2013年全国高考数学理科试卷江苏卷(word版)

合集下载

2013年高考理数真题试卷(江苏卷)及解析

2013年高考理数真题试卷(江苏卷)及解析

第1页,总14页…………装…………○…___________姓名:___________班级…………装…………○…2013年高考理数真题试卷(江苏卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明第II 卷(非选择题)请点击修改第II 卷的文字说明一、填空题(题型注释)1.函数y=3sin (2x+ π4 )的最小正周期为 .2.设z=(2﹣i )2(i 为虚数单位),则复数z 的模为 .3.双曲线 x 216−y 29=1 的两条渐近线方程为 .则成绩较为稳定(方差较小)的那位运动员成绩的方差为 .5.现在某类病毒记作X m Y n , 其中正整数m ,n (m≤7,n≤9)可以任意选取,则m ,n 都取到奇数的概率为 .6.如图,在三棱柱A 1B 1C 1﹣ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F ﹣ADE 的体积为V 1 , 三棱柱A 1B 1C 1﹣ABC 的体积为V 2 , 则V 1:V 2= .7.抛物线y=x 2在x=1处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点P (x ,y )是区域D 内的任意一点,则x+2y 的取值范围是 .8.设D ,E 分别是△ABC 的边AB ,BC上的点,AD= 12 AB ,BE= 23BC ,若 DE → =λ1 AB → +λ2AC →(λ1 , λ2为实数),则λ1+λ2的值为 .9.在平面直角坐标系xOy 中,椭圆C 的标准方程为 x 2a 2+y 2b 2=1 (a >b >0),右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为d 1 , F 到l 的距离为d 2 , 若d 2= √6d 1 ,则椭圆C 的离心率为 .答案第2页,总14页装…………○………※要※※在※※装※※订※※线※装…………○………10.在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数y= 1x (x >0)图象上一动点,若点P ,A 之间的最短距离为2 √2 ,则满足条件的实数a 的所有值为 . 11.在正项等比数列{a n }中, a 5=12 ,a 6+a 7=3,则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为 .二、解答题(题型注释)12.设{a n }是首项为a ,公差为d 的等差数列(d≠0),S n 是其前n 项和.记b n = nSnn 2+c ,n∈N * ,其中c 为实数.(1)若c=0,且b 1 , b 2 , b 4成等比数列,证明:S nk =n 2S k (k ,n∈N *); (2)若{b n }是等差数列,证明:c=0.13.设函数f (x )=lnx ﹣ax ,g (x )=e x ﹣ax ,其中a 为实数.(1)若f (x )在(1,+∞)上是单调减函数,且g (x )在(1,+∞)上有最小值,求a 的取值范围;(2)若g (x )在(﹣1,+∞)上是单调增函数,试求f (x )的零点个数,并证明你的结论.14.如图,AB 和BC 分别与圆O 相切于点D 、C ,AC 经过圆心O ,且BC=2OC . 求证:AC=2AD .15.已知矩阵A= [−1002] ,B= [126] ,求矩阵A ﹣1B . 16.在平面直角坐标系xOy 中,直线l 的参数方程为 {x =t +1y =2t( 为参数),曲线C 的参数方程为 {x =2t 2y =2t(t 为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.17.已知a≥b>0,求证:2a 3﹣b 3≥2ab 2﹣a 2b .第3页,总14页○…………线…………○…_○…………线…………○…18.如图,在直三棱柱A 1B 1C 1﹣ABC 中,AB⊥AC,AB=AC=2,AA 1=4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与ABA 1所成二面角的正弦值.19.设数列{a n }:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…, (−1)k−1k,⋯,(−1)k−1k ︷k 个 ,…,即当(k−1)k 2 <n≤ (k+1)k 2(k∈N *)时, a n =(−1)k−1k .记S n =a 1+a 2+…+a n (n∈N ∗).对于l∈N ∗ , 定义集合P l =﹛n|S n 为a n 的整数倍,n∈N ∗ , 且1≤n≤l}(1)求P 11中元素个数;(2)求集合P 2000中元素个数.答案第4页,总14页参数答案1.π【解析】1.解:∵函数表达式为y=3sin (2x+ π4 ), ∴ω=2,可得最小正周期T=| 2πω |=| 2π2 |=π 所以答案是:π 2.5【解析】2.解:z=(2﹣i )2=4﹣4i+i 2=3﹣4i . 所以,|z|= √32+(−4)2=5. 所以答案是5. 3.y =±34x【解析】3.解:∵双曲线 x 216−y 29=1 的a=4,b=3,焦点在x 轴上而双曲线 x 2a 2−y 2b2=1 的渐近线方程为y=± ba x ∴双曲线 x 216−y 29=1 的渐近线方程为 y =±34x所以答案是: y =±34x4.2【解析】4.解:由图表得到甲乙两位射击运动员的数据分别为: 甲:87,91,90,89,93; 乙:89,90,91,88,92;x 甲¯=87+91+90+89+935=90 , x 乙¯=89+90+91+88+925=90 .方差 S 甲2=(87−90)2+(91−90)2+(90−90)2+(89−90)2+(93−90)25=4 =4.S 乙2=(89−90)2+(90−90)2+(91−90)2+(88−90)2+(92−90)25=2 =2.所以乙运动员的成绩较稳定,方差为2. 所以答案是2.【考点精析】解答此题的关键在于理解极差、方差与标准差的相关知识,掌握标准差和方差越大,数据的离散程度越大;标准差和方程为0时,样本各数据全相等,数据没有离散性;方差与原始数据单位不同,解决实际问题时,多采用标准差.第5页,总14页…○…………外…………○…………装…………○……学校:___________姓名:___________班级:__…○…………内…………○…………装…………○…… 5.2063【解析】5.解:m 取小于等于7的正整数,n 取小于等于9的正整数,共有7×9=63种取法. m 取到奇数的有1,3,5,7共4种情况;n 取到奇数的有1,3,5,7,9共5种情况, 则m ,n 都取到奇数的方法种数为4×5=20种. 所以m ,n 都取到奇数的概率为 4×57×9=2063 . 所以答案是 2063 .6.1:24【解析】6.解:因为D ,E ,分别是AB ,AC 的中点,所以S △ADE :S △ABC =1:4, 又F 是AA 1的中点,所以A 1到底面的距离H 为F 到底面距离h 的2倍. 即三棱柱A 1B 1C 1﹣ABC 的高是三棱锥F ﹣ADE 高的2倍. 所以V 1:V 2= 13S △ADE ⋅ℎS△ABC ⋅H=124 =1:24.所以答案是1:24. 7.[﹣2, 12 ]【解析】7.解:由y=x 2得,y′=2x,所以y′|x=1=2,则抛物线y=x 2在x=1处的切线方程为y=2x ﹣1.令z=x+2y ,则 y =−12x =z2.画出可行域如图,所以当直线 y =−12x =z2过点(0,﹣1)时,z min =﹣2.过点( 12,0 )时, z max =12 . 所以答案是[﹣2, 12 ].答案第6页,总14页……○…………订…………○…………线※※装※※订※※线※※内※※答※※题※※……○…………订…………○…………线【考点精析】根据题目的已知条件,利用基本求导法则的相关知识可以得到问题的答案,需要掌握若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 8.12【解析】8.解:由题意结合向量的运算可得 DE →= DB →+BE →= 12AB →+23BC →=12AB →+23(BA→+AC →)= 12AB→−23AB→+23AC →=−16AB→+23AC →又由题意可知若 DE →=λ1 AB →+λ2 AC →, 故可得λ1= −16 ,λ2= 23 ,所以λ1+λ2= 12所以答案是: 12【考点精析】本题主要考查了平面向量的基本定理及其意义的相关知识点,需要掌握如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使才能正确解答此题.9.√33【解析】9.解:如图,准线l :x= a 2c ,d 2= a 2c−c =b 2c, 由面积法得:d 1= bca , 若d 2= √6d 1 ,则 b 2c=√6×bca ,整理得 √6a 2﹣ab ﹣ √6b 2 =0,两边同除以a 2, 得 √6 (b a )2 +( ba )﹣ √6=0,解得b a =√63.∴e= √1−(b a )2= √33 .第7页,总14页○…………外…………○………装…………○…………订…………………线…………○…学__________姓名:___________班级:___________考号:_________○…………内…………○………装…………○…………订…………………线…………○…所以答案是: √33.10.﹣1或 √10【解析】10.解:设点P (x,1x )(x >0) ,则|PA|===,令 t =x +1x ,∵x>0,∴t≥2,令g (t )=t 2﹣2at+2a 2﹣2=(t ﹣a )2+a 2﹣2,①当a≤2时,t=2时g (t )取得最小值g (2)=2﹣4a+2a 2= (2√2)2,解得a=﹣1; ②当a >2时,g (t )在区间[2,a )上单调递减,在(a ,+∞)单调递增,∴t=a,g (t )取得最小值g (a )=a 2﹣2,∴a 2﹣2= (2√2)2,解得a= √10 . 综上可知:a=﹣1或 √10 . 所以答案是﹣1或 √10 .11.12【解析】11.解:设正项等比数列{a n }首项为a 1 , 公比为q ,由题意可得,解之可得:a 1= 132 ,q=2,故其通项公式为a n = 132×2n−1=2n ﹣6 .记T n =a 1+a 2+…+a n =132(1−2n )1−2=2n −125,S n =a 1a 2…a n =2﹣5×2﹣4…×2n ﹣6=2﹣5﹣4+…+n﹣6= 2(n−11)n2 .答案第8页,总14页……订…………○…………线…………○线※※内※※答※※题※※……订…………○…………线…………○由题意可得T n >S n , 即 2n −125> 2(n−11)n2 ,化简得:2n﹣1> 212n 2−112n+5 ,即2n﹣ 212n 2−112n+5 >1,因此只须n > 12n 2−112n +5 ,即n 2﹣13n+10<0解得13−√1292 <n < 13+√1292, 由于n 为正整数,因此n 最大为 13+√1292的整数部分,也就是12.所以答案是:12【考点精析】关于本题考查的解一元二次不等式和等差数列的前n 项和公式,需要了解求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边;前n 项和公式:才能得出正确答案.12. (1)证明:若c=0,则a n =a 1+(n ﹣1)d , S n =n[(n−1)d+2a]2, b n=nS n n 2=(n−1)d+2a2. 当b 1,b 2,b 4成等比数列时,则 b 22=b 1b 4 ,即: (a+d 2)2=a(a +3d2) ,得:d 2=2ad ,又d≠0,故d=2a .因此: S n =n 2a , S nk =(nk)2a =n 2k 2a , n 2S k =n 2k 2a . 故: S nk =n 2S (k ,n∈N*).(2) 证明: b n =nS n n 2+c=n 2(n−1)d+2a2n 2+c=n 2(n−1)d+2a 2+c (n−1)d+2a 2−c (n−1)d+2a2n 2+c= (n−1)d+2a 2−c (n−1)d+2a2n 2+c. ①若{b n }是等差数列,则{b n }的通项公式是b n =A n +B 型. 观察①式后一项,分子幂低于分母幂, 故有:c(n−1)d+2a2n 2+c,即 c(n−1)d+2a2,而(n−1)d+2a2≠0 ,故c=0.经检验,当c=0时{b n }是等差数列.第9页,总14页…○…………线…………____…○…………线…………【解析】12.(1)写出等差数列的通项公式,前n 项和公式,由b 1 , b 2 , b 4成等比数列得到首项和公差的关系,代入前n 项和公式得到S n , 在前n 项和公式中取n=nk 可证结论; (2)把S n 代入 b n =nS nn 2+c中整理得到b n = (n−1)d+2a 2−c (n−1)d+2a2n 2+c,由等差数列的通项公式是a n =An+B 的形式,说明c(n−1)d+2a2n 2+c=0 ,由此可得到c=0.【考点精析】本题主要考查了等差数列的前n 项和公式和等比关系的确定的相关知识点,需要掌握前n 项和公式:;等比数列可以通过定义法、中项法、通项公式法、前n 项和法进行判断才能正确解答此题.13.(1)解:求导数可得f′(x )= 1x ﹣a∵f(x )在(1,+∞)上是单调减函数,∴ 1x ﹣a≤0在(1,+∞)上恒成立, ∴a≥ 1x ,x∈(1,+∞).∴a≥1.令g′(x )=e x ﹣a=0,得x=lna .当x <lna 时,g′(x )<0;当x >lna 时,g′(x )>0. 又g (x )在(1,+∞)上有最小值,所以lna >1,即a >e . 故a 的取值范围为:a >e .(2)解:当a≤0时,g (x )必为单调函数;当a >0时,令g′(x )=e x ﹣a >0,解得a <e x ,即x >lna ,因为g (x )在(﹣1,+∞)上是单调增函数,类似(1)有lna≤﹣1,即0< a ≤1e .结合上述两种情况,有 a ≤1e.①当a=0时,由f (1)=0以及f′(x )= 1x >0,得f (x )存在唯一的零点;②当a <0时,由于f (e a )=a ﹣ae a =a (1﹣e a )<0,f (1)=﹣a >0,且函数f (x )在[e a ,1]上的图象不间断,所以f (x )在(e a ,1)上存在零点.另外,当x >0时,f′(x )= 1x ﹣a >0,故f (x )在(0,+∞)上是单调增函数,所以f (x )只有一个零点.③当0<a≤ 1e 时,令f′(x )= 1x ﹣a=0,解得x= 1a .当0<x < 1a 时,f′(x )>0,当x > 1a 时,f′(x )<0,所以,x= 1a 是f (x )的最大值点,且最大值为f ( 1a )=﹣lna ﹣1. (i )当﹣lna ﹣1=0,即a= 1e 时,f (x )有一个零点x=e ;答案第10页,总14页……外…………○……※※请※……内…………○……(ii )当﹣lna ﹣1>0,即0<a < 1e 时,f (x )有两个零点;实际上,对于0<a < 1e ,由于f ( 1e )=﹣1﹣ ae <0,f ( 1a )>0,且函数f (x )在[ 1e ,1a ]上的图象不间断,所以f (x )在( 1e ,1a )上存在零点.另外,当0<x < 1a 时,f′(x )= 1x ﹣a >0,故f (x )在(0, 1a )上时单调增函数,所以f (x )在(0, 1a )上只有一个零点. 下面考虑f (x )在( 1a ,+∞)上的情况,先证明f ( 1e a )=a ( 1a 2−e1a )<0.为此,我们要证明:当x >e 时,e x >x 2.设h (x )=e x ﹣x 2,则h′(x )=e x ﹣2x ,再设l (x )=h′(x )=e x ﹣2x ,则l′(x )=e x ﹣2.当x >1时,l′(x )=e x ﹣2>e ﹣2>0,所以l (x )=h′(x )在(1,+∞)上时单调增函数;故当x >2时,h′(x )=e x ﹣2x >h′(2)=e 2﹣4>0,从而h (x )在(2,+∞)上是单调增函数,进而当x >e 时,h (x )=e x ﹣x 2>h (e )=e e ﹣e 2>0,即当x >e 时,e x >x 2 当0<a < 1e ,即 1a >e时,f ( 1e a )= 1a −ae 1a =a ( 1a 2−e1a )<0,又f ( 1a )>0,且函数f (x )在[ 1a , 1e a ]上的图象不间断,所以f (x )在( 1a , 1e a )上存在零点. 又当x > 1a 时,f′(x )= 1x ﹣a <0,故f (x )在( 1a ,+∞)上是单调减函数,所以f (x )在( 1a ,+∞)上只有一个零点.综合(i )(ii )(iii ),当a≤0或a= 1e 时,f (x )的零点个数为1,当0<a < 1e 时,f (x )的零点个数为2.【解析】13.(1)求导数,利用f (x )在(1,+∞)上是单调减函数,转化为 1x ﹣a≤0在(1,+∞)上恒成立,利用g (x )在(1,+∞)上有最小值,结合导数知识,即可求得结论;(2)先确定a 的范围,再分类讨论,确定f (x )的单调性,从而可得f (x )的零点个数.【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减).14.证明:连接OD .因为AB 和BC 分别与圆O 相切于点D ,C ,所以ADO=∠ACB=90° 又因为∠A=∠A,所以Rt△ADO∽Rt△ACB,………外……………………装…………○…………订………○…………线…………○…校:___________姓名:___________班级:___________考号:_______………内……………………装…………○…………订………○…………线…………○…所以 ,因为BC=2OC=2OD . 所以AC=2AD .【解析】14.证明Rt△ADO∽Rt△ACB,可得 BCOD =ACAD ,结合BC=2OC=2OD ,即可证明结论.15.解:设矩阵A 的逆矩阵为 ,则 = ,即 = ,故a=﹣1,b=0,c=0,d= ,从而A ﹣1= ,∴A ﹣1B= = .【解析】15.设矩阵A ﹣1= [abc d] ,通过AA ﹣1为单位矩阵可得A ﹣1 , 进而可得结论. 16.解:直线l 的参数方程为( 为参数),由x=t+1可得t=x ﹣1,代入y=2t , 可得直线l 的普通方程:2x ﹣y ﹣2=0.曲线C 的参数方程为 (t 为参数),化为y 2=2x ,答案第12页,总14页………外…………○…………线…………○※※请※………内…………○…………线…………○联立 ,解得 , ,于是交点为(2,2), .【解析】16.运用代入法,可将直线l 和曲线C 的参数方程化为普通方程,联立直线方程和抛物线方程,解方程可得它们的交点坐标.17.证明:2a 3﹣b 3﹣2ab 2+a 2b=2a (a 2﹣b 2)+b (a 2﹣b 2)=(a ﹣b )(a+b )(2a+b ), ∵a≥b>0,∴a﹣b≥0,a+b >0,2a+b >0, 从而:(a ﹣b )(a+b )(2a+b )≥0, ∴2a 3﹣b 3≥2ab 2﹣a 2b .【解析】17.直接利用作差法,然后分析证明即可.【考点精析】本题主要考查了不等式的证明的相关知识点,需要掌握不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等才能正确解答此题. 18.(1)解:以{ AB →,AC,→AA 1→}为单位正交基底建立空间直角坐标系A ﹣xyz , 则由题意知A (0,0,0),B (2,0,0),C (0,2,0), A 1(0,0,4),D (1,1,0),C 1(0,2,4), ∴ A 1B →=(2,0,−4) , C 1D →=(1,﹣1,﹣4), ∴cos< A 1B →,C 1D →>=A 1B →⋅C 1D→|A 1B →|⋅|C 1D →|= √20⋅√18 = 3√1010 ,∴异面直线A 1B 与C 1D 所成角的余弦值为3√1010.(2)解: AC →=(0,2,0) 是平面ABA 1的一个法向量,设平面ADC 1的法向量为 m →=(x,y,z) , ∵ AD →=(1,1,0),AC 1→=(0,2,4) , ∴ {m →⋅AD →=x +y =0m →⋅AC 1→=2y +4z =0,取z=1,得y=﹣2,x=2,∴平面ADC 1的法向量为 m →=(2,−2,1) , 设平面ADC 1与ABA 1所成二面角为θ, ∴cosθ=|cos< AC →,m →>|=| 2×√9 |= 23 ,∴sinθ= √1−(23)2= √53 .∴平面ADC 1与ABA 1所成二面角的正弦值为 √53 .【解析】18.(1)以{ AB →,AC,→AA 1→}为单位正交基底建立空间直角坐标系A ﹣xyz ,利用向量法能求出异面直线A 1B 与C 1D 所成角的余弦值.(2)分别求出平面ABA 1的法向量和平面ADC 1的法向量,利用向量法能求出平面ADC 1与ABA 1所成二面角的余弦值,再由三角函数知识能求出平面ADC 1与ABA 1所成二面角的正弦值.【考点精析】掌握异面直线及其所成的角是解答本题的根本,需要知道异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系. 19. (1)解:由数列{a n }的定义得a 1=1,a 2=﹣2,a 3=﹣2,a 4=3, a 5=3,a 6=3,a 7=﹣4,a 8=﹣4,a 9=﹣4,a 10=﹣4,a 11=5, 所以S 1=1,S 2=﹣1,S 3=﹣3,S 4=0,S 5=3,S 6=6,S 7=2, S 8=﹣2,S 9=﹣6,S 10=﹣10,S 11=﹣5,从而S 1=a 1,S 4=0•a 4,S 5=a 5,S 6=2a 6,S 11=﹣a 11, 所以集合P 11中元素的个数为5;(2)解:先证:S i (2i+1)=﹣i (2i+1)(i∈N*).事实上,①当i=1时,S i (2i+1)=S 3=﹣3,﹣i (2i+1)=﹣3,故原等式成立; ②假设i=m 时成立,即S m (2m+1)=﹣m (2m+1),则i=m+1时, S (m+1)(2m+3)=S m (2m+1)+(2m+1)2﹣(2m+2)2=﹣m (2m+1)﹣4m ﹣3 =﹣(2m 2+5m+3)=﹣(m+1)(2m+3).综合①②可得S i (2i+1)=﹣i (2i+1).于是S (i+1)(2i+1)=S i (2i+1)+(2i+1)2 =﹣i (2i+1)+(2i+1)2=(2i+1)(i+1).由上可知S i (2i+1)是2i+1的倍数,而a i (2i+1)+j=2i+1(j=1,2,…,2i+1),答案第14页,总14页又S (i+1)(2i+1)=(i+1)•(2i+1)不是2i+2的倍数, 而a (i+1)(2i+1)+j=﹣(2i+2)(j=1,2,…,2i+2),所以S (i+1)(2i+1)+j=S (i+1)(2i+1)+j (2i+2)=(2i+1)(i+1)﹣j (2i+2) 不是a (i+1)(2i+1)+j (j=1,2,…,2i+2)的倍数,故当l=i (2i+1)时,集合P l 中元素的个数为1+3+…+(2i ﹣1)=i 2,于是,当l=i (2i+1)+j (1≤j≤2i+1)时,集合P l 中元素的个数为i 2+j . 又2000=31×(2×31+1)+47,故集合P 2 000中元素的个数为312+47=1008.【解析】19.(1)由数列{a n }的定义,可得前11项,进而得到前11项和,再由定义集合P l , 即可得到元素个数;(2)运用数学归纳法证明S i (2i+1)=﹣i (2i+1)(i∈N*).再结合定义,运用等差数列的求和公式,即可得到所求.【考点精析】通过灵活运用数学归纳法的定义,掌握 数学归纳法是证明关于正整数n 的命题的一种方法即可以解答此题.。

2013高考理科数学真题(新课标纯WORD版)

2013高考理科数学真题(新课标纯WORD版)

绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题 共50分)一、 选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|(x+1)2 < 4,x ∈R },N={-1,0,1,2,3},则M ∩N=(A ){0,1,2} (B){-1,0,1,2}(C ){-1,0,2,3} (D){0,1,2,3}(2)设复数z 满足(1-i )z=2 i ,则z=(A )-1+i (B )-1-i (C )1+i (D )1-i(3)等比数列{a n }的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1=(A ) 13 (B )- 13 (C ) 19 (D )- 19(4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β。

直线l 满足l ⊥m ,l ⊥n ,l ⊄α内,l ⊄β内,则( )(A )α∥β且l ∥α (B )α⊥β且l ⊥β(C )α与β相交,且交线垂直于l (D )α与β相交,且交线平行于l(5)已知(1+ax )(1+x)5的展开式中x 2的系数为5,则a=(A )-4 (B )-3 (C )-2 (D )-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A )1+ 12+ 13+…+ 110(B )1+ 12!+ 13!+…+ 110!(C )1+ 12+ 13+…+ 111(D )1+ 12!+ 13!+…+ 111!(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a (C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a= (A) 14 (B) 12 (C)1 (D)2(10)已知函数f(x)=x 3+ax 2+bx+,下列结论中错误的是(A )∃x α∈R,f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若x B 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y 2=3px(p>0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,3),则C 的方程为(A )y 2=4x 或y 2=8x (B )y 2=2x 或y 2=8x(C )y 2=4x 或y 2=16x (D )y 2=2x 或y 2=16x(12)已知点A (-1,0);B (1,0);C (0,1),直线y=ax+b(a>0),将△ABC 分割为面积相等的两部分,则b 的取值范围是(A )(0,1)(B)(1-√22,1/2)( C)(1-√22,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

【真题】2013年江苏省高考数学试题(含附加题+答案)

【真题】2013年江苏省高考数学试题(含附加题+答案)

绝密★启用前2013年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项:考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题-第20题,共20题)。

本卷满分为160分。

考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前请务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B 铅笔绘,写清楚,线条,符号等须加黑加粗。

参考公式:样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑。

棱锥的体积公式:13V Sh =,其中S 是锥体的底面积,h 为高。

棱柱的体积公式:V Sh =,其中S 是柱体的底面积,h 为高。

一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应位置上.........。

二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明或演算步骤.15、(本小题满分14分) 已知向量(cos ,sin ),(cos ,sin ),0a b ααβββαπ==<<< 。

(1)若||a b -= a b ⊥ ;(2)设(0,1)c = ,若a b c += ,求βα,的值。

16、(本小题满分14分) 如图,在三棱锥S-ABC 中,平面⊥SAB 平面SBC,BC AB ⊥,AS=AB 。

过A 作SB AF ⊥,垂足为F ,点E 、G 分别为线段SA 、SC 的中点。

求证:(1)平面EFG//平面ABC ;(2)BC SA ⊥。

17、(本小题满分14分)如图,在平面直角坐标系xoy 中,点A(0,3),直线42:-=x y l ,设圆C 的半径为1,圆心在直线l 上。

2013年江苏高考数学试题及答案解析版1_(word版)

2013年江苏高考数学试题及答案解析版1_(word版)

2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。

请把答案填写在答题卡相印位置上。

.6则成绩较为稳定(方差较小)的那位运动员成绩的方差为 【答案】2 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m , 都取到奇数的概率为 .63208.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .1:249.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 .[—2,12 ]10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 .1211.已知)(x f 是定义在R 上的奇函数。

当0>x 时,x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为 .(﹣5,0) ∪(5,﹢∞)12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 .3313.在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点,若点A P ,之间的最短距离为22,则满足条件的实数a 的所值为 .1或1014.在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为 .12二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0.(1)若2||=-b a ,求证:b a ⊥;(2)设)1,0(=c ,若c b a =+,求βα,的值. 解:(1)a -b =(cosα-cosβ,sin α-sin β),|a -b |2=(cosα-cosβ)2+(sin α-sin β)2=2-2(cosα·cosβ+sin α·sin β)=2, 所以,cosα·cosβ+sin α·sin β=0,所以,b a ⊥. (2)⎩⎨⎧=+=+②1sin sin ①0cos cos βαβα,①2+②2得:cos(α-β)=-12 .所以,α-β=π32,α=π32+β,带入②得:sin(π32+β)+sin β=23cosβ+12 sin β=sin(3π+β)=1, 所以,3π+β=2π. 所以,α=65π,β=6π.16.(本小题满分14分)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证: (1)平面//EFG 平面ABC ;(2)SA BC ⊥. 证:(1)因为SA =AB 且AF ⊥SB , 所以F 为SB 的中点. 又E ,G 分别为SA ,SC 的中点, 所以,EF ∥AB ,EG ∥AC .又AB ∩AC =A ,AB ⊂面SBC ,AC ⊂面ABC , 所以,平面//EFG 平面ABC . (2)因为平面SAB ⊥平面SBC ,平面SAB ∩平面SBC =BC ,AF ⊂平面ASB ,AF ⊥SB .所以,AF ⊥平面SBC .又BC ⊂平面SBC , 所以,AF ⊥BC .又AB ⊥BC ,AF ∩AB =A , 所以,BC ⊥平面SAB .又SA ⊂平面SAB , 所以,SA BC ⊥.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线, 求切线的方程;A BSG F E(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐 标a 的取值范围.解:(1)联立:⎩⎨⎧-=-=421x y x y ,得圆心为:C (3,2).设切线为:3+=kx y ,d =11|233|2==+-+r k k ,得:430-==k or k .故所求切线为:343+-==x y or y .(2)设点M (x ,y ),由MO MA 2=,知:22222)3(y x y x +=-+,化简得:4)1(22=++y x ,即:点M 的轨迹为以(0,1)为圆心,2为半径的圆,可记为圆D . 又因为点M 在圆C 上,故圆C 圆D 的关系为相交或相切. 故:1≤|CD |≤3,其中22)32(-+=a a CD .解之得:0≤a ≤125 .18.(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。

2013年高考全国Ⅰ理科数学试题及答案(word解析版)

2013年高考全国Ⅰ理科数学试题及答案(word解析版)

2013年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2013年全国Ⅰ,理1,5分】已知集合{}{2|20,|A x x x B x x =->=<,则( ) (A )A B =∅ (B )A B =R (C )B A ⊆ (D )A B ⊆ 【答案】B【解析】∵2()0x x ->,∴0x <或2x >.由图象可以看出A B =R ,故选B . (2)【2013年全国Ⅰ,理2,5分】若复数z 满足(34i)|43i |z -=+,则z 的虚部为( )(A )4- (B )45- (C )4 (D )45【答案】D【解析】∵(34i)|43i |z -=+,∴55(34i)34i 34i (34i)(34i)55z +===+--+.故z 的虚部为45,故选D . (3)【2013年全国Ⅰ,理3,5分】为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )(A )简单随机抽样 (B )按性别分层抽样 (C )按学段分层抽样 (D )系统抽样 【答案】C【解析】因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样,故选C .(4)【2013年全国Ⅰ,理4,5分】已知双曲线C :()2222=10,0x y a b a b->>C 的渐近线方程为( )(A )14y x =± (B )13y x =± (C )12y x =± (D )y x =±【答案】C【解析】∵c e a ==,∴22222254c a b e a a +===.∴224a b =,1=2b a ±. ∴渐近线方程为12b y x x a =±±,故选C .(5)【2013年全国Ⅰ,理5,5分】执行下面的程序框图,如果输入的[]1,3t ∈-,则输出的s 属于( ) (A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]- 【答案】D【解析】若[)1,1t ∈-,则执行3s t =,故[)3,3s ∈-.若[]1,3t ∈,则执行24s t t =-,其对称轴为2t =.故当2t =时,s 取得最大值4.当1t =或3时,s 取得最小值3,则[]3,4s ∈. 综上可知,输出的[]3,4s ∈-,故选D .(6)【2013年全国Ⅰ,理6,5分】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm , 将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚 度,则球的体积为( )(A )35003cm π (B )38663cm π (C )313723cm π(D )320483cm π【答案】B【解析】设球半径为R ,由题可知R ,2R -,正方体棱长一半可构成直角三角形,即OBA ∆为直角三角形,如图,2BC =,4BA =,2OB R =-,OA R =,由()22224R R =-+,得5R =,所以球的体积为34500533ππ=(cm 3),故选B .(7)【2013年全国Ⅰ,理7,5分】设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )(A )3(B )4 (C )5 (D )6【答案】C 【解析】∵12m S -=-,0m S =,13m S +=,∴()1022m m m a S S -=-=--=,11303m m m a S S ++=-=-=.∴1321m m d a a +=-=-=.∵()11102m m m S ma -=+⨯=,∴112m a -=-. 又∵1113m a a m +=+⨯=,∴132m m --+=.∴5m =,故选C . (8)【2013年全国Ⅰ,理8,5分】某几何体的三视图如图所示,则该几何体的体积为( ) (A )168π+ (B )88π+ (C )1616π+ (D )816π+ 【答案】A【解析】由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径2r =,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为24422816r ππ⨯⨯+⨯⨯=+,故选A .(9)【2013年全国Ⅰ,理9,5分】设m 为正整数,()2m x y +展开式的二项式系数的最大值为a , ()21m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )(A )5 (B )6 (C )7 (D )8 【答案】B【解析】由题意可知,2m m a C =,21mm b C +=,又∵137a b =,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+),即132171m m +=+.解得6m =,故选B .(10)【2013年全国Ⅰ,理10,5分】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( ) (A )2214536x y +=(B )2213627x y += (C )2212718x y += (D )221189x y +=【答案】D【解析】设11()A x y ,,22()B x y ,,∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①②,①-②,得 1212121222=0x x x x y y y y a b (+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为()1,1-,∴122y y +=-,122x x +=,而1212011=312AB y y k x x --(-)==--, ∴221=2b a .又∵229a b -=,∴218a =,29b =.∴椭圆E 的方程为22=1189x y +,故选D . (11)【2013年全国Ⅰ,理11,5分】已知函数()()220ln 10x x x f x x x ⎧-+≤⎪=⎨+>⎪⎩,若()f x a x ≥|,则a 的取值范围是( ) (A )(],0-∞ (B )(],1-∞ (C )[2,1]- (D )[2,0]-【答案】D【解析】由()y f x =的图象知:①当0x >时,y ax =只有0a ≤时,才能满足()f x ax ≥,可排除B ,C .②当0x ≤时,()2222y f x x x x x ==-+=-.故由()f x ax ≥得 22x x ax -≥.当0x =时,不等式为00≥成立.当0x <时,不等式等价于2x a -≤.∵22x -<-,∴2a ≥-.综上可知:[]2,0a ∈-,故选D .(12)【2013年全国Ⅰ,理12,5分】设n n n A B C ∆的三边长分别为n a ,n b ,n c ,n n n A B C ∆的面积为n S ,1,2,3.n =⋯,若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++=,12n nn b a c ++=,则( )(A ){}n S 为递减数列 (B ){}n S 为递增数列(C ){}21n S -为递增数列,{}2n S 为递减数列 (D ){}21n S -为递减数列,{}2n S 为递增数列 【答案】B第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2013年全国Ⅰ,理13,5分】已知两个单位向量a ,b 的夹角为60°,()1t t =+-c a b .若·0=b c ,则t = . 【答案】2【解析】∵()1t t =+-c a b ,∴()2··1t t =+-bc ab b .又∵1==a b ,且a 与b 夹角为60°,⊥b c , ∴()0 601t cos t =︒+-a b ,1012t t =+-.∴2t =.(14)【2013年全国Ⅰ,理14,5分】若数列{}n a 的前n 项和2133n n S a =+,则{}n a 的通项公式是n a = .【答案】()12n --【解析】∵2133n n S a =+,① ∴当2n ≥时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-,即12n n aa -=-.∵1112133a S a ==+,∴11a =.∴{}n a 是以1为首项,-2为公比的等比数列,()12n n a -=-.(15)【2013年全国Ⅰ,理15,5分】设当x θ=时,函数()2f x sinx cosx =-取得最大值,则cos θ= .【答案】 【解析】()s 2x f x sinx cosx x ⎫⎪==⎭-,令cos α=,sin α=,则()()f x x α=+,当22()x k k ππα=+-∈Z 时,()sin x α+有最大值1,()f x,即22()k k πθπα=+-∈Z ,所以cos θ=πcos =cos 2π+cos sin 22k πθααα⎛⎫⎛⎫-=-=== ⎪ ⎪⎝⎭⎝⎭(16)【2013年全国Ⅰ,理16,5分】若函数()()()221f x x x ax b =-++的图像关于直线2x =-对称,则()f x 的最大值为 .【答案】16【解析】∵函数()f x 的图像关于直线2x =-对称,∴()f x 满足()()04f f =-,()()13f f -=-,即151640893b a b a b =-(-+)⎧⎨=-(-+)⎩,得815a b =⎧⎨=⎩∴()432814815f x x x x x =---++.由()324242880f x x x x '=---+=,得12x =-22x =-,32x =-.易知,()f x在(,2-∞-上为增函数,在()22--上为减函数,在(2,2--上为增函数,在()2-+-∞上为减函数.∴(((((222122821588806416f ⎡⎤⎡⎤-=---+-+=---=-=⎢⎥⎢⎥⎣⎦⎣⎦.()()()()()22212282153416915f ⎡⎤⎡-=---+⨯⎤==-⎣⎦⎣⎦-+--+(((((222122821588806416f ⎡⎤⎡⎤-=---++-++=-++=-=⎢⎥⎢⎥⎣⎦⎣⎦.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2013年全国Ⅰ,理17,12分】如图,在ABC ∆中,90ABC ∠=︒,AB =,1BC =,P为ABC ∆内一点,90BPC ∠=︒.(1)若12PB =,求PA ;(2)若150APB ∠=︒,求tan PBA ∠.解:(1)由已知得60PBC ∠=︒,30PBA ∴∠=︒.在PBA ∆中,由余弦定理得211732cos 30424PA =+-︒=.故PA =(2)设PBA α∠=,由已知得sin PB α=.在PBA ∆sin sin(30)αα=︒-,4sin αα=.所以tan α,即tan PBA ∠= (18)【2013年全国Ⅰ,理18,12分】如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=︒. (1)证明:1AB A C ⊥;(2)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.解:(1)取AB 的中点O ,连结OC ,1OA ,1A B .因为CA CB =,所以OC AB ⊥.由于1AB AA =,160BAA ∠=︒,故1AA B ∆为等边三角形,所以1OA AB ⊥.因为1OC OA O = ,所以AB ⊥平面1OA C . 又1A C 平面1OA C ,故1AB A C ⊥.(2)由(1)知OC AB ⊥,1OA AB ⊥.又平面ABC ⊥平面11AA B B ,交线为AB ,所以OC ⊥平面11AA B B ,故OA ,1OA ,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,OA为单位长,建立如图所示的空间直角坐标系O xyz -.由题设知()1,0,0A,1()0A ,(0,0C ,()1,0,0B -.则(1,03BC =,11()BB AA =-=,(10,A C = .设()n x y z =,,是平面11BB C C 的法向量,则100BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0x x ⎧=⎪⎨-=⎪⎩可取1)n =-.故111cos ,n AC n AC n AC ⋅==⋅ .所以1A C 与平面11BB C C. (19)【2013年全国Ⅰ,理19,12分】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.解:(1)设第一次取出的4件产品中恰有3件优质品为事件1A ,第一次取出的4件产品全是优质品为事件2A ,第二次取出的4件产品都是优质品为事件1B ,第二次取出的1件产品是优质品为事件2B ,这批产品通过检验为事件A ,依题意有()()1122A A B A B = ,且11A B 与22A B 互斥,所以 ()()()()()()()112211122241113||161616264P A P A B P A B P A P B A P A P B A ==⨯++⨯==+.(2)X 可能的取值为400,500,800,并且()41114001161616P X ==--=,()500116P X ==,()80140P X ==. 所以X 的分布列为()111400+500+800506.2516164E X =⨯⨯⨯=. (20)【2013年全国Ⅰ,理20,12分】已知圆()2211M x y ++=:,圆()2219N x y -+=:,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求AB . 解:由已知得圆M 的圆心为()1,0M -,半径11r =;圆N 的圆心为()1,0N ,半径23r =.设圆P 的圆心为(),P xy ,半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以()()12124PM PN R r r R r r +=++-=+=.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为()22=1243x y x +≠-.(2)对于曲线C 上任意一点()P x y ,,由于222PM PN R -=-≤,所以2R ≤,当且仅当圆P 的圆心为()2,0时,2R =.所以当圆P 的半径最长时,其方程为()2224x y -+=.若l 的倾斜角为90︒,则l 与y 轴重 合,可得AB =l 的倾斜角不为90︒,由1r R ≠知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得()4,0Q -,所以可设()4l y k x =+:.由l 与圆M ,解得k =. 当k =时,将y =+22=13x y +,并整理得27880x x +-=,解得1,2x =. 2118|7AB x x =-=.当k =时,由图形对称性可知187AB =.综上,AB =187AB =. (21)【2013年全国Ⅰ,理21,12分】设函数()2f x x ax b =++,()()x g x e cx d =+.若曲线()y f x =和曲线()y g x =都过点()0,2P ,且在点P 处有相同的切线42y x =+.(1)求a ,b ,c ,d 的值;(2)若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:(1)由已知得()02f =,()02g =,()04f '=,()04g '=.而()2f x x a '=+,()()x g x e cx d c '=++, 故2b =,2d =,4a =,4d c +=.从而4a =,2b =,2c =,2d =. (2)由(1)知,()242f x x x =++,()()21x g x e x =+.设函数()()()()22142x F x kg x f x ke x x x =-=+---,()()()()2224221x x F x ke x x x ke '=+--=+-.()00F ≥ ,即1k ≥.令()0F x '=得1ln x k =-,22x =-. ①若21k e ≤<,则120x -<≤.从而当12()x x ∈-,时,()0F x '<;当1()x x ∈+∞,时,()0F x '>. 即()F x 在1(2)x -,单调递减,在1()x +∞,单调递增.故()F x 在[)2-+∞,的最小值为()1F x . 而()()11111224220F x x x x x =+---=-+≥.故当2x ≥-时,()0F x ≥,即()()f x kg x ≤恒成立. ②若2k e =,则()()()2222x F x e x e e -'=+-.∴当2x >-时,()0F x '>,即()F x 在()2-+∞,单调递增. 而()20F -=,故当2x ≥-时,()0F x ≥,即()()f x kg x ≤恒成立. ③若2k e >,则()()22222220F k eek e ---=-+=--<.从而当2x ≥-时,()()f x kg x ≤不可能恒成立.综上,k 的取值范围是2[1]e ,. 请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.(22)【2013年全国Ⅰ,理22,10分】(选修4-1:几何证明选讲)如图,直线AB为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆 于点D . (1)证明:DB DC =;(2)设圆的半径为1,BC =CE 交AB 于点F ,求BCF ∆外接圆的半径. 解:(1)连结DE ,交BC 于点G .由弦切角定理得,ABE BCE ∠=∠.而ABE CBE ∠=∠,故CBE BCE ∠=∠,BE CE =.又因为DB BE ⊥,所以DE 为直径,90DCE ∠=︒,DB DC =.(2)由(1)知,CDE BDE ∠=∠,DB DC =,故DG 是BC的中垂线,所以BG =设DE 的中点为O ,连结BO ,则60BOG ∠=︒.从而30ABE BCE CBE ∠=∠=∠=︒,所以CF BF ⊥,故Rt BCF ∆.(23)【2013年全国Ⅰ,理23,10分】(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0ρ≥,02θπ≤<).解:(1)将45cos 55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程()()224525x y -+-=,即221810160C x y x y +--+=:.将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得28cos 10sin 160ρρθρθ--+=. 所以1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=.(2)2C 的普通方程为2220x y y +-=.由222281016020x y x y x y y ⎧+--+=⎨+-=⎩,解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩, 所以1C 与2C交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭.(24)【2013年全国Ⅰ,理24,10分】(选修4-5:不等式选讲)已知函数()212f x x x a =-++,()3g x x =+.(1)当2a =-时,求不等式()()f x g x <的解集;(2)设1a >-,且当1,22a x ⎡⎫∈-⎪⎢⎣⎭时,()()f x g x ≤,求a 的取值范围.解:(1)当2a =-时,()()f x g x <化为212230x x x -+---<.设函数21223y x x x =-+---,则y =15,212,1236,1x x y x x x x ⎧-<⎪⎪⎪=--≤≤⎨⎪->⎪⎪⎩,其图像如图所示.从图像可知,当且仅当()0,2x ∈时,0y <.所以原不等式的解集是{}2|0x x <<.(2)当1,22x a ⎡⎫-⎪⎢⎣⎭∈时,()1f x a =+.不等式()()f x g x ≤化为13a x +≤+.所以2x a ≥-,对1,22x a ⎡⎫-⎪⎢⎣⎭∈都成立.故22a a -≥-,即43a ≤.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。

2013江苏数学高考试题及答案完整版

2013江苏数学高考试题及答案完整版

2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。

请把答案填写在答题卡相印位置上。

1、函数)42sin(3π+=x y 的最小正周期为 ▲2、设2)2(i z -=(i 为虚数单位),则复数z 的模为 ▲3、双曲线191622=-y x 的两条渐近线的方程为 ▲ 4、集合}1,0,1{-共有 ▲ 个子集5、右图是一个算法的流程图,则输出的n 的值是 ▲ (流程图暂缺)6、抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:则成绩较为稳定(方程较小)的那位运动员成绩的方差为 ▲7、现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取, 则n m ,都取到奇数的概率为 ▲8、如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,, 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体 积为2V ,则=21:V V ▲9、抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界)。

若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 ▲ 10、设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 ▲11、已知)(x f 是定义在R 上的奇函数。

当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 ▲12、在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d , 若126d d =,则椭圆C 的离心率为 ▲ABC1ADE F1B1C13、在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点, 若点A P ,之间的最短距离为22,则满足条件的实数a 的所有值为 ▲ 14、在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的 最大正整数n 的值为 ▲二、解答题:本大题共6小题,共计90分。

2013江苏省高考数学真题(含答案)

2013江苏省高考数学真题(含答案)
2013 江苏省高考数学真题(含答 案)
2013 年普通高等学校统一考试试题(江苏卷)
一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分。请把答案填写在答题卡相印位置上。
1.函数 y 3sin(2x ) 的最小正周期为 4
. 开
2


z
(2 i)2

i





),

复 始数 n 1,a
y
如图,在平面直角坐标系 xOy 中,点 A(0,3)A,直l线
. l : y 2x 4
O
x
设圆C 的半径为1,圆心在l 上.
(1)若圆心C 也在直线 y x 1上,过点 A 作圆C 的
切线,
求切线的方程;
(2)若圆C 上存在点 M ,使 MA 2MO,求圆心C 的
横坐
标a 的取值范围.
18.(本小题满分 16 分) 如图,游客从某旅游景区的景点 A处下山至C 处
16.(本小题满分 14 分)
如图,在三棱锥 S ABC 中,平面 SAB 平面 SBC ,
AB BC ,AS AB,过 A 作 AF SB ,垂足为SF ,点 E,G 分
E
G
别是棱 SA,SC 的中点.求证:
F
C
(1)平面 EFG// 平面 ABC;
A
(2) BC SA.
B
17.(本小题满分 14 分)
2、【答案】5
【解析】z=3-4i,i2=-1,| z |=
=5.
3、【答案】 y 3 x 4
【解析】令: x2 y2 0 ,得 y 9x2 3 x .
16 9
16 4
4、【答案】8 【解析】23=8.

2013年江苏高考数学试题和答案(含理科附加)

2013年江苏高考数学试题和答案(含理科附加)

1∑(x-x)2,其中x= n 1∑x。

n一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应...4)的最小正周期为2013年普通高等学校招生全国统一考试(江苏卷)参考公式:样本数据x,x,L,x的方差s2=12nni=1ini=1i棱锥的体积公式:V=1Sh,其中S是锥体的底面积,h为高。

3棱柱的体积公式:V=Sh,其中S是柱体的底面积,h为高。

......位置上。

1、函数y=3sin(2x+π▲。

2、设z=(2-i)2(i为虚数单位),则复数z的模为▲。

3、双曲线x2y2-=1的两条渐近线的方程为▲。

1694、集合{-1,0,1}共有▲个子集。

5、右图是一个算法的流程图,则输出的n的值是▲。

6、抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第1次第2次第3次第4次第5次甲乙87899190909189889392则成绩较为稳定(方差较小)的那位运动员成绩的方差为▲。

7、现有某类病毒记作为X Y,其中正整数m,n(m≤7,n≤9)可以任意选m n取,则m,n都取到奇数的概率为▲。

8、如图,在三棱柱A1B1C1-ABC中,D、E、F分别为AB、AC、A A1的中点,uuur uuur uuur2 F }中, a = , a + a =3 ,则满足a + a + L + a > a a L a 的2二、解答题:本大题共 6 小题,共计 90 分,请在答题卡指定区域内作答,解答时应写出文字说设三棱锥 F -ADE 的体积为V 1 ,三棱柱 A 1B 1C 1 -ABC 的体积为V 2 ,则V 1 : V 2 =▲。

9、抛物线 y = x 2 在 x = 1 处的切线与坐标轴围成三角形区域为 D(包含三角形内部与边界)。

若点 P(x ,y)是区域 D 内的任意一点,则 x + 2 y 的取值范围是▲。

1 210 、 设 D 、 E 分 别 是 △ ABC 的 边 AB 、 BC 上 的 点 , 且 AD = AB, BE = BC 。

2013年江苏高考数学试题和答案(含理科附加)

2013年江苏高考数学试题和答案(含理科附加)

2013年普通高等学校招生全国统一测试(江苏卷)参考公式:样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑。

棱锥的体积公式:13V Sh =,其中S 是锥体的底面积,h 为高。

棱柱的体积公式:V Sh =,其中S 是柱体的底面积,h 为高。

一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应......位置上...。

1、函数3sin(2)4y x π=+的最小正周期为 ▲ 。

2、设2(2)z i =- (i 为虚数单位),则复数z 的模为 ▲ 。

3、双曲线221169x y -=的两条渐近线的方程为 ▲ 。

4、集合{-1,0,1}共有 ▲ 个子集。

5、右图是一个算法的流程图,则输出的n 的值是 ▲ 。

6、抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ 。

7、现有某类病毒记作为m n X Y ,其中正整数,(7,9)m n m n ≤≤可以任意选取,则,m n 都取到奇数的概率为 ▲ 。

8、如图,在三棱柱A 1B 1C 1 -ABC 中,D 、E 、F 分别为AB 、AC 、A A 1的中点,设三棱锥F -ADE 的体积为1V ,三棱柱A 1B 1C 1 -ABC 的体积为2V ,则1V :2V =运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892▲ 。

9、抛物线2y x =在1x =处的切线和坐标轴围成三角形区域为D(包含三角形内部和边界)。

若点P(x ,y)是区域D 内的任意一点,则2x y +的取值范围是 ▲ 。

10、设D 、E 分别是△ABC 的边AB 、BC 上的点,且12,23AD AB BE BC ==。

若12DE AB AC λλ=+(1λ、2λ均为实数),则1λ+2λ的值为 ▲ 。

2013江苏省高考数学真题(含答案)

2013江苏省高考数学真题(含答案)

(第5题) 2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。

请把答案填写在答题卡相印位置上。

1.函数)42sin(3π+=x y 的最小正周期为 .2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 .3.双曲线191622=-y x 的两条渐近线的方程为 . 4.集合}1,0,1{-共有 个子集.5.右图是一个算法的流程图,则输出的n 的值是 .6则成绩较为稳定(方差较小)的那位运动员成绩的方差为 .方差为:25)9092()9088()9091()9090()9089(222222=-+-+-+-+-=S . 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m , 都取到奇数的概率为 .8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 .10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 .ABC1A DEF1B1C11.已知)(x f 是定义在R 上的奇函数。

当0>x 时,x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为 .12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 .13.在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点, 若点A P ,之间的最短距离为22,则满足条件的实数a 的所有值为 . 14.在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的 最大正整数n 的值为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0.(1)若2||=-b a ,求证:b a ⊥;(2)设)1,0(=c ,若c b a =+,求βα,的值.16.(本小题满分14分)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l . 设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线, 求切线的方程;ABCS GFE(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐 标a 的取值范围. 18.(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。

(完整版)2013年高考江苏数学试题及答案(word解析版)

(完整版)2013年高考江苏数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2014年江苏,1,5分】函数3sin(2)4y x π=-的最小正周期为_______.【答案】π【解析】函数π3sin 24y x ⎛⎫=+ ⎪⎝⎭的最小正周期2ππ2T ==.(2)【2014年江苏,2,5分】设2(2i)z =-(i 为虚数单位),则复数z 的模为_______. 【答案】5【解析】()222i 44i i 3i 54z =--+-====.(3)【2014年江苏,3,5分】双曲线221169x y -=的两条渐近线的方程为_______.【答案】34y x =±【解析】由题意可知所求双曲线的渐近线方程为34y x =±.(4)【2014年江苏,4,5分】集合{}1,0,1-共有 _______个子集. 【答案】8【解析】由于集合{}1,0,1-有3个元素,故其子集个数为328=.(5)【2014年江苏,5,5分】右图是一个算法的流程图,则输出的n 的值是_______. 【答案】3【解析】第一次循环后:82a n ←←,;第二次循环后:263a n ←←,;由于2620>,跳出循环,输出3n =.(6)【的那位运动员成绩的方差为 .【答案】2【解析】由题中数据可得=90x 甲,=90x 乙.()()()()()22222287909190909089909015394s -+-+-⎡⎤=⎣+-+-⎦=甲,()()()()()22222289909090919088909015292s -+-+-⎡⎤=⎣+-+-⎦=乙,由22>s s 甲乙,可知乙运动员成绩稳定.故应填2.(7)【2014年江苏,7,5分】现有某类病毒记作m n X Y ,其中正整数,(7,9)m n m n ≤≤可以任意选取,则,m n 都取到奇数的概率为________.【答案】2063【解析】由题意知m 的可能取值为1,2,3,…,7;n 的可能取值为1,2,3,…,9.由于是任取m ,n :若1m =时,n 可取1,2,3,…,9,共9种情况;同理m 取2,3,…,7时,n 也各有9种情况,故m ,n 的取值情况共有7963⨯=种.若m ,n 都取奇数,则m 的取值为1,3,5,7,n 的取值为1,3,5,7,9,因此满足条件的情形有4×5=20种.故所求概率为2063.(8)【2014年江苏,8,5分】如图,在三棱柱111A B C ABC -中,,,D E F 分别是1,,AB AC AA 的中点,设三棱锥F ADE -的体积为1V ,三棱柱111A B C ABC -的体积为2V ,则12:V V =_______. 【答案】1:24【解析】由题意可知点F 到面ABC 的距离与点1A 到面ABC 的距离之比为1:2,1:4ADE ABC S S =V V :.因此12131:242AED ABCAF S AF S V V ∆∆=⋅=⋅:. (9)【2014年江苏,9,5分】抛物线2y x =在1x =处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点(,)P x y 是区域D 内的任意一点,则2x y +的取值范围是________.【答案】12,2⎡⎤-⎢⎥⎣⎦【解析】由题意可知抛物线2y x =在1x =处的切线方程为21y x =-.该切线与两坐标轴围成的区域如图中阴影部分所示:当直线20x y +=平移到过点1,02A ⎛⎫⎪⎝⎭时,2x y +取得最大值12.当直线20x y +=平移到过点1(0)B -,时,2x y +取得最小值2-. 因此所求的2x y +的取值范围为12,2⎡⎤-⎢⎥⎣⎦.(10)【2014年江苏,10,5分】设,D E 分别是ABC ∆的边,AB BC 上的点,12AD AB =,23BE BC =,若12DE AB AC λλ=+u u u r u u u r(12,λλ为实数),则12λλ+的值为________. 【答案】12【解析】由题意作图如图.∵在ABC ∆中,1223DE DB BE AB BC =+=+u u u r u u u r u u u r u u u r u u u r 12()23AB AC AB =+-u u u r u u u r u u u r121263AB AC AB AC λλ=-+=+u u u r u u u r u u u r u u u r ,∴116λ=-,223λ=.故1212λλ+=.(11)【2014年江苏,11,5分】已知()f x 是定义在R 上的奇函数.当0x >时,2()4f x x x =-,则不等式()f x x >的解集用区间表示为________. 【答案】5,0)5()(∞U -,+【解析】∵函数()f x 为奇函数,且0x >时,()24f x x x =-,则()22400040f x x x x x x x x =⎧->⎪=⎨⎪--<⎩∴原不等式等价于204x x x x >⎧⎨->⎩或204x x x x <⎧⎨-->⎩,由此可解得5x >或50x -<<. (12)【2014年江苏,12,5分】在平面直角坐标系xOy 中,椭圆C 的标准方程为22221(0,0)x y a b a b+=>>,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d .若21d =,则椭圆的离心率为________.【解析】设椭圆C 的半焦距为c ,由题意可设直线BF 的方程为=1x yc b+,即0bx cy bc +-=.于是可知1bc d a ==,22222a a c b d c c c c -=-==.∵21d =,∴2b c =,即2ab =.∴()22246a a c c -=.∴42610e e +-=.∴213e =.∴e(13)【2014年江苏,13,5分】平面直角坐标系xOy 中,设定点(,)A a a ,P 是函数1(0)y x x=>图像上一动点,若点,P A 之间最短距离为a 的所有值为________.【答案】1-【解析】设P 点的坐标为1,x x ⎛⎫⎪⎝⎭,则222222111()=2=2x a a x a x a x x A x P ⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=.令12t x x =+≥,则()()2222222222PA t at a t a a t =-+-=-+-≥.结合题意可知(1)当2a ≤,2t =时,2PA 取得最小 值.此时()22228a a -+-=,解得1a =-,3a =(舍去).(2)当2a >,t a =时,2PA 取得最小值.此时228a -=,解得a =a =(舍去).故满足条件的实数a 1-.(14)【2014年江苏,14,5分】在正项等比数列{}n a 中,512a =,673a a +=.则满足123123......n n a a a a a a a a ++++>的最大正整数n 的值为_______. 【答案】12【解析】设正项等比数列{}n a 的公比为q ,则由()26753a a a q q +=+=可得2q =,于是62n n a -=,则1251(12)13221232n n n a a a --=-+=-++⋯.∵512a =,2q =,∴61a =, 111210261a a a a a ==⋯==.∴12111a a a ⋯=.当n 取12时,7612121211121213222a a a a a a a a ++⋯+=->⋯==成立;当n 取13时,86713121312111213121322132·22a a a a a a a a a a ++⋯+=-⋯===<.当13n >时,随着n 增大12n a a a ++⋯+将恒小于12n a a a ⋯.因此所求n 的最大值为12.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知()cos sin a αα=,r ,()cos sin b ββ=,r,0βαπ<<<.(1)若a b -=r r a b ⊥r r;(2)设()01c ,=r ,若a b c +=r r r ,求α,β的值.解:(1)解法一:由||a b -=r r 22||()2a b a b -=-=r r r r ,即2222a a b b -⋅+=r r r r .又2222||||1a b a b ====r r r u u r ,所以222a b -⋅=,0a b ⋅=r r ,故a b ⊥r r . 解法二:(cos cos ,sin sin )a b αβαβ-=--r r ,由||a b -=r r22||()2a b a b -=-=r r r r , 即:22(cos cos )(sin sin )2αβαβ-+-=,化简,得:2(cos cos sin sin )0αβαβ+-=, cos cos sin sin 0a b αβαβ⋅=+-=r r ,所以a b ⊥r r . (2)(cos cos ,sin sin )a b αβαβ+=++r r ,可得:cos cos 0(1)sin sin 1(2)αβαβ+=⎧⎨+=⎩L L L L解法一:AS AB =.过A 作AF SB ⊥,垂足为F ,点E ,G 分别是侧棱SA ,SC 的中点.求证:(1)平面EFG //平面ABC ; (2)BC SA ⊥. 解:(1)因为AS AB =,AF SB ⊥于F ,所以F 是SB 的中点.又E 是SA 的中点,所以//EF AB .因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以//EF 平面ABC .同理可证//EG 平面ABC .又EF EG E =I ,所以平面//EFG 平面ABC .(2)因为平面SAB ⊥平面SBC 于SB ,又AF ⊂平面SAB ,AF SB ⊥,所以AF ⊥平面SBC .因为BC ⊂平面SBC ,所以AF BC ⊥.又因为AB BC⊥,AF AB A =I ,AF AB ⊂、平面SAB ,所以BC ⊥平面SAB .又因为SA ⊂平面SAB ,所以BC SA ⊥.(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中,点()03A ,,直线24l y x =-:.设圆的半径为1,圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围. 解:(1)由题设,圆心C 是直线24y x =-和1y x =-的交点,解得点2(3)C ,,于是切线的斜率必存在.设过3(0)A ,的圆C 的切线方程为3y kx =+1=,解得0k =或34-, 故所求切线方程为3y =或34120x y +-=.(2)因为圆心在直线24y x =-上,所以圆C 的方程为()()22221x a y a -+--⎤⎣⎦=⎡.设点()M x y ,, 因为2MA MO =22230x y y ++-=,即()2214x y ++=, 所以点M 在以1(0)D -,为圆心,2为半径的圆上.由题意,点()M x y ,在圆C 上,所以圆C 与圆D 有 公共点,则2121CD -≤≤+,即13≤.由251280a a -+≥,得R a ∈;由25120a a -≤,得0125a ≤≤.所以点C 的横坐标a 的取值范围为120,5⎡⎤⎢⎥⎣⎦. (18)【2014年江苏,18,16分】如图,游客从某旅游景区的景点处下山至C 处有两种路径. 一种是从沿A 直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到 C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130m/min ,山路AC 长为1260m ,经测量,12cos 13A =,3cos 5C =.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处相互等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?.解:(1)在ABC ∆中,因为3os 1c 12A =,cos 35C =,所以sin 513A =,sin 45C =.从而()()sin sin sin sin cos cos sin 531246313513565B AC A C A C A C π=-+=+=+⨯⨯⨯==⎡⎤⎣⎦. 由正弦定理sin sin AB ACC B=,得12604sin 104063sin 565AC AB C B =⨯=⨯=.所以索道AB 的长为1040 m . (2)假设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了()10050 m t +,乙距离A 处130m t ,所以由余弦定理得()()()()2222121005013021301005020037705013d t t t t t t =++-⨯⨯+⨯=-+, 因10430001t ≤≤,即08t ≤≤,故当3537t =(min)时,甲、乙两游客距离最短. (3)由正弦定理sin sin BC ACA B=,得12605sin 500m 63sin 1365AC BC A B =⨯=⨯=. 乙从B 出发时,甲已走了()50281550⨯++=(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得5007103350v -≤-≤,解得12506254314v ≤≤,所以为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在1250625,4314⎡⎤⎢⎥⎣⎦(单位:m/min)范围内. (19)【2014年江苏,19,16分】设{}n a 是首项为a ,公差为d 的等差数列()0d ≠,n S 是其前n 项和.记2n n nSb n c=+,N n *∈,其中c 为实数.(1)若0c =,且1b ,2b ,4b 成等比数列,证明:()2N nk k S n S k,n *=∈;(2)若{}n b 是等差数列,证明:0c =. 解:由题设,(1)2n n n S na d -=+. (1)由0c =,得12n n S n b a d n -==+.又因为124b b b ,,成等比数列,所以1224b b b =,即23=22d a a a d ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 化简得220d ad -=.因为0d ≠,所以2d a =.因此,对于所有的*N m ∈,有2m S m a =.从而对于所有的k ,*N n ∈,有()2222nk k S nk a n k a n S ===. (2)设数列{}n b 的公差是1d ,则()111n b b n d =+-,即()1121nb n nS n cd =+-+,*N n ∈,代入n S 的表达式,整理 得,对于所有的*N n ∈,有()111321111122d d n b d a d n cd n c d b ⎛⎫⎛⎫-+--++ ⎪ =⎪⎭⎭-⎝⎝.令112A d d =-,1112B d d b a =--+,()11D c d b =-,则对于所有的*N n ∈,有321An Bn cd n D ++=.(*)在(*)式中分别取1234n =,,,,得1111842279364164A B cd A B cd A B cd A B cd ++=++=++=++, 从而有11173019502150A B cd A B cd A B cd ++=⎧⎪++=⎨⎪++=⎩①②③,由②,③得0A =,15cd B =-,代入方程①,得0B =,从而10cd =.即1102d d -=,11102b d a d -+=-=0,10cd =.若d 1=0,则由1102d d -=,得0d =,与题设矛盾,所以10d ≠.又因为10cd =,所以0c =.(20)【2014年江苏,20,16分】设函数()ln f x x ax =-,()x g x e ax =-,其中a 为实数. (1)若()f x 在()1,+∞上是单调减函数,且()g x 在()1,+∞上有最小值,求a 的范围; (2)若()g x 在()1,-+∞上是单调增函数,试求()f x 的零点个数,并证明你的结论. 解:(1)令f ′(x )=()110axf x a x x-'=-=<,考虑到()f x 的定义域为(0)+∞,,故0a >,进而解得1x a ->,即()f x 在1()a -+∞,上是单调减函数.同理,()f x 在1(0)a -,上是单调增函数.由于()f x 在(1)+∞,上是单调减函数,故1()(1)a -∞∞⊆++,,,从而11a -≤,即1a ≥.令()0x g x e a '=-=,得ln x a =.当ln x a <时,()0g x '<;当ln x a >时,()0g x '>.又()g x 在(1)+∞,上有最小值,所以ln 1a >,即a e >.综上,有()a e ∈+∞,.(2)当0a ≤时,()g x 必为单调增函数;当0a >时,令()0x g x e a '=->,解得x a e <,即ln x a >.因为()g x 在()1-+∞,上是单调增函数,类似(1)有ln 1a ≤-,即10a e -<≤.结合上述两种情况,有1a e -≤. ①当0a =时,由()10f =以及()10f x x'=>,得()f x 存在唯一的零点; ②当0a <时,由于()()10a a a f e a ae a e =-=-<,()10f a =->,且函数()f x 在[1]a e ,上的图象不间断, 所以()f x 在(1)a e ,上存在零点.另外,当0x >时,()10f x a x'=->,故()f x 在(0)+∞,上是单调增 函数,所以f (x )只有一个零点.③当10a e -<≤时,令()10f x a x'=-=,解得1x a -=.当10x a -<<时,()0f x '>,当1x a ->时,()0f x '<,所以,1x a -=是()f x 的最大值点,且最大值为()1ln 1f a a -=--.当ln 10a --=,即1a e -=时,()f x 有一个零点x e =.当ln 10a -->,即10a e -<<时,()f x 有两个零点.实际上,对于10a e -<<,由于()1110f e ae --=--<,()10f a ->,且函数()f x 在11[]e a --,上的图象不间断,所以()f x 在11()e a --,上存在零点.另外,当1()0x a -∈,时, ()10a xf x =->',故()f x 在1(0)a -,上是单调增函数,所以()f x 在1(0)a -,上只有一个零点.下面考虑()f x 在1()a -+∞,上的情况.先证()()1210a a f e a a e ---=-<.为此,我们要证明:当x e >时,2x e x >.设()2x h x e x =-,则()2x h x e x '=-,再设()()2x l x h x e x ='=-,则()2x l x e '=-.当1x >时,()220x l x e e '=->->,所以()()l x h x ='在(1)+∞,上是单调增函数.故当2x >时,()()22240x h x e x h e '=->'=->,从而()h x 在(2)+∞,上是单调增函数,进而当x e >时,()()220x e h x e x h e e e =->=->.即当x e >时,2x e x >.当10a e -<<,即1a e ->时,()()111210a a a f e a ae a a e -----=-=-<,又()10f a ->,且函数()f x 在11[]a a e --,上的图象不间断,所以()f x 在11()a a e --,上存在零点.又当1x a ->时,()0f x a '=-<,故()f x 在(a -1,+∞)上是单调减函数,所以f (x )在(a -1,+∞)上只有一个零点.综合①,②,③,当0a ≤或1a e -=时,()f x 的零点个数为1,当10a e -<<时,()f x 的零点个数为2.数学Ⅱ【选做】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 和BC 分别与圆O 相切于点D C AC 、,经过圆心O ,且2BC OC =.求证:2AC AD =.解:连结OD .因为AB 和BC 分别与圆O 相切于点D ,C ,所以90ADO ACB ∠=∠=︒.又因为A A ∠=∠,所以Rt Rt ADO ACB ∆∆∽.所以BC ACOD AD=. 又22BC OC OD ==,故2AC AD =. (21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵与变换)已知矩阵1012,0206-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A B ,求矩阵1-A B . 解:设矩阵A 的逆矩阵为 a b c d ⎡⎤⎢⎥⎣⎦,则 1 00 2-⎡⎤⎢⎥⎣⎦ a b c d ⎡⎤⎢⎥⎣⎦=1 00 1⎡⎤⎢⎥⎣⎦,即 2 2a b c d --⎡⎤⎢⎥⎣⎦=1 00 1⎡⎤⎢⎥⎣⎦,故100a b c =-==,,,12d =,从而A 的逆矩阵为1 1 010 2--⎡⎤⎢⎥⎢⎥⎣⎦=A ,所以1 1 010 2--⎡⎤⎢⎥⎢⎥⎣=⎦A B 1 20 6⎡⎤⎢⎥⎣⎦= 1 20 3--⎡⎤⎢⎥⎣⎦. (21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xoy 中,直线l 的参数方程为12x t y t =+⎧⎨=⎩(t 为参数),曲线C 的参数方程为22tan 2tan x y θθ⎧=⎨=⎩(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.解:因为直线l 的参数方程为12x t y t =+⎧⎨=⎩(t 为参数),由1x t =+得1t x =-,代入2y t =,得到直线l 的普通方程为220x y --=.同理得到曲线C 的普通方程为22y x =.联立2212y x y x =(-)⎧⎨=⎩,解得公共点的坐标为(2)2,,1,12⎛⎫- ⎪⎝⎭. (21-D )【2014年江苏,21-D ,10分】(选修4-4:不等式选讲)已知0a b ≥>,求证:332222a b ab a b -≥-. 解:()()()()()()()()332222222222222a b ab a b a a b b a b a b a b a b a b a b ---=-+-=-+=-++.因为0a b ≥>,所以0a b -≥,0a b +>,20a b +>,从而()()()20a b a b a b -++≥,即332222a b ab a b -≥-. 【必做】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内............ (22)【2014年江苏,22,10分】如图,在直三棱柱111A B C ABC -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1ABA 所成二面角的正弦值. 解:(1)以A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,则()000A ,,,()200B ,,,()020C ,,()110D ,,,14(0)0A ,,,14(0)2C ,,,所以1(20)4A B =-u u u r ,,,1(11)4C D =--u u u u r,,.因为111111cos ,A B C D A B C D A B C D⋅===u u u r u u u u ru u u r u u u u r u u u r u u u u r ,所以异面直线1A B 与1C D. (2)设平面1ADC 的法向量为1()n x y z =r ,,,因为(1)10AD =u u u r ,,,10()24AC =u u u u r ,,,所以10n AD ⋅=u u r u u u r,110n AC ⋅=u u r u u u u r ,即0x y +=且20y z +=,取1z =,得2x =,2y =-,所以,12()21n =-u u r,,是平面1ADC 的一个法向量.取平面1AA B 的一个法向量为2(010)n =u u r,,,设平面1ADC 与平面 1ABA 所成二面角的大小为θ.由12122||||s 3co θ⋅===n n n n,得sin θ=.因此,平面1ADC 与平面1ABA.(1)求11中元素个数; (2)求集合2000P 中元素个数.解:(1)由数列{}n a 的定义得123456789101223334444a a a a a a a a a a ==-=-====-=-=-=-,,,,,,,,,,,115a =,1234567891011113036226105S S S S S S S S S S S ∴==-=-=====-=-=-=-,,,,,,,,,,,从而11445566111102S a S a S a S a S a ==⨯===-,,,,,所以集合11P 中元素的个数为5. (2)先证:()()*2121()i i S i i i +=-+∈N .①当1i =时,()3213i i S S +==-,()213i i -+=-,故原等式成立; ②假设i m =时成立,即()()2121m m S m m +=-+,则1i m =+时,()()()()()()()()22222(113)21222143253123m m m m S S m m m m m m m m m +++=++-+=-+--=-++=-++.综合①②可得()()2121i i S i i +=-+.于是()()()()()()()2(221121)212121211i i i i S S i i i i i i +++=++=-+++=++. 由上可知()21i i S +是21i +的倍数,而()21(211221)i i j a i j i ++=+=⋯+,,,,所以()()(212)121i i i i j S S j i +++=++是 ()211)2(21i i j a j i ++=⋯+,,,的倍数.又()()()()121121i i S i i ++=++不是22i +的倍数,而()()()12122i i j a i +++=-+()1222j i =⋯+,,,,所以()()()()()()()()1211212221122i i j i i S S j i i i j i +++++=-+=++-+不是()()121i i j a +++ 122()2j i =⋯+,,,的倍数,故当()21l i i =+时,集合l P 中元素的个数为()21321i i ++⋯+-=,于是,当()()21121l i i j j i =++≤≤+时,集合l P 中元素的个数为2i j +. 又()200031231147=⨯⨯++,故集合2000P 中元素的个数为231471008+=.。

2013年高考理科数学试卷--江苏卷(含答案)

2013年高考理科数学试卷--江苏卷(含答案)

2013年普通高等学校统一考试数学试题卷Ⅰ 必做题部分一.填空题。

1.函数)42sin(3π+=x y 的最小正周期为 。

2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 。

3.双曲线191622=-y x 的两条渐近线的方程为 。

4.集合}1,0,1{-共有 个子集。

5.下图是一个算法的流程图,则输出的n 的值是 。

6.抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:运动员 第1次 第2次 第3次 第4次[来源:学*科*网Z*X*X*K]第5次甲 87 91 90 89 93 乙[来源:学科网]89 90 91 88 92 则成绩较为稳定(方差较小)的那位运动员成绩的方差为 。

7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为 。

8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V 。

[来源:学*科*网] 9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部与边界)。

若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 。

ABC1A D E F1B 1C10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+= (21λλ,为实数),则21λλ+的值为 。

11.已知)(x f 是定义在R 上的奇函数。

当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 。

12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 。

2013年高考理科数学江苏卷-答案

2013年高考理科数学江苏卷-答案

因为SA SAB ⊂平面,所以BC SA ⊥.(步骤8)又22BC OC OD ==,故2AC AD =.(步骤2)323.【答案】(1)由数列{}n a 的定义得:11a =,22a =-,32a =-,43a =,53a =,63a =,74a =-,84a =-,94a =-,104a =-,115a =,∴11S =,21S =-,33S =-,40S =,53S =,66S =,72S =,82S =-,96S =-,1010S =-,115S =-(步骤1)∴111S a =g ,440S a =g ,551S a =g ,662S a =g ,11111S a =-g ,(步骤2)∴集合11P 中元素的个数为5.(步骤3)(2)证明:用数学归纳法先证(21)(21)i i S i i +=-+,事实上,①当1i =时,(21)31(2+1)3i i S S +==-⨯=-故原式成立;②假设当i m =时,等式成立,即(2+1)(2+1)m m S m m =-g 故原式成立.(步骤4)则:+1i m =,时,22(+1)[2(+1)+1](+1)(2+3(2+1)(2+1)(2+2)m m m m m m S S S m m ==+-)222(2+1)(2+1)(2+2)(2+5+3)(+1)(2+3)m m m m m m m m =-+-=-=-,(步骤5)综合①②得:(2+1)(2+1)i i S i i =-于是22(+1)[2+1](2+1+(2+1)(2+1)+(2+1)(2+1)(+1)i i i i S S i i i i i i ==-=),(步骤6)由上可知:(2+1)i i S 是(2+1)i 的倍数,而(+1)(2+1)2+1(122+1)i i j a i j i +==L ,,,,所以(2+1)+(2+1)(2+1)i i j i i S S j i =+,(步骤7)是(+1)(2+1)+i i j a (122+1)j i =L ,,,的倍数,又(+1)(2+1)(+1)(2+1)i i S i i =不是2+2i 的倍数,而(+1)(2+1)+(2+2)i i j a i =-(122+2)j i =L ,,,,所以(+1)(2+1)+(2+1)(+1)(2+2)i i j S i i j i =-,(+1)(2+1)+(+1)(2+1)(2+2)i i j i i S S j i =-不是(+1)(2+1)(122+2)i i j a j i +=L ,,,的倍数,(步骤8)故当(2+1)l i i =时,集合l P 中元素的个数为21+3++21i i -=L (),(步骤9) 于是当(2+1)+12+1l i i j j i =≤≤()时,集合l P 中元素的个数为2+i j ,又200031231+1+47=⨯⨯(),故集合2000P 中元素的个数为231+471008=.(步骤10)【提示】给出数列的规律,由此求出数列相应的项及各项之和,采用列举法写出所满足的元素;由特殊形式推广到一般形式,采用计数原理和数学归纳法来证明得之.【考点】集合,数列的概念和运算,计数原理,数学归纳法.。

2013年高考理科数学江苏卷word解析版(2021年整理)

2013年高考理科数学江苏卷word解析版(2021年整理)

2013年高考理科数学江苏卷word解析版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2013年高考理科数学江苏卷word解析版(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2013年高考理科数学江苏卷word解析版(word版可编辑修改)的全部内容。

2013年普通高等学校夏季招生全国统一考试数学(江苏卷)数学Ⅰ试题参考公式:样本数据x 1,x 2,…,x n 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑。

棱锥的体积公式:13V Sh =,其中S 是锥体的底面积,h 为高.棱柱的体积公式:V =Sh ,其中S 是柱体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上...1.(2013江苏,1)函数π3sin 24y x ⎛⎫=+ ⎪⎝⎭的最小正周期为__________.答案:π解析:函数π3sin 24y x ⎛⎫=+ ⎪⎝⎭的最小正周期2ππ2T ==。

2.(2013江苏,2)设z =(2-i )2(i 为虚数单位),则复数z 的模为__________.答案:5解析:|z |=|(2-i)2|=|4-4i +i 2|=|3-4i5==5。

3.(2013江苏,3)双曲线22=1169x y -的两条渐近线的方程为__________.答案:34y x =±解析:由题意可知所求双曲线的渐近线方程为34y x =±。

4.(2013江苏,4)集合{-1,0,1}共有__________个子集.答案:8解析:由于集合{-1,0,1}有3个元素,故其子集个数为23=8. 5.(2013江苏,5)下图是一个算法的流程图,则输出的n 的值是__________.答案:3解析:第一次循环后:a ←8,n ←2; 第二次循环后:a ←26,n ←3; 由于26>20,跳出循环, 输出n =3。

2013年高考理科数学江苏卷-答案

2013年高考理科数学江苏卷-答案

11224S h Sh =【提示】由三角形的相似比等于面积比的平方得到棱锥和棱柱的底面积的比值,由题意棱柱的高是棱锥的【解析】由题意212112()++323263DE BE BD BC BA AC AB AB AB AC =-=-=-=-,(步骤2【提示】由题意和向量的运算可得12+63DE AB AC =-,结合12+DE AB AC λλ=,可得【考点】平面向量的几何表示和加法、减法及数乘等线性运算. 5,0)(5,+)∞先求出函数()f x 在R 2()x =--5,0)(5,+)∞(步骤时,()f x 的图象,根据6bca.所以3132++n a =21nn a a q =12++n n a a a a >可得21(2232⎫⎪,整理得22. (步骤3)12++n n a a a a >,故n 的最大值为++n a 及12n a a 的表达式,化简可得关于【考点】等比数列的通项公式,求和公式以及不等式的性质.2||2a b -=,即222()2+2a b a a b b -=-=.(步骤又因为2222||||1a b a b ====,所以22a b =,即0a b =,故a b ⊥.(步骤)因为+(cos )(0,1)a b α==,所以cos +cos 0,sin +sin 1,αβαβ=⎧⎨=⎩+sin 1β=,得2由给出的向量a ,b 的坐标,求出a b -的坐标,)由向量坐标的加法运算求出+a b ,由+(0,1)a b =列式整理得到EFEG E =,所以SBC ,且交线为5)AF BC ⊥.AFAB A =,因为SA SAB ⊂平面,所以BC SA ⊥.(步骤8)63651260sin C B =63651260sin A B =550(m),还需走50071014b b ,又22BC OC OD ==,故2AC AD =.(步骤2)a b c d ⎤⎡⎤=⎥⎢⎥⎦⎣⎦12=,(步骤{}1,,AB AC AA 为单位正交基底建立空间直角坐标系∴1(2,0,A B =,1(1,C D =-111111,20A B C DA B C D A B C D <>==1与1D 所成角的余弦值为)(0,2,0)AC =的法向量为(,,m x y =∵(1,1,0)AD =,1(0,2,4)AC =由m AD ⊥,1m AC ⊥,∴⎧⎨的法向量为(2,2,1)m =-4,2||||AC m AC m AC m -<>==⨯所成二面角的正弦值为311a ,440S a =,551S a =,662S a =,11111S a =,(步骤(2+1)m m 故原式成立.则:+1i m =,时,22(+1)[2(+1)+1](+1)(2+3(2+1)(2+1)(2+2)m m m m m m S S S m m ==+-)222(2+1)(2+1)(2+2)(2+5+3)(+1)(2+3)m m m m m m m m =-+-=-=-,(步骤5)综合①②得:(2+1)(2+1)i i S i i =-于是22(+1)[2+1](2+1+(2+1)(2+1)+(2+1)(2+1)(+1)i i i i S S i i i i i i ==-=),(步骤6)由上可知:(2+1)i i S 是(2+1)i 的倍数,而(+1)(2+1)2+1(122+1)i i j a i j i +==,,,,所以(2+1)+(2+1)(2+1)i i j i i S S j i =+,(步骤7)是(+1)(2+1)+i i j a (122+1)j i =,,,的倍数,又(+1)(2+1)(+1)(2+1)i i S i i =不是2+2i 的倍数,而(+1)(2+1)+(2+2)i i j a i =-(122+2)j i =,,,,所以(+1)(2+1)+(2+1)(+1)(2+2)i i j S i i j i =-,(+1)(2+1)+(+1)(2+1)(2+2)i i j i i S S j i =-不是(+1)(2+1)(122+2)i i j a j i +=,,,的倍数,(步骤8)故当(2+1)l i i =时,集合l P 中元素的个数为21+3++21i i -=(),(步骤9) 于是当(2+1)+12+1l i i j j i =≤≤()时,集合l P 中元素的个数为2+i j ,又200031231+1+47=⨯⨯(),故集合2000P 中元素的个数为231+471008=.(步骤10)【提示】给出数列的规律,由此求出数列相应的项及各项之和,采用列举法写出所满足的元素;由特殊形式推广到一般形式,采用计数原理和数学归纳法来证明得之.【考点】集合,数列的概念和运算,计数原理,数学归纳法.。

2013年江苏高考数学卷真题(word版)

2013年江苏高考数学卷真题(word版)

1 / 22013年江苏高考数学卷1.函数___________.2.设z=(2-i) ,(i为虚数单位),则复数z的模为_____________.3..双曲线=1的两条渐进线的方程为__________.4.集合{-1,0,1}共有_______个子集.5..右图是一个算法的流程图,则输出的n的值是__________(流程图暂缺).6.抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:_________.8.如图,在三棱柱中,D、E、F分别是AB、AC、的中点,设三棱锥F-ADE的体积为、三棱柱的体积为,则=_________.9.抛物线在x=1处的切线与两坐标轴围城三角形区域为D(包含三角型内部和边界)。

若点P(x,y)是区域D的任意一点,这x+2y的取值范围是________10.设D,E分别是三角形ABC的边AB,BC上的.若若11.已知f(x)是定义在R上的奇函数,当x>0时,,则不等式f(x)>x的解集用区间表示为_________.12.在平面直,角坐标系xOy中,椭圆C的标准方程为(a>0,b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为,F到l的距离为,若,则椭圆C的离心率为___________.13.在平面直角坐标系xOy中,设定点A(a,a),P是函数(x>0)图像上一动点,若点P,A之间的最短距离为,则满足条件的实数a的所有值为_________.14.在正项等比数列{}中,+…+…的最大正整数n的值为__________.15、已知2 /2(1)若,求证 (2)若,求的值16、如图,面面SBC,, D,E 分别为SC,SA 中点, (1)证明:面面ABC (2)证明:17、A(0,3),直线,圆C 的半径为1,圆心在直线l 上 (1)若圆心还在直线上,求过A 作圆的切线方程(2)若圆上存在点M ,满足MA=2MO ,求圆心的横坐标的取值范围18、从山上A 点到山下C 点有两种走法:一是沿直线AC 匀速步行下山;二是先坐缆车匀速行驶到B ,再从B 点匀速步行到C现有甲乙两人从A 下山,甲沿直线AC 匀速下山,步行的速度为50米每分,等甲出发2分钟以后,乙从A 坐缆车匀速下降到B ,缆车速度130米每分,在B 点休息1分钟以后,步行匀速下山到C ,已知测得数据,AC=1260m , (1)求AB 长(2)当乙从A 距离是多少? (3)若两人在C 点处互相等候的时间不超过3度得范围19、是以为首项、为公差的等差数 列,n S 为其前项和,(c 为实数)(1)若c=0,且为等比数列,求证: (2)若为等差数列,求证:c=0 20、已知(1)在上递减,在上有最小值,求的取值范围 (2)在上递增,判断的零点个数,并证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年普通高等学校统一考试试题(江苏卷)
一、填空题:本大题共14小题,每小题5分,共计70分。

请把答案填写在答题卡相印位置
上。

1、函数)4
2sin(3π
+
=x y 的最小正周期为 ▲
2、设2)2(i z -=(i 为虚数单位),则复数z 的模为 ▲
3、双曲线
19
162
2=-y x 的两条渐近线的方程为 ▲ 4、集合}1,0,1{-共有 ▲ 个子集
5、右图是一个算法的流程图,则输出的n 的值是 ▲ (流程图暂缺) 6
则成绩较为稳定(方程较小)的那位运动员成绩的方差为 ▲
7、现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取, 则n m ,都取到奇数的概率为 ▲
8、如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,, 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体 积为2V ,则=21:V V ▲
9、抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含
三角形内部和边界)。

若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 ▲
10、设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=
,BC BE 3
2
=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 ▲
11、已知)(x f 是定义在R 上的奇函数。

当0>x 时,x x x f 4)(2
-=,则不等式x
x f >)(的解
集用区间表示为 ▲
12、在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(122
22>>=+b a b
y a x ,右焦点为
A
B
C
1A
D
E F
1B
1C
F ,
右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d , 若126d d =,则椭圆C 的离心率为 ▲ 13、在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数x
y 1
=
(0>x )图象上一动点, 若点A P ,之间的最短距离为22,则满足条件的实数a 的所有值为 ▲ 14、在正项等比数列}{n a 中,2
1
5=
a ,376=+a a ,则满足n n a a a a a a 2121>+++的 最大正整数n 的值为 ▲
二、解答题:本大题共6小题,共计90分。

请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。

15、(本小题满分14分)
已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0。

(1)若2||=
-b a ,求证:b a ⊥;
(2)设)1,0(=c ,若c b a =+,求βα,的值。

16、(本小题满分14分)
如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,
BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F , 点G E ,分别是棱SC SA ,的中点。

求证:(1)平面//EFG 平面ABC ;
(2)SA BC ⊥。

A
B C
S
G
F E
17、(本小题满分14分)
如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l 。

设圆C 的半径为1,圆心在l 上。

(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线, 求切线的方程;
(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐 标a 的取值范围。

18、(本小题满分16分) 如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。

一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C 。

现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为min /50m 。

在甲出发min 2后,乙从A 乘缆车到B ,在B 处停留min 1后,再从匀速步行到C 。

假设缆车匀速直线运动的速度为min /130m ,山路AC 长为m 1260,经测量,1312cos =
A ,5
3
cos =C 。

(1)求索道AB 的长;
(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短? (3)为使两位游客在C 处互相等待的时间不超过3分钟,
乙步行的速度应控制在什么范围内? 19、(本小题满分16分)
C
B A
设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和。

记c
n nS b n
n +=
2,
*N n ∈,
其中c 为实数。

(1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈); (2)若}{n b 是等差数列,证明:0=c 。

20、(本小题满分16分)
设函数ax x x f -=ln )(,ax e x g x
-=)(,其中a 为实数。

(1)若)(x f 在),1(+∞上是单调减函数,且)(x g 在),1(+∞上有最小值,求a 的取值范围; (2)若)(x g 在),1(+∞-上是单调增函数,试求)(x f 的零点个数,并证明你的结论。

相关文档
最新文档