最新奥数 六年级 千份讲义 378 第10讲——分数百分数应用题

合集下载

小学六年级奥数 第十章 分数、百分数应用题

小学六年级奥数 第十章 分数、百分数应用题

第十章 分数、百分数应用题知识要点分数、百分数应用题是日常生活和生产实践中应用最广泛的一类数学问题,并且这类知识与生活有着紧密的联系。

如何掌握此类问题的特征,并能熟练、灵活地加以运用,是研究此类问题所要思考的。

在解题过程中要着重解决以下几个方面的问题: 1.准确地确定单位“1”的量。

2.确定类型。

单位“1”的量×分率=分率对应量 分率对应量÷分率=单位“1”的量 分率对应量÷单位“1”的量=分率 3.确定好对应关系。

例1 (“希望杯”邀请赛试题)小红和小明帮刘老师修补一批破损图书,根据图中的信息,计算小红、小明一共修补图书 本。

点拨 从图中可知小红和小明一共修补破损图书为:40%-2+14+3=40%+25%+1=65%+1,则这批破损图书一共有(20+1)÷(1-65%)=60(本)。

再减去刘老师修补的图书20本,则为小红和小明一共修补的图书。

解 (20+1)÷[1-(4+40%)]-20 =21÷[1-65%]-20 =21÷35%-20 =60-20 =40(本)答:小红、小明一共修补图书40本。

例2 张、王、李三人共有54元钱,张用了自己钱数的35,王用了自己钱数的34,李用了自己钱数的23,各买了一支相同的钢笔,那么张和李两人剩下的钱共有多少元? 点拨一 先假设钢笔的价格是“1”,则有 张的钱数是钢笔的:1÷35=53王的钱数是钢笔的:1÷34=43李的钱数是钢笔的:1÷23=32三人的总钱数是这支钢笔的(53+43+32)倍,这样就可以求出钢笔的价格。

解54÷(53+43+32)=12(元)张剩下的钱数:12×(53-1)=8(元)李剩下的钱数:12×(32-1)=6(元)张、李两人剩下的钱共有:8+6=14(元) 答:张和李两人剩下的钱共有14元。

点拨二据张用了自己钱数的35,王用了自己钱数的34,李用了自己钱数的23,各买了一支相同的钢笔,即张钱数的35=王钱数的34=李钱数的23,据此可推知张钱数的610=王钱数的68=李钱数的69(根据分数的基本性质,把这几个分率转化成分子相同的分数,即“分子同化法”。

六年级奥数题及答案:分数百分比

六年级奥数题及答案:分数百分比

六年级奥数题及答案:分数百分比分数百分比是六年级奥数的难点,许多同学表示这类的题目不熟悉,下面就是小编为大家整理的分数百分比的习题,希望对大家有所帮助!一扬州某风景区2007年“十一”黄金周接待游客9万人次,门票收入达270万元。

按门票的5%缴纳营业税计算,“十一”黄金周期间应缴纳营业税0.45万元。

分析与解:营业税是按门票的5%缴纳,是占门票收入的5%,而不是占游客人数的5%答:“十一”黄金周期间应缴纳营业税13.5万元。

二王叔叔买了一辆价值16000元的摩托车。

按规定,买摩托车要缴纳10%的车辆购置税。

王叔叔买这辆摩托车一共要花多少钱?分析与解答:王叔叔买这辆摩托车所需的钱应包含购买价和10%的车辆购置税两部分,而车辆购置税是占摩托车购买价的10%,可先算出要缴纳的车辆购置税。

也可以这样想:车辆购置税占购买价的10%,把购买价看作单位“1”,王叔叔买这辆摩托车所需的钱相当于购买价的(1 + 10%),即求16000元的110%是多少,也用乘法计算。

方法1:16000 ×10% + 16000 = 1600 + 16000 = 17600(元) 方法2:16000 ×(1 + 10%) = 16000 ×1.1 = 17600(元)答:王叔叔买这辆摩托车一共要花17600元钱。

三益民五金公司去年的营业总额为400万元。

如果按营业额的3%缴纳营业税,去年应缴纳营业税多少万元?分析与解:如果按营业额的3%缴纳营业税,是把营业额看作单位“1”。

缴纳营业税占营业额的3%,即400万元的3%。

求一个数的百分之几是多少,也用乘法计算。

计算时可将百分数化成分数或小数来计算。

400×3% = 12(万元)或400×3% = 400×0.03 = 12(万元)答:去年应缴纳营业税12万元。

点评:在现实社会中,各种税率是不一样的。

应纳税额的计算从根本上讲是求一个数的百分之几是多少。

六年级数学百分数应用题课件

六年级数学百分数应用题课件

解题能力提升
通过现场答疑和指导,帮助学 生加深对百分数应用题的理解 ,提高解题能力和思维水平。
CHAPTER 05
课堂小结与拓展延伸
总结本节课学习内容和成果
掌握了百分数的基本概念和计算方法,能够熟练地进行百分数与小数、分数之间的 转换。
学习了百分数在生活中的实际应用,如折扣、税率、利率等,并能够解决相关实际 问题。
CHAPTER 02
百分数应用题类型及解题思路
求一个数是另一个数百分之几
01
02
03
解题关键
找准单位“1”,求出比 较量占单位“1”的百分 之几。
解题步骤
(1)确定单位“1”;( 2)用比较量除以单位 “1”;(3)将结果乘以 100%,并化简。
举例
小明家养了20只鸡,15只 鸭。鸡是鸭的百分之几?
通过课堂练习和小组讨论,提高了分析问题和解决问题的能力,培养了数学思维和 合作意识。
拓展百分数在其他领域应用实例
金融领域Βιβλιοθήκη 01百分数在金融领域广泛应用,如股票涨跌幅、投资回报率、保
险赔付率等。
医学领域
02
百分数也常用于医学领域,如疾病治愈率、药品有效率、临床
试验成功率等。
社会调查
03
在社会调查中,百分数常用于表示调查结果,如民意调查支持
百分数的表示方法
通常不写成分数的形式,而是在 原来的分子后面加上百分号 “%”来表示。
百分数与小数、分数关系
百分数与小数的互化
把小数化成百分数,只要把小数点向右移动两位,同时在后 面添上百分号;把百分数化成小数,只要把百分号去掉,同 时把小数点向左移动两位。
百分数与分数的互化
把分数化成百分数,通常先把分数化成小数(除不尽时,通 常保留三位小数),再把小数化成百分数;把百分数化成分 数,先把百分数改写成分母是100的分数,能约分的要约成 最简分数。

(完整版)六年级奥数分数百分数应用题汇总,推荐文档

(完整版)六年级奥数分数百分数应用题汇总,推荐文档

分数百分数应用题一、单位“1”定长短。

1)两根1米长的绳子,第一根用去1/4,第二根用去1/4米,两次用去的一样长吗?2)两根一样长的绳子,第一根用去1/4,第二根用去1/4米,两次用去的一样长吗?3)一根绳子,第一次用去1/4,第二次用去1/4米。

哪一次用去的长一些?4)一根绳子,第一次用去4/7,第二次用去4/7米。

哪一次用去的长一些?5)一根绳子分两次用完,第一次用去1/3,第二次用去1/3米。

哪一次用去的长一些?6)一根绳子分两次用完,第一次用去2/3,第二次用去余下的部分。

哪一次用去的长一些?练一练:1)两根1米长的绳子,第一根用去1/3,第二根用去1/3米,两次用去的一样长吗?2)两根一样长的绳子,第一根用去1/3,第二根用去1/3米,两次用去的一样长吗?3)一根绳子,第一次用去1/6,第二次用去1/6米。

哪一次用去的长一些?3)一根绳子,第一次用去3/5,第二次用去2/5米。

哪一次用去的长一些?4)一根绳子分两次用完,第一次用去2/5,第二次用去3/5米。

哪一次用去的长一些?5)一根绳子分两次用完,第一次用去3/8,第二次用去余下的部分。

哪一次用去的长一些?二、量率对应1、修一条水渠,已经修好了2/5.(1)水渠全长20千米,已经修了的比剩下没修的少多少千米?(2)正好已经修了8千米,这条水渠全长多少千米?(3)还剩12千米没修,已经修了多少千米?(4)已经修好了的比剩下没修好的少4千米,还剩下多少千米没修?2、六年级一班,男学生人数相当于女学生人数的4/5,问:(1)女生20人,全班多少人?(2)男生人数比女生人数少4人,女生有多少人?(3)男生16人,女生人数比男生人数多多少人?(4)全班36人,男生有多少人?3、等候公共汽车的人整齐的排成一排,小明也在其中。

他数了数,排在他前面的人数是总人数的2/3,排在他后面的是总人数的1/4.小明排在第几位?4、 甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是元.在人民市场,甲买86一双运动鞋花去了所带钱的,乙买一件衬衫花去了人民币元.这样两人身上所剩的钱4916正好一样多.问甲、乙两人原先各带了多少钱?【巩固】一实验五年级共有学生152人,选出男同学的和5名女同学参加科技小组,剩下的男、女人111数正好相等。

新版六年级上册数学讲义-《分数(百分数)应用题》 北师大版

新版六年级上册数学讲义-《分数(百分数)应用题》 北师大版

成都市六年级上期《分数(百分数)应用题》-复习课一、分数应用题主要讨论的是以下三者之间的关系。

1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。

2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。

(也叫单位“1”的数量)3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。

(也叫分率对应的数量)三种数量有如下关系:标准量×分率=比较量,比较量÷标准量=分率,比较量÷分率=标准量。

二、找单位1:(1)当两种数量比较时,抓关键词找准单位“1”分数应用题,题目中经常出现“是”、“占”、“比”、“等于”、“相当于”这些词,一般来说,单位“1”的量就隐藏在这些关键字的后面的量就是单位“1”。

一般“的”前面是单位“1”(2)部分数和总数有些分数应用题,存在着整体和部分两个数量,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。

(3)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

这类分数应用题的单位“1”比较难找。

例如:水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。

象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。

其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!三、分数应用题的分类。

(三类)1.1 直接求一个数是另一个数的百分之几一个数÷另一个数1.2 求一个数比另一个数多百分之几差量(多的部分)÷单位11.3 求一个数比另一个数少百分之几差量(少的部分)÷单位12.1直接求一个数的百分之几是多少单位1×分率2.2求比一个数多百分之几的数是多少单位1×(1+分率)2.3 求比一个数少百分之几的数是多少单位1×(1-分率)3.1已知一个数的百分之几是多少,求这个数。

六年级奥数专题讲解:分数与百分数的应用

六年级奥数专题讲解:分数与百分数的应用

六年级奥数专题讲解:分数与百分数的应用
六年级奥数专题讲解:分数与百分数的应用
基本概念与性质:
分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的`大小不变。

分数单位:把单位“1”平均分成几份,表示这样一份的数。

百分数:表示一个数是另一个数百分之几的数。

常用方法:
①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

③转化思维方法:把一类应用题转化成另一类应用题进行解答。

最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。

常见的处理方法是确定不同的标准为一倍量。

④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。

有以下三种情况:A、分量发生变化,总量不变。

B、总量发生变化,但其中有的分量不变。

C、总量和分量都发生变化,但分量之间的差量不变化。

⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

六年级数学百分数,分数,小数,面积奥数题

六年级数学百分数,分数,小数,面积奥数题

六年级数学百分数,分数,小数,面积奥数题摘要:一、六年级数学百分数的概念和应用1.百分数的定义2.百分数与分数、小数的关系3.百分数的应用题二、六年级数学分数的概念和运算1.分数的定义2.分数的分类3.分数的运算方法4.分数在实际问题中的应用三、六年级数学小数的概念和运算1.小数的定义2.小数的分类3.小数的运算方法4.小数在实际问题中的应用四、六年级数学面积的概念和计算1.面积的定义2.面积的计算公式3.面积在实际问题中的应用五、六年级数学奥数题解析1.百分数、分数、小数、面积的综合应用2.奥数题解题技巧和方法正文:一、六年级数学百分数的概念和应用百分数是表示一个数是另一个数的百分之几的数,它是一个比值,可以用于表示比例、增长、降低等概念。

在实际生活中,百分数经常用于统计、分析数据,帮助我们更好地理解和掌握事物的发展变化。

例如,某班级男生占60%,女生占40%,这里的60%和40%就是百分数。

二、六年级数学分数的概念和运算分数是表示一个整体被分成若干份中的一份或几份的数。

分数分为整数分数和真分数,整数分数等于1,真分数小于1。

分数的运算包括加、减、乘、除等运算,这些运算需要遵循一定的运算规则。

在实际问题中,分数可以用于表示部分与整体的关系,帮助我们更好地理解和解决实际问题。

例如,一个蛋糕分给两个人,每个人得到蛋糕的1/2。

三、六年级数学小数的概念和运算小数是整数和分数之间的数,它可以表示为有限小数或无限循环小数。

小数分为纯小数和混小数,纯小数整数部分为零,混小数整数部分不为零。

小数的运算方法与分数相似,也需要遵循一定的运算规则。

在实际问题中,小数可以用于表示精确的数值,帮助我们更好地理解和解决实际问题。

例如,购买一件商品,价格是3.5元。

四、六年级数学面积的概念和计算面积是表示平面图形的大小,通常用平方单位来表示。

计算面积需要使用相应的面积公式,例如矩形的面积公式是长乘以宽,三角形的面积公式是底乘以高除以2。

六年级上奥数第十讲分数百分数应用题

六年级上奥数第十讲分数百分数应用题

六年级上奥数第十讲分数百分数应用题分数百分数应用题1. 题目描述小明参加了一次奥数考试,他在一道分数百分数应用题上想了很久,但还是没有找到答案。

为了帮助小明解决问题,请你根据给出的题目描述和所学的知识,帮他解答以下的应用题。

2. 题目内容题目:小芳做了一份数学试卷,试卷总分是100分。

小芳在试卷中得了80分,占试卷总分的百分之多少?解答:要解答这个问题,我们首先需要知道小芳得了80分,试卷总分是100分,那么我们可以先计算小芳得分占试卷总分的百分比。

百分数的定义是:百分数是以百为基数表示的数,在数学中通常用百分号(%)表示。

例如,80%表示80百分之一。

要计算小芳得分占试卷总分的百分比,我们可以使用以下公式:百分比 = (小芳得分 ÷试卷总分)× 100%其中,小芳得分为80分,试卷总分为100分。

将这些值代入公式,可以得到:百分比 = (80 ÷ 100) × 100% = 80%所以,小芳在试卷中得了80分,占试卷总分的百分之80。

3. 题目延伸在解决了小芳的问题之后,小明又遇到了另一个与分数百分数应用有关的题目,他很犯难,希望你能帮助他解决。

题目:小明参加了一次考试,总分是120分,他得了100分。

请你计算一下小明的得分在这次考试中占总分的百分之多少?解答:要解答这个问题,我们可以使用与前面类似的方法来计算。

首先,我们需要知道小明得了100分,考试总分是120分。

将这些值代入公式:百分比 = (小明得分 ÷考试总分)× 100%将小明得分100代入,考试总分120代入,可以得到:百分比 = (100 ÷ 120) × 100% = 83.33%所以,小明在这次考试中得了100分,占总分的百分之83.33。

通过解答这个问题,我们不仅锻炼了对分数百分数应用的计算能力,也加深了对百分数的理解和应用。

4. 总结本文通过两个具体的分数百分数应用题,向读者介绍了如何计算一个数占另一个数的百分比。

六年级下小升初典型奥数之分数与百分数问题

六年级下小升初典型奥数之分数与百分数问题

六年级下小升初典型奥数之分数与百分数问题在小学六年级的学习中,分数与百分数问题是奥数中的重要内容,也是小升初考试中经常出现的考点。

掌握这部分知识,不仅能够提高我们的数学思维能力,还能为今后的学习打下坚实的基础。

首先,我们来了解一下分数的基本概念。

分数表示把一个整体平均分成若干份,其中的一份或几份就是这个分数。

比如,把一个蛋糕平均分成 8 份,其中的 3 份就可以用分数 3/8 来表示。

百分数则是表示一个数是另一个数的百分之几的数。

例如,25%表示 25 是 100 的 25%。

在解决分数与百分数问题时,我们常常需要用到以下几种方法:一、单位“1”的运用在很多分数与百分数问题中,我们需要明确单位“1”。

单位“1”通常是我们进行比较和计算的标准。

例如:有一堆苹果,第一天吃了总数的1/5,第二天吃了剩下的1/4,还剩下 18 个苹果。

这堆苹果原来有多少个?在这个问题中,我们首先要明确总数是单位“1”。

第一天吃了总数的 1/5,那么剩下的就是总数的 1 1/5 = 4/5。

第二天吃了剩下的 1/4,也就是总数的 4/5 × 1/4 = 1/5。

所以剩下的苹果占总数的 1 1/5 1/5 =3/5,已知剩下 18 个苹果,总数就是 18 ÷ 3/5 = 30 个。

二、转化法有时候,题目中的分数或百分数所对应的单位“1”不同,这时候我们需要将它们转化为相同的单位“1”。

比如:甲班人数的 1/3 等于乙班人数的 1/4,甲班人数是乙班人数的几分之几?我们可以把乙班人数看作单位“1”,那么甲班人数的 1/3 等于乙班人数的 1/4,甲班人数就是乙班人数的 1/4 ÷ 1/3 = 3/4。

三、方程法对于一些比较复杂的分数与百分数问题,我们可以通过设未知数,列方程来解决。

例如:果园里有苹果树和梨树共 360 棵,苹果树的棵数是梨树的4/5,苹果树和梨树各有多少棵?设梨树的棵数为 x 棵,则苹果树的棵数为 4/5 x 棵。

六年级下册数学奥数讲义-分数、百分数应用题(二)(无答案)全国通用

六年级下册数学奥数讲义-分数、百分数应用题(二)(无答案)全国通用

1
,第二天比
2
【巩固】 迎 春农机厂计划生产一批插秧机,现已完成计划的 划产量的 16%.那么,原计划生产插秧机台.
56%,如果再生产 5040 台,总产量就超过计
【例 9】 某运输队运一批大米. 第一天运走总数的 1 多 60 袋,第二天运走总数的 1 少 60 袋.还剩下 220
5
4
袋没有运走。这批大米原来一共有多少袋?
我国人口是部分数, 世界人口就是单
位“ 1”。
解答题关键:只要找准总数和部分数,确定单位“
1”就很容易了。
(二)、两种数量比较
分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是
带有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通
常就作为标准量,也就是单位“ 1”。
分数、百分数应用题(二)
知识框架
一、 知识点概述:
分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一
方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”
之间的对应是解题的关键. 关键: 分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称
【例 6】 一个机关精简机构后有工作人员 120 人,比原来工作人员少 40 人,精简了百分之几?
【巩固】 小 强看一本书,每天看 15 页, 4 天后加快进度,又看了全书的 多少页?
2 ,还剩下 30 页,这本故事书有 5
【例 7】 有男女同学 325 人,新学年男生增加 25 人, 女生减少 5%,总人数增加 16 人,那么现有男同学 多少人?

六年级数学总复习分数百分数应用题

六年级数学总复习分数百分数应用题

寻找等量关系:根 据题意,找出题目 中的等量关系,列 出方程。
解方程:根据方 程的性质,解出 未知数的值。
检验答案:将解代 入原方程进行检验, 确保答案正确。
分数应用题解析
题目:一瓶油连瓶重3.5千克,用去一半后,连瓶重1.9千克,原来有油多少千克? 解析:通过列方程求解,先求出瓶子的重量,再计算原来油的重量。 答案:原来有油3千克。 解题思路:根据题目条件,设原来油的重量为x千克,列出方程求解。
XX,a click to unlimited possibilities
汇报人:XX
目录
分数的基本概念
分数定义:分数是一种表示部分与整体关系的数,通常用斜线(/)表示分子和分母。
分数性质:分数的大小等于分子除以分母,当分母为正数时,分子越大,分数越大;当分母为负数 时,分子越大,分数越小。
分数分类:真分数、假分数和带分数。真分数是指分子小于分母的分数;假分数是指分子大于或等 于分母的分数;带分数是指整数与真分数相加所得到的数。

解题思路
理解题意:仔细阅 读题目,弄清楚题 目中的已知条件和 未知数。
建立数学模型:根 据题意,将实际问 题转化为数学模型, 列出方程或表达式。
解方程或求解:根据 数学模型,选择适当 的方法求解方程或表 达式,得出结果。
检验答案:将得出 的结果代入原题中 进行检验,确保答 案正确。
解题方法
理解题意:仔细阅 读题目,弄清楚题 目中的已知条件和 未知数。
题目:一个水果店卖出40%的苹果后,又运来360箱,这时比原来多了20%,原来水果店有多少箱苹果?
题目:某工厂有职工1200人,其中男职工占40%,后来又招进一批男职工,这时男职工人数占全厂职工人数的 50%,现在全厂职工共有多少人?

六年级上册数学讲义— 分数(百分数)应用题人教新课标

六年级上册数学讲义— 分数(百分数)应用题人教新课标

分数(百分数)应用题:1、求一个数是另一个数的几(百)分之几?部分量÷“1”=百分率2、求一个数的几分之几是多少?“1”×分率=部分量3、已知一个数是另一个数的几分之几,求这个数?“1”(x)×分率=部分量“1”已知ד1”↙↘未知设x比“1”多(+)比“1”少(-)4、求一个数比另一个数多百分之几(少百分之几)多的数量多百分之几÷“1”=少的数量少百分之几百分数应用题:发芽数量(部分量)发芽率(百分率)=──────────×100%总数量(“1”)不发芽率(百分率)=100%-发芽率出勤人数合格数量出勤率=─────X100%合格率=─────X100%总人数总数量面粉数量成活棵树出粉率=─────X100%成活率=────X100%小麦数量总棵树命中次数达标人数命中率=────X100%达标率=────X100%总次数总人数油的重量糖的重量出油率=────X100%含糖率=────X100%花生重量甘蔗的重量再生物质的数量再生率=───────X100%废料物质的数量按比例分配应用题1、题目特点:已知总量和各部分的比。

2、解题关键:先求出各部分量占总量的几分之几。

3、解题方法:求一个数的几分之几是多少,用乘法进行计算。

正、反比列应用题1、找量:在条件、问题中找出两个相关联的量2、判断:判断这两个量之间存在什么比例关系,写出数量关系式↗同扩同缩:正{}↘一扩一缩:反{×}3、列比例:利用关系式列出比例。

折扣、纳税、利息等应用题:1、折扣:九折表示现价是原价的90%现价比原价降低10%。

{100%─90%2、纳税:求一个数的百分之几是多少,用乘法进行计算。

3、利息:〔1〕本金:存入银行的钱。

〔2〕利息:银行多支付的钱。

〔3〕利息=本金X利率X时间〔银行多给你的〕〔4〕利率:是一个百分数。

利率=利息÷本金〔国家规定〕〔5〕利息税=利息X5%〔上交国家的,5%是国家规定的〕〔6〕税后利息=利息─利息税〔自己的〕共取回=本金+税后利息。

六年级-数学-小升初奥数:分数、百分数-应用题[1]

六年级-数学-小升初奥数:分数、百分数-应用题[1]

小升初奥数:分数、百分数应用题知识要点:1、 分数、百分数应用题分为三大类:(1) 求一个数是另一个数的几分之几(或百分之几)(2) 求一个数的几分之几(或百分之几)是多少(3) 已知一个数的几分之几(或百分之几)是多少,求这个数2、 解答分数、百分数应用题,首先要找到单位“1”。

在单位“1”确定的前提下,一个具体数量总对应着一个具体分数,我们把这种对应关系叫做“量率对应”,这是解答分数、百分数应用题的关键。

例1:李华看一本故事书,每天看15页,6天后还剩余全书的85没看,这本故事书共有多少页?分析:解答本题的关键是找出已经看的页数相当于全书总页数的几分之几。

由题意可知,已看的页数为15*6=90页;由还剩全书的85没看可知,已经看了的是全书的1-85=83,于是90页与全书的83相对应,全书的总页数即可求出。

解:15×6÷(1-85)=90÷83=240(页) 答:这本故事书共有240页。

例2: 希望小学五年级有学生360人,其中男生占127,后来又转来了几名男生,这时男生占五年级总人数的60%,转来的男生有多少人?分析:在本题中男生人数、五年级总人数都发生了变化,但女生人数却没有变化,因此可抓住女生人数这个不变量先求出后来五年级总人数,再求出转来的男生人数。

解:360×(1-127)=150(人) 150÷(1-60%)=375(人)375-360=15(人)答:转来的男生有15人。

例3:3只猴子吃篮子里的桃子,第一只猴子吃了51,第二只猴子吃了剩下的41,第三只猴子吃了第二只猴子吃剩下的31,最后篮子里还剩12只桃子。

问篮子里原来有多少个桃子?分析:这道题可以从结果入手,采用倒推的方法来解答。

最后剩下的12只桃子相当于第二只猴子吃剩后桃子数的1-31=32;第二只猴子吃剩下的桃子数是第一只猴子吃剩桃子数的1-41=43;第一只猴子吃剩的桃子数又是篮子里原有桃子数的1-51=54。

六年级下小升初典型奥数之分数与百分数问题

六年级下小升初典型奥数之分数与百分数问题

六年级下小升初典型奥数之分数与百分数问题在小学六年级的数学学习中,分数与百分数问题是小升初考试中经常出现的重要知识点。

掌握好这部分内容,不仅能提高数学成绩,还能为今后的数学学习打下坚实的基础。

接下来,让我们一起深入探讨这些典型的分数与百分数问题。

一、分数的基本概念分数是把单位“1”平均分成若干份,表示这样一份或几份的数。

例如,把一个蛋糕平均分成 8 份,其中的 3 份就是 3/8。

在解决分数问题时,我们要明确分母表示把单位“1”平均分的份数,分子表示取的份数。

二、百分数的基本概念百分数表示一个数是另一个数的百分之几。

百分数也叫做百分率或百分比。

例如,25%表示 25 是 100 的 25%。

三、分数与百分数的相互转换1、分数化为百分数将分数化成小数(用分子除以分母),然后将小数乘以 100%,即可得到对应的百分数。

例如,3/4 = 075,075 × 100% = 75%2、百分数化为分数先把百分数写成分数形式,能约分的要约成最简分数。

例如,40% = 40/100 = 2/5四、常见的分数与百分数问题类型1、求一个数是另一个数的几分之几(或百分之几)用一个数除以另一个数,结果写成分数或百分数形式。

例 1:有 20 个苹果,15 个梨,梨的个数是苹果个数的几分之几?15÷20 = 3/4例 2:某班有 50 名学生,其中 20 名是女生,女生人数占全班人数的百分之几?20÷50 × 100% = 40%2、已知一个数,求它的几分之几(或百分之几)是多少用这个数乘以对应的分数或百分数。

例 3:一本书 120 页,看了 1/3,看了多少页?120 × 1/3 = 40(页)例 4:某工厂上个月生产产品 500 件,这个月产量增加了 20%,这个月生产了多少件?500 ×(1 + 20%)= 600(件)3、已知一个数的几分之几(或百分之几)是多少,求这个数用已知的数量除以对应的分数或百分数。

(整理)奥数 六年级 千份讲义 378 第10讲——分数百分数应用题.

(整理)奥数 六年级 千份讲义 378 第10讲——分数百分数应用题.

一、知识点概述分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几? 方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.891199÷=1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题第10讲分数百分数应用题教学目标知识点拨二、怎样找准分数应用题中单位“1”(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数六年级千份讲义378第10讲——分数百分数应用题知识点拨教学目标第10讲分数百分数应用题1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题一、知识点概述分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键. 关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.二、怎样找准分数应用题中单位“1”(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

这类分数应用题的单位“1”比较难找。

需要将题目文字完善成我例题精讲【巩固】 一实验五年级共有学生152人,选出男同学的111和5名女同学参加科技小组,剩下的男、女人数正好相等。

五年级男、女同学各有多少人?【巩固】 五年级有学生238人,选出男生的14和14名女生参加团体操,这时剩下的男生和女生人数一样多,问:五年级女生有多少人?【巩固】 把金放在水里称,其重量减轻119,把银放在水里称,其重量减轻110.现有一块金银合金重770克,放在水里称共减轻了50克,问这块合金含金、银各多少克?例题11例题22例题33甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是86元.在人民市场,甲买一双运动鞋花去了所带钱的49,乙买一件衬衫花去了人民币16元.这样两人身上所剩的钱正好一样多.问甲、乙两人原先各带了多少钱?甲、乙两个书架共有1100本书,从甲书架借出13,从乙书架借出75%以后,甲书架是乙书架的2倍还多150本,问乙书架原有多少本书?五年级上学期男、女生共有300人,这一学期男生增加125,女生增加120,共增加了13人.这一学年六年级男、女生各有多少人?【巩固】二年级两个班共有学生90人,其中少先队员有71人,又知一班少先队员占全班人数的34,二班少先队员占全班人数的56,求两个班各有多少人?【巩固】 甲乙两班的同学人数相等,各有一些同学参加课外天文小组,已知甲班参加的人数恰好是乙班未参加人数的三分之一,乙班参加人数恰好是甲班未参加人数的四分之一,问甲班没有参加的人数是乙班没有参加的人数的几分之几?例题44例题55例题66光明小学有学生900人,其中女生的47与男生的23参加了课外活动小组,剩下的340人没有参加.这所小学有男、女生各多少人?盒子里有红,黄两种玻璃球,红球为黄球个数的25,如果每次取出4个红球,7个黄球,若干次后,盒子里还剩2个红球,50个黄球,那么盒子里原有________个玻璃球.(2009年第七届“希望杯”五年级一试)工厂生产一批产品,原计划15天完成。

实际生产时改进了生产工艺,每天生产产品的数量比原计划每天生产产品数量的511多10件,结果提前4天完成了生产任务。

则【巩固】 某校男生比女生多37,女生比男生少几分之几?例题77例题88例题99例题1010有若干堆围棋子,每堆棋子数一样多,且每堆中白子都占28%.小明从某一堆中拿走一半棋子,而且拿走的都是黑子,现在,在所有的棋子中,白子将占32%.那么,共有棋子多少堆?我从飞机的舷窗向外看去,看见了部分海岛、部分白云以及不大的一块海域,假定白云占窗口画面的一半,它遮住了岛的14,因此岛在窗口画面上只占14,问被白云遮住的那部分海洋占画面的多少?养殖专业户王老伯养了许多鸡鸭,鸡的只数是鸭的只数的114倍.鸭比鸡少几分之几?学校阅览室里有36名学生在看书,其中女生占49,后来又有几名女生来看书,这时女生人数占所有看书人数的919.问后来又有几名女生来看书?【巩固】 (2009年五中小升初入学测试题)工厂原有职工128人,男工人数占总数的14,后来又调入男职工若干人,调入后男工人数占总人数的25,这时工厂共有职工 人.【巩固】有甲、乙两桶油,甲桶油的质量是乙桶的52倍,从甲桶中倒出5千克油给乙桶后,甲桶油的质量是乙桶的43倍,乙桶中原有油 千克.【巩固】把100个人分成四队,一队人数是二队人数的113倍,一队人数是三队人数的114倍,那么四队有多少个人?例题1111例题1212例题1313(1)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了?(2)一件商品先涨价15%,然后再降价15%,问现在的价格和原价格比较升高、降低还是不变?某校三年级有学生240人,比四年级多14,比五年级少15.四年级、五年级各多少人?新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的25,美术班人数相当于另外两个班人数的37,体育班有58人,音乐班和美术班各有多少人?【巩固】甲、乙、丙三人共同加工一批零件,甲比乙多加工20个,丙加工零件数是乙加工零件数的45,甲加工零件数是乙、丙加工零件总数的56,则甲、丙加工的零件数分别为 个、 个.【巩固】甲、乙、丙、丁四个筑路队共筑1200米长的一段公路,甲队筑的路是其他三个队的12 ,乙队筑的路是其他三个队的13 ,丙队筑的路是其他三个队的14 ,丁队筑了多少米?例题1414例题1515王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄和的12,李先生的年龄是另外三人年龄和的13,赵先生的年龄是其他三人年龄和的14,杨先生26岁,你知道王先生多少岁吗?(迎春杯决赛)小刚给王奶奶运蜂窝煤,第一次运了全部的38,第二次运了50块,这时已运来的恰好是没运来的57.问还有多少块蜂窝煤没【巩固】 五(一)班原计划抽15的人参加大扫除,临时又有2个同学主动参加,实际参加扫除的人数是其余人数的13.原计划抽多少个同学参加大扫除?【巩固】某校学生参加大扫除的人数是未参加大扫除人数的14,后来又有20名同学参加大扫除,实际参加的人数是未参加人数的13,这个学校有多少人?【巩固】某班一次集会,请假人数是出席人数的91,中途又有一人请假离开,这样一来,请假人数是出席人数的223,那么,这个班共有多少人?例题1616例题1717小莉和小刚分别有一些玻璃球,如果小莉给小刚24个,则小莉的玻璃球比小刚少73;如果小刚给小莉24个,则小刚的玻璃球比小莉少85,小莉和小刚原来共有玻璃球多少个?小明是从昨天开始看这本书的,昨天读完以后,小明已经读完的页数是还没读的页数19,他今天比昨天多读了14页,这时已经读完的页数是还没读的页数的13,问题是,这本书共有多少页?”【巩固】某工厂对一、二两个车间的职工进行重组,将原来的一车间人数的12和二车间人数的13分到一车间,将原来的一车间人数的13和二车间人数的12分到二车间,两个车间剩余的140人组成劳动服务公司,现在二车间人数比一车间人数多117,现在一车间有 人,二车间有 人.例题1818例题1919例题2020某校有学生465人,其中女生的23比男生的45少20人,那么男生比女生少多少人?某校四年级原有两个班,现在要重新编为三个班,将原一班的13与原二班的14组成新一班,将原一班的14与原二班的13组成新二班,余下的30人组成新三班.如果新一班的人数比新二班的人数多110,那么原一班有多少人?2008年第十三届“华罗庚金杯”少年数学邀请赛(小学组)决赛林林倒满一杯纯牛奶,第一次喝了13,然后加入豆浆,将杯子斟满并搅拌均匀,第二次林林又喝了13,继续用豆浆将杯子斟满并搅拌均匀,重复上述过程,那么第四次后,林林共喝了一杯纯牛奶总量的 (用分数表示)。

【巩固】水结成冰后体积增大它的110. 问:冰化成水后体积减少它的几分之几?例题2121例题2222例题2323参加迎春杯数学竞赛的人数共有2000多人.其中光明区占31,中心区占72,朝阳区占51,剩余的全是远郊区的学生.比赛结果,光明区有去的学生得奖,中心区有161的学生得奖,朝阳区有181的学生得奖,全部获奖者的号71远郊区的学生.那么参赛学生有多少名?获奖学生有一炉铁水凝成铁块 ,其体积缩小了134,那么这个铁块又熔化成铁水(不计损耗),其中体积增加了几分之几? (2008年清华附中考题)在下降的电梯中称重,显示的重量比实际体重减少17;在上升的电梯中称重,显示的重量比实际体重增加16.小明在下降的电梯中与小刚在上升的电梯中称得的体重相同,小明和小刚实际体重的比是 .家庭作业练习11练习22练习33练习44练习55某小学六年级有三个班,一班和二班人数相等,三班的人数是全年级总人数的720,并且比一班多3人,六年级共有多少人?有三堆棋子,每堆棋子数一样多,并且都只有黑、白两色棋子.第一堆里的黑子和第二堆里的白子一样多,第三堆里的黑子占全部黑子的25,把这三堆棋子集中在一起,问白子占全部棋子的几分之几?有红、黄、白三种球共160个。

如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剰116个,问:(1)原有黄球几个? (2)原有红球、白球各有几个?有一块菜地和一块稻田,菜地的一半和稻田的三分之一放在一起是13公顷,稻田的一半和菜地的三分之一合在一起是12公顷。

那么这块稻田有多少公顷?学校派出60名选手参加2008年“华罗庚金杯小学数学邀请赛”,其中女选手占14.正式比赛时有几名女选手因故缺席,这样就使女选手人数变为参赛选手总数的211.正式参赛的女选手有多少名?练习66四只小猴吃桃,第一只小猴吃的是另外三只的总数的13,第二只小猴吃的是另外三只吃的总数的14,第三只小猴吃的是另外三只的总数的15,第四只小猴将剩下的46个桃全吃了.问四只小猴共吃了多少个。

相关文档
最新文档