2019年苏科版九年级数学上册期末综合检测试卷(有答案)
2019-2020年扬州市邗江区九年级上册期末数学试卷(有答案)【优质版】
江苏省扬州市邗江区九年级(上)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应位置上)1.(3分)下列事件属于随机事件的是()A.任意画一个三角形,其内角和为180°B.太阳从东方升起C.掷一次骰子,向上一面点数是7D.经过有交通信号灯的路口,遇到红灯2.(3分)为了考查某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和极差分别是()A.13,11 B.14,11 C.12,11 D.13,163.(3分)方程22﹣5+3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.两根异号4.(3分)在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙C的半径为,则⊙C与AB 的位置关系是()A.相切B.相交C.相离D.无法确定5.(3分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(+1)2+3上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y26.(3分)⊙O的半径为10,两平行弦AC,BD的长分别为12,16,则两弦间的距离是()A.2 B.14 C.6或8 D.2 或147.(3分)小明从二次函数y=a2+b+c的图象(如图)中观察得到了下面五条信息:①abc>0②2a﹣3b=0③b2﹣4ac>0④a+b+c>0⑤4b<c则其中结论正确的个数是()A.2个B.3个 C.4个 D.5个8.(3分)如图,平面直角坐标系中O是原点,平行四边形ABCO的顶点A、C的坐标分别(8,0)、(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB 于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=.正确的个数是()A.4个B.3个 C.2个 D.1个二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题纸相应位置上.)9.(3分)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)10.(3分)据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为℃(精确到1℃).11.(3分)如果一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数为.12.(3分)一组数据﹣1,﹣2,,1,2的平均数为0,则这组数据的方差为.13.(3分)某种冰箱经两次降价后从原的每台2500元降为每台1600元,求平均每次降价的百分率为.14.(3分)已知⊙O半径为1,A、B在⊙O上,且AB=,则AB所对的圆周角为o.15.(3分)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD 的面积为15,那么△ACD的面积为.16.(3分)若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为.17.(3分)在平面直角坐标系中,抛物线y=a(﹣2)2﹣经过原点O,与轴的另一个交点为A.将抛物线在轴下方的部分沿轴折叠到轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,过点B(0,1)作直线l平行于轴,当图象G 在直线l上方的部分对应的函数y随增大而增大时,的取值范围是.18.(3分)如图,在△ABC中,∠CAB=90°,AB=6,AC=4,CD是△ABC的中线,将△ABC沿直线CD翻折,点B′是点B的对应点,点E是线段CD上的点,如果∠CAE=∠BAB′,那么CE的长是.三、解答题(本大题共有10题,共96分.请在答题纸指定区域内作答,解题时写出必要的文字说明,推理步骤或演算步骤.)19.(8分)解方程:(1)2+2=1;(2)(﹣3)2+2(﹣3)=0.20.(8分)已知关于的方程2+2+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.21.(8分)有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A.菱形,B.平行四边形,C.线段,D.角,将这四张卡片背面朝上洗匀后(1)随机抽取一张卡片图案是轴对称图形的概率是;(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是中心对称图形的概率,并用树状图或列表法加以说明.22.(8分)某市发生地震后,某校学生会向全校1 900名学生发起了捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了统计图,如图①和②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.23.(10分)如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为;(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.24.(10分)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线;(2)若⊙O的半径是4,AP=4,求图中阴影部分的面积.25.(10分)某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)若某天的销售利润为2000元,为最大限度让利于顾客,则该商品销售价是多少?(2)求销售单价为多少元时,该商品每天的销售利润最大,请说明理由.26.(10分)如图,直角梯形ABCD中,∠B=90°,AD∥BC,BC=2AD,点E为边BC 的中点.(1)求证:四边形AECD为平行四边形;(2)在CD边上取一点F,联结AF、AC、EF,设AC与EF交于点G,且∠EAF=∠CAD.求证:△AEC∽△ADF;(3)在(2)的条件下,当∠ECA=45°时.求:FG:EG的比值.27.(12分)定义:对于给定的两个函数,任取自变量的一个值,当<0时,它们对应的函数值互为相反数;当≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=﹣1,它们的相关函数为y=.(1)已知点A(﹣5,8)在一次函数y=a﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣2+4﹣.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤≤3时,求函数y=﹣2+4﹣的相关函数的最大值和最小值.28.(12分)如图,已知在平面直角坐标系Oy中,抛物线y=a2+2+c与轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=+b经过C、M两点,且与轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.江苏省扬州市邗江区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应位置上)1.(3分)下列事件属于随机事件的是()A.任意画一个三角形,其内角和为180°B.太阳从东方升起C.掷一次骰子,向上一面点数是7D.经过有交通信号灯的路口,遇到红灯【解答】解:A、是必然事件,故A不符合题意;B、是必然事件,故B不符合题意;C、是不可能事件,故C不符合题意;D、是随机事件,故D符合题意;故选:D.2.(3分)为了考查某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和极差分别是()A.13,11 B.14,11 C.12,11 D.13,16【解答】解:将数据从小到大排列为:8,9,10,11,12,14,16,16,17,19,中位数为:13;极差=19﹣8=11.故选:A.3.(3分)方程22﹣5+3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.两根异号【解答】解:∵△=(﹣5)2﹣4×2×3=1>0,∴方程22﹣5+3=0有两个不相等的实数根.故选:B.4.(3分)在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙C的半径为,则⊙C与AB 的位置关系是()A.相切B.相交C.相离D.无法确定【解答】解:过O作OD⊥AB于D,由勾股定理得:AB==13,由三角形的面积公式得:AC×BC=AB×CD,∴5×12=13×CD,∴CD=>,∴⊙O与AB的位置关系是相离,故选:C.5.(3分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(+1)2+3上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2【解答】解:∵函数的解析式是y=﹣(+1)2+3,如右图,∴对称轴是=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随的增大而减小,于是y1>y2>y3.故选:A.6.(3分)⊙O的半径为10,两平行弦AC,BD的长分别为12,16,则两弦间的距离是()A.2 B.14 C.6或8 D.2 或14【解答】解:如图①,当弦AC,BD在⊙O的圆心同侧时,作OE⊥AC垂足为E,交BD于点F,∵OE⊥AC AC∥BD,∴OF⊥BD,∴AE=AC=6,BF=BD=8,在Rt△AOE中OE===8同理可得:OF=6∴EF=OE﹣OF=8﹣6=2;如图②,当弦AC,BD在⊙O的圆心两侧时,同理可得:EF=OE+OF=8+6=14综上所述两弦之间的距离为2或14.故选:D.7.(3分)小明从二次函数y=a2+b+c的图象(如图)中观察得到了下面五条信息:①abc>0②2a﹣3b=0③b2﹣4ac>0④a+b+c>0⑤4b<c则其中结论正确的个数是()A.2个B.3个 C.4个 D.5个【解答】解:①因为函数图象与y轴的交点在y轴的负半轴可知,c<0,由函数图象开口向上可知,a>0,由①知,c<0,由函数的对称轴在的正半轴上可知,=﹣>0,故b<0,故abc>0;故此选项正确;②因为函数的对称轴为=﹣=,故2a=﹣3b,即2a+3b=0;故此选项错误;③因为图象和轴有两个交点,所以b2﹣4ac>0,故此选项正确;④把=1代入y=a2+b+c得:a+b+c<0,故此选项错误;⑤当=2时,y=4a+2b+c=2×(﹣3b)+2b+c=c﹣4b,而点(2,c﹣4b)在第一象限,∴⑤c﹣4b>0,故此选项正确;其中正确信息的有①③⑤,故选:B.8.(3分)如图,平面直角坐标系中O是原点,平行四边形ABCO的顶点A、C的坐标分别(8,0)、(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB 于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=.正确的个数是()A.4个B.3个 C.2个 D.1个【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴=,∵D、E为OB的三等分点,∴==2,∴=2,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论不正确;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=OB,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,如图3.S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=8×4﹣8﹣8﹣4=12,∴S△CFG∵DE∥FG,∴△CDE∽△CFG,∴=()2=,∴=,=S△CFG=;∴S四边形DEGF所以③结论正确;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论不正确;本题结论正确的有:①③.故选:C.二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题纸相应位置上.)9.(3分)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是AB∥DE.(只需写一个条件,不添加辅助线和字母)【解答】解:∵∠A=∠D,∴当∠B=∠DEF时,△ABC∽△DEF,∵AB∥DE时,∠B=∠DEF,∴添加AB∥DE时,使△ABC∽△DEF.故答案为AB∥DE.10.(3分)据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为23℃(精确到1℃).【解答】解:根据黄金比的值得:37×0.618≈23℃.故答案为23.11.(3分)如果一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数为6.【解答】解:设这个多边形的边数为n,∵n边形的内角和为(n﹣2)•180°,多边形的外角和为360°,∴(n﹣2)•180°=360°×2,解得n=6.∴此多边形的边数为6.故答案为:6.12.(3分)一组数据﹣1,﹣2,,1,2的平均数为0,则这组数据的方差为2.【解答】解:由平均数的公式得:(﹣1﹣2+1+2+)÷5=0,解得=0;∴方差=[(﹣1﹣0)2+(﹣2﹣0)2+(0﹣0)2+(1﹣0)2+(2﹣0)2]÷5=2.故答案为:2.13.(3分)某种冰箱经两次降价后从原的每台2500元降为每台1600元,求平均每次降价的百分率为20%.【解答】解:设降价的百分率为,由题意得2500(1﹣)2=1600,解得1=0.2,2=﹣1.8(舍).所以平均每次降价的百分率为20%.故答案为20%.14.(3分)已知⊙O半径为1,A、B在⊙O上,且AB=,则AB所对的圆周角为45或135o.【解答】解:如图所示,∵OC⊥AB,∴C为AB的中点,即AC=BC=AB=,在Rt△AOC中,OA=1,AC=,根据勾股定理得:OC==,即OC=AC,∴△AOC为等腰直角三角形,∴∠AOC=45°,同理∠BOC=45°,∴∠AOB=∠AOC+∠BOC=90°,∵∠AOB与∠ADB都对,∴∠ADB=∠AOB=45°,∵大角∠AOB=270°,∴∠AEB=135°,∴弦AB所对的圆周角为45°或135°.故答案为:45或135.15.(3分)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD 的面积为15,那么△ACD的面积为5.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴===()2=,∴△ACD的面积=5,故答案是:5.16.(3分)若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为.【解答】解:连接OB,OC,过点O作OD⊥BC于D,∴BC=2BD,∵⊙O是等边△ABC的外接圆,∴∠BOC=×360°=120°,∵OB=OC,∴∠OBC=∠OCB===30°,∵⊙O的半径为2,∴OB=2,∴BD=OB•cos∠OBD=2×cos30°=2×=,∴BC=2BD=2.∴等边△ABC的边长为2.故答案为:2.17.(3分)在平面直角坐标系中,抛物线y=a(﹣2)2﹣经过原点O,与轴的另一个交点为A.将抛物线在轴下方的部分沿轴折叠到轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,过点B(0,1)作直线l平行于轴,当图象G 在直线l上方的部分对应的函数y随增大而增大时,的取值范围是1<<2或>2+.【解答】解:由题意抛物线:y=(﹣2)2﹣,对称轴是:直线=2,由对称性得:A(4,0),沿轴折叠后所得抛物线为:y=﹣(﹣2)2+;如图③,由题意得:当y=1时,(﹣2)2﹣=1,解得:1=2+,2=2﹣,∴C(2﹣,1),F(2+,1),当y=1时,﹣(﹣2)2+=1,解得:1=3,2=1,∴D(1,1),E(3,1),由图象得:图象G在直线l上方的部分,当1<<2或>2+时,函数y随增大而增大;故答案为1<<2或>2+.18.(3分)如图,在△ABC中,∠CAB=90°,AB=6,AC=4,CD是△ABC的中线,将△ABC沿直线CD翻折,点B′是点B的对应点,点E是线段CD上的点,如果∠CAE=∠BAB′,那么CE的长是.【解答】解:如图,∵△CDB′是由□CDB翻折,∴∠BCD=∠DCB′,∠CBD=∠CDB′,AD=DB=DB′,∴∠DBB′=∠DB′B,∵2∠DCB+2∠CBD+2∠DBB′=180°,∴∠DCB+∠CBD+∠DBB′=90°,∵∠CDA=∠DCB+∠CBD,∠ACD+∠CDA=90°,∴∠ABB′=∠ACE,∵AD=DB=DB′=3,∴∠AB′B=90°,∵∠ACE=∠ABB′,∠CAE=∠BAB′,∴△ACE∽△ABB′,∴∠AEC=∠AB′B=90°,在RT△AEC中,∵AC=4,AD=3,∴CD==5,∵AC•AD=•CD•AE,∴AE==,在RT△ACE中,CE===.故答案为.三、解答题(本大题共有10题,共96分.请在答题纸指定区域内作答,解题时写出必要的文字说明,推理步骤或演算步骤.)19.(8分)解方程:(1)2+2=1;(2)(﹣3)2+2(﹣3)=0.【解答】解:(1)方程配方得:2+2+1=2,即(+1)2=2,开方得:+1=±,解得:1=﹣1+,2=﹣1﹣;(2)分解因式得:(﹣3)(﹣3+2)=0,解得:1=3,2=1.20.(8分)已知关于的方程2+2+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.【解答】解:(1)∵b2﹣4ac=(2)2﹣4×1×(a﹣2)=12﹣4a>0,解得:a<3.∴a的取值范围是a<3;(2)设方程的另一根为1,由根与系数的关系得:,解得:,则a的值是﹣1,该方程的另一根为﹣3.21.(8分)有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A.菱形,B.平行四边形,C.线段,D.角,将这四张卡片背面朝上洗匀后(1)随机抽取一张卡片图案是轴对称图形的概率是;(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是中心对称图形的概率,并用树状图或列表法加以说明.【解答】解:(1)菱形,轴对称图形;平行四边形,不是轴对称图形;线段,轴对称图形;角,轴对称图形,则随机抽取一张卡片图案是轴对称图形的概率是;故答案为:;(2)列表如下:其中A,B,C为中心对称图形,D不为中心对称图形,则P==.22.(8分)某市发生地震后,某校学生会向全校1 900名学生发起了捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了统计图,如图①和②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为50,图①中m的值是32;(2)求本次调查获取的样本数据的平均数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【解答】解:(1)根据条形图4+16+12+10+8=50(人),m=100﹣20﹣24﹣16﹣8=32,故答案为:50、32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为16;(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名.23.(10分)如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为(2,0);(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.【解答】解:(1)如图;D(2,0)(4分)(2)如图;;作CE⊥轴,垂足为E.∵△AOD≌△DEC,∴∠OAD=∠CDE,又∵∠OAD+∠ADO=90°,∴∠CDE+∠ADO=90°,∴扇形DAC的圆心角为90度;(3)∵弧AC的长度即为圆锥底面圆的周长.l弧=,设圆锥底面圆半径为r,则,∴.24.(10分)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线;(2)若⊙O的半径是4,AP=4,求图中阴影部分的面积.【解答】(1)证明:连接OP ,如图∵OD=OP∴∠OPD=∠ODP∵∠APC=∠AOD∴∠APC +∠OPD=∠ODP +∠AOD ,又∵PD ⊥BE∴∠ODP +∠AOD=90°∴∠APC +∠OPD=90°即∠APO=90°∴PO ⊥AP∴AP 是⊙O 的切线(2)解:在Rt △APO 中,∵AP=,PO=4,∴AO=,即,∴∠A=30°,∴∠POA=60°,∴∠OPC=30°在Rt △OPC 中,∵OC=2,OP=4,∴PC=∴又∵PD ⊥BE∴PC=CD∴∠POD=120°,,∴S 阴影=S 扇形OPBD ﹣S △OPD =.25.(10分)某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)若某天的销售利润为2000元,为最大限度让利于顾客,则该商品销售价是多少?(2)求销售单价为多少元时,该商品每天的销售利润最大,请说明理由.【解答】解:(1)设销售价格为元时,当天销售利润为2000元,则(﹣20)•[250﹣10(﹣25)]=2000,整理,得:2﹣70+1200=0,解得:1=30,2=40(舍去),答:该商品销售价是30元/件;(2)设该商品每天的销售利润为y,则y=(﹣20)•[250﹣10(﹣25)]=﹣102﹣700+10000=﹣10(﹣35)2+2250,答:当销售单价为35元/件时,销售利润最大.26.(10分)如图,直角梯形ABCD中,∠B=90°,AD∥BC,BC=2AD,点E为边BC 的中点.(1)求证:四边形AECD为平行四边形;(2)在CD边上取一点F,联结AF、AC、EF,设AC与EF交于点G,且∠EAF=∠CAD.求证:△AEC∽△ADF;(3)在(2)的条件下,当∠ECA=45°时.求:FG:EG的比值.【解答】解:(1)∵BC=2AD,点E为BC中点,∴BC=2CE,∴AD=CE,∵AD∥CE,∴四边形AECD为平行四边形;(2)∵四边形AECD为平行四边形,∴∠D=∠AEC,∵∠EAF=∠CAD,∴∠EAC=∠DAF,∴△AEC∽△ADF,(3)设AD=BE=CE=a,由∠ECA=45°,得到△ABC为等腰直角三角形,即AB=BC=2a,∴在Rt△ABE中,根据勾股定理得:AE==a,∵△AEC∽△ADF,∴=,即=,∴DF=a,∴CF=CD﹣DF=a﹣a=a,∵AE∥DC,∴===.27.(12分)定义:对于给定的两个函数,任取自变量的一个值,当<0时,它们对应的函数值互为相反数;当≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=﹣1,它们的相关函数为y=.(1)已知点A(﹣5,8)在一次函数y=a﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣2+4﹣.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤≤3时,求函数y=﹣2+4﹣的相关函数的最大值和最小值.【解答】解:(1)y=a﹣3的相关函数y=,将A(﹣5,8)代入y=﹣a+3得:5a+3=8,解得a=1;(2)二次函数y=﹣2+4﹣的相关函数为y=,①当m<0时,将B(m,)代入y=2﹣4+得m2﹣4m+=,解得:m=2+(舍去),或m=2﹣,当m≥0时,将B(m,)代入y=﹣2+4﹣得:﹣m2+4m﹣=,解得:m=2+或m=2﹣.综上所述:m=2﹣或m=2+或m=2﹣;②当﹣3≤<0时,y=2﹣4+,抛物线的对称轴为=2,此时y随的增大而减小,∴此时y的最大值为,当0≤≤3时,函数y=﹣2+4﹣,抛物线的对称轴为=2,当=0有最小值,最小值为﹣,当=2时,有最大值,最大值y=,综上所述,当﹣3≤≤3时,函数y=﹣2+4﹣的相关函数的最大值为,最小值为﹣.28.(12分)如图,已知在平面直角坐标系Oy中,抛物线y=a2+2+c与轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=+b经过C、M两点,且与轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.【解答】解:(1)∵抛物线y=a2+2+c经过点A(﹣1,0)和点C(0,3),∴,∴,∴y=﹣2+2+3=﹣(﹣1)2+4,对称轴为直线=1,顶点M(1,4);(2)如图1,∵点C关于直线l的对称点为N,∴N(2,3),∵直线y=+b经过C、M两点,∴,∴,∴y=+3,∵y=+3与轴交于点D,∴D(﹣3,0),∴AD=2=CN又∵AD∥CN,∴CDAN是平行四边形;(3)设P(1,a),过点P作PH⊥DM于H,连接PA、PB,如图2,则MP=4﹣a,又∠HMP=45°,∴HP=AP=,Rt△APE中,AP2=AE2+PE2,即:,解得:,∴P1(1,﹣4+2),P2(1,﹣4﹣2).。
根与系数的关系(韦达定理)(专项培优训练)—2023-2024学年九年级数学上册(苏科版)(解析版)
根与系数的关系(韦达定理)(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.43一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2023•射阳县校级二模)已知x1、x2是关于x的方程x2﹣2x﹣1=0的两个实数根,下列结论正确的是()A.x1=x2B.﹣2x1=﹣2x2C.x1+x2=﹣2 D.x1•x2=1解:∵Δ=(﹣2)2﹣4×1×(﹣1)=8>0,∴方程有两个不相等的实数解,即x1≠x2,所以A选项不符合题意;∵x1、x2是关于x的方程x2﹣2x﹣1=0的两个实数根,∴﹣2x1﹣1=0,﹣2x2﹣1=0,∴﹣2x1﹣1=﹣2x2﹣1,即﹣2x1=﹣2x2,所以B选项符合题意;∵x1、x2是关于x的方程x2﹣2x﹣1=0的两个实数根,∴x1+x2=2,x1x2=﹣1,所以C选项和D选项不符合题意.故选:B.2.(2分)(2023•苏州模拟)关于x的方程(x﹣1)(x﹣2)﹣m2=0的根的情况是()A.有一正一负两个不相等的实数根B.有两个正的不相等实数根C.至多有一个正的实数根D.至少有一个正的实数根解:方程整理得:x2﹣3x+2﹣m2=0,∵Δ=9﹣4(2﹣m2)=4m2+1>0,∴方程有两个不相等的实数根,∵方程的两个根和为3>0,∴至少有一个正的实数根,故选:D.3.(2分)(2020秋•盐城期末)设a,b是方程x2+x﹣2021=0的两个实数根,则a2+b2+a+b的值是()A.0 B.2020 C.4040 D.4042解:∵a,b是方程x2+x﹣2021=0的两个实数根,∴a2+a=2021、b2+b=2021、a+b=﹣1,∴则a2+b2+a+b=(a2+a)+(b2+b)=2021+2021=4042.故选:D.4.(2分)(2020秋•金坛区月考)已知关于x的一元二次方程x2+(2m+1)x+m﹣1=0的两个根分别是x1,x2,且满足x12+x22=3,则m的值是()A.0 B.﹣2 C.0 或﹣D.﹣2或0解:∵方程x2+(2m+1)x+m﹣1=0的两个根分别是x1,x2,∴x1+x2=﹣(2m+1),x1x2=m﹣1,∵x12+x22=3,即(x1+x2)2﹣2x1x2=3,∴[﹣(2m+1)]2﹣2(m﹣1)=3,解得m=0或m=﹣,∵Δ=(2m+1)2﹣4(m﹣1)=4m2+5>0,∴m为任意实数,方程均有实数根,∴m=0或m=﹣均符合题意.故选:C.5.(2分)(2020秋•江都区月考)若a、b是一元二次方程x2+3x﹣6=0的两个不相等的根,则a2﹣3b的值是()A.3 B.﹣15 C.﹣3 D.15解:∵a、b是一元二次方程x2+3x﹣6=0的两个不相等的根,∴a2+3a﹣6=0,即a2=﹣3a+6,a+b=﹣3,则a2﹣3b=﹣3a+6﹣3b=﹣3(a+b)+6=﹣3×(﹣3)+6=9+6=15,故选:D.6.(2分)(2021•建邺区一模)关于x的方程3x2﹣7x+4=0的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根解:∵a=3,b=﹣7,c=4,∴Δ=b2﹣4ac=49﹣4×3×4=1>0,∴关于x的方程3x2﹣7x+4=0有两个实数根.设关于x的方程3x2﹣7x+4=0的两根分别是α、β.又∵αβ=>0,∴α、β同号.∵α+β=>0,∴α>0,β>0.∴该方程有两个正根.故选:A.7.(2分)(2021秋•常熟市校级月考)关于x的一元二次方程x2+kx﹣3=0有一个根为﹣3,则另一根为()A.1 B.﹣2 C.2 D.3解:设方程x2+kx﹣3=0的另一个根为a,∵关于x的一元二次方程x2+kx﹣3=0有一个根为﹣3,∴由根与系数的关系得:﹣3a=﹣3,解得:a=1,即方程的另一个根为1,故选:A.8.(2分)(2020秋•锡山区校级月考)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有()个.①方程x2﹣x﹣2=0是倍根方程;②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;③若p、q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;④若方程ax2+bx+c=0是倍根方程,则必有2b2=9ac.A.1 B.2 C.3 D.4 解:①解方程x2﹣x﹣2=0得,x1=2,x2=﹣1,得,x1≠2x2,∴方程x2﹣x﹣2=0不是倍根方程;故①不正确;②若(x﹣2)(mx+n)=0是倍根方程,x1=2,因此x2=1或x2=4,当x2=1时,m+n=0,当x2=4时,4m+n=0,∴4m2+5mn+n2=(m+n)(4m+n)=0,故②正确;③∵pq=2,则px2+3x+q=(px+1)(x+q)=0,∴,x2=﹣q,∴,因此是倍根方程,故③正确;④方程ax2+bx+c=0的根为:,,若x1=2x2,则,即,∴,∴,∴,∴9(b2﹣4ac)=b2,∴2b2=9ac.若2x1=x2时,则,则,∴,∴,∴,∴b2=9(b2﹣4ac),∴2b2=9ac.故④正确,∴正确的有:②③④共3个.故选:C.9.(2分)(2018秋•相城区期中)已知m,n是方程x2﹣2018x+2019=0的两个根,则(m2﹣2019m+2018)(n2﹣2019n+2018)的值是()A.1 B.2 C.4037 D.4038解:∵m,n是方程x2﹣2018x+2019=0的两个根,∴m+n=2018,mn=2019,m2﹣2018m+2019=0,n2﹣2018n+2019=0,∴m2﹣2019m+2018=﹣m﹣1,n2﹣2019n=﹣n﹣1,∴(m2﹣2019m+2018)(n2﹣2019n+2018)=(﹣m﹣1)(﹣n﹣1)=mn+m+n+1=2019+2018+1=4038,故选:D.10.(2分)(2021•武进区校级自主招生)设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.解:方法1、∵方程有两个不相等的实数根,则a≠0且Δ>0,由(a+2)2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a<,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,∴x1﹣1<0,x2﹣1>0,那么(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,即9++1<0,解得<a<0,最后a的取值范围为:<a<0.故选D.方法2、由题意知,a≠0,令y=ax2+(a+2)x+9a,由于方程的两根一个大于1,一个小于1,∴抛物线与x轴的交点分别在1两侧,当a>0时,x=1时,y<0,∴a+(a+2)+9a<0,∴a<﹣(不符合题意,舍去),当a<0时,x=1时,y>0,∴a+(a+2)+9a>0,∴a>﹣,∴﹣<a<0,故选:D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2023•工业园区校级模拟)已知:一元二次方程x2﹣5x+c=0有一个根为2,则另一根为.解:设方程的另一根为α,则α+2=5,解得α=3.故答案为:3.12.(2分)(2023•徐州二模)关于x的方程x2+mx﹣4=0的一根为x=1,则另一根为.解:设这个一元二次方程的另一根为x2,∵关于x的方程x2+mx﹣4=0的一根为x=1,∴∴x2=﹣4故答案为:x=﹣4.13.(2分)(2023•玄武区二模)已知关于x的方程x2+px+q=0的两根为﹣3和﹣1,则p+q=.解:∵关于x的方程x2+px+q=0的两根为﹣3和﹣1,∴﹣3+(﹣1)=﹣p,﹣3×(﹣1)=q,∴p=4,q=3,∴p+q=7,故答案为:7.14.(2分)(2023•海陵区校级二模)若关于x的一元二次方程x2+5x﹣1=0的两个实数根分别为x1,x2,则x1+x2=.解:∵关于x的一元二次方程x2+5x﹣1=0的两个实数根分别为x1,x2,∴,故答案为:﹣5.15.(2分)(2022秋•海陵区校级期末)已知一元二次方程2x2+4x﹣3=0的两根为a和b,则a2+b2的值为.解:由题意可得,a+b=﹣=﹣2,ab=﹣∴a2+b2=(a+b)2﹣2ab=4﹣2×(﹣)=7,故答案为:7.(2011秋•江宁区校级期中)已知x1,x2是方程x2+6x+3=0的两实数根,则+的值为.(2分)16.解:根据题意得x1+x2=﹣6,x1x2=3,所以+====10.故答案为10.17.(2分)(2021秋•东台市期中)在解一元二次方程x2+px+q=0时,小明看错了系数p,解得方程的根为1和﹣3;小红看错了系数q,解得方程的根为4和﹣2,则p=,q=.解:∵小明看错了系数p,解得方程的根为1和﹣3,∴q=1×(﹣3)=﹣3,∵小红看错了系数q,解得方程的根为4和﹣2,∴﹣p=4﹣2=2,∴p=﹣2,故答案为:﹣2、﹣3.18.(2分)(2020x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有(填序号)①方程x2﹣x﹣2=0是倍根方程;②若(x﹣2)(mx+n)=0是倍根方程:则4m2+5mn+n2=0;③若p,q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;④若方程以ax2+bx+c=0是倍根方程,则必有2b2=9ac.解:①解方程x2﹣x﹣2=0得,x1=2,x2=﹣1,得,x1≠2x2,∴方程x2﹣x﹣2=0不是倍根方程;故①不正确;②若(x﹣2)(mx+n)=0是倍根方程,x1=2,因此x2=1或x2=4,当x2=1时,m+n=0,当x2=4时,4m+n=0,∴4m2+5mn+n2=(m+n)(4m+n)=0,故②正确;③∵pq=2,则:px2+3x+q=(px+1)(x+q)=0,∴x1=﹣,x2=﹣q,∴x2=﹣q=﹣=2x1,因此是倍根方程,故③正确;④方程ax2+bx+c=0的根为:x1=,x2=,若x1=2x2,则,=×2,即,﹣×2=0,∴=0,∴=0,∴3=﹣b∴9(b2﹣4ac)=b2,∴2b2=9ac.若2x1=x2时,则,×2=,即,则,×2﹣=0,∴=0,∴﹣b+3=0,∴b=3,∴b2=9(b2﹣4ac),∴2b2=9ac.故④正确,故答案为:②③④(2分)(2019春•崇川区校级期末)设a,b是方程x2+x﹣2019=0的两个实数根,则a2+2a+b的值为;19.解:∵设a,b是方程x2+x﹣2019=0的两个实数根,∴a+b=﹣1,a2+a﹣2019=0,∴a2+a=2019,∴a2+2a+b=(a2+a)+(a+b)=2019+(﹣1)=2018,故答案为:2018.20.(2分)(2019秋•江阴市期中)若关于x的方程x2+kx﹣12=0的两根均是整数,则k的值可以是.(只要求写出两个).解:∵﹣12=2×(﹣6)=6×(﹣2)=﹣3×4=﹣4×3等等,∴k=2+(﹣6)=﹣4,或6+(﹣2)=4,或k=±1,故填空答案:4或﹣4.答案不唯一.三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2016秋•吴江区期中)已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.解:(1)证明:∵在方程x2﹣6x﹣k2=0中,Δ=(﹣6)2﹣4×1×(﹣k2)=36+4k2≥36,∴方程有两个不相等的实数根.(2)∵x1,x2为方程x2﹣6x﹣k2=0的两个实数根,∴x1+x2=6,∵x1+2x2=14,∴x2=8,x1=﹣2.将x=8代入x2﹣6x﹣k2=0中,得:64﹣48﹣k2=0,解得:k=±4.答:方程的两个实数根为﹣2和8,k的值为±4.22.(6分)(2015秋•灌云县校级月考)已知关于x的方程(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;(2)是否存在正数m,使方程的两个实数根的平方和等于224.若存在,求出满足条件的m的值;若不存在,请说明理由.解:(1)∵a=,b=﹣(m﹣2),c=m2方程有两个相等的实数根,∴Δ=0,即Δ=b2﹣4ac=[﹣(m﹣2)]2﹣4××m2=﹣4m+4=0,∴m=1.原方程化为:x2+x+1=0 x2+4x+4=0,(x+2)2=0,∴x1=x2=﹣2.(2)不存在正数m使方程的两个实数根的平方和等于224.∵x1+x2=﹣=4m﹣8,x1x2==4m2x12+x22=(x1+x2)2﹣2x1x2=(4m﹣8)2﹣2×4m2=8m2﹣64m+64=224,即:8m2﹣64m﹣160=0,解得:m1=10,m2=﹣2(不合题意,舍去),又∵m1=10时,Δ=﹣4m+4=﹣36<0,此时方程无实数根,∴不存在正数m使方程的两个实数根的平方和等于224.23.(8分)(2022秋•张家港市校级月考)阅读材料:材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=,x1x2=.材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,∴m+n=1,mn=﹣1,则m2n+mn2=mn(m+n)=﹣1×1=﹣1.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,则x1+x2=.x1x2=.(2)类比应用:已知一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,求的值.(3)思维拓展:已知实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,且s≠t,求的值.解:(1)∵一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,∴x1+x2==,x1x2==﹣,故答案为:,﹣;(2)∵一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,∴m+n=,mn=﹣,∴====;(3)∵实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,∴s与t看作是方程2x2﹣3x﹣1=0的两个实数根,∴s+t=,st=﹣,∴(s﹣t)2=(s+t)2﹣4st,(s﹣t)2=()2﹣4×(﹣),(s﹣t)2=,∴s﹣t=,∴====.24.(8分)(2022秋•通州区校级月考)关于x的方程kx2+(k+2)x+=0有两个不相等的实数根.(1)求k的取值范围.(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.解:(1)∵方程有两个不相等的实数根,∴Δ=(k+2)2﹣4k•>0且k≠0,∴k2+4k+4﹣k2>0,且k≠0,∴k>﹣1且k≠0,即k的取值范围是k>﹣1且k≠0.(2)不存在.理由如下:∵关于x的方程kx2+(k+2)x+=0的两根分别为x1、x2,∴x1+x2=−,x1•x2=,假设存在实数k,使得方程的两个实数根x1,x2的倒数和为0,则x1,x2不为0,且+=0,∴+==﹣=0,∴k+2=0,∴k=﹣2,而k=﹣2与方程有两个不相等实数根的条件k>﹣1且k≠0矛盾,故使方程的两个实数根的倒数和为0的实数k不存在.25.(8分)(2021秋•泰兴市校级月考)关于x的方程:2(x﹣k)=x﹣4①和关于x的一元二次方程:(k﹣1)x2+2mx+(3﹣k)+n=0②(k、m、n均为实数),方程①的解为非正数.(1)求k的取值范围;(2)如果方程②的解为负整数,k﹣m=2,2k﹣n=6且k为整数,求整数m的值;(3)当方程②有两个实数根x1、x2,满足(x1+x2)(x1﹣x2)+2m(x1﹣x2+m)=n+5,且k为正整数,试判断|m|≤2是否成立?请说明理由.解:(1)∵关于x的方程:2(x﹣k)=x﹣4.解得x=2k﹣4∵关于x的方程:2(x﹣k)=x﹣4的解为非正数.∴2k﹣4≤0,∴解得k≤2,∵由方程②可知k≠1,∴k≤2且k≠1.(2)∵一元二次方程一元二次方程:(k﹣1)x2+2mx+(3﹣k)+n=0中k﹣m=2,2k﹣n=6,∴k=m+2,n=2k﹣6=2m+4﹣6=2m﹣2,∴把k=m+2,n=2m﹣2代入原方程得:(m+1)x2+2mx+m﹣1=0,因式分解得,[(m+1)x+(m﹣1)](x+1)=0,∴x1=﹣,x2=﹣1,∵方程②的解为负整数,﹣=﹣1,∴m+1=﹣1或﹣2,∴m=﹣2或﹣3.(3)|m|≤2成立,理由是:由(1)知:k≤2且k≠1,∵k是正整数,∴k=2,(k﹣1)x2+2mx+(3﹣k)+n=0有两个实数根x1、x2,∴x1+x2=﹣=﹣2m,x1x2==1+n,∵(x1+x2)(x1﹣x2)+2m(x1﹣x2+m)=n+5,∴2m2=n+5,Δ=(2m)2﹣4(k﹣1)[(3﹣k)+n]=4m2﹣(n+1)≥0②,把①代入②得:4m2﹣4(2m2﹣4)≥0,m2≤4,则|m|≤2,∴|m|≤2成立.26.(8分)(2022秋•洪泽区期中)阅读材料:材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2则x1+x2=﹣,x1x2=.材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,∴m+n=1,mn=﹣1,则m2n+mn2=mn(m+n)=﹣1×1=﹣1.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程x2﹣3x﹣1=0的两个根为x1,x2,则x1+x2=,x1x2=.(2)初步体验:已知一元二次方程x2﹣3x﹣1=0的两根分别为m、n,求的值.(3)类比应用:已知实数s、t满足s2﹣3s﹣1=0,t2﹣3t﹣1=0,且s≠t,求的值.(4)思维拓展:已知实数a、b、c满足a+b=c﹣5、ab=,且c<5,求c的最大值.解:(1)∵一元二次方程x2﹣3x﹣1=0的两个根为x1,x2,∴x1+x2=﹣=3,x1x2==﹣1,故答案为:3,﹣1;(2)∵一元二次方程x2﹣3x﹣1=0的两根分别为m,n,∴m+n=3,mn=﹣1,∴=﹣11;(3)∵实数s,t满足s2﹣3s﹣1=0,t2﹣3t﹣1=0,且s≠t,∴s,t是一元二次方程2x2﹣3x﹣1=0的两个实数根,∴s+t=3,st=﹣1.∵(t﹣s)2=(t+s)2﹣4st=32﹣4×(﹣1)=13,∴t﹣s=±∴;(4)∵a+b=c﹣5,ab=,∴将a、b看作是方程x2﹣(c﹣5)x+=0的两实数根.∵Δ=(c﹣5)2﹣4×≥0,而c<5,∴(5﹣c)3≥64,∴5﹣c≥4,即c≤1,∴c的最大值为1.27.(8分)(2021秋•海陵区校级月考)已知关于x的一元二次方程x2﹣2(k+1)x+k2+k+3=0(k为常数).(1)若方程的两根为菱形相邻两边长,求k的值;(2)是否存在满足条件的常数k,使该方程的两解等于边长为2的菱形的两对角线长,若存在,求k的值;若不存在,说明理由.解:(1)∵方程的两根为菱形相邻两边长,∴此方程有两个相等的实数根,∴Δ=0,∴[﹣2(k+1)]2﹣4(k2+k+3)=0,4(k2+2k+1)﹣4k2﹣4k﹣12=0,4k2+8k+4﹣4k2﹣4k﹣12=0,4k﹣8=0,k=2,(2)不存在,理由如下:∵该方程的两解是菱形的两对角线长,∴a+b=2(k+1),ab=k2+k+3,设菱形的两对角线长a,b.∵菱形的两对角线互相垂直平分,∴由勾股定理得,+=4,+=4,b2+a2=16,∴b2+2ab+a2﹣2ab=16,(a+b)2﹣2ab=16,[2(k+1)]2﹣2(k2+k+3)=16,解得k=,∵Δ=4k﹣8,∴4k﹣8≥0.∴k≥2,∵k=<2,∴不存在满足条件的常数k.28.(8分)(2022秋•惠山区校级月考)已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:无论m取何值方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的等腰三角形的周长.(1)证明:∵Δ=(m+2)2﹣4﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4≥4,即△≥4,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该等腰三角形的腰为1、底边为3时,∵1+1<3∴构不成三角形;②当该等腰三角形的腰为3、底边为1时,等腰三角形的周长=3+3+1=7。
2019-2020学年九年级(华师大版)数学上册期末综合练习卷(含答案) (1)
九年级上册期末综合练习卷一.选择题1.下列各式①;②;③;④;⑤;其中一定是最简二次根式的有()A.4个B.3个C.2个D.1个2.在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值是()A.B.C.D.3.四边形ABCD在平面直角坐标系中的位置如图3所示,若AD⊥CD,AB∥CD,AB=5,A点坐标为(﹣2,7),则点B坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1B.C.D.5.已知方程x2﹣4x+2=0的两根是x1,x2,则代数式的值是()A.2011B.2012C.2013D.20146.如图,在△ABC中,点D在边AB上,则下列条件中不能判断△ABC∽△ACD的是()A.∠ABC=∠ACD B.∠ADC=∠ACB C.D.AC2=AD•AE 7.若分式的值是正整数,则m可取的整数有()A.4个B.5个C.6个D.10个8.一枚均匀的正方体骰子,六个面上分别刻有1,2,3,4,5,6个点.甲乙两人各掷一次,如果朝上一面的两个点数之和为奇数,则甲胜;若为偶数,则乙胜,下列说法正确的是()A.甲获胜的可能性大B.乙获胜的可能性大C.甲乙获胜的可能性一样大D.乙一定获胜9.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=210二.填空题10.已知==,且a+b﹣2c=6,则a的值为.11.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.12.把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是.13.如图,ED为△ABC的中位线,点G是AD和CE的交点,过点G作GF∥BC交AC于点F,如果GF=4,那么线段BC的长是.14.如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE 折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为.三.解答题(共8小题,满分75分)15.计算下列各题(1)(2)(3)(4)16.如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.17.已知关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.18.在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.(1)转动转盘①时,该转盘指针指向歌曲“3”的概率是;(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,求他演唱歌曲“1”和“4”的概率.19.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?20.如图,在△ABC中,∠BAC=90°,AB=AC,点D、E分别在BC、AC上,且∠ADE =45°.(1)求证:△ABD∽△DCE;(2)若AB=2,BD=1,求CE的长.参考答案一.选择题1.C.2.B.3.C.4.B.5.D.6.C.7.A.8.C.9.B.二.填空题10.解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.11.解:如图,tanα==故答案为:.12.解:根据“上加下减,左加右减”的原则可知,把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是y=(x﹣1+3)2+2﹣2,即y=(x+2)2,故答案为y=(x+2)2.13.解:∵ED为△ABC的中位线,∴AD、CE为△ABC的中线,∴点G为△ABC的重心,∴AG=2GD,∵GF∥BC,∴△AGF∽△ADC,∴==,∴CD=GF=×4=6,∴BC=2CD=12.故答案为12.14.解:分两种情况:①如图1,过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD的对称轴,∴AM=BN=AD=1,∵△ABE沿BE折叠得到△A′BE,∴A′E=AE,A′B=AB=1,∴A′N==0,即A′与N重合,∴A′M=1,∴A′E2=EM2+A′M2,∴A′E2=(1﹣A′E)2+12,解得:A′E=1,∴AE=1;②如图2,过A′作PQ∥AD交AB于P,交CD于Q,则直线PQ是矩形ABCD的对称轴,∴PQ⊥AB,AP=PB,AD∥PQ∥BC,∴A′B=2PB,∴∠P A′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,∴AE=A′E=A′B×tan30°=1×=;综上所述:AE的长为1或;故答案为:1或.三.解答题15.解:(1)原式=﹣1+4﹣2=+1;(2)原式=2﹣3﹣(3﹣2)+3=2﹣;(3)原式=10+3+2=15;(4)原式=3+4+4﹣4+2=9.16.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+,答:AB的长是3+.17.解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.18.解:(1)∵转动转盘①一共有3种可能,∴转盘指针指向歌曲“3”的概率是:;故答案为:;(2)分别转动两个转盘一次,列表:(画树状图也可以)45 6BA11,41,51,622,42,52,633,43,53,6共有9种,它们出现的可能性相同.由于指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,所以所有的结果中,该歌手演唱歌曲“1”和“4”(记为事件A)的结果有2种,所以P(A )=.(说明:通过枚举、画树状图或列表得出全部正确情况得(4分);没有说明等可能性扣(1分).)19.解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD =,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.20.解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,又因为∠DEC=∠ADE+∠CAD=45°+∠CAD(三角形的外角等于不相邻的两个内角之和),同理∠ADB=∠C+∠CAD=45°+∠CAD,∴∠DEC=∠ADB,又∠ABD=∠DCE=45°,∴△ABD∽△DCE;(2)∵AB=2,∴BC=2,∵△ABD∽△DCE,∴=,即=,=,CE=﹣.。
苏科版2019-2020九年级数学第一学期期中综合复习基础训练3(附答案)
苏科版2019-2020九年级数学第一学期期中综合复习基础训练3(附答案)1.下列说法:①如果a 2>b 2,那么a>b ;4;③过一点有且只有一条直线与已知直线平行;④关于x 的方程2210mx x ++=没有实数根,那么m 的取值范围是m>1且m≠0;正确的有( )A .0个B .1个C .2个D .3个2.如图,如果从半径为9cm 的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .6cmB .3cmC .5cm D .3cm 3.如图,AB 是O 的直径,120BOD =∠,点C 为BD 的中点,AC 交OD 于点E ,1DE =,则AE 的长为( )A B C .D .4.若关于x 的一元二次方程mx 2﹣2x +1=0有两个实数根,则实数m 的取值范围是( )A .m ≤1B .m ≤﹣1C .m ≤1且m ≠0D .m ≥1且m ≠0 5.下列说法正确的是( )A .一个游戏中奖的概率是1100,则做100次这样的游戏一定会中奖 B .为了了解全国中学生的心理健康状况,应采用普查的方式C .一组数据0,1,2,1,1的众数和中位数都是1D .若甲组数据的方差为2s 甲,乙组数据的方差为2s 乙,则乙组数据比甲组数据稳定6.某型号的手机连续两次降阶,每台手机售价由原来的1185元降到580元,设平均每次降价的百分率为,则列出方程正确的是( )A .580(1+x)2=1185B .1185(1-x)2=580C.580(1-x)2=1185 D.1185(1+x)2=5807.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为()A B.2 C.D.(1+8.一组数据2,3,5,4,5的众数是()A.2 B.3 C.4 D.59.如图,已知⊙O的半径为5,点A到圆心O的距离为3,则过点A的所有弦中,最短弦的长为( )A.4 B.6 C.8 D.1010.通过测试从9位书法兴趣小组的同学中,择优挑选5位去参加中学生书法表演,若测试结果每位同学的成绩各不相同.则被选中同学的成绩,肯定不少于这9位同学测试成绩统计量中的()A.平均数B.众数C.中位数D.方差11.在如图所示的电路图中,在开关全部断开的情况下,闭合其中任意一个开关,灯泡发亮的概率是______.12.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是_____.13.一组数据2,4,5,,1的平均数为,那么这组数据的方差是___.14.关于x 的方程x 2+2(m ﹣1)x ﹣4m =0的两个实数根分别是x 1,x 2,且x 1﹣x 2=2,则m 的值是_____.15.已知圆锥的母线长为5cm ,侧面积为15π2cm ,则这个圆锥的底面圆半径为_____cm.16.已知a ,b 是方程x 2+2017x +2=0的两个根,则(2+2019a +a 2)(2+2019b +b 2)的值为______.17.如图,四边形ABCD 为⊙O 的内接四边形,点E 在DA 的延长线上,已知∠BCD=110°,则∠BAE =_______°.18.已知O 的半径为4cm ,点P 在直线l 上,且点P 到圆心O 的距离为4cm ,则直线l 与O ______.19.如图,△ABC 中,AB =8,BC =10,AC =7,∠ABC 和∠ACB 的平分线交于点 I ,IE ⊥BC 于E ,则 BE 的长为________.20.一元二次方程290x x +=的解是______.21.如图,已知Rt △ABC 中,∠ACB=90°,以AC 为直径的圆O 交斜边AB 于D .过D 作DE ⊥AC 于E ,将△ADE 沿直线AB 翻折得到△ADF .(1)求证:DF 是⊙O 的切线;(2)若⊙O 的半径为10,sin ∠FAD=35,延长FD 交BC 于G ,求BG 的长.22.已知:关于x 的方程()222120x m x m -+++=. ()1若方程总有两个实数根,求m 的取值范围;()2在(1)的条件下,若两实数根1x 、2x 满足1212x x x x +=,求m 的值.23.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x≤85,B.85≤x≤90,C.90≤x≤95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:90,80,90,86,99,96,96,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≧90)的学生人数是多少?24.已知ABC,()1用无刻度的直尺和圆规作ABD,使A D B A C B.∠∠=且ABD的面积为ABC 面积的一半,只需要画出一个ABD即可(作图不必写作法,但要保留作图痕迹) ()2在ABC中,若ACB45∠=,AB4=,则ABC面积的最大值是______25.足球训练场上,教练在球门前画了一个圆圈进行无人防守的射门训练.如图,甲、乙两名运动员分别在C,D两处,他们争论不休,都说自己所在的位置对球门AB的张角大,如果你是教练,请评一评他们两个人谁的位置对球门AB的张角大?为什么?26.如图①,四边形ABCD 与四边形CEFG 都是矩形,点E ,G 分别在边CD ,CB 上,点F 在AC 上,AB =3,BC =4(1)求AF BG的值; (2)把矩形CEFG 绕点C 顺时针旋转到图②的位置,P 为AF ,BG 的交点,连接CP (Ⅰ)求AF BG 的值; (Ⅱ)判断CP 与AF 的位置关系,并说明理由.27.解下列方程(1)x 2+12x +27=0(2)3x 2-2=5x28.如图1,四边形ADBC 内接于O ,AB 为O 的直径,对角线AB 、CD 相交于点E .图1 图2图3(1)求证:90BCD ABD ∠+∠=︒;(2)如图2,点G 在AC 的延长线上,连接BG ,交O 于点Q ,CA CB =,ABD ABG ∠=∠,作GH CD ⊥,交DC 的延长线于点H ,求证:GQ = (3)如图3,在(2)的条件下,过点B 作//BF AD ,交CD 于点F ,3GH CH =,若CF =O 的半径.参考答案1.A【解析】【分析】①当a是负数且绝对值大于b(正数)时,不成立;②4,再求其算术平方根即可;③当点在直线上时,没有与已知直线平等的直线;④根据一元二次方程根的判别式进行判断.【详解】①当a=-5时,b=2时,a2>b2,a<b,故①错误;=4,故其算术平方根为2,故②错误;③当点在直线上时,没有与已知直线平行的直线,正确说法是:过直线外一点有且只有一条直线与已知直线平行,故③错误;④关于x的方程mx2+2x+1=0没有实数根,那么m的取值范围是m>1,故此选项错误.所以正确的有0个.故选:A.【点睛】考查了算术平方根的定义、一元二次方程根的判别式等知识,正确把握相关性质是解题关键.2.A【解析】【分析】设圆锥的底面圆半径为r,先利用圆的周长公式计算出剩下的扇形的弧长,然后把它作为圆锥的底面圆的周长进行计算即可.【详解】设圆锥的底面圆半径为r,∵半径为9cm的圆形纸片剪去一个圆周的扇形,∴剩下的扇形的弧长=×2π×9=12π,∴2πr=12π,∴r=6.【点睛】本题考查了圆锥的有关计算:圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长.也考查了圆的周长公式.3.A【解析】【分析】连接OC ,证明OD ⊥AC 即可解决问题.【详解】解:连接OC ,∵弧CD=弧BC ,∴60DOC BOC ∠=∠=︒,60AOD ∠=︒,∴AOD DOC ∠=∠,∴弧AD=弧CD ,∴OD AC ⊥,90AEO ∠=︒,设AO r =,则1OE r =-,∵·cos60OE AO =︒, ∴112r r -=,2r =,∴AE =故选:A.【点睛】本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.4.C【解析】利用一元二次方程的定义和判别式的意义得到m≠0且△=(﹣2)2﹣4m≥0,然后求出两不等式的公共部分即可.【详解】根据题意得m≠0且△=(﹣2)2﹣4m≥0,解得m≤1且m≠0.故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.5.C【解析】【分析】根据调查方式,可判断A,根据概率的意义一,可判断B根据中位数、众数,可判断c,根据方差的性质,可判断D.【详解】A、一个游戏中奖的概率是1100,做100次这样的游戏有可能中奖,而不是一定中奖,故A错误;B、为了了解全国中学生的心理健康状况,应采用抽查方式,故B错误;C、一组数据0,1,2,1,1的众数和中位数都是1,故C正确;D. 若甲组数据的方差为2s甲,乙组数据的方差为2s乙,无法比较甲乙两组的方差,故无法确定那组数据更加稳定,故D错误.故选:C.【点睛】本题考查了概率、抽样调查及普查、中位数及众数、方差等,熟练的掌握各知识点的概念及计算方法是关键.6.B【解析】根据降价后的价格=原价(1-降低的百分率),本题可先用x表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.【详解】设平均每次降价的百分率为x,由题意得出方程为:1185(1−x)2=580.故选:B.【点睛】本题考查的是由实际问题列出一元二次方程,正确列出方程是解题的关键.7.C【解析】【分析】过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.【详解】过O作OC⊥AB,交圆O于点D,连接OA,由折叠得到CD=OC=12OD=1cm,在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:,则.故选C.【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.8.D【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【详解】解:这组数据中出现次数最多的数据为:5.故众数为5,故选:D.【点睛】本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.9.C【解析】【分析】最短弦是过A点垂直于OA的弦.根据垂径定理和勾股定理求解.【详解】由垂径定理得,该弦应该是以OA为中垂线的弦BC.连接OB.已知OB=5,OA=3,由勾股定理得AB=4.所以弦BC=8.故选C.【点睛】此题主要考查了学生对垂径定理及勾股定理的理解运用.10.C【解析】【分析】由于从9个人中挑选5位,则应根据中位数的意义进行解答.【详解】∵从9位书法兴趣小组的同学中,择优挑选5位去参加中学生书法表演,∴则被选中同学的成绩,肯定不少于这9位同学测试成绩统计量中的中位数,故选C .【点睛】本题考查了统计的相关知识,涉及了平均数、中位数、众数、方差等,要结合具体的问题对统计量进行合理的选择和恰当的运用.11.13【解析】【分析】根据概率公式知,共有3个开关,只闭一个开关时,只有闭合S 3时才发光,所以小灯泡发光的概率等于1.3【详解】根据题意,三个开关,只有闭合3S 小灯泡才发光,所以小灯泡发光的概率等于13. 故答案为:13【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.12.53π﹣ 【解析】【分析】如图,图中S 阴影=S 扇形BCE ﹣S 扇形BOD ﹣S △OCE .根据已知条件易求得OB =OC =OD =2,BC=CE =4.∠ECB=60°,∠OEC=30°,所以由扇形面积公式、三角形面积公式进行解答即可 【详解】解:如图,连接CE .∵AC ⊥BC ,AC =BC =4,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作弧AB ,∴∠ACB =90°,OB =OC =OD =2,BC =CE =4.又∵OE ∥AC ,∴∠ACB =∠COE =90°.∴在直角△OEC 中,OC =2,CE =4,∴∠CEO =30°,∠ECB =60°,OE =∴S 阴影=S 扇形BCE ﹣S 扇形BOD ﹣S △OCE =2604360 π ﹣14 π×22﹣12×2×=53π﹣,故答案为:53π﹣【点睛】此题考查扇形面积的计算,掌握运算法则是解题关键13.2【解析】【分析】根据平均数的计算方法求得a 的值,再利用方差公式计算这组数据的方差即可.【详解】∵数据2,4,5,a ,1的平均数为a , ∴(2 +4+5+a+1)=a ,∴a=3,∴s 2=[(2-3)2+(4-3)2+(5-3)2+(3-3)2+(1-3)2]=2.故答案为:2.【点睛】本题考查了平均数及方差的计算公式,熟知平均数及方差的计算公式是解决问题的关键. 14.m =0或m =﹣2.【解析】【分析】由韦达定理得出x 1+x 2=﹣2(m ﹣1),x 1x 2=﹣4m ,结合x 1﹣x 2=2知122x m x m =-+⎧⎨=-⎩,代入x 1x 2=﹣4m 可得关于m 的方程,解之可得答案.【详解】解:∵关于x 的方程x 2+2(m ﹣1)x ﹣4m =0的两个实数根分别是x 1,x 2,∴x 1+x 2=﹣2(m ﹣1),x 1x 2=﹣4m ,又∵x 1﹣x 2=2,∴1212222x x m x x +=-+⎧⎨-=⎩, 解得:122x m x m =-+⎧⎨=-⎩, 代入x 1x 2=﹣4m 得﹣m (﹣m+2)=﹣4m ,解得:m =0或m =﹣2,故答案为:m =0或m =﹣2.【点睛】本题主要考查一元二次方程根与系数的关系,根据韦达定理及x 1﹣x 2=2得出关于m 的方程是解题的关键.15.3【解析】【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.【详解】∵圆锥的母线长是5cm ,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:215=65ππ⨯, ∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r=62ππ=3cm , 故答案为:3.【点睛】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.16.8.【解析】【分析】根据已知条件得到2+2017a+a2=0,2+2017b+b2=0,ab=2,代入代数式即可得到结论.【详解】∵a,b是方程x2+2017x+2=0的两个根,∴2+2017a+a2=0,2+2017b+b2=0,ab=2,∴(2+2019a+a2)(2+2019b+b2)=(2+2017a+2a+a2)(2+2017b+2b+b2)=4ab=8,故答案为:8.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解题的关键.17.110【解析】【分析】根据圆内接四边形的任意一个外角等于它的内对角解答.【详解】∵四边形ABCD是⊙O的内接四边形,∴∠BAE=∠BCD=110°,故答案为:110.【点睛】本题考查了圆内接四边形的性质,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.18.相交或相切【解析】【分析】根据直线与圆的位置关系即可得出结论.【详解】解:∵点P在直线l上,且点P到圆心O的距离为4cm,等于直径,∴点P在⊙O上∴直线l与⊙O相交或相切故答案为:相交或相切【点睛】本题考查直线与圆的位置关系,解题的关键是熟知直线与圆的三种位置关系.19.【解析】【分析】如图作△ABC 的内切圆,切点分别为 E ,F ,G ,根据切线长定理即可解决问题;【详解】解:如图作△ABC 的内切圆,切点分别为 E ,F ,G ,∵BE =BF ,AF =AG ,CE =CG ,∴BE ==, 故答案为. 【点睛】本题考查角平分线的性质,三角形的内切圆,切线长定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.0x =或9x =-【解析】【分析】因式分解法求解可得.【详解】解:()90x x +=,0x ∴=或90x +=,解得:0x =或9x =-,故答案为:0x =或9x =-.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.(1)见解析(2)15 4【解析】【分析】(1)由△ADE沿直线AB翻折得到△ADF,得到∠DAE=∠DAF,∠AED=∠F=90°,由于OA=OD,于是得到∠DAE=∠ODA,根据平行线的判定定理得到OD∥AF,根据平行线的性质得到OD⊥DF,于是得到结论;(2)连接DC,由于AC是O的直径,即CD⊥AB;又FD与BC均是O的切线且相交于点G由切线长定理可得:GD=GC,于是得到∠GDC=∠GCD,由于GD是Rt△BDC斜边上的中线,即GD=12BC,由于△ADE沿直线AB翻折得到△ADF,得到sin∠DAE=sin∠DAF=35,解直角三角形得到sin∠DAC=DCAC=10DC=35,得DC=6,由勾股定理得AD=8;根据三角形相似即可得到结论.【详解】(1)证明:∵△ADE沿直线AB翻折得到△ADF,∴∠DAE=∠DAF,∠AED=∠F=90°,又∵OA=OD,∴∠DAE=∠ODA,∴∠DAF=∠ODA,∴OD∥AF,∴∠ODF+∠F=180°,∴∠ODF=90°,∴OD⊥DF,∴DF是O的切线;(2)连接DC,∵AC是圆O的直径,∴∠ADC=90°,即CD⊥AB;又∵FD与BC均是圆O的切线且相交于点G,由切线长定理可得:GD=GC,∴∠GDC=∠GCD,又∵Rt△BDC中,∠GCD+∠B=90°,∠GDC+∠GDB=90°,∴∠B=∠GDB,∴GD=GB,∴GD是Rt△BDC斜边上的中线,即GD=12 BC,∵△ADE沿直线AB翻折得到△ADF,∴∠DAE=∠DAF,∴sin∠DAE=sin∠DAF=35,又∵圆O的半径为5,∴AC=10,Rt△DAC中,∠ADC=90°,∴sin∠DAC=DCAC=DC10=35,得DC=6,由勾股定理得AD=8;在Rt △ADC 与Rt △ACB 中,∠ADC=∠ACB=90°,∠DAC=∠BAC ,∴Rt △ADC ∽Rt △ACB , ∴CD AD BC AC =,即6810BC =,解得BC=152; ∴GB=GD=12BC=154. 【点睛】本题考查的知识点是切线的判定, 翻折变换(折叠问题), 相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定, 翻折变换(折叠问题), 相似三角形的判定与性质. 22.(1)12m >;(2)2m =. 【解析】【分析】 ()1由0>得840m ->,解之可得;()2由()1221x x m +=+,2122x x m =+,结合1212x x x x +=得()2212m m +=+,解之可得m 的值,依据()1中的结果取舍即可得.【详解】解:()()()221[21]412m m =-+-⨯⨯+ 2248448m m m =++--840m =->,12m ∴>; ()()12221x x m +=+,2122x x m =+,∴由1212x x x x +=得()2212m m +=+,解得:10m =,22m =, 12m >, 2m ∴=.【点睛】本题主要考查根的判别式、根与系数的关系,关键是掌握1x ,2x 是方程20x px q ++=的两根时,12x x p +=-,12x x q =.23.(1)a=40,b=94,c=99;(2)八年级,见解析;(3)参加此次竞赛活动成绩优秀的人数是468人.【解析】【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【详解】解:(1)3120%10%1004010a ⎛⎫=---⨯= ⎪⎝⎭, ∵八年级10名学生的竟赛成绩的中位数是第5和第6个数据的平方数,∴ 9494942b +== ∵在七年级10名学生的竟赛成绩中99出现的次数最多,∴c=99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×1320=468人, 答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.【点睛】本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问24.(1)详见解析;(2)4+【解析】【分析】(1)先作出ABC 的外接圆,再作AB 边上的高,继而作出此高的中垂线,与外接圆的交点即为所求;(2)作以AB 为弦且AB 所对圆心角为90°的O ,则垂直于弦AB 的直径与优弧的交点即为使三角形面积最大的点C ,根据作图得出AB 边上的高可得答案.【详解】∠即为所求.解:()1如图1所示,ABD()2如图2所示,作以AB为弦,且AB所对圆心角为90的O,C点轨迹为圆上不与AB重合的任一点,∴当C在位置上时,高最长,故面积最大,=,AB4AP BP OP2∴===,则OC OA==∴=+PC2ABC ∴的面积为(11AB PC 42422⋅⋅=⨯⨯+=+故答案为:4+.【点睛】 本题主要考查作图复杂作图,解题的关键判断出点C 是以AB 为弦的圆上、圆的确定及线段的中垂线的尺规作图等知识点.25.一样大,理由见解析.【解析】【分析】根据圆周角定理,即可确定两角的大小.【详解】解:甲、乙两个人所在的位置对球门AB 的张角一样大.根据圆周角定理的推论可得∠ADB=∠ACB.【点睛】本题的解答关键是对圆周角定理的灵活运用.圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半;即同弦或等弦所对的圆周角相等.26.(1)54AF BG =;(2)(Ⅰ)54AF BG =;(Ⅱ)CP ⊥AF ,理由:见解析. 【解析】【分析】(1)根据矩形的性质得到∠B =90°,根据勾股定理得到AC =5,根据相似三角形的性质即可得到结论;(2)(Ⅰ)连接CF ,根据旋转的性质得到∠BCG =∠ACF ,根据相似三角形的判定和性质定理得到结论;(Ⅱ)根据相似三角形的性质得到∠BGC =∠AFC ,推出点C ,F ,G ,P 四点共圆,根据圆周角定理得到∠CPF =∠CGF =90°,于是得到结论.【详解】(1)∵四边形ABCD 是矩形,∴∠B =90°,∵AB =3,BC =4,∴AC=5,∴54 ACBC=,∵四边形CEFG是矩形,∴∠FGC=90°,∴GF∥AB,∴△CGF∽△CBA,∴54 CF CACG CB==,∵FG∥AB,∴54 AF CFBG CG==;(2)(Ⅰ)连接CF,∵把矩形CEFG绕点C顺时针旋转到图②的位置,∴∠BCG=∠ACF,∵54 AC CFBC CG==,∴△BCG∽△ACF,∴54 AF ACBG BC==;(Ⅱ)CP⊥AF,理由:∵△BCG∽△ACF,∴∠BGC=∠AFC,∴点C,F,G,P四点共圆,∴∠CPF=∠CGF=90°,∴CP⊥AF.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定定理是解题的关键.27.(1)x 1=-3,x 2=-9;(2)x 1=2,x 2=-13. 【解析】【分析】 (1)直接把等号左边进行因式分解,然后可得x+3=0,x+9=0,再解即可;(2)先整理成一般形式,然后用公式法解答即可.【详解】(1)(x+3)(x+9)=0,x+3=0,x+9=0,解得:x 1=-3,x 2=-9;(2) 3x 2-2=5x整理为:3x 2-5x-2=0,这里,a=3,b=-5,c=-2,b 2-4ac=(-5)2-4×3×(-2)=49>0,∴ ∴x 1=2,x 2=13-.【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.28.(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)根据圆周角定理即可证明;(2)作AM AD ⊥交DC 延长线于点M ,连接MG ,AQ ,证明AMG QAG ∆≅∆,得到45GMH AMD ∠=∠=︒,易求得GQ =;(3)延长MG 交DB 于N ,延长BF 交6030m n =⎧⎨=-⎩于W ,则四边形AMND 是正方形,求出13EF ED =,设EF x =,则3ED x =,列式求出EF ,易得AB ,问题得解. 【详解】解:(1)证明:AB Q 是直径90BCD ABD ∴∠+∠=︒BCD DAB ∠=∠90DAB DBA ∴∠+∠=︒(2)证明:作AM AD ⊥交DC 延长线于点M ,连接MG ,AQ,AB Q 是直径,90AQB ∴∠=︒,90ACB ∠=︒ABD ABG ∠=∠AQ AD ∴=CA CB =45CBA CAB ∴∠=∠=︒45ADM ∴∠=︒AM AD ∴=AM AQ ∴=BAD BAQ ∠=∠,45BAQ QAG ∠+∠=︒45BAD GAM ∴∠+∠=︒GAQ GAM ∴∠=∠AMG QAG ∴∆≅∆90AMG ∴∠=︒45GMH AMD ∴∠=∠=︒MG ∴=GQ ∴=(3)延长MG 交DB 于N ,∴四边形AMND 是正方形延长BF 交6030m n =⎧⎨=-⎩于W //BW MN BWG MGA ∴∠=∠BWG BGW ∴∠=∠BG BW ∴=MG BD BW +=WF MG ∴=FC MC ∴=BAD BCD HGC ∠=∠=∠,3HG CH =1tan 3BAD ∴∠=13BD BF AD AD ∴== 13EF ED ∴= 设EF x =,则3ED x =222EC CM DE =+222((3)x x ∴+=+x ∴=DF =4BD =,12AD =AB ∴=r =【点睛】本题是圆和四边形的综合问题,考查了圆周角定理、三角形全等的判定和性质以及三角函数等知识点,涉及知识点较多,图形较为复杂,能够作出辅助线是解题关键.。
2019-2020学年江苏省无锡市锡山区九年级(上)期末数学试卷附答案解析
2019-2020学年江苏省无锡市锡山区九年级(上)期末数学试卷一、选择题(本大题共10题,每题3分,共30分.)1.(3分)一元二次方程x2=9的根是()A.3B.±3C.9D.±92.(3分)如图,以AB为直径的⊙O上有一点C,且∠BOC=50°,则∠A的度数为()A.65°B.50°C.30°D.25°3.(3分)为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐4.(3分)抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是()A.小于B.等于C.大于D.无法确定5.(3分)下列方程有两个相等的实数根是()A.x2﹣x+3=0B.x2﹣3x+2=0C.x2﹣2x+1=0D.x2﹣4=06.(3分)如图,在△ABC中,D,E分别是AB,AC的中点,下列说法中不正确的是()A.S△ADE:S△ABC=1:2B.C.△ADE∽△ABC D.DE=BC7.(3分)如图,已知⊙O的内接正方形边长为2,则⊙O的半径是()A.1B.2C.D.8.(3分)已知Rt△ABC中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是()A.sin B=B.cos B=C.tan B=D.以上都不对9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点M是AB上的一点,点N是CB上的一点,,当∠CAN与△CMB中的一个角相等时,则BM的值为()A.3或4B.或4C.或6D.4或610.(3分)如图1,S是矩形ABCD的AD边上一点,点E以每秒kcm的速度沿折线BS﹣SD﹣DC匀速运动,同时点F从点C出发点,以每秒1cm的速度沿边CB匀速运动并且点F运动到点B时点E也运动到点C.动点E,F同时停止运动.设点E,F出发t秒时,△EBF的面积为ycm2.已知y与t的函数图象如图2所示.其中曲线OM,NP为两段抛物线,MN为线段.则下列说法:①点E运动到点S时,用了2.5秒,运动到点D时共用了4秒②矩形ABCD的两邻边长为BC=6cm,CD=4cm;③sin∠ABS=;④点E的运动速度为每秒2cm.其中正确的是()A.①②③B.①③④C.①②④D.②③④二、填空题(本大题共8题,每空2分,共16分.)11.(2分)二次函数y=﹣(x+5)2﹣3,图象的顶点坐标是.12.(2分)一元二次方程x2=x的解为.13.(2分)如图,转动转盘一次,当转盘停止后(指针落在线上重转),指针停留的区域中的数字为偶数的概率是.14.(2分)为了解某校九年级学生每天的睡眠时间,随机调查了其中20名学生,将所得数据整理并制成如表,那么这些测试数据的中位数是小时.睡眠时间(小时)6789学生人数864215.(2分)已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是.16.(2分)如图,半径为的⊙O与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则sin∠OCB=.17.(2分)如图,在平面直角坐标系中,直线l:y=﹣2x+8与坐标轴分别交于A,B两点,点C在x正半轴上,且OC=OB.点P为线段AB(不含端点)上一动点,将线段OP绕点O顺时针旋转90°得线段OQ,连接CQ,则线段CQ的最小值为.18.(2分)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=3,且=,则m+n的最大值为.三、解答题(本大题共10题,共84分.)19.(8分)(1)计算:4sin30°﹣(2﹣)0+2tan45°;(2)解方程:x2﹣6x=7.20.(8分)某校九年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评定为“优秀”,下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.(1)请计算小张的期末评价成绩为多少分?(2)小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?21.(6分)已知△ABC三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).(1)画出△ABC;(2)以B为位似中心,将△ABC放大到原来的2倍,在右图的网格图中画出放大后的图形△A1BC1;(3)写出点A的对应点A1的坐标:.22.(8分)某市有A、B、C三个公园,甲、乙两位同学随机选择其中一个公园游玩.(1)甲去A公园游玩的概率是;(2)求甲、乙恰好在同一个公园游玩的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)23.(8分)如图,在矩形ABCD中,已知AD>AB.在边AD上取点E,连结CE.过点E 作EF⊥CE,与边AB的延长线交于点F.(1)求证:△AEF∽△DCE.(2)若AB=3,AE=4,DE=6,求线段BF的长.24.(8分)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线.(2)若⊙O的半径为3cm,∠C=30°,求图中阴影部分的面积.25.(8分)如图1是超市的手推车,如图2是其侧面示意图,已知前后车轮半径均为5cm,两个车轮的圆心的连线AB与地面平行,测得支架AC=BC=60cm,AC、CD所在直线与地面的夹角分别为30°、60°,CD=50cm.(1)求扶手前端D到地面的距离;(2)手推车内装有简易宝宝椅,EF为小坐板,打开后,椅子的支点H到点C的距离为10cm,DF=20cm,EF∥AB,∠EHD=45°,求坐板EF的宽度.(本题答案均保留根号)26.(10分)某公司研制出新产品,该产品的成本为每件2400元.在试销期间,购买不超过10件时,每件销售价为3000元;购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为2600元.请解决下列问题:(1)直接写出:购买这种产品件时,销售单价恰好为2600元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y元,求y与x之间的函数表达式;(3)该公司的销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使购买数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)27.(10分)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式,并直接写出当x满足什么值时y<0?(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP面积最大?若存在,求出点P的坐标;若不存在,请说明理由;(3)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.28.(10分)【问题发现】如图1,半圆O的直径AB=10,点P是半圆O上的一个动点,则△P AB的面积最大值是;【问题探究】如图2所示,AB、AC、是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,所对的圆心角为60°.新区管委会想在路边建物资总站点P,在AB、AC路边分别建物资分站点E、F,即分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.显然,为了快捷环保和节约成本,就要使线段PE、EF、FP之和最短(各物资站点与所在道路之间的距离、路宽均忽略不计).可求得△PEF周长的最小值为km;【拓展应用】如图3是某街心花园的一角,在扇形OAB中,∠AOB=90°,OA=12米,在围墙OA和OB上分别有两个入口C和D,且AC=4米,D是OB的中点,出口E在上.现准备沿CE、DE从入口到出口铺设两条景观小路,在四边形CODE内种花,在剩余区域种草.①出口E设在距直线OB多远处可以使四边形CODE的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE所用的普通石材每米的造价是200元,铺设小路DE所用的景观石材每米的造价是400元.请问:在上是否存在点E,使铺设小路CE和DE的总造价最低?若存在,求出最低总造价和出口E距直线OB的距离;若不存在,请说明理由.2019-2020学年江苏省无锡市锡山区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10题,每题3分,共30分.)1.(3分)一元二次方程x2=9的根是()A.3B.±3C.9D.±9【分析】根据一元二次方程的解法即可求出答案.【解答】解:∵x2=9,∴x=±3,故选:B.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.2.(3分)如图,以AB为直径的⊙O上有一点C,且∠BOC=50°,则∠A的度数为()A.65°B.50°C.30°D.25°【分析】直接利用圆周角定理求解.【解答】解:∵∠BOC=50°,∴∠A=×50°=25°.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.(3分)为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐【分析】根据方差的定义,方差越小数据越稳定即可得出答案.【解答】解:∵甲、乙两队的方差分别是1.7、2.4,∴S甲2<S乙2,∴甲队身高更整齐;故选:B.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.(3分)抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是()A.小于B.等于C.大于D.无法确定【分析】利用概率的意义直接得出答案.【解答】解:因为每次抛掷概率相同,则第7次抛掷这枚硬币,正面朝上的概率为:,故选:B.【点评】此题主要考查了概率的意义,正确把握概率的定义是解题关键.5.(3分)下列方程有两个相等的实数根是()A.x2﹣x+3=0B.x2﹣3x+2=0C.x2﹣2x+1=0D.x2﹣4=0【分析】先根据方程求出△的值,再根据根的判别式的内容判断即可.【解答】解:A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意;故选:C.【点评】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键.6.(3分)如图,在△ABC中,D,E分别是AB,AC的中点,下列说法中不正确的是()A.S△ADE:S△ABC=1:2B.C.△ADE∽△ABC D.DE=BC【分析】由D,E分别是AB,AC的中点,可得出DE是△ABC的中位线,进而可得出DE∥BC,===,由DE∥BC可得出△ADE∽△ABC,再利用相似三角形的性质可得出=,此题得解.【解答】解:∵D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,===,∴△ADE∽△ABC,DE=BC,∴=()2=()2=.故选:A.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用相似三角形的性质找出=是解题的关键.7.(3分)如图,已知⊙O的内接正方形边长为2,则⊙O的半径是()A.1B.2C.D.【分析】根据正方形与圆的性质得出AB=BC,以及AB2+BC2=AC2,进而得到结论.【解答】解:如图所示,∵四边形ABCD是正方形,∠B=90°,∴AC是⊙O的直径,∵AB2+BC2=AC2,AB=BC,∴AB2+BC2=22+22=8,∴AC=2,∴⊙O的半径是,故选:C.【点评】此题主要考查了正方形与它的外接圆的性质,根据已知得出AB2+BC2=AC2是解题关键,此题难度一般.8.(3分)已知Rt△ABC中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是()A.sin B=B.cos B=C.tan B=D.以上都不对【分析】根据勾股定理求出AB,根据锐角三角函数的定义求出各个三角函数值,即可得出答案.【解答】解:如图:由勾股定理得:AB=,所以cos B=,sin B=,tan B=,所以只有选项C正确;故选:C.【点评】本题考查了锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点M是AB上的一点,点N是CB上的一点,,当∠CAN与△CMB中的一个角相等时,则BM的值为()A.3或4B.或4C.或6D.4或6【分析】可分两种情况:①当∠CAN=∠B时,△CAN∽△CBA,设CN=3k,BM=4k,可得,解出k值即可;②当∠CAN=∠MCB时,过点M作MH⊥CB,可得△BMH ∽△BAC,得出MH=k,BH=k,则CH=8﹣k,证明△ACN∽△CHM,得出方程求解即可.【解答】解:∵∠CMB>∠CAB>∠CAN,∴∠CAN≠∠CAB,设CN=3k,BM=4k,①当∠CAN=∠B时,可得△CAN∽△CBA,∴,∴,∴k=,∴BM=6.②当∠CAN=∠MCB时,如图2中,过点M作MH⊥CB,可得△BMH∽△BAC,∴,∴,∴MH=k,BH=k,∴CH=8﹣k,∵∠MCB=∠CAN,∠CHM=∠ACN=90°,∴△ACN∽△CHM,∴,∴,∴k=1或0,∴BM=4.综上所述,BM=4或6.故选:D.【点评】本题考查了相似三角形的判定和性质,解一元二次方程等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.10.(3分)如图1,S是矩形ABCD的AD边上一点,点E以每秒kcm的速度沿折线BS﹣SD﹣DC匀速运动,同时点F从点C出发点,以每秒1cm的速度沿边CB匀速运动并且点F运动到点B时点E也运动到点C.动点E,F同时停止运动.设点E,F出发t秒时,△EBF的面积为ycm2.已知y与t的函数图象如图2所示.其中曲线OM,NP为两段抛物线,MN为线段.则下列说法:①点E运动到点S时,用了2.5秒,运动到点D时共用了4秒②矩形ABCD的两邻边长为BC=6cm,CD=4cm;③sin∠ABS=;④点E的运动速度为每秒2cm.其中正确的是()A.①②③B.①③④C.①②④D.②③④【分析】①正确,根据图象即可判断.②正确,设AB=CD=acm,BC=AD=bcm,列出方程组即可解决问题.③错误,由BS=2.5k,SD=1.5k,得=,设SD=3x,BS=5x,在RT△ABS中,由AB2+AS2=BS2列出方程求出x,即可判断.④正确,求出BS即可解决问题.【解答】解:由图象可知点E运动到点S时用了2.5秒,运动到点D时共用了4秒.故①正确.设AB=CD=acm,BC=AD=bcm,由题意,解得,所以AB=CD=4cm,BC=AD=6cm,故②正确,∵BS=2.5k,SD=1.5k,∴=,设SD=3x,BS=5x,在RT△ABS中,∵AB2+AS2=BS2,∴42+(6﹣3x)2=(5x)2,解得x=1或﹣(舍),∴BS=5,SD=3,AS=3,∴sin∠ABS==故③错误,∵BS=5,∴5=2.5k,∴k=2cm/s,故④正确,故选:C.【点评】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.二、填空题(本大题共8题,每空2分,共16分.)11.(2分)二次函数y=﹣(x+5)2﹣3,图象的顶点坐标是(﹣5,﹣3).【分析】根据题目中函数的解析式直接得到此二次函数的顶点坐标.【解答】解:∵y=﹣(x+5)2﹣3,∴二次函数y=﹣(x+5)2﹣3的图象的顶点坐标是(﹣5,﹣3)故答案为:(﹣5,﹣3).【点评】本题考查二次函数的性质,解题的关键是明确题意,找出所求问题需要的条件.12.(2分)一元二次方程x2=x的解为x1=0,x2=1.【分析】首先把x移项,再把方程的左面分解因式,即可得到答案.【解答】解:x2=x,移项得:x2﹣x=0,∴x(x﹣1)=0,x=0或x﹣1=0,∴x1=0,x2=1.故答案为:x1=0,x2=1.【点评】此题主要考查了因式分解法解一元二次方程,关键是把方程的右面变为0.13.(2分)如图,转动转盘一次,当转盘停止后(指针落在线上重转),指针停留的区域中的数字为偶数的概率是.【分析】由1占圆50%,2与3占25%,可得把数字为1的扇形可以平分成2部分,即可得转动转盘一次共有4种等可能的结果,分别是1,1,2,3;然后由概率公式即可求得.【解答】解:∵1占圆50%,2与3占25%,∴把数字为1的扇形可以平分成2部分,∵转动转盘一次共有4种等可能的结果,分别是1,1,2,3;∴当转盘停止后,指针指向的数字为偶数的概率是:.故答案为:.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14.(2分)为了解某校九年级学生每天的睡眠时间,随机调查了其中20名学生,将所得数据整理并制成如表,那么这些测试数据的中位数是7小时.睡眠时间(小时)6789学生人数8642【分析】根据中位数的定义进行求解即可.【解答】解:∵共有20名学生,把这些数从小到大排列,处于中间位置的是第10和11个数的平均数,∴这些测试数据的中位数是=7小时;故答案为:7.【点评】本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).15.(2分)已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是21π.【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:圆锥的侧面积=×2π×3×7=21π.故答案为21π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.(2分)如图,半径为的⊙O与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则sin∠OCB=.【分析】连接OB,作OD⊥BC于D,由等边三角形的性质得∠ABC=60°,BC=8,由⊙O与等边三角形ABC的两边AB、BC都相切,得出OD是⊙O的半径,∠OBC=∠OBA =∠ABC=30°,由tan∠OBC=,求出BD=3,CD=BC﹣BD=5,由勾股定理得出OC==2,即可得出答案.【解答】解:连接OB,作OD⊥BC于D,如图所示:∵△ABC是边长为8的等边三角形,∴∠ABC=60°,BC=8,∵⊙O与等边三角形ABC的两边AB、BC都相切,∴OD是⊙O的半径,∠OBC=∠OBA=∠ABC=30°,∵tan∠OBC=,∴BD===3,∴CD=BC﹣BD=8﹣3=5,OC===2,∴sin∠OCB===.【点评】本题考查了切线的性质、等边三角形的性质、勾股定理、三角函数等知识;熟练掌握切线的性质是解题的关键.17.(2分)如图,在平面直角坐标系中,直线l:y=﹣2x+8与坐标轴分别交于A,B两点,点C在x正半轴上,且OC=OB.点P为线段AB(不含端点)上一动点,将线段OP绕点O顺时针旋转90°得线段OQ,连接CQ,则线段CQ的最小值为.【分析】证明△EOP≌△FOQ,可得OE=OF,PE=FQ,设P(x,2x+8),则Q(2x+8,﹣x),即可求得Q所在的直线,根据垂线段最短可知当CQ⊥MN时,CQ的长最短,根据三角形相似的性质即可求得线段CQ的最小值.【解答】解:∵直线l:y=2x+8与坐标轴分别交于A,B两点,∴A(0,8),B(﹣4,0),∵点P为线段AB(不含端点)上一动点,将线段OP绕点O顺时针旋转90°得线段OQ,作PE⊥x轴于E,QF⊥y轴于F,由旋转可知,OP=OQ,∠POQ=∠AOB=90°,∴∠EOP=∠FOQ,在△EOP和△FOQ中,,∴△EOP≌△FOQ(AAS),∴OE=OF,PE=FQ,∴设P(x,2x+8),则Q(2x+8,﹣x).∴Q点是直线y=﹣+4上的点,设直线y=﹣+4与x,y轴的交点为N、M点,则M(0,4),N(8,0),∴MN==4根据垂线段最短可知当CQ⊥MN时,CQ的长最短,如图,∵CQ⊥MN,∴∠CQN=∠MON=90°,∵∠CNQ=∠MNO,∴△CNQ∽△MNO,∴=,∴OC=OB=4,ON=8,OM=4,∴CN=4,∴=,∴CQ=,∴线段CQ的最小值为,故答案为.【点评】本题考查一次函数图象上点的坐标、全等三角形的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.18.(2分)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=3,且=,则m+n的最大值为.【分析】过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,设AE=x,CF=y,BN=x,BM=y,得到DM=y﹣4,DN=4﹣x,根据相似三角形的性质得到xy=mn,y=9﹣2x,由=可得(m+n)最大=3m,由mn=xy=x(9﹣2x)=9x﹣2x2=2m2,由二次函数的性质可求m的最大值,即可求解.【解答】解:解:过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,设AE=x,CF=y,BN=x,BM=y,∵BD=4,∴DM=y﹣4,DN=4﹣x,∵∠ABC=∠AEB=∠BFC=∠CMD=∠AND=90°,∴∠EAB+∠ABE=∠ABE+∠CBF=90°,∴∠EAB=∠CBF,∴△ABE∽△BFC,∴,即,∴xy=mn,∵∠ADN=∠CDM,∴△CMD∽△AND,∴,即,∴y=9﹣2x,∵=,∴n=2m,∴(m+n)最大=3m,∵mn=xy=x(9﹣2x)=9x﹣2x2=2m2,∴2m2=﹣2(x﹣)2+,∴当x=时,m最大=,∴m+n的最大值=3m=,故答案为:.【点评】本题考查了相似三角形的判定和性质,平行线的性质,二次函数的性质,正确的作出辅助线是解题的关键.三、解答题(本大题共10题,共84分.)19.(8分)(1)计算:4sin30°﹣(2﹣)0+2tan45°;(2)解方程:x2﹣6x=7.【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)利用因式分解法求解可得.【解答】解:(1)原式=4×﹣1+2×1=2﹣1+2=3;(2)∵x2﹣6x﹣7=0,∴(x﹣7)(x+1)=0,则x﹣7=0或x+1=0,解得:x=7或x=﹣1.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.(8分)某校九年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评定为“优秀”,下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王607585若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.(1)请计算小张的期末评价成绩为多少分?(2)小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?【分析】(1)直接利用算术平均数的定义求解可得;(2)根据加权平均数的定义计算可得.【解答】解:(1)小张的期末评价成绩为=81(分);(2)设小王期末考试成绩为x分,根据题意,得:≥80,解得x≥84.2,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.故答案为:85.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.21.(6分)已知△ABC三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).(1)画出△ABC;(2)以B为位似中心,将△ABC放大到原来的2倍,在右图的网格图中画出放大后的图形△A1BC1;(3)写出点A的对应点A1的坐标:(﹣3,1).【分析】(1)根据A(0,2)、B(3,3)、C(2,1).在坐标系中找出连接即可;(2)根据把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形,在改变的过程中保持形状不变(大小可变)即可得出答案.(3)利用(2)中图象,直接得出答案.【解答】解:(1)根据A(0,2)、B(3,3)、C(2,1).在坐标系中找出连接即可;(2)把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形.所画图形如下所示:它的三个对应顶点的坐标分别是:(﹣3,1)、(3,3)、(1,﹣1).(3)利用(2)中图象,直接得出答案.故答案为:(﹣3,1).【点评】此题考查了相似变换作图的知识,注意图形的相似变换不改变图形中每一个角的大小;图形中的每条线段都扩大(或缩小)相同的倍数.22.(8分)某市有A、B、C三个公园,甲、乙两位同学随机选择其中一个公园游玩.(1)甲去A公园游玩的概率是;(2)求甲、乙恰好在同一个公园游玩的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)【分析】(1)直接利用概率公式求解;(2)画树状图展示所有9种等可能的结果数,再找出甲、乙恰好在同一个公园游玩的的结果数,然后根据概率公式求解.【解答】解:(1)∵有A、B、C三个公园,∴甲去A公园游玩的概率是;故答案为:;(2)画树状图如下:共有9种等可能结果,其中甲、乙恰好在同一个公园游玩的有3种,则甲、乙恰好在同一个公园游玩的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.23.(8分)如图,在矩形ABCD中,已知AD>AB.在边AD上取点E,连结CE.过点E 作EF⊥CE,与边AB的延长线交于点F.(1)求证:△AEF∽△DCE.(2)若AB=3,AE=4,DE=6,求线段BF的长.【分析】(1)根据两角对应相等两三角形相似证明即可.(2)利用相似三角形的性质解决问题即可.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠AEF+∠F=90°∵EF⊥CE,∴∠CED+∠AEF=180°﹣90°=90°,∴∠CED=∠F,又∵∠A=∠D=90°,∴△AFE∽△DEC.(2)∵△AFE∽△DEC,∴=,∵AB=CD=3,AE=4,DE=6,∴=,解得BF=5.答:线段BF的长为5.【点评】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(8分)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线.(2)若⊙O的半径为3cm,∠C=30°,求图中阴影部分的面积.【分析】(1)由等腰三角形的性质证出∠ODB=∠C.得出OD∥AC.由已知条件证出DE⊥OD,即可得出结论;(2)由垂径定理求出OF,由勾股定理得出DF,求出BD,得出△BOD的面积,再求出扇形BOD的面积,即可得出结果.【解答】(1)证明:连接OD,如图1所示:∵OD=OB,∴∠B=∠ODB.∵AB=AC,∴∠B=∠C.∴∠ODB=∠C.∴OD∥AC.∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线.(2)解:过O作OF⊥BD于F,如图2所示:∵∠C=30°,AB=AC,OB=OD,∴∠OBD=∠ODB=∠C=30°,∴∠BOD=120°,在Rt△DFO中,∠FDO=30°,∴OF=OD=cm,,∴DF==cm,∴BD=2DF=3cm,∴S△BOD=×BD×OF=×3×=cm2,S扇形BOD==3πcm2,∴S阴=S扇形BOD﹣S△BOD==(3π﹣)cm2.【点评】本题考查了切线的判定、等腰三角形的性质、平行线的判定、勾股定理、三角形和扇形面积的计算等知识;熟练掌握切线的判定,由垂径定理和勾股定理求出OF和DF是解决问题(2)的关键.25.(8分)如图1是超市的手推车,如图2是其侧面示意图,已知前后车轮半径均为5cm,两个车轮的圆心的连线AB与地面平行,测得支架AC=BC=60cm,AC、CD所在直线与地面的夹角分别为30°、60°,CD=50cm.(1)求扶手前端D到地面的距离;(2)手推车内装有简易宝宝椅,EF为小坐板,打开后,椅子的支点H到点C的距离为10cm,DF=20cm,EF∥AB,∠EHD=45°,求坐板EF的宽度.(本题答案均保留根号)【分析】(1)如图2,过C作CM⊥AB,垂足为M,又过D作DN⊥AB,垂足为N,过C作CG⊥DN,构造Rt△AMC和Rt△CGD中,通过解这两个直角三角形求得相关线段的长度;(2)由平行线的性质知∠EFH=∠DCG=60°;根据题意得到CD=50cm,DF=20cm,FH=20cm,如图2,过E作EQ⊥FH,垂足为Q,设FQ=x,通过解Rt△EQF和Rt△EQH,根据等量关系HQ+FQ=FH=20cm列出方程+x=20,通过解方程求得答案.【解答】(1)如图2,过C作CM⊥AB,垂足为M,又过D作DN⊥AB,垂足为N,过C作CG⊥DN,垂足为G,则∠DCG=60°.∵AC=BC=60cm,AC、CD所在直线与地面的夹角分别为30°、60°,∴∠A=∠B=30°,则在Rt△AMC中,CM==30cm.∵在Rt△CGD中,sin∠DCG=,CD=50cm,∴DG=CD⋅sin∠DCG=50⋅sin60°==.又GN=CM=30cm,前后车轮半径均为5 cm,∴扶手前端D到地面的距离为DG+GN+5=+30+5=35+(cm);(2)∵EF∥CG∥AB,∴∠EFH=∠DCG=60°,∵CD=50cm,椅子的支点H到点C的距离为10 cm,DF=20cm,∴FH=20cm,如图2,过E作EQ⊥FH,垂足为Q,设FQ=x,在Rt△EQF中,∠EFH=60°,∴EF=2FQ=2x,EQ=,在Rt△EQH中,∠EHD=45°,∴HQ=EQ=,∵HQ+FQ=FH=20cm,∴+x=20,解得x=.∴EF=2()=.答:坐板EF的宽度为()cm.【点评】考查了解直角三角形的应用,利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.26.(10分)某公司研制出新产品,该产品的成本为每件2400元.在试销期间,购买不超过10件时,每件销售价为3000元;购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为2600元.请解决下列问题:(1)直接写出:购买这种产品90件时,销售单价恰好为2600元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y元,求y与x之间的函数表达式;(3)该公司的销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使购买数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)【分析】(1)购买这种产品x件时,销售单价恰好为2600元,由题意得:3000﹣5(x ﹣10)=2600,即可求解;(2)由题意得:y=[3000﹣5(x﹣10)﹣2400]x=﹣5x2+650x(x>10),即可求解;(3)要满足购买数量越大,利润越多.故y随x的增大而增大,y=200x,y随x的增大而增大,y=3000﹣5(x﹣10)=﹣5x2+650x,当10≤x≤65时,y随x的增大而增大,若一次购买65件,设置为最低售价,则可以避免y随x增大而减小的情况发生,故x=65时,设置最低售价为3000﹣5×(65﹣10)=2725(元),即可求解.【解答】解:(1)购买这种产品x件时,销售单价恰好为2600元,由题意得:3000﹣5(x﹣10)=2600,解得:x=90,故答案为:90;。
2019-2020学年天津市南开区九年级(上)期末数学试卷 (解析版)
2019-2020学年天津市南开区九年级(上)期末数学试卷 (解析版)2019-2020学年天津市南开区九年级(上)期末数学试卷一、选择题(共12小题)1.(3分)如图,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.(3分)以下说法合理的是()A.___做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是D.___做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是3.(3分)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°4.(3分)抛物线y=x^2-5x+6与x轴的交点情况是()A.有两个交点B.只有一个交点C.没有交点D.无法判断5.(3分)已知两个相似三角形的相似比为2:3,较小三角形面积为12平方厘米,那么较大三角形面积为()A.18平方厘米B.8平方厘米C.27平方厘米D.36平方厘米6.(3分)如图,⊙O是△___的外接圆,⊙O的半径为3,∠A=45°,则弧BC的长是()A.πB.π/2C.π/3D.π/47.(3分)若点A(x1,2),B(x2,5)都是反比例函数y=k/x的图象上的点,则下列结论中正确的是()A.x1<x2B.x1<<x2C.x2<x1<D.x2<<x18.(3分)正比例函数y=x与反比例函数y=k/x的图象相交于A,C两点,AB⊥x轴于点B,CD⊥x轴于点D(如图),则四边形ABCD的面积为()A.1B.2C.4D.89.(3分)已知当x>0时,反比例函数y=k/x的函数值随自变量的增大而减小,此时关于x的方程x^2-2(k+1)x+k^2-1=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定10.(3分)如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,下列说法中正确的是()A.OA:OA′=1:3B.OA:AA′=1:2C.OA:AA′=1:3D.OA′:AA′=1:311.在圆内接正六边形ABCDEF中,BF,BD分别交AC于点G,H。
苏教版九年级数学上册1.2 一元二次方程的解法 练习题(含答案)
1.2一元二次方程的解法注意事项:本试卷满分100分,考试时间45分钟,试题共21题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共6小题,每小题3分,共18分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•崇川区期末)一元二次方程x2﹣3x=0的两个根是()A.0和﹣3 B.0和3 C.1和3 D.1和﹣32.(2020春•如皋市期末)下列所给方程中,有两个不相等的实数根的是()A.x2﹣6x+9=0 B.2x2﹣3x+5=0 C.x2+3x+5=0 D.2x2+9x+5=03.(2020•吴中区二模)一元二次方程2x2﹣2x0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断4.(2020•海安市模拟)把方程x2﹣x﹣5=0,化成(x+m)2=n的形式得()A.B.C.D.5.(2020春•邗江区校级期中)关于代数式﹣x2+4x﹣2的取值,下列说法正确的是()A.有最小值﹣2 B.有最大值2 C.有最大值﹣6 D.恒小于零6.(2019秋•宿豫区期末)某同学在解关于x的方程ax2+bx+c=0时,只抄对了a=1,b=﹣8,解出其中一个根是x=﹣1.他核对时发现所抄的c是原方程的c的相反数,则原方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个根是x=1 D.不存在实数根二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)7.(2020•无锡二模)方程x2+x﹣2=0的解是.8.(2020春•如皋市期末)已知方程x2﹣6x﹣2=0,用配方法化为a(x+b)2=c的形式为.9.(2020•仪征市模拟)如表是学生小明探究关于x的一元二次方程x2+ax+b=0的根的情况,则4a+b的值是.x﹣2 ﹣1 0 1 2 3x2+ax+b 5 0 ﹣3 ﹣4 ﹣3 010.(2020春•广陵区校级期中)当x=时,代数式x2﹣x与x﹣1的值相等.11.(2020•海门市一模)若关于x的一元二次方程x2﹣(2m+2)x+m2=0有两个不相等的实数根,则实数m的取值范围是.12.(2020•宝应县一模)关于x的一元二次方程x2x﹣1=0有两个不相等的实数根,则k的取值范围为.13.(2019春•太仓市期末)对任意的两实数a,b,用min(a,b)表示其中较小的数,如min(2,﹣4)=﹣4,则方程x•min(2,2x﹣1)=x+1的解是.14.(2019秋•邗江区校级期末)关于x的方程a(x+m)2+b=0的根是x1=5,x2=﹣6,(a,b,m均为常数,a≠0)则关于x的方程a(x﹣m+2)2+b=0的根是.三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)15.(2017秋•卢龙县期末)解方程:(1)(y+2)2=(3y﹣1)2(2)x2+4x+2=0(配方法)16.(2020春•如皋市期末)解下列方程:(1)x(2x﹣1)=2x﹣1;(2)x2﹣4x﹣3=0.17.(2019秋•海州区校级期末)若关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根.(1)求b的值;(2)当b取正数时,求此时方程的根.18.(2019秋•宜兴市期末)已知关于x的一元二次方程2x2+(2k+1)x+k=0.(1)求证:方程总有两个实数根;(2)若该方程有一个根是正数,求k的取值范围.19.(2020春•张家港市期末)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.20.(2019春•灌云县期末)已知A=a+2,B=a2﹣3a+7,C=a2+2a﹣18,其中a>2.(1)求证:B﹣A>0,并指出A与B的大小关系;(2)指出A与C哪个大?说明理由.21.(2019春•江都区期末)某数学实验小组在探究“关于x的二次三项式ax2+bx+3的性质(a、b为常数)”时,进行了如下活动.【实验操作】取不同的x的值,计算代数式ax2+bx+3的值.x…﹣1 0 1 2 3 …ax2+bx+3 …0 3 4 …(1)根据上表,计算出a、b的值,并补充完整表格.【观察猜想】实验小组组员,观察表格,提出以下猜想.同学甲说:“代数式ax2+bx+3的值随着x的增大而增大”.同学乙说:“不论x取何值,代数式ax2+bx+3的值一定不大于4”.…(2)请你也提出一个合理的猜想:【验证猜想】我们知道,猜想有可能是正确的,也可能是错误的.(3)请你分别判断甲、乙两位同学的猜想是否正确,若不正确,请举出反例;若正确,请加以说理.答案解析一、选择题(本大题共6小题,每小题3分,共18分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•崇川区期末)一元二次方程x2﹣3x=0的两个根是()A.0和﹣3 B.0和3 C.1和3 D.1和﹣3【分析】利用因式分解法求解可得.【解析】∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得x=0或x=3,故选:B.2.(2020春•如皋市期末)下列所给方程中,有两个不相等的实数根的是()A.x2﹣6x+9=0 B.2x2﹣3x+5=0 C.x2+3x+5=0 D.2x2+9x+5=0【分析】若方程有两个不相等的实数根,则△=b2﹣4ac>0,可据此判断出正确的选项.【解析】A、△=36﹣4×9=0,原方程有两个相等的实数根,故A错误;B、△=9﹣4×2×5=﹣31<0,原方程没有实数根,故B错误;C、△=9﹣4×5=﹣11<0,原方程没有实数根,故C错误;D、△=81﹣4×2×5=41>0,原方程有两个不相等的实数根,故D正确.故选:D.3.(2020•吴中区二模)一元二次方程2x2﹣2x0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【分析】根据根的判别式公式,求该方程的判别式,根据结果的正负情况即可得到答案.【解析】根据题意得:△=(﹣2)2﹣4×20,即该方程有两个相等的实数根,故选:B.4.(2020•海安市模拟)把方程x2﹣x﹣5=0,化成(x+m)2=n的形式得()A.B.C.D.【分析】直接利用配方法将原式变形进而得出答案.【解析】x2﹣x﹣5=0,x2﹣3x=15,x2﹣3x15,(x)2.故选:C.5.(2020春•邗江区校级期中)关于代数式﹣x2+4x﹣2的取值,下列说法正确的是()A.有最小值﹣2 B.有最大值2 C.有最大值﹣6 D.恒小于零【分析】先利用配方法将代数式﹣x2+4x﹣2转化为完全平方与常数的和的形式,然后根据非负数的性质进行解答.【解析】∵﹣x2+4x﹣2=﹣(x2﹣4x+4)+4﹣2=﹣(x﹣2)2+2,又∵(x﹣2)2≥0,∴(x﹣2)2≤0,∴﹣(x﹣2)2+2≤2,∴代数式﹣x2+4x﹣2有最大值2.故选:B.6.(2019秋•宿豫区期末)某同学在解关于x的方程ax2+bx+c=0时,只抄对了a=1,b=﹣8,解出其中一个根是x=﹣1.他核对时发现所抄的c是原方程的c的相反数,则原方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个根是x=1 D.不存在实数根【分析】利用题意得x=﹣1为方程x2﹣8x﹣c=0的根,则可求出c=9,所以原方程为x2﹣8x+9=0,然后计算判别式的值判断方程根的情况.【解析】x=﹣1为方程x2﹣8x﹣c=0的根,1+8﹣c=0,解得c=9,所以原方程为x2﹣8x+9=0,因为△=(﹣8)2﹣4×9>0,所以方程有两个不相等的实数根.故选:A.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)7.(2020•无锡二模)方程x2+x﹣2=0的解是x1=﹣2,x2=1.【分析】利用因式分解法解方程.【解析】(x+2)(x﹣1)=0,x+2=0或x﹣1=0,所以x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.8.(2020春•如皋市期末)已知方程x2﹣6x﹣2=0,用配方法化为a(x+b)2=c的形式为(x﹣3)2=11.【分析】方程移项后,两边加上一次项系数一半的平方,变形得到结果,即可作出判断.【解析】方程x2﹣6x﹣2=0,移项得:x2﹣6x=2,配方得:x2﹣6x+9=11,即(x﹣3)2=11.故答案为:(x﹣3)2=11.9.(2020•仪征市模拟)如表是学生小明探究关于x的一元二次方程x2+ax+b=0的根的情况,则4a+b的值是2.x﹣2 ﹣1 0 1 2 3x2+ax+b 5 0 ﹣3 ﹣4 ﹣3 0【分析】把表中的两组值代入x2+ax+b得到关于a、b的方程组,解方程组求出b、c,然后计算4a+b的值.【解析】根据题意得,解得,所以方程为x2﹣2x﹣3=0,所以4a+b=4×1﹣2=2.故答案为2.10.(2020春•广陵区校级期中)当x=1时,代数式x2﹣x与x﹣1的值相等.【分析】根据题意列出一元二次方程,解方程即可得解.【解析】依题意得:x2﹣x=x﹣1,∴x2﹣2x+1=0,即(x﹣1)2=0,解得:x=1.故答案为:1.11.(2020•海门市一模)若关于x的一元二次方程x2﹣(2m+2)x+m2=0有两个不相等的实数根,则实数m的取值范围是m.【分析】利用判别式的意义得到△=(2m+2)2﹣4m2>0,然后解不等式即可.【解析】根据题意得△=(2m+2)2﹣4m2>0,解得m.故答案为m.12.(2020•宝应县一模)关于x的一元二次方程x2x﹣1=0有两个不相等的实数根,则k的取值范围为k≥2.【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的方程,求出方程的解即可得到k的范围.注意二次根式是非负数.【解析】∵关于x的一元二次方程x2x﹣1=0有两个不相等的实数根,∴△=()2﹣4×1×(﹣1)>0且k﹣2≥0,解得:k≥2.故答案为:k≥2.13.(2019春•太仓市期末)对任意的两实数a,b,用min(a,b)表示其中较小的数,如min(2,﹣4)=﹣4,则方程x•min(2,2x﹣1)=x+1的解是x或x.【分析】分2<2x﹣1和2x﹣1≤2两种情况,分别列出方程,解之可得.【解析】①若2<2x﹣1,即x>1.5时,x+1=2x,解得x=1(舍);②若2x﹣1≤2,即x≤1.5时,x(2x﹣1)=x+1,解得x或x,故答案为:x或x.14.(2019秋•邗江区校级期末)关于x的方程a(x+m)2+b=0的根是x1=5,x2=﹣6,(a,b,m均为常数,a≠0)则关于x的方程a(x﹣m+2)2+b=0的根是x=﹣7或x=4.【分析】将方程变形为a(﹣x﹣2+m)2+b=0,将﹣x﹣2看做原方程中的x可得答案.【解析】∵方程a(x+m)2+b=0的根是x1=5,x2=﹣6,∴方程a(x﹣m+2)2+b=0的根满足﹣x﹣2=5或﹣x﹣2=﹣6,解得x=﹣7或x=4,故答案为:x=﹣7或x=4.三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)15.(2017秋•卢龙县期末)解方程:(1)(y+2)2=(3y﹣1)2(2)x2+4x+2=0(配方法)【分析】(1)利用直接开平方法解方程;(2)利用配方法解方程.【解析】(1)y+2=±(3y﹣1)y+2=3y﹣1,y+2=﹣(3y﹣1)y1,y2;(2)x2+4x+4=2(x+2)2=2x+2x1=﹣2,x2=﹣2.16.(2020春•如皋市期末)解下列方程:(1)x(2x﹣1)=2x﹣1;(2)x2﹣4x﹣3=0.【分析】(1)利用因式分解法求解可得;(2)利用配方法求解可得.【解析】(1)∵x(2x﹣1)﹣(2x﹣1)=0,∴(2x﹣1)(x﹣1)=0,则2x﹣1=0或x﹣1=0,解得x=0.5或x=1;(2)∵x2﹣4x=3,∴x2﹣4x+4=3+4,即(x﹣2)2=7,∴x﹣2,∴x=2.17.(2019秋•海州区校级期末)若关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根.(1)求b的值;(2)当b取正数时,求此时方程的根.【分析】(1)根据根的判别式即可求出答案.(2)由(1)可知b=2,根据一元二次方程的解法即可求出答案.【解析】(1)由题意可知:△=(b+2)2﹣4(6﹣b)=0,解得:b=2或b=﹣10.(2)当b=2时,此时x2﹣4x+4=0,∴x1=x2=218.(2019秋•宜兴市期末)已知关于x的一元二次方程2x2+(2k+1)x+k=0.(1)求证:方程总有两个实数根;(2)若该方程有一个根是正数,求k的取值范围.【分析】(1)根据根的判别式即可求出答案.(2)根据因式分解法求出方程的两根,然后列出不等式即可求出答案.【解析】(1)由题意,得△=(2k+1)2﹣8k=(2k﹣1)2∵(2k﹣1)2≥0,∴方程总有两个实数根.(2)由求根公式,得,x2=﹣k.∵方程有一个根是正数,∴﹣k>0.∴k<019.(2020春•张家港市期末)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.【分析】(1)根据方程的系数结合根的判别式,可得出△=1>0,进而可证出方程有两个不相等的实数根;(2)利用因式分解法可求出AB,AC的长,分BC为直角边及BC为斜边两种情况,利用勾股定理可得出关于k的一元一次方程或一元二次方程,解之即可得出k值,取其正值(利用三角形的三边关系判定其是否构成三角形)即可得出结论.【解答】(1)证明:∵△=[﹣(2k+1)]2﹣4×(k2+k)=1>0,∴方程有两个不相等的实数根.(2)解:∵x2﹣(2k+1)x+k2+k=0,即(x﹣k)[x﹣(k+1)]=0,解得:x1=k,x2=k+1.当BC为直角边时,k2+52=(k+1)2,解得:k=12;当BC为斜边时,k2+(k+1)2=52,解得:k1=3,k2=﹣4(不合题意,舍去).答:k的值为12或3.20.(2019春•灌云县期末)已知A=a+2,B=a2﹣3a+7,C=a2+2a﹣18,其中a>2.(1)求证:B﹣A>0,并指出A与B的大小关系;(2)指出A与C哪个大?说明理由.【分析】(1)根据完全平方公式把原式变形,根据非负数的性质解答;(2)把C﹣A的结果进行因式分解,根据有理数的乘法法则解答.【解答】(1)证明:B﹣A=(a2﹣3a+7)﹣(a+2)=a2﹣3a+7﹣a﹣2=a2﹣4a+5=(a2﹣4a+4)+1=(a﹣2)2+1,∵(a﹣2)2≥0,∴(a﹣2)2+1≥1,∴B﹣A>0,∴B>A;(2)解:C﹣A=(a2+2a﹣18)﹣(a+2)=a2+2a﹣18﹣a﹣2=a2+a﹣20=(a+5)(a﹣4)∵a>2,∴a+5>0,当2<a<4时,a﹣4<0,∴C﹣A<0,即A>C,当a>4时,a﹣4>0,∴C﹣A>0,即A<C当a=4时,C﹣A=0,即A=C.21.(2019春•江都区期末)某数学实验小组在探究“关于x的二次三项式ax2+bx+3的性质(a、b为常数)”时,进行了如下活动.【实验操作】取不同的x的值,计算代数式ax2+bx+3的值.x…﹣1 0 1 2 3 …ax2+bx+3 …0 3 4 …(1)根据上表,计算出a、b的值,并补充完整表格.【观察猜想】实验小组组员,观察表格,提出以下猜想.同学甲说:“代数式ax2+bx+3的值随着x的增大而增大”.同学乙说:“不论x取何值,代数式ax2+bx+3的值一定不大于4”.…(2)请你也提出一个合理的猜想:当x=﹣2和x=4时,代数式(ax2+bx+3)的值是相等的(答案不唯一)【验证猜想】我们知道,猜想有可能是正确的,也可能是错误的.(3)请你分别判断甲、乙两位同学的猜想是否正确,若不正确,请举出反例;若正确,请加以说理.【分析】(1)通过解方程组求得a、b的值.(2)可以根据二次函数y=ax2+bx+3的图象性质进行猜想;(3)举出反例.【解析】(1)当x=﹣1时,a﹣b+3=0;当x=1时,a+b+3=4.可得方程组.解得:.当x=2时,ax2+bx+3=3;当x=3时,ax2+bx+3=0.故答案是:3;0;(2)言之有理即可,比如当x<1时,(ax2+bx+3)随x的增大而增大;当x=﹣2和x=4时,代数式(ax2+bx+3)的值是相等的;故答案是:当x=﹣2和x=4时,代数式(ax2+bx+3)的值是相等的(答案不唯一);(3)甲的说法不正确.举反例:当x=1时,y=4;但当x=2时,y=3,所以y随x的增大而增大,这个说法不正确.乙的说法正确.证明:﹣x2+2x+3=﹣(x﹣1)2+4.∵(x﹣1)2≥0.∴﹣(x﹣1)2+4≤4.∴不论x取何值,代数式ax2+bx+3的值一定不大于4.。
人教版2019学年九年级上册数学期末试卷含答案(共10套)
人教版2019学年九年级数学期末试卷(一)本试卷共8大题,计23小题,满分150分,考试时间120分钟.一.选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确选项写在题后的表格中,不选、错选或多选的,一律得0分.1.若=,则的值为:A.1 B.C.D.2.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中不一定成立的是:A.b=atanB B.a=ccosB C.D.a=bcosA3.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为:第3题图第4题图第5题图A.30°B.40°C.50°D.80°4.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是:A.∠ABP=∠C B.∠APB=∠A BC C.=D.=5.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为:A.5cosαB.C.5sinαD.2A.﹣11 B.﹣2 C.1 D.﹣57.如图,已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有:A.1个B.2个C.3个D.4个8.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为:A.B.2﹣2 C.2﹣D.﹣2第7题图第9题图第10题图9.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,若EF:AF=2:5,则S△DEF:S四边形EFBC为:A.2:5 B.4:25 C.4:31 D.4:3510.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是:A B C D二.填空题(本大题共4小题,每小题5分,满分20分)11.抛物线y=x2﹣4x+m与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是.12.如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=.第12题图第14题图13.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.14.如图,AB是⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,切点为C,连接AC,BC,作∠APC的平分线交AC于点D.下列结论正确的是(写出所有正确结论的序号)①△CPD∽△DPA;②若∠A=30°,则PC=BC;③若∠CPA=30°,则PB=OB;④无论点P在AB延长线上的位置如何变化,∠CDP为定值.三.(本大题共2小题,每小题8分,满分16分)15.计算:4sin60°+tan45°﹣.16.已知二次函数y=ax2+4x+2的图象经过点A(3,﹣4).(1)求此函数图象抛物线的顶点坐标;(2)直接写出函数y随自变量增大而减小的x的取值范围.四、(本大题共2小题,每小题8分,满分16分)17.如图,在6×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的格点上.请按要求画图:(1)以点B为位似中心,在方格内将△ABC放大为原来的2倍,得到△EBD,且点D、E 都在单位正方形的顶点上.2,点F、G、H都在(2)在方格中作一个△FGH,使△FGH∽△ABC,且相似比为1:单位正方形的顶点上。
2019年九年级上册期末复习《第四章等可能条件下的概率》单元试卷含解析-(苏科版数学)
期末复习:苏科版九年级数学上册第四章等可能条件下的概率一、单选题(共10题;共30分)1.在一个不透明的笔袋中装有两支黑色笔和一支红色笔,除颜色不同外其他都相同,随机从其中摸出一支黑色笔的概率是A. B. C. D. 12.某学生书包中有三枝红铅笔,两枝黑铅笔,一支白铅笔,它们的形状、大小一样,从中任意摸出一枝,那么摸到白铅笔的机会是()A. B. C. D.3.一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有( )个A. 45B. 48C. 50D. 554.已知一次函数y=+b,从2,﹣3中随机取一个值,b从1,﹣1,﹣2中随机取一个值,则该一次函数的图象经过二、三、四象限的概率为()A. B. C. D.5.袋子中装有4个黑球2个白球,这些球除了颜色外都相同,从袋子种随机摸出一个球,则摸到黑球的概率是()A. B. C. D.6.一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是()A. 摸到红球是必然事件B. 摸到黄球是不可能事件C. 摸到白球与摸到黄球的可能性相等D. 摸到红球比摸到黄球的可能性小7.甲乙丙三个同学随机排成一排照相,则甲排在中间的概率是()A. B. C. D.8.标号为A、B、C、D的四个盒子中所装有的白球和黑球数如下,则下列盒子最易摸到黑球的是()A.12个黑球和4个白球B.10个黑球和10个白球C.4个黑球和2个白球D.10个黑球和5个白球9.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率是()A. B. C. D.10.在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是(),A. B. C. D. 1二、填空题(共10题;共30分)11.任意掷一枚质地均匀的骰子,掷出的点数是6的概率是________.12.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是________.13.一个袋中装有6个红球,4个黄球,1个白球,每个球除颜色外都相同,任意摸出一球,摸到________球的可能性最大14.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是________.15.在一个不透明的布袋中有2个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到黄球的概率是,则n= ________.16.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是________.17.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是________.18.从1,2,3,4中任取3个数,作为一个一元二次方程的系数,则构作的一元二次方程有实根的概率是________。
2019-2020年苏州市吴中区九年级上册期末数学试卷(有答案)-最新推荐
江苏省苏州市吴中区九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.1.(3分)一元二次方程42﹣1=0的解是()A.1=1,2=﹣1 B.1=2,2=﹣2C. D.2.(3分)抛物线y=2(﹣1)2+3的顶点坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)3.(3分)△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2 B.1:3 C.1:4 D.1:164.(3分)给出下列四个结论,其中正确的结论为()A.三点确定一个圆B.同圆中直径是最长的弦C.圆周角是圆心角的一半D.长度相等的弧是等弧5.(3分)某专卖店专营某品牌的运动鞋,店主对上一周中不同尺码的运动鞋销售情况统计如下:)A.平均数B.方差C.众数D.中位数6.(3分)某小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为米,根据题意,可列方程为()A.(+10)=900 B.(﹣10)=900 C.10(+10)=900 D.2[+(+10)]=9007.(3分)如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100°B.72°C.64°D.36°8.(3分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A.CE=DE B.CE=DEC.CE=3DE D.CE=2DE9.(3分)如图,在平面直角坐标系中,点O是坐标原点,点A,B分别是轴和y轴上的点,且∠BAO=30°,以点A为圆心,BO长为半径画弧交AO于点C,分别以A,C为圆心,AO长为半径画弧,两弧交于点D,连接AD,CD,则∠DAC的余弦值是()A. B. C. D.10.(3分)在平面直角坐标系中,点A是直线y=上动点,以点B(0,4)为圆心,半径为1的圆上有一点C,若直线AC与⊙B相切,切点为C,则线段AC的最小值为()A.B.C.3 D.二、填空题(本大题共有8小题,每小题3分,共24分,请将正确答案填在答题卷相应的横线上)11.(3分)若,则锐角α= .12.(3分)关于的一元二次方程2﹣2+﹣1=0没有实数根,则的取值范围是.13.(3分)数据3,3,6,5,3的方差是.14.(3分)如图,是由大小完全相同的扇形组成的图形,小军准备用红色、黄色、蓝色随机给每个扇形分别涂上其中的一种颜色,则最上方的扇形涂红色的概率是.15.(3分)已知圆锥的底面半径长为5,侧面展开后得到一个圆心角是150°的扇形,则该圆锥的母线长为.16.(3分)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A 测得旗杆顶端E的俯角α是45°,旗杆低端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度为米.17.(3分)如图,在正八边形ABCDEFGH中,四边形BCFG的面积为2acm2,则正八边形的面积cm2(用a的代数式表示).18.(3分)如图,抛物线y=a2+b+c(a≠0)的对称轴为直线=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确有(填序号).三、解答题(本大题共10小题,共76分,解答时应写出文字说明、证明过程或演算步骤.)19.(4分)计算:2sin30°+3cos60°﹣4tan45°.20.(6分)解方程:(1)2﹣6﹣1=0;(2)(﹣3)=10.21.(6分)为传播优秀数学文化,展现数学的内涵和魅力,提高学生的数学兴趣和素养,江苏教育出版社《时代学习报》与江苏省教育学会中学数学教学专业委员会共同举办初中数学文化节、初三数学应用与创新邀请赛,分别设有一、二、三等奖和纪念奖.某校参加此项比赛,获奖情况已汇制成如图所示的两幅不完整的统计图,根据图中所示信息解答下列问题:(1)该校一共有名学生获奖;(2)这次数学竞赛获二等奖人数是多少?(3)请将条形统计图补充完整.22.(7分)已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)在原图上作DE∥AB交AC与点E,请直接写出另一个与△ABD相似的三角形,并求出DE 的长.23.(7分)甲、乙两盒中各有3张卡片,卡片上分别标有数字﹣7、﹣1、3和﹣2、1、6,这些卡片除数字外都相同.把卡片洗匀后,从甲、乙两盒中各任意抽取1张,并把抽得卡片上的数字分别作为平面直角坐标系中一个点的横坐标、纵坐标.(1)列出这样的点所有可能的坐标;(2)求这些点落在第二象限的概率.24.(7分)己知:矩形ABCD的两边AB,BC的长是关于的方程2﹣m+=0的两个实数根.(1)当m为何值时,矩形ABCD是正方形?求出这时正方形的边长;(2)若AB的长为2,那么矩形ABCD的周长是多少?25.(8分)某商店经销一种小家电,每个小家电的成本为20元,市场调查发现,该种小家电每天的销售量y(个)与销售单价(元)的函数图象如图.设这种小家电每天的销售利润为w 元.(1)求w与之间的函数关系式;(2)如果物价部门规定这种小家电的销售单价不高于32元,该商店销售这种小家电每天要获得400元的销售利润,销售单价应定为多少元?26.(9分)如图,AB是⊙O的直径,弦AD平分∠BAC,过点D作DE⊥AC于E.(1)求证:ED是⊙O的切线;(2)若ED,AB的延长线相交于F,且AE=5,EF=12,求BF的长.27.(11分)如图,等腰三角形ABC中,AB=AC=5cm,BC=8cm,动点N从点C出发,沿线段CB 以2cm/s的速度向点B运动,并在达到点B后,立即以同样的速度返回向点C运动;同时动点M从点B出发,沿折线B﹣A﹣C以1cm/s的速度向点C运动,当点N回到点C时,两个动点同时停止运动.⊙M是以M为圆心,1cm为半径的圆,设运动时间为t(s)(t>0)(1)tanB= ;(2)当点M在线段AB上运动,且⊙M与BC相切时,求t的值;(3)当t为何值时,⊙M与折线B﹣A﹣C的两个交点在等腰三角形ABC对称轴的同侧,且经过交点和点N的直线与⊙M相切?28.(11分)己知,二次函数y=﹣2+b+c的图象与轴的两个交点A,B的横坐标分别为1和2,与y轴的交点是C.(1)求这个二次函数的表达式;(2)若点D是y轴上的一点,是否存在D,使以B,C,D为顶点的三角形与△ABC相似?若存在,求点D的坐标,若不存在,请说明理由;(3)过点C作CE∥轴,与二次函数y=﹣2+b+c的图象相交于点E,点H是该二次函数图象上的动点,过点H作HF∥y轴,交线段BC于点F,试探究当点H运动到何处时,△CHF与△HFE 的面积之和最大,求点H的坐标及最大面积.江苏省苏州市吴中区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.1.(3分)一元二次方程42﹣1=0的解是( )A .1=1,2=﹣1B .1=2,2=﹣2C .D .【解答】解:2=,=±,所以1=,2=﹣.故选:D .2.(3分)抛物线y=2(﹣1)2+3的顶点坐标是( )A .(1,3)B .(1,﹣3)C .(﹣1,3)D .(﹣1,﹣3)【解答】解:由y=2(﹣1)2+3,根据顶点式的坐标特点可知,顶点坐标为(1,3), 故选:A .3.(3分)△ABC 与△DEF 的相似比为1:4,则△ABC 与△DEF 的周长比为( )A .1:2B .1:3C .1:4D .1:16【解答】解:∵△ABC 与△DEF 的相似比为1:4,∴△ABC 与△DEF 的周长比为1:4;故选:C .4.(3分)给出下列四个结论,其中正确的结论为( )A .三点确定一个圆B .同圆中直径是最长的弦C .圆周角是圆心角的一半D .长度相等的弧是等弧【解答】解:A 、错误,不在同一直线上的三点确定一个圆;B 、正确;C、错误,同弧或等弧所对的圆周角等于圆心角的一半;D、错误,能够重合的弧是等弧.故选:B.5.(3分)某专卖店专营某品牌的运动鞋,店主对上一周中不同尺码的运动鞋销售情况统计如下:)A.平均数B.方差C.众数D.中位数【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.6.(3分)某小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为米,根据题意,可列方程为()A.(+10)=900 B.(﹣10)=900 C.10(+10)=900 D.2[+(+10)]=900【解答】解:设绿地的宽为米,则长为(+10)米,根据矩形的面积为900平方米可得:(+10)=900,故选:A.7.(3分)如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100°B.72°C.64°D.36°【解答】解:连接OA,∵OA=OC,∴∠OAC=∠C=28°,∴∠OAB=64°,∵OA=OB,∴∠B=∠OAB=64°,故选:C.8.(3分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A.CE=DE B.CE=DEC.CE=3DE D.CE=2DE【解答】解:过点D作DH⊥BC,∵AD=1,BC=2,∴CH=1,DH=AB===2,∵AD∥BC,∠ABC=90°,∴∠A=90°,∵DE⊥CE,∴∠AED+∠BEC=90°,∵∠AED+∠ADE=90°,∴∠ADE=∠BEC,∴△ADE∽△BEC,∴,设BE=,则AE=2,即,解得=,∴,∴CE=,故选:B.9.(3分)如图,在平面直角坐标系中,点O是坐标原点,点A,B分别是轴和y轴上的点,且∠BAO=30°,以点A为圆心,BO长为半径画弧交AO于点C,分别以A,C为圆心,AO长为半径画弧,两弧交于点D,连接AD,CD,则∠DAC的余弦值是()A. B. C. D.【解答】解:作DH⊥AC于H.设OB=m.在Rt△AOB中,∵∠OAB=30°,∴AO=OB=m,∵DC=DA,DH⊥AC,AC=OB=m,∴AH=CH=m,∵DC=DA=OA=m,∴cos∠DAC===.故选:B.10.(3分)在平面直角坐标系中,点A是直线y=上动点,以点B(0,4)为圆心,半径为1的圆上有一点C,若直线AC与⊙B相切,切点为C,则线段AC的最小值为()A.B.C.3 D.【解答】解:连结AB、BC,如图,∵点A在直线y=上,∵∠AOB=45°,作BH⊥OA于H,∴△BOH为等腰直角三角形,∴BH==2,∵直线AC与⊙B相切,切点为C,∴BC⊥AC,∴∠ACB=90°,∴AC==,当AB最小时,AC的值最小,而点A在H点时,AB最小,此时AB=BH=2,∴AC的最小值为=.故选:A.二、填空题(本大题共有8小题,每小题3分,共24分,请将正确答案填在答题卷相应的横线上)11.(3分)若,则锐角α= 60°.【解答】解:∵sinα=,∴α=60°,故答案为:60°.12.(3分)关于的一元二次方程2﹣2+﹣1=0没有实数根,则的取值范围是>2 .【解答】解:∵关于的一元二次方程2﹣2+﹣1=0没有实数根,∴△<0,即(﹣2)2﹣4(﹣1)<0,解得>2,故答案为:>2.13.(3分)数据3,3,6,5,3的方差是 1.6 .【解答】解:∵,∴这列数的方差是: =1.6,故答案为:1.6.14.(3分)如图,是由大小完全相同的扇形组成的图形,小军准备用红色、黄色、蓝色随机给每个扇形分别涂上其中的一种颜色,则最上方的扇形涂红色的概率是.【解答】解:最上方的扇形涂红色的概率是;故答案为:.15.(3分)已知圆锥的底面半径长为5,侧面展开后得到一个圆心角是150°的扇形,则该圆锥的母线长为12 .【解答】解:10π=,∴R=12.故答案为:1216.(3分)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A 测得旗杆顶端E的俯角α是45°,旗杆低端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度为6+29 米.【解答】解:延长AB交DC于H,作EG⊥AB于G,如图所示:则GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,设BH=米,则CH=米,在Rt△BCH中,BC=12米,由勾股定理得:2+()2=122,解得:=6,∴BH=6米,CH=6米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=6+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=6+20(米),∴AB=AG+BG=6+20+9=(6+29)m.故答案为:6+29.17.(3分)如图,在正八边形ABCDEFGH中,四边形BCFG的面积为2acm2,则正八边形的面积4a cm2(用a的代数式表示).【解答】解:连接HE,AD,在正八边形ABCDEFGH中,可得:HE⊥BG于点M,AD⊥BG于点N,∵正八边形每个内角为:=135°,∴∠HGM=45°,∴MH=MG,设MH=MG=,则HG=AH=AB=GF=,∴BG×GF=2(+1)2=2a,四边形ABGH面积=(AH+BG)×HM=(+1)2=a,∴正八边形的面积为:a×2+2a=4a(cm2).故答案为:4a.18.(3分)如图,抛物线y=a2+b+c(a≠0)的对称轴为直线=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确有②③④(填序号).【解答】解:①∵抛物线与轴有2个交点,∴△=b2﹣4ac>0,即b2>4ac,所以①错误;②∵抛物线的对称轴在y轴的左侧,∴a、b同号,∴ab>0,∵抛物线与y轴交点在轴上方,∴c>0,∴abc>0,所以②正确;③∵=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线=﹣1,∴﹣=﹣1,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线=﹣1,∴=﹣2和=0时的函数值相等,即=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,故答案为:②③④.三、解答题(本大题共10小题,共76分,解答时应写出文字说明、证明过程或演算步骤.)19.(4分)计算:2sin30°+3cos60°﹣4tan45°.【解答】解:2sin30°+3cos60°﹣4tan45°=2×+3×﹣4×1=﹣1.5.20.(6分)解方程:(1)2﹣6﹣1=0;(2)(﹣3)=10.【解答】解:(1)2﹣6+9=10,(﹣3)2=10,﹣3=±,所以1=3+,2=3﹣;(2)2﹣3﹣10=0,(﹣5)(+2)=0,﹣5=0或+2=0,所以1=5,2=﹣2.21.(6分)为传播优秀数学文化,展现数学的内涵和魅力,提高学生的数学兴趣和素养,江苏教育出版社《时代学习报》与江苏省教育学会中学数学教学专业委员会共同举办初中数学文化节、初三数学应用与创新邀请赛,分别设有一、二、三等奖和纪念奖.某校参加此项比赛,获奖情况已汇制成如图所示的两幅不完整的统计图,根据图中所示信息解答下列问题:(1)该校一共有 200 名学生获奖;(2)这次数学竞赛获二等奖人数是多少?(3)请将条形统计图补充完整.【解答】解:(1)获奖学生总人数为20÷10%=200(人),故答案为:200;(2)获三等奖人数为200×24%=48人,纪念奖的人数为200×46%=92人,这次数学竞赛获二等奖人数是200﹣(20+48+92)=40人;(3)补全条形图如下:22.(7分)已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)在原图上作DE∥AB交AC与点E,请直接写出另一个与△ABD相似的三角形,并求出DE 的长.【解答】(1)证明:∵AB=2,BC=4,BD=1,∴==,=,∴=,∵∠ABD=∠CBA,∴△ABD∽△CBA;(2)解:∵DE∥AB,∴△CDE∽△CBA,∴△ABD∽△CDE,∴DE=1.5.23.(7分)甲、乙两盒中各有3张卡片,卡片上分别标有数字﹣7、﹣1、3和﹣2、1、6,这些卡片除数字外都相同.把卡片洗匀后,从甲、乙两盒中各任意抽取1张,并把抽得卡片上的数字分别作为平面直角坐标系中一个点的横坐标、纵坐标.(1)列出这样的点所有可能的坐标;(2)求这些点落在第二象限的概率.【解答】解:(1)画树状图:共有9种等可能的结果:(﹣7,﹣2),(﹣7,1),(﹣7,6),(﹣1,﹣2),(﹣1,1),(﹣1,6),(3,﹣2),(3,1),(3,6);(2)这些点落在第二象限的结果数为4,所以这些点落在第二象限的概率=.24.(7分)己知:矩形ABCD的两边AB,BC的长是关于的方程2﹣m+=0的两个实数根.(1)当m为何值时,矩形ABCD是正方形?求出这时正方形的边长;(2)若AB的长为2,那么矩形ABCD的周长是多少?【解答】解:(1)当矩形ABCD为正方形时,可知AB=BC,∴关于的方程2﹣m+=0有两个相等实数根,∴△=0,即(﹣m )2﹣4()=0,解得m 1=m 2=1,此时方程为2﹣+=0,解得1=2=,即正方形的边长为;(2)当AB=2时,即=2是方程的根,∴22﹣2m+=0,解得m=,此时方程为2﹣+1=0,解得=2或=,∴BC=,∴矩形ABCD 的周长=2(AB+BC )=2×(2+)=5.25.(8分)某商店经销一种小家电,每个小家电的成本为20元,市场调查发现,该种小家电每天的销售量y (个)与销售单价(元)的函数图象如图.设这种小家电每天的销售利润为w 元.(1)求w 与之间的函数关系式;(2)如果物价部门规定这种小家电的销售单价不高于32元,该商店销售这种小家电每天要获得400元的销售利润,销售单价应定为多少元?【解答】解:(1)设y=+b ,则,解得:,则y=﹣2+100(20≤≤50),所以w=(﹣20)(﹣2+100)=﹣22+140﹣2000;(2)根据题意,得:﹣22+140﹣2000=400,解得:=30或=40,因为≤32,所以=30,答:该商店销售这种小家电每天要获得400元的销售利润,销售单价应定为30元.26.(9分)如图,AB是⊙O的直径,弦AD平分∠BAC,过点D作DE⊥AC于E.(1)求证:ED是⊙O的切线;(2)若ED,AB的延长线相交于F,且AE=5,EF=12,求BF的长.【解答】解:(1)如图,∵DE⊥AC,∴∠AEF=90°连接OD,∴OA=OD,∴∠OAD=∠ODA,∵AD是∠BAC的平分线,∴∠DAC=∠DAB,∴∠DAE=∠ODA,∴OD∥AC,∴∠ODF=∠AEF=90°,∴OD⊥EF,∵点D在⊙O上,∴ED是⊙O的切线;(2)在Rt△AEF中,根据勾股定理得,AF==13,设⊙O的半径为r,∴OD=r,OF=13﹣r,BF=AF﹣AB=13﹣2r,由(1)知,OD∥AE,∴△OFD∽△AFE,∴,∴,∴r=,∴BF=13﹣r=27.(11分)如图,等腰三角形ABC中,AB=AC=5cm,BC=8cm,动点N从点C出发,沿线段CB 以2cm/s的速度向点B运动,并在达到点B后,立即以同样的速度返回向点C运动;同时动点M从点B出发,沿折线B﹣A﹣C以1cm/s的速度向点C运动,当点N回到点C时,两个动点同时停止运动.⊙M是以M为圆心,1cm为半径的圆,设运动时间为t(s)(t>0)(1)tanB= ;(2)当点M在线段AB上运动,且⊙M与BC相切时,求t的值;(3)当t为何值时,⊙M与折线B﹣A﹣C的两个交点在等腰三角形ABC对称轴的同侧,且经过交点和点N的直线与⊙M相切?【解答】解:(1)如图1中,作AH⊥BC用H.∵AB=AC=5,AH⊥BC,∴BH=CH=BC=4,AH==3,∴tanB==.故答案为.(2)如图2中,作M⊥BC于.∵⊙M与BC相切,∴M=1,∵sinB===,∴BM=,∴t=s时,⊙M与BC相切.(3)如图设⊙M交AB于P、G,连接GN,①当0<t≤4时,如果NG是⊙M的切线,则GN⊥AB,则有cosB==,∴=,解得:t=,②当PN是切线时,同法可得, =,解得t=.③当4<t≤8时,同法可得, =或=解得t=3(不合题意舍弃)或t=,综上所述,满足条件的t的值为s或s或s.28.(11分)己知,二次函数y=﹣2+b+c的图象与轴的两个交点A,B的横坐标分别为1和2,与y轴的交点是C.(1)求这个二次函数的表达式;(2)若点D是y轴上的一点,是否存在D,使以B,C,D为顶点的三角形与△ABC相似?若存在,求点D的坐标,若不存在,请说明理由;(3)过点C作CE∥轴,与二次函数y=﹣2+b+c的图象相交于点E,点H是该二次函数图象上的动点,过点H作HF∥y轴,交线段BC于点F,试探究当点H运动到何处时,△CHF与△HFE 的面积之和最大,求点H的坐标及最大面积.【解答】解:(1)∵二次函数y=﹣2+b+c的图象与轴的两个交点A,B的横坐标分别为1和2,∴A(1,0),B(2,0),∴,∴,∴二次函数的表达式y=﹣2+3﹣2;(2)∵二次函数的表达式y=﹣2+3﹣2,∴OC=2,∵A(1,0),B(2,0)∴OB=2,∴OB=OC∴∠OBC=∠OCB=45°,∴∠BAC<135°,即:点D只能在点C上方的y轴上,∴∠DCB=∠ABC=45°∴设D(0,d),d>﹣2,∵A(1,0),B(2,0),C(0,﹣2),∴AB=1,BC=2,CD=d+2,∵以B,C,D为顶点的三角形与△ABC相似,∴①△DCB∽△ABC,∴,∴CD=AB=1,∴d+2=1,∴d=﹣1,∴D(0,﹣1)②△BCD∽△ABC,∴,∴,∴d=6,∴D(0,6);(3)如图,∵CE∥轴,∴令y=﹣2,∴﹣2=﹣2+3﹣2,∴=0(舍)或=3,∵B (2,0),C (0,﹣2),∴直线BC 的解析式为y=﹣2,设H (m ,﹣m 2+3m ﹣2),F (m ,m ﹣2), ∵点F 是线段BC 上的点,∴0<m <2,HF=﹣m 2+3m ﹣2﹣(m ﹣2)=﹣m 2+2m ,∴S △CHF +S △EHF =HF ×3=(﹣m 2+2m )=﹣(m 2﹣2m+1)+=﹣(m ﹣1)2+∴m=1时,△CHF 与△HFE 的面积之和最大,最大面积为,此时,H (1,0).。
2019-2020学年江苏省昆山市2014届九年级上册期末考试数学试题(有答案)(苏科版)-推荐
昆山市2019-2020学年第一学期期末考试初三数学试卷注意事项:1、本试卷共三大题29小题,满分130分,考试时间120分钟°考生作答时,将答案答在规定的答题卡范围内,答在本试卷上无效°2、答题时使用0.5毫米黑色中性(签字)笔书写,字体工整、笔迹清楚。
一、选择题(每小题3分,共30分;把下列各题中睢一正确答案前面的字母填涂在答题卡相应的位置上.)1.sin60°是A .12B C D2 是同类二次根式的是 A .①和③ B .②和③ C .①和④D .③和④3.关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则实数k 的取值范围是A .k>-1B .k<1且k ≠0C .k ≥-1且k ≠0D . k>-1且k ≠04.已知1是关于x 的一元二次方程(m —1)x 2+x +1=0的一个根,则m 的值是A .1B .-1C .0D .无法确定5.已知抛物线y =ax 2-2ax -a +1的顶点在x 轴上,则a 的值是 A .-2B .12C .-1D .16.如图,已知∠POx =120°,OP =4,则点P 的坐标是 A .(2,4)B .(-2,4)C .(-2,)D .(-,2)7.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD 的度数是 A .35°B .45°C .55°D .75°8.如图,平面直角坐标系中,⊙O 半径长为1,点P(a ,0),⊙P 的半径长为2,把⊙P 向左平移,当⊙P 与⊙O 相切时,a 的值为 A .3B .1C .1,3D .+1,±39.如图,抛物线y =ax 2+bx +c 交X 轴于(-1,0)、(3,0)两点, 则下列判断中,正确的是 ①图象的对称轴是直线x =1②当x>1时,y 随x 的增大而减小③一元二次方程ax 2+bx +c =0的两个根是-1和3 ④当-1<x<3时,y<0A .①②B .①②④C .①②③D .④10.如图,直线y x x 轴、y 轴分别相交于A 、B 两点, 圆心P 的坐标为(1,0),⊙P 与y 轴相切于点O .若将⊙P 沿x 轴向左移动,当⊙P 与该直线相交时,满足横坐标为整 数的点P 的个数是 A .3 B .4C .5D .6二、填空题(本大题共8小题,每小题3分,共24分,把正确答案填写在答题卡相应位置上)11.有意义的x 的取值范围 ▲ ; 12= ▲ ; 13.二次函数y =x 2-2x -3的图象与x 轴的两个交点间的距离为 ▲ ; 14.将半径为3cm 的半圆围成一个圆锥的侧面,这个圆锥的底面 半径是 ▲ ;15.如图,AB 是⊙O 的弦,OC ⊥AB 于点D ,交⊙O 于点C ,若⊙O 的半径为5,CD =2,那么AB 的长为 ▲ ;16.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别 交PA 、PB 于点E 、F ,切点C 在EF 上,若PA 长为2,则△PEF 的周长是 ▲ ;17.已知m 是方程x 2-x -3=0的一个实数根,则代数式(m 2-m )(m -3m+1)的值为 ▲ ;18.如图,在Rt △AOB 中,OA =OB =,⊙O 的半径为1, 点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ(点P 为切点).则切线长PQ 的最小值为 ▲ .三、解答题(本大题共11小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.计算(每题3分,共6分)-+(2)20.解方程(每题3分,共6分)(1)x2-2x-2=0(2)(x-2)2-3(x-2)=021.(本题6分)如图所示,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,CD⊥AB于点D.求∠BCD的三个三角函数值.22.(本题6分)已知⊙O1经过A(-4,2)、B(-3,3)、C(-1,-1)、O(0,0)四点,一次函数y=-x-2的图象是直线l,直线l与y轴交于点D.(1)在右边的平面直角坐标系中画出直线1,则直线l与⊙O1的交点坐标为▲;(2)若⊙O1上存在点P1使得△APD为等腰三角形,则这样的点P有▲个,试写出其中一个点P坐标为▲.23.(本题6分)如图,二次函数的图象与x轴相交于A(-3,0)、B(1,0)两点,与y轴相交于点C (0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)D点坐标(▲);(2)求一次函数的表达式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.24.(本题6分)高考英语听力测试期间,需要杜绝考点周围的噪音,如图,点A是某市一高考考点,在位于A 考点南偏西15°方向距离125米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点突发火灾,消防队必须立即赶往救火,已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车取1.732)25.(本题6分)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)用尺规在AB边上作点O,并以点O为圆心作⊙O,使它过A、D两点.(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由.(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π)26.(本题8分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2019年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A 型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?27.(本题8分)如图,AB为⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C(1)求证:CD是⊙O的切线(2)若CB=2,CE=4,求AE的长28.(本题8分)如图,矩形ABCD 中,∠ACB =30°,将一块直角三角板的直角顶点P 放在两对角线AC 、BD 的交点处,以点P 为旋转中心转动三角板,并保证三角板的两直角边分别于边AB 、BC 所在的直线相交,交点分别为E 、F . (1)当PE ⊥AB ,PF ⊥BC 时,如图1,则PEPF的值为 ▲ . (2)现将三角板绕点P 逆时针旋转α(0°<α< 60°)角,如图2,求PEPF的值. (3)在(2)的基础上继续旋转,当60°<α<90°,且使AP :PC =1:2时,如图3,PEPF的值是否变化?证明你的结论.29.(本题10分)如图,抛物线y =49x 2-83x -12与x 轴交于A 、C 两点,与y 轴交于B 点. (1)△AOB 的外接圆的面积 ▲ ;(2)若动点P 从点A 出发,以每秒2个单位沿射线AC 方向 运动;同时,点Q 从点B 出发,以每秒1个单位沿射线 BA 方向运动,当点P 到达点C 处时,两点同时停止运 动,问当t 为何值时,以A 、P 、Q 为顶点的三角形与 △OAB 相似?(3)若M 为线段AB 上一个动点,过点M 作MN 平行于y 轴交抛物线于点N .①是否存在这样的点M ,使得四边形OMNB 恰为平行四 边形?若存在,求出点M 的坐标;若不存在,请说明理 由.②当点肘运动到何处时,四边形CBNA 的面积最大?求 出此时点M 的坐标及四边形CBNA 面积的最大值.。
2019届江苏省九年级上学期第一次月考数学试卷【含答案及解析】(3)
6.如图,点P是OO直径AB的延长线上一点,PC切OO于点C,已知0B=3 PB=2则PC等 于()
A. 2B.3C.4D.5
7.如图,若点O是厶AC内心,/ABC=80°,ZACB=60。则/度数为()
A. 140°造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程,已知
16.若四边形ABCD是圆内接四边形,且/BAC=120°,则/BDC=
17.如下图所示,一圆弧过方格的格点AB C,试在方格中建立平面直角坐标系,使点
A的坐标为(-2,4),则该圆弧所在圆的圆心 坐标是
三、解答题
fa;土6)
18•对于实数a,b,定义运算“*”:••例如4*2,因为4>2,所
L■和■沖■卜仃・靠朴
(1)通过计算(结果保留根号与n)•
(1)图①能盖住三个正方形所需的圆形硬纸板最小直径应为
(□)图②能盖住三个正方形所需的圆形硬纸板最小直径为
(川)图③能盖住三个正方形所需的圆形硬纸板最小直径为
(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬 纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并 求出此时圆形硬纸板的直径.
26.(10分)某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。调查 表明:这种台灯的售价每上涨一元,其销售量就将减少10个.
(1)没有涨价前每台利润是元,月销售利润是元.
(2)为了实现平均每月10000元的销售利润。这种台灯的售价应定为多少?这时应进台 灯多少个?
27.(10分))阅读下面的材料,回答问题:
10.写出一个两实数根符号相反的一元二次方程:
2018-2019学年九年级(上)期末数学试卷(有答案和解析)
2018-2019学年九年级(上)期末数学试卷一、选择题(每小题4分,共40分)1.下列图形是我们日常生活中经常看到的一些标志,则其中是中心对称图形的是()A.B.C.D.2.若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1B.﹣2C.﹣1D.23.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.任意一个六边形的外角和等于720°C.同时掷两枚质地均匀的骰子,两个骰子的点数相同D.367个同学参加一个集会,他们中至少有两个同学的生日是同月同日4.如图,在⊙O中,M是弦CD的中点,EM⊥CD,若CD=4cm,EM=6cm,则⊙O的半径为()A.5B.3C.D.45.抛物线y=x2﹣4x+6的顶点坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)6.已知方程x2+2018x﹣3=0的两根分别为α和β,则代数式α2+αβ+2018α的值为()A.1B.0C.2018D.﹣20187.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得C′C∥AB,则∠CAB'等于()A.30°B.25°C.15°D.10°8.如图,在⊙O的内接四边形ABCD中,∠A=80°,∠OBC=60°,则∠ODC的度数为()A.40°B.50°C.60°D.30°9.已知a、b是等腰三角形的两边,且a、b满足a2+b2+29=10a+4b,则△ABC的周长为()A.14B.12C.9或12D.10或1410.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴为直线l,则下列结论:①abc>0;②a+b+c >0;③a+c>0;④a+b>0,正确的是()A.①②④B.②④C.①③D.①④二、填空题(8小题,每小题4分,共32分)11.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是.12.抛物线y=x2的对称轴是直线.13.一元二次方程x(x﹣2)=x﹣2的根是.14.小明和他的哥哥、姐姐共3人站成一排,小明与哥哥相邻的概率是.15.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为cm.16.已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是.17.某校规划在一个长16m,宽9m的矩形场地ABCD上修建同样宽度的三条小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是.18.已知二次函数y=ax2+bx﹣2自变量x的部分取值和对应的函数值y如下表,则在实数范围内能使得y﹣1>0成立的x的取值范围是.三、解答题:(7个小题,共78分)19.(8分)解方程(1)x2﹣2x﹣48=0.(2)2x2﹣4x=﹣1.20.(10分)将抛物线y1=2x2先向下平移2个单位,再向右平移3个单位得到抛物线y2.(1)直接写出平移后的抛物线y2的解析式;(2)求出y2与x轴的交点坐标;(3)当y2<0时,写出x的取值范围.21.(12分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(3,4)、B(1,2)、C(5,3)(1)将△ABC平移,使得点A的对应点A1的坐标为(﹣2,4),在如图的坐标系中画出平移后的△A1B1C1;(2)将△A1B1C1绕点C1逆时针旋转90°,画出旋转后的△A2B2C1并直接写出A2、B2的坐标;(3)求△A2B2C1的面积.22.(12分)传统节日“元宵节”时,小丽的妈妈为小丽盛了一碗汤圆,其中一个汤圆是花生馅,一个汤圆是黑芝麻馅,两个汤圆草莓馅,这4个汤圆除了内部馅料不同外,其他均相同.(1)若小丽随意吃一个汤圆,刚好吃到黑芝麻馅的概率是多少?(2)小丽喜欢草莓馅的汤圆,妈妈在盛了4个汤圆后,又为小丽多盛了2个草莓馅的汤圆,若小丽吃2个汤圆,都是草莓馅的概率是多少?23.(12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于点D,E为BC 的中点,连接DE并延长交AC的延长线于点E.(1)求证:DF是⊙O的切线;(2)若CF=2,DF=4,求⊙O的半径.24.(12分)一年一度的“春节”即将到来,某超市购进一批价格为每千克3元的桔子,根据市场预测,该种桔子每千克售价4元时,每天能售出500千克,并且售价每上涨0.1元,其销售量将减少10千克,物价部门规定,该种桔子的售价不能超过进价的200%,请你利用所学知识帮助超市给这种桔子定价,使得超市每天销售这种桔子的利润为800元.25.(12分)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】根据中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,结合选项即可得出答案.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】此题考查了中心对称的知识,解答本题一定要熟练中心对称的定义,关键是寻找中心对称点,要注意和轴对称区分开来.2.【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【解答】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件;B、任意一个六边形的外角和等于720°是不可能事件;C、任同时掷两枚质地均匀的骰子,两个骰子的点数相同是随机事件;D、367个同学参加一个集会,他们中至少有两个同学的生日是同月同日是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【分析】如图,连接OC.设⊙O的半径为r.首先证明EN经过圆心O,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OC.设⊙O的半径为r.∵CM=DM=2cm,EM⊥CD,∵EM经过圆心O,在Rt△COM中,∵OC2=OM2+CM2,∴r2=22+(6﹣r)2,∴r=,故选:C.【点评】本题考查垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.【分析】已知抛物线的一般式,利用配方法转化为顶点式,直接写成顶点坐标.【解答】解:∵y=x2﹣4x+6=x2﹣4x+4+2=(x﹣2)2+2,∴抛物线y=x2﹣4x+6的顶点坐标为(2,2).故选:C.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k);此题还考查了配方法求顶点式.6.【分析】由根与系数的关系得到α+β=﹣2018,将其代入整理后的代数式求值.【解答】解:依题意得:αβ=﹣3,α+β=﹣2018,α2+2018α﹣3=0,所以α2+αβ+2018α=α(α+β)+2018α=﹣2018α+2018α=0.故选:B.【点评】考查了根与系数的关系,一元二次方程的解的定义,解题的巧妙之处在于将所求的代数式转化为α(α+β)+2018α的形式,然后代入求值.7.【分析】先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转的性质得AC=AC′,∠CAC′=∠BAB′,根据等腰三角形的性质和三角形内角和计算出∠CAC′=40°,所以∠BAB′=40°,然后计算∠CAB′=∠CAB﹣∠BAB′即可.【解答】解:∵C′C∥AB,∴∠ACC′=∠CAB=70°,∵△ABC绕点A旋转到△AB'C'的位置,∴AC=AC′,∠CAC′=∠BAB′,∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴∠BAB′=40°,∴∠CAB′=∠CAB﹣∠BAB′=70°﹣40°=30°.故选:A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.8.【分析】在四边形OBCD中,利用四边形内角和定理即可解决问题.【解答】解:∵∠A=80°,∴∠C=180°﹣80°=100°,∠BOD=2∠A=160°,∴∠ODC=360°﹣160°﹣60°﹣100°=40°,故选:A.【点评】本题考查圆内接四边形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【分析】利用配方法分别求出a、b,根据三角形三边关系、等腰三角形的概念计算.【解答】解:a2+b2+29=10a+4b,a2﹣10a+25+b2﹣4b+4=0,(a﹣5)2+(b﹣2)2=0,a﹣5=0,b﹣2=0,解得,a=5,b=2,∵2、2、5不能组成三角形,∴这个等腰三角形的周长为:5+5+2=12,故选:B.【点评】本题考查的是配方法、非负数的性质、等腰三角形的性质以及三角形三边关系,掌握配方法、完全平方公式是解题的关键.10.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴进行推理,进而对所得结论进行判断.【解答】解:①抛物线的对称轴位于y轴的右侧,则a、b异号,即ab<0.抛物线与y轴交于负半轴,则c<0.所以abc>0.故正确;②如图所示,当x=1时,y<0,即a+b+c<0,故错误;③由图可知,当x=﹣1时,y=0,即a﹣b+c=0,x=1时,y<0,即a+b+c<0,所以a+a+c+c<0.所以2a+2c<0.所以a+c<0.故错误;④由图可知,当x=﹣1时,y=0,即a﹣b+c=0.当x=2时,y>0,即4a+2b+c>0,所以4a+2b+b﹣a>0,所以3a+3b>0.所以a+b>0.故正确.故选:D.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.二、填空题(8小题,每小题4分,共32分)11.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【分析】直接利用y=ax2图象的性质得出其对称轴.【解答】解:抛物线y=x2的对称轴是直线y轴或(x=0).故答案为:y轴或(x=0).【点评】此题主要考查了二次函数的性质,正确掌握简单二次函数的图象是解题关键.13.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.14.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,哥哥为B,姐姐为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的哥哥相邻的概率是=,故答案为:.【点评】此题考查的是用树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15.【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长是16π,列出方程求解即可求得半径,然后利用勾股定理求得高即可.【解答】解:半径为24cm、圆心角为120°的扇形弧长是:=16π,设圆锥的底面半径是r,则2πr=16π,解得:r=8cm.所以帽子的高为=16故答案为:16.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16.【分析】方程有解时△≥0,把a、b、c的值代入计算即可.【解答】解:依题意得:△=12﹣4×1×(﹣m)≥0.解得m≥﹣.故答案是:m≥﹣.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.【分析】设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,根据矩形的面积公式结合草坪部分的总面积为112m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,依题意,得:(16﹣x)(9﹣2x)=112.整理,得:2x2﹣41x+32=0.故答案为:2x2﹣41x+32=0.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.18.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性得出y=1的自变量x 的值即可.【解答】解:∵x=0,x=2的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=1,∵x=﹣1时,y=1,∴x=3时,y=1,根据表格得,自变量x<1时,函数值逐点减小,当x=1时,达到最小,当x>1时,函数值逐点增大,∴抛物线的开口向上,∴y﹣1>0成立的x取值范围是x<﹣1或x>3,故答案为:x<﹣1或x>3.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.此题也可以确定出抛物线的解析式,再解不等式或利用函数图形来确定.三、解答题:(7个小题,共78分)19.【分析】(1)直接利用十字相乘法分解因式解方程即可;(2)直接利用配方法将原式变形,进而解方程即可.【解答】解:(1)x2﹣2x﹣48=0(x+6)(x﹣8)=0,解得:x1=﹣6,x2=8;(2)2x2﹣4x=﹣1(x2﹣2x)=﹣(x﹣1)2=,则x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题主要考查了十字相乘法、配方法解方程,正确分解因式是解题关键.20.【分析】(1)利用点平移规律写出平移后的顶点坐标为(3,﹣2),然后利用顶点式写出抛物线y2的解析式;(2)通过解方程2(x﹣3)2﹣2=0得y2与x轴的交点坐标;(3)利用函数图象写出抛物线在x轴上方对应的自变量的范围即可.【解答】解:(1)平移后的抛物线y2的解析式为y2=2(x﹣3)2﹣2;(2)当y2=0时,2(x﹣3)2﹣2=0,解得x1=2,x2=4,所以y2与x轴的交点坐标为(2,0),(4,0);(3)当2<x<4时,y2<0.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【分析】(1)由点A及其对应点A1的位置得出平移方向和距离,再将点B和点C分别按此方式平移得出其对应点,继而首尾顺次连接即可得;(2)由旋转的性质作出变换后的对应点,再首尾顺次连接即可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C1即为所求,其中A2的坐标为(﹣1,1)、B2的坐标为(1,﹣1);(3)△A2B2C1的面积为2×4﹣×2×2﹣×1×2﹣×1×4=3.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质,并据此得出变换后的对应点.22.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)所有等可能结果中,满足吃一个汤圆,吃到黑芝麻馅的结果只有1种,∴吃到黑芝麻馅的概率为;(2)列表如下:由表知,共有30种等可能结果,2个都是草莓馅的结果有12种,所以都是草莓馅的概率是.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.【解答】解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的半径为3.【点评】本题主要考查切线的判定与圆周角定理、直角三角形的性质及勾股定理,熟练掌握切线的判定与圆周角定理是解题的关键.24.【分析】设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合售价不能超过进价的200%即可确定x的值,此题得解.【解答】解:设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,依题意,得:(x﹣3)(500﹣10×)=800,整理,得:x2﹣12x+35=0,解得:x1=5,x2=7.∵售价不能超过进价的200%,∴x≤3×200%,即x≤6,∴x=5.答:每千克桔子的定价为5元时,每天的利润为800元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【解答】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得解得∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入解得∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±,∵x>0∴x=1+.∴P(1+,﹣2)【点评】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P的横坐标.。
上册 期末复习强化训练卷1(一元二次方程)-2020-2021学年苏科版九年级数学上学期(机构)
期末复习强化训练卷1(一元二次方程)-苏科版九年级数学一、选择题1、方程||(2)4310m m x x m ++++=是关于的一元二次方程,则( )A .2m =±B .2m =C .2m =-D .2m ≠±2、下列关于x 的方程:①ax 2+bx +c =0;②2x +21x-3=0;③x 2﹣4+x 5=0;④3x =x 2.其中是一元二次方程的有( )A .1个B .2个C .3个D .4个3、已知m 是方程2210x x --=的一个根,则代数式2242019m m -+的值为( )A .2022B .2021C .2020D .20194、如果0是关于x 的一元二次方程(a +3)x 2﹣x +a 2﹣9=0的一个根,那么a 的值是( ) A .3 B .﹣3 C .±3 D .±25、方程2(5)6(5)x x x -=-的根是( )A .5x =B .5x =-C .15x =-,23x =D .15x =,23x =6、关于x 的一元二次方程x 2+(k ﹣3)x +1﹣k =0根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定7、等腰三角形的一边长是3,另两边的长是关于x 的方程x 2﹣4x +k =0的两个根,则k 的值为( )A .3B .4C .3或4D .78、若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2+αβ的值为( )A .10B .9C .7D .59、直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( )A .0个B .1个C .2个D .1个或2个10、某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x 元,则可列方程为( )A .(40)(60010)10000x x +-=B .(40)(60010)10000x x ++=C .[60010(40)]10000x x --=D .[60010(40)]10000x x +-=11、近年来天府新区加大了对教育经费的投入,2017年投入3000万元,2019年投入4320万元.假设投入教育经费的年平均增长率为x ,根据题意列方程,则下列方程正确的是( )A .3000x 2=4320B .3000(1+x ) 2=4320C .3000(1+x %)2=4320D .3000(1+x )+3000(1+x ) 2=432012、方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1,则方程a (x +m +2)2+b =0的解是( ) A .x 1=﹣2,x 2=1 B .x 1=﹣4,x 2=﹣1C .x 1=0,x 2=3D .x 1=x 2=﹣2二、填空题13、若关于x 的方程(1-a )12+a x -7=0是一元二次方程,则a = .14、关于x 的一元二次方程(m ﹣1)x 2+5x +m 2﹣3m +2=0的常数项是0,则m 的值( )A .1B .1或2C .2D .±115、已知关于x 的方程x 2+6x +k =0有一根为2,则k 的值为 .16、已知x 为实数,且满足(2x 2+3)2+2(2x 2+3)﹣15=0,则2x 2+3的值为 .17、若关于x 的一元二次方程(k ﹣1)x 2﹣x ﹣1=0有两个不相等实数根,则k 的取值范围是 . 18、已知周长为40的矩形的长和宽分别是关于x 的一元二次方程x 2﹣mx +9=0的两个实数根,则m 的值为 .19、已知m 、n 是方程210x x +-=的根,则式子22m m n mn ++-= 1 .20、已知关于x 的一元二次方程2250x x c -+=有两个相等的实数根,则c = .21、已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.若2111x x +=﹣1, 则k 的值为_____.22、一个三角形的两边长分别为2和3,第三边长是方程210210x x -+=的根,则三角形的周长为 . 23、在实数范围内定义一种运算“*”,其规则为a *b =a 2﹣b 2,根据这个规则,方程(x +2)*5=0的解为_____. 24、准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面 积为80平方米,则小路的宽度为 米.三、解答题25、用指定的方法解下列方程:(1)24(1)360x --=(直接开平方法) (2)22510x x -+= (配方法)(3)(1)(2)4x x +-=(公式法) (4)2(1)(1)0x x x +-+=(因式分解法)(5)2x 2﹣5x ﹣4=0(配方法); (6)3(x ﹣2)+x 2﹣2x =0(因式分解法)26、关于x 的一元二次方程为22(2)0x x m m --+=(1)求证:无论m 为何实数,方程总有实数根;(2)m 为何整数时,此方程的两个根都为正数.27、已知m ,n 是一元二次方程x 2﹣3x ﹣10=0两个实数根,求:(1)(m ﹣1)(n ﹣1);(2)m 2+3n ﹣5的值.28、已知关于x 的一元二次方程x 2﹣4x ﹣2k +8=0有两个实数根x 1,x 2.(1)求k 的取值范围;(2)若x 13x 2+x 1x 23=24,求k 的值.29、2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?30、某医疗设备工厂生产的呼吸机一月份产量为80台,一月底因突然爆发新冠肺炎疫情,市场对呼吸机需求量大增,为满足市场需求,工厂决定从二月份起持续扩大产能,一、二、三月总产量为560台.(1)求呼吸机产量的月平均增长率;(2)按照这个月平均增长率,求五月份产量为多少台?31、有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.32、某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价.据测算,每箱每降价1元,平均每天可多售出20箱.(1)若每箱降价3元,每天销售该饮料可获利多少元?(2)若要使每天销售该饮料获利1400元,则每箱应降价多少元?(3)能否使每天销售该饮料获利达到1500元?若能,请求出每箱应降价多少元;若不能,请说明理由.33、某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?34、如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,点P,Q之间的距离为cm?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s 的速度移动,P,Q同时出发,几秒后,△PBQ的面积为1cm2?期末复习强化训练卷1(一元二次方程)-苏科版九年级数学(答案)一、选择题1、方程||(2)4310m m x x m ++++=是关于x 的一元二次方程,则( ) A .2m =±B .2m =C .2m =-D .2m ≠± 【答案】解:由题意得:|m |=2且m +2≠0,由解得得m =±2且m ≠﹣2,∴m =2.故选:B .2、下列关于x 的方程:①ax 2+bx +c =0;②2x +21x -3=0;③x 2﹣4+x 5=0;④3x =x 2.其中是一元二次方程的有( A )A .1个B .2个C .3个D .4个3、已知m 是方程2210x x --=的一个根,则代数式2242019m m -+的值为( )A .2022B .2021C .2020D .2019【答案】解:∵m 是方程x 2﹣2x ﹣1=0的一个根,∴m 2﹣2m ﹣1=0,∴m 2﹣2m =1,∴2m 2﹣4m +2019=2(m 2﹣2m )+2019=2×1+2019=2021. 故选:B .4、如果0是关于x 的一元二次方程(a +3)x 2﹣x +a 2﹣9=0的一个根,那么a 的值是( ) A .3 B .﹣3 C .±3 D .±2解:把x =0代入一元二次方程(a +3)x 2﹣x +a 2﹣9=0得a 2﹣9=0,解得a 1=﹣3,a 2=3,而a +3≠0,所以a 的值为3.故选:A .5、方程2(5)6(5)x x x -=-的根是( )A .5x =B .5x =-C .15x =-,23x =D .15x =,23x =解:2(5)6(5)0x x x ---=,(5)(26)0x x ∴--=,则50x -=或260x -=,解得5x =或3x =,故选:D .6、关于x 的一元二次方程x 2+(k ﹣3)x +1﹣k =0根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定【答案】解:△=(k ﹣3)2﹣4(1﹣k )=k 2﹣6k +9﹣4+4k =k 2﹣2k +5=(k ﹣1)2+4,∴(k ﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A .7、等腰三角形的一边长是3,另两边的长是关于x 的方程x 2﹣4x +k =0的两个根,则k 的值为()A .3B .4C .3或4D .7【答案】解:当3为腰长时,将x =3代入x 2﹣4x +k =0,得:32﹣4×3+k =0,解得:k =3,当k =3时,原方程为x 2﹣4x +3=0,解得:x 1=1,x 2=3,∵1+3=4,4>3,∴k =3符合题意;当3为底边长时,关于x 的方程x 2﹣4x +k =0有两个相等的实数根,∴△=(﹣4)2﹣4×1×k =0,解得:k =4,当k =4时,原方程为x 2﹣4x +4=0,解得:x 1=x 2=2,∵2+2=4,4>3,∴k =4符合题意.∴k 的值为3或4.故选:C .8、若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2+αβ的值为( )A .10B .9C .7D .5【答案】解:根据题意得α+β=2,αβ=﹣3,所以α2+β2+αβ=(α+β)2﹣αβ=22﹣(﹣3)=7.故选:C .9、直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( )A .0个B .1个C .2个D .1个或2个 解:直线y x a =+不经过第二象限,∴a ≤0,当0a =时,关于x 的方程2210ax x ++=是一次方程,解为12x =-, 当0a <时,关于x 的方程2210ax x ++=是二次方程,△2240a =->,∴方程有两个不相等的实数根.故选:D .10、某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x 元,则可列方程为( )A .(40)(60010)10000x x +-=B .(40)(60010)10000x x ++=C .[60010(40)]10000x x --=D .[60010(40)]10000x x +-=解:售价上涨x 元后,该商场平均每月可售出(60010)x -个台灯,依题意,得:(40)(60010)10000x x +-=,故选:A .11、近年来天府新区加大了对教育经费的投入,2017年投入3000万元,2019年投入4320万元.假设投入教育经费的年平均增长率为x ,根据题意列方程,则下列方程正确的是(B )A .3000x 2=4320B .3000(1+x ) 2=4320C .3000(1+x %)2=4320D .3000(1+x )+3000(1+x ) 2=432012、方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1,则方程a (x +m +2)2+b =0的解是( )A .x 1=﹣2,x 2=1B .x 1=﹣4,x 2=﹣1C .x 1=0,x 2=3D .x 1=x 2=﹣2解:∵方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1,∴方程a (x +m +2)2+b =0的两个解是x 3=﹣2﹣2=﹣4,x 4=1﹣2=﹣1,故选:B .二、填空题13、若关于x 的方程(1-a )12+a x -7=0是一元二次方程,则a = .【答案】解:∵关于x 的方程(a ﹣1)xa 2+1﹣7=0是一元二次方程,∴a 2+1=2,且a ﹣1≠0,解得,a =﹣1.故答案为:﹣1.14、关于x 的一元二次方程(m ﹣1)x 2+5x +m 2﹣3m +2=0的常数项是0,则m 的值( )A .1B .1或2C .2D .±1【答案】解:由题意,得m 2﹣3m +2=0且m ﹣1≠0,解得m =2,故选:C .15、已知关于x 的方程x 2+6x +k =0有一根为2,则k 的值为 .解:根据题意知,x =2满足关于x 的方程x 2+6x +k =0,则22+6×2+k =0,解得k =﹣16. 故答案是:﹣16.16、已知x 为实数,且满足(2x 2+3)2+2(2x 2+3)﹣15=0,则2x 2+3的值为 .解:设2x 2+3=t ,且t ≥3,∴原方程化为:t 2+2t ﹣15=0,∴t =3或t =﹣5(舍去),∴2x 2+3=3,故答案为:317、若关于x 的一元二次方程(k ﹣1)x 2﹣x ﹣1=0有两个不相等实数根,则k 的取值范围是 . 解:根据题意得:△=b 2﹣4ac =1+4(k ﹣1)=4k ﹣3>0,且k ﹣1≠0,解得:k >且k ≠1.故答案为:k >且k ≠1.18、已知周长为40的矩形的长和宽分别是关于x 的一元二次方程x 2﹣mx +9=0的两个实数根,则m 的值为 .解:周长为40的矩形的长和宽的和为40÷2=20,∵矩形的长和宽是一元二次方程x 2﹣mx +9=0的两个实数根,∴m =20.故答案为:20.19、已知m 、n 是方程210x x +-=的根,则式子22m m n mn ++-= 1 . 解:m 是方程210x x +-=的根,210m m ∴+-=,即21m m +=,221m m n mn m n mn ∴++-=+-+,m 、n 是方程210x x +-=的根,21m m ∴+=,1m n +=-,1mn =-,222()1111m m n mn m m m n mn ∴++-=+++-=-+=. 故答案为:1.20、已知关于x 的一元二次方程2250x x c -+=有两个相等的实数根,则c = .解:根据题意得△2(5)420c =--⨯⨯=,解得258c =.故答案为:258.21、已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.若2111x x +=﹣1, 则k 的值为__3___.22、一个三角形的两边长分别为2和3,第三边长是方程210210x x -+=的根,则三角形的周长为 .解:210210x x -+=,(3)(7)0x x --=,30x -=或70x -=,所以13x =,27x =,2357+=<,∴三角形第三边长为3,∴三角形的周长为2338++=.故答案为8.23、在实数范围内定义一种运算“*”,其规则为a *b =a 2﹣b 2,根据这个规则,方程(x +2)*5=0的解为_3或-7____.24、准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面 积为80平方米,则小路的宽度为 米.解:设小路的宽度为x 米,则小正方形的边长为4x 米,依题意得:(304244)80x x x +++=整理得:2427400x x +-=解得18x =-(舍去),254x =. 故答案为:54.三、解答题25、用指定的方法解下列方程:(1)24(1)360x --=(直接开平方法) (2)22510x x -+= (配方法)(3)(1)(2)4x x +-=(公式法) (4)2(1)(1)0x x x +-+=(因式分解法)(5)2x 2﹣5x ﹣4=0(配方法); (6)3(x ﹣2)+x 2﹣2x =0(因式分解法)【答案】解:(1)方程变形得:(x ﹣1)2=9,开方得:x ﹣1=3或x ﹣1=﹣3,解得:x 1=4,x 2=﹣2;(2)方程变形得:x 2﹣x =﹣,配方得:x 2﹣x +=(x ﹣)2=, 开方得:x ﹣=±, 则x 1=,x 2=; (3)方程整理得:x 2﹣x ﹣6=0,这里a =1,b =﹣1,c =﹣6,∵△=1+24=25,∴x =, 则x 1=3,x 2=﹣2;(4)分解因式得:(x +1)(2﹣x )=0,解得:x 1=﹣1,x 2=2.(5)2x 2﹣5x ﹣4=0,变形得:x 2x =2, 配方得:x 2x ,即(x )2,开方得:x ±,则x 1,x 2;(6)3(x ﹣2)+x 2﹣2x =0,变形得:3(x ﹣2)+x (x ﹣2)=0,即(x ﹣2)(x +3)=0,可得x ﹣2=0或x +3=0,解得:x 1=2,x 2=﹣3.26、关于x 的一元二次方程为22(2)0x x m m --+=(1)求证:无论m 为何实数,方程总有实数根;(2)m 为何整数时,此方程的两个根都为正数.【答案】(1)证明:△=(﹣2)2﹣4×[﹣m (m +2)]=4m 2+8m +4=4(m +1)2,∵4(m +1)2≥0,∴△≥0,∴无论m 为何实数,方程总有实数根;(2)解:x ==1±(m +1),所以x 1=m +2,x 2=﹣m ,根据题意得m +2>0且﹣m >0,所以﹣2<m <0,所以整数m 为﹣1.27、已知m ,n 是一元二次方程x 2﹣3x ﹣10=0两个实数根,求:(1)(m ﹣1)(n ﹣1);(2)m 2+3n ﹣5的值.解:∵m ,n 是方程x 2﹣3x ﹣10=0,∴根据一元二次方程根与系数的关系得:m +n =3,mn =﹣10.(1)(m ﹣1)x (n ﹣1)=mn ﹣(m +n )+1=﹣10﹣3+1=﹣12;(2)由m ,n 是一元二次方程x 2﹣3x ﹣10=0两个实数根,得m 2﹣3m ﹣5=0,则m 2﹣3m =5.故m 2+3n ﹣5=m 2﹣3m +3(m +n )﹣5=5+3×3﹣5=9;28、已知关于x 的一元二次方程x 2﹣4x ﹣2k +8=0有两个实数根x 1,x 2.(1)求k 的取值范围;(2)若x 13x 2+x 1x 23=24,求k 的值.【答案】解:(1)由题意可知,△=(﹣4)2﹣4×1×(﹣2k +8)≥0,整理得:16+8k﹣32≥0,解得:k≥2,∴k的取值范围是:k≥2.故答案为:k≥2.(2)由题意得:=24,由韦达定理可知:x1+x2=4,x1x2=﹣2k+8,故有:(﹣2k+8)[42﹣2(﹣2k+8)]=24,整理得:k2﹣4k+3=0,解得:k1=3,k2=1,又由(1)中可知k≥2,∴k的值为k=3.故答案为:k=3.29、2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?【答案】解:(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(1+x)=169,解得:x1=12,x2=﹣14(不合题意,舍去).答:每轮传染中平均每个人传染了12个人.(2)169×(1+12)=2197(人).答:按照这样的传染速度,第三轮传染后,共有2197人患病.30、某医疗设备工厂生产的呼吸机一月份产量为80台,一月底因突然爆发新冠肺炎疫情,市场对呼吸机需求量大增,为满足市场需求,工厂决定从二月份起持续扩大产能,一、二、三月总产量为560台.(1)求呼吸机产量的月平均增长率;(2)按照这个月平均增长率,求五月份产量为多少台?解:(1)设呼吸机产量的月平均增长率为x,根据题意,得80+80(1+x)+80(1+x)2=560,解得x1=﹣4(舍去),x2=1=100%,答:呼吸机产量的月平均增长率为100%.(2)80×(1+1)4=1120(台).答:五月份产量为为1120台.31、有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.【答案】解:(1)由题意得:y=x(30﹣3x),即y=﹣3x2+30x.(2)当y=63时,﹣3x2+30x=63.解此方程得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去;∴当AB的长为7m时,花圃的面积为63m2.(3)不能围成面积为72m2的花圃.理由如下:如果y=72,那么﹣3x2+30x=72,整理,得x2﹣10x+24=0,解此方程得x1=4,x2=6,当x=4时,30﹣3x=18,不合题意舍去;当x=6时,30﹣3x=12,不合题意舍去;故不能围成面积为72m2的花圃.32、某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价.据测算,每箱每降价1元,平均每天可多售出20箱.(1)若每箱降价3元,每天销售该饮料可获利多少元?(2)若要使每天销售该饮料获利1400元,则每箱应降价多少元?(3)能否使每天销售该饮料获利达到1500元?若能,请求出每箱应降价多少元;若不能,请说明理由.解:设每箱饮料降价x元,商场日销售量(10020)x+箱,每箱饮料盈利(12)x-元;(1)依题意得:(123)(100203)1440-+⨯=(元)答:每箱降价3元,每天销售该饮料可获利1440元;(2)要使每天销售饮料获利1400元,依据题意列方程得,(12)(10020)1400x x-+=,整理得27100x x-+=,解得12x=,25x=;为了多销售,增加利润,5x∴=,答:每箱应降价5元,可使每天销售饮料获利1400元.(3)不能,理由如下:要使每天销售饮料获利1500元,依据题意列方程得,(12)(10020)1500x x-+=,整理得27150x x-+=,因为△4960110=-=-<,所以该方程无实数根,即不能使每天销售该饮料获利达到1500元.33、某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?【答案】解:(1)设甲种商品的进价是x元,乙种商品的进价是y元,依题意有,解得.故甲种商品的进价是16元,乙种商品的进价是14元;(2)依题意有:(400﹣10a×7)(4+a)+(300﹣10a×8)(14×2﹣11﹣14+a)=2500,整理,得150a2﹣180a=0,解得a1=,a2=0(舍去).故当a为时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.34、如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,点P,Q之间的距离为cm?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s 的速度移动,P,Q同时出发,几秒后,△PBQ的面积为1cm2?【答案】解:(1)设经过x 秒,点P ,Q 之间的距离为cm ,则AP =x (cm ),QB =2x (cm ),∵AB =6cm ,BC =8cm ∴PB =(6﹣x )(cm ),∵在△ABC 中,∠B =90°,∴由勾股定理得:(6﹣x )2+(2x )2=6化简得:5x 2﹣12x +30=0∵△=(﹣12)2﹣4×5×30=144﹣600<0∴点P ,Q 之间的距离不可能为cm .(2)设经过x 秒,使△PBQ 的面积等于8cm 2,由题意得:21(6﹣x )•2x =8 解得:x 1=2,x 2=4, 检验发现x 1,x 2均符合题意∴经过2秒或4秒,△PBQ 的面积等于8cm 2.(3)①点P 在线段AB 上,点Q 在线段CB 上设经过m 秒,0<m ≤4,依题意有21(6﹣m )(8﹣2m )=1,∴m 2﹣10m +23=0 解得;m 1=5(舍),m 2=5, ∴m =5符合题意; ②点P 在线段AB 上,点Q 在射线CB 上设经过n 秒,4<n ≤6,依题意有21(6﹣n )(2n ﹣8)=1,∴n 2﹣10n +25=0 解得n 1=n 2=5, ∴n =5符合题意;③点P 在射线AB 上,点Q 在射线CB 上设经过k 秒,k >6,依题意有21(k ﹣6)(2k ﹣8)=1 解得k 1=5,k 2=5(舍), ∴k =5符合题意; ∴经过(5)秒,5秒,(5)秒后,△PBQ 的面积为1cm 2.。
2019年苏科版九年级上册期末专题:第二章对称图形-圆(有答案)
苏科版九年级数学上册期末专题:第二章对称图形-圆一、单选题(共10题;共30分)1.如图,A、B、C是⊙O上的三点,∠ACB=30°,则∠AOB等于( )A. 75°B. 60°C. 45°D. 30°2.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A. 24°B. 28°C. 33°D. 48°3.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A. 100°B. 110°C. 120°D. 130°4.如图,△ABC内接于⊙O,点P是上任意一点(不与A,C重合),∠ABC=55°,则∠POC的取值范围是()A. 0<<55°B. 55°<<110°C. 0<<110°D. 0<<180°5.如图,△ABC的顶点A,B,C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A. 70°B. 60°C. 45°D. 30°6.如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=2,那么∠AOB等于()A. 90°B. 100°C. 110°D. 120°7.一个钢管放在V形架内,下是其截面图,O为钢管的圆心.如果钢管的半径为25 cm,∠MPN = 60°,则OP 的长为A. 50 cmB. 25cmC. cmD. cm8.⊙O的半径为5,同一平面内有一点P,且OP=7,则P与⊙O的位置关系是()A. P在圆内B. P在圆上C. P在圆外D. 无法确定9.己知正六边形的边长为2,则它的内切圆的半径为()A. 1B.C. 2D. 210.如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是()A. 70°B. 40°C. 50°D. 20°二、填空题(共10题;共30分)11.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是________.12.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于________.13.(2017•淮安)如图,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为4:3:5,则∠D的度数是________°.14.如图所示,经过B(2,0)、C(6,0)两点的⊙H与y轴的负半轴相切于点A,双曲线y= 经圆心H,则反比例函数的解析式为________.15.如图,⊙O的内接四边形ABCD中,∠BOD=100°,则∠BCD=________.16.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是________ 度.17.已知的半径为,,则点与的位置关系是点在________.18.⊙O的半径为5,弦BC=8,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为________.19.如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积为________ cm2(不考虑接缝等因素,计算结果用π表示).20.如图,AB是半圆O的直径,点C在半圆O上,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是________.三、解答题(共8题;共60分)21.已知排水管的截面为如图所示的⊙O,半径为10,圆心O到水面的距离是6,求水面宽AB.22.如图,⊙O的半径OC⊥AB,D为上一点,DE⊥OC,DF⊥AB,垂足分别为E、F,EF=3,求直径AB的长.23.如图所示,在△ABC中,CE,BD分别是AB,AC边上的高,求证:B,C,D,E四点在同一个圆上.24.如图,已知⊙O中直径AB与弦AC的夹角为30°,过点C作⊙O的切线交AB的延长线于点D,OD=30cm.求直径AB的长.25.如图,AD=CB,求证:AB=CD.26.如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.27.如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120°,点E在上.(1)求∠E的度数;(2)连接OD、OE,当∠DOE=90°时,AE恰好为⊙O的内接正n边形的一边,求n的值28.如图,I是△ABC的内心,AI的延长线交边BC于点D,交△ABC的外接圆于点E.(1)BE与IE相等吗?请说明理由.(2)连接BI,CI,CE,若∠BED=∠CED=60°,猜想四边形BECI是何种特殊四边形,并证明你的猜想.答案解析部分一、单选题1.【答案】B2.【答案】A3.【答案】B4.【答案】C5.【答案】B6.【答案】D7.【答案】A8.【答案】C9.【答案】B10.【答案】D二、填空题11.【答案】1012.【答案】613.【答案】12014.【答案】﹣815.【答案】130°16.【答案】15017.【答案】外18.【答案】2或819.【答案】300π20.【答案】﹣2≤BE<3三、解答题21.【答案】解:如图,过O点作OC⊥AB,连接OB,根据垂径定理得出AB=2BC,再根据勾股定理求出BC===8,从而求得AB=2BC=2×8=16.22.【答案】解:∵OC⊥AB,DE⊥OC,DF⊥AB,∴四边形OFDE是矩形,∴OD=EF=3,∴AB=623.【答案】证明:如图所示,取BC的中点F,连接DF,EF.∵BD,CE是△ABC的高,∴△BCD和△BCE都是直角三角形.∴DF,EF分别为Rt△BCD和Rt△BCE斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D四点在以F点为圆心,BC为半径的圆上.24.【答案】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=30°,∴∠BOC=60°,又∵CD为⊙的切线,∴∠OCD=90°,∴∠D=30°,∴在Rt△OCD中,OC= OD=15cm,∴AB=2OC=30cm25.【答案】证明:∵同弧所对对圆周角相等,∴∠A=∠C,∠D=∠B.在△ADE和△CBE中,∠∠,∠∠∴△ADE≌△CBE(ASA).∴AE=CE,DE=BE,∴AE+BE=CE+DE,即AB=CD.26.【答案】解;(1)证明:连接OD,如图1所示:∵OD=OC,∴∠DCB=∠ODC,又∠DOB为△COD的外角,∴∠DOB=∠DCB+∠ODC=2∠DCB,又∵∠A=2∠DCB,∴∠A=∠DOB,∵∠ACB=90°,∴∠A+∠B=90°,∴∠DOB+∠B=90°,∴∠BDO=90°,∴OD⊥AB,又∵D在⊙O上,∴AB是⊙O的切线;(2)解法一:过点O作OM⊥CD于点M,如图1,∵OD=OE=BE=BO,∠BDO=90°,∴∠B=30°,∴∠DOB=60°,∵OD=OC,∴∠DCB=∠ODC,又∵∠DOB为△ODC的外角,∴∠DOB=∠DCB+∠ODC=2∠DCB,∴∠DCB=30°,∵在Rt△OCM中,∠DCB=30°,OM=1,∴OC=2OM=2,∴OD=2,BO=BE+OE=2OE=4,∴在Rt△BDO中,根据勾股定理得:BD=;解法二:过点O作OM⊥CD于点M,连接DE,如图2,∵OM⊥CD,∴CM=DM,又O为EC的中点,∴OM为△DCE的中位线,且OM=1,∴DE=2OM=2,∵在Rt△OCM中,∠DCB=30°,OM=1,∴OC=2OM=2,∵Rt△BDO中,OE=BE,∴DE=BO,∴BO=BE+OE=2OE=4,∴OD=OE=2,在Rt△BDO中,根据勾股定理得BD=.27.【答案】解:(1)连接BD,∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠C=180°,∵∠C=120°,∴∠BAD=60°,∵AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,∵四边形ABDE是⊙O的内接四边形,∴∠AED+∠ABD=180°,∴∠AED=120°;(2)连接OA,∵∠ABD=60°,∴∠AOD=2∠ABD=120°,∵∠DOE=90°,∴∠AOE=∠AOD﹣∠DOE=30°,∴n=°=12.°28.【答案】证明:(1)如图1,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4,∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴IE=BE.(2)四边形BECI是菱形,如图2∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE,∵I是△ABC的内心,∴∠4=∠ABC=30°,∠ICD=∠30°,∴∠4=∠ICD,∴BI=IC,由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.。
2019年苏科版九年级数学上册期末综合检测试卷(有答案)
苏科版九年级数学上册期末专题:期末综合检测试题一、单选题(共10题;共30分)1.一元二次方程的解()A. B.C. D.2.在九年级体育中考中,某校某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):44,45,42,48,46,43,47,45.则这组数据的极差为()A. 2 B . 4 C.6 D.83.一元二次方程的二项系数、一次项系数及常数项分别是()A. ,,B. 2 , 5 ,4 C. 2 ,−5 ,−4 D. 2 ,−5 , 44.若四边形ABCD是⊙O的内接四边形,且∠A︰∠B︰∠C=1︰3︰8,则∠D的度数是( )A. 10°B. 30°C. 80°D. 1 0°5.学生经常玩手机游戏会影响学习和生活,某校调查了20名同学某一周玩手机游戏的次数,调查结果如表所示,那么这20名同学玩手机游戏的平均数为()A. 5B.5.5 C.6 D. 6 .56.将方程化的形式,m和n分别是()A. 1,3B. -1,3C. 1,4 D. -1,47.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同。
若从中任意摸出一个球,则下列叙述正确的是()A. 摸到红球是必然事件 B. 摸到白球是不可能事件C. 摸到红球与摸到白球的可能性相同D. 摸到红球比摸到白球的可能性大8.在围棋盒中有颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为1,则原盒里有白色棋子()A. 1颗B. 2颗C. 3颗 D. 4颗9.正六边形的内切圆与外接圆面积之比是()A. 3B.3 C. 1D. 110.以下说法中,①如果一组数据的标准差等于零,则这组中的每个数据都相等;②分别用一组数据中的每一个数减去平均数,再将所得的差相加.若和为零,则标准差为零;③在一组数据中去掉一个等于平均数的数,这组数据的平均数不变;④在一组数据中去掉一个等于平均数的数,这组数据的标准差不变,其中正确的有()A. 1个B. 2个C. 3个 D. 4个二、填空题(共10题;共30分)11.圆锥底面半径为,母线长为10 ,则圆锥的侧面积为________cm2.12.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是S甲2=1.2,S乙2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定的________. (填“甲或乙”)13.(2017•荆门)已知方程2+5+1=0的两个实数根分别为1、2,则12+22=________.14.方程2-3-10=0的根为1=5,2=-2.此结论是:________的.15.已知⊙O的半径为3cm,圆心O到直线l的距离是4cm,则直线l与⊙O的位置关系是________ .16.经研究发现,若一人患上甲型流感,经过两轮传染后,共有144人患上流感,按这样的传染速度,若3人患上流感,则第一轮传染后患流感的人数共有________ 人.17.已知关于的方程2-(a+b)+ab-1=0,1,2是此方程的两个实数根,现给出三个结论:①1≠2;②12<ab;③ <2+b2.则正确结论的序号是________(填序号).18.如图,△ABC为⊙O的内接三角形,O为圆心,OD⊥AB,•垂足为D,OE⊥AC,垂足为E,若DE=3,则BC=________.19.某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为4608元/台,则平均每次降价的百分率为________%。
2019年苏科版九年级数学上册期末综合检测试卷(有答案)
苏科版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的白菜价格进行调查.四个城市5个月白菜的平均值均为3.50元,方差分别为S甲2=18.3,S乙2=17.4,S丙2=20.1,S丁2=12.5.一至五月份白菜价格最稳定的城市是()A. 甲B. 乙C. 丙D. 丁2.已知圆锥的底面半径为6,母线长为8,圆锥的侧面积为()A. 60B. 48C. 60πD. 48π3.体育课上,九年级2名学生各练习10次立定跳远,要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生立定跳远成绩的( )A. 平均数B. 众数C. 中位数D. 方差4.若关于的方程式2﹣+a=0有实根,则a的值可以是( )A. 2B. 1C. 0.5D. 0.255.从1,2,3,4这四个数字中任意取出两个不同的数字,取出的两个数字的乘积是偶数的概率为()A. B. C. D.6.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为( )A.3 cmB.6cmC.8cmD.9 cm7.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差1的概率是()A. B. C. D.8.已知方程2+1=2,那么下列叙述正确的是()A. 有一个实根B. 有两个不相等的实根C. 有两个相等的实根D. 无解9.某校九年级(1)班50名学生中有20名团员,他们都积极报名参加成都市“文明劝导活动”。
根据要求,该班从团员中随机抽取1名参加,则该班团员小亮被抽到的概率是()A. B. C. D.10.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:)A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时二、填空题(共10题;共30分)11.方程-4+c=0有两个不相等的实数根,则c的取值范围是________.12.在一个不透明的口袋中,装有4个红球和6个白球,除顔色不同外其余都相同,从口袋中任意摸一个球摸到的是红球的概率为________.13.圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角等于________.14.一元二次方程的一项系数是________。
江苏省常州市九年级上期末数学试卷(含答案)(2019级)
2019-2020学年江苏省常州市九年级(上)期末数学试卷一、选择题(共8小题,每小题2分,满分16分)1.(2分)美美专卖店专营某品牌的衬衫,店主对上一周不同尺码的衬衫销售情况统计如下:)A.平均数B.众数C.方差D.中位数2.(2分)如图,是小明的练习,则他的得分是()A.0分B.2分 C.4分 D.6分3.(2分)如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3 B.1:4 C.1:5 D.1:94.(2分)在△ABC中,∠C=90°,AC=1,BC=2,则cosA的值是()A.B.C.D.5.(2分)已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为()A.36πcm2B.48πcm2C.60πcm2D.80πcm26.(2分)已知关于x的方程x2+x﹣a=0的一个根为2,则另一个根是()A.﹣3 B.﹣2 C.3 D.67.(2分)半径为r的圆的内接正三角形的边长是()A.2r B.C.D.8.(2分)如图,在△ABC中,∠B=60°,BA=3,BC=5,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.二、填空题(共8小题,每小题2分,满分16分)9.(2分)tan60°=.10.(2分)已知,则xy= .11.(2分)一组数据6,2,﹣1,5的极差为.12.(2分)如图,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率是.13.(2分)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C= °.14.(2分)某超市今年l月份的销售额是2万元,3月份的销售额是2.88万元,从1月份到3月份,该超市销售额平均每月的增长率是.15.(2分)如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正确的结论有.16.(2分)如图,在平面直角坐标系中,点A、B的坐标分别是(0,2)、(4,0),点P是直线y=2x+2上的一动点,当以P为圆心,PO为半径的圆与△AOB的一条边所在直线相切时,点P的坐标为.三、解答题(共9小题,满分68分)17.(8分)(1)解方程:x(x+3)=﹣2;(2)计算:sin45°+3cos60°﹣4tan45°.18.(8分)体育老师对九年级甲、乙两个班级各10名女生“立定跳远”项目进行了检测,两班成绩如下:甲班13 11 10 12 11 13 13 12 13 12乙班12 13 13 13 11 13 6 13 13 13(1)分别计算两个班女生“立定跳远”项目的平均成绩;(2)哪个班的成绩比较整齐?19.(8分)校园歌手大赛中甲乙丙3名学生进入了决赛,组委会决定通过抽签确定表演顺序.(1)求甲第一个出场的概率;(2)求甲比乙先出场的概率.20.(6分)如图,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上△ABC和△DEF 相似吗?为什么?21.(6分)已知关于x的方程(x﹣1)(x﹣4)=k2,k是实数.(1)求证:方程有两个不相等的实数根:(2)当k的值取时,方程有整数解.(直接写出3个k的值)22.(6分)如图,为了测得旗杆AB的高度,小明在D处用高为1m的测角仪CD,测得旗杆顶点A的仰角为45°,再向旗杆方向前进10m,又测得旗杆顶点A的仰角为60°,求旗杆AB的高度.23.(8分)如图,在等腰Rt△ABC中,∠C=90°,AC=4,矩形DEFG的顶点D、G分别在AC、BC上,边EF在AB上.(1)求证:△AED∽△DCG;(2)若矩形DEFG的面积为4,求AE的长.24.(8分)如图,AB为⊙O的直径,点E在⊙O,C为的中点,过点C作直线CD⊥AE于D,连接AC、BC.(1)试判断直线CD与⊙O的位置关系,并说明理由(2)若AD=2,AC=,求⊙O的半径.25.(10分)如图,平面直角坐标系中有4个点:A(0,2),B(﹣2,﹣2),C(﹣2,2),D (3,3).(1)在正方形网格中画出△ABC的外接圆⊙M,圆心M的坐标是;(2)若EF是⊙M的一条长为4的弦,点G为弦EF的中点,求DG的最大值;(3)点P在直线MB上,若⊙M上存在一点Q,使得P、Q两点间距离小于1,直接写出点P 横坐标的取值范围.2019-2020学年江苏省常州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.(2分)美美专卖店专营某品牌的衬衫,店主对上一周不同尺码的衬衫销售情况统计如下:)A.平均数B.众数C.方差D.中位数【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:B.2.(2分)如图,是小明的练习,则他的得分是()A.0分B.2分 C.4分 D.6分【解答】解:(1)x2=1,∴x=±1,∴方程x2=1的解为±1,所以(1)错误;(2)sin30°=0.5,所以(2)正确;(3)等圆的半径相等,所以(3)正确;这三道题,小亮答对2道,得分:2×2=(4分).故选:C.3.(2分)如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3 B.1:4 C.1:5 D.1:9【解答】解:∵OB=3OB′,∴,∵以点O为位似中心,将△ABC缩小后得到△A′B′C′,∴△A′B′C′∽△ABC,∴=.∴=,故选:D.4.(2分)在△ABC中,∠C=90°,AC=1,BC=2,则cosA的值是()A.B.C.D.【解答】解:在Rt△ACB中,∠C=90°,AC=1,BC=2,∴AB===,∴cosA===,故选:C.5.(2分)已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为()A.36πcm2B.48πcm2C.60πcm2D.80πcm2【解答】解:由勾股定理得:圆锥的母线长==10,∵圆锥的底面周长为2πr=2π×6=12π,∴圆锥的侧面展开扇形的弧长为12π,∴圆锥的侧面积为:×12π×10=60π.故选:C.6.(2分)已知关于x的方程x2+x﹣a=0的一个根为2,则另一个根是()A.﹣3 B.﹣2 C.3 D.6【解答】解:设方程的另一个根为t,根据题意得2+t=﹣1,解得t=﹣3,即方程的另一个根是﹣3.故选:A.7.(2分)半径为r的圆的内接正三角形的边长是()A.2r B.C.D.【解答】解:如图所示,OB=OA=r;,∵△ABC是正三角形,由于正三角形的中心就是圆的圆心,且正三角形三线合一,所以BO是∠ABC的平分线;∠OBD=60°×=30°,BD=r•cos30°=r•;根据垂径定理,BC=2×r=r.故选:B.8.(2分)如图,在△ABC中,∠B=60°,BA=3,BC=5,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.【解答】解:A.阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B.阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C.两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D.两三角形的对应边不成比例,故两三角形不相似,故本选项正确.故选:D.二、填空题(共8小题,每小题2分,满分16分)9.(2分)tan60°=.【解答】解:tan60°的值为.故答案为:.10.(2分)已知,则xy= 6 .【解答】解:∵=,∴xy=6.故答案为:6.11.(2分)一组数据6,2,﹣1,5的极差为7 .【解答】解:极差=6﹣(﹣1)=7.故答案为7.12.(2分)如图,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率是.【解答】解:指针停止后指向图中阴影的概率是:=;故答案为:.13.(2分)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C= 58 °.【解答】解:如图,连接OB,∵OA=OB,∴△AOB是等腰三角形,∴∠OAB=∠OBA,∵∠OAB=32°,∴∠OAB=∠OBA=32°,∴∠AOB=116°,∴∠C=58°.故答案为58.14.(2分)某超市今年l 月份的销售额是2万元,3月份的销售额是2.88万元,从1月份到3月份,该超市销售额平均每月的增长率是 20% .【解答】解:设该超市销售额平均每月的增长率为x ,则二月份销售额为2(1+x )万元,三月份销售额为2(1+x )2万元,根据题意得:2(1+x )2=2.88,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去).答:该超市销售额平均每月的增长率是20%.故答案为:20%.15.(2分)如图,在Rt △ABC 中,∠A=90°,AD ⊥BC ,垂足为D .给出下列四个结论:①sinα=sinB;②sinβ=sinC;③sinB=cosC ;④sinα=cosβ.其中正确的结论有 ①②③④ .【解答】解:∵∠A=90°,AD ⊥BC ,∴∠α+∠β=90°,∠B+∠β=90°,∠B+∠C=90°,∴∠α=∠B ,∠β=∠C ,∴sinα=sinB,故①正确;sinβ=sinC,故②正确;∵在Rt △ABC 中sinB=,cosC=,∴sinB=cosC ,故③正确;∵sinα=sinB,cos ∠β=cosC,∴sinα=cos∠β,故④正确;故答案为①②③④.16.(2分)如图,在平面直角坐标系中,点A 、B 的坐标分别是(0,2)、(4,0),点P 是直线y=2x+2上的一动点,当以P 为圆心,PO 为半径的圆与△AOB 的一条边所在直线相切时,点P的坐标为(0,2),(﹣1,0),(﹣,1).【解答】解:∵点A、B的坐标分别是(0,2)、(4,0),∴直线AB的解析式为y=﹣x+2,∵点P是直线y=2x+2上的一动点,∴两直线互相垂直,即PA⊥AB,且C(﹣1,0),当圆P与边AB相切时,PA=PO,∴PA=PC,即P为AC的中点,∴P(﹣,1);当圆P与边AO相切时,PO⊥AO,即P点在x轴上,∴P点与C重合,坐标为(﹣1,0);当圆P与边BO相切时,PO⊥BO,即P点在y轴上,∴P点与A重合,坐标为(0,2);故符合条件的P点坐标为(0,2),(﹣1,0),(﹣,1),故答案为(0,2),(﹣1,0),(﹣,1).三、解答题(共9小题,满分68分)17.(8分)(1)解方程:x(x+3)=﹣2;(2)计算:sin45°+3cos60°﹣4tan45°.【解答】解:(1)方程整理,得x2+3x+2=0,因式分解,得(x+2)(x+1)=0,于是,得x+2=0,x+1=0,解得x 1=﹣2,x 2=﹣1;(2)原式=×+3×﹣4×1=1+1.5﹣4=﹣1.5.18.(8分)体育老师对九年级甲、乙两个班级各10名女生“立定跳远”项目进行了检测,两班成绩如下:甲班 13 11 10 12 11 13 13 12 13 12乙班 12 13 13 13 11 13 6 13 13 13(1)分别计算两个班女生“立定跳远”项目的平均成绩;(2)哪个班的成绩比较整齐?【解答】解:(1)=(13+11+10+12+11+13+13+12+13+12)=12(分),=(12+13+13+13+11+13+6+13+13+13)=12(分).故两个班女生“立定跳远”项目的平均成绩均为12分;(2)S 甲2=×[4×(13﹣12)2+3×(12﹣12)2+2×(11﹣12)2+(10﹣12)2]=1.2,S 乙2=×[7×(13﹣12)2+(12﹣12)2+(11﹣12)2+(6﹣12)2]=4.4,∵S 甲2<S 乙2,∴甲班的成绩比较整齐.19.(8分)校园歌手大赛中甲乙丙3名学生进入了决赛,组委会决定通过抽签确定表演顺序.(1)求甲第一个出场的概率;(2)求甲比乙先出场的概率.【解答】解:(1)∵甲、乙、丙三位学生进入决赛,∴P (甲第一位出场)=;(2)画出树状图得:∵共有6种等可能的结果,甲比乙先出场的有3种情况,∴P==.(甲比乙先出场)20.(6分)如图,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上△ABC和△DEF 相似吗?为什么?【解答】解:△ABC和△DEF相似.理由如下:由勾股定理,得AB=2,AC=2,BC=2,DE=,DF=,EF=2,∵=,==,==,∴===,∴△ABC∽△DEF.21.(6分)已知关于x的方程(x﹣1)(x﹣4)=k2,k是实数.(1)求证:方程有两个不相等的实数根:(2)当k的值取﹣2、0、2 时,方程有整数解.(直接写出3个k的值)【解答】(1)证明:原方程可变形为x2﹣5x+4﹣k2=0.∵△=(﹣5)2﹣4×1×(4﹣k2)=4k2+9>0,∴不论k为任何实数,方程总有两个不相等的实数根;(2)解:原方程可化为x2﹣5x+4﹣k2=0.∵方程有整数解,∴x=为整数,∴k取0,2,﹣2时,方程有整数解.22.(6分)如图,为了测得旗杆AB的高度,小明在D处用高为1m的测角仪CD,测得旗杆顶点A的仰角为45°,再向旗杆方向前进10m,又测得旗杆顶点A的仰角为60°,求旗杆AB 的高度.【解答】解:设AG=x.在Rt△AFG中,∵tan∠AFG=,∴FG=,在Rt△ACG中,∵∠GCA=45°,∴CG=AG=x,∵DE=10,∴x﹣=10,解得:x=15+5,∴AB=15+5+1=16+5.答:电视塔的高度AB约为(16+5)米.23.(8分)如图,在等腰Rt△ABC中,∠C=90°,AC=4,矩形DEFG的顶点D、G分别在AC、BC上,边EF在AB上.(1)求证:△AED∽△DCG;(2)若矩形DEFG的面积为4,求AE的长.【解答】(1)证明:∵△ABC是等腰直角三角形,∠C=90°,∴∠B=∠A=45°,∵四边形DEFG是正方形,∴∠AED=∠DEF=90°,DG∥AB,∴∠CDG=∠A,∵∠C=90°,∴∠AED=∠C,∴△AED∽△DCG;(2)解:设AE的长为x,∵等腰Rt△ABC中,∠C=90°,AC=4,∴∠A=∠B=45°,AB=4,∵矩形DEFG的面积为4,∴DE•FE=4,∠AED=∠DEF=∠BFG=90°,∴BF=FG=DE=AE=x,∴EF=4﹣2x ,即x (4﹣2x )=4,解得x1=x 2=.∴AE 的长为.24.(8分)如图,AB 为⊙O 的直径,点E 在⊙O ,C 为的中点,过点C 作直线CD ⊥AE 于D ,连接AC 、BC .(1)试判断直线CD 与⊙O 的位置关系,并说明理由(2)若AD=2,AC=,求⊙O 的半径.【解答】解:(1)相切,连接OC ,∵C 为的中点,∴∠1=∠2,∵OA=OC ,∴∠1=∠ACO ,∴∠2=∠ACO ,∴AD ∥OC ,∵CD ⊥AD ,∴OC ⊥CD ,∴直线CD 与⊙O 相切;(2)连接CE ,∵AD=2,AC=,∵∠ADC=90°,∴CD==,∵CD 是⊙O 的切线,∴CD2=AD•DE,∴DE=1,∴CE==,∵C为的中点,∴BC=CE=,∵AB为⊙O的直径,∴∠ACB=90°,∴AB==3.∴⊙O的半径为1.5.25.(10分)如图,平面直角坐标系中有4个点:A(0,2),B(﹣2,﹣2),C(﹣2,2),D (3,3).(1)在正方形网格中画出△ABC的外接圆⊙M,圆心M的坐标是(﹣1,0);(2)若EF是⊙M的一条长为4的弦,点G为弦EF的中点,求DG的最大值;(3)点P在直线MB上,若⊙M上存在一点Q,使得P、Q两点间距离小于1,直接写出点P 横坐标的取值范围.【解答】解:(1)如图所示;M(﹣1,0);故答案为(﹣1,0).(2)连接MD,MG,ME,∵点G为弦EF的中点,EM=FM=,∴MG⊥EF,∵EF=4,∴EG=FG=2,∴MG=1,∴点G在以M为圆心,1为半径的圆上,∴当点G在线段DM延长线上时DG最大,此时DG=DM+GM,∵DM==5,∴DG的最大值为5+1=6;(3)设P点的横坐标为x,当P点位于线段MB及延长线上且P、Q两点间距离等于1,时,=,∴=或=|=2+或2﹣,解得|xp∵此时P点在第三象限,∴x<0,∴x=﹣2﹣或﹣2+,即当P、Q两点间距离小于1时点P横坐标的取值范围为﹣2﹣<x<﹣2+;|,当P点位于线段BM及延长线上且P、Q两点间距离等于1时,则PQ:AM=|x|:|xM=,解得|x|=,∵此时P点在第一或二象限,∴x=±,即当P、Q两点间距离小于1时点P横坐标的取值范围为﹣<x;综上所述,点P横坐标的取值范围为﹣<x或﹣2﹣<x<﹣2+;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版九年级数学上册期末综合检测试卷
一、单选题(共10题;共30分)
1.在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的白菜价格进行调查.四个城市5个月白菜的平均值均为3.50元,方差分别为S甲2=18.3,S乙2=17.4,S丙2=20.1,S丁2=1
2.5.一至五月份白菜价格最稳定的城市是()
A. 甲
B. 乙
C. 丙
D. 丁
2.已知圆锥的底面半径为6,母线长为8,圆锥的侧面积为()
A. 60
B. 48
C. 60π
D. 48π
3.体育课上,九年级2名学生各练习10次立定跳远,要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生立定跳远成绩的( )
A. 平均数
B. 众数
C. 中位数
D. 方差
4.若关于的方程式2﹣+a=0有实根,则a的值可以是( )
A. 2
B. 1
C. 0.5
D. 0.25
5.从1,2,3,4这四个数字中任意取出两个不同的数字,取出的两个数字的乘积是偶数的概率为()
A. B. C. D.
6.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为( )
A.3 cm
B.6cm
C.8cm
D.9 cm
7.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差1的概率是()
A. B. C. D.
8.已知方程2+1=2,那么下列叙述正确的是()
A. 有一个实根
B. 有两个不相等的实根
C. 有两个相等的实根
D. 无解
9.某校九年级(1)班50名学生中有20名团员,他们都积极报名参加成都市“文明劝导活动”。
根据要求,该班从团员中随机抽取1名参加,则该班团员小亮被抽到的概率是()
A. B. C. D.
10.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:
)
A. 6.2小时
B. 6.4小时
C. 6.5小时
D. 7小时
二、填空题(共10题;共30分)
11.方程-4+c=0有两个不相等的实数根,则c的取值范围是________.
12.在一个不透明的口袋中,装有4个红球和6个白球,除顔色不同外其余都相同,从口袋中任意摸一个球摸到的是红球的概率为________.
13.圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角等于________.
14.一元二次方程的一项系数是________。
15.通用公司生产的09款科鲁兹家庭轿车的车轮直径560mm,当车轮转动120度时,车中的乘客水平方向平移了________ mm
16.(2015•铁岭)已知关于的方程2﹣2+a=0有两个实数根,则实数a的取值范围是 ________.
17.在⊙O中,已知=2,那么线段AB与2AC的大小关系是________ .(从“<”或“=”或“>”中选择)
18.方程2+1=﹣2无实根,则________
19.设1,2是一元二次方程2+5﹣3=0的两根,且21(22+62﹣3)+a=4,则a=________.
20.如图,△ABC内接于⊙O,半径为5,BC=6,CD⊥AB于D点,则tan∠ACD的值为________.
三、解答题(共8题;共60分)
21.解方程2+6+9=2
22.我市一家电子计算器专卖店每只进价13元,售价20元,为了扩大销售,该店现规定,凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元。
问一次卖多少只获得的利润为120元?
23.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.
24.现有小莉,小罗,小强三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所抽血的血型均为O型的概率.(要求:用列表或画树状图的方法解答)
25.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度数;
(2)求证:AE是⊙O的切线;
(3)当BC=4时,求劣弧AC的长.
26.2017年12月6日,我县举行了2018年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,共有多少家公司参加了这次会议?
27.如图,以△ABC的边BC为直径的⊙O交AC于点D,过点D作⊙O的切线交AB于点E.(1)如图1,若∠ABC=90°,求证:OE∥AC;
(2)如图2,已知AB=AC,若sin∠ADE=,求tanA的值.
28.阅读下面的材料,回答问题:
解方程4﹣52+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设2=y,那么4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.
当y=1时,2=1,∴=±1;当y=4时,2=4,∴=±2;
∴原方程有四个根:1=1,2=﹣1,3=2,4=﹣2.
(1)在由原方程得到方程①的过程中,利用什么法达到降次的目的,体现了数学的转化思想.(2)解方程:(2+3)2+5(2+3)﹣6=0.
答案解析部分
一、单选题
1.【答案】D
2.【答案】D
3.【答案】D
4.【答案】D
5.【答案】C
6.【答案】A
7.【答案】D
8.【答案】C
9.【答案】D
10.【答案】B
二、填空题
11.【答案】c<4
12.【答案】
13.【答案】180°
14.【答案】-4
15.【答案】π
16.【答案】a≤1
17.【答案】<
18.【答案】>﹣
19.【答案】10
20.【答案】
三、解答题
21.【答案】解:由已知,得:(+3)2=2
直接开平方,得:+3=±
即+3= ,+3=-
所以,方程的两根1=-3+ ,2=-3-
22.【答案】解:设一次卖只,所获得的利润为120元,根据题意得:[20-13-0.1(-10)]=120
解之得:
=20或=60(舍去)。
(因为最多降价到16元,所以60舍去。
)答:一次卖20只时利润可达到120元。
23.【答案】解:∵OE⊥弦CD于点F,CD为8米,EF为2米,
∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5.
答:弧CD所在⊙O的半径DO为5m.
24.【答案】解:
共有9种情况,两次都为O型的有4种情况,所以概率是.
25.【答案】(1)解:∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°.
(2)证明:∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠BAC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,
即BA⊥AE,∴AE是⊙O的切线.
(3)解:如图,连接OC.
∵OB=OC,∠ABC=60°,
∴△OBC是等边三角形,
∴OB=BC=4,∠BOC=60°,
∴∠AOC=120°.
∴弧AC的长度为=π=π.
26.【答案】解:设有家公司参加了交流会,依题意可列方程:
(﹣1)=28×2
解得:1=8,2=﹣7(不合题意,舍去)
答:有8家公司参加了这次会议
27.【答案】解(1)证明:连结OD,如图1,
∵DE为⊙O的切线,
∴OD⊥DE,
∴∠ODE=90°,
在Rt△OBE和Rt△ODE中,
∴Rt△OBE≌Rt△ODE,
∴∠1=∠2,
∵OC=OD,
∴∠3=∠C,
而∠1+∠2=∠C+∠3,
∴∠2=∠C,
∴OE∥AC;
(2)解:连结OD,作OF⊥CD于F,DH⊥OC于H,如图2,∵AB=AC,OC=OD,
而∠ACB=∠OCD,
∴∠A=∠COD,
∵DE为⊙O的切线,
∴OD⊥DE,
∴∠ODE=90°,
∴∠ADE+∠ODF=90°,
而∠DOF+∠ODF=90°,
∴∠ADE=∠DOF,
∴sin∠DOF=sin∠ADE=,
在Rt△DOF中,sin∠DOF==,
设DF=,则OD=3,
∴OF==2,DF=CF=,OC=3,
∵DH•OC=OF•CD,
∴DH==,
在RtODH中,OH==,
∴tan∠DOH===
∴tan∠A=.
28.【答案】解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了转化的数学思想.
故答案是:换元;
(2)设2+3=y,原方程可化为y2+5y﹣6=0,
解得y1=1,y2=﹣6.
由2+3=1,得1=,2=.
由2+3=﹣6,得方程2+3+6=0,
△=9﹣4×6=﹣15<0,此方程无解.
所以原方程的解为1=1=,2=.。