高考理科数学第一轮专题《选修4-4》测试题&参考答案

合集下载

2020版高考人教A版理科数学一轮复习文档:选修4-4 第二节 参 数 方 程 Word版含答案

2020版高考人教A版理科数学一轮复习文档:选修4-4 第二节 参 数 方 程 Word版含答案

姓名,年级:时间:第二节参数方程2019考纲考题考情1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数:错误!①并且对于t 的每一个允许值,由方程组①所确定的点M(x,y)都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,t叫做参变数,简称参数。

相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。

2.直线的参数方程过定点P0(x0,y0)且倾斜角为α的直线的参数方程为错误!(t为参数),则参数t的几何意义是有向线段错误!的数量。

3.圆的参数方程圆心为(a,b),半径为r,以圆心为顶点且与x轴同向的射线,按逆时针方向旋转到圆上一点所在半径形成的角α为参数的圆的参数方程为错误!(α为参数)α∈[0,2π).4.椭圆的参数方程以椭圆的离心角θ为参数,椭圆错误!+错误!=1(a>b>0)的参数方程为错误!(θ为参数),θ∈[0,2π).1.将参数方程化为普通方程时,要注意防止变量x 和y取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f(t)和g(t)的值域,即x和y的取值范围。

2.直线的参数方程中,参数t的系数的平方和为1时,t才有几何意义且几何意义为:|t|是直线上任一点M(x,y)到M0(x0,y0)的距离。

一、走进教材1.(选修4-4P26T4改编)在平面直角坐标系中,曲线C:错误!(t为参数)的普通方程为________。

解析消去t,得x-y=1,即x-y-1=0。

答案x-y-1=02.(选修4-4P37例2改编)在平面直角坐标系xOy 中,若直线l:错误!(t为参数)过椭圆C:错误!(φ为参数)的右顶点,求常数a的值。

解直线l的普通方程为x-y-a=0,椭圆C的普通方程为错误!+错误!=1,所以椭圆C的右顶点坐标为(3,0),若直线l过(3,0),则3-a=0,所以a=3.二、走出误区微提醒:①不注意互化的等价性致误;②直线参数方程中参数t的几何意义不清致误;③交点坐标计算出错致错。

精选题库高一 数学选修4-4-1北师大版

精选题库高一 数学选修4-4-1北师大版

选修4-4 第1节[知能演练]一、选择题1.点M (ρ,θ)关于极点对称的点的坐标为( )A .(-ρ,-θ)B .(ρ,π+θ)C .(ρ,π-θ)D .(ρ,-θ)答案:B2.将曲线y =12sin3x 变为y =sin x 的伸缩变换是( )A.⎩⎪⎨⎪⎧x =3x ′y =12y ′B.⎩⎪⎨⎪⎧x ′=3x y ′=12y C.⎩⎪⎨⎪⎧x =3x ′y =2y ′D.⎩⎪⎨⎪⎧x ′=3x y ′=2y 答案:D3.设点M 的直角坐标为(-1,-3,3),则它的柱坐标是( )A .(2,π3,3)B .(2,2π3,3)C .(2,4π3,3)D .(2,5π3,3)解析:ρ=(-1)2+(-3)2=2, tan θ=3,∴θ=4π3,z =3,∴选C.答案:C4.在极坐标系中,与圆ρ=4sin θ相切的一条直线方程为( )A .ρsin θ=2B .ρcos θ=2C .ρcos θ=4D .ρcos θ=-4解析:圆ρ=4sin θ的圆心为(2,π2),半径r =2,对于选项A ,方程ρsin θ=2对应的直线(y =2)与圆相交;对于选项B ,方程ρcos θ=2对应的直线(x =2)与圆相切;选项C ,D 对应的直线与圆都相离.答案:B 二、填空题5.已知点M 的极坐标为(6,11π6),则点M 关于y 轴对称的点的直角坐标为________. 解析:∵点M 的极坐标为(6,11π6),∴x =6cos 11π6=6cos π6=6×32=33,y =6sin 11π6=6sin(-π6)=-6×12=-3,∴点M 的直角坐标为(33,-3),∴点M 关于y 轴对称的点的直角坐标为(-33,-3). 答案:(-33,-3)6.在极坐标系中,点P (2,3π2)到直线l :3ρcos θ-4ρsin θ=3的距离为________.解析:在相应直角坐标系中,P (0,-2),直线l 方程:3x -4y -3=0,所以P 到l 的距离:d =|3×0-4×(-2)-3|32+42=1.答案:1 三、解答题7.说出由曲线y =tan x 得到曲线y =3tan2x 的变换过程,并求满足其图形变换的伸缩变换.解:y =tan x 的纵坐标不变,横坐标缩短为原来的12,得到y =tan2x ,再将其纵坐标伸长为原来的3倍,横坐标不变,得到曲线y =3tan2x .设y ′=3tan2x ′,变换为⎩⎪⎨⎪⎧x ′=λ·x λ>0y ′=μ·y μ>0,将其代入y ′=3tan2x ′,得μy =3tan2λx与y =tan x 比较,可得⎩⎪⎨⎪⎧ μ=3λ=12,∴⎩⎪⎨⎪⎧x ′=12xy ′=3y.8.从极点O 作直线与另一直线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使OM ·OP =12.(1)求点P 的轨迹方程;(2)设R 为l 上的任意一点,试求RP 的最小值. 解:(1)设动点P 的坐标为(ρ,θ), M 的坐标为(ρ0,θ),则ρρ0=12,∵ρ0cos θ=4,∴ρ=3cos θ即为所求的轨迹方程.(2)由(1)知P 的轨迹是以(32,0)为圆心,半径为32的圆,易得RP 的最小值为1.[高考·模拟·预测]1.极坐标方程ρ=cos θ化为直角坐标方程为( )A .(x +12)2+y 2=14B .x 2+(y +12)2=14C .x 2+(y -12)2=14D .(x -12)2+y 2=14解析:由ρ=cos θ得ρ2=ρcos θ,∴x 2+y 2=x .选D. 答案:D2.在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为________.解析:直线ρsin(θ+π4)=2可化为x +y -22=0,圆ρ=4可化为x 2+y 2=16,由圆中的弦长公式得2r 2-d 2=242-(222)2=4 3.答案:4 33.在极坐标系中,点(1,0)到直线ρ(cos θ+sin θ)=2的距离为________.解析:直线ρ(cos θ+sin θ)=2可化为x +y -2=0,故点(1,0)到直线距离d =|1+0-2|2=22.答案:224.两直线ρsin(θ+π4)=2008,ρsin(θ-π4)=2009的位置关系是________.(判断垂直或平行或斜交)解析:两直线方程可化为x +y =20082,y -x = 20092,故两直线垂直. 答案:垂直5.圆O 1和圆O 2的极坐标方程分别为ρ=4cos θ,ρ=-sin θ. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程. (2)求经过圆O 1,圆O 2两个交点的直线的直角坐标方程.解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)x =ρcos θ,y =ρsin θ,由ρ=4cos θ得ρ2=4ρcos θ.所以x 2+y 2=4x .即x 2+y 2-4x =0为圆O 1的直角坐标方程. 同理,x 2+y 2+y =0为圆O 2的直角坐标方程.(2)由⎩⎪⎨⎪⎧x 2+y 2-4x =0,x 2+y 2+y =0,相减得过交点的直线的直角坐标方程为4x +y =0.6.求经过极点O (0,0),A (6,π2),B (62,9π4)三点的圆的极坐标方程.解:将点的极坐标化为直角坐标,点O ,A ,B 的直角坐标分别为(0,0),(0,6),(6,6),故△OAB 是以OB 为斜边的等腰直角三角形,圆心为(3,3),半径为32,圆的直角坐标方程为(x -3)2+(y -3)2=18,即x 2+y 2-6x -6y =0,将x =ρcos θ,y =ρsin θ代入上述方程,得ρ2-6ρ(cos θ+sin θ)=0,即ρ=62cos(θ-π4).。

(必考题)高中数学高中数学选修4-4第一章《坐标系》检测题(答案解析)

(必考题)高中数学高中数学选修4-4第一章《坐标系》检测题(答案解析)

一、选择题1.(理)在极坐标系中,圆2cos ρθ=的垂直于极轴的两条切线方程分别为( ) A .0()R θρ=∈ 和cos 2ρθ= B .()2R πθρ=∈和cos 2ρθ=C .()2R πθρ=∈和cos 1ρθ= D .0()R θρ=∈和cos 1ρθ=2.已知曲线C 的极坐标方程为222123cos 4sin ρθθ=+,以极点为原点,极轴为x 轴非负半轴建立平面直角坐标系,则曲线C经过伸缩变换123x x y y ⎧=⎪⎪⎨=''⎪⎪⎩后,得到的曲线是( )A .直线B .椭圆C .圆D .双曲线3.已知圆C 与直线l 的极坐标方程分别为6cos ρθ=,sin 4πρθ⎛⎫+= ⎪⎝⎭C 到直线l 的距离是( ) A .1B .2CD.24.在极坐标系中,点(),ρθ与(),ρπθ--的位置关系为( ) A .关于极轴所在直线对称 B .关于极点对称 C .重合D .关于直线()2R πθρ=∈对称5.在极坐标系中,由三条直线0θ=,3πθ=,cos sin 1ρθρθ+=围成的图形的面积为( ) A .14BCD .136.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C的极坐标方程为ρθ=,若曲线1C 与2C 交于A 、B 两点,则AB 等于( )A .1BC .2D.7.221x y +=经过伸缩变换23x xy y ''=⎧⎨=⎩后所得图形的焦距( )A.B.C .4D .68.将2216x y +=的横坐标压缩为原来的12,纵坐标伸长为原来的2倍,则曲线的方程变为( )A .22134x y +=B .22213x y +=C .222112x y +=D .222134x y +=9.已知曲线C 与曲线5ρ=3cos?5sin?θθ-关于极轴对称,则曲线C 的方程为( )A .10cos ρ=-π-6θ⎛⎫ ⎪⎝⎭ B .10cos ρ=π-6θ⎛⎫ ⎪⎝⎭ C .10cos ρ=-π6θ⎛⎫+⎪⎝⎭D .10cos ρ=π6θ⎛⎫+⎪⎝⎭10.在直角坐标系xOy 中,曲线C 的方程为22162x y+=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()36πρθ+=,射线M 的极坐标方程为(0)θαρ=≥.设射线m 与曲线C 、直线l 分别交于A 、B 两点,则2211OAOB+的最大值为( ) A .34B .25C .23D .1311.极坐标方程cos ρθ=与1cos 2ρθ=的图形是( ) A . B . C . D .12.在同一平面直角坐标系中,将曲线1cos 23y x =按伸缩变换23x x y y ''=⎧⎨=⎩后为( )A .cos y x ''=B .13cos 2y x ''= C .12cos3y x ''= D .1cos32y x ''=二、填空题13.在极坐标系中,曲线C 的方程为28cos 10sin 320ρρθρθ--+=,直线l 的方程为0()R θθρ=∈,0tan 2θ=,若l 与C 交于A ,B 两点,O 为极点,则||||OA OB +=________.14.在极坐标系中,直线sin 24πρθ⎛⎫-= ⎪⎝⎭4ρ=截得的弦长为______.15.(理)在极坐标系中,曲线sin 2ρθ=+与sin 2ρθ=的公共点到极点的距离为_________.16.已知在平面直角坐标系xOy 中,圆C 的参数方程为:2cos 22sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数),以Ox 为极轴建立极坐标系,直线l 30cos sin θθ-=,则圆C截直线l 所得弦长为___________. 17.两条直线sin 20164πρθ⎛⎫+= ⎪⎝⎭,sin 20174πρθ⎛⎫-= ⎪⎝⎭的位置关系是_______ 18.点C 的极坐标是(2,)4π,则点C 的直角坐标为______________ 19.在极坐标系中0,02,ρθπ>≤<,曲线cos 1ρθ=-与曲线=2sin ρθ的交点的极坐标为_______________。

2015届高考数学(人教,理科)大一轮配套练透:选修4-4 第1节

2015届高考数学(人教,理科)大一轮配套练透:选修4-4 第1节

[课堂练通考点]1.(2014·南昌调研)在极坐标系中,圆ρ=2cos θ与直线θ=π4(ρ>0)所表示的图形的交点的极坐标是________.解析:圆ρ=2cos θ可转化为x 2-2x +y 2=0,直线θ=π4可转化为y =x (x >0),两个方程联立得交点坐标是(1,1),可得其极坐标是(2,π4).答案:(2,π4)2.(2013·惠州模拟)在极坐标系中,已知两点A ,B 的极坐标分别为(3,π3)、(4,π6),则△AOB (其中O 为极点)的面积为________.解析:由题意知A ,B 的极坐标分别为(3,π3)、(4,π6),则△AOB 的面积S △AOB =12OA ·OB ·sin∠AOB =12×3×4×sin π6=3.答案:33.(2013·天津高考)已知圆的极坐标方程为ρ=4cos θ, 圆心为C, 点P 的极坐标为⎝⎛⎭⎫4,π3,则|CP |=________.解析:由ρ=4cos θ可得圆的直角坐标方程为x 2+y 2=4x ,圆心C (2,0).点P 的直角坐标为(2,23),所以|CP |=2 3.答案:2 34.在极坐标系中,圆:ρ=2上的点到直线:ρ(cos θ+3sin θ)=6的距离的最小值为________.解析:由题意可得,圆的直角坐标方程为x 2+y 2=4,圆的半径为r =2,直线的直角坐标方程为x +3y -6=0,圆心到直线的距离d =|0+3×0-6|2=3,所以圆上的点到直线的距离的最小值为d -r =3-2=1.答案:15.(2013·银川调研)已知直线l :⎩⎪⎨⎪⎧x =-t ,y =1+t(t 为参数)与圆C :ρ=42cos(θ-π4).(1)试判断直线l 和圆C 的位置关系; (2)求圆上的点到直线l 的距离的最大值.解:(1)直线l 的参数方程消去参数t ,得x +y -1=0.由圆C 的极坐标方程,得ρ2=42ρcos(θ-π4),化简得ρ2=4ρcos θ+4ρsin θ,所以圆C的直角坐标方程为x 2+y 2=4x +4y ,即(x -2)2+(y -2)2=8,故该圆的圆心为C (2,2),半径r =2 2.从而圆心C 到直线l 的距离为d =|2+2-1|12+12=322,显然322<22,所以直线l 和圆C 相交.(2)由(1)知圆心C 到直线l 的距离为d =322,所以圆上的点到直线l 的距离的最大值为322+22=722. [课下提升考能]1.(2013·西城模拟)将点M 的直角坐标(-3,-1)化成极坐标为________. 解析:ρ=(-3)2+(-1)2=3+1=2,tan θ=-1-3=33,点M 在第三象限,θ=7π6.∴M (2,7π6).答案:⎝⎛⎭⎫2,7π6 2.(2013·东城模拟)在极坐标系中,曲线ρ=4cos θ围成的图形面积为________. 解析:依题意得,曲线ρ=4cos θ的直角坐标方程是x 2+y 2=4x ,即(x -2)2+y 2=4,它表示的是以点(2,0)为圆心、2为半径的圆,因此其面积是π×22=4π.答案:4π3.(2014·皖南八校联考)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是________. 解析:该圆的直角坐标方程为x 2+y 2=-2y ,即x 2+(y +1)2=1,故圆心的直角坐标为(0,-1),化为极坐标为⎝⎛⎭⎫1,-π2. 答案:⎝⎛⎭⎫1,-π2 4.(2013·安庆模拟)在极坐标系中,点⎝⎛⎭⎫2,π3与圆ρ=2cos θ的圆心之间的距离为________.解析:由⎩⎨⎧x =ρcos θ=2cos π3=1,y =ρsin θ=2sin π3=3可知,点2,π3的直角坐标为(1,3).圆ρ=2cosθ的直角坐标方程为x 2+y 2=2x ,即(x -1)2+y 2=1,则圆心(1,0)与点(1,3)之间的距离为 3.答案: 35.(2014·保定模拟)点M ,N 分别是曲线ρsin θ=2和ρ=2cos θ上的动点,则|MN |的最小值是________.解析:ρsin θ=2化为普通方程为y =2, ρ=2cos θ化为普通方程为x 2+y 2-2x =0, 即(x -1)2+y 2=1,圆(x -1)2+y 2=1上的点到直线上点的距离的最小值为圆心(1,0)到直线y =2的距离减去半径,即为2-1=1.答案:16.(2013·福建模拟)在极坐标系中,曲线ρ=4cos(θ-π3)上任意两点间的距离的最大值为________.解析:曲线的直角坐标方程为(x -1)2+(y -3)2=22,易知此曲线为圆,而圆上任意两点间的距离的最大值为直径4.答案:47.(2013·大连模拟)在极坐标系中,P 是曲线ρ=12sin θ上的动点,Q 是曲线ρ=12cos ⎝⎛⎭⎫θ-π6上的动点,则PQ 的最大值是________. 解析:∵ρ=12sin θ,∴ρ2=12ρsin θ, ∴x 2+y 2-12y =0,即x 2+(y -6)2=36. 圆心坐标为(0,6),半径为6. 又∵ρ=12cos ⎝⎛⎭⎫θ-π6, ∴ρ2=12ρ⎝⎛⎭⎫cos θcos π6+sin θsin π6, ∴x 2+y 2-63x -6y =0, ∴(x -33)2+(y -3)2=36, 圆心坐标为(33,3),半径为6. ∴|PQ |max =6+6+ (33)2+(6-3)2=18.答案:188.已知直线l 的参数方程是⎩⎨⎧x =1+12t ,y =32t(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标,圆C 的坐标方程为ρ=2cos α+4sin α,则直线l 被圆C 所截得的弦长为________.解析:由题意知,直线l 的普通方程为3x -y -3=0,由极坐标系与直角坐标系的关系知,圆C 的标准方程为(x -1)2+(y -2)2=5.设直线l 与圆C 交于A 、B 两点,设AB 的中点为M ,在Rt △AMC 中,|AC |=5,|CM |=|3-2-3|3+1=1,∴|AM |=5-1=2,∴|AB |=2|AM |=4,故截得的弦长为4.答案:49.(2013·汉中模拟)在极坐标系中,已知圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a =0相切,则实数a 的值为________.解析:将极坐标方程化为直角坐标方程,得圆的方程为x 2+y 2=2x ,即(x -1)2+y 2=1,直线的方程为3x +4y +a =0.由题设知,圆心(1,0)到直线的距离为1, 即有|3×1+4×0+a |32+42=1,解得a =-8或a =2. 故a 的值为-8或2. 答案:-8或210.在极坐标系中,圆ρ=43cos θ的圆心到直线θ=π3(ρ∈R )的距离是________.解析:由题意可得圆的直角坐标方程为x 2+y 2-43x =0,圆心为(23,0),直线的直角坐标方程是y =3x ,所以圆心到直线的距离为62=3.答案:311.在极坐标系中,过点⎝⎛⎭⎫22,π4作圆ρ=4sin θ的切线,则切线的极坐标方程为________.解析:由题意可得点⎝⎛⎭⎫22,π4的直角坐标为(2,2),圆的直角坐标方程为x 2+y 2-4y =0,点在圆上,所以切线只有一条,切线的直角坐标方程是x =2,极坐标方程为ρcos θ=2.答案:ρcos θ=212.在极坐标系中,直线l 过点(1,0)且与直线θ=π3(ρ∈R )垂直,则直线l 极坐标方程为________.解析:由题意可得直线l 的斜率是-33,所以直线l 的直角坐标方程是y =-33(x -1),即x +3y =1,极坐标方程为ρcos θ+3ρsin θ=1.答案:2ρsin ⎝⎛⎭⎫θ+π6=1或2ρcos ⎝⎛⎭⎫θ-π3=1,ρcos θ+3ρsin θ=1 13.(2014·汕头模拟)在极坐标系中,圆C 的极坐标方程为ρ=2sin θ过极点,一条直线l 与圆相交于O ,A 两点,且∠AOx =45°,则OA =________.解析:圆C 的直角坐标方程为:x 2+(y -1)2=1,圆心(0,1)到直线OA :y =x 的距离为22,则弦长OA = 2. 答案: 214.(2013·江西八校联考)若直线3x +4y +m =0与曲线ρ2-2ρcos θ+4ρsin θ+4=0没有公共点,则实数m 的取值范围是________.解析:曲线ρ2-2ρcos θ+4ρsin θ+4=0的直角坐标方程是x 2+y 2-2x +4y +4=0, 即(x -1)2+(y +2)2=1.要使直线3x +4y +m =0与该曲线没有公共点, 则|3×1+4×-2+m |5>1,故m >10或m <0.答案:(-∞,0)∪(10,+∞)15.(2013·福州质检)经过极点且圆心的极坐标为C ⎝⎛⎭⎫2,π4的圆C 的极坐标方程为________.解析:设圆C 上的任意一点的极坐标P (ρ,θ),过OC 的直径的另一端点为B ,连接PO ,PB ,则在直角三角形OPB 中,∠OPB =π2,∠POB =θ-π4(写∠POB =θ-π4也可).从而有ρ=4cos ⎝⎛⎭⎫θ-π4. 答案:ρ=4cos ⎝⎛⎭⎫θ-π4 16.在极坐标系中定点A ⎝⎛⎭⎫1,π2,点B 在直线l :ρcos θ+ρsin θ=0(0≤θ<2π)上运动,当线段AB 最短时,则点B 的极坐标为________.解析:∵ρcos θ+ρsin θ=0,∴cos θ=-sin θ,tan θ=-1.∴直线的极坐标方程化为θ=3π4(直线如图).过A 作直线垂直于l ,垂足为B ,此时AB 最短. 易得|OB |=22. ∴B 点的极坐标为⎝⎛⎭⎫22,3π4.答案:⎝⎛⎭⎫22,3π417.(2013·扬州模拟)已知圆的极坐标方程为:ρ2-42ρcos ⎝⎛⎭⎫θ-π4+6=0.若点P (x ,y )在该圆上,则x +y 的最大值和最小值分别为________,________.解析:圆的参数方程为⎩⎨⎧x =2+2cos α,y =2+2sin α(α为参数),所以x +y =4+2sin ⎝⎛⎭⎫α+π4. 那么x +y 的最大值为6,最小值为2. 答案:6 2。

高中数学选修4-4习题(含答案)

高中数学选修4-4习题(含答案)

统考作业题目——4-46.21.在平面直角坐标系xOy 中,直线l 的参数方程为12,(2x t t y t =+⎧⎨=-⎩为参数),以原点O 为极点,以x 轴非负半轴为极轴建立极坐标系,两坐标系取相同的长度单位。

曲线C 的极坐标方程为 22cos 4sin 40ρρθρθ+++=. (1)求l 的普通方程和C 的直角坐标方程;(2)已知点M 是曲线C 上任一点,求点M 到直线l 距离的最大值.2.已知极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同。

直线的极坐标方程为:,点,参数.(I )求点轨迹的直角坐标方程; (Ⅱ)求点到直线距离的最大值.1、【详解】(1)12,2x t y t=+⎧⎨=-⎩10x y ∴+-= 因为222,cos ,sin x y x y ρρθρθ=+==,所以222440x y x y ++++=,即22(1)(2)1x y +++= (2)因为圆心(1,2)--到直线10x y +-=距离为222=, 所以点M 到直线l 距离的最大值为2222 1.r +=+ 2、解:(Ⅰ)设,则,且参数,消参得:所以点的轨迹方程为(Ⅱ)因为所以所以,所以直线的直角坐标方程为法一:由(Ⅰ)点的轨迹方程为圆心为(0,2),半径为2.,点到直线距离的最大值等于圆心到直线距离与圆的半径之和, 所以点到直线距离的最大值.法二:当时,,即点到直线距离的最大值为.6.33.在平面直角坐标系xOy 中,已知曲线的参数方程为(为参数),曲线的参数方程为(,t 为参数).(1)求曲线的普通方程和曲线的极坐标方程;(2)设P 为曲线上的动点,求点P 到上点的距离的最小值,并求此时点P 的坐标.4.在直角坐标系xOy 中曲线1C 的参数方程为cos 3x y αα=⎧⎪⎨=⎪⎩ (α为参数,以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin 224πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.3、【详解】 (1)对曲线:,,∴曲线的普通方程为.对曲线消去参数可得且∴曲线的直角坐标方程为.又,从而曲线的极坐标方程为。

(必考题)高中数学高中数学选修4-4第二章《参数方程》测试卷(答案解析)

(必考题)高中数学高中数学选修4-4第二章《参数方程》测试卷(答案解析)

一、选择题1.在直角坐标系xOy 中,曲线C:2x ty ⎧=⎪⎨=⎪⎩(t 为参数)上的点到直线l:30x +=的距离的最小值为( )A .23BCD2.P 是直线:40l x y +-=上的动点,Q 是曲线C:sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数)上的动点,则PQ 的最小值是( ) A.2B.2CD.23.在极坐标系中,曲线C 的方程为22312sin ρθ,以极点O 为直角坐标系的原点,极轴为x 轴的正半轴,建立直角坐标系xOy ,设(),P x y 为曲线C 上一动点,则1x y +-的取值范围为()A.1⎡⎤⎣⎦B .[]3,1-C .[]22-,D .[]2,1--4.已知点(,)P x y 的坐标满足条件1,1,350,x y x x y ≥⎧⎪≥-⎨⎪+-≤⎩点(43,31)Q m m +-,则||PQ 的最小值为( ) A .2B .115C .95D .15.曲线C 的参数方程为2x cos y sin θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为212x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),若直线l 与曲线C 交于A ,B 两点,则AB 等于( )ABCD6.在直角坐标系xOy 中,过点()1,2P -的直线l的参数方程为1 2x y ⎧=--⎪⎪⎨⎪=⎪⎩(t 为参数),直线l 与抛物线2y x 交于点,A B ,则PA PB ⋅的值是( )AB .2C.D .107.直线34x ty t =-⎧⎨=+⎩,(t 为参数)上与点()3,4P( )A .()4,3B .()4,5-或()0,1C .()2,5D .()4,3或()2,58.圆ρ=r 与圆ρ=-2rsin (θ+4π)(r >0)的公共弦所在直线的方程为( ) A .2ρ(sin θ+cos θ)=r B .2ρ(sin θ+cos θ)=-rC(sin θ+cos θ)=rD(sin θ+cos θ)=-r9.点M的直角坐标是()1-,则点M 的极坐标为( ) A .52,6π⎛⎫ ⎪⎝⎭B .72,6π⎛⎫ ⎪⎝⎭C .112,6π⎛⎫⎪⎝⎭D .2,6π⎛⎫⎪⎝⎭10.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( ) AB.CD.11.已知点A 是曲线2213x y +=上任意一点,则点A到直线sin()6πρθ+=的距离的最大值是( )A.2BCD.12.设椭圆C :2211612x y +=上的一点P 到两条直线4y =和8x =的距离分别是1d ,2d ,则122d d +的最小值( ) A .5B .6C .7D .8二、填空题13.已知点(,)P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩,(θ为参数)上,则yx 的取值范围为_____.14.已知直线参数方程为355435x t y t⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),直线与圆5ρ=交于B 、C 两点,则线段BC 中点直角坐标________.15.在直角坐标平面内,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为4π⎛⎫ ⎪⎝⎭,曲线C的参数方程为1{x y αα=+=(α为参数),则点M 到曲线C 上的点的距离的最小值为 .16.已知(3,0)A -,(3,0)B ,点P 在圆22(3)(4)4x y -+-=上运动,则22PA PB +的最小值是________.17.在平面直角坐标系xOy 中,已知抛物线244x t y t ⎧=⎨=⎩(t 为参数)的焦点为F ,动点P 在抛物线上,动点Q 在圆3cos sin x y αα=+⎧⎨=⎩(α为参数)上,则PF PQ +的最小值为__________.18.在极坐标系中,圆1C的方程为4πρθ⎛⎫=- ⎪⎝⎭,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,圆2C 的参数方程为1cos (1x a y asin θθθ=-+⎧⎨=-+⎩为参数),若圆1C 与圆2C 外切,则正数a = _________.19.在直角坐标系xOy 中,直线l的参数方程是112x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=-,则圆C 的圆心到直线l 的距离为______.20.在直角坐标系中,曲线1C 的参数方程为cos ,sin ,x y θθ=⎧⎨=⎩[]0,πθ∈,以x 轴的正半轴为极轴建立极坐标系,曲线2C 在极坐标系中的方程为sin cos bρθθ=-.若曲线1C 与2C 有两个不同的交点,则实数b 的取值范围是_______.三、解答题21.在直角坐标系xOy 中,直线l的参数方程cos 1sin x t y t αα⎧=⎪⎨=+⎪⎩(t 为参数,[0,)απ∈),曲线C的参数方程2sin x y ββ⎧=⎪⎨=⎪⎩(β为参数).(1)求曲线C 在直角坐标系中的普通方程;(2)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,当曲线C 截直线l 所得线段的中点极坐标为2,6π⎛⎫⎪⎝⎭时,求α.22.在平面直角坐标系中,曲线1C的参数方程是1x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 是参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是4cos 3πρθ⎛⎫=- ⎪⎝⎭. (Ⅰ)求曲线2C 的直角坐标方程;(Ⅱ)若曲线1C 与曲线2C 交于,A B 两点,求||AB 的值. 23.[选修4-4:坐标系与参数方程](10分)在极坐标系中,圆C 的极坐标方程为()24cos sin 3ρρθθ=+-,若以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系. (1)求圆C 的一个参数方程;(2)在平面直角坐标系中,(),P x y 是圆C 上的动点,试求2x y +的最大值,并求出此时点P 的直角坐标.24.在平面直角坐标系xOy 中,已知直线l的参数方程为1122x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C 的参数方程为cos 2sin x y θθ=⎧⎨=⎩(θ为参数)(1)将直线l 的参数方程化为极坐标方程;(2)设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长. 25.在平面直角坐标系中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数,0απ≤<).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为244cos 2sin ρρθρθ-=-.(1)写出曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A 、B 两点,且AB的长度为l 的普通方程. 26.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立坐标系,曲线C的方程,()222cos4sin4ρθθ+=,过点(2,1)的直线l的参数方程为221xy⎧=+⎪⎪⎨⎪=+⎪⎩(t为参数).(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C交于A、B两点,求||AB的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设曲线C上点的坐标为()2t,利用点到直线的距离公式表示出距离,即可求出最小值.【详解】设曲线C上点的坐标为()2t,则C上的点到直线l的距离2233d===,即C上的点到直线1.故选:C.【点睛】本题考查参数方程的应用,属于基础题.2.C解析:C【分析】设点,sin)Qθθ,利用点到直线的距离公式,结合三角函数的性质,即可求解.【详解】由曲线C:sinxyθθ⎧=⎪⎨=⎪⎩(θ为参数)消去参数,设点,sin)Qθθ,则点Q 到直线:40l x y +-=的距离为d ==,当2,6k k Z πθπ=+∈时,min d ==故选:C. 【点睛】本题主要考查曲线的参数方程,点到直线的距离公式,以及三角函数的恒等变换和余弦函数的性质的应用,着重考查运算与求解能力,以及转换能力,属于基础题.3.B解析:B 【分析】 将曲线C 的方程22312sin ρθ化为直角坐标形式,可得2213xy +=,设x α=,sin y α=,由三角函数性质可得1x y +-的取值范围.【详解】解:将cos =x ρθ ,sin y ρθ=代入曲线C 的方程22312sin ρθ,可得:2222sin 3ρρθ+=,即2233x y +=,2213x y+=设x α=,sin yα=,可得1sin 1sin )12sin()1213x y πααααα+-=-=+++--=, 可得1x y +-的最大值为:1,最小值为:3-, 故选:B. 【点睛】本题主要考查极坐标和直角坐标的互换及椭圆的参数方程,属于中档题,注意运算准确.4.A解析:A 【分析】根据Q 点坐标得到点Q 满足的参数方程,从而得到Q 点所在的直线方程l ,因此将求PQ 最小值问题转化为求可行域上的点(,)P x y 到直线l 的最小距离,然后运用数形结合得到可行域内点B (1,0)到直线l 距离最小,从而求出PQ 的最小值. 【详解】因为(43,31)Q m m +-,则点Q 满足的参数方程为43{31x m y m =+=-(m 为参数),消去参数得到普通方程为l :34130x y --=,则问题转化为求可行域上的点(,)P x y 到直线l 的最小距离,如图:由图可知当P 点与B 点重合时到直线l 的距离最小,而B 点为(1,0),B 到l 的距离为d ,所以min 223013102534PQ d --====+, 答案为A. 【点睛】主要考查线性规划问题,同时也考查了参数方程与普通方程的互化.这类型题的关键在于寻找出目标函数的几何意义,然后利用数形结合的方法寻找出最优解,求出最值,属于中档题.5.C解析:C 【解析】分析:首先将取消C 的方程化为直角坐标方程,然后结合直线参数方程的几何意义整理计算即可求得最终结果.详解:曲线C 的参数方程2x cos y sin θθ=⎧⎨=⎩(θ为参数)化为直角坐标方程即:2214y x +=,与直线l 的参数方程312x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)联立可得:21613t =, 则124134131313t t ==-, 结合弦长公式可知:12813AB t t =-=. 本题选择C 选项.点睛:本题主要考查参数方程的应用,弦长公式等知识,意在考查学生的转化能力和计算求解能力.6.B解析:B 【解析】设,A B对应的参数分别为12,t t,把l的参数方程12xy⎧=-⎪⎪⎨⎪=+⎪⎩代入2y x=中得:221⎛+=--⎝⎭,整理得:220t-=,()242100∴∆=-⨯-=>,1212?2,?t t t t PA PB+==-∴1212··2t t t t===,故选B.7.D解析:D【详解】因为直线3(4x tty t=-⎧⎨=+⎩为参数),所以设直线上到点(3,4)P(3,4)t t--,=1t=±,代入直线的参数方程,得点的坐标为(4,3)或(2,5),故选D.8.D解析:D【解析】分别出圆ρ=r的直角坐标方程222x y r+=和圆ρ=-2r sin(θ+4π)(r>0)直角坐标方程22()x y x y+=+,从而求出两圆的公共弦所在直线的方程2())x y r x y r+=+=-.再化为极坐标方程为(sinθ+cosθ)=-r,选D. 9.B解析:B【解析】3π7π2,tan(π,)26ρθθθ===∈⇒=,故选:B.点睛:(1)直角坐标方程化为极坐标方程,只要运用公式cosxρθ=及sinyρθ=直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos,sin,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.10.D解析:D【分析】先求出直线和圆的普通方程,再利用圆的弦长公式求弦长. 【详解】由题意得,直线l 的普通方程为y =x -4, 圆C 的直角坐标方程为(x -2)2+y 2=4, 圆心到直线l 的距离d=,直线l 被圆C 截得的弦长为= 【点睛】(1)本题主要考查参数方程极坐标方程与普通方程的互化,意在考察学生对这些知识的掌握水平和分析推理计算能力.(2)求直线和圆相交的弦长,一般解直角三角形,利用公式||AB =. 11.C解析:C 【分析】先将直线sin()6πρθ+=A 的坐标,利用点到直线的距离求解. 【详解】由直线sin()6πρθ+=1cos 2ρθθ⎫+=⎪⎪⎝⎭0x +-=. 又点A 是曲线2213x y +=上任意一点,设),sin Aαα则点A0x +-=的距离为:d ==≤ 当sin 14πα⎛⎫+=- ⎪⎝⎭时取得等号. 故选:C 【点睛】本题考查极坐标方程与直角坐标方程的互化、椭圆的参数方程和点到直线的距离,属于中档题.12.D解析:D 【分析】设()4,P cos θθ,02θπ≤<,由题意可得:1222484d d cos θθ+=-+-,利用三角函数的单调性、和差公式即可得出结论. 【详解】解:设()4,P cos θθ,02θπ≤<, 由题意可得:122248416416816886d d cos cos sin πθθθθθ⎛⎫+=-+-=--=-+≥-= ⎪⎝⎭.当且仅当816sin πθ⎛⎫+= ⎪⎝⎭时取等号. 122d d ∴+的最小值为8.故选:D 【点睛】本题考查了椭圆的标准方程及其参数方程、三角函数的单调性、和差公式,考查了推理能力与计算能力,属于中档题.二、填空题13.【分析】根据曲线参数方程为(为参数)将曲线先化为普通方程再利用的几何意义即可求出其范围【详解】曲线的参数方程为(为参数)将两个方程平方相加它在直角坐标系中表示圆心在半径为的圆又的几何意义是表示原点与解析:⎡⎢⎣⎦【分析】根据曲线参数方程为2cos sin x y θθ=-+⎧⎨=⎩(θ为参数),将曲线先化为普通方程,再利用yx 的几何意义即可求出其范围. 【详解】曲线的参数方程为2cos sin x y θθ=-+⎧⎨=⎩(θ为参数),∴2cos x θ+=,sin y θ=,将两个方程平方相加,∴22(2)1x y ++=,它在直角坐标系中表示圆心在(2,0)-半径为1的圆.又yx的几何意义是表示原点与圆上一点(,)P x y 连线的斜率, 画出图象,如图:当过原点的直线与圆相切时,设切线的斜率为k ,切线方程l 为:y kx =联立l 与圆的方程:22(2)1x y y kx ⎧++=⎨=⎩,消掉y 可得()22(2)1x kx ++= 直线与圆相切,可得0∆=,解得33k =± ∴当过原点的直线与圆相切时,切线的斜率是3 ∴y x 的取值范围为33⎡⎢⎣⎦. 故答案为:3333⎡-⎢⎣⎦. 【点睛】此题考查参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,线性规划问题,关键是根据所给的约束条件准确地画出可行域和目标函数.在平面区域中,求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义,从而确定目标函数在何处取得最优解.14.【分析】将直线的参数方程化为普通方程圆的极坐标方程转化为普通方程再求解【详解】直线参数方程为(t 为参数)转化为普通方程:圆转化为普通方程为将直线方程代入圆的方程中整理得设交点为中点坐标则即则线段BC 解析:4433,2525⎛⎫ ⎪⎝⎭【分析】将直线的参数方程化为普通方程,圆的极坐标方程,转化为普通方程,再求解.【详解】直线参数方程为355435x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),转化为普通方程:11433y x =-, 圆5ρ=转化为普通方程为2225x y += ,将直线方程代入圆的方程中,整理得225881040x x --= ,设交点为()()1122,,,x y x y ,中点坐标()00,x y , 则1208844252225x x x +=== , ()1212012114114112333333223325x x y y y x x -+-+===-+= , 即则线段BC 中点直角坐标为4433,2525⎛⎫⎪⎝⎭ . 【点睛】本题考查了参数方程、极坐标方程和直角坐标方程之间的转换,中点坐标公式的应用,以及一元二次方程根和系数关系的应用. 参数方程转化为直坐标方程,常用方法有代入法、加减(或乘除)消元法、三角代换法等,极坐标方程转化为直角坐标方程,常通过转化公式直接代入,或先将已知式子变形,如两边同时平方或同时乘以ρ,再代入公式. 15.【解析】试题分析:依题意点M 的直角坐标为曲线C 的普通方程为圆心(10)半径则点M 到曲线C 上的点的距离的最小值为考点:参数方程与极坐标解析:5【解析】试题分析:依题意点M 的直角坐标为()4,4,曲线C 的普通方程为22(1)2x y -+=,圆心(1,0M 到曲线C上的点的距离的最小值为5考点:参数方程与极坐标16.【分析】由题意设利用两点之间的距离公式表示出进而可得结论【详解】由题意得圆的参数方程为(为参数)设则∴其中当时有最小值为故答案为:【点睛】本题主要考查两点之间的距离公式圆的参数方程的应用属于基础题 解析:36【分析】由题意设()32cos ,42sin P θθ++,利用两点之间的距离公式表示出22PA PB +,进而可得结论.【详解】由题意得圆的参数方程为32cos 42sin x y θθ=+⎧⎨=+⎩(θ为参数),设()32cos ,42sin P θθ++, 则()()22262cos 42sin 5624cos 16sin PA θθθθ=+++=++, ()()2222cos 42sin 2016sin PB θθθ=++=+,∴()227624cos 32sin 7640sin PA PB θθθϕ+=++=++,其中3tan 4ϕ=, 当()sin 1θϕ+=-时, 22PA PB +有最小值为36. 故答案为:36.【点睛】本题主要考查两点之间的距离公式,圆的参数方程的应用,属于基础题.17.3【解析】根据题意抛物线参数方程为其普通方程为y2=4x 其焦点坐标为(10)准线方程为x=﹣1动点P 在抛物线上设P 到准线的距离为d 则d=|PF|圆的参数方程为(α为参数)其普通方程为(x ﹣3)2+y解析:3【解析】根据题意,抛物线参数方程为244x t y t⎧=⎨=⎩,其普通方程为y 2=4x , 其焦点坐标为(1,0),准线方程为x=﹣1,动点P 在抛物线上,设P 到准线的距离为d ,则d=|PF|,圆的参数方程为3x cos y sin αα=+⎧⎨=⎩(α为参数),其普通方程为(x ﹣3)2+y 2=1, 动点Q 在圆上,则|PF|+|PQ|=d+|PQ|,分析可得:当P 为抛物线的顶点时,|PF|+|PQ|取得最小值,且其最小值为3, 故答案为:3.18.【解析】圆C1的方程为的直角坐标方程为:(x−2)2+(y−2)2=8圆心C1(22)半径圆C2的参数方程为参数)的普通方程为:(x+1)2+(y+1)2=a2圆心距两圆外切时∴正数【解析】圆C 1的方程为)4πρθ=-的直角坐标方程为:(x −2)2+(y −2)2=8, 圆心C 1(2,2),半径1r = 圆C 2的参数方程1(1x acos y asin θθθ=-+⎧⎨=-+⎩为参数)的普通方程为:(x +1)2+(y +1)2=a 2.圆心距12C C =两圆外切时,1212C C r r a =+==,∴正数a =19.【解析】直线l 的参数方程为(t 为参数)普通方程为x ﹣y+1=0圆ρ=﹣4cosθ即ρ2=﹣4ρcosθ即x2+y2+4x=0即(x+2)2+y2=4表示以(﹣20)为圆心半径等于2的圆∴圆C 的圆心到 解析:12. 【解析】直线l的参数方程为1{12x y t =-+=(t 为参数),普通方程为x,圆ρ=﹣4cosθ 即ρ2=﹣4ρcosθ,即 x 2+y 2+4x=0,即 (x+2)2+y 2=4,表示以(﹣2,0)为圆心,半径等于2的圆.∴圆C 的圆心到直线l=12, 故答案为:12. 20.【分析】先消去参数得到曲线的普通方程再利用直角坐标与极坐标的互化公式得到直线的直角坐标方程利用点到直线的距离公式结合图象即可求解【详解】将曲线的参数方程为化为直角坐标方程可得曲线表示圆心在原点半径为解析:1b ≤<【分析】先消去参数θ得到曲线的普通方程,再利用直角坐标与极坐标的互化公式,得到直线的直角坐标方程,利用点到直线的距离公式,结合图象,即可求解.【详解】将曲线1C 的参数方程为cos sin x y θθ=⎧⎨=⎩,[]0,πθ∈, 化为直角坐标方程,可得221x y +=,曲线1C 表示圆心在原点,半径为1的上半圆,(如图所示)曲线2C 在极坐标系中的方程为sin cos b ρθθ=-,即sin cos b ρθρθ-=, 可得曲线2C 的直角坐标方程为0x y b -+=, 由圆心到直线的距离得:12bd ==,解得2b =±,结合图象,可得实数b 的取值范围是12b ≤<. 故答案为:12b ≤<.【点睛】本题主要考查了极坐标和直角坐标的互化,参数方程与普通方程的互化,以及直线与圆的位置关系的应用,着重考查数形结合思想,以及推理与运算能力.三、解答题21.(1)221124x y +=(2)56πα= 【分析】(1)消去参数β,即可得曲线的普通方程;(2)利用点差法求出直线的斜率k 的值,从而求得直线的倾斜角.【详解】(1)由32sin x y ββ⎧=⎪⎨=⎪⎩得cos 23sin 2yββ⎧=⎪⎪⎨⎪=⎪⎩β得221124x y +=,所以曲线C 的普通方程为221124x y +=; (2)直线l 所得线段的中点极坐标为2,6π⎛⎫ ⎪⎝⎭化成直角坐标为. 设直线l 与曲线C 相交于()11,A x y ,()22,B x y 两点,则122x x +=1212y y +=,2211222211241124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①②, 由-②①得222221210124x x y y --+=, 所以()211221123y y x x x x y y -+=-==-+,即tan 3l k α=-=, 又∵[0,)απ∈,∴直线l 的倾斜角为56π. 【点睛】本题考查参数方程化为普通方程、极坐标与直角坐标的互化、点差法的应用,考查转化与化归思想,考查逻辑推理能力、运算求解能力.22.(Ⅰ)2220x y x +--=;(Ⅱ.【分析】(Ⅰ)曲线2C 的极坐标方程l转化为22cos sin ρρθθ=+,由此能求出曲线2C 的直角坐标方程.(Ⅱ)将曲线1C 的参数方程代入曲线2C的直角坐标方程,可得210t -=,设,A B对应的t 值分别为12t t 、,利用韦达定理可得12121t t t t ⎧+=⎪⎨⋅=-⎪⎩ 【详解】解:(Ⅰ)21:4cos 4cos 32C πρθθθ⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭22cos sin ρρθθ=+即2220x y x +--=(Ⅱ)由题意,联立2221202230x y x y x x ⎧=+⎪⎪⎪⎪=+⎨⎪⎪+--=⎪⎪⎩得2610t t -=设,A B 对应的t 值分别为12t t 、,则121261t t t t ⎧+=⎪∴⎨⋅=-⎪⎩ 1212||AB t t t t ∴=+=- ()()221212124t t t t t t =-=+-⋅()26410=+=【点睛】本题考查极坐标方程与直角坐标方程的转化,直线的参数方程参数的几何意义的应用,属于中档题.23.(1)25(25x y ααα⎧=⎪⎨=⎪⎩是参数). (2)11,(3,4).【解析】试题分析:(1)根据222x y ρ=+,cos x ρθ=,sin y ρθ=,得到圆C 的直角坐标方程,从而可得圆C 的一个参数方程;(2)由(1)可设点(25,25)P ϕϕ,借助辅助角公式即可得2x y +,从而可得2x y +的最大值及点P 的直角坐标. 试题(1)因为24(cos sin )3ρρθθ=+-,所以22+4430x y x y --+=,即22(2)(2)5x y -+-=为圆C 的直角坐标方程,所以圆C的一个参数方程为2(2x y ϕϕϕ⎧=⎪⎨=⎪⎩为参数). (2)由(1)可知点P的坐标可设为(2,2)ϕϕ,则224x y ϕϕ+=+++65sin()6ϕϕϕα=++=++其中cos 55αα==,当2x y +取最大值时,sin()1ϕα+=,2,2k k Z πϕαπ+=+∈,此时cos cos()sin 25πϕαα=-==,sin sin()cos 2πϕαα=-==2x y +的最大值为11,此时点P 的直角坐标为()3,4.24.(1cos sin 0θρθ-=(2)167AB =【详解】(1)直线l0y -=,代入互化公式cos {sin x y ρθρθ==可得直线lcos sin 0θρθ-=(2)椭圆C 的普通方程为2214y x +=,将直线l的参数方程112x t y ⎧=+⎪⎪⎨⎪=⎪⎩,代入2214y x +=,得22)12(1)124t ++=,即27160t t +=,解得10t =,2167t =-, 所以12167AB t t =-=. 考点:极坐标方程,利用直线参数方程中参数的几何意义可求线段的长 25.(1)()()22219x y -++=;(2)34y x =和0x =. 【分析】 (1)将cos sin x y ρθρθ=⎧⎨=⎩代入曲线C 极坐标方程,化简后可求得对应的直角坐标方程; (2)将直线的参数方程代入曲线方程,利用弦长公式列方程,解方程求得直线的倾斜角或斜率,由此求得直线l 的普通方程.【详解】(1)将cos sin x y ρθρθ=⎧⎨=⎩代入曲线C 极坐标方程得曲线C 的直角坐标方程为22442x y x y +-=-,即()()22219x y -++=;(2)将直线的参数方程代入曲线方程:()()22cos 2sin 19t t αα-++=,整理得24cos 2sin 40t t t αα-+-=设点A 、B 对应的参数为1t 、2t ,解得124cos 2sin t t αα+=-,124t t ⋅=-, 则12||AB t t =-===得23cos 4sin cos 0ααα-=,因为0απ≤<,得2πα=或3tan 4α=,直线l 的普通方程为34y x =和0x =. 【点睛】本题主要考查极坐标方程和直角坐标方程互化,考查利用直线的参数方程来求弦长有关的问题,属于中档题. 26.(1)10x y --=;2214x y +=(2【分析】(1)利用公式,即可实现极坐标方程和直角方程之间的转化;消去参数,则可得直线的普通方程;(2)将直线的参数方程代入曲线C 的直角方程,根据韦达定理,结合参数几何意义,即可容易求得.【详解】(1)因为曲线C 的方程,()222cos 4sin 4ρθθ+=, 故可得2244x y +=,即2214x y +=; 因为直线l的参数方程为2212x y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),消去参数t ,则其直角方程为10x y --=.(2)将直线参数方程代入曲线C的直角方程,可得2580t ++=,设点,A B 对应的参数12,t t t t ==,则121285t t t t +==,故可得12AB t t =-====故弦长AB = 【点睛】本题考查极坐标方程、参数方程和直角坐标方程之间的相互转化,以及利用参数的几何意义求弦长,属综合基础题.。

高中数学选修4-4、4-5试题及答案

高中数学选修4-4、4-5试题及答案

选修4-4、4-5测试题一、选择题,{||2|2},)().{|04}.{|01}.{|14} D.{|14}R R M x x N A x x B x x C x x x x =-≤⋂=≤<≤≤<≤≤≤1.已知实数集集合集合则M (C2.函数28(0)2x y x x =-->的最大值是( )A .6B .8C .10D .183.若直线的参数方程为12()23x tt y t =+⎧⎨=-⎩为参数,则直线的斜率为( )A .23 B .23- C .32 D .32-4.若点(3,)P m 在以点F 为焦点的抛物线24()4x t t y t ⎧=⎨=⎩为参数上,则||PF 等于( ).A .2B .3C .4D .55.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆6.在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )A .cos 2ρθ=B .sin 2ρθ=C .4sin()3πρθ=+D .4sin()3πρθ=-7.直线112()2x tt y t⎧=+⎪⎪⎨⎪=-⎪⎩为参数和圆2216x y +=交于,A B 两点,则AB 的中点坐标为() A .(3,3)- B.( C.3)- D.(3,8.圆5cos ρθθ=-的圆心是( )A .4(5,)3π-- B .(5,)3π- C .(5,)3πD .5(5,)3π-9.若曲线22=ρ上有n 个点到曲线2)4cos(=+πθρ的距离等于2,则n =( )A .1B .2C .3D .410.直线2()1x t t y t =-+⎧⎨=-⎩为参数被圆22(3)(1)25x y -++=所截得的弦长为( ).AB .1404 CD二、填空题11.()|2|,()6{|23},a f x x a a f x x x =-+≤-≤≤已知函数若不等式的解集为则实数的取值范围为212.|x 3||x 1|a 3a x +--≤-不等式对任意实数恒成立,则实数a 的取值范围为13.圆的参数方程为3sin 4cos ()4sin 3cos x y θθθθθ=+⎧⎨=-⎩为参数,则此圆的半径为_____________。

新北师大版高中数学高中数学选修4-4第一章《坐标系》检测(包含答案解析)(2)

新北师大版高中数学高中数学选修4-4第一章《坐标系》检测(包含答案解析)(2)

一、选择题1.点P 对应的复数为33i -+,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标为( ) A .332,4π⎛⎫ ⎪⎝⎭B .532,4π⎛⎫- ⎪⎝⎭C .53,4π⎛⎫ ⎪⎝⎭D .33,4π⎛⎫- ⎪⎝⎭2.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42a πρθ⎛⎫+= ⎪⎝⎭,曲线2C 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数,0θπ).若1C 与2C 有且只有一个公共点,则实数a 的取值范围是( )A .2±B .(2,2)-C .[1,1)-D .[1,1)-或23.在极坐标系中,点(),ρθ与(),ρπθ--的位置关系为( ) A .关于极轴所在直线对称 B .关于极点对称 C .重合D .关于直线()2R πθρ=∈对称4.在极坐标系中,已知A (1,π3),B (2,2π3)两点,则|AB|=( ) A .2B .3C .1D .55.在直角坐标系xOy 中,曲线C 的方程为22162x y +=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()36πρθ+=,射线M 的极坐标方程为(0)θαρ=≥.设射线m 与曲线C 、直线l 分别交于A 、B 两点,则2211OAOB+的最大值为( ) A .34B .25C .23D .136.()04πθρ=≥表示的图形是( )A .一条线段B .一条直线C .一条射线D .圆7.在极坐标系中,点到直线的距离是( ).A .B .C .D .8.已知点P 的直角坐标(2,23)--,则它的一个极坐标为( )A .(4,3π) B .(4,43π) C .(-4,6π) D .(4,76π) 9.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,长度单位不变,建立极坐标系,已知曲线C 的极坐标方程为ρcos(θ-3π)=1,M ,N 分别为曲线C 与x 轴、y 轴的交点,则MN 的中点的极坐标为( )A .3(1,)3B .23(,)36πC .2333π⎛⎫ ⎪ ⎪⎝⎭,D .2323⎛⎫⎪ ⎪⎝⎭,10.直线πsin 44ρθ⎛⎫+= ⎪⎝⎭与圆π4sin 4ρθ⎛⎫=+ ⎪⎝⎭的位置关系是( ). A .相交但不过圆心B .相交且过圆心C .相切D .相离11.在极坐标系中,两条曲线1πC :ρsin θ14⎛⎫+= ⎪⎝⎭,2C :ρ2=的交点为A,B ,则AB =( )A .4B .22C .2D .112.化极坐标方程2cos 20ρθρ-=为直角坐标方程为( ) A .2202x y y +==或 B .2x =C .2202x y x +==或D .2y =二、填空题13.已知圆M 的极坐标方程为242cos()604πρρθ--+=,则ρ的最大值为______.14.将曲线C 按伸缩变换'2'3x x y y=⎧⎨=⎩变换后所得曲线方程为22''1x y +=,则曲线C 的方程为________.15.在极坐标系中,点(2,)3π到直线(cos 3sin )6ρθθ+=的距离为_________.16.在极坐标系中,O 是极点,设点(1,)6A π,(2,)2B π,则OAB ∆的面积是__________.17.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.18.在平面直角坐标系xOy 中,已知直线l 的参数方程为(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=4cosθ,直线l 与曲线C 交于A ,B 两点,则线段AB 的长为__.19.将曲线221x y +=按伸缩变换公式'2'3x xy y =⎧⎨=⎩变换后得到曲线C ,则曲线C 上的点(,)P m n 到直线:260l x y +-=的距离最小值为_____________.20.过点P (2,4π)并且与极轴垂直的直线的方程是___________________________. 三、解答题21.在平面直角坐标系xOy 中,曲线C 的参数方程为cos 1sin x r y r ϕϕ⎧=⎪⎨=+⎪⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的坐标方程为sin 13πρθ⎛⎫-= ⎪⎝⎭,若直线l 与曲线C 相切. (1)求曲线C 的极坐标方程;(2)在曲线C 上取两点M 、N 于原点O 构成MON ∆,且满足6MON π∠=,求面积MON ∆的最大值.22.在平面直角坐标系中,曲线1C 的参数方程为2cos sin x r y r ϕϕ=+⎧⎨=⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 经过点6P π⎛⎫⎪⎝⎭,曲线2C 的极坐标方程为()22cos26ρθ+=.(1)求曲线1C 的极坐标方程;(2)若1,6A πρα⎛⎫- ⎪⎝⎭,23,B πρα⎛⎫+ ⎪⎝⎭是曲线2C 上两点,求2211OA OB +的值.23.在平面直角坐标系xOy 中,曲线1C :222x ax y -+=0(a >0),曲线2C 的参数方程为cos {1sin x y αα==+(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系;(1)求曲线1C ,2C 的极坐标方程; (2)已知极坐标方程为θ=6π的直线与曲线1C ,2C 分别相交于P ,Q 两点(均异于原点O ),若|PQ|=1,求实数a 的值; 24.(本小题满分12分)在直角坐标系xOy 中,曲线1C 的参数方程为 sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以原点O 为极点,x轴的非负半轴为极轴,建立极坐标系,曲线2C 的极坐标方程πsin 4ρθ⎛⎫+= ⎪⎝⎭(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)设P 为曲线1C 上的动点,求点P 到曲线2C 上的距离的最小值. 25.在极坐标系下,已知圆C :2cos 2sin =+和直线:40l x y -+= (1)求圆C 的直角坐标方程和直线l 的极坐标方程; (2)求圆C 上的点到直线l 的最短距离.26.在直角坐标系中,圆1C :221x y +=经过伸缩变换32x xy y''=⎧⎨=⎩,后得到曲线2C 以坐标原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线l 的极坐标方程为102cos sin θθρ+=()1求曲线2C 的直角坐标方程及直线l 的直角坐标方程;()2在2C 上求一点M ,使点M 到直线l 的距离最小,并求出最小距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:先求出点P 的直角坐标,P 到原点的距离r ,根据点P 的位置和极角的定义求出极角,从而得到点P 的极坐标. 详解:点P 对应的复数为33i -+,则点P 的直角坐标为()3,3-,点P 到原点的距离r =,且点P 第二象限的平分线上,故极角等于34π,故点P 的极坐标为34π⎛⎫ ⎪⎝⎭, 故选A .点睛:本题考查把直角坐标化为极坐标的方法,复数与复平面内对应点间的关系,求点P 的极角是解题的难点.2.D解析:D 【解析】 【分析】先把曲线1C ,2C 的极坐标方程和参数方程转化为直角坐标方程和一般方程,若1C 与2C 有且只有一个公共点可转化为直线和半圆有一个公共点,数形结合讨论a 的范围即得解.【详解】因为曲线1C 的极坐标方程为2sin ,42a πρθ⎛⎫+= ⎪⎝⎭即222(sin cos )222a ρθθ+= 故曲线1C 的直角坐标方程为:0x y a +-=.消去参数θ可得曲线2C 的一般方程为:221x y +=,由于0θπ,故0y ≥如图所示,若1C 与2C 有且只有一个公共点,直线与半圆相切,或者截距11a -≤< 当直线与半圆相切时122O l d a -==∴=由于为上半圆,故02a a >∴= 综上:实数a 的取值范围是[1,1)-2 故选:D 【点睛】本题考查了极坐标、参数方程与直角坐标方程、一般方程的互化,以及直线和圆的位置关系,考查了学生数形结合,数学运算的能力,属于中档题.3.A解析:A 【分析】由点(),ρπθ--和点(,)ρθ-为同一点. 则比较点(,)ρθ-和点(),ρθ,可推出点(),ρθ与(),ρπθ--的位置关系.【详解】解:点(),ρπθ--与点(),ρθ-是同一个点,(),ρθ-与点(),ρθ关于极轴对称.∴点(),ρθ与(),ρπθ--关于极轴所在直线对称.故选:A. 【点睛】考查极坐标的位置关系.题目较为简单,要掌握极坐标的概念.4.B解析:B 【解析】 【分析】根据题意,由AB 的坐标分析可得|OA |=1,|OB |=2,且∠AOB 2333πππ=-=,由余弦定理计算可得答案 【详解】在极坐标系中,已知A (1,π3),B (2,2π3), 则|OA|=1,|OB|=2,且∠AOB 2πππ333=-=, 则|AB|2=2OA +2OB ﹣2|OA||OB|cos ∠AOB =1+4﹣2×1×2×cos π3=3,则|AB|= 故选:B . 【点睛】本题考查极坐标的应用,涉及余弦定理的应用,属于基础题.5.C解析:C 【解析】分析:先由曲线C 的直角坐标方程得到其极坐标方程为()221+2sin 6ρθ=,设A 、B 两点坐标为()1,ρθ,()2,ρθ,将射线M 的极坐标方程为θα=分别代入曲线C 和直线l 的极坐标方程,得到关于α的三角函数,利用三角函数性质可得结果.详解:∵曲线C 的方程为22162x y +=,即2236x y +=,∴曲线C 的极坐标方程为()221+2sin 6ρθ=设A 、B 两点坐标为()1,ρθ,()2,ρθ,联立()221+2sin 6ρθθα⎧=⎪⎨=⎪⎩,得221112sin 6θρ+=,同理得222cos 163πθρ⎛⎫+ ⎪⎝⎭=, 根据极坐标的几何意义可得22222212cos 111112sin 663OA OBπθθρρ⎛⎫+ ⎪+⎝⎭+=+=+1+1cos 21cos 23sin 23666ππθθθ⎛⎫⎛⎫-+++-+ ⎪ ⎪⎝⎭⎝⎭=,即可得其最大值为23,故选C. 点睛:本题考查两线段的倒数的平方和的求法,考查直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,充分理解极坐标中ρ的几何意义以及联立两曲线的极坐标方程得到交点的极坐标是解题的关键,是中档题.6.C解析:C【解析】 【分析】利用极坐标方差化为直角坐标方程即可得出. 【详解】()04πθρ=≥表表示的图形是一条射线:y=x (x≥0).故选C . 【点睛】本题考查了射线的极坐标方程,考查了推理能力与计算能力,属于基础题.7.C解析:C 【解析】 点到直线分别化为直角坐标系下的坐标与方程:,直线点到直线的距离,点到直线的距离是,故选C.8.B解析:B 【解析】22(2)(23)4ρ=-+-=,23tan 32θ-==-,3(,)2πθπ∈,所以43πθ=,即极坐标为4(4,)3π.故选B . 9.B解析:B 【分析】先求出曲线C 的平面直角坐标系的方程,求出M N 、中点在平面直角坐标系的坐标,然后再求出其极坐标 【详解】 由cos 13πρθ⎛⎫-= ⎪⎝⎭可得:13cos sin 122ρθρθ+= ∴曲线C 的直角坐标方程为13122x y +=,即320x -=故点M N 、在平面直角坐标系的坐标为()23200⎛ ⎝⎭,,, ∴点P 坐标为313⎛ ⎝⎭,则极坐标为6P π⎫⎪⎪⎝⎭, 故选B 【点睛】本题主要考查了平面直角坐标系与极坐标之间的转化,只要掌握转化方法然后就可以计算出答案,较为基础.10.C解析:C 【解析】分析:直线πsin 44ρθ⎛⎫+= ⎪⎝⎭化为直角坐标方程,圆π4sin 4ρθ⎛⎫=+ ⎪⎝⎭化为直角坐标方程,求出圆心到直线距离,与半径比较即可得结论. 详解:直线πsin 44ρθ⎛⎫+= ⎪⎝⎭cos 4sin ρθρθ+= ,422x y +=,0y x +-=, 圆π4sin 4ρθ⎛⎫=+⎪⎝⎭可化成2cos sin ρθθ=+,22((4x y -+-=,圆心到直线的距离2d r ===,所以圆与直线相切.故选C .点睛:利用关系式cos sin x y ρθρθ=⎧⎨=⎩可以把极坐标与直角坐标互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题. 11.C解析:C 【解析】联立极坐标方程:π14sin ρθρ⎧⎛⎫+= ⎪⎪⎝⎭⎨⎪=⎩可得:110ρθ⎧=⎪⎨=⎪⎩222ρπθ⎧=⎪⎨=⎪⎩,利用勾股定理可得2AB ==.故选C.12.C解析:C 【解析】由题意得,式子可变形为(cos 2)0ρρθ-=,即0ρ=或cos 20ρθ-=,所以x 2+y 2=0或x=2,选C.【点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化. 二、填空题13.【分析】先将原极坐标方程中的三角式利用和角公式化开后再化成直角坐标方程再利用直角坐标方程进行求解到原点的距离最大值即可【详解】将原极坐标方程化为:化成直角坐标方程为:它表示圆心在半径为的圆圆上的点到解析:【分析】先将原极坐标方程中的三角式利用和角公式化开后再化成直角坐标方程,再利用直角坐标方程进行求解到原点的距离最大值即可. 【详解】将原极坐标方程2cos 604πρθ⎛⎫--+= ⎪⎝⎭化为:24+0cos sin ρρθθ-+=()6 , 化成直角坐标方程为:2244+60x y x y +--= , 它表示圆心在22(,)的圆,圆上的点到原点的最远距离是=故答案为 【点睛】本题考查点的极坐标和直角坐标的互化,属基础题.14.【解析】【分析】设曲线上任意一点为与之对应的曲线上的点为将变换公式代入曲线的方程化简即可求解【详解】由题意设曲线上任意一点为与之对应的曲线上的点为将代入曲线方程整理得故答案为:【点睛】本题主要考查了 解析:22491x y +=【解析】 【分析】设曲线C 上任意一点为(,)x y 与之对应的曲线22''1x y +=上的点为(',')x y ,将变换公式,代入曲线的方程,化简即可求解. 【详解】由题意,设曲线C 上任意一点为(,)x y ,与之对应的曲线22''1x y +=上的点为(',')x y ,将'2'3x xy y=⎧⎨=⎩,代入曲线方程22''1x y +=,整理得22491x y +=, 故答案为:22491x y +=. 【点睛】本题主要考查了伸缩变换公式的应用,其中解答中理解变换的公式,代入准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.15.1【解析】由极坐标与直角坐标的互化关系可得点直线由点到直线的距离公式可得应填答案解析:1 【解析】由极坐标与直角坐标的互化关系cos ,sin x y ρθρθ==可得点P ,直线60x +-=,由点到直线的距离公式可得1d ==,应填答案1. 16.【解析】分析:由题意结合三角形面积公式整理计算即可求得三角形的面积详解:的面积点睛:本题主要考查三角形面积公式的应用极坐标的几何意义等知识意在考查学生的转化能力和计算求解能力解析:2【解析】分析:由题意结合三角形面积公式整理计算即可求得三角形的面积.详解:OAB 的面积11sin 1223222OABSOA OB π=⨯⨯⨯=⨯⨯⨯= 点睛:本题主要考查三角形面积公式的应用,极坐标的几何意义等知识,意在考查学生的转化能力和计算求解能力.17.【分析】根据将直线与圆极坐标方程化为直角坐标方程再根据圆心到直线距离等于半径解出【详解】因为由得由得即即因为直线与圆相切所以【点睛】(1)直角坐标方程化为极坐标方程只要运用公式及直接代入并化简即可;解析:1【分析】根据222,cos ,sin x y x y ρρθρθ=+==将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a . 【详解】因为222,cos ,sin x y x y ρρθρθ=+==, 由cos sin (0)a a ρθρθ+=>,得(0)x y a a +=>,由2cos ρθ=,得2=2cos ρρθ,即22=2x y x +,即22(1)1x y -+=,1101a a a =∴=±>∴=+,,【点睛】(1)直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可;(2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos ,sin ,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.18.8【解析】分析:先根据加减消元法得直线的普通方程再根据将曲线C 的极坐标方程化为直角坐标方程联立方程组解得交点坐标最后根据两点间距离公式求结果详解:由得或因此点睛:(1)直角坐标方程化为极坐标方程只要解析:【解析】分析:先根据加减消元法得直线l 的普通方程,再根据222,cos ,sin x y x y ρρθρθ=+== 将曲线C 的极坐标方程化为直角坐标方程,联立方程组解得交点坐标,最后根据两点间距离公式求结果.详解:12322x tx y y t ⎧=-⎪⎪∴+=⎨⎪=+⎪⎩2222sin 4cos sin 4cos 4y x ρθθρθρθ=∴=∴= , 由234x y y x +=⎧⎨=⎩ 得12x y =⎧⎨=⎩或96x y =⎧⎨=-⎩,因此AB =点睛:(1)直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos ,sin ,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.19.【解析】伸缩变换即:则伸缩变换之后曲线设曲线上点的坐标为:结合点到直线距离公式有:结合三角函数的性质可得当时距离取得最小值【解析】伸缩变换即:'2'3x x y y ⎧=⎪⎪⎨⎪=⎪⎩,则伸缩变换之后曲线22:149x y C +=, 设曲线上点的坐标为:()2cos 3sin P θθ,,结合点到直线距离公式有:d ==,结合三角函数的性质可得,当()sin 1θϕ+=时,距离取得最小值min d =20.【解析】设是直线上任意一点如图由于所以应填答案 解析:cos ρθ=【解析】设(,)M ρθ是直线上任意一点,如图,由于2OH ==,所以cosOH ρθ==cos ρθ= 三、解答题21.(1)4sin 3πρθ⎛⎫=+ ⎪⎝⎭; (2)2+. 【分析】(1)求出直线l 的直角坐标方程为y =+2,曲线C 1),半径为r 的圆,直线l 与曲线C 相切,求出r =2,曲线C 的普通方程为(x 2+(y ﹣1)2=4,由此能求出曲线C 的极坐标方程. (2)设M (ρ1,θ),N (ρ2,6πθ+),(ρ1>0,ρ2>0),由126MONSOM ON sin π==2sin (23πθ+)△MON 面积的最大值. 【详解】(1)由题意可知将直线l 的直角坐标方程为2y =+,曲线C 是圆心为),半径为r 的圆,直线l 与曲线C相切,可得:2r ==;可知曲线C 的方程为(()2214x y -+-=,∴曲线C 的极坐标方程为2cos 2sin 0ρθρθ--=,即4sin 3πρθ⎛⎫=+⎪⎝⎭. (2)由(1)不妨设()1,M ρθ,2,6N πρθ⎛⎫+⎪⎝⎭,()120,0ρρ>>21211sin ?4sin ?sin 2sin cos26432MON S OM ONπππρρθθθθθ∆⎛⎫⎛⎫===++=+ ⎪ ⎪⎝⎭⎝⎭sin22sin 23πθθθ⎛⎫=++=++ ⎪⎝⎭当12πθ=时,2MON S ∆≤MON ∴∆面积的最大值为2.【点睛】本题考查曲线的极坐标方程的求法,考查三角形的面积的最大值的求法,考查参数方程、极坐标方程、直角坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.22.(1)4cos ρθ=;(2)23【分析】(1)将1C 首先化为普通方程,再化为极坐标方程,代入点6P π⎛⎫⎪⎝⎭可求得2r ,整理可得所求的极坐标方程;(2)将,A B 代入2C 方程,从而将2212,ρρ代入2222121111OAOBρρ+=+整理可得结果. 【详解】(1)将1C 的参数方程化为普通方程得:()2222x y r -+=由cos x ρθ=,siny ρθ=得1C 的极坐标方程为:224cos 40r ρρθ-+-=将点6P π⎛⎫⎪⎝⎭代入1C 中得:212406r π-+-=,解得:24r =代入1C 的极坐标方程整理可得:4cos ρθ=1C ∴的极坐标方程为:4cos ρθ=(2)将点1,6A πρα⎛⎫-⎪⎝⎭,23,B πρα⎛⎫+⎪⎝⎭代入曲线2C 的极坐标方程得: 212cos 263πρα⎡⎤⎛⎫+-= ⎪⎢⎥⎝⎭⎣⎦,222222cos 22cos 2633ππραρα⎡⎤⎡⎤⎛⎫⎛⎫++=--= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦2222122cos 22cos 2111123363OA OBππααρρ⎛⎫⎛⎫+-+-- ⎪ ⎪⎝⎭⎝⎭∴+=+== 【点睛】本题考查极坐标方程的求解、极坐标中ρ的几何意义的应用,关键是根据几何意义将所求的2211OAOB+变为221211ρρ+,从而使问题得以求解.23.(1)2cos ,2sin a ρθρθ== (2)2 【解析】 【分析】(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.(2)利用(1)的结论,进一步利用极径求出参数的值. 【详解】(1)在平面直角坐标系xOy 中,曲线C 1:x 2﹣2ax+y 2=0(a >0), 转换为极坐标方程为:ρ2=2aρcosθ, 即:ρ=2acosθ. 曲线C 2的参数方程为(α为参数),转换为直角坐标方程为:x 2+(y ﹣1)2=1, 转换为极坐标方程为:ρ=2cosθ. (2)已知极坐标方程为θ=的直线与曲线C 1,C 2分别相交于P ,Q 两点, 由,得到:P (),Q (), 由于:|PQ|=2﹣1,所以:,解得:a=2. 【点睛】本题考查参数方程直角坐标方程和极坐标方程之间的转换,极径的应用,主要考查学生的运算能力和转化能力.24.(1) 221,2x y +=6x y +=.(2) 6322. 【解析】试题分析:(1)1C 消参数即可得普通方程,2C 利用极坐标化为直角坐标公式化为普通方程;(2)根据点到直线距离公式及三角函数有界性可求出最小值. 试题(1)由曲线1:x C y sin αα⎧=⎪⎨=⎪⎩(α为参数),曲线1C 的普通方程为:2212x y +=,由曲线2:sin 4C πρθ⎛⎫+= ⎪⎝⎭)sin cos 2ρθθ⨯+= 化为:6x y +=.(2)椭圆上的点),sin Pαα到直线O 的距离为d ==tan ϕ=所以当()sin 1αϕ+=时,P 的最小值为.25.(1)()()22112x y -+-=,cos sin 40ρθρθ-+=;(2. 【分析】(1)根据圆C :2cos 2sin =+,直线:40l x y -+=,利用222,cos ,sin x y x y =+==求解.(2)先求得圆心到到直线l 的距离,再利用圆C 上的点到直线l 的最短距离为d r -求解. 【详解】(1)因为圆C :2cos 2sin =+,所以22cos 2sin =+ρρθρθ,所以2222x y x y +=+,即()()22112x y -+-=.因为直线:40l x y -+=, 所以cos sin 40ρθρθ-+=.(2)因为圆心到到直线l 的距离为d ==.所以求圆C 上的点到直线l 的最短距离d r -= 【点睛】本题主要考查极坐标方程,直角坐标方程的转化以及直线与圆的位置关系,还考查了运算求解的能力,属于中档题.26.(1)22194x y += 2100x y +-=; (2【分析】(1)由'3'2x x y y =⎧⎨=⎩后得到曲线C 2,可得:1'31'2x x y y ⎧=⎪⎪⎨⎪=⎪⎩,代入圆C 1:x 2+y 2=1,化简可得曲线C 2的直角坐标方程,将直线l 的极坐标方程为cosθ+2sinθ=10ρ化为:ρcosθ+2ρsinθ=10,进而可得直线l 的直角坐标方程.(2)将直线x+2y ﹣10=0平移与C 2相切时,则第一象限内的切点M 满足条件,联立方程求出M 点的坐标,进而可得答案. 【详解】 (1)因为32x xy y''=⎧⎨=⎩后得到曲线2C , 1'31'2x x y y ⎧=⎪⎪∴⎨⎪=⎪⎩,代入圆1C :221x y +=得:'2'2194x y +=,故曲线2C 的直角坐标方程为22194x y +=;直线l 的极坐标方程为102cos sin θθρ+=.即210cos sin ρθρθ+=,即2100x y +-=.()2将直线2100x y +-=平移与2C 相切时,则第一象限内的切点M 满足条件,设过M 的直线为20x y C ++=,则由2220194x y C x y ++=⎧⎪⎨+=⎪⎩得:222599360424x Cx C ++-=, 由229259()4360244C C ⎛⎫=-⨯⨯-= ⎪⎝⎭得:52C =±, 故95x =,或95x =-,(舍去), 则85y =,即M 点的坐标为98,55⎛⎫ ⎪⎝⎭, 则点M 到直线l 的距离d ==【点睛】本题考查的知识点是简单的极坐标方程,直线与圆锥曲线的关系,难度中档.。

高考一轮作业:选修4-4-2参数方程(含答案)

高考一轮作业:选修4-4-2参数方程(含答案)

时间:45分钟 满分:100分 班级:________ 姓名:________ 学号:________ 得分:________ 一、选择题(本大题共6小题,每小题6分,共36分,在下列四个选项中,只有一项是符合题目要求的) 1.(2018·皖南八校联考)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( )A .(1,π2)B .(1,-π2) C .(1,0)D .(1,π)解析:该圆的直角坐标方程为x 2+y 2=-2y ,即x 2+(y +1)2=1,故圆心的直角坐标为(0,-1),化为极坐标为(1,π2),故选B. 答案:B2.(2018·安庆市重点中学联考)在极坐标系中,点(2,π3)与圆ρ=2cos θ的圆心之间的距离为( ) A .2 B.4+π29C.1+π29D. 3解析:由⎩⎪⎨⎪⎧x =ρcos θ=2cos π3=1y =ρsin θ=2sin π3=3可知,点(2,π3)的直角坐标为(1,3).圆ρ=2cos θ的直角坐标方程为x 2+y 2=2x ,即(x -1)2+y 2=1,则圆心(1,0)与点(1,3)之间的距离为 3.答案:D3.(2018·淮南市、淮水市二模)已知曲线C :⎩⎪⎨⎪⎧x =2cos θy =2sin θ(θ为参数)和直线l :⎩⎪⎨⎪⎧x =ty =t +b (t 为参数,b 为实数),若曲线C 上恰有3个点到直线l 的距离等于1,则b =( )A. 2 B .- 2 C .0D .± 2解析:将曲线C 和直线l 的参数方程分别化为普通方程为x 2+y 2=4和y =x +b ,依题意,若要使圆上有3个点到直线l 的距离为1,只要满足圆心到直线的距离为1,即可,得到|b|2=1,解得b =± 2.答案:D4.(2018·莱州模拟)若曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos2θy =sin 2θ(θ为参数),则曲线C 上的点的轨迹是( )A .直线x +2y -2=0B .以(2,0)为端点的射线C .圆(x -1)2+y 2=1D .以(2,0)和(0,1)为端点的线段 答案:D5.(2018·江西红色六校联考)参数方程⎩⎪⎨⎪⎧x =4sin θy =5cos θ表示的曲线是( )A .焦点在x 轴上的椭圆B .焦点在y 轴上的椭圆C .过原点的直线D .圆心在原点的圆解析:化为直角坐标方程x 216+y225=1,表示焦点在y 轴上的椭圆,选B.答案:B6.(2018·北京东城期末)若直线l 的参数方程为⎩⎪⎨⎪⎧x =1+3t ,y =2-4t(t 为参数),则直线l 的倾斜角的余弦值为( )A .-45B .-35C.35D.45解析:由题意知,直线l 的普通方程为4x +3y -10=0.设l 的倾斜角为θ,则tan θ=-43.由1cos θ=1+tan 2θ知cos 2θ=925.∵π2<θ<π,∴cos θ=-35,故选B.答案:B二、填空题(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上)7.(2018·重庆)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t2y =t3(t 为参数)相交于A 、B 两点,则|AB|=________.解析:直线的普通方程为x =4,代入曲线的参数方程得t =±2,当t =2时,x =4,y =8;当t =-2时,x =4,y =-8,即有A(4,8),B(4,-8),于是|AB|=8-(-8)=16.答案:168.(2018·陕西)(坐标系与参数方程选做题)如图,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程为__________________.解析:圆的标准方程为(x -12)2+y 2=14,直径OA =1,如图,设圆上一点P(x ,y),连接AP ,过点P 作PB ⊥x 轴,垂足为点B , ∵在Rt △AOP 中,OP =OA·cos θ=cos θ, ∴在Rt △BOP 中,x =OB =OP·cos θ=cos 2θ,y =BP =OP·sin θ=sin θcos θ,当点P(x ,y)在x 轴上时也适合,所以圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ.(θ为参数)答案:⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ.(θ为参数)9.(2018·湖北)(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =acos φ,y =bsin φ(φ为参数,a >b >0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin(θ+π4)=22m(m 为非零常数)与ρ=b.若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为________.解析:由题意知,椭圆C 的普通方程为x 2a 2+y2b 2=1,直线l 的直角坐标方程为x +y =m ,圆O 的直角坐标方程为x 2+y 2=b 2,设椭圆C 的半焦距为c ,则根据题意可知,|m|=c ,|m|2=b ,所以有c =2b ,所以椭圆C 的离心率e =c a =c b 2+c2=63. 答案:6310.(2018·大庆模拟)圆C :⎩⎪⎨⎪⎧x =3+4cos θy =-2+4sin θ(θ为参数)的圆心坐标为________,和圆C 关于直线x-y =0对称的圆C′的普通方程是________.解析:将圆C 的方程化为普通方程得 (x -3)2+(y +2)2=16.∴其圆心坐标为(3,-2),关于直线x -y =0对称的点为(-2,3),圆C′的方程为(x +2)2+(y -3)2=16. 答案:(3,-2) (x +2)2+(y -3)2=16三、解答题(本大题共3小题,共40分,11、12题各13分,13题14分,写出证明过程或推演步骤) 11.(2018·辽宁)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos(θ-π4)=2 2.(Ⅰ)求C 1与C 2交点的极坐标;(Ⅱ)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值.解:(Ⅰ)圆C 1的直角坐标方程为x 2+(y -2)2=4, 直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧x 2+-2=4,x +y -4=0得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2.所以C 1与C 2交点的极坐标为(4,π2),(22,π4). 注:极坐标系下点的表示不唯一.(Ⅱ)由(Ⅰ)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0, 由参数方程可得y =b 2x -ab2+1,所以⎩⎪⎨⎪⎧b2=1,-ab2+1=2,解得a =-1,b =2.12.(2018·课标全国Ⅱ)选修4-4:坐标系与参数方程已知动点P ,Q 在曲线C :⎩⎪⎨⎪⎧x =2cost ,y =2sint (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.解:(Ⅰ)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α),因此M(cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2αy =sin α+sin 2α(α为参数,0<α<2π).(Ⅱ)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π时,d =0,故M 的轨迹过坐标原点. 13.(2018·课标全国Ⅰ)选修4-4:坐标系与参数方程已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cost ,y =5+5sint ,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解:(Ⅰ)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (Ⅱ)C 2的普通方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为(2,π4),(2,π2).。

高考理科第一轮复习练习(选修4-4第二节参数方程)

高考理科第一轮复习练习(选修4-4第二节参数方程)

课时提升作业(七十七)一、选择题1.已知直线l:(t为参数),圆C:ρ=2cosθ,则圆心C到直线l的距离是( )(A)2 (B)(C)(D)12.参数方程(θ为参数)和极坐标方程ρ=-6cosθ所表示的图形分别是( )(A)圆和直线(B)直线和直线(C)椭圆和直线(D)椭圆和圆3.(2013·惠州模拟)直线(t为参数)被圆x2+y2=9截得的弦长为()(A)(B)(C)(D)二、填空题4.(2012·北京高考)直线(t为参数)与曲线(α为参数)的交点个数为.5.(2012·天津高考)已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p= .6.(2013·咸阳模拟)若直线l的极坐标方程为ρcos(θ-)=3,圆C:(φ为参数)上的点到直线l的距离为d,则d的最大值为.三、解答题7.已知直线l过点P(1,-3),倾斜角为,求直线l与直线l′:y=x-2的交点Q与点P的距离|PQ|.8.(2013·三明模拟)已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为(α为参数),点Q的极坐标为(2,).(1)化圆C的参数方程为极坐标方程.(2)若点P是圆C上的任意一点,求P,Q两点距离的最小值.9.在直角坐标系xOy中,直线l的参数方程为(t为参数),以O为原点,Ox轴为极轴,单位长度不变,建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.(1)写出直线l的普通方程和曲线C的直角坐标方程.(2)若直线l和曲线C相切,求实数k的值.10.已知直线l经过点P(1,1),倾斜角α=,(1)写出直线l的参数方程.(2)设l与圆x2+y2=4相交于两点A,B,求点P到A,B两点的距离之积.11.已知某圆的极坐标方程是ρ2-4ρcos(θ-)+6=0,求:(1)圆的普通方程和一个参数方程.(2)圆上所有点(x,y)中xy的最大值和最小值.12.(2012·新课标全国卷)已知曲线C1的参数方程是C1:(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D 依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标.(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.答案解析1.【解析】选C.直线l:(t为参数)的普通方程为x-y+1=0,圆C:ρ=2cosθ的直角坐标方程为x2+y2-2x=0,即(x-1)2+y2=1,则圆心C(1,0)到直线l的距离d==.2.【解析】选D.参数方程(θ为参数)的普通方程为+y2=1,表示椭圆.极坐标方程ρ=-6cosθ的直角坐标方程为(x+3)2+y2=9,表示圆.3.【解析】选B.把直线代入x2+y2=9,得(1+2t)2+(2+t)2=9,即5t2+8t-4=0,∴|t1-t2|===.∴弦长为|t1-t2|=.4.【解析】方法一:由直线(t为参数)与曲线(α为参数)的参数方程得(2+t)2+(-1-t)2=9,整理,得t2+3t-2=0,方程有两个不相等的实数根,所以直线与曲线的交点个数有2个.方法二:将直线(t为参数)与曲线(α为参数)的参数方程分别化为直角坐标方程,得x+y-1=0,x2+y2=9.原点(圆心)到直线的距离为d=<r=3,所以直线与圆相交,交点个数为2.答案:25.【解析】消去参数t得抛物线的普通方程为y2=2px,准线方程为x=-,因为M为抛物线上一点,所以有|MF|=|ME|,又|MF|=|EF|,所以三角形ME F为等边三角形,则|EF|=|MF|=2p=3-(-)=3+,解得p=2.答案:26.【解析】由ρcos(θ-)=3得直角坐标方程为x+y-6=0,圆C:(φ为参数)的普通方程为x2+y2=1,圆心(0,0)到直线l的距离为d′==3>r=1,所以直线与圆相离,所以圆上的点到直线l的距离d的最大值为3+1.答案:3+17.【解析】∵l过点P(1,-3),倾斜角为,∴l的参数方程为(t为参数),即(t为参数),代入y=x-2得-3+t=1+t-2,解得t=4+2.即t=2+4为直线l与l′的交点Q所对应的参数值,根据参数t的几何意义,可知|t|=|PQ|,∴|PQ|=4+2.8.【解析】(1)圆C的直角坐标方程为(x-1)2+(y+1)2=4,展开得x2+y2-2x+2y-2=0,化为极坐标方程为ρ2-2ρcosθ+2ρsinθ-2=0.(2)点Q的直角坐标为(2,-2),且点Q在圆C内,因为|QC|=,所以P,Q两点距离的最小值为|PQ|=2-.9.【解析】(1)由得直线l的普通方程为y=kx+1.由ρsin2θ=4cosθ得ρ2sin2θ=4ρcosθ,y2=4x,曲线C的直角坐标方程为y2=4x.(2)把y=kx+1代入y2=4x得k2x2+(2k-4)x+1=0,由Δ=(2k-4)2-4k2=0,解得k=1.10.【解析】(1)直线的参数方程为(t为参数)即(t为参数)(2)把直线的参数方程(t为参数)代入x2+y2=4得(1+t)2+(1+t)2=4,t2+(+1)t-2=0,∴t1t2=-2,则点P到A,B两点的距离之积为2.11.【解析】(1)由ρ2-4ρcos(θ-)+6=0,得ρ2-4(ρcosθ·+ρsinθ·)+6=0,∴普通方程为x2+y2-4x-4y+6=0,即(x-2)2+(y-2)2=2.一个参数方程为(θ为参数)(2)xy=(2+cosθ)(2+sinθ)=4+2(sinθ+cosθ)+2sinθcosθ令sinθ+cosθ=t∈[-,]得2sinθcosθ=t2-1,xy=t2+2t+3=(t+)2+1,∴当t=-时,(xy)min=1,当t=时,(xy)max=9.12.【解析】(1)因为曲线C2的极坐标方程ρ=2,所以曲线C2是圆心在极点,半径为2的圆,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,),故B(2,),由对称性得,直角坐标分别为A(1,),B(-,1),C(-1,-),D(,-1).(2)由于点P为曲线C1:(φ为参数)上任意一点,得P(2cosφ,3sinφ),则|PA|2+|PB|2+|PC|2+|PD|2=(2cosφ-1)2+(3sinφ-)2+(2cosφ+)2+(3sinφ-1)2+(2cosφ+1)2+(3sinφ+)2+(2cosφ-)2+(3sinφ+1)2=16cos2φ+36sin2φ+16=32+20sin2φ因为32≤32+20sin2φ≤52,所以|PA|2+|PB|2+|PC|2+|PD|2的取值范围是[32,52].。

选修4-4坐标系与参数方程(2012-2021)高考数学真题分项详解(全国通用)(解析版)

选修4-4坐标系与参数方程(2012-2021)高考数学真题分项详解(全国通用)(解析版)

x = 4 cos2 ,
2.(2020
年全国统一高考数学试卷(文科)(新课标Ⅱ))已知曲线
C1,C2
的参数方程分别为
C1:
y
=
4
sin
2
(θ
为参数),C2:
x y
= =
t t
+ −
1, t 1
(t
为参数).
t
(1)将 C1,C2 的参数方程化为普通方程;
(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设 C1,C2 的交点为 P,求圆心在极轴上,且经过
(2)设 C 上点的坐标为: (cos , 2sin )
则C
上的点到直线 l
的距离
d
=
2 cos + 2
3 sin
+11
=
4
sin
+
6
+ 11
7
7
当 sin
+
6
=
−1 时,
d
取最小值
则 dmin = 7
5.(2019 年全国统一高考数学试卷(理科)(新课标Ⅱ))在极坐标系中,O 为极点,点 M (0 ,0 )(0 0) 在
C1
表示以坐标原点为圆心,半径为
1
的圆;(2)
(
1 4
,
1 4
)
.
x = cos t
【分析】(1)当
k
= 1 时,曲线 C1
的参数方程为
y
=
sin
t
(t
为参数),
两式平方相加得 x2 + y2 = 1 ,
所以曲线 C1 表示以坐标原点为圆心,半径为 1 的圆;

2022年四川省高考理科数学第一次统一检测试卷及答案解析

2022年四川省高考理科数学第一次统一检测试卷及答案解析

2022年四川省高考理科数学第一次统一检测试卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A ={x |x 2+x ﹣6≤0},B ={x |﹣1<x <3},则A ∩B =( ) A .(﹣1,2)B .(﹣1,2]C .[2,3)D .(2,3)2.(5分)已知复数z 满足(3+4i )z =2+i ,则z 的虚部为( ) A .25B .225C .−15D .﹣13.(5分)某市为了解全市环境治理情况,对本市的200家中小型企业的污染情况进行了摸排,并把污染情况各类指标的得分综合折算成标准分100分,统计并制成如图所示的直方图,则标准分不低于70分的企业数为( )A .30B .60C .70D .1304.(5分)当生物死亡后,它机体内原有的碳14会按确定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.经过9个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前的( ) A .1128B .1256C .1512D .110245.(5分)如图,网格纸中小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体中最长的棱长为( )A .2√2B .4C .2√5D .2√66.(5分)双曲线mx 2+y 2=1的焦距是虚轴长的2倍,则m =( ) A .−13B .﹣3C .﹣5D .−157.(5分)命题“∀x ∈[﹣1,3],x 2﹣2x ﹣a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4B .a ≥3C .a ≥2D .a ≥18.(5分)已知sin(α−π6)+cosα=35,则cos(2α+π3)=( ) A .1825B .725C .−725D .−18259.(5分)若从1,3中选一个数字,从0,2,4中选两个数字,组成无重复数字的三位数,则组成的三位数为偶数的概率是( ) A .45B .57C .23D .3510.(5分)如图,A 处为长江南岸某渡口码头,北岸B 码头与A 码头相距√3km ,江水向正东(AD →)流.已知一渡船从A 码头按AC →方向以10km /h 的速度航行,且∠BAC =30°,若航行0.2h 到达北岸的B 码头,则江水速度是( )A .10√2km/ℎB .5√2km/ℎC .5km /hD .1km /h11.(5分)祖暅是南北朝时代伟大的科学家,在数学上有突出贡献.他在五世纪末提出祖暅原理:“密势既同,则积不容异.”其意思是:两个等高的几何体若在所有等高处的水平截面面积相等,则这两个几何体的体积相等.我们称由双曲线x 2a 2−y 2b 2=1(a >0,b>0)中|y |≤m (m >0)的部分绕其虚轴旋转形成的几何体为双曲线旋转体.如图,双曲线旋转体的下半部分挖去底面直径为2a ,高为m 的圆柱体后,所得几何体与底面半径为am b,高为m 的圆锥均放置于平面β上(几何体底面在β内).与平面β平行且到平面β距离为h (0≤h ≤m )的平面与两几何体的截面面积分别为S 圆,S 圆环,可以证明S 圆=S圆环总成立.依据上述原理,x 2−y 24=1(|y|≤4)的双曲线旋转体的体积为( )A .443π B .563π C .283π D .323π12.(5分)已知函数f (x )=xe x ﹣x 2﹣2x ﹣m 在(0,+∞)上有零点,则m 的取值范围是( )A .[1﹣ln 22,+∞)B .[﹣ln 22﹣1,+∞)C .[﹣ln 22,+∞)D .[−12ln 22,+∞)二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知a →,b →是单位向量,且|a →−b →|=1,则|a →+b →|= . 14.(5分)给出两个条件:①a ,b ∈R ,f (a +b )=f (a )f (b ); ②f (x )在(﹣∞,+∞)上单调递增.请写出一个同时满足以上两个条件的一个函数 .(写出满足条件的一个函数即可) 15.(5分)定义运算“⊕”:a ⊕b =sin a ⋅cos b .设函数f (x )=[(2x )⊕φ]+[φ⊕(2x )],将f (x )的图象向右平移π8个单位长度得到函数g (x )的图象,且g (x )的图象关于y轴对称,则|φ|的最小值为 . 16.(5分)已知点F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,过点A(0,b2)且垂直于y 轴的直线与椭圆交于B ,C 两点.当△BCF 为锐角三角形时,椭圆的离心率的取值范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)给出以下条件:①a 2,a 3,a 4+1成等比数列;②S 1+1,S 2,S 3成等比数列;③S n =a n a n+14(n ∈N ∗).从中任选一个,补充在下面的横线上,再解答.已知递增等差数列{a n }的前n 项和为S n ,且a 1=2,_____. (1)求数列{a n }的通项公式;(2)若{bn a n}是以2为首项,2为公比的等比数列,求数列{b n }的前n 项的和T n .18.(12分)某县对高一年级学生进行体质测试(简称体测),现随机抽取了800名学生的体测结果等级(“良好以下”或“良好及以上”)进行分析,并制成下图所示的列联表.良好以下 良好及以上合计 男 400 550 女 50 合计600800(1)将列联表补充完整;计算并判断是否有95%的把握认为本次体测结果等级与性别有关系;(2)将频率视为概率,用样本估计总体.若从全县高一所有学生中,采取随机抽样的方法次抽取1名学生成绩进行具体指标分析,连续抽取4次,且每次抽取的结果相互独立,记被抽取的4名学生的体测等级为“良好及以上”的人数为ξ,求ξ的分布列和数学期望E (ξ). 附表及公式: P (K 2≥k 0) 0.15 0.10 0.05 0.025 0.010 0.005 0.001k 02.072 2.7063.841 5.024 6.635 7.879 10.828其中K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),n =a +b +c +d .19.(12分)如图,三棱柱ABC ﹣A 1B 1C 1的侧棱AA 1垂直于底面ABC ,△ABC 是边长为2的正三角形,AA 1=3,点D 在线段A 1B 上且A 1D =2DB ,点E 是线段B 1C 1的动点. (1)当点E 在什么位置时,直线DE ∥平面ACC 1A 1?(2)当直线DE ∥平面ACC 1A 1时,求二面角D ﹣EB ﹣C 的余弦值.20.(12分)如图,已知抛物线C :y 2=2px (p >0)与圆M :(x ﹣4)2+y 2=12相交于A ,B,C ,D 四点.(1)若以线段AD 为直径的圆经过点M ,求抛物线C 的方程;(2)设四边形ABCD 两条对角线的交点为E ,点E 是否为定点?若是,求出点E 的坐标;若不是,请说明理由.21.(12分)已知函数f(x)=−√x +alnx(a ≠0),曲线y =f (x )在点(1,f (1))处的切线为l .(1)求l 的方程;(2)是否存在实数a ,使得l 与函数f (x )的图象有2个不同公共点?若存在,求a 的值或取值范围;若不存在,请说明理由.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy 中,曲线C 1的参数方程为{x =2+2cosθy =2sinθ,(θ为参数),曲线C 2的方程为x 2+(y ﹣3)2=9.以O 为极点,x 轴非负半轴为极轴建立极坐标系. (1)求曲线C 1的极坐标方程;(2)已知射线l 1:θ=α(0<α<π2)与曲线C 1交于O ,A 两点,将射线l 1绕极点逆时针方向旋转π3得到射线l 2,射线l 2与曲线C 2交于O ,B 两点.当△AOB 的面积最大时,求α的值,并求△AOB 面积的最大值. [选修4-5:不等式选讲]23.已知函数f (x )=|x +1|+|2x ﹣3|,M 为不等式f (x )≤4的解集. (1)求M ;(2)若a ,b ∈R ,且a 2+b 2∈M ,证明:0≤a 2﹣ab +b 2≤3.2022年四川省高考理科数学第一次统一检测试卷参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A ={x |x 2+x ﹣6≤0},B ={x |﹣1<x <3},则A ∩B =( ) A .(﹣1,2)B .(﹣1,2]C .[2,3)D .(2,3)【解答】解:由A ={x |x 2+x ﹣6≤0}={x |﹣3≤x ≤2}, B ={x |﹣1<x <3}, 得A ∩B ={x |﹣1<x ≤2}. 故选:B .2.(5分)已知复数z 满足(3+4i )z =2+i ,则z 的虚部为( ) A .25B .225C .−15D .﹣1【解答】解:∵(3+4i )z =2+i , ∴z =2+i 3+4i =(2+i)(3−4i)(3+4i)(3−4i)=25−15i , ∴z 的虚部为−15. 故选:C .3.(5分)某市为了解全市环境治理情况,对本市的200家中小型企业的污染情况进行了摸排,并把污染情况各类指标的得分综合折算成标准分100分,统计并制成如图所示的直方图,则标准分不低于70分的企业数为( )A .30B .60C .70D .130【解答】解:根据频率分布直方图,标准分不低于70分的企业的频率为: (0.01+0.02+0.04)×5=0.35,∴标准分不低于70分的企业数为0.35×200=70(家). 故选:C .4.(5分)当生物死亡后,它机体内原有的碳14会按确定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.经过9个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前的( ) A .1128B .1256C .1512D .11024【解答】解:设生物组织死亡前碳14的含量为1,经过1个半衰期后,死亡生物组织内的碳14的剩余量为P =12,经过n 个半衰期后,死亡生物组织内的碳14的剩余为P =(12)n ,当n =9时,P =129=1512. 故选:C .5.(5分)如图,网格纸中小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体中最长的棱长为( )A .2√2B .4C .2√5D .2√6【解答】解:根据几何体的三视图转换为直观图为:该几何体为三棱锥体A ﹣BCD ; 如图所示:由于AE =DE =BC =2,EB =DC =4,所以AC =√22+22+42=2√6,AB =BD =√22+42=2√5,AD =√22+22=2√2, 故选:D .6.(5分)双曲线mx 2+y 2=1的焦距是虚轴长的2倍,则m =( ) A .−13B .﹣3C .﹣5D .−15【解答】解:双曲线mx 2+y 2=1的标准方程:y 2−x 2−1m=1,双曲线的焦距是虚轴长的2倍, 可得2√1−1m =4√−1m, 解得m =﹣3, 故选:B .7.(5分)命题“∀x ∈[﹣1,3],x 2﹣2x ﹣a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4B .a ≥3C .a ≥2D .a ≥1【解答】解:∵命题“∀x ∈[﹣1,3],x 2﹣2x ﹣a ≤0”为真命题,∴∀x ∈[﹣1,3],x 2﹣2x ≤a ,则当x ∈[﹣1,2]时,x 2﹣2x =(x ﹣1)2﹣1≤3, ∴命题“∀x ∈[﹣1,3],x 2﹣2x ﹣a ≤0”为真命题时,a ≥3, 经验证,A 选项符合题意. 故选:A .8.(5分)已知sin(α−π6)+cosα=35,则cos(2α+π3)=( ) A .1825B .725C .−725D .−1825【解答】解:∵sin(α−π6)+cosα=√32sin α+12cos α=sin (α+π6)=35, ∴cos(2α+π3)=1﹣2sin 2(α+π6)=1﹣2×925=725, 故选:B .9.(5分)若从1,3中选一个数字,从0,2,4中选两个数字,组成无重复数字的三位数,则组成的三位数为偶数的概率是( ) A .45B .57C .23D .35【解答】解:组成无重复数字的三位数无0的选法C 21×C 22×A 33=12,有0的选法有C 21C 21×2×A 22=16,组成无重复数字的三位数共有28种, 组成的三位数为偶数,若三位数的个位为0,则有2×2×A 22=8个; 若十位为0,则有C 21•C 21=4个;若这个三位数没有0,则有C 21•C 21A 22=8个. 综上,要求的三位偶数的个数为 8+8+4=20个, 则组成的三位数为偶数的概率是2028=57.故选:B .10.(5分)如图,A 处为长江南岸某渡口码头,北岸B 码头与A 码头相距√3km ,江水向正东(AD →)流.已知一渡船从A 码头按AC →方向以10km /h 的速度航行,且∠BAC =30°,若航行0.2h 到达北岸的B 码头,则江水速度是( )A .10√2km/ℎB .5√2km/ℎC .5km /hD .1km /h【解答】解:如图,∵北岸B 码头与A 码头相距√3km ,且航行时间为0.2h , ∴合速度为√30.2=5√3,在△AEC 中,AE =5√3,AC =10,∠CAE =30°, ∴EC =5.即江水速度是5km /h . 故选:C .11.(5分)祖暅是南北朝时代伟大的科学家,在数学上有突出贡献.他在五世纪末提出祖暅原理:“密势既同,则积不容异.”其意思是:两个等高的几何体若在所有等高处的水平截面面积相等,则这两个几何体的体积相等.我们称由双曲线x 2a 2−y 2b 2=1(a >0,b>0)中|y |≤m (m >0)的部分绕其虚轴旋转形成的几何体为双曲线旋转体.如图,双曲线旋转体的下半部分挖去底面直径为2a ,高为m 的圆柱体后,所得几何体与底面半径为am b,高为m 的圆锥均放置于平面β上(几何体底面在β内).与平面β平行且到平面β距离为h (0≤h ≤m )的平面与两几何体的截面面积分别为S 圆,S 圆环,可以证明S 圆=S圆环总成立.依据上述原理,x 2−y 24=1(|y|≤4)的双曲线旋转体的体积为( )A .443π B .563π C .283πD .323π【解答】解:依题意,m =4,a =1,b =2,圆锥底面半径am b=2,即圆锥的底面面积为4π,由祖暅原理可知,V =2(V 圆柱+V 圆锥)=2(π×12+13×π×22×4)=56π3. 故选:B .12.(5分)已知函数f (x )=xe x ﹣x 2﹣2x ﹣m 在(0,+∞)上有零点,则m 的取值范围是( )A .[1﹣ln 22,+∞)B .[﹣ln 22﹣1,+∞)C .[﹣ln 22,+∞)D .[−12ln 22,+∞)【解答】解:因为函数f (x )=xe x ﹣x 2﹣2x ﹣m 在(0,+∞)上有零点, 所以方程f (x )=xe x ﹣x 2﹣2x ﹣m =0在(0,+∞)上有解, 即m =xe x ﹣x 2﹣2x 在(0,+∞)上有解,令g (x )=xe x ﹣x 2﹣2x ,则g ′(x )=(x +1)(e x ﹣2), 令g ′(x )>0,可得x >ln 2,令g ′(x )<0,可得0<x <ln 2, 所以g (x )在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增, 所以g (x )min =g (ln 2)=﹣ln 22,所以m ≥﹣ln 22,即m 的取值范围是[﹣ln 22,+∞). 故选:C .二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知a →,b →是单位向量,且|a →−b →|=1,则|a →+b →|= √3 . 【解答】解:根据题意,a →,b →是单位向量,且|a →−b →|=1, 则(a →−b →)2=a →2+b →2﹣2a →•b →=1,变形可得a →•b →=12, 则(a →+b →)2=a →2+b →2+2a →•b →=3,即|a →+b →|=√3; 故答案为:√3. 14.(5分)给出两个条件:①a ,b ∈R ,f (a +b )=f (a )f (b ); ②f (x )在(﹣∞,+∞)上单调递增.请写出一个同时满足以上两个条件的一个函数 f (x )=2x (答案不唯一) .(写出满足条件的一个函数即可)【解答】解:由条件①可知函数f (x )为指数函数, 由条件②可知,指数函数的底数a >1,则同时满足以上两个条件的一个函数可以为f (x )=2x ,f (x )=4x 等. 故答案为:f (x )=2x (答案不唯一).15.(5分)定义运算“⊕”:a ⊕b =sin a ⋅cos b .设函数f (x )=[(2x )⊕φ]+[φ⊕(2x )],将f (x )的图象向右平移π8个单位长度得到函数g (x )的图象,且g (x )的图象关于y轴对称,则|φ|的最小值为π4.【解答】解:∵运算“⊕”:a ⊕b =sin a ⋅cos b ,设函数f (x )=[(2x )⊕φ]+[φ⊕(2x )]=sin2x cos φ+sin φcos2x =sin (2x +φ), 将f (x )的图象向右平移π8个单位长度得到函数g (x )=sin (2x −π4+φ)的图象,且g (x )的图象关于y 轴对称, ∴−π4+φ=±π2+k π,k ∈Z ,则|φ|的最小值为π4,故答案为:π4.16.(5分)已知点F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,过点A(0,b2)且垂直于y 轴的直线与椭圆交于B ,C 两点.当△BCF 为锐角三角形时,椭圆的离心率的取值范围为 (√63,√32) .【解答】解:如图,易得B(−√32a ,b 2),C(√32a ,b2),F(c ,0).所以CB →=(−√3a ,0),CF →=(c −√32a ,−b 2),FB →=(−√3a 2−c ,b2),FC →=(√32a −c ,b 2). 根据椭圆对称性,有BF >CF ,因此,若△BCF 为锐角三角形, 只需∠BCF 和∠BFC 均为锐角,即{CB →⋅CF →>0FB →⋅FC →>0,所以{−√3a(c −√3a2)>0,(−√3a 2−c)(√3a 2−c)+b24>0. 由此可得√63<c a <√32, 故椭圆离心率的取值范围是(√63,√32),故答案为:(√63,√32).三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)给出以下条件:①a 2,a 3,a 4+1成等比数列;②S 1+1,S 2,S 3成等比数列;③S n=a n a n+14(n∈N∗).从中任选一个,补充在下面的横线上,再解答.已知递增等差数列{a n}的前n项和为S n,且a1=2,_____.(1)求数列{a n}的通项公式;(2)若{b na n}是以2为首项,2为公比的等比数列,求数列{b n}的前n项的和T n.【解答】解:(1)设数列{a n}的公差为d,则d>0,选择条件①:因为a2,a3,a4+1成等比数列,所以a32=a2•(a4+1),所以(2+2d)2=(2+d)•(2+3d+1),化简得d2﹣d﹣2=0,解得d=2或﹣1(舍负),所以数列{a n}的通项公式为a n=2+(n﹣1)×2=2n.选择条件②:因为S1+1,S2,S3成等比数列,所以S22=(S1+1)•S3,所以(2×2+d)2=(2+1)•(3×2+3d),化简得d2﹣d﹣2=0,解得d=2或﹣1(舍负),所以数列{a n}的通项公式为a n=2+(n﹣1)×2=2n.选择条件③:因为S n=a n a n+14(n∈N∗),所以当n≥2时,S n﹣1=a n−1a n4,两式相减得,a n=14a n(a n+1﹣a n﹣1),因为a n≠0,所以a n+1﹣a n﹣1=4,即2d=4,所以d=2,所以数列{a n}的通项公式为a n=2+(n﹣1)×2=2n.(2)因为{b na n}是以2为首项,2为公比的等比数列,所以b na n=2•2n﹣1=2n,所以b n=2n•2n,所以T n=2•21+4•22+6•23+…+2n•2n,2T n=2•22+4•23+6•24+…+(2n﹣2)•2n+2n•2n+1,两式相减得,﹣T n=2•21+2•22+2•23+2•24+…+2•2n﹣2n•2n+1=2×2(1−2n)1−2−2n•2n+1=(1﹣n)2n+2﹣4,所以T n =(n ﹣1)2n +2+4.18.(12分)某县对高一年级学生进行体质测试(简称体测),现随机抽取了800名学生的体测结果等级(“良好以下”或“良好及以上”)进行分析,并制成下图所示的列联表.良好以下 良好及以上合计 男 400 550 女 50 合计600800(1)将列联表补充完整;计算并判断是否有95%的把握认为本次体测结果等级与性别有关系;(2)将频率视为概率,用样本估计总体.若从全县高一所有学生中,采取随机抽样的方法次抽取1名学生成绩进行具体指标分析,连续抽取4次,且每次抽取的结果相互独立,记被抽取的4名学生的体测等级为“良好及以上”的人数为ξ,求ξ的分布列和数学期望E (ξ). 附表及公式: P (K 2≥k 0) 0.15 0.10 0.05 0.025 0.010 0.005 0.001k 02.072 2.7063.841 5.024 6.635 7.879 10.828其中K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),n =a +b +c +d .【解答】解:(1)补充列出二联表如下:良好以下 良好及以上合计 男 400 150 550 女 200 50 250 合计600200800∴k 2=800(400×50−200×150)2600×200×550×250≈4.848>3.841.∴有95%的把握认为本次体测结果等级与性别有关系.(2)由(1)表格可得:“良好及以上”的频率即概率P =200800=14, 由题意可知ξ~B (4,14),P (ξ=k )=C 4k(14)k (34)4−k ,k =0,1,2,3,4.ξ 0 1234P8125610825654256122561256∴E (ξ)=4×14=1.19.(12分)如图,三棱柱ABC ﹣A 1B 1C 1的侧棱AA 1垂直于底面ABC ,△ABC 是边长为2的正三角形,AA 1=3,点D 在线段A 1B 上且A 1D =2DB ,点E 是线段B 1C 1的动点. (1)当点E 在什么位置时,直线DE ∥平面ACC 1A 1?(2)当直线DE ∥平面ACC 1A 1时,求二面角D ﹣EB ﹣C 的余弦值.【解答】解:(1)当点E 是线段B 1C 1上靠近B 1的三等分点时,DE ∥平面ACC 1A 1. 过点D 作DF ∥AA 1交A 1B 1于点F ,过点F 作FE ∥A 1C 1于点E ,连接DE , ∵EF ∥A 1C 1,EF ⊄平面AA 1C 1C ,∴EF ∥平面AA 1C 1C , ∵DF ∥AA 1,FD ⊄平面AA 1C 1C ,∴FD ∥平面AA 1C 1C , ∵EF ∩FD =F ,∴平面EFD ∥平面AA 1C 1C , ∵DE ⊂平面EFD ,∴DE ∥平面AA 1C 1C , 而B 1E EC 1=B 1F FA 1=BD DA 1=12,∴当点E 是线段B 1C 1上靠近B 1的三等分点时,DE ∥平面ACC 1A 1. (2)以BC 的中点O 为坐标原点建立如图所示空间直角坐标系O ﹣xyz ,则B (0,1,0),C (0,﹣1,0),E (0,13,3),A 1(√3,0,3),由BD →=13BA 1→,得D (√33,23,1),∴ED →=(√33,13,﹣2),EB →=(0,23,﹣3),设平面DEB 的一个法向量为m →=(x ,y ,z ),由{m →⋅ED →=0m →⋅EB →=0,得{√33x +13y −2z =023y −3z =0,令z =2,得y =9,x =√3,即m →=(√3,9,2), 设二面角D ﹣EB ﹣C 的平面角为θ, 而面EBC 的一个法向量为n →=(1,0,0),则|cos θ|=|n →⋅m→|n →|×|m →||=√32√22=√6644,故二面角D ﹣EB ﹣C 的余弦值为√6644. 20.(12分)如图,已知抛物线C :y 2=2px (p >0)与圆M :(x ﹣4)2+y 2=12相交于A ,B ,C ,D 四点.(1)若以线段AD 为直径的圆经过点M ,求抛物线C 的方程;(2)设四边形ABCD 两条对角线的交点为E ,点E 是否为定点?若是,求出点E 的坐标;若不是,请说明理由.【解答】解:(1)根据已知圆及抛物线的对称性,可设A (x 1,y 1),D (x 2,y 2),B (x 1,﹣y 1),C (x 2,﹣y 2),由{y 2=2px (x −4)2+y 2=12消去y ,可得x 2+(2p ﹣8)x +4=0, 则Δ=(2p ﹣8)2﹣16>0,得0<p <2或P >6,x 1+x 2=8﹣2p ,x 1x 2=4,且y 12y 22=4p 2x 1x 2=16p 2,显然y 1>0,y 2>0,故y 1y 2=4p , 由以AD 为直径的圆经过点M ,知MA →•MD →=0,∴(x 1﹣4)(x 2﹣4)+y 1y 2=0,∴x 1x 2﹣4(x 1+x 2)+16+4p =0,∴﹣4(8﹣2p )+4p +20=0,∴p =1,故抛物线C 的方程为y 2=2x ; (2)由题意,直线AC 的斜率存在,且为k AC =−y 2−y 1x 2−x 1=−y 2−y 1y 222p −y 122p=2py 1−y 2,∴直线AC 的方程为y ﹣y 1=2p y 1−y 2(x ﹣x 1),即y =2p y 1−y 2x +y 1−2py 1−y 2×y 122p =2py 1−y 2x +y 12−y 1y 2−y 12y 1−y 2, ∴y =2p y 1−y 2x −4p y 1−y 2=2py 1−y 2(x ﹣2),于是直线AC 过定点(2,0), 由抛物线和圆的对称性,易知ABCD 的两条对角线交点必在x 轴上, 故四边形ABCD 两条对角线的交点为E 是定点(2,0).21.(12分)已知函数f(x)=−√x +alnx(a ≠0),曲线y =f (x )在点(1,f (1))处的切线为l .(1)求l 的方程;(2)是否存在实数a ,使得l 与函数f (x )的图象有2个不同公共点?若存在,求a 的值或取值范围;若不存在,请说明理由. 【解答】解:f′(x)=2√x ax, 将x =1代入得:f′(1)=a −12, 将x =1代入f (x )得:f (1)=﹣1, 则切线方程为:y +1=(a −12)(x −1), 化简可得;y =(a −12)x −a −12;(2)联立切线与f (x )可得:alnx −(a −12)x −√x +a +12=0,观察可得x=1为该方程的根,故仅需探究方程在(0,+∞)是否存在另一解即可,令√x=t(t≥0),则原方程转为:2alnt−(a−12)t2−t+a+12=0,令g(t)=2alnt−(a−12)t2−t+a+12(t≥0),g′(t)=[(1−2a)t−2a](t−1)t,①当1﹣2a≤0时,即a≥12时,令g′(t)>0,解得:0<t<1,故g(t)在(0,1)单调递增,在(1,+∞)单调递减,故g(t)<g(1)=0,则不存在第二个实数解,不满足题意,②当1﹣2a>0时,g′(t)=1−2at (t−2a1−a)(t−1),(Ⅰ)若2a1−2a≤0,即a≤0时,则0<t<1时,g′(t)<0,则g(t)单调递减,若t>1,g′(t)>0,则g(t)单调递增,故g(t)>g(1)=0,则原方程仅有一个解为t=1,不满足题意,(Ⅱ)若2a1−a=1,即a=14,此时g′(t)>0,g(t)单调递增,则原方程仅有一个解为t=1,不满足题意,(Ⅲ)若0<2a1−a<1,即0<a<14,则0<t<2a1−a,g(t)单调递增,2a1−a<t<1,g(t)单调递减,t>1,g(t)单调递增,又g(1)=0,可知g(2a1−a)>0,且t→0,g(t)→﹣∞,故存在t 0∈(0,2a1−a)使得g (t 0)=0, 此时,方程存在两个实数解,满足题意, (Ⅳ)若2a 1−a>1,即14<a <12,则0<t <1,g (t )单调递增,1<t <2a1−a g (t )单调递减,t >2a1−a ,g (t )单调递增, 又g (1)=0,可知g(2a1−a )<0, 且t →+∞,g (t )→+∞, 故存在t 0∈(2a1−a,+∞),使得g (t 0)=0, 此时,方程存在两个实数解,满足题意, 综上所述:方程存在两个实数解时, 其取值范围为:(0,14)∪(14,12).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy 中,曲线C 1的参数方程为{x =2+2cosθy =2sinθ,(θ为参数),曲线C 2的方程为x 2+(y ﹣3)2=9.以O 为极点,x 轴非负半轴为极轴建立极坐标系. (1)求曲线C 1的极坐标方程;(2)已知射线l 1:θ=α(0<α<π2)与曲线C 1交于O ,A 两点,将射线l 1绕极点逆时针方向旋转π3得到射线l 2,射线l 2与曲线C 2交于O ,B 两点.当△AOB 的面积最大时,求α的值,并求△AOB 面积的最大值.【解答】解:(1)曲线C 1的参数方程为{x =2+2cosθy =2sinθ,(θ为参数),转换为直角坐标方程为(x ﹣2)2+y 2=4,根据{x =ρcosθy =ρsinθx 2+y 2=ρ2,转换为极坐标方程为ρ=4cos θ;(2)曲线C 2的方程为x 2+(y ﹣3)2=9,根据{x =ρcosθy =ρsinθx 2+y 2=ρ2,转换为极坐标方程为ρ=6sin θ,已知射线l 1:θ=α(0<α<π2)与曲线C 1交于O ,A 两点,所以{ρ=4cosθθ=α,整理得ρA =4cos α;射线l 1绕极点逆时针方向旋转π3得到射线l 2,射线l 2与曲线C 2交于O ,B 两点. 所以{ρ=6sinθθ=α+π3,所以ρB =6sin(α+π3);所以S △AOB =12⋅ρA ⋅ρB =12×4cosα⋅6sin(α+π3)⋅sin π3=3√3sin(2α+π3)+92; 由于0<α<π2, 故π3<2α+π3<4π3;当2α+π3=π2时,即α=π12时,S △AOB 的最大值为92+3√3. [选修4-5:不等式选讲]23.已知函数f (x )=|x +1|+|2x ﹣3|,M 为不等式f (x )≤4的解集. (1)求M ;(2)若a ,b ∈R ,且a 2+b 2∈M ,证明:0≤a 2﹣ab +b 2≤3. 【解答】解:(1)由已知可得,f (x )={−3x +2,x ≤−1−x +4,−1<x ≤323x −2,x >32,当x ≤﹣1时,由﹣3x +2≤4,解得x ≥−23(舍去), 当﹣1<x ≤32时,由﹣x +4≤4,解得x ≥0,故0≤x ≤32,当x >32时,由3x ﹣2≤4,解得x ≤2,故32<x ≤2,综上所述,f (x )≤4的解集M =[0,2]. (2)∵a 2+b 2∈M ,即0≤a 2+b 2≤2,令a =r cos α,b =r sin α,0≤r ≤√2,α∈[0,2π], ∴a 2﹣ab +b 2=r 2﹣r 2sin αcos α=r 2(1−12sin2α), ∵α∈[0,2π], ∴12≤1−12sin2α≤32,即12r 2≤r 2(1−12sin2α)≤32r 2,∵0≤r ≤√2,第 21 页 共 21 页∴12r 2≥0,32r 2≤3, ∴0≤a 2﹣ab +b 2≤3,即得证.。

高中数学选修4-4《直线的极坐标方程》

高中数学选修4-4《直线的极坐标方程》
7 x 2cos 2 4 由 y 2sin 7 2 4
,得点A的直角坐标为
(2 , -2),所以点A到这条直线的距离
d 2 ( 2) 1 12 12 2 2
5.求以极坐标系中的点Q(1 , 1)为圆心,1 为半径的圆的方程. 【解析】 如图,设圆上 任意一点P(ρ,θ),连 结OQ并延长交圆于R. 在Rt△ORP中, ∠POR=θ-1, 所以cos(θ-1)=
它表示倾斜角为150°,且过点(4,0)的直线. (2)原方程变形为ρ2(cos2θ-sin2θ)=3,所以x2 -y2=3, 它表示中心在原点,焦点在 x 轴上的等轴双曲 线.
(3)原方程变形为 x2+y2 -3x+6y -5=0, 它
3 表示圆心为 ( , 3) , 半径为 2
65 的圆. 2
由余弦定理,得 2 2 2 cos( )=5. 3 2 化简,得 4 cos( ) 1 0,即为圆C的 3 极坐标方程.
2 2
极坐标方程的应用 【例3】已知椭圆C的极坐标方程为
12 3cos 2 4sin 2 ,求它的两条准线的极
【解析】 (1)如图,在 Rt△OAB中,OA=ρ, OB=2OM=8.又因为 ∠AOx=θ, 故∠AOB= -θ,所以 ρ=OB · cos∠AOB
=8cos( -θ)=8sinθ. 故 2
2
⊙C的极坐标方程为
ρ=8sinθ.
(2)点M对应的直角坐标为(0 , 4),直线 l 的直角坐标方程为 3 x y 5 3 0 ,则 圆心M到直线 l 的距离 d 所以直线 l 与⊙C相离.
4
线的距离. 【解析】直线的极坐标方程

人教版高中数学选修4-4测试题全套及答案

人教版高中数学选修4-4测试题全套及答案

人教版高中数学选修4-4测试题全套及答案章末综合测评(一) 坐标系(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出四个选项中,只有一项是符合题目要求的)1.将曲线y =sin 2x 按照伸缩变换⎩⎨⎧x ′=2xy ′=3y 后得到曲线方程为( )A .y ′=3sin x ′B .y ′=3sin 2x ′C .y ′=3sin 12x ′D .y ′=13sin 2x ′【解析】 由伸缩变换,得x =x ′2,y =y ′3. 代入y =sin 2x ,有y ′3=sin x ′,即y ′=3sin x ′. 【答案】 A2.在极坐标系中,已知两点A ,B 的极坐标分别为⎝ ⎛⎭⎪⎫3,π3,⎝ ⎛⎭⎪⎫4,π6,则△AOB (其中O 为极点)的面积为( )A .1B .2C .3D .4【解析】 如图所示,OA =3,OB =4,∠AOB =π6,所以S △AOB =12×3×4×12=3.【答案】 C3.已知点P 的极坐标为(1,π),那么过点P 且垂直于极轴的直线的极坐标方程是( ) A .ρ=1 B .ρ=cos θ C .ρ=-1cos θ D .ρ=1cos θ【答案】 C4.在极坐标系中,点A ⎝ ⎛⎭⎪⎫2,π6与B ⎝ ⎛⎭⎪⎫2,-π6之间的距离为( )A .1B .2C .3D .4【解析】 由A ⎝ ⎛⎭⎪⎫2,π6与B ⎝ ⎛⎭⎪⎫2,-π6,知∠AOB =π3,∴△AOB 为等边三角形,因此|AB |=2. 【答案】 B5.极坐标方程4ρ·sin 2θ2=5表示的曲线是( ) A .圆B .椭圆C .双曲线的一支D .抛物线【解析】 由4ρ·sin 2θ2=4ρ·1-cos θ2=2ρ-2ρcos θ=5,得方程为2x 2+y 2-2x =5,化简得y 2=5x +254,∴该方程表示抛物线. 【答案】 D6.直线ρcos θ+2ρsin θ=1不经过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限【解析】 由ρcos θ+2ρsin θ=1,得x +2y =1, ∴直线x +2y =1不过第三象限. 【答案】 C7.点M 的直角坐标为(3,1,-2),则它的球坐标为( ) A.⎝ ⎛⎭⎪⎫22,3π4,π6 B.⎝ ⎛⎭⎪⎫22,π4,π6 C.⎝ ⎛⎭⎪⎫22,π4,π3 D.⎝ ⎛⎭⎪⎫22,3π4,π3 【解析】 设M 的球坐标为(r ,φ,θ),则⎩⎨⎧3=r sin φcos θ,1=r sin φsin θ,-2=r cos φ,解得⎩⎪⎨⎪⎧r =22,φ=3π4,θ=π6.【答案】 A8.在极坐标系中,直线θ=π6(ρ∈R )截圆ρ=2cos ⎝ ⎛⎭⎪⎫θ-π6所得弦长是( )A .1B .2C .3D .4【解析】 化圆的极坐标方程ρ=2cos ⎝ ⎛⎭⎪⎫θ-π6为直角坐标方程得⎝⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -122=1,圆心坐标为⎝ ⎛⎭⎪⎫32,12,半径长为1,化直线θ=π6(ρ∈R )的直角坐标方程为x -3y =0,由于32-3×12=0,即直线x -3y =0过圆⎝⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -122=1的圆心,故直线θ=π6(ρ∈R )截圆ρ=2cos ⎝ ⎛⎭⎪⎫θ-π6所得弦长为2.【答案】 B9.若点P 的柱坐标为⎝ ⎛⎭⎪⎫2,π6,3,则P 到直线Oy 的距离为( ) A .1 B .2C. 3【解析】 由于点P 的柱坐标为(ρ,⎭⎪⎫,π6,3,故点P 在平面xOy 内的射影Q 到直线Oy 的距离为ρcos π6=3,可得P 到直线Oy 的距离为 6.【答案】 D10.设正弦曲线C 按伸缩变换⎩⎪⎨⎪⎧x ′=12xy ′=3y 后得到曲线方程为y ′=sin x ′,则正弦曲线C 的周期为( )A.π2 B .π C .2πD .4π【解析】 由伸缩变换知3y =sin 12x , ∴y =13sin 12x ,∴T =2π12=4π.【答案】 D11.已知点A 是曲线ρ=2cos θ上任意一点,则点A 到直线ρsin ⎝ ⎛⎭⎪⎫θ+π6=4的距离的最小值是( )A .1 B.32 C.52 D.72【解析】 曲线ρ=2cos θ即(x -1)2+y 2=1,表示圆心为(1,0),半径等于1的圆,直线ρsin ⎝ ⎛⎭⎪⎫θ+π6=4,即x +3y -8=0,圆心(1,0)到直线的距离等于|1+0-8|2=72,所以点A 到直线ρsin ⎝ ⎛⎭⎪⎫θ+π6=4的距离的最小值是72-1=52.【答案】 C12.极坐标方程ρ=2sin ⎝ ⎛⎭⎪⎫θ+π4的图形是( )【解析】 法一 圆ρ=2sin ⎝ ⎛⎭⎪⎫θ+π4是把圆ρ=2sin θ绕极点按顺时针方向旋转π4而得,圆心的极坐标为⎝ ⎛⎭⎪⎫1,π4,故选C.法二 圆ρ=2sin ⎝ ⎛⎭⎪⎫θ+π4的直角坐标方程为⎝ ⎛⎭⎪⎫x -222+⎝ ⎛⎭⎪⎫y -222=1,圆心为⎝ ⎛⎭⎪⎫22,22,半径为1,故选C.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.在极坐标系中,经过点⎝ ⎛⎭⎪⎫22,π4作圆ρ=4sin θ的切线,则切线的极坐标方程为________.【解析】 圆ρ=4sin θ的直角坐标方程为x 2+y 2=4y ,化成标准方程得x 2+(y -2)2=4,表示以点(0,2)为圆心,以2为半径长的圆,点⎝ ⎛⎭⎪⎫22,π4的直角坐标为(2,2),由于22+(2-2)2=4,即点(2,2)在圆上,故过点且与圆相切的直线的方程为x =2,其极坐标方程为ρcos θ=2.【答案】 ρcos θ=214.已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝ ⎛⎭⎪⎫4,π3,则|CP |=________.【解析】 由ρ=4cos θ可得x 2+y 2=4x ,即(x -2)2+y 2=4,因此圆心C 的直角坐标为(2,0).又点P 的直角坐标为(2,23),因此|CP |=2 3.【答案】 2315.在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a =________.【解析】 ρ(2cos θ+sin θ)=1,即2ρcos θ+ρsin θ=1对应的直角坐标方程为2x +y -1=0,ρ=a (a >0)对应的普通方程为x 2+y 2=a 2.在2x +y -1=0中,令y =0,得x =22.将⎝ ⎛⎭⎪⎫22,0代入x 2+y 2=a 2得a =22.【答案】 2216.直线2ρcos θ=1与圆ρ=2cos θ相交的弦长为________.【解析】 直线2ρcos θ=1可化为2x =1,即x =12,圆ρ=2cos θ两边同乘ρ得ρ2=2ρcos θ,化为直角坐标方程是x 2+y 2=2x ,即(x -1)2+y 2=1,其圆心为(1,0),半径为1, ∴弦长为2× 12-⎝ ⎛⎭⎪⎫122= 3.【答案】3三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知⊙C :ρ=cos θ+sin θ, 直线l :ρ=22cos ⎝ ⎛⎭⎪⎫θ+π4.求⊙C 上点到直线l 距离的最小值.【解】 ⊙C 的直角坐标方程是x 2+y 2-x -y =0,即⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=12. 又直线l 的极坐标方程为ρ(cos θ-sin θ)=4,所以直线l 的直角坐标方程为x -y -4=0.设M ⎝ ⎛⎭⎪⎫12+22cos θ,12+22sin θ为⊙C 上任意一点,M 点到直线l 的距离d =⎪⎪⎪⎪⎪⎪12+22cos θ-⎝ ⎛⎭⎪⎫12+22sin θ-42=4-cos ⎝ ⎛⎭⎪⎫θ+π42,当θ=7π4时,d min =32=322.18.(本小题满分12分)已知直线的极坐标方程ρsin ⎝ ⎛⎭⎪⎫θ+π4=22,求极点到直线的距离. 【解】 ∵ρsin ⎝ ⎛⎭⎪⎫θ+π4=22,∴ρsin θ+ρcos θ=1,即直角坐标方程为x +y =1. 又极点的直角坐标为(0,0), ∴极点到直线的距离d =|0+0-1|2=22. 19.(本小题满分12分)(1)在极坐标系中,求以点(1,1)为圆心,半径为1的圆C 的方程; (2)将上述圆C 绕极点逆时针旋转π2得到圆D ,求圆D 的方程. 【解】 (1)设M (ρ,θ)为圆上任意一点,如图,圆C 过极点O ,∠COM=θ-1,作CK ⊥OM 于K ,则ρ=|OM |=2|OK |=2cos(θ-1), ∴圆C 的极坐标方程为ρ=2cos(θ-1).(2)将圆C :ρ=2cos(θ-1)按逆时针方向旋转π2得到圆D :ρ=2cos ⎝ ⎛⎭⎪⎫θ-1-π2,即ρ=-2sin(1-θ).20.(本小题满分12分)如图1,正方体OABC ­D ′A ′B ′C ′中,|OA |=3,A ′C ′与B ′D ′相交于点P ,分别写出点C 、B ′、P 的柱坐标.图1【解】 设点C 的柱坐标为(ρ1,θ1,z 1), 则ρ1=|OC |=3,θ1=∠COA =π2,z 1=0, ∴C 的柱坐标为⎝ ⎛⎭⎪⎫3,π2,0;设点B ′的柱坐标为(ρ2,θ2,z 2),则ρ2=|OB |=|OA |2+|AB |2=32+32=32, θ2=∠BOA =π4,z 2=3, ∴B ′的柱坐标为⎝ ⎛⎭⎪⎫32,π4,3;如图,取OB 的中点E ,连接PE ,设点P 的柱坐标为(ρ3,θ3,z 3),则ρ3=|OE |=12|OB |=322,θ3=∠AOE =π4,z 3=3, 点P 的柱坐标为⎝ ⎛⎭⎪⎫322,π4,3.21.(本小题满分12分)已知曲线C 1的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=-1,曲线C 2的极坐标方程为ρ=22cos ⎝ ⎛⎭⎪⎫θ-π4,判断两曲线的位置关系.【解】 将曲线C 1,C 2化为直角坐标方程得: C 1:x +3y +2=0,C 2:x 2+y 2-2x -2y =0,即C 2:(x -1)2+(y -1)2=2, 圆心到直线的距离d =|1+3+2|12+(3)2=3+32>2,∴曲线C 1与C 2相离.22.(本小题满分12分)在极坐标系中,极点为O ,已知曲线C 1:ρ=2与曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ-π4=2交于不同的两点A ,B .(1)求|AB |的值;(2)求过点C (1,0)且与直线AB 平行的直线l 的极坐标方程.【解】 (1)∵ρ=2,∴x 2+y 2=4. 又∵ρsin ⎝ ⎛⎭⎪⎫θ-π4=2,∴y =x +2,∴|AB |=2r 2-d 2=24-⎝ ⎛⎭⎪⎫222=2 2. (2)∵曲线C 2的斜率为1,∴过点(1,0)且与曲线C 2平行的直线l 的直角坐标方程为y =x -1,∴直线l 的极坐标为ρsin θ=ρcos θ-1, 即ρcos ⎝ ⎛⎭⎪⎫θ+π4=22.章末综合测评(二) 参数方程(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列点不在直线⎩⎪⎨⎪⎧x =-1-22ty =2+22t (t 为参数)上的是( )A .(-1,2)B .(2,-1)C .(3,-2)D .(-3,2)【解析】 直线l 的普通方程为x +y -1=0, 因此点(-3,2)的坐标不适合方程x +y -1=0. 【答案】 D2.圆的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ(θ为参数,0≤θ<2π),若Q (-2,23)是圆上一点,则对应的参数θ的值是( )A.π3B.23πC.43πD.53π 【解析】 ∵点Q (-2,23)在圆上, ∴⎩⎨⎧-2=4cos θ,23=4sin θ且0≤θ<2π,∴θ=23π.【答案】 B3.直线⎩⎨⎧x =3+t ,y =2-2t (t 为参数)斜率为( )A .2B .-2 C.32D .-32【解析】 直线的普通方程为2x +y -8=0, ∴斜率k =-2. 【答案】 B4.已知O 为原点,当θ=-π6时,参数方程⎩⎨⎧x =3cos θ,y =9sin θ(θ为参数)上的点为A ,则直线OA 倾斜角为( ) A.π6 B.π3 C.2π3 D.5π6【解析】 当θ=-π6时,x =332,y =-92, ∴k OA =tan α=yx =-3,且0≤α<π, 因此α=2π3. 【答案】 C5.已知A (4sin θ,6cos θ),B (-4cos θ,6sin θ),当θ为一切实数时,线段AB 的中点轨迹为( )A .直线B .圆C .椭圆D .双曲线【解析】 设线段AB 的中点为M (x ,y ), 则⎩⎨⎧ x =2sin θ-2cos θ,y =3sin θ+3cos θ(θ为参数), ∴⎩⎨⎧3x +2y =12sin θ,3x -2y =-12cos θ. ∴(3x +2y )2+(3x -2y )2=144, 整理得x 28+y 218=1,表示椭圆. 【答案】 C6.椭圆⎩⎨⎧x =3cos θ,y =4sin θ(θ为参数)的离心率是( )A.74 B.73 C.72D.75【解析】 椭圆⎩⎨⎧x =3cos θ,y =4sin θ的标准方程为x 29+y 216=1,∴e =74.故选A.【答案】 A7.已知圆M :x 2+y 2-2x -4y =10,则圆心M 到直线⎩⎨⎧x =4t +3,y =3t +1(t 为参数)的距离为( )A .1B .2C .3D .4【解析】 由题意易知圆的圆心M (1,2),由直线的参数方程化为一般方程为3x -4y -5=0,所以圆心到直线的距离为d2.【答案】 B8.若直线⎩⎨⎧ x =t cos α,y =t sin α(t 为参数)与圆⎩⎨⎧x =4+2cos φ,y =2sin φ(φ为参数)相切,那么直线的倾斜角为( ) A.π6或5π6 B.π4或3π4 C.π3或2π3D .-π6或-5π6 【解析】 直线的普通方程为y =tan α·x ,圆的普通方程为(x -4)2+y 2=4,由于直线与圆相切,则|4tan α|tan 2x +1=2.∴tan α=±33,∴α=π6或5π6.故选A. 【答案】 A9.若直线y =x -b 与曲线⎩⎨⎧x =2+cos θ,y =sin θθ∈[0,2π)有两个不同的公共点,则实数b 的取值范围是( )A .(2-2,1)B .[2-2,2+2]C .(-∞,2-2)∪(2+2,+∞)D .(2-2,2+2)【解析】 由⎩⎨⎧x =2+cos θ,y =sin θ消去θ,得(x -2)2+y 2=1.(*)将y =x -b 代入(*),化简得 2x 2-(4+2b )x +b 2+3=0,依题意,Δ=[-(4+2b )]2-4×2(b 2+3)>0, 解得2-2<b <2+ 2. 【答案】 D10.实数x ,y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值是( ) A .2 B .4 C.92D .5【解析】 由3x 2+2y 2=6x ,得3(x -1)2+2y 2=3, 令x =1+cos θ,y =62sin θ,代入x 2+y 2,得x 2+y 2=(1+cos θ)2+32sin 2θ=-12(cos θ-2)2+92,∴当cos θ=1时,(x 2+y 2)max =4. 【答案】 B11.参数方程⎩⎪⎨⎪⎧x =1+sin θy =cos 2⎝ ⎛⎭⎪⎫π4-θ2(θ为参数,0≤θ<2π)所表示的曲线是( )A .椭圆的一部分B .双曲线的一部分C .抛物线的一部分,且过点⎝ ⎛⎭⎪⎫-1,12 D .抛物线的一部分,且过点⎝ ⎛⎭⎪⎫1,12【解析】 由y =cos 2⎝ ⎛⎭⎪⎫π4-θ2=1+cos ⎝ ⎛⎭⎪⎫π2-θ2=1+sin θ2,可得sin θ=2y -1,由x =1+sin θ 得x 2-1=sin θ, ∴参数方程可化为普通方程x 2=2y . 又x =1+sin θ∈[0,2],故选D. 【答案】 D12.已知直线l :⎩⎨⎧x =3t ,y =2-t (t 为参数),抛物线C 的方程y 2=2x ,l 与C 交于P 1,P 2,则点A (0,2)到P 1,P 2两点距离之和是( )A .4+3B .2(2+3)C .4(2+3)D .8+3【解析】将直线l 参数方程化为⎩⎪⎨⎪⎧x =-32t ′y(t ′为参数),代入y 2=2x ,得t ′2+4(2+3)t ′+16=0,设其两根为t 1′、t 2′+t 2′=-4(2+3),t 1′t 2′=16>0.由此知在l 上两点P 1,P 2都在A (0,2)的下方,则|AP 1|+|AP 2|=|t 1′|+|t 2′|=|t 1′+t 2′|=4(2+3).【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,把正确答案填在题中横线上) 13.双曲线⎩⎨⎧x =tan φ,y =sec φ(φ是参数)的渐近线方程为________.【解析】 化参数方程为普通方程,得y 2-x 2=1.故其渐近线为y =±x ,即x ±y =0. 【答案】 x ±y =014.在极坐标系中,直线过点(1,0)且与直线θ=π3(ρ∈R )垂直,则直线极坐标方程为________.【解析】 由题意可知在直角坐标系中,直线θ=π3的斜率是3,所求直线是过点(1,0),且斜率是-13,所以直线方程为y =-13(x -1),化为极坐标方程ρsin θ=-13(ρcos θ-1),化简得2ρsin ⎝ ⎛⎭⎪⎫θ+π6=1.【答案】 2ρsin ⎝ ⎛⎭⎪⎫θ+π6=1或2ρcos ⎝ ⎛⎭⎪⎫θ-π3=1或ρcos θ+3ρsin θ=115.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知射线θ=π4与曲线⎩⎨⎧x =t +1,y =(t -1)2(t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为________.【解析】 曲线⎩⎨⎧x =t +1,y =(t -1)2可化为y =(x -2)2,射线θ=π4可化为y =x (x ≥0),联立这两个方程得:x 2-5x +4=0,点A ,B 的横坐标就是此方程的根,线段AB 的中点的直角坐标为⎝ ⎛⎭⎪⎫52,52. 【答案】 ⎝ ⎛⎭⎪⎫52,5216.在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎨⎧x =a cos φ,y =b sin φ(φ为参数,a >b >0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin ⎝ ⎛⎭⎪⎫θ+π4=22m (m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为________.【解析】 由已知可得椭圆标准方程为x 2a 2+y 2b 2=1(a >b >0).由ρsin ⎝ ⎛⎭⎪⎫θ+π4=22m 可得ρsin θ+ρcos θ=m ,即直线的普通方程为x +y =m .又圆的普通方程为x 2+y 2=b 2,不妨设直线l 经过椭圆C 右焦点(c,0),则得c =m .又因为直线l 与圆O 相切,所以|m |2=b ,因此c =2b ,即c 2=2(a 2-c 2).整理,得c 2a 2=23,故椭圆C 离心率为e =63.【答案】 63三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知圆O 的参数方程为⎩⎨⎧x =2cos θy =2sin θ(θ为参数,0≤θ<2π).(1)求圆心和半径;(2)若圆O 上点M 对应的参数θ=5π3,求点M 的坐标. 【解】 (1)由⎩⎨⎧x =2cos θy =2sin θ(0≤θ<2π),平方得x 2+y 2=4, ∴圆心O (0,0),半径r =2.(2)当θ=5π3时,x =2cos θ=1,y =2sin θ=-3, ∴点M 的坐标为(1,-3).18.(本小题满分12分)已知曲线C :⎩⎨⎧x =4cos φ,y =3sin φ(φ为参数).(1)将C 的方程化为普通方程;(2)若点P (x ,y )是曲线C 上的动点,求2x +y 的取值范围. 【解】 (1)由曲线C :⎩⎨⎧x =4cos φ,y =3sin φ,得⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫y 32=1即x 216+y 29=1.(2)2x +y =8cos φ+3sin φ=73sin(φ+θ), ⎝ ⎛⎭⎪⎫θ由tan θ=83确定, ∴2x +y ∈[-73,73],∴2x +y 的取值范围是[-73,73].19.(本小题满分12分)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =2+32t (t 为参数),曲线C 的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ(θ为参数).(1)将曲线C 的参数方程化为普通方程;(2)若直线l 与曲线C 交于A ,B 两点,求线段AB 的长. 【解】 (1)由曲线C :⎩⎨⎧x =4cos θ,y =4sin θ得x 2+y 2=16,∴曲线C 的普通方程为x 2+y 2=16. (2)将⎩⎪⎨⎪⎧x =3+12t ,y =2+32t代入x 2+y 2=16,整理,得t 2+33t -9=0. 设A ,B 对应的参数为t 1,t 2,则 t 1+t 2=-33,t 1t 2=-9.|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=37.20.(本小题满分12分)已知动点P 、Q 都在曲线C :⎩⎨⎧x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 【解】 (1)依题意有P (2cos α,2sin α), Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎨⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π时,d =0,故M 的轨迹过坐标原点.21.(本小题满分12分)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程; (2)若曲线C 与直线相交于不同的两点M ,N ,求|PM |+|PN |的取值范围. 【解】 (1)直线l 的参数方程为⎩⎨⎧x =4+t cos αy =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,所以C :x 2+y 2=4x .(2)直线l 的参数方程为⎩⎨⎧x =4+t cos αy =2+t sin α(t 为参数),代入C :x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,则有⎩⎨⎧Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1·t 2=4,∴sin α·cos α>0,又α∈[0,π), 所以α∈⎝ ⎛⎭⎪⎫0,π2,t 1<0,t 2<0. 而|PM |+|PN |=(4+t 1cos α-4)2+(2+t 1sin α-2)2+ (4+t 2cos α-4)2+(2+t 2sin α-2)2=|t 1|+|t 2| =-t 1-t 2=4(sin α+cos α)=42sin ⎝ ⎛⎭⎪⎫α+π4.∵α∈⎝ ⎛⎭⎪⎫0,π2,∴α+π4∈⎝ ⎛⎭⎪⎫π4,3π4, ∴22<sin ⎝ ⎛⎭⎪⎫α+π4≤1,所以|PM |+|PN |的取值范围为(4,42].22.(本小题满分12分)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =cos φy =sin φ(φ为参数),曲线C 2的参数方程为⎩⎨⎧x =a cos φy =b sin φ(a >b >0,φ为参数).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α与C 1,C 2各有一个交点.当α=0时,这两个交点间的距离为2,当α=π2时,这两个交点重合.(1)分别说明C 1,C 2是什么曲线,并求出a 与b 的值;(2)设当α=π4时,l 与C 1,C 2的交点分别为A 1,B 1,当α=-π4时,l 与C 1,C 2的交点分别为A 2,B 2,求四边形A 1A 2B 2 B 1的面积.【解】 (1)C 1是圆,C 2是椭圆.当α=0时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a =3.当α=π2时,射线l与C1,C2交点的直角坐标分别为(0,1),(0,b),因为这两点重合,所以b=1.(2)C1,C2的普通方程分别为x2+y2=1和x29+y2=1.当α=π4时,射线l与C1交点A1的横坐标为x=22,与C2交点B1的横坐标为x′=31010.当α=-π4时,射线l与C1,C2的两个交点A2,B2分别与A1,B1关于x轴对称,因此四边形A1A2B2B1为梯形.故四边形A1A2B2B1的面积为(2x′+2x)(x′-x)2=25.模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.极坐标方程cos θ=32(ρ∈R)表示的曲线是()A.两条相交直线B.两条射线C.一条直线D.一条射线【解析】由cos θ=32,解得θ=π6或θ=116π,又ρ∈R,故为两条过极点直线.【答案】A2.极坐标系中,过点P(1,π)且倾斜角为π4直线方程为() A.ρ=sin θ+cos θB.ρ=sin θ-cos θC.ρ=1sin θ+cos θD.ρ=1sin θ-cos θ【解析】设M(ρ,θ) 为直线上任意一点,则在△OPM 中,由正弦定理得ρsin π4=1sin ⎝ ⎛⎭⎪⎫θ-π4, ∴ρ=1sin θ-cos θ.【答案】 D3.已知参数方程⎩⎨⎧x =at +λcos θy =bt +λsin θ(a 、b 、λ均不为零,0≤θ≤2π),分别取①t 为参数;②λ为参数;③θ为参数,则下列结论中成立的是( )A .①、②、③均是直线B .只有②是直线C .①、②是直线,③是圆D .②是直线,①③是圆【解析】 ①t 为参数,原方程可化为:y -λsin θ=ba (x -λcos θ),②λ为参数,原方程可化为:y -bt =(x -at )·tan θ,③θ为参数,原方程可化为: (x -at )2+(y -bt )2=λ2,即①、②是直线,③是圆. 【答案】 C4.将曲线x 23+y 22=1按φ:⎩⎪⎨⎪⎧x ′=13x ,y ′=12y 变换后的曲线的参数方程为( )A.⎩⎨⎧x =3cos θy =2sin θ B.⎩⎨⎧x =3cos θy =2sin θ C.⎩⎪⎨⎪⎧x =13cos θy =12sin θD.⎩⎪⎨⎪⎧x =33cos θy =22sin θ【解析】 x 23+y 22=1→(3x ′)23+(2y ′)22=1→(3x ′)2+(2y ′)2=1→⎩⎨⎧3x ′=cos θ,2y ′=sin θ→⎩⎪⎨⎪⎧ x ′=33cos θ,y ′=22sin θ,即⎩⎪⎨⎪⎧x =33cos θ,y =22sin θ,故选D.【答案】 D5.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为( ) A .x 2+y 2=0或y =1 B .x =1 C .x 2+y 2=0或x =1D .y =1【解析】 由ρ2cos θ-ρ=0,得ρ(ρcos θ-1)=0, 又ρ=x 2+y 2,x =ρcos θ, ∴x 2+y 2=0或x =1. 【答案】 C6.柱坐标⎝ ⎛⎭⎪⎫2,π3,1对应的点的直角坐标是( )A .(3,-1,1)B .(3,1,1)C .(1,3,1)D .(-1,3,1)【解析】由直角坐标与柱坐标之间的变换公式⎩⎨⎧x =ρcos θ,y =ρsin θz =z,可得⎩⎨⎧x =1,y =3,z =1,故应选C.【答案】 C7.直线l :3x +4y -12=0与圆C :⎩⎨⎧x =-1+2cos θy =2+2sin θ(θ为参数)的公共点个数为( )A .0个B .1个C .2个D .无法确定【解析】 圆C 的直角坐标方程为(x +1)2+(y -2)2=4, ∴圆心C (-1,2),半径r =2. 圆心C 到直线l 的距离d =|3×(-1)+4×2-12|32+42=75,因此d <r ,直线与圆C 相交于两点. 【答案】 C8.双曲线⎩⎨⎧x =4sec θy =2tan θ(θ为参数)上,当θ=2π3时对应的点为P ,O 为原点,则OP 的斜率为( )A.34B.32C.3D .2【解析】 ∵x =4sec θ=4cos 2π3=-8, y =2tan θ=2tan 2π3=-23, ∴k OP =y x =34. 【答案】 A9.已知曲线C 的极坐标方程为ρ=6sin θ,以极点为平面直角坐标系的原点,极轴为x轴正半轴,直线l 的参数方程为⎩⎨⎧x =2t -1,y =22t(t 为参数),则直线l 与曲线C 相交所得弦长为( )A .1B .2C .3D .4【解析】 曲线C 的直角坐标方程为x 2+y 2-6y =0,即x 2+(y -3)2=9,直线⎩⎨⎧x =2t -1,y =22t的直角坐标方程为x -2y +1=0,∵圆心C 到直线l 的距离 d =|0-2×3+1|12+(-2)2=5,∴直线l 与圆C 相交所得弦长为 2r 2-d 2=29-5=4.【答案】 D10.直线⎩⎨⎧x =-2-4t ,y =1+3t (t 为参数)与圆ρ=2cos θ的位置关系为( )A .相离B .相切C .相交D .无法确定【解析】 直线⎩⎨⎧x =-2-4t ,y =1+3t (t 为参数)的普通方程为3x +4y +2=0,圆ρ=2cos θ的普通方程为x 2+y 2-2x =0,即(x -1)2+y 2=1,圆心到直线3x +4y +2=0的距离d =1=r ,所以直线与圆的位置关系为相切.故选B.【答案】 B11.已知曲线的参数方程是⎩⎪⎨⎪⎧x =cos 2α2,y =12sin α(α为参数),若以此曲线所在的直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线的极坐标方程为( )A .ρ=sin θB .ρ=2sin θC .ρ=2cos θD .ρ=cos θ【解析】由⎩⎪⎨⎪⎧x =cos 2α2=12+12cos α,y =12sin α(α为参数)得普通方程为⎝ ⎛⎭⎪⎫x -122+y 2=14,故圆心为C ⎝ ⎛⎭⎪⎫12,0,半径r =12,所以极坐标方程为ρ=cos θ. 【答案】 D12.若动点(x ,y )在曲线x 24+y 2b 2=1(b >0)上变化,则x 2+2y 的最大值为( ) A.⎩⎪⎨⎪⎧ b 24+4 (0<b ≤4)2b (b >4) B.⎩⎪⎨⎪⎧b 24+4 (0<b <2)2b (b ≥2)C.b 24+4D .2b【解析】 设动点的坐标为(2cos θ,b sin θ), 代入x 2+2y =4cos 2θ+2b sin θ =-⎝ ⎛⎭⎪⎫2sin θ-b 22+4+b 24,当0<b ≤4时,(x 2+2y )max =b 24+4;当b >4时,(x 2+2y )max =-⎝ ⎛⎭⎪⎫2-b 22+4+b 24=2b .【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,把正确答案填在题中横线上) 13.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知射线θ=π4与曲线⎩⎨⎧x =t +1,y =(t -1)2(t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为________.【解析】 射线θ=π4的普通方程为y =x (x ≥0),代入⎩⎨⎧x =t +1,y =(t -1)2,得t 2-3t =0,解得t =0或t =3.当t =0时,x =1,y =1,即A (1,1); 当t =3时,x =4,y =4,即B (4,4). 所以AB 的中点坐标为⎝ ⎛⎭⎪⎫52,52.【答案】 ⎝ ⎛⎭⎪⎫52,5214.极坐标系中,曲线ρ=-4cos θ上的点到直线ρ()cos θ+3sin θ=8的距离的最大值是________.【解析】 曲线方程化为:ρ2=-4ρcos θ,即x 2+y 2+4x =0,化为:(x +2)2+y 2=4,圆心坐标为(-2,0),半径为r =2,直线方程化为:x +3y -8=0,圆心到直线距离为:d =|-2-8|2=5,所以最大距离为:5+2=7.【答案】 715.直线⎩⎨⎧ x =2+t y =-1-t (t 为参数)与曲线⎩⎨⎧x =3cos αy =3sin α(α为参数)交点个数为________.【解析】 直线与曲线的普通方程分别为 x +y -1=0, ① x 2+y 2=9, ②②表示圆心为O (0,0),半径为3的圆, 设O 到直线的距离为d ,则d =|-1|2=22,∵22<3,∴直线与圆有2个交点. 【答案】 216.已知曲线C 的参数方程为⎩⎨⎧x =2cos t ,y =2sin t (t 为参数),C 在点(1,1)处的切线为l .以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为________.【解析】 由sin 2t +cos 2t =1得曲线C 的普通方程为x 2+y 2=2,过原点O 及切点(1,1)的直线的斜率为1,故切线l 的斜率为-1,所以切线l 的方程为y -1=-(x -1),即x +y -2=0.把x =ρcos θ,y =ρsin θ代入直线l 的方程可得ρcos θ+ρsin θ-2=0,即2ρsin ⎝ ⎛⎭⎪⎫θ+π4-2=0,化简得ρsin ⎝ ⎛⎭⎪⎫θ+π4= 2.【答案】 ρsin ⎝ ⎛⎭⎪⎫θ+π4=2三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在平面直角坐标系xOy 中,求过椭圆⎩⎨⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎨⎧x =4-2t ,y =3-t (t 为参数)平行的直线的普通方程.【解】 由题设知,椭圆的长半轴长a =5,短半轴长b =3,从而c =a 2-b 2=4,所以右焦点为(4,0).将已知直线的参数方程化为普通方程x -2y +2=0.故所求直线的斜率为12,因此其方程为y =12(x -4),即x -2y -4=0.18.(本小题满分12分)在平面直角坐标系中, 以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.【解】 (1)由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝ ⎛⎭⎪⎫θ-π4=a 上,可得a =2,所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1. 因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.19.(本小题满分12分)已知曲线C 1的参数方程为⎩⎨⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<.【解】 (1)将⎩⎨⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎨⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0得 ρ2-8ρcos θ-10ρsin θ+16=0,所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0. 由⎩⎨⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎨⎧ x =1,y =1或⎩⎨⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝ ⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2.20.(本小题满分12分)在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4. (1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(2)求圆C 1与C 2的公共弦的参数方程.【解】 (1)圆C 1的极坐标方程为ρ=2,圆C 2的极坐标方程为ρ=4cos θ. 解⎩⎨⎧ρ=2,ρ=4cos θ,得ρ=2,θ=±π3. 故圆C 1与圆C 2交点的坐标为 ⎝ ⎛⎭⎪⎫2,-π3或⎝ ⎛⎭⎪⎫2,π3. 注:极坐标系下点的表示不惟一.(2)法一 将x =1代入⎩⎨⎧x =ρcos θ,y =ρsin θ,得ρcos θ=1,从而ρ=1cos θ.于是圆C 1与C 2的公共弦的参数方程为⎩⎨⎧x =1,y =tan θ,⎝⎛⎭⎪⎫-π3≤θ≤π3. 法二 由⎩⎨⎧x =ρcos θ,y =ρsin θ,得圆C 1与圆C 2交点的直角坐标分别为(1,-3)或(1,3).故圆C 1与C 2公共弦的参数方程为 ⎩⎨⎧x =1,y =t ,(-3≤t ≤3). 21.(本小题满分12分)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),已知过点P (-2,-4)的直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+22t y =-4+22t (t 为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值. 【解】 (1)曲线C :y 2=2ax ,直线l :x -y -2=0. (2)将直线的参数表达式代入抛物线得 12t 2-(42+2a )t +16+4a =0,所以t 1+t 2=82+22a ,t 1t 2=32+8a . 因为|PM |=|t 1|,|PN |=|t 2|,|MN |=|t 1-t 2|, 由题意知,|t 1-t 2|2=|t 1t 2|⇒(t 1+t 2)2=5t 1t 2, 代入得a =1.22.(本小题满分12分)如图1,已知抛物线y 2=2px (p >0)的焦点为F ,过F 的直线交抛物线于A ,B 两点.图1(1)求证:1|F A |+1|FB |为定值; (2)求AB 的中点M 的轨迹方程.【解】 设直线AB 的方程为⎩⎪⎨⎪⎧x =p 2+t cos α,y =t sin α(t 为参数,α≠0),代入y 2=2px 整理,得t 2sin 2α-2pt cos α-p 2=0.设A 、B 两点对应的参数分别为t 1、t 2, 则由根与系数的关系,得 t 1+t 2=2p cos αsin 2α,t 1t 2=-p 2sin 2α. (1)1|F A |+1|FB |=1|t 1|+1|t 2|=|t 1|+|t 2||t 1t 2|=|t 1-t 2||t 1t 2|=(t 1+t 2)2-4t 1t 2|t 1t 2|=⎝ ⎛⎭⎪⎫2p cos αsin 2α2+4p 2sin 2α⎪⎪⎪⎪⎪⎪-p 2sin 2α=2p (定值).(2)设AB 的中点M (x ,y ),则M 对应参数为t =t 1+t 22=p cos αsin 2α,∴⎩⎪⎨⎪⎧x =p 2+p cos 2αsin 2α,y =p cos αsin α(α为参数),消去α,得y 2=p ⎝ ⎛⎭⎪⎫x -p 2为所求轨迹方程.。

2015届高考数学(人教,理科)大一轮配套练透:选修4-4 第2节

2015届高考数学(人教,理科)大一轮配套练透:选修4-4 第2节

[课堂练通考点]1.(2013·重庆高考)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________.解析:ρcos θ=4化为直角坐标方程为x =4 ①,⎩⎪⎨⎪⎧x =t 2,y =t 3,化为普通方程为y 2=x 3 ②,①②联立得A (4,8),B (4,-8),故|AB |=16. 答案:162.(2013·江西高考)设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.解析:消去曲线C 中的参数t 得y =x 2,将x =ρcos θ,y =ρsin θ代入y =x 2中,得ρ2cos 2θ=ρsin θ,即ρcos 2θ-sin θ=0.答案:ρcos 2θ-sin θ=03.(2014·合肥模拟)在平面直角坐标系中,直线l 的参数方程为⎩⎨⎧x =12t ,y =22+32t(t 为参数),若以直角坐标系的原点O 为极点,x 轴非负半轴为极轴,且长度单位相同,建立极坐标系,曲线C 的极坐标方程为ρ=2cos ⎝⎛⎭⎫θ-π4.若直线l 与曲线C 交于A ,B 两点,则|AB |=________. 解析:首先消去参数t ,可得直线方程为3x -y +22=0,极坐标方程化为直角坐标方程为⎝⎛⎭⎫x -222+⎝⎛⎭⎫y -222=1,根据直线与圆的相交弦长公式可得|AB |=21-⎝⎛⎭⎫642=102.答案:1024.(2013·石家庄模拟)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为:ρsin 2θ=cos θ.(1)求曲线C 的直角坐标方程;(2)若直线l 的参数方程为⎩⎨⎧x =2-22t ,y =22t(t 为参数),直线l 与曲线C 相交于A ,B 两点,求|AB |的值.解:(1)将y =ρsin θ,x =ρcos θ代入ρ2sin 2θ=ρcos θ中,得y 2=x , ∴曲线C 的直角坐标方程为:y 2=x .(2)把⎩⎨⎧x =2-22t ,y =22t ,代入y 2=x 整理得,t 2+2t -4=0,Δ>0总成立.设A ,B 两点对应的参数分别为t 1,t 2, ∵t 1+t 2=-2,t 1t 2=-4,∴|AB |=|t 1-t 2|=(-2)2-4×(-4)=3 2.[课下提升考能]1.极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-t ,y =2+3t (t 为参数)所表示的图形分别是________,________.解析:由ρ=cos θ得ρ2=ρcos θ,所以x 2+y 2=x ,即⎝⎛⎭⎫x -122+y 2=14,它表示以⎝⎛⎭⎫12,0为圆心,以12为半径的圆.由x =-1-t 得t =-1-x ,所以y =2+3t =2+3(-1-x )=-3x -1,表示直线.答案:圆 直线2.若直线2x -y -3+c =0与曲线⎩⎨⎧x =5cos θ,y =5sin θ(θ为参数)相切,则实数c 等于________.解析:将曲线⎩⎨⎧x =5cos θ,y =5sin θ(θ为参数)化为普通方程为x 2+y 2=5,由直线2x -y -3+c=0与圆x 2+y 2=5相切,可知|-3+c |5=5,解得c =-2或8.答案:-2或83.(2014·淮南模拟)已知曲线C :⎩⎪⎨⎪⎧ x =2cos θ,y =2sin θ(θ为参数)和直线l :⎩⎪⎨⎪⎧x =t ,y =t +b (t 为参数,b 为实数),若曲线C 上恰有3个点到直线l 的距离等于1,则b =________.解析:将曲线C 和直线l 的参数方程分别化为普通方程为x 2+y 2=4和y =x +b ,依题意,若要使圆上有3个点到直线l 的距离为1,只要满足圆心到直线的距离为1即可,得到|b |2=1,解得b =±2.答案:±24.(2014·西安八校联考)已知曲线C :⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(参数θ∈R )经过点⎝⎛⎭⎫m ,12,则m =________.解析:将曲线C :⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(参数θ∈R )化为普通方程为x 2+y 24=1,将点⎝⎛⎭⎫m ,12代入该椭圆方程,得m 2+144=1,即m 2=1516,所以m =±154.答案:±1545.(2013·广州调研)已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ+2(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ+ρcos θ=1,则直线l 截圆C 所得的弦长是________.解析:圆C 的参数方程化为普通方程为x 2+(y -2)2=1,直线l 的极坐标方程化为直角坐标方程为x +y =1,故圆心到直线l 的距离d =|0+2-1|2=22,故直线l 截圆C 所得的弦长为212-d 2= 2.答案: 26.(2014·深圳调研)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的参数方程为⎩⎨⎧x =t ,y =t +1(t 为参数),曲线C 2的极坐标方程为ρsin θ-ρcos θ=3,则C 1与C 2的交点在直角坐标系中的坐标为________.解析:曲线C 1的方程可化为y =x 2+1(x ≥0),曲线C 2的方程可化为y -x =3,联立⎩⎪⎨⎪⎧y =x 2+1,y -x =3(x ≥0),解得x =2,y =5. 答案:(2,5)7.(2013·湖北高考)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数,a >b >0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin ⎝⎛⎭⎫θ+π4=22m (m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆 O 相切,则椭圆C 的离心率为________.解析:由题意知,椭圆C 的普通方程为x 2a 2+y 2b 2=1,直线l 的直角坐标方程为x +y =m ,圆O 的直角坐标方程为x 2+y 2=b 2,设椭圆C 的半焦距为c ,则根据题意可知,|m |=c ,|m |2=b ,所以有c =2b ,所以椭圆C 的离心率e =c a =c b 2+c2=63.答案:638.以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线的极坐标方程为θ=π4(ρ∈R ),它与曲线⎩⎪⎨⎪⎧x =1+2cos α,y =2+2sin α(α为常数)相交于两点A 和B ,则|AB |=________.解析:直线的普通方程为y =x ,曲线的普通方程(x -1)2+(y -2)2=4,所以|AB |=2 22-⎝⎛⎭⎪⎫|1-2|1+12=14.答案:149.直线⎩⎪⎨⎪⎧ x =-2+4t ,y =-1-3t (t 为参数)被圆⎩⎪⎨⎪⎧x =2+5cos θ,y =1+5sin θ(θ为参数)所截得的弦长为________.解析:将直线化为普通方程:3x +4y +10=0;将圆化为普通方程:(x -2)2+(y -1)2=25,圆心为(2,1),半径为5,则圆心到直线3x +4y +10=0的距离d =|3×2+4×1+10|32+42=205=4,则弦长的一半为3,则弦长为6.答案:610.已知点P 是曲线⎩⎪⎨⎪⎧x =3cos θ,y =4sin θ(θ为参数,0≤θ≤π)上一点.O 为坐标原点,直线PO 的倾斜角为π4,则P 点坐标是________.解析:将曲线C 化为普通方程,得x 29+y 216=1,因为直线OP 的倾斜角为π4,所以其斜率为1,则直线OP 的方程为y =x ,联立方程组⎩⎪⎨⎪⎧x 29+y 216=1,y =x ,解得x =y =125,即P 点坐标为⎝⎛⎭⎫125,125. 答案:⎝⎛⎭⎫125,12511.已知直线l 的极坐标方程为2ρcos ⎝⎛⎭⎫θ-π3+1=0,曲线N 的参数方程为⎩⎨⎧x =1+3sin t ,y =3-3cos t(t 为参数),则直线l 被曲线N 截得的弦长为________. 解析:直线l 的极坐标方程可化为2ρcos θcos π3+sin θsin π3+1=0,即ρcos θ+3ρsin θ+1=0,可得直线l 的方程为x +3y +1=0.曲线N 消掉参数t ,得(x -1)2+(y -3)2=9, 所以曲线N 是以(1,3)为圆心,3为半径的圆. 则圆心到直线l 的距离为d =|1+3×3+1|12+(3)2=52. 所以直线l 被曲线N 截得的弦长为2 32-⎝⎛⎭⎫522=11.答案:1112.已知曲线⎩⎪⎨⎪⎧x =12-12cos 2θ,y =sin θ(θ为参数)与直线x =a 有两个不同的公共点,则实数a的取值范围是________.解析:将曲线的参数方程⎩⎪⎨⎪⎧x =12-12cos 2θ,y =sin θ(θ为参数)转化为普通方程得y 2=x (0≤x ≤1),借助图象(如图)观察,易得0<a ≤1.答案:(0,1]13.过点P (-3,0)且倾斜角为30°的直线和曲线⎩⎨⎧x =t +1ty =t -1t(t 为参数)相交于A ,B 两点,则线段AB 的长为________.解析:由题中条件可知,直线的普通方程为y =33x +3,曲线⎩⎨⎧x =t +1t,y =t -1t(t 为参数)可以化为x 2-y 2=4.设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =33x +3,x 2-y 2=4可得2x 2-6x -21=0,则x 1+x 2=3,x 1x 2=-212.所以|AB |=(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2+13(x 1-x 2)2=43[(x 1+x 2)2-4x 1x 2]=217.答案:21714.已知在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =3+3cos θy =1+3sin θ(θ为参数),以平面直角坐标系的原点作为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的单位长度建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π6=0.则直线l 截圆C 所得的弦长为________.解析:圆C 的参数方程⎩⎨⎧x =3+3cos θ,y =1+3sin θ(θ为参数)可化为普通方程(x -3)2+(y -1)2=9,直线l 的极坐标方程ρcos ⎝⎛⎭⎫θ+π6=0可化为直角坐标方程3x -y =0,弦心距d =|3×3-1×1|(3)2+12=1,故直线l 截圆C 所得的弦长为2r 2-d 2=4 2. 答案:4 215.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).则它们的公共点的坐标为________.解析:因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1得t =x -1,代入y=2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x .解方程组⎩⎪⎨⎪⎧y =2(x -1),y 2=2x ,得公共点的坐标为(2,2),⎝⎛⎭⎫12,-1. 答案:(2,2),⎝⎛⎭⎫12,-116.(2014·长春模拟)已知曲线C 的极坐标方程为ρ=4cos θ,以极点为原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l 的参数方程为⎩⎨⎧x =5+32t ,y =12t(t 为参数).设曲线C与直线l 相交于P ,Q 两点,以PQ 为一条边作曲线C 的内接矩形,则该矩形的面积为________.解析:可知C 为圆,且圆心坐标为(2,0),半径为2,则弦心距d =|2-3×0-5|1+3=32,弦长|PQ |=222-(32)2=7,因此以PQ 为一条边的圆C 的内接矩形面积S =2d ·|PQ |=37.答案:3717.在直角坐标系xOy 中,圆C 1和C 2的参数方程分别是⎩⎪⎨⎪⎧x =2+2cos φ,y =2sin φ(φ为参数)和⎩⎪⎨⎪⎧x =cos φ,y =1+sin φ(φ为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系,射线OM :θ=α与圆C 1的交点为O ,P ,与圆C 2的交点为O ,Q ,则|OP |·|OQ |的最大值为________.解析:圆C 1和圆C 2的普通方程分别是(x -2)2+y 2=4和x 2+(y -1)2=1, 所以圆C 1和C 2的极坐标方程分别是ρ=4cos θ和ρ=2sin θ. 依题意得,点P ,Q 的极坐标分别为P (4cos α,α),Q (2sin α,α),所以|OP |=|4cos α|,|OQ |=|2sin α|.从而|OP |·|OQ |=|4sin 2α|≤4,当且仅当sin 2α=±1时,上式取“=”,即|OP |·|OQ |的最大值是4. 答案:4。

(压轴题)高中数学高中数学选修4-4第一章《坐标系》检测卷(含答案解析)(4)

(压轴题)高中数学高中数学选修4-4第一章《坐标系》检测卷(含答案解析)(4)

一、选择题1.已知点P 的极坐标是1,2π⎛⎫⎪⎝⎭,则过点P 且垂直极轴的直线方程是( ) A .12ρ=B .1cos 2ρθ=C .12cos ρθ=-D .2cos ρθ=-2.以平面直角坐标系的原点为极点,以x 轴的正半轴为极轴,建立极坐标系,则曲线3cos sin x y αα⎧=⎪⎨=⎪⎩(α为参数)上的点到曲线cos sin 4ρθρθ+=的最短距离是( ). A .1B .2C .22D .323.在极坐标系中,由三条直线0θ=,3πθ=,cos sin 1ρθρθ+=围成的图形的面积为( ) A .14B .334- C .234- D .134.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C 的极坐标方程为2cos ρθ=。

若射线3πθ=与曲线1C 和曲线2C 分别交于,A B 两点(除极点外),则AB 等于( )A .31-B .31+C .1D .35.如图所示,极坐标方程sin (0)a a ρθ=>所表示的曲线是( )A .B .C .D .6.在极坐标系中,曲线46sin πρθ⎛⎫=+ ⎪⎝⎭关于( ) A .直线23πθ=对称 B .直线56πθ=对称 C .点2,3π⎛⎫⎪⎝⎭中心对称 D .极点中心对称7.已知点P 的极坐标是π2,6⎛⎫⎪⎝⎭,则过点P 且平行极轴的直线方程是( ) A .ρ1=B .ρsin θ=C .1ρsin θ=-D .1ρsin θ=8.将直角坐标方程y x =转化为极坐标方程,可以是( ) A .1ρ=B .ρθ=C .1()R θρ=∈D .()4R πθρ=∈9.在极坐标系中,点到直线的距离是( ).A .B .C .D .10.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为( ) A .x 2+y 2=0或y =1 B .x =1 C .x 2+y 2=0或x =1 D .y =111.已知曲线C 的极坐标方程为2cos ρθ=,则曲线C 的直角坐标方程为A .22(1)4x y -+=B .22(1)4x y +-=C .22(1)1x y -+=D .22(1)1y x +-=12.将曲线22(1sin )2ρθ+=化为直角坐标方程为A .2212y x +=B .2212x y +=C .2221x y +=D .2221x y +=二、填空题13.已知圆的极坐标方程为4cos ρθ=,圆心为C ,点P 的极坐标为2π2,3⎛⎫⎪⎝⎭,则CP 的长度为______________.14.在极坐标系下,点π(1,)2P 与曲线2cos ρθ=上的动点Q 距离的最小值为_________.15.在极坐标系中,O 为极点,点A 为直线:sin cos 2l ρθρθ=+上一点,则||OA 的最小值为______.16.若直线l 的极坐标方程为ρcos ()324πθ-=C :ρ=1上的点到直线l 的距离为d ,则d 的最大值为________.17.在极坐标系中,圆2cos ρθ=的圆心到直线sin 1ρθ=的距离为______. 18.在平面直角坐标系中,倾斜角为4π的直线l 与曲线C :2cos 1sin x y αα=+⎧⎨=+⎩ (α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.19.在平面直角坐标系xOy 中,已知直线l 的参数方程为(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=4cosθ,直线l 与曲线C 交于A ,B 两点,则线段AB 的长为__. 20.(坐标系与参数方程选做题)已知圆C 的圆心为(6,)2π,半径为5,直线(,)2r πθαθπρ=≤<∈被圆截得的弦长为8,则α=_____.三、解答题21.在直角坐标平面内,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 、B 的极坐标分别为()2,A π,22,4B π⎛⎫⎪⎝⎭,曲线C 的极坐标方程为2sin ρθ=. (1)求AOB 的面积;(2)求直线AB 被曲线C 截得的弦长. 22.在平面直角坐标系xOy 中,圆C 的参数方程为22cos ,2sin x y αα=+⎧⎨=⎩(α为参数),以点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程;(2)过极点O 作直线与圆C 交于点A ,求OA 的中点所在曲线的极坐标方程.23.在直角坐标系xOy 中,直线1:1C x =,圆()222:23C x y -+=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系 (1)求1C ,2C 的极坐标方程; (2)若直线3C 的极坐标方程为()4R πθρ=∈,设2C ,3C 的交点为,M N ,试求2C MN ∆的面积.24.以平面直角坐标系xOy 的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,C 的极坐标方程为8cos ρθ=. (1)求曲线C 的直角坐标方程;(2)经过点()1,1Q 作直线l 交曲线C 于M ,N 两点,若Q 恰好为线段MN 的中点,求直线l 的方程.25.在平面直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线M 的参数方程为1cos 1sin x y ϕϕ=+⎧⎨=+⎩(ϕ为参数),过原点O 且倾斜角为α的直线l 交M 于A 、B 两点.(1)求l 和M 的极坐标方程;(2)当04πα⎛⎤∈ ⎥⎝⎦,时,求OA OB +的取值范围.26.已知在平面直角坐标系xOy 中,直线l的参数方程为4x ty =-⎧⎪⎨=+⎪⎩(t 为参数),曲线1C 的方程为22(1)1y x +-=以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求直线l 和曲线1C 的极坐标系方程;(2)曲线2C :0,02πθαρα⎛⎫=><< ⎪⎝⎭分别交直线l 和曲线1C 交于A 、B ,求22OBOA +的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】把极坐标化为直角坐标,求出直线的直角坐标方程,再化为极坐标方程. 【详解】1,2P π⎛⎫⎪⎝⎭的直角坐标是1,02⎛⎫- ⎪⎝⎭,∴过P 且与极轴垂直的直线的直角坐标方程为12x =-,其极坐标方程为1cos 2ρθ=-,即12cos ρθ=-.故选:C . 【点睛】本题考查求直线的极坐标方程,解题时利用极坐标与直角坐标的互化求解.2.B解析:B 【分析】根据cos ,sin x y ρθρθ==,计算出直线的直角坐标方程,然后假设曲线上任意一点),sin Pαα,根据点到直线的距离公式以及辅助角公式进行计算即可.由cos ,sin x y ρθρθ==,则曲线cos sin 4ρθρθ+=的直角坐标方程为40x y +-=设曲线曲线sin x y αα⎧=⎪⎨=⎪⎩(α为参数)上的任意一点位),sin Pαα则点P到直线的距离位d ==所以当sin 13πα⎛⎫+= ⎪⎝⎭时,min d 故选:B 【点睛】本题考查极坐标方程与普通方程的转化以及使用参数方程来解决点到直线的最值问题,重在计算,考查逻辑推理以及计算能力,属中档题.3.B解析:B 【分析】求出直线0θ=与直线cos sin 1ρθρθ+=交点的极坐标()1,0ρ,直线3πθ=与直线cos sin 1ρθρθ+=交点的极坐标2,3πρ⎛⎫ ⎪⎝⎭,然后利用三角形的面积公式121sin 23S πρρ=可得出结果. 【详解】设直线0θ=与直线cos sin 1ρθρθ+=交点的极坐标()1,0ρ,则1cos01ρ=,得11ρ=. 设直线3πθ=与直线cos sin 1ρθρθ+=交点的极坐标2,3πρ⎛⎫⎪⎝⎭, 则22cossin133ππρρ+=,即22112ρρ=,得21ρ=.因此,三条直线所围成的三角形的面积为)12113sin 1123224S πρρ==⨯⨯⨯=故选B. 【点睛】 本题考查极坐标系中三角形面积的计算,主要确定出交点的极坐标,并利用三角形的面积公式进行计算,考查运算求解能力,属于中等题.4.A【分析】 把3πθ=分别代入2sin ρθ=和2cos ρθ=,求得,A B 的极经,进而求得AB ,得到答案. 【详解】 由题意,把3πθ=代入2sin ρθ=,可得2sin33A πρ==,把3πθ=代入2cos ρθ=,可得2cos13B πρ==,结合图象,可得31A B AB ρρ=-=-,故选A .【点睛】本题主要考查了简单的极坐标方程的应用,以及数形结合法的解题思想方法,着重考查了推理与运算能力,属于基础题.5.C解析:C 【解析】 【分析】把极坐标方程化为直角坐标方程即可。

《创新设计》2021版高考数学(北师大版理科)一轮复习练习:选修4-4 Word版含答案

《创新设计》2021版高考数学(北师大版理科)一轮复习练习:选修4-4 Word版含答案

(建议用时:50分钟)1.(2021·江苏卷)已知圆C 的极坐标方程为ρ2+22ρsin ⎝ ⎛⎭⎪⎫θ-π4-4=0,求圆C 的半径.解 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程为ρ2+22ρ⎝ ⎛⎭⎪⎫22sin θ-22cos θ-4=0,化简,得ρ2+2ρsin θ-2ρcos θ-4=0.则圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0, 即(x -1)2+(y +1)2=6,所以圆C 的半径为 6.2.在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数),试推断直线l 与圆C 的位置关系.解 (1)由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝⎛⎭⎪⎫θ-π4=a 上,可得a = 2.所以直线l 的方程可化为ρcosθ+ρsin θ=2,从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1, 由于圆心C 到直线l 的距离d =12=22<1,所以直线l 与圆C 相交.3.(2021·新课标全国Ⅰ卷)已知曲线C 1的参数方程为⎩⎨⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解 (1)∵C 1的参数方程为⎩⎨⎧x =4+5cos t ,y =5+5sin t ,∴⎩⎨⎧5cos t =x -4,5sin t =y -5.∴(x -4)2+(y -5)2=25(cos 2t +sin 2t )=25, 即C 1的直角坐标方程为(x -4)2+(y -5)2=25, 把x =ρcos θ,y =ρsin θ代入(x -4)2+(y -5)2=25, 化简得:ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的直角坐标方程为x 2+y 2=2y , 解方程组⎩⎨⎧(x -4)2+(y -5)2=25,x 2+y 2=2y ,得⎩⎨⎧x =1,y =1,或⎩⎨⎧x =0,y =2.∴C 1与C 2交点的直角坐标为(1,1),(0,2). ∴C 1与C 2交点的极坐标为⎝⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2.4.在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示); (2)求圆C 1与C 2的公共弦的参数方程. 解 (1)圆C 1的极坐标方程为ρ=2, 圆C 2的极坐标方程为ρ=4cos θ. 解⎩⎨⎧ρ=2,ρ=4cos θ,得ρ=2,θ=±π3, 故圆C 1与圆C 2交点的坐标为⎝ ⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫2,-π3.注:极坐标系下点的表示不唯一.(2)法一 由⎩⎨⎧x =ρcos θ,y =ρsin θ,得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3).故圆C 1与C 2的公共弦的参数方程为⎩⎨⎧x =1,y =t ,-3≤t ≤ 3.⎝ ⎛⎭⎪⎫或参数方程写成⎩⎨⎧x =1,y =y ,-3≤y ≤ 3法二 将x =1代入⎩⎨⎧x =ρcos θ,y =ρsin θ,得ρcos θ=1,从而ρ=1cos θ. 于是圆C 1与C 2的公共弦的参数方程为 ⎩⎨⎧x =1,y =tan θ,-π3≤θ≤π3. 5.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =2+2sin α(α为参数).M 是C 1上的动点,P点满足OP →=2 OM →,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB . 解 (1)设P (x ,y ),则由条件知M ⎝ ⎛⎭⎪⎫x 2,y 2.由于M 点在C 1上,所以⎩⎪⎨⎪⎧x 2=2cos α,y 2=2+2sin α,即⎩⎨⎧x =4cos α,y =4+4sin α.从而C 2的参数方程为⎩⎨⎧x =4cos α,y =4+4sin α.(α为参数)(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ.射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以AB =|ρ2-ρ1|=2 3.6.(2021·湖南卷)已知直线l :⎩⎪⎨⎪⎧x =5+32t ,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值. 解 (1)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.② (2)将⎩⎪⎨⎪⎧x =5+32t ,y =3+12t代入②式,得t 2+53t +18=0.设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义即知,|MA |·|MB |=|t 1t 2|=18. 7.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝ ⎛⎭⎪⎫θ-π4=2 2.(1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R为参数),求a ,b 的值.解 (1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0. 解⎩⎨⎧x 2+(y -2)2=4,x +y -4=0,得⎩⎨⎧x 1=0,y 1=4,⎩⎨⎧x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝ ⎛⎭⎪⎫4,π2,⎝ ⎛⎭⎪⎫22,π4,注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0, 由参数方程可得y =b 2x -ab2+1,所以⎩⎪⎨⎪⎧b2=1,-ab 2+1=2,解得a =-1,b =2.8.已知曲线C 1的参数方程是⎩⎨⎧x =2cos φ,y =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为⎝ ⎛⎭⎪⎫2,π3.(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|P A |2+|PB |2+|PC |2+|PD |2的取值范围. 解 (1)由已知可得A ⎝ ⎛⎭⎪⎫2cos π3,2sin π3,B ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π2,2sin ⎝ ⎛⎭⎪⎫π3+π2,C ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π,2sin ⎝ ⎛⎭⎪⎫π3+π, D ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+3π2,2sin ⎝ ⎛⎭⎪⎫π3+3π2, 即A (1,3),B (-3,1),C (-1,-3),D (3,-1). (2)设P (2cos φ,3sin φ), 令S =|P A |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ. 由于0≤sin 2φ≤1,所以S 的取值范围是[32,52].。

河南省百师联盟2023届高三一轮复习联考(四)全国卷理科数学试题 附答案

河南省百师联盟2023届高三一轮复习联考(四)全国卷理科数学试题 附答案

2023届高三一轮复习联考(四)全国卷理科数学试题注意事项:1.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

考试时间为120分钟,满分150分一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知{}{}||1|2,|1A x x B x x =-<=>,则A ∪B=A. {}|13x x -<<B. {}|1x x >-C. {}|3x x >D. {}|13x x << 2.已知复数z 满(2)2z i i +=-,其中i 为虚数单位,则z z ⋅=A .13B.12C .1D .23.下列命题中的假命题是 A.,sin 2x R x ∈= B .,ln 1x R x ∃∈=- C. 2,0x R x ∀∈>D. ,30xx R ∀∈>4.等差数列{a n }中,12326,27a a S -==-,当S n 取得最小值时,n 的值为 A .4或5B .5或6C .4D .55.函数()cos sin 2f x x x =+的图象可能是,6.已知321lg ,cos1,22a b c -===,则a ,b ,c 的大小关系为A .a b c <<B .a c b <<C .b a c <<D .b c a <<7.已知正数a ,b 满足2221,a b +=,则2ab 的最大值是A .13B.3C.9D .198.已知平面向量a ,b ,c ,其中(2,0),(a b c a b λμ==-=+,且c 与a 和c 与b 的夹角相等,则λμ= A .—1B .1C .—2D .29.直线:l y =与椭圆2222:1x y C a b+=交于P ,Q 两点,F 是椭圆C 的右焦点,且PF QF ⋅=0,则椭圆的离心率为A.4-B .3C1D.210.函数2()2sin cos cos f x x x a x =+关于直线12x π=对称,则函数f (x )的最大值为A .2BC.2D .211.如图所示,在正方体ABCD —1111A B C D 中,O ,F 分别为BD ,AA 1的中点,点P 为棱BB 1上的动点(不含端点),设二面角F −D 1O −P 的平面角为α,直线OF 与平面1OPD 所成角为β,则A .αβ>B .αβ<C .αβ=D .以上均有可能12.相原理也称祖氏原理,是一个涉及求几何体体积的著名数学命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考理科数学第一轮专题《选修4-4》测试题&参考答案测试时间:120分钟 满分:150分1.[2016·石家庄教学质检]在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =22t ,y =3+22t(t 为参数),在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=4sin θ-2cos θ.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若直线l 与y 轴的交点为P ,直线l 与曲线C 的交点为A ,B ,求|P A ||PB |的值.解 (1)直线l 的普通方程为x -y +3=0,(2分) ρ2=4ρsin θ-2ρcos θ,曲线C 的直角坐标方程为(x +1)2+(y -2)2=5.(5分) (2)将直线的参数方程⎩⎪⎨⎪⎧x =22t ,y =3+22t (t 为参数)代入曲线C :(x +1)2+(y -2)2=5,得t 2+22t -3=0,t 1t 2=-3,(8分) 故|P A ||PB |=|t 1t 2|=3.(10分)2.[2016·全国卷Ⅱ]在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (2)直线l 的参数方程是⎩⎨⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解 (1)由x =ρcos θ,y =ρsin θ,可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(3分)(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ). 设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程,得ρ2+12ρcos α+11=0.(5分)于是ρ1+ρ2=-12cos α,ρ1ρ2=11.(7分)|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.(8分)由|AB |=10,得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153.(10分)3.[2017·东北三省四市调研]在直角坐标系xOy 中,圆C 1的参数方程为⎩⎨⎧x =3+3cos φ1,y =3sin φ1(φ1是参数),圆C 2的参数方程为⎩⎨⎧x =cos φ2,y =1+sin φ2(φ2是参数),以O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求圆C 1,圆C 2的极坐标方程;(2)射线θ=α(0≤α<2π)同时与圆C 1交于O ,M 两点,与圆C 2交于O ,N 两点,求|OM |+|ON |的最大值.解 (1)圆C 1:(x -3)2+y 2=3,圆C 2:x 2+(y -1)2=1,(2分) 故圆C 1:ρ =23cos θ,圆C 2:ρ=2sin θ.(4分)(2)当θ=α时,M 的极坐标为(23cos α,α),N 的极坐标为(2sin α,α), ∴|OM |+|ON |=23cos α+2sin α,(6分) ∴|OM |+|ON |=4sin ⎝ ⎛⎭⎪⎫α+π3.(8分)∵π3≤α+π3<7π3,∴当α+π3=π2,即α=π6时,|OM |+|ON |取得最大值4.(10分)4.[2016·云南师大附中月考]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+12t ,y =2+32t(t 为参数),直线l 与曲线C :(y -2)2-x 2=1交于A ,B 两点.(1)求|AB |的长;(2)在以O 为极点,x 轴的正半轴为极轴建立的极坐标系中,设点P 的极坐标为⎝ ⎛⎭⎪⎫22,3π4,求点P 到线段AB 中点M 的距离.解(1)直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+12t ,y =2+32t(t 为参数),代入曲线C 的方程得t 2+4t -10=0.设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=-4,t 1t 2=-10,(3分)所以|AB |=|t 1-t 2|=214.(5分)(2)由极坐标与直角坐标互化公式,得点P 的直角坐标为(-2,2),所以点P 在直线l 上,中点M 对应参数为t 1+t 22=-2.(7分)由参数t 的几何意义,所以点P 到线段AB 中点M 的距离|PM |=2.(10分) 5.[2017·辽宁抚顺一模]在直角坐标系xOy 中,以O 为极点,x 轴非负半轴为极轴建立极坐标系,直线l 的参数方程为⎩⎨⎧x =t ,y =at (t 为参数),曲线C 1的方程为ρ(ρ-4sin θ)=12,定点A (6,0),点P 是曲线C 1上的动点,Q 为AP 的中点.(1)求点Q 的轨迹C 2的直角坐标方程;(2)直线l 与曲线C 2相交于B ,C 两点,若|BC |≥23,求实数a 的取值范围. 解 (1)由题意知,曲线C 1的直角坐标方程为x 2+y 2-4y =12.(2分) 设点P (x ′,y ′),Q (x ,y ).由中点坐标公式得⎩⎨⎧x ′=2x -6,y ′=2y ,代入x 2+y 2-4y =12中,得点Q 的轨迹C 2的直角坐标方程为(x -3)2+(y -1)2=4.(4分)(2)直线l 的普通方程为y =ax , 由题意可得|3a -1|a 2+1≤22-(3)2,(8分) 解得0≤a ≤34,即实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,34.(10分)6.[2017·江西新余模拟]已知直线C 1:⎩⎨⎧x =1+t cos α,y =2+t sin α(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ+22cos ⎝ ⎛⎭⎪⎫θ+π4,且C 1与C 2相交于A 、B 两点.(1)当tan α=1时,判断直线C 1与曲线C 2的位置关系,并说明理由; (2)当α变化时,求弦AB 的中点P 的普通方程,并说明它是什么曲线. 解 (1)当tan α=1时,将直线C 1的参数方程化为普通方程为y =x +1, 曲线C 2:(x -1)2+y 2=1,则圆C 2的圆心C 2(1,0),半径r =1,(3分)则圆心C 2到直线C 1的距离d =2>1,则直线C 1与曲线C 2的位置关系为相离.(5分)(2)由直线C 1的方程可知,直线恒过定点Q (1,2),弦AB 的中点P 满足C 2P ⊥QP ,故点P 到C 2Q 的中点D (1,1)的距离为定值1,(7分)当直线C 1与圆C 2相切时,切点分别记为E ,F ,则点P 的普通方程为C 2: (x -1)2+(y -1)2=1⎝ ⎛⎭⎪⎫y <12,表示的是一段圆弧.(10分)7.[2017·江西南昌调研]将圆x 2+y 2=4每一点的横坐标保持不变,纵坐标变为原来的12倍,得到曲线C .(1)写出C 的参数方程;(2)设直线l :x +2y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),(2分) 依题意得:圆x 2+y 2=4的参数方程为⎩⎨⎧x =2cos t ,y =2sin t(t 为参数),(3分)所以C 的参数方程为⎩⎨⎧x =2cos t ,y =sin t (t 为参数).(5分)(2)由⎩⎪⎨⎪⎧x 24+y 2=1,x +2y -2=0,解得⎩⎨⎧ x =2,y =0或⎩⎨⎧x =0,y =1.(6分)所以P 1(2,0),P 2(0,1),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫1,12,所求直线的斜率k=2,于是所求直线方程为y -12=2(x -1),即4x -2y =3,(8分) 化为极坐标方程得4ρcos θ-2ρsin θ=3,即ρ=34cos θ-2sin θ.(10分)8.[2016·贵阳一中月考]在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,建立极坐标系,两坐标系中取相同的单位长度,已知曲线C 的方程为ρ2=31+2sin 2θ,点A ⎝ ⎛⎭⎪⎫23,π6. (1)求曲线C 的直角坐标方程和点A 的直角坐标;(2)设B 为曲线C 上一动点,以AB 为对角线的矩形BEAF 的一边平行于极轴,求矩形BEAF 周长的最小值及此时点B 的直角坐标.解 (1)由x =ρcos θ,y =ρsin θ,∴曲线C 的直角坐标方程为x 23+y 2=1,(3分) 点A 的直角坐标为(3,3).(5分)(2)曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数,α∈[0,2π)),∴设B (3cos α,sin α),依题意可得|BE |=3-3cos α,|BF |=3-sin α,矩形BEAF 的周长=2|BE |+2|BF |=6+23-23cos α-2sin α=6+23-4sin ⎝ ⎛⎭⎪⎫α+π3,(8分)当α=π6时,周长的最小值为2+23,此时,点B 的直角坐标为⎝ ⎛⎭⎪⎫32,12.(10分)9.[2017·昆明检测]已知曲线C 的极坐标方程是ρsin 2θ-8cos θ=0.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系xOy .在直角坐标系中,倾斜角为α的直线l 过点P (2,0).(1)写出曲线C 的直角坐标方程和直线l 的参数方程;(2)设点Q 和点G 的极坐标分别为⎝ ⎛⎭⎪⎫2,3π2,(2,π),若直线l 经过点Q ,且与曲线C 相交于A ,B 两点,求△GAB 的面积.解 (1)曲线C 可化为ρ2sin 2θ-8ρcos θ=0, 其直角坐标方程为y 2=8x ,(2分)直线l 的参数方程为⎩⎨⎧x =2+t cos α,y =t sin α(t 为参数).(4分)(2)将点Q ⎝ ⎛⎭⎪⎫2,3π2的极坐标化为直角坐标,得(0,-2),易知直线l 的倾斜角α=π4,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =2+22t ,y =22t(t 为参数).将l 的参数方程代入曲线C 的直角坐标方程,得 ⎝ ⎛⎭⎪⎫22t 2=8⎝⎛⎭⎪⎫2+22t ,整理得t 2-82t -32=0,Δ=(82)2+4×32=256>0.(6分) 设t 1,t 2为方程t 2-82t -32=0的两个根, 则t 1+t 2=82,t 1·t 2=-32.所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1·t 2=256=16.(8分)由极坐标与直角坐标互化公式,得点G 的直角坐标为(-2,0),易求点G 到直线l 的距离d =|PG |·sin45°=4×22=22,所以S △GAB =12×d ×|AB |=12×16×22=16 2.(10分)10.[2016·重庆一中月考]在以直角坐标原点O 为极点,x 的非负半轴为极轴的极坐标系下,曲线C 1的方程是ρ=1,将C 1向上平移1个单位得到曲线C 2.(1)求曲线C 2的极坐标方程;(2)若曲线C 1的切线交曲线C 2于不同两点M ,N ,切点为T .求|TM |·|TN |的取值范围.解 (1)依题,因ρ2=x 2+y 2,所以曲线C 1的直角坐标下的方程为x 2+y 2=1,所以曲线C 2的直角坐标下的方程为x 2+(y -1)2=1,(2分) 又y =ρsin θ,所以ρ2-2ρsin θ=0, 即曲线C 2的极坐标方程为ρ=2sin θ.(5分)(2)由题令T (x 0,y 0),y 0∈(0,1],切线MN 的倾斜角为θ,所以切线MN 的参数方程为⎩⎨⎧x =x 0+t cos θ,y =y 0+t sin θ(t 为参数). 联立C 2的直角坐标方程得,t 2+2(x 0cos θ+y 0sin θ-sin θ)t +1-2y 0=0,(8分) 由直线参数方程中t 的几何意义可知,|TM |·|TN |=|1-2y 0|,因为1-2y 0∈[-1,1),所以|TM |·|TN |∈[0,1].(10分) 11.[2016·吉林调研]在平面直角坐标系xOy ,曲线C 1的参数方程为⎩⎨⎧x =a cos φ,y =b sin φ(a >b >0,φ为参数),且曲线C 1上的点M (2,3)对应的参数φ=π3,以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心在极轴上且经过极点的圆,射线θ=π4与曲线C 2交于点D ⎝ ⎛⎭⎪⎫2,π4.(1)求曲线C 1的普通方程,C 2的极坐标方程; (2)若A (ρ1,θ),B ⎝ ⎛⎭⎪⎫ρ2,θ+π2是曲线C 1上的两点,求1ρ21+1ρ22的值. 解 (1)将M (2,3)及对应的参数φ=π3代入 ⎩⎨⎧x =a cos φ,y =b sin φ(a >b >0,φ为参数), 得⎩⎪⎨⎪⎧2=a cos π3,3=b sin π3,所以⎩⎨⎧a =4,b =2,所以曲线C 1的普通方程为x 216+y 24=1;(3分)设圆C 2的半径为R ,则圆C 2的极坐标方程为ρ=2R cos θ,将点D ⎝ ⎛⎭⎪⎫2,π4代入,得R =1,所以圆C 2的极坐标方程为ρ=2cos θ.(5分)(2)曲线C 1的极坐标方程为ρ2cos 2θ16+ρ2sin 2θ4=1,将A (ρ1,θ),B ⎝ ⎛⎭⎪⎫ρ2,θ+π2代入,得ρ21cos 2θ16+ρ21sin 2θ4=1,ρ22sin 2θ16+ρ22cos 2θ4=1,(8分)所以1ρ21+1ρ22=⎝⎛⎭⎪⎫cos 2θ16+sin 2θ4+⎝ ⎛⎭⎪⎫sin 2θ16+cos 2θ4=116+14=516.(10分)12.[2016·全国卷Ⅰ]在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解 (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2,故C 1是以(0,1)为圆心,a 为半径的圆.(3分)将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(5分)(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎨⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.(7分) 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去)或a =1.(9分)a =1时,极点也为C 1,C 2的公共点,在C 3上, 所以a =1.(10分)13.[2016·太原模拟]在平面直角坐标系xOy 中,设倾斜角为α的直线l 的方程为⎩⎨⎧x =2+t cos α,y =3+t sin α(t 为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2=41+3sin 2θ,直线l 与曲线C 相交于不同的两点A ,B .(1)若α=π3,求线段AB 中点M 的直角坐标;(2)若|P A |·|PB |=|OP |2,其中P (2,3),求直线l 的斜率. 解 (1)曲线C 的普通方程是x 24+y 2=1.(2分)当α=π3时,设点M 对应的参数为t 0,直线l 的方程为⎩⎪⎨⎪⎧x =2+12t ,y =3+32t(t 为参数),代入曲线C 的普通方程x 24+y 2=1,得13t 2+56t +48=0,设曲线C 上的点A ,B 对应的参数分别为t 1,t 2,则t 0=t 1+t 22=-2813,所以点M 的坐标为⎝ ⎛⎭⎪⎫1213,-313.(5分)(2)将⎩⎨⎧x =2+t cos α,y =3+t sin α代入曲线C 的普通方程x 24+y 2=1,得(cos 2α+4sin 2α)t 2+(83sin α+4cos α)t +12=0, 因为|P A |·|PB |=|t 1t 2|=12cos 2α+4sin 2α,|OP |2=7, 所以12cos 2α+4sin 2α=7,解得tan 2α=516, 由于Δ=32cos α(23sin α-cos α)>0,故tan α=54, 所以直线l 的斜率为54.(10分)14.[2017·河南开封调研]在直角坐标系xOy 中,直线l 的方程是y =8,圆C 的参数方程是⎩⎨⎧x =2cos φ,y =2+2sin φ(φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求直线l 和圆C 的极坐标方程;(2)射线OM :θ=α⎝ ⎛⎭⎪⎫其中0<a <π2与圆C 交于O 、P 两点,与直线l 交于点M ,射线ON :θ=α+π2与圆C 交于O 、Q 两点,与直线l 交于点N ,求|OP ||OM |·|OQ ||ON |的最大值.解 (1)直线l 的极坐标方程是ρsin θ=8.(2分) 圆C 的普通方程是x 2+(y -2)2=4, 所以圆C 的极坐标方程是ρ=4sin θ.(5分) (2)依题意得,点P ,M 的极坐标分别为 ⎩⎨⎧ ρ=4sin α,θ=α和⎩⎨⎧ρsin α=8,θ=α. 所以|OP |=4sin α,|OM |=8sin α,从而|OP ||OM |=4sin α8sin α=sin 2α2.(7分)同理,|OQ ||ON |=sin 2⎝ ⎛⎭⎪⎫α+π22.(8分) 所以|OP ||OM |·|OQ ||ON |=sin 2α2·sin 2⎝ ⎛⎭⎪⎫α+π22=sin 2(2α)16,故当α=π4时,|OP ||OM |·|OQ ||ON |的值最大,该最大值是116.(10分)15.[2016·山西名校联考]在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线C :ρ=2cos θ,过点P (-1,0)的直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-223t ,y =13t (t 为参数),且直线l 与曲线C 分别交于点A ,B .(1)求|AB |;(2)若点Q 是曲线C 上任意一点,R 是线段PQ 的中点,过点R 作x 轴的垂线段RH ,H 为垂足,点G 在射线HR 上,且满足|HG |=3|HR |,求点G 的轨迹C ′的参数方程并说明它表示什么曲线.解 (1)∵⎩⎨⎧x =ρcos θ,y =ρsin θ,且曲线C :ρ=2cos θ,∴曲线C 的直角坐标方程为x 2+y 2=2x ,即(x -1)2+y 2=1, 曲线C 是圆心为(1,0),半径为r =1的圆.(2分) ∵直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-223t ,y =13t(t 为参数),∴直线l 的普通方程为x +22y +1=0,(4分) ∴圆心C 到直线l 的距离为d =|1+1|1+8=23,∴|AB |=2r 2-d 2=2×1-⎝ ⎛⎭⎪⎫232=253.(5分) (2)由题,可得圆C 的参数方程为⎩⎨⎧x =1+cos φ,y =sin φ(其中φ为参数,φ∈[0,2π)),第 11 页 共 11 页 设圆C 上的任意一点Q (1+cos φ,sin φ),则线段PQ 的中点R ⎝ ⎛⎭⎪⎫12cos φ,12sin φ.(6分)∵RH ⊥x 轴,∴H ⎝ ⎛⎭⎪⎫12cos φ,0. ∵点G 在射线HR 上,且满足|HG |=3|HR |,∴⎩⎪⎨⎪⎧ x G =x R =12cos φ,y G =3y R =32sin φ,∴点G 的轨迹C ′的参数方程为⎩⎪⎨⎪⎧ x =12cos φ,y =32sin φ(其中φ为参数,φ∈[0,2π)),(9分) 轨迹C ′是焦点在y 轴,长轴长为3,短轴长为1的椭圆.(10分)。

相关文档
最新文档