3基因工程制药

合集下载

简述基因工程制药,基本设计思路

简述基因工程制药,基本设计思路

简述基因工程制药,基本设计思路
基因工程制药是利用基因重组技术和细胞培养技术制造药品的一种新型技术。

其基本设计思路如下:
1. 找到目标基因:根据需要制造的药物,筛选出可以产生目标蛋白质的DNA序列。

2. 克隆目标基因:将筛选出的DNA序列通过PCR扩增技术放入载体中,形成重组DNA。

3. 将重组DNA导入宿主细胞:将重组DNA导入细胞并转化为宿主细胞。

4. 培养表达宿主细胞:使表达宿主细胞生长和扩增,大量表达目标基因。

5. 分离纯化目标蛋白质:将表达宿主细胞进行处理和纯化,得到目标蛋白质。

6. 制剂生产:利用得到的目标蛋白质进行制药,生产出药品。

以上是基因工程制药的基本设计思路。

其核心技术在于基因重组技术、细胞培养技术、分离纯化技术和制剂生产技术。

该技术制造出的药品在生物活性、生物安全性以及剂型等方面都具有优越性。

生物基因工程在医药方面的应用

生物基因工程在医药方面的应用

生物基因工程在医药方面的应用生物基因工程是指利用现代生物技术对生物体的基因进行操作和改造,从而达到改良生物性状的目的。

在医药领域,生物基因工程具有广泛的应用,为人们的健康和医疗带来了巨大的变革。

以下是生物基因工程在医药方面的一些主要应用。

1. 蛋白质制药:生物基因工程被广泛应用于制造各种重要的蛋白质药物,如胰岛素、人血红蛋白、免疫球蛋白等。

通过将人类所需的基因导入到细菌、酵母或哺乳动物细胞中,可以大规模生产这些重要药物,并提高其纯度和药效。

2. 基因治疗:生物基因工程可以用于基因治疗,即通过操纵患者的基因,修复或替换有缺陷的基因,从而治疗遗传性疾病。

可以通过将正常的基因导入到患者的体内,来修复某种遗传性疾病所引起的缺陷。

3. 疫苗研发:生物基因工程可以用于疫苗研发,通过操作病原体的基因,使其变为无害或减弱活性,从而生产出安全有效的疫苗。

生物基因工程还可以合成病毒蛋白,用于制造亚单位疫苗。

4. 基因诊断:生物基因工程在基因诊断方面也有广泛的应用。

通过分析患者的基因序列,可以快速准确地确定其患病风险,进行个性化的诊断和治疗。

5. 细胞治疗:生物基因工程可以用于细胞治疗,即通过操纵患者的细胞,改变其状态和功能,从而治疗某些疾病。

可以将正常的基因导入到患者的干细胞中,然后再将这些干细胞植入患者体内,以修复受损组织或器官。

6. 肿瘤治疗:生物基因工程可以用于肿瘤治疗,通过操纵患者的免疫系统,增强免疫应答,从而更有效地攻击和杀灭肿瘤细胞。

可以利用基因工程技术改造患者的T细胞,使其能够识别和杀灭肿瘤细胞。

7. 药物研发:生物基因工程在药物研发方面也发挥重要作用。

通过操纵生物体的基因,可以生产出更有效、更安全的药物。

可以利用基因工程技术改变微生物的代谢途径,产生新的天然产物,用于新药的开发。

生物基因工程在医药领域的应用具有广泛的潜力。

随着生物技术的不断发展,相信生物基因工程将会为医药产业带来更多的创新,为人们的健康和医疗提供更多的选择和希望。

简述基因工程制药的基本流程

简述基因工程制药的基本流程

简述基因工程制药的基本流程基因工程制药是通过人工改造和调整生物体的基因来生产更有效、更安全的药物。

它的基本流程包括以下几个关键步骤。

1. 目标基因的筛选:在基因工程制药的过程中,首先需要确定目标基因。

目标基因是指具有治疗或预防特定疾病能力的基因。

研究人员通过分析遗传病或其他需要治疗的疾病的相关机制,找到与之相关的基因。

2. 基因克隆:在筛选目标基因后,研究人员需要对其进行基因克隆。

基因克隆是指将目标基因从其所在的生物体中分离出来,并通过PCR(聚合酶链式反应)等方法进行复制,形成多个完全相同的基因。

3. 基因的调整与修改:在基因工程制药中,研究人员还需要对目标基因进行调整和修改,以增强其表达或改变其特定性。

调整和修改的方法包括点突变、插入、删除或拼接等,以获得更理想的基因序列。

4. 载体构建:基因工程制药中常用的方法是将目标基因插入到载体中,通过载体帮助基因进入到目标生物体中并进行表达。

载体通常是一段DNA序列,包含促进基因表达和复制的区域。

在构建载体时,研究人员将目标基因与载体的DNA序列进行连接。

5. 重组表达:完成载体构建后,研究人员将其导入到宿主细胞中,并通过转染等方式使其表达。

在宿主细胞内,目标基因会被转录成mRNA,并通过翻译合成蛋白质。

6. 蛋白质纯化和药物制备:蛋白质是常见的生物制药产品,所以在基因工程制药中,研究人员需要对目标蛋白质进行纯化和制备。

纯化的目的是去除其他无关的蛋白质和杂质,使得产生的药物更纯净、更安全。

7. 药物测试和临床实验:基因工程制药生产的药物需要进行一系列的测试和临床实验,以确保其药效和安全性。

这些测试包括药理学、毒理学和临床试验等,通过这些测试可以评估药物的活性、剂量和不良反应等。

参考内容:[1] Rodin, A. S., & Antonova, O. V. (2021). Basic principles of genetic engineering for the production of pharmaceuticals [J]. Tomsk State University Journal of Biology, (4), 285-301.[2] Thomas, S., Sheela, S., & Skariah, K. (2011). Basic concepts in molecular biology related to genes, heredity, and genetic engineering–Review[J]. Indian journal of dental research: official publication of Indian Society for Dental Research, 22(5), 683. [3] Rao, P. A., Prudhvi, K. L., & Padmanaban, G. (2021). Principles and practice in genetic engineering: genome editing and its application in human therapeutics [J]. Journal of Advanced Research, 28, 43-56.[4] Sprouffske, K., Wagner, J. B., Weaver, L. T., & Adams, W. W. (2019). Genetic engineering as a tool for controlling infectious diseases: A guide [J]. Journal of infectious diseases, 219(12), 1871-1880.。

基因工程技术在生物制药领域的应用

基因工程技术在生物制药领域的应用

基因工程技术在生物制药领域的应用基因工程技术的迅速发展为生物制药领域带来了巨大的改变,使得人类能够更有效地生产出大量的生物药物以满足市场需求。

本文将介绍基因工程技术在生物制药领域的应用,并探讨其对医药行业的意义。

一、基因工程技术在药物研发中的应用随着基因工程技术的不断成熟,生物制药领域的药物研发工作得以加速和优化。

通过基因工程技术,科学家们可以对目标蛋白质进行基因重组,将其引入适宜的宿主细胞中生产。

这种方法取代了传统的化学合成药物,能够制造出更安全、更有效的生物药物。

基因工程技术在药物研发中的应用已经造福了许多病患。

例如,通过基因工程技术,人类已经成功地制造出重组人胰岛素用于治疗糖尿病,使得糖尿病患者能够获得更好的治疗效果。

同样,基因工程技术也被用于生成重组人生长激素、重组人血液凝块溶解酶等药物,为生物制药领域带来了巨大的发展潜力。

二、基因工程技术在药物生产中的应用除了在药物研发中的应用外,基因工程技术还被广泛用于药物的生产过程中。

传统的药物生产通常使用化学合成的方法,速度慢且效果不稳定。

而通过基因工程技术,科学家们可以利用微生物、植物或动物细胞作为生产工厂,大规模合成目标药物。

基因工程技术在药物生产中的应用已经显著提高了药物的制造效率和质量。

以重组人胰岛素为例,科学家们通过基因工程技术将重组人胰岛素的基因导入大肠杆菌中,使其能够大量合成胰岛素。

这种方法不仅使得胰岛素的产量大幅增加,还提高了胰岛素的纯度和稳定性,确保药物质量的可控性。

三、基因工程技术的意义和前景基因工程技术在生物制药领域的应用对医药行业具有重要的意义。

它能够帮助我们更好地理解人类疾病的发生机制,并提供新的治疗方法。

基因工程技术为药物的研发和生产提供了新的思路和方法,提高了药物的效力和安全性。

未来,随着基因工程技术的不断发展和创新,生物制药领域的发展前景将更加广阔。

我们可以预见,基因工程技术将有助于发现更多的疾病治疗靶点,并加速相关药物的研发过程。

基因工程3大肠杆菌表达系统

基因工程3大肠杆菌表达系统

生物农药实例
利用基因工程3大肠杆菌表达系统生产Bt蛋白 (Bacillus thuringiensis),该蛋白对多种
鳞翅目害虫具有毒杀作用,可有效防治棉花、 水稻和玉米等农作物的虫害。
基因工程3大肠杆菌表达系统在生物燃料领域的应用
生物燃料
基因工程3大肠杆菌表达系统在生物燃料领域的应用主要涉及生产生物柴油、生物氢等 可再生能源。通过在大肠杆菌中表达特定的外源基因,可以获得具有催化活性的酶,用
安全性问题
针对安全性问题,应加强监管和规范操作,确保基因工程3大肠杆菌表达系统的安全性 和可靠性。
基因污染
为避免基因污染,应加强基因工程3大肠杆菌表达系统的封闭式生产,并采取有效的检 测手段,确保产品的安全性和可靠性。
基因工程3大肠杆菌表达系统在未来的应用前景
生物制药
基因工程3大肠杆菌表达系统有望在生物制 药领域发挥重要作用,用于生产重组蛋白、 抗体、疫苗等生物药物。
利用基因工程3大肠杆菌表达系统生产重组 人胰岛素、生长激素、干扰素等蛋白质药物, 这些药物在临床治疗中发挥了重要作用。
基因工程3大肠杆菌表达系统在生物农药领域的应用
生物农药
基因工程3大肠杆菌表达系统在生物农药领 域的应用主要涉及生产具有杀虫、杀菌或除 草功能的蛋白质。通过在大肠杆菌中表达特 定的外源基因,可以获得具有生物活性的蛋 白质,用于防治农作物病虫害和杂草。
工业生产
基因工程3大肠杆菌表达系统在工业生产领域具有 广泛的应用前景,可用于生产酶、生物材料、生物 燃料等产品。
农业领域
基因工程3大肠杆菌表达系统在农业领域的 应用前景广阔,可用于改良作物品种、提高 抗逆性、增加产量等方面。
THANKS FOR WATCHING

《基因工程制药技术》课件

《基因工程制药技术》课件

02
该系统可用于生产具有治疗价值 的蛋白质药物,如疫苗、抗体等

转基因植物表达系统的优点是生 产成本低,且易于大规模生产。
03
缺点是可能存在食品安全和环境 问题,需要加强监管和控制。
04
04 基因工程制药的挑战与前 景
安全性问题
基因工程制药产品的安全性是首要考 虑的问题,需要经过严格的临床试验 和审批程序,确保产品的安全性和有 效性。
02 基因工程制药技术的基本 原理
基因克隆与表达
基因克隆
01
通过特定的方法将目的基因从生物体中分离出来,并在体外进
行复制和扩增的过程。
基因表达
02
在细胞内,基因通过转录和翻译过程,将遗传信息转化为蛋白
质的过程。
基因克隆与表达在制药工业中的应用
03
利用基因克隆技术获取药物靶点基因,通过基因表达技术生产
未来发展前景与展望包括开发更加高效和精准的基因工程制药技术、拓展新的治 疗领域和应用范围、降低生产成本和提高可及性等,需要加强研发和创新投入, 推动基因工程制药技术的可持续发展。
பைடு நூலகம்
05 基因工程制药的案例分析
胰岛素的基因工程生产
总结词
通过基因工程技术,将胰岛素基因转入到大肠杆菌或 酵母菌中,实现大规模生产。
感谢您的观看
THANKS
具有生物活性的蛋白质药物。
重组DNA技术
01
重组DNA技术
通过人工方法将不同来源的DNA片段进行剪切、拼接和重组,形成新
的DNA分子。
02
重组DNA技术在制药工业中的应用
利用重组DNA技术构建基因表达载体,将目的基因导入受体细胞,实
现目的基因的高效表达。

基因工程制药

基因工程制药

基因工程制药基因工程制药是指利用生物技术手段,通过基因克隆、遗传工程、细胞培养等技术制备的药物。

相比传统的制药技术,基因工程制药具有高效、精准、无毒副作用等优点。

本文将从基因工程制药的概念、制备过程、应用、发展现状等方面进行介绍。

一、基因工程制药的概念基因工程制药是指利用遗传工程技术,将DNA序列插入到细胞内,使细胞能够表达人类所需的有效蛋白质,从而制备出符合医疗需求的药物。

基因工程制药的研发已成为制药业的重要领域,具有广阔的市场前景和潜力。

二、基因工程制药的制备过程基因工程制药的制备过程包括基因选择、基因克隆、载体构建、转染细胞、发酵培养和纯化等步骤。

1、基因选择基因工程制药的制备过程首先要选择适合人体治疗的基因,可以是已知的治疗目标基因,也可以是新发现的疾病相关基因。

2、基因克隆基因克隆是将目标基因从DNA分子复制到载体上的过程。

其中包括PCR扩增、酶切、连接和转化等步骤,最终得到包含目标基因的重组载体。

3、载体构建为了使目标基因的表达量达到较高水平,需要将目标基因克隆到适合的载体中。

典型的载体包括质粒和病毒。

4、转染细胞将重组载体转染到宿主细胞中,宿主细胞将目标基因表达成蛋白质。

常用的宿主细胞有哺乳动物细胞和真菌等。

5、发酵培养将转染后的细胞进行大规模培养,加入培养基和营养成分,进行培养和生长。

由于基因工程制药药物的生产量较大,通常采用发酵技术进行生产。

6、纯化将发酵得到的药物纯化出来,使其达到医药级别要求。

通常采用多种分离纯化技术,如超滤、离子交换和透析等,得到纯度高、活性好的药物制剂。

三、基因工程制药的应用基因工程制药已经广泛应用于多种疾病的治疗中,如慢性病、肿瘤、代谢性疾病和遗传性疾病等。

其中常见的基因工程制药药物有类风湿关节炎药物、肿瘤靶向药物、生长激素、重组人胰岛素和重组人血小板等。

1、类风湿关节炎药物抗肿瘤类药物通过影响免疫系统来治疗类风湿关节炎。

这些药物通常在类风湿关节炎患者无法耐受非甾体类抗炎药物和光合作用药物时使用。

基因工程技术在生物制药领域中的应用

基因工程技术在生物制药领域中的应用

基因工程技术在生物制药领域中的应用
基因工程技术在生物制药领域中的应用非常广泛。

以下是一些常
见的应用领域:
1. 蛋白质表达和制备:基因工程技术可以通过改造细胞的基因组,使其表达目标蛋白质,从而实现大规模生产。

这些蛋白质可能包
括药物中的重组蛋白、抗体、激素以及其他治疗性蛋白质。

2. 基因治疗:通过基因工程技术,人们可以将修饰后的基因导
入到人体细胞中,以治疗遗传性疾病或其他慢性疾病。

这种方法可以
通过修复患者的缺陷基因或加入缺失的基因来实现。

3. 转基因草药:基因工程技术可以用于修改植物的基因组,以
增强其药用价值。

这种方法可以改善传统草药的疗效,并提高产量和
质量的稳定性。

4. 疫苗制备:基因工程技术可以用于制备疫苗。

通过将病原体
的基因导入到宿主细胞中,可以生产出纯净的病原抗原,用于制备疫苗。

这种方法比传统疫苗制备方法更安全、高效。

5. 生产酶制剂:基因工程技术可以用于生产酶制剂。

酶制剂通
常用于促进生物化学反应或降解废物。

通过改变细菌或真菌的基因组,可以生产出更高效、更稳定的酶制剂。

基因工程技术在生物制药领域中的应用可以帮助人们更高效、更
精确地生产药物,并提供新的治疗方法和解决方案。

《基因工程制药》课件

《基因工程制药》课件
、改变细胞特性等。
基因治疗技术
基因治疗技术定义
基因治疗技术是指将目的基因导入到病变细胞中,以纠正 或补偿缺陷的基因,从而达到治疗疾病的目的的技术。
基因治疗技术原理
基因治疗技术基于分子生物学原理,通过将目的基因导入 到病变细胞中,实现对缺陷基因的补偿或纠正,从而改善 疾病症状。
基因治疗技术应用
基因治疗技术在遗传性疾病、肿瘤等疾病的治疗中具有广 泛的应用前景,例如用于治疗囊性纤维化、血友病等遗传 性疾病。
基因修饰技术
基因修饰技术定义
基因修饰技术是指通过特定的方 法对目的基因进行修饰,以改变
其表达水平或功能的技
基因修饰技术原理
基因修饰技术主要基于DNA的化 学修饰和酶学修饰,通过改变目 的基因的序列、启动子、增强子 等调控元件,实现目的基因的高
表达或抑制表达。
基因修饰技术应用
基因修饰技术在制药、生物治疗 、生物合成等领域具有广泛的应 用,例如用于生产重组蛋白药物

03
免疫反应
免疫反应是基因工程制药中另一个重要问题,可能导致免疫排斥或免疫
攻击。解决方案包括采用免疫沉默技术、降低免疫原性等。
伦理与法律问题
伦理问题
基因工程制药涉及人类基因改造,可能引发伦理争议,如人 类尊严、基因优劣等。解决方案需要遵循伦理原则,如尊重 人权、保护隐私等。
法律问题
基因工程制药涉及法律法规的制定和执行,可能存在法律空 白或法律冲突。解决方案需要完善相关法律法规,明确监管 职责和法律责任。
基因工程制药的发展历程
1970年代
基因工程的诞生,科学 家开始探索利用基因工
程技术生产药物。
1980年代
基因工程药物开始进入 临床试验阶段,如胰岛

第三章 基因工程制药技术

第三章 基因工程制药技术

美国基因制药状况
药品名 原适应症 2000年新适应症 Actimmune 类风湿(1990) 恶性骨刺 Ambisone 细菌感染(1997) HIV感染 Apligraf 腿溃疡(1998) 糖尿病足 Enbrel 风湿病(1998) 类风湿关节炎 Helixate 血友病A(1994) 第二代VIII因子(血友病) KogenateES 血友病A(1989) 第二代VII因子(血友病) Novantrone 白血病(1996) 前列腺癌 Gonal-F 妇科感染(1998) 不育症 Renagel Capsules 肾透析(1998) 血透析 Tamiflu 流感初期(1998) 急性流感 Tripedia 百白破预防(1996) 4-6岁预防百白破
DNA合成仪细胞染色体DNA 限制性内切酶 基因片断 克隆载体* (1)从基因组 DNA获取目 的基因基因组DNA
存在于转化细胞内 由克隆载体所携带的所 有基因组DNA的集合
重组DNA分子 受体菌
• 起步较晚,基础较差。α 1b 型基因工程 干扰素是由我国自行研制开发的具有国 际先进水平的生物高科技成果,于1997 年 通过Ⅲ 期临床,并获得国家一类新药 证书,成为“863”计划生物技术领域第 一个实现产业化的基因工程药物。它源 于中国人基因,最适于黄种人使用。 • 目前我国已批准15种基因工程药物和疫 苗上市,在研究开发中的也有10余种。
3’ 3’
3’ 变性、退火 3’
延伸
变性、退火、延伸
PCR原理图
* (2)化学合成法获取目的基因
由已知氨基酸序列推测可能的DNA序列
• 亚磷酰胺三酯法是将 DNA 固定 在固相载体上完成 DNA 链的合 成的,合成的方向是由待合成引 物的 3' 端向 5' 端合成的,相邻的 核苷酸通过 3' → 5' 磷酸二酯键连 接,

生物制药--基因工程制药--ppt课件可编辑全文

生物制药--基因工程制药--ppt课件可编辑全文

组建重组质粒 构建基因工程菌或细胞
前5个步骤是上游过程
培养工程菌
后4个步骤是下游过程
产物分离纯化
除菌过滤
半成品和成品鉴定
包装
基因工程制药
2.1 目的基因的获得
逆转录法
• 从真核细胞中提取产生该蛋白质的 mRNA 并纯化 (oligo-dT 亲和层析法)
• 借助于逆转录酶,以 mRNA 为模板,以 oligo-dT 为引物, 进行第一链 cDNA 的合成
• 酶解除去 mRNA 链; • 通常在合成 cDNA 第一链后直接 PCR 扩增,即“逆转录
-PCR法”
基因工程制药
2.1 目的基因的获得
逆转录法
基因工程制药
2.1 目的基因的获得
从基因组中直接分离
• 随机断裂法:将基因组 DNA 用内切酶切成多个片段,然 后将这些片段混合物随机重组入适当载体、转化、扩增, 再筛选出所需的基因片段
基因工程制药
2.2 基因载体的选择
质粒载体 —— pET-32a(+)
E. coli 中表达的优良载 体。
pET-32a(+) 具有 Ampr 抗性,酶切位点丰富。含 T7lac 启动子;含有 T7.Tag 和 His-Tag 融合标签,便于 检测和纯化目标蛋白。
基因工程制药
2.2 基因载体的选择
Escherichia coli Rye13
Hae III G GCC
Haemophilus aegyptius
Hind III A AGCTT
Haemophilus influenzae
Hpa I GTT AAC(平末端)
Haemophilus parainfluenzae

基因工程制药的基本过程

基因工程制药的基本过程

基因工程制药的基本过程
基因工程制药的基本过程包括:
1.选择目标基因:首先要从所有存在的基因中根据需要选择目
标基因。

2.克隆目标基因:将目标基因克隆到适当的载体中。

在这个过
程中,需要使用不同的限制性内切酶和连接酶对DNA进行操作,将目标基因插入到载体中。

3.转化目标细胞:利用转化技术将重组的载体带有目标基因的DNA转化到目标生物体的细胞中。

4.筛选获得重组生物体:利用适当的筛选技术,筛选出带有目
标基因并且表达该基因的细胞。

筛选的方法可以是选择性培养基、DNA杂交、荧光染色等。

5.表达目标蛋白:在获得重组生物体后,利用适当的生产条件(例如温度、pH值、培养基等)刺激目标基因表达目标蛋白。

6.纯化目标蛋白:利用各种生物化学纯化技术对目标蛋白进行
分离和纯化。

7.制剂和药物研发:将纯化的目标蛋白进行制剂开发和药物研发,包括剂型设计、剂量确定、毒理学和临床试验等。

简述基因工程制药的基本流程

简述基因工程制药的基本流程

简述基因工程制药的基本流程基因工程制药是利用基因工程技术来开发和生产药物的过程。

它涉及到多个步骤和方法,以下是基本流程的简要概述:1. 目标基因的选择:首先确定需要表达的目标基因,该基因可能是人类或其他生物体产生的具有治疗作用的蛋白质或多肽。

2. 基因克隆:利用DNA重组技术将目标基因从其自然来源中分离出来,并将其插入到适当的表达载体中,以便将基因导入到宿主细胞中。

3. 基因导入和表达:将经过修饰的表达载体导入到宿主细胞中,这可以通过多种方法实现,如转染、电穿孔或基因枪等。

一旦基因在宿主细胞中被导入,它将开始表达并产生目标蛋白质。

4. 培养和扩增:在适当的培养条件下,培养宿主细胞以扩增转基因细胞群。

这通常需要使用培养基和特定的生长因子来促进细胞生长和表达目标蛋白质。

5. 蛋白质纯化和分离:通过选择合适的纯化方法,如离子交换层析、凝胶过滤、亲和层析等,将目标蛋白质从细胞中纯化出来。

这可以帮助去除杂质并提高目标蛋白质的纯度和活性。

6. 质量控制:对纯化后的蛋白质进行质量控制检测,包括对其纯度、结构和活性的分析。

这确保生产的药物符合安全和有效的标准。

7. 药物制剂:将纯化后的目标蛋白质制备成具有良好稳定性和生物可用性的药物制剂。

这可能涉及到药物配方、缓冲剂的选择、冻干或液体制剂的制备等。

8. 临床试验和批量生产:经过严格的临床试验验证其安全性和有效性后,药物可以进行批量生产。

这包括大规模的生产、包装、贮存、分发和监管,以确保药物的质量和安全。

通过这些基本流程,基因工程制药能够生产出大量具有疗效的蛋白质药物,用于治疗多种疾病,并为人类健康做出贡献。

3-4基因工程制药

3-4基因工程制药

重组人胰岛素的大肠杆菌工程菌的构建

人胰岛素原表达法 表达产物的后处理路线: B链中第22位上的Arg和第 29位上的Lys由于良好折 叠的原因,对胰蛋白酶不 敏感
R K
Cpeptide
R R
S S C S S S
R
K
胰蛋白酶
M
S
N
羧肽酶B
CNBr
S S N
胰蛋白酶
C
羧肽酶B
N
泰山学院生物工程与酿酒学院
生物技术制药 朱红艳
S
重组人胰岛素的大肠杆菌工程菌的构建

A链和B链分别表达法 生产技术的评价:

由于A链和B链上共存在六个半胱氨酸残基,体外二硫键的正确配
对率较低,通常只有10%-20%,因此采用这条工艺路线生产的重组
人胰岛素每克成本高达180美元以上。

为了进一步降低生产成本,美国Ely LiLi公司随后又建立了第二 条生产重组人胰岛素的工艺路线。
泰山学院生物工程与酿酒学院
生物技术制药
朱红艳
人胰岛素的生产方法

基因工程法制人胰岛素
1982年,美国Ely LiLi公司首先使用重组大肠杆菌生产人胰岛素 ,成为世界上第一个上市的基因工程药物。1987年,Novo公司又 推出了利用重组酵母菌生产人胰岛素的新工艺。 上述由基因工程菌合成的重组人胰岛素在体外胰岛素受体结合性 能、淋巴细胞和成纤维细胞的应答能力、降血糖作用、血浆药代 动力学等指标上均与天然胰岛素没有任何区别,而且还具有无免 疫原性、注射吸收迅速等优点,充分展示了基因工程在生物医药 领域中的巨大潜力。
泰山学院生物工程与酿酒学院
生物技术制药
朱红艳
人胰岛素的生产方法

基因工程在制药领域的应用

基因工程在制药领域的应用

基因工程在制药领域的应用摘要主要介绍基因工程的概念、基因工程技术开发药物的一般过程及基因工程药物,同时探讨了今后利用基因工程技术进行药物开发、研究的发展方向。

1 基因工程概述所谓的基因工程是指在体外将核酸分子插入病毒、质粒或其它载体分子,构成遗传物质的新组合,并使之参入到原先没有这类分子的寄主细胞内,而能持续稳定地繁殖。

基因工程的第一个重要特征是跨越天然物种屏障的能力,即把来自任何一种生物的基因放置在与其毫无亲缘关系的新寄主生物细胞中去的能力。

这表明人们有可能按照主观愿望创造出自然界中不存在的新物种。

第二个特征是,它强调了一种确定的DNA小片段在新寄主细胞中进行扩增的事实.才能制备到大是纯化的DNA片断,从而拓宽了分子生物学的领域,使之在生物制药领域有巨大的应用。

基因工程自从20世纪70年代初期问世以来,无论是在基础理论研究领域,还是在生产实际应用方面.都已经取得了惊人的成绩。

基因组核苷酸全序列的测定与分析,是基因工程技术促进基础生物学研究的一个出色范例。

2001年2月12 日,由6国的科学家共同参与的国际人类基因组公布了人类基因组图谱及初步分析结果,这结果为人们提供了约3000 多个基因可用来制药,将推进基因制药产业的快速发展。

由于基因克隆技术的发展,已使得基因工程技术在工业生产尤其是制药生产中发挥了重要作用。

以前人们利用微生物自身生产有用的产品,如利用青霉菌生产青霉素、利用链霉菌生产链霉素等。

但是从这些生物体中分离纯化这些药物,不仅成本昂贵,而且技术上也相当困难。

如今将编码这些药物的基因克隆并转移到合适的生物体内进行有效的表达,就可以方便地提取到大量的有用药物。

2 基因工程技术开发药物的一般过程利用基因工程技术开发一个药物,一般要经过以下几个步骤:①目的基因片断的获得:可以通过化学合成的方法来合成已知核苷酸序列的DNA片段;也可以通过从生物组织细胞中提取分离得到,对于真核生物则需要建立cDNA文库。

生物基因工程技术在制药中的应用

生物基因工程技术在制药中的应用

生物基因工程技术在制药中的应用随着科学技术的不断发展和进步,人们在很多领域都开始应用生物基因工程技术。

其中,制药领域也是其中之一。

生物基因工程技术在制药中的应用,不仅能够提高药品的疗效和质量,还可以减少药品的副作用和生产成本,可以说是现代制药的重要推动力之一。

1. 生物基因工程技术简介生物基因工程技术是一种利用生物技术手段来改变生物体的遗传信息的技术。

它主要包括基因克隆、基因组测序、基因编辑和基因组学等方面。

通过这些技术手段,可以让生物产生一些具有特殊功能的蛋白质,从而达到治疗某些疾病的效果。

2. 生物基因工程技术在制药中的应用2.1 生物基因工程技术在药物制剂中的应用生物基因工程技术在药物制剂中的应用得到了越来越广泛的重视。

在制药过程中,生物基因工程技术可以通过改造药物分子的结构或者增加药物的生物活性来提高药物的疗效。

同时,通过这种技术手段,还可以减少药物的副作用和生产成本,提高药物的安全性和可靠性。

2.2 生物基因工程技术在药物生产中的应用生物基因工程技术在药物生产中的应用也得到了广泛的应用。

在过去的制药过程中,通常采用动物或植物细胞进行药物的生产。

但是,这种方法生产的药物效率低、质量不稳定,而且易受到环境因素的影响。

而使用生物基因工程技术,就可以通过改变特定基因的表达或者重组某些蛋白质来生产特定药物分子,这种方法生产的药物效率高、质量稳定,而且可以避免重金属、病毒等污染物质的产生,非常安全可靠。

2.3 生物基因工程技术在药物的研究开发中的应用在药物的研究开发过程中,生物基因工程技术也可以发挥重要作用。

例如,使用基因编辑技术对某些致病基因进行编辑,可以开发出更具针对性的治疗药物,以此来实现更加精确的治疗效果。

此外,通过对人类基因组的研究,也可以找到一些新的治疗靶点,并根据这些靶点设计出更有效的治疗药物。

3. 生物基因技术应用的优势和不足3.1 生物基因技术应用的优势生物基因技术应用在制药中,可以提高药物的疗效、降低药物的副作用和制造成本,同时可以避免污染物质的产生,从而保证药物的安全性。

基因工程制药中

基因工程制药中

未来发展趋势
1 智能化技术的应用
基因分析技术、大数据技术、人工智能等的 应用将加速新药研发,降低药物研发成本和 提高研发效率。
2 社会化医药资本
医学科技飞速发展,引发大批资本的涌入, 未来的医疗产业将由传统的政府和大企业主 导转向社会化资本。
3 创新型人才培养
育人需要注重实践教学、合作教学,强化学 生实践动手能力和团队协作能力。
4 国际化发展
加强与国外研究单位、知名医药公司的合作, 形成全球化资本与创新环境下的国际化发展。
基因工程制药的伦理和法律考量
伦理考虑
开展基因工程制药研究应该遵循诚实守信原则,尊 重人的利益和尊严。
法律考虑
制药企业应符合 FDA 的质量标准和相关安全法规, 防止医用假冒伪劣药品的出现。
总结和展望
基因工程制药是继化学制药和生物制药之后的又一种重要的制药手段。它创造了许多新的治疗方法和新型生物 制剂,并将极大地改变人类医疗卫生方式。展望未来,基因工程制药必将推动医药工业的自主创新和高效发展, 也将充分发挥全球协作的作用,为新时代的医疗卫生事业作出贡献。
基因工程制药中
基因工程制药是利用生物技术手段,将包含特定目的基因的外源 DNA 导入宿 主细胞,通过改变宿主细胞代谢,生产出治疗疾病的生物制品。
制药的革命:基因工程制药发展历程
1
1 973年
卡彭特和斯坦利首次成功重组 DNA
2
1 976年
首个重组的人类基因生产出来
3
1 979年
首个人类基因治疗药物 Humulin 通过 FDA 批准
生物制品
如 Insulin、Erythropoietin 等蛋白类生物制品,取 代了使用动物胰岛素的药物,具有生产成本低、 不易感染病毒等特点。

基因工程制药—基因工程制药实例

基因工程制药—基因工程制药实例
基因工程制药实例
一、干扰素的介绍
✓组成:是一组具有多种功能的活性蛋白质(主要是糖蛋白),根据结构可分为α、β、 γ、ω等四种类型。
✓作用:是一种广谱抗病毒剂,具有抗病毒、抑制细胞增殖、调节免疫及抗肿瘤作用。 ✓特点:具有高度的种属特异性。
二、干扰素的生产方法
1、血液制取 产量极低、价格昂贵,无法普及推广。 2、基因工程菌发酵生产 利用重组大肠杆菌进行发酵,实现大规模生产。
3、发酵罐培养
将种子液接入发酵罐中,接种量10%,培养温度30℃,pH值7.0。调节通气 量和搅拌转速,控制溶解氧为30%,培养4 h。然后控制培养温度20℃,pH值 6.0,溶解氧为60%,继续培养5~6.5 h,当菌体OD值达到9.0±1.0后,用冷水 快速降温至15度以下,以减缓细胞衰老,或者将发酵液转入收集罐,加入冰块, 使温度迅速将至10℃以下。
生产菌 接种 菌种活化 种子培养 发酵培养 菌体收集 菌体破碎 沉淀
离心
灭菌 灭菌 灭菌
配置培养基
干扰素生产工艺流程图
盐析
离心与储存
小结
1、干扰素发酵生产的工艺工程。 2、干扰素分离纯化的工艺过程。
三、干扰素发酵工艺过程
1、菌种制备 取零下70℃下保存的甘油管菌种,接种于摇瓶,培养温度30℃,pH值7.0,250rpm 活化培养18±2h后,进行吸光值测定和杂菌检查。
2、种子罐培养 将活化菌种接入种子罐,接种量10%,培养温度30℃,pH值7.0,调节通气量和搅拌 转速,控制溶解氧为30%,培养3-4小时,当OD值达到4.0以上时,转入发酵罐,进 行二级放大培养,同时注意杂菌检查。
3、离心 在2~10℃下,将悬浮液在连续流离心机上于16000r/min离心。收集含有目标蛋 白的上清液,细胞壁等杂质沉淀在121℃蒸汽30min后焚烧处理。 4、盐析 将收集的上清液用4mol/l硫酸铵进行盐析,2~10℃搅拌静置过夜。 5、离心与储存 将盐析液在连续流离心机上于16000r/min离心,沉淀即为粗干扰素,放入聚乙 烯瓶中,至20℃以下的发酵液转入离心机,1600r/min离心收集。进行干扰 素含量、菌体蛋白含量、菌体干燥、质粒结构一致性、质粒稳定性等项目的检测。 菌体于-20℃保存时不能超过12个月,每保存13个月,检查一次活性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 质粒是细菌细胞中自然存在于染色体外可以自主复 制的一段环状DNA分子。进入到宿主细胞中的一 个质粒可以大量增加其拷贝数。
下游阶段
将实验室成果产业化、商品化,主要包 括工程菌大规模发酵最佳参数的确立,新型 生物反应器的研制,高效分离介质及装置的 开发,分离纯化的优化控制,高纯度产品的 制备技术,生物传感器等一系列仪器仪表的 设计和制造,电子计算机的优化控制等。
目的基因的获取途径
问题:来源于真核细胞的产生基因工程药物的目 的基因,为什么不能进行直接分离? 一、逆转录法
逆转录法就是分离纯化目的基因的mRNA,再反 转录成cDNA,然后进行cDNA 克隆表达。 1、mRNA purification
a.细胞内RNA的组成和含量:DNA:95%核内,5%
细胞器;RNA:75%细胞质,10%核内,15%细胞 器
rRNA80-85%;tRNA10-15%;mRNA1-5%
基因工程
重组DNA技术的基本定义
将一种生物体(供体)的基因与载体在体 外进行拼接重组,然后转入另一种生物体 (受体)内,使之按照人们的意愿稳定遗传 并表达出新产物或新性状的DNA体外操作程 序,也称为分子克隆技术。
供体、受体、载体是重组DNA技术的三 大基本元件。
重组DNA技术的操作过程
基因工程的基本定义
b.真核细胞mRNA 的特点及分离纯化方法
3’-polyA(20-250AAA)-oligo(dT)
Oligo(dT) 纤维素
Poly(A TTTTTT
AAAAA TTTTTT
AAAAA TTTTTT
100mM NaCl
10mM Tris 1mM EDTA
Total RNA
第三章 基因工程制药
学习要求:
掌握基因工程药物生产的基本过程,掌握真核生 物目的基因分离的原理和基本方法,掌握常用的原 核、真核表达系统的特点以及影响药用目的基因表 达的主要因素,熟悉导致基因工程菌不稳定的原因 及解决方法,掌握基因工程菌的发酵工艺和基因工 程药物分离纯化方法的基本原理及技术。 8学时。
传统制药存在的问题
A、材料来源困难或制造技术问题而无法付诸应用; B、从动物脏器中提取出来,也因造价太高,或因来 源困难而供不应求; C、由于免疫抗原等缘故,使它们在使用上受到限制。
基因工程技术的特点 能够十分方便有效地生产许多以往难以大量 获取的生物活性物质,甚至可以创造出自然界 中不存在的全新物质。
➢ 将目的基因克隆到大肠杆 菌细胞中的操作步骤:
1.获得目的基因和质粒载体;
2.形成重组质粒;
3.制备感受态细胞,用重组质粒 转化大肠杆菌细胞;
4.培养大肠杆菌,让重组质粒及 外源目的基因形成大量拷贝;
5.筛选含重组质粒的大肠杆菌细 胞,进行检查或鉴定。
载体
➢ 载体是运送目的基因片段进入宿主细胞的工具,目 前最常用的载体包括细菌质粒、噬菌体、cosmid 质粒等。
基因工程药物的主要种类
1、免疫性蛋白,如各种抗原和单克隆抗体; 2、细胞因子,如各种干扰素、白细胞介素、 集落刺激因子、表皮生长因子、凝血因子; 3、激素,如胰岛素、生长激素、心钠素; 4、酶类,如尿激酶、链激酶、葡激酶、组织 型纤维蛋白溶酶原激活剂、超氧化物歧化酶。
基因工程技术生产药物的优点
1、可大量生产过去难以获得的生理活性蛋白质和多 肽,为临床使用提供有效保障; 2、可以提供足够数量的生理活性物质,以便对其生 理、生化和结构进行深入的研究,从而扩大这些物 质的应用范围; 3、可以发现、挖掘更多的内源性生理活性物质; 4、内源生理活性物质作为药物使用时存在的不足之 处,可以通过基因工程进行改造和去除; 5、利用基因工程技术可获得新型化合物,扩大药物 筛选来源。
化学合成法
前提:较小的蛋白质或多肽的编码基因,必须 知道目的基因的核苷酸排列顺序,或知道目的蛋 白质的氨基酸顺序,再按相应的密码子推导出 DNA的碱基序列。
限制:(1)不能合成太长的基因。 (2)人工合成基因时,遗传密码的简并会
为选择密码子带来很大的困难。 (3)费用高。
以大肠杆菌为宿主菌进行基因的克隆
基因工程是指重组DNA技术的产业化 设计与应用,包括上游技术和下游技术 两大组成部分。上游技术指的是基因重 组、克隆和表达的设计与构建技术(即 重组DNA技术);而下游技术则指基因 工程菌或细胞的大规模培养技术及目的 基因产物的分离纯化技术。
基因工程的基本用途
✓分离、扩增、鉴定、研究、整理生物信 息资源。 ✓设计、构建生物的新性状甚至新物种。 ✓大规模生产生物活性物质。
重组DNA技术的理论基础
19世纪中 孟德尔 豌豆杂交试验 遗传因子 经典遗传学 20世纪初 摩尔根 果蝇杂交实验 基因 基因学 1944年 艾弗瑞 肺炎双球菌转化实验 遗传物质DNA
分子遗传学 1953年 沃森--克瑞克 DNA双螺旋结构 分子生物学 1973年 伯格--杰克森--考恩--鲍耶 DNA分子体外拼接
洗脱 rRNA/tRNA
纤维素柱纯化Poly(A)mRNA 流程图
Poly(A)mRNA
反转录人工合成互补DNA
➢ cDNA法选择性地克隆 蛋白编码序列;
➢ cDNA法克隆的目的基 因很“纯净”; cDNA片一般只有2— 3kb或更小。
2、cDNA第一链的合成:一次好的逆转录反 应可使oligo(dT)选出的mRNA有5—30%被 拷贝。 3、cDNA第二链的合成: 4、cDNA cloning:expression vector pUC 5、将重组体导入host cell 6、cDNA library identification 7、目的cDNA 克隆的分离和鉴定 (限制酶图谱的绘制、杂交分析、基因定位、 基因测序、确定基因的转录方向、起始点等。)
基因工程药物生产基本过程
获得目的基因 构建重组质粒 构建基因工程菌(或细胞) 培养工程菌
产物分离、纯化 产品加工、检验等
上游阶段
首先获得目的基因,然后用限制性内 切酶和连接酶将其插入适当的载体质粒或 噬菌体中并转入大肠杆菌或其它宿主菌 (细胞),以便大量复制目的基因。
选择基因表达系统主要考虑的是保证 表达功能,其次要考虑的是表达量的多少 和分离纯化的难易。
相关文档
最新文档