y) y x ,见图示阴影部分:(2)f ( x, y)ln(1 xy) ;解: (x, y) xy 1 ,第二象限双曲线xy 1 的上方,第四象限双曲线x y 1 的下方(不包括边界,双曲线xy 1 用虚线表示).(3)zx yx .y解:xy 0 x y x y 0 x y .x y x y 0 xy*** 3. 求出满足 f x y,yx 2y 2 的函数 f x, y .xsx yxs1 t解:令y ,∴sttxy1 t∴ f s,ts 2 s 2t 2 s 2 1 t , 即 f x, y x 2 1 y .1 t2 1 t1 y*** 4.求极限: lim0 ,01 xy 21 .x, yx 2 y1 xy 1 xy1 x2 y 2 解: 02x 2y 21 xy 1 x 2y 21 xy 1 x 2y 2x 2y 2( x, y0,0 )2 1 xy 1∴lim1 xy 1 0 .22x, y0,0x y** 5. 说明极限limx 2 y 2 不存在.x 2 y 2x, y0, 0解:我们证明 x, y 沿不同的路径趋于 0,0 时,极限不同.首先, x0 时,极限为limx 2 y 2y 21,x 2y 2y 2xx, y 0,0其次, y 0 时,极限为limx 2 y 2 x 21 ,x 2y 2x 2yx, y 0,0故极限limx 2 y 2 不存在.x, y0, 0x 2y 2** 6.设f ( x, y)ysin 2x ,试问极限 lim f (x, y) 是否存在?为什么?xy 1 1 ( x, y) ( 0,0)解 : 不 存 在 , 因 为 不 符 合 极 限 存 在 的 前 提 , 在 (0,0) 点 的 任 一 去 心 邻 域 内 函 数ysin 2x 并不总有定义的, x 轴与 y 轴上的点处函数 f ( x, y) 就没有定义.f ( x, y)xy 11*** 7. 试讨论函数 zarctanx y的连续性.1 xy解:由于 arctanx y是初等函数,所以除xy 1 以外的点都连续,但在xy 1 上的点处1 xy不连续.** 8. 试求函数 f ( x, y)xy的间断点.sin 2 x sin 2y解:显然当 ( x, y) (m,n) m, n Z 时, f ( x, y) 没定义,故不连续.又 f ( x, y)xy是初等函数.x sin 2sin 2 y所以除点 (m, n) (其中 m,nZ )以外处处连续.第 11 章(之 2) (总第 60 次)教材内容: § 11.2 偏导数 [ § 11.2.1]** 1. 解下列各题:(1)函数 f (x, y)x 23( )y 在 (0,0) 点处(A ) f x (0,0) 和 f y (0,0) 都存在; ( B ) f x (0,0) 和 f y (0,0) 都不存在;(C ) f x (0,0) 存在,但 f y (0,0) 不存在; ( D ) f x (0,0) 不存在,但 f y (0,0) 存在.答:( D ).(2) 设 zx ( y 2) arcsinx,那么 z()yy(!,2 )(A) 0 ;(B) 1 ;(C); (D).2 4答: (D) .(3)设 f x, y xy ,则 f x ' (0,0) ______, f y ' (0,0) __________ .解:由于 f ( x,0)0 ,f x ' (0,0) 0 ,同理 f y '( 0,0) 0 .** 2. 设 z x2 yln x 2 y 2e xyz x , z y .3 , 求解: z x1xy 2 3ye xy ,z y2yy 23xe xy .x 2x 2** 3. 求函数 zarctan y对各自变量的偏导数 .x解: z xy2 , z yx2.x 2 y x 2 y** 4. 设 f ( x, y)x 2 ln( x 2y 2)x 2y 20 0,求 f x (0,0), f y (0,0) .x 2y 2解: f x ( 0,0) lim x 2ln x20 , f y ( 0,0)lim0 00 .x 0xyy*** 5. 求曲线z x 2 xy y 2在 1,1,1 点处切线与 y 轴的夹角.x1解:由于曲线在平面x 1内,故由zy 1,1x 2 y 1,1 1,得切线与 y 轴的夹角为 arctan1. [ 也可求出切向量为 0,1,1 ]4∴夹角 =arccos0,1,1 0,1,0 arccos 2 .12 12 122 4*** 6. 设函数( x, y) 在点 (0,0) 连续,已知函数 f (x, y) xy(x, y) 在点 (0,0) 偏导数f x (0,0) 存在,(1)证明(0,0) 0 ; (2)证明 f y (0,0) 也一定存在.解:( 1) limf ( x,0) f (0,0)x ( x,0)lim,xxx 0x因为 f x (0,0) 存在,所以 limx ( x,0) x ( x,0)x limxx 0 x即(0,0)( 0,0) , 故( 0,0) 0 .(2)由于( x, y) 在点 (0,0) 连续,且 ( 0,0) 0 ,所以 y0 时, (0, y) 是无穷小量,yf (0, y)f (0,0)y (0, y) ,即 f y (0,0) 0 .而是有界量,所以 limlimyy 0yx 0y第 11 章(之 3) (总第 61 次)教材内容: § 11.2 偏导数 [ § 11.2.2 ~ 11.2.4]**1. 求函数 f x, y, zxchz yshx 的全微分,并求出其在点P 0,1,ln 2 处的梯度向量.解: df x, y, z d xchz d yshxchzdx xshzdz shxdy ychxdxchz ychx dx shxdyxshzdz∴ df x, y, z0,1,ln 21dx ,f x, y, z0,1,ln 21,0,0 .44**2. 求函数 zarctanxy的全微分:1 xy解: dzd arctanxy d (arctan x arctan y)1 xyd(arctan x) d(arctan y)dx dyx 21 y 21**3. 设 zsec 2 ( xy) ,求 d z .ln( xy 1)解: d z[ln( xy 1)] d[sec 2 ( xy)] sec 2 (xy) d[ln( xy1)][ln( xy 1)]212sec 2 ( xy)[ln( xy 1)] 2 [ln( xy 1)2 sec ( xy) tan(xy)( y d x x d y)xy 1( y d x x d y)][ 2ln( xy 1) tan( xy)( xy 1) 1]( ydx xdy) .( xy 1) cos 2 (xy ) ln 2 ( xy 1)**4. 利用f df ,可推出近似公式: f xx, y y f x, y df x, y ,并利用上式计算 2.98 24.03 2 的近似值.解:由于 f xx, yyf x, ydf x, y ,设 fx, yx 2 y 2 , x 3, y 4, x0.02, y0.03 ,于是df x, yxdx ydy x x y yx 2y 2 x 2y 2 ,f xx, y yf x, y x x y yx 2,y 2∴2.98 24.03 23242 30.02 4 0.035.012 .32 42***5 .已知圆扇形的中心角为60,半径为r 20cm,如果 增加了 1,r 减少了 1cm,试用全微分计算面积改变量的近似值. 解: S1 r2 180 ,2dS(2( dr r 2d )) ,360∴S dS( 2 20 60 ( 1)(20) 2 1) 17.4533(cm 2 ) .360 360***6. 计算函数 f x, y, zln x2 y 3z 在点 P1,2,0 处沿给定方向 l 2i j k的方向导数f .lP解: f x1,f y2 , f z3,x 2y 3zx 2 y 3zx 2y 3ze l2 1 16 , , , 6 6ff e l1 2 3 21 1 1∴l P, 5 , , , 65 .5 56 66***7.函数 zarctan 1 x在( 0,0)点处沿哪个方向的方向导数最大,并求此方向导数1 y的值.解:z111x (0, 0)21 y ( 0,0 ),1 21x1 yz11 x1y(0,0)2 (1 y) 2(0, 0),121 x1 yz 1cos(1)sin1 1, 1 cos ,sin2cos ,l2222其中为 lcos ,sin与 g1 , 1 的夹角,2 2所以0 时,即 l 与 g 同向时,方向导数取最大值z 2 .l2**8. 对函数 f ( x, y, z) exyz求出 f ( x, y, z) 以及 f (1,2,3) .解:fyze xyz , xze xyz , xye xyz , f (1,2,3) e 6 6,3,2 .1(e 1 , e1 , 1) 处的梯度. **9. 求函数 f ( x, y, z)(x y) z 在点 P222111解:f 11 11( x y) zln( xy) ,( xy)z, ( xy)z,z 2zzf (e1 , e 1 , 1 ) 2e,2e, 4e2 .2 2 2***10. 讨论函数 f ( x, y)x 2 y 2 sin 1 y 2 ,x 2 y 2 0x 2 x 2 y 2在点( 0, 0)处的连0,续性,可导性和可微性.解:因为limf ( ,y) limx 2 y 2sin 12 0 f( , )x 0 x x 0 x 2 y 0 0 ,y 0 y 0所以 f (x, y) 在点(0,0)连续.因为 lim f (0 x,0) f (0,0) limx sin 1,0xx 0 x x( x 2 )极限不存在, f ( x, y) 在(0,0)处不可导,从而在(0, 0)处不可微.第 11章(之4)(总第62次)教材内容:§11.3 复合函数微分法;§11.4隐函数微分法**1. 解下列各题:(1)若函数f (u, v)可微,且有 f ( x, x2 ) x4 2x3 x 及 f u ( x, x 2 ) 2x2 2x 1,则f v ( x, x 2 ) = ( )(A) 2x2 2x 1 (B) 2x2 3x 12x(C) 2x2 2x 1 (D) 2x2 3x 1答: (A)(2)设函数z z( x, y) 由方程xy2z x y z所确定,则z =_________.y答:2xyz 1.1 xy 2z zx 3 y , v 3x y 下,可得新方程为_______.(3)方程 3 ,在变量代换 ux y答:z.0 u** 2. 设u x2 y 2 z2 , x r cos sin , y r sin sin , z r cos 求u,u,u.r解:u2x cos sin2 y sin sin2zcos2r ,ru) sin ] 2 y(r cos sin) 0,2x[ r ( sinu2 y(r sin cos ) 2zr sin.2x(r cos cos ) ** 3. 一直圆锥的底半径以 3 cm/ s 的速率增加, 高 h 以 5 cm/ s 的速率增加, 试求 r=15 cm ,h=25 cm 时其体积的增加速率. 解: V1r 2 h ,3dV V dr V dh 2rhdr1 r2 dhdtr dt h dt3 dt3dtdV r 15 1125 cm 3 / sdth 25* 4. 设 ze x3y , 而 x sin t, yt 4 ,求 dz.dt3解:dzz x dx z y dy e x cost4t 2 .dt dt dt3y 3** 5. 若 zxy,证明: xy 2zx 2 y zx 2 zy 2 z .f ( x 2 y 2 )xy解: z xyf2x 2yf , z y xf 2xy 2 f ,f 2f 2则xy 2 z xx 2 yz yxy( x 2 y 2 ) x 2 z y 2 z .f** 6. 设 uf ( xe y , ye x , xy cos 2 x) ,求 u , u,du .x y解:u e y f 1 ye x f 2 ( y cos 2 x xy sin 2x) f 3 ,xu xe y f 1e xf 2 x cos 2 xf 3 ,ydue yf 1ye x f 2 ( y cos 2 x xy sin 2x) f 3 dx xe y f 1 e x f 2 x cos 2 xf 3 dy .** 7. 求由方程xlnz所确定的函数 z z( x, y) 的偏导数z , z .z y x y1 1z2解: z x Fx z z , zyFy y.Fz x y x Fz x 1 xyz yz z2 yz z2 z** 8. 设 F ( xy, y z, xz) 0, 试求z , z, dz .x y解: F ( xy, y z, xz) 0, 两边对 x 求导,得yF1 z x F2 F3 ( z xz x ) 0 ,解得z x yF1 zF3 ,F2 xF3两边对 y 求导,得xF1 F2 (1 z y ) F3 xz y 0 .解得 z y xF1 F2 ,所以 dz yF1 zF3 dx xF1F2 dy .F2 xF3 F2 xF3 F2 xF3*** 9. 函数 z z( x, y) 由方程 F (x, x y z,z xy) 1 所确定,其中 F 具有连续一阶偏导数, F2 F3 0 ,求z 和 z .x y解: F1 d x (d x d y d z)F2 (d z y d x x d y) F3 0,d z ( F1 F2 yF3 ) d x ( F2 xF3 ) d y ,F2 F3z F1 F2 yF3 ,zF2xF3.x F2 F3 y F2 F3*** 10. 求由方程z3 xyz a 3( a0) 所确定的隐函数z z( x, y) 在坐标原点处沿由向3量 a 1, 2 所确定的方向的方向导数.解:当 x 0, y 0 时,z0 a 0 .z yz0, z xz0 ,z 0 .( 0.0 )2 xy( 0,0 )(0 .0)z 2xy(0 ,0) ax z y*** 11. 设xu yv 0, yu xv 1,( x2 y2 0) 求u , v , u , v .x x y yu x uyvu xu yv x x x x 2 y 2解:u v v xv yu v y x 0x x x x2 y2x uv yvu yu xv y y y x 2 y2类似地u v v xu yvu y x 0y y y x 2 y2第 11章(之5)(总第63次)教材内容:§11.5多元函数微分法在几何上的应用**1.曲面 x2 2 y 2z2xyz 4x 2z 6 在点A(0,1,2) 处的切平面方程为()(A)3(x 1) 2( y 2) 3z 11 0 ( B)3x 2 y 3z 4(C) x y 1 z 2 0 (D) x y 1 z 23 2 3 3 2 3答: (A) .**2. 设函数 F ( x, y, z) 可微,曲面 F ( x, y, z) 0 过点M (2, 1,0) ,且F x (2, 1,0) 5, F y (2, 1,0) 2, F z (2, 10,) 3 .过点 M 作曲面的一个法向量n ,已知 n 与x 轴正向的夹角为钝角,则n 与 z 轴正向的夹角=______ .答:.3***3. 设曲线 x 2t 1 y 3t 2 1 z t 3 2在 t 1 对应点处的法平面为S ,则点, ,P ( 2,4,1) 到S的距离d ______ .答: 2.**4.求曲线L : x a cost, y bsin t , z ct 在点 M 0(a,0,2 c) 处的切线和法平面方程.解:dxt 0a sin t t 0 dtdyt 0b cost t 0 dt∴切线方程为:x a0,b,dzc .t 0dty 0 z 2 cx ay z 2 c,b cb c法平面方程为:by c(z 2 c)0 .***5. 求曲线 L : xy yz zx 11, xyz 6 在点 M 0 (1,2,3) 处的切线和法平面方程.解:设 F ( x, y, z) xy yz zx 11 , G (x, y, z) xyz 6 ,( F ,G) y z x z xz( y z) yz(x z) z2 ( y x) ,yz xz(x, y)( F , G) x z y xxy(x z) xz( x y) x 2 ( y z) ,( y, z) zx xy( F ,G) x y y z zy(x y) xy( y z) y 2 ( z x) .xy zy( z, x)∴ ( F ,G ) M 0 9, (F , G ) M 0 1, ( F , G) M 0 8 ,( x, y) ( y, z) (z, x)∴切线方程为x 1 y 2 z 3 ,1 8 9法平面方程为x 1 1 y 2 8 z 4 9 0,即x 8 y 9 z 12 0 .***6.求曲面 4x2y24z216 在点 P (1,2 2, 1)处的法线在yOz 平面上投影方程.解:曲面在点P (1,2 2, 1)处的法线方向向量n8,4 2 , 8 4 2, 2, 2 ,法线方程为:x 1 y 2 2 z 1 .2 22 法线在 yOz 平面上投影方程为xy 2 2 z 1 .2 2***7. 求 曲 线 x t 3, y 2 t 2 , z t3 上 的 点 , 使 曲 线 在 该 点 处 的 切 线 平 行 于 平 面 x 2 y z 1 .解:设所求的点对应于 t t 0 ,则对应的切线方向向量为:s 3 2 ,4 ,3 .t 0 t 0因为 s 垂直于平面法向量 n 1,2, 1 ,所以 s n 3t 02 8t 03 0 ,解得: t 01 和 t 0 3 .所求点为:1 , 2,1 和 ( 2718,, 9) .327 96**8 .求曲面 z上平行于平面 6x 3 y 2z 6 0.的切平面方程.xy解: z6 , z 6 , xxyy xy 266kx 2 y x 16∴由条件,得:3ky 2 y 2 xz312k∴切平面方程为: 6( x 1) 3( y 2) 2( z 3) 0,即 6 x 3 y2z 18 0 .22***9. 求函数 z e x y 在点 M 0(x 0 , y 0 ) 沿过该点的等值线的外法线方向的方向导数.解:等值线方程为x 2 y 2 x 02y 02 ,在 M 0(x 0 , y 0 ) 处的法线斜率为 ky 0,即法线方向向量为 n {1 ,y 0} 或 { x 0 , y 0 } ,x 0x 0方向余弦为: cosx0cosy0, x02 y02 x02 y02z x02 y2 x0 e x02 y02 y0 x02 y02 2 2.e 2 x0x02 y02 2 y0x02 y022e x0 y0n***10. 求函数z y sin x 在P ,1 点沿a方向的方向导数,其中a为曲线2x 2 sin t , y cos2t 在t 处的切向量(指向t 增大的方向).6解:d y 2 sin 2t,tand x t 6 2 cost t 6cos 1, sin ,2 1 2 1z cosx ,zx ,1 2 y sin x ,1 y ,12 2 2所以z1)1a( (22 1 2 212 y sin x)12 2,1221,2 2.1x f ( y, z)z0点处的切线方***11. 设f ( y, z), g(z)都是可微函数,求曲线在对应于 zy g( z)程和法平面方程.解: z z0对应点 f [ g( z0 ), z0 ], g(z0 ), z0,对应的切线方向向量:S f y [ g(z0 ), z0 ]g ( z0 ) f z [ g( z0 ), z0 ], g (z0 ),1 .切线方程:x f [ g( z0 ), z0 ] y g( z0 ),f y [ g( z0 ), z0 ]g ( z0 ) f z [ g( z0 ), z0 ]z z0g (z0 )法平面方程:f g z z g z f g z z x f g z z y [ ( 0 ), 0 ] ( 0 ) z [ ( 0 ), 0 ] [ ( 0 ), 0 ]g (z0 )[ y g(z0 )] ( z z0 )0 .****12.在函数 u 1 1的等值线中哪些曲线与椭圆x28 y216 相切?解:对等值线1 1dx dy 0 , 即dy y 2 ,u 0 两边微分得x 2y 2 dxx 2xy同样对 x 2 8 y2 16 两边微分,有dyx ,dx8yy 2x 2 y ,令,得 xx 28y代入 x 28y 216 ,得x4 , y 2 ,33∴u 0 1 13 3x y.4***13.试证明曲面 xyza 3 上任一点处的切平面在三个坐标轴上截距之积为定值.解:由 xyz a 3, 得za 3,xy∴在点 ( x 0 , y 0, z 0 ) 处法向量为:a3a 3x 0,y 0 ,1 ,2 y 0 2 x 0∴切平面为:a 3( x x 0 )a 3( y y 0 ) z z 0 0 ,x 0 22y 0 x 0 y 0又 ∵ x 0 y 0 z 0a 3 ,∴ 切平面方程化为:xy z1 ,3x 03y 0 3z 0∴ 截距之积为:27x 0 y 0 z 0 27a 3 (定值).***14. 证明曲面 Fxa , yb 0的所有切平面都通过一个定点,这里F ( u,v) 具有一z c z c阶连续偏导数.解:曲面上点 ( x 0 , y 0 ,z 0 ) 处的切平面法向量:F 1 F 2 ,1,1( z 0 c)F 1 ,( z 0 c) F 2 , ( x 0 a) F 1 ( y 0 b) F 2 .(z 0c) 2切平面方程为:( z 0 c) F 1 ( x x 0 ) (z 0 c) F 2 ( y y 0 )( x 0 a) F 1 ( y 0 b) F 2 (z z 0 ) 0 .易知 xa, yb, z c 满足上述方程,即曲面的所有切平面都通过定点( a,b, c) .第 11 章 (之 6)(总第 64 次)教学内容: § 11.6 泰勒展开1.填空:* ( 1)设 uxyy,则2u=________ .xx 2答:2y .x 3* ( 2)设 ux ln xy ,则2u= _________ .x y答:1 .y* ( 3)设 ux 2 sin y y 2 cosx ,则2u= _________ .x y答: 2x cos y 2 y sin x .* ( 4)设 uarctanx y,则2u=_______ .1 xyx y答: 0 .** ( 5)设 ze xsin y e xcos y ,则 2z2zx 2y 2 = _________ .答: 0.**2 .设 zf ( x,u) 具有连续的二阶偏导数,而u xy ,求2z .x 2解: z x f x yf u , z xx f xx 2 yf xuy 2 f uu .**3 .设 zx ln( xy) ,求3z.x 2 y解一:z yx , z yx1 , z yx 20 .yy解二: z xln( xy) 1 ,z x21z yx20 .,x**4 .设 zy 2 f (xy 2 ) xf ( x 3 y 4), 求 z xy ( 1,2) .2解: z x y4f '( xy 2 ) f ( x 3 y 4 ) 3x 3 y 4 f ( x 3 y 4 ) ,zxy4 y 3 f ' (xy 2 ) y 4 f " ( xy 2 ) 2 yx f ' ( x 3 y 4 ) 4 y 3 x 312 x 3 y 3 f '( x 3 y 4 ) 3x 3 y 4 f " (x 3 y 4 ) 4x 3 y 3 ,∴z xy ( 1,2) 32 f '( 2) 32 f " (2) 4 f ' (2) 12 f ' (2) 24 f "( 2)248 f ' (2) 56 f " (2) .**5 .函数 yy( x) 由方程 x 2 2xy y 2 1所确定,求 d 2y .d x 2解:d y2x2y x y , d x2x 2yy xd 2y (1 y )( y x) ( y 1)( x y)d x 2( y x) 22( x 2 2xy y 2 )2( y x)3(x y) 3.***6 .求方程xze y z所确定的函数 z z(x, y) z=z(x,y)的所有的二阶偏导数 .解: 1z e y zz , ∴z 1 .2ze y zz e y zxx 2 (e y z 1)2(e y z1)3,因为z e y z(1z ) ,∴ z e y z1 1 .yyy 1 e y z1 e y z2z ey z (z1)e y z则yy 2(1 e y z ) 2,(1 e y z ) 32ze y z ( z 1)e y zy 3 ,x y (1 y z) 2(1 y z) ee2ze y zz e y zx. y x(1 e y z ) 2(e y z 1)32z***7 .对于由方程F (x, y, z) 0 确定的隐函数 z (x, y) ,试求.解:由公式z F x 两边对 x 求偏导数,得xF zzz2z( F xxFxzx ) F zF x ( F zxFzz x)x 2F z2F x (F zxF zzF x) ( F xxF xzF x) F zF zF z2F zF x F z F zxF zz (F x )2( F z )2 F xx F xz F x F zF z32F x F z F xz (F x ) 2 F zz(F z ) 2F xx(一般约定 F xz F zx ) 。
华理高数答案第11章

所以除点 ( m, n) (其中 m, n Z )以外处处连续.
第 11 章(之 2) (总第 60 次)
教材内容:§11.2 偏导数 [§11.2.1]
Provided by 理学院学代会学习部
**1.解下列各题: (1)函数 f ( x, y )
x 2 y 在 (0,0) 点处
3ห้องสมุดไป่ตู้
即
s x y 解:令 , y t x
∴ f s , t
s 2 s 2t 2 s 2 1 t , 1 t 1 t 2
lim 1 xy 1 x2 y2
xy
.
f x, y
x 2 1 y . 1 y
***4. 求极限:
zy
1,1
x 2 y 1,1 1 ,
4
.[也可求出切向量为 0,1,1]
0,1,10,1,0 arccos
12 12 12
2 . 2 4
***6. 设函数 ( x , y ) 在点 (0,0) 连续,已知函数 f ( x , y ) x y ( x , y ) 在点 (0,0) 偏导数
x , y 0, 0
解: 0
1 xy 1 x2 y 2
1 xy 1
x2 y2
1 2 x y2 2 1 xy 1 x 2 y 2
x2 y2 0 2 1 xy 1
( x, y 0,0 )
y 0
y (0, y ) f (0, y ) f (0,0) 0 ,即 f y (0,0) 0 . lim x 0 y y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011~2012学年第 二 学期
科目: 高数(二)微分方程 单元测验参考答案及评分标准
命题教师: 使用班级:11级专科各班 一、选择题(2分*8=16分)
二、填空题(2分*5=10分)
1、cos x C -+
2、12cos sin C x C x +
3、()()()P x dx P x dx
y e Q x e dx C -⎡⎤⎰⎰=+⎢⎥⎣⎦
⎰
4、320y y y '''++=
5、 1x y C e x =--
三、求下列方程的通解或特解。
(本题共8小题,每小题7分,总计56分)
1、解:原方程变形为:2sin dx
ydy x
-= 3分
两边积分得:11
cos cos y C y C x x
=-
+⇒+= 7分 2、解: 原方程变形为: 22dy x y x y dx xy y x
+==+ 1分
令y
u y u u x x
''=
⇒=+ 2分 222
211ln ||ln 2y y u u x u u x C x C u x
''=+=+⇒=+⇒=+ 5分
22
2
22
2(1)00ln y x y y C x x e x
=∴=⇒
=⇒= 7分
3、解 :原方程变形为:222
2411
x x y y x x '+=++
1分
2
22
24(),()11
x x P x Q x x x ∴==++ 3分 22222
11241x x dx dx
x x x y e e
dx C x -
++⎡⎤⎰⎰∴=+⎢⎥+⎣⎦
⎰ 4分
22
2214(1)11x x dx C x x ⎡⎤=⋅++⎢⎥++⎣⎦
⎰ 3
2
22143413(1)
x C x dx C x x +⎡⎤=+=⎣⎦++⎰ 7分 4、解:2
11(sin )cos 2
y x x dx x x C '''=+=-+
+⎰
3分 23
11211(cos )sin 26y x x C dx x x C x C '''=-++=-+++⎰ 5分
3421212311
(sin )cos 624
y x x C x C dx x x C x C x C '=-+++=++++⎰ 7分
5、解:特征方程为:2
124301,3r r r r -+=⇒== 2分
所以,通解为:312x x
y C e C e =+ 5分 代入(0)6,(0)10y y '==,得:124,2C C ==,
特解为:342x x
y e e =+ 7分 6、解:特征方程为:2
1,2613032r r r i -+=⇒=± 3分 所以,:3,2αβ== 4分 通解为:312(cos2sin2)x
y e C x C x =+ 7分
7
、解:原方程变形为:dy y = 2分
两边积分得:
1ln ||ln ||y C =+ 5分
y ∴= 7分
8、解:令y
u y u u x x
''=
⇒=+ 1分 原方程变形为:u
y u u x e u -''=+=+ 3分
1
ln ||u u dx e du e x C x
∴=⇒=+ 5分 (1)01ln ||1y x
y C e x =∴=⇒=+ 7分
四、解:设曲线方程为(),y f x =则依题意有:
22y y '=+ 2分
这是一个一阶线性微分方程,其中()2,()2P x Q x =-= 3分
222dx
dx y e e dx C ---⎡⎤⎰
⎰∴=+⎢⎥⎣⎦
⎰ 22222x x
x x e e dx C e e C --⎡⎤⎡⎤=+=-+⎣⎦⎣⎦
⎰ 5分 又因为曲线过点(2,0),所以:4
2(1)1x C e
y e --=⇒=- 8分
五、证明:显然,a b 至少有一个不为0,因此,设u ax by c =++且不妨设0b ≠,则
()u ax c u a
y y f u b b
'---'=
⇒== 3分
()du
bf u a dx
∴
=+ 4分 分离变量得:()du
dx bf u a
∴=+ 6分
对于方程
2()dy
x y dx
=+,依上述方法,设u x y =+,则 22
1
11y u x y u u du dx u
''=-⇒=-=⇒
=+ 8分 arctan u x C ∴=+
即 a r c t a n ()x y x C
+=+ 10分。