2016年春季新版苏科版九年级数学下学期6.4、探索三角形相似的条件导学案2

合集下载

苏科版数学九年级下册6.4《探索三角形相似的条件》教学设计5)

苏科版数学九年级下册6.4《探索三角形相似的条件》教学设计5)

苏科版数学九年级下册6.4《探索三角形相似的条件》教学设计5)一. 教材分析《苏科版数学九年级下册6.4《探索三角形相似的条件》》这一节主要让学生通过实验、探究、归纳等方法,了解三角形相似的判定方法,培养学生的动手操作能力、逻辑思维能力和归纳总结能力。

教材通过生活实例引入相似三角形的概念,让学生从实际问题中发现数学问题,进而引导学生通过实验探究三角形相似的条件,最后通过归纳总结,得出判定三角形相似的方法。

二. 学情分析学生在学习这一节内容时,已经掌握了三角形的基本概念和性质,具有一定的观察、操作和思考能力。

但对于三角形相似的判定方法,学生可能还较为陌生,因此需要通过实验、探究等活动,让学生直观地感受相似三角形的性质,从而理解并掌握相似三角形的判定方法。

三. 教学目标1.让学生通过实验、探究等活动,了解三角形相似的概念,掌握三角形相似的判定方法。

2.培养学生动手操作能力、观察能力、逻辑思维能力和归纳总结能力。

3.让学生能够运用相似三角形的性质解决实际问题。

四. 教学重难点1.重点:三角形相似的概念,三角形相似的判定方法。

2.难点:三角形相似的判定方法的灵活运用。

五. 教学方法1.实验法:让学生通过实际操作,观察和体验相似三角形的性质。

2.探究法:引导学生通过合作交流,探讨和发现三角形相似的判定方法。

3.归纳法:让学生通过总结归纳,得出判定三角形相似的方法。

4.讲解法:教师对相似三角形的性质和判定方法进行讲解,帮助学生理解和掌握。

六. 教学准备1.教具:三角板、量角器、直尺、彩笔等。

2.学具:每个学生准备一套三角板、量角器、直尺等。

3.教学课件:制作课件,展示相似三角形的图片和实验过程。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的图片,如建筑物的侧面、桥梁等,引导学生观察并提问:“这些图形有什么共同的特点?”让学生思考并回答,从而引出相似三角形的概念。

2.呈现(10分钟)教师通过课件展示几种不同的三角形,如等边三角形、等腰三角形等,并提问:“这些三角形之间有什么关系?”让学生观察并回答。

苏科版数学九年级下册6.4《探索三角形相似的条》教学设计2

苏科版数学九年级下册6.4《探索三角形相似的条》教学设计2

苏科版数学九年级下册6.4《探索三角形相似的条》教学设计2一. 教材分析本节课为人教版数学九年级下册第六章《相似三角形》的第四节内容,主要引导学生探索三角形相似的判定方法。

在学习了三角形相似的定义和性质之后,本节课通过具体的例子,让学生掌握三角形相似的判定方法,并能够运用这些方法解决实际问题。

教材中提供了丰富的例题和练习题,有助于学生巩固所学知识。

二. 学情分析学生在学习本节课之前,已经掌握了相似图形的概念,对三角形相似的性质有所了解。

但由于三角形相似的判定方法较为抽象,学生可能难以理解和运用。

因此,在教学过程中,教师需要通过具体例子,引导学生理解和掌握三角形相似的判定方法,并能够灵活运用。

三. 教学目标1.知识与技能:让学生掌握三角形相似的判定方法,能够判断两个三角形是否相似;2.过程与方法:通过探索和交流,培养学生的合作意识和解决问题的能力;3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探究、积极思考的精神。

四. 教学重难点1.重点:三角形相似的判定方法;2.难点:如何灵活运用三角形相似的判定方法解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索和思考;2.通过小组合作、讨论交流,培养学生的合作意识和解决问题的能力;3.利用多媒体辅助教学,直观展示三角形相似的判定过程;4.注重练习,让学生在实践中巩固所学知识。

六. 教学准备1.准备相关教学课件和教学素材;2.安排学生提前预习教材,了解三角形相似的定义和性质;3.准备一些实际问题,用于巩固和拓展所学知识。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的相似三角形现象,引导学生回顾相似图形的概念,为新课的学习做好铺垫。

2.呈现(10分钟)介绍三角形相似的判定方法,引导学生通过观察和思考,发现三角形相似的判定规律。

3.操练(10分钟)根据三角形相似的判定方法,让学生判断一些给定的三角形是否相似。

教师引导学生运用所学知识,解决实际问题。

初中数学九年级下册苏科版6.4探索三角形相似的条件教学设计

初中数学九年级下册苏科版6.4探索三角形相似的条件教学设计
8.拓展延伸,培养兴趣
引导学生探索相似三角形在其他领域的应用,如摄影、艺术、建筑等。通过拓展延伸,培养学生的数学兴趣和创新能力。
四、教学内容与过程
(一)导入新课,500字
在导入新课环节,教师首先向学生展示一组生活中的相似图形,如同一张照片放大前后的对比、建筑图纸的缩放等。通过这些实例,引导学生观察并思考相似图形在实际生活中的应用。接着,教师提出问题:“同学们,你们知道这些图形之间有什么共同特征吗?它们之间存在着怎样的关系?”激发学生的好奇心,为新课的学习做好铺垫。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握相似三角形的判定条件(AA、SAS、SSS),能够准确判断两个三角形是否相似。
2.学会运用相似三角形的性质进行几何证明,解决实际问题。
3.培养学生的几何直观和逻辑推理能力,提高解题技巧。
(二)教学设想
1.创设情境,导入新课
通过展示生活中常见的相似图形,如照片放大缩小、建筑设计等,让学生感受相似三角形的应用价值,激发学生学习兴趣。
3.小组合作,探讨相似三角形在其他领域的应用,例如艺术、摄影、建筑等。每组完成一份报告,内容包括相似三角形的应用场景、判定条件、性质及解题方法等。报告要求图文并茂,条理清晰。
4.根据课堂学习,结合自己的学习体会,撰写一篇关于相似三角形判定和性质的学习心得,字数不限。要求学生从自己的角度出发,阐述对相似三角形的认识,以及在解题过程中的困惑和收获。
(五)总结归纳,500字
在总结归纳环节,教师首先引导学生回顾本节课所学的内容,包括相似三角形的判定条件、性质以及应用。通过提问、讨论等形式,让学生自主总结相似三角形的判定方法和解题技巧。
接着,教师对学生的总结进行补充和概括,强调相似三角形在实际生活中的应用价值,以及它在几何证明中的重要作用。最后,教师布置课后作业,要求学生在课后进一步巩固所学知识,为下一节课的学习做好准备。

苏科版数学九年级下册6.4《探索三角形相似的条件》说课稿

苏科版数学九年级下册6.4《探索三角形相似的条件》说课稿

苏科版数学九年级下册6.4《探索三角形相似的条件》说课稿一. 教材分析苏科版数学九年级下册6.4《探索三角形相似的条件》这一节主要让学生理解并掌握三角形相似的判定方法。

在学习了相似图形的性质和判定方法之后,学生能够通过观察、操作、推理等过程,探索并证明两个三角形相似的条件。

教材通过丰富的素材,引导学生积极参与,培养学生的几何思维能力和推理能力。

二. 学情分析九年级的学生已经学习了相似图形的概念,对图形的相似性有一定的认识。

但是,对于三角形相似的判定方法,他们可能还比较陌生。

因此,在教学过程中,我需要从学生的实际出发,通过引导他们观察、操作、推理,帮助他们理解和掌握三角形相似的条件。

三. 说教学目标1.知识与技能目标:使学生理解三角形相似的概念,掌握三角形相似的判定方法。

2.过程与方法目标:培养学生观察、操作、推理的能力,提高他们的几何思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们积极参与、合作交流的良好学习习惯。

四. 说教学重难点1.教学重点:三角形相似的概念,三角形相似的判定方法。

2.教学难点:三角形相似的判定方法的灵活运用,能够通过观察、操作、推理等过程,探索并证明两个三角形相似的条件。

五. 说教学方法与手段1.教学方法:采用问题驱动法、启发式教学法、合作交流法等,引导学生积极参与,培养他们的几何思维能力。

2.教学手段:利用多媒体课件、几何画板等教学辅助工具,直观展示三角形相似的判定过程,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过复习相似图形的性质,引导学生自然过渡到三角形相似的概念。

2.新课讲解:讲解三角形相似的概念,引导学生通过观察、操作、推理,探索并证明三角形相似的条件。

3.案例分析:分析一些具体的例子,让学生运用三角形相似的判定方法,巩固所学知识。

4.练习与拓展:布置一些练习题,让学生独立完成,检测他们对三角形相似的判定方法的掌握程度。

5.总结:对本节课的内容进行总结,强调三角形相似的判定方法的重要性和应用。

苏科版九年级下册6.4探索三角形相似的条件(2)教案.doc

苏科版九年级下册6.4探索三角形相似的条件(2)教案.doc

1B'A'C'BACD FE 6.4 探索三角形相似的条件(2)(教案)【明标】会用两角分别相等来判定两个三角形相似. 【探标】1.判定两个三角形全等有哪些方法?2.如果要判定两个三角形是不是相似,是否一定需要一一验证所有的对应角和对应边的关系?3.我们学过哪种判定三角形相似的方法?探究一、求证△ABC ∽△A ′B ′C ′三角形相似的条件:___________________________________的两个三角形相似.几何语言:在△ABC 与△A ′B ′C ′中 ∵∠B= ,∠A= ∴△ABC ∽△A ′B ′C ′ 二、典例研究例1.如图,在△ABC 中,DE ∥BC ,EF ∥AB.求证:△ADE ∽△EFC例2.如图,∠BAD=∠CAE ,∠B=∠D ,B ACBDE2BACD (1)△ABC 与△ADE 相似吗?为什么?(2)如果AB=2AD,BC=4,那么DE 的长应为多少?例3.如图,在矩形中,点分别在边上,若BE ⊥EF,求证:.【达标】1.判断下列说法是否正确?并说明理由. (1)所有的等腰三角形都相似. ( ) (2)所有的等腰直角三角形都相似.( ) (3)所有的等边三角形都相似. ( ) (4)所有的直角三角形都相似. ( )(5)有一个角是100 °的两个等腰三角形都相似.( ) (6)有一个角是70 °的两个等腰三角形都相似.( )2.如图,在△ABC 中BD ⊥AC , AE ⊥BC ,图中一定和△BDC 相似的三角形有几个? 它们分别是哪些三角形?3.如图,在△ABC 中,D 是AB 边上一点,且∠ACD =∠B 求证:(1)△ACD ∽△ABC (2)AC 2=AD AB6.4探索三角形相似的条件(2)(学案)ABCD E F 、AD DC 、ABE DEF △∽△O E3班级__________姓名一、选择题1.具备下列各组条件的两个三角形中,不一定相似的是 ( )A .有一个角是40°的两个等腰三角形B .两个等腰直角三角形C .有一个角为100°的两个等腰三角形D .两个等边三角形2.如图,在□ABCD 中,点E 在边BC 的延长线上,连接AE 交CD 于点F .图中的相似三角形有( )A .1对B .2对C .3对D .4对3.如图,在△ABC 中,∠BAC =90°,D 是BC 的中点,AE ⊥AD 交CB 的延长线于点E .下列结论正确的是 ( ) A .△AED ∽△ACB B .△AEB ∽△ACD C .△BAE ∽△ACE D .△AEC ∽△DAC 二、填空题4.(1)已知:在△ABC 中,∠A =40°,∠ABC =75°,下图各三角形中与△ABC 相似的是___________. (2)如图,锐角三角形ABC 的边AB 、AC 上的高CE 和BF 相交于点D .请写出图中的两对相似三角形:______________________________(用相似符号连接).三、解答题5.如图,在△ABC 中,AB =AC ,∠A =36°,BD 是∠ABC 的平分线. △ABC 与△BDC 相似吗?请说明理由.6.如图,Rt △ABC 中,CD 是斜边AB 上的高,(1)求证:△ABC ∽△ACD ,AC 2=AD ·AB ;D E F H G KP Q M 第4(1)题 65° 40° 65° 75° 40° 70° AB C DEF第4(2)题ABCDA B C D F E 第2题 A B D E 第3题C CBDA4(2)类似地,你还可以得到哪些结论?7.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,∠ADE =∠C , (1)求证:△AED ∽△ABC(2)若AB =6,AC =4,AD =4.8,求AE 长8.如图,在△ABC 中,∠1=∠2=∠3,求证:△ABC ∽△DEF.9.如图所示,正方形ABCD 的顶点A 在等腰直角三角形DEF 的斜边EF 上,EF 与BC 相交于点G ,连接CF .(1)求证:△DAE ≌△DCF ; (2)求证:△ABG ∽△CFG . (3)若正方形的边长为4,点G 是BC 的中点,求CF 的长.ACBDFE25 1 436。

苏科版数学九年级下册6.4《探索三角形相似的条件》教学设计4)

苏科版数学九年级下册6.4《探索三角形相似的条件》教学设计4)

苏科版数学九年级下册6.4《探索三角形相似的条件》教学设计4)一. 教材分析苏科版数学九年级下册6.4《探索三角形相似的条件》是本节课的主要内容。

本节课通过探究三角形相似的条件,让学生进一步理解相似三角形的性质,并能运用相似三角形的知识解决实际问题。

教材从生活实例出发,引出相似三角形的概念,然后通过大量的图形和实例,引导学生探究相似三角形的性质,最后通过练习,巩固所学知识。

二. 学情分析学生在学习本节课之前,已经学习了三角形的有关知识,如三角形的性质、三角形的分类等,对这些知识有一定的了解。

同时,学生也已经学习了相似图形的知识,对相似图形有一定的认识。

但是,学生对相似三角形的性质和判定方法可能还不够熟悉,需要通过本节课的学习来进一步掌握。

三. 教学目标1.了解相似三角形的概念,掌握相似三角形的性质。

2.能够运用相似三角形的知识解决实际问题。

3.培养学生的观察能力、动手能力和思维能力。

四. 教学重难点1.相似三角形的概念和性质。

2.运用相似三角形的知识解决实际问题。

五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等,引导学生通过观察、操作、思考、讨论等方式,探究相似三角形的性质,提高学生的学习兴趣和积极性。

六. 教学准备1.准备相关的图形和实例。

2.准备教学课件和教学素材。

3.准备练习题和拓展题。

七. 教学过程1.导入(5分钟)通过展示一些生活中的相似三角形,如姐妹俩的帽子、飞机模型等,引导学生观察并思考:这些图形有什么共同的特点?从而引出相似三角形的概念。

2.呈现(10分钟)利用课件展示相似三角形的性质,如对应边成比例、对应角相等等,并通过实例进行解释和演示。

同时,引导学生思考:如何判断两个三角形相似?3.操练(10分钟)学生分组进行合作学习,每组发放一些相似三角形的图形和工具,让学生通过观察、操作,判断哪些三角形是相似的,并说明理由。

4.巩固(10分钟)学生独立完成一些相似三角形的练习题,教师及时进行讲解和指导,帮助学生巩固所学知识。

新苏科版九年级数学下册《6章 图形的相似 6.4 探索三角形相似的条件 综合》教案_19

新苏科版九年级数学下册《6章 图形的相似  6.4 探索三角形相似的条件  综合》教案_19

相似三角形的判定(复习课)【教学目标】1、知识与技能:通过学习,学生进一步巩固了“三角形相似的判定定理”,并学会应用这些定理解决数学问题;引导学生认识基本图形,学会从复杂图形中分理出基本图形,能分析出其中的基本元素及其对应关系。

2、过程与方法:在解决问题过程,学生感受形成图形运动变化的思想,能用运动变化的观点看问题,感受数形结合思想,分类讨论思想等数学思想方法。

3、情感、态度与价值观:学生通过独立思考与合作交流,提高学习相似三角形知识的兴趣和积极性,通过相互协作去尝试解决问题,树立学习的自信心,从解决问题中体验数学价值。

【教学重点与难点】重点:利用相似三角形的判定定理,学会从复杂图形中分理出基本图形,能分析出其中的基本元素及其关系,能由基本图形的性质导出复杂图形的性质。

难点:学生形成图形运动变化的思想,用运动变化的观点看问题,巩固本章节的数形结合思想,分类讨论思想等数学思想方法。

引导学生站在方法论的高度思考数学问题,解决数学问题。

【学情分析】本堂课是放在刚刚学完相似判定的5种方法后的一堂复习课,对于前期判定学习的一个总结。

【教学过程】一、知识回顾判定两个三角形相似,学习了哪些方法?要求学生结合图形思考.BBDB【设计意图】通过让学生对知识进行回顾和梳理,将旧知提取并强化记忆,弥补了遗忘点。

二、热身练习1.如图1,已知点P时AB上一点,连接CP,要使△ACP∽△ABC,只需添加条件____________________________________.2.如图2,点D在△ABC内,连接BD并延长到E,连接AD、AE,若AB BC ACAD DE AE==,∠BAD=20°,则∠EAC=_________.3.如图3,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,则图中相似的三角形有______________________________.【设计意图】通过本组练习,让学生体会到了这些判定方法在常见图形中的应用,对学习知识自行梳理,为下面的研究问题做铺垫。

苏科版九年级数学下册 探索三角形相似的条件2教案

苏科版九年级数学下册 探索三角形相似的条件2教案

《探索三角形相似的条件》教案1教学目标知识与技能1.探索两个三角形相似的条件(2),掌握用“如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似”的判定方法来判定两个三角形相似.2.能运用这个判定条件解决相关问题. 数学思考与问题解决类比全等三角形的条件(SAS ),经历猜想结论、画图探究、多种方法验证(度量和推理),由此探究得到相似三角形的判定定理,在此基础上进一步了解类似于判定三角形全等没有“边边角”,相似三角形的判定方法中也没有“边边角”.情感与态度1.通过与相似多边形和三角形全等的条件类比,渗透类比的数学思想.2.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步培养学生猜想经验,激发学生探索知识的兴趣.重点难点重点掌握如果两个三角形的两组对边对应成比例,并且夹角相等,那么这两个三角形相似的判定定理,会运用判定定理判定两个三角形相似.难点1.探究三角形相似的条件.2.运用三角形相似的判定定理解决问题.教学设计一、情境引入类比全等三角形的条件(SAS ),如果一个三角形的两条边与另一个三角形的两条边对应边的比相等,并且相应的夹角相等,那么这两个三角形一定相似吗?如下图,若满足以下条件:2AB ACA B A C =='''', ∠A =∠A ′,请比较∠B 与∠B ′,∠C 与∠C ′的大小,试判断△ABC 与△A ′B ′C ′相似吗?教师出示投影,让学生通过类比展开联想,猜想得出结论,引人新课. 二、自主探究 (一)探究发现利用刻度尺和量角器画△ABC 和△A ′B ′C ′,使∠A =∠A ′,AB A B ''和ACA C ''都等于给定的值k ,量出它们的第三组对应边BC 和B ′C ′的长,它们的比等于k 吗?另外两组对应角∠B 与∠B ′,∠C 与∠C ′是否相等?教师提出画图要求,巡视,给予个别指导.改变∠A 或k 值的大小,再试一试,是否有同样的结论?结论:如果两个三角形的两组对应边成比例,并且夹角相等,那么这两个三角形相似.这个判定定理的几何格式为:AB ACk A B A C=='''',∠A =∠A ′. △ABC ∽△A ′B ′C ′.教师根据学生讨论情况,适时给予引导:度量第三组对应边的长,它们的比等于A 吗?另外两组对应角相等吗?论证结论:(与“两角法”相类似)已知:如下图△ABC 和△A ′B ′C ′中,∠A =∠A ′,AB ACA B A C =''''. 求证:△ABC ∽△A ′B ′C ′.教师引导学生改变∠A 或是的大小再试试. 教师要求学生独立完成定理的证明. (二)思考对于△ABC 和△A ′B ′C ′,如果AB ACA B A C ='''',∠B =∠B ′,这两个三角形一定相似吗?试着画画看.教师要求学生独立思考,再进行小组交流,寻找问题的答案,并集中展示反例.教师引导:类比全等三角形中SSA 条件下的三角形的不确定性. (三)讨论在△ABC 和△A ′B ′C ′中,∠B =∠B ′,要使△ABC ∽△A ′B ′C ′,还需要添加什么条件?答案:∠A =∠A ′或∠C =∠C ′或AB BCA B B C =''''. 毫无疑问,只有一个角对应相等的二角形一般是不可能相似的,利用学过的判定条件去添加.(四)例题教学1:根据下列条件,判断△ABC 与△A ′B ′C ′是否相似,并说明理由: (1)∠A =120°,AB =7cm ,AC =14cm . ∠A ′=120°,A ′B ′=3cm ,A ′C ′=6cm ; (2)AB =4cm .BC =6cm ,AC =8cm , A ′B ′=12cm ,B ′C ′=18cm ,A ′C ′=21cm .分析:这类题目有两层意思:一是正确的加以证明;二是要对不正确的题目说明理由或举出反例.教师让学生独立完成,然后与同伴交流,待学生做完后,选两名学生的推理过程实物投影,师生共评.三、总结提高 (一)师生小结(1)通过本节课的学习,你有哪些收获?还有什么疑惑?说给老师或同学听听. (2)教师与同学聆听部分同学的收获,解决部分同学的疑惑.教师聆听同学的收获,解决同学的疑惑.(二)作业布置必做题:教材59页练习第3题.习题6.4第9题. 选做题:习题6.4第12题. 教师布置,分层要求.《探索三角形相似的条件》教案2教学目标知识与技能1.探索3角形相似的条件(3),掌握用“如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似”判定三角形相似的方法.2.运用该判定条件解决相关问题,了解重心的定义.数学思考与问题解决通过相似三角形的类比及全等三角形的条件(SSS)判定方法的类比,体会特殊与一般和全等与相似的关系,探究三角形相似的条件(3).并在此基础上进一步地掌握相似三角形的判定方法.情感与态度1.经历两个三角形相似的探索过程,体验分析归纳得出数学学结论的过程,进一步发展学生的探究、交流能力.2.通过和三角形全等的条件类比,渗透类比的数学思想,并领会特殊与一般的关系.重点难点重点掌握三角形相似的判定方法(3),会运用该判定定理判定两个三角形相似.难点会准确地运用三角形相似的判定定理(3)来判定三角形是否相似.教学设计一、复习引人1.相似三角形的主要特征是什么?2.若△ABC和△A′B′C′相似,需具备怎样的条件?3.两个全等三角形一定相似吗?如果相似,相似比是多少?反过来两个相似三角形一定全等吗?4.除了我们已学过的判定三角形相似的方法外,类比判定两个三角形全等的方法,猜想判定两个三角形相似还有什么方法?教师用多媒体出示问题,由问题3知两个三角形全等相似比为1,反过来两个三角形相似不—定全等,但对应边一定成比例.由“三边对应相等的两个三角形全等”能否引出“三边对应成比例的两个三角形相似”呢?二、新知探究活动一:操作——观察——探索 (1)操作:如图,已知△ABC . ①画△A ′B ′C ′,使得=2AB BC CAA B B C C A ==''''''. ②比较∠A =∠A ′,∠B 与∠B ′,∠C 与∠C ′的大小. ⑵观察:△ABC 与△A ′B ′C ′相似吗?用多媒体显示操作内容.提出问题,学生动手在教材图6-22操作,或在练习本上画出△A ′B ′C ′,分别测量∠A =∠A ′,或∠B 与∠B ′,∠C 与∠C ′的大小,同学之间相互比较,探究结论.(3)探索:试说明△ABC 与△A ′B ′C ′相似的理由,设=AB BC CAk A B B C C A==''''''. 若改变k 值的大小,还相似吗?试一试. 教师个别指导学生画三角形的方法.活动二:说明△ABC ∽△A ′B ′C ′的理由.如果在△ABC 与△A ′B ′C ′中,=AB BC CAA B B C C A='''''',则△ABC ∽△A ′B ′C ′.理由陈述:(此处略.见教材第59〜60页)教师投影显示,提示学生运用探索三角形相似的条件(2)类似的方法,构造一个全等三角形,而这个全等三角形与△ABC 相似,利用相似三角形的传递性可证.结论:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.学生独立思考,操作探究也可分组讨论,相互交流举手发言,师生共同进行归纳总结. 活动三:验证应用如图,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上,△ABC 与△DEF 相似吗?为什么?教师引导:相似三角形的判定方法,由三种判定方法,得出用三边成比例证. 学生先用勾股定理求出三边的长,然后证明.教师在学生完成的基础上板书解题过程. 活动四:练习巩固 教材第61页练习第1,2题.教师提出要求并巡回检査,学生独立完成,然后班内交流. 三、综合应用如图,在△ABC 中,AB =AC ,∠A =36°,BD 是△ABC 的角平分线. (1)△ABC 与△BDC 相似吗?为什么?(2)判断点D 是否是AC 的黄金分割点,并说明理由.引导学生找出已有的相似三角形的条件,然后选择判定方法.最后学生完成(1)(可让两学生板演).对于(2)让学生回顾黄金分割的定义,得出要证的结论就是证AD 2=CD ·AC ,可借助相似三角形对应边成比例证.根据学生板演情况讲解,最后投影解题过程. 完成后教师给出黄金三角形的定义及作法. 练习:教材第64页练习第1题. 四、拓展提升如图(1),BE 、CF 是△ABC 的中线,且相交于O . 求证:=2GB GCGE FG教师介绍求比例式的方法,找出(或构造)四条线段所在的相似三角形,利用三边对应成比例证.学生完成证明过程,教师板书解题. (1)这四条线段在哪两个三角形中?(2)作怎样的辅助线,就可构造出它们所在的相似三角形?学生在教师的引导下,得出连接EF ,利用三角形中位线定理,证△BGC ∽△EGF 即可. 思考:1.如图(2),如果AD 是△ABC 的另一条中线,AD 与BE 相交于点G ,=2BG AG G E DG''=''吗?对图(2),可连接DE ,仿图(1)证明△G ′DE ∽△C ′AB 可得.2.如果在一个三角形中,画出△ABC 的三条中线,这三条中线有什么关系?为什么? 3.归纳:三角形的三条中线相交于一点,这点叫三角形的重心,重心与一边中点的连线长是对应中线长的13. 学生独立完成(1),讨论完成(2)并交流.最后教师归纳得出三角形重心的定义及性质. 五、总结提高通过本节课的学习,你有哪些收获?还有什么不明白的地方? 主要内容:三边成比例的三角形相似;三角形的重心. 方法:(1)证明三角形相似的方法(共四种). (2)证明比例式或等积式的方法. 学生归纳、总结发言,体会、反思. 六、作业1.教材习题6.4第14题. 2.教材第61页练习第3题. 3.教材第64页练习第2题. 选作:4.教材习题6.4第15题.教师布置作业,分层提出要求主,学生独立完成.。

春苏科版数学九下6.4《探索三角形相似的条件》word导学案2

春苏科版数学九下6.4《探索三角形相似的条件》word导学案2

6.4 探索三角形相似的条件(2)年级: 班级: 姓名: 日期: 编者: 审核人:一、学习目标:1.联系三角形全等,理解:两组对应边的比相等且相应的夹角相等的两个三角形相似.2.灵活应用判定解决问题。

二、学习内容:1.导学预习:阅读课本回答下列问题:(1)两边及其夹角对应相等的两个三角形全等吗?(2)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形全等吗?相似吗?为什么?2.小组讨论:活动一:完成课本练习并交流活动二:归纳总结:。

3.展示提升:(1)在△ABC 和△DEF 中,已知∠B =∠E ,则当 时,△ABC ∽△DEF .(2)△ABC 中,AB =18,AC =12,点E 在AB 上,且AE =6,点F 在AC 上,连接EF ,使得△AEF与△ABC 相似,则AF = .(3)下列能够判定△ABC ∽△DEF 的是( )A .AB DE =AC DF ,∠B=∠E B .AB DF =AC DE,∠C =∠F C .BC EF =AC DF ,∠C =∠F D .AB DE =EF BC ,∠B=∠E (4)如图一,在四边形ABCD 中,BD 平分∠ABC ,AB =15,BD =12,要使△ABD ∽△DBC ,则BC 长为 .(5)如图二,△ABC 中,点D 、E 在AC 、AB 边上,要证△ABD ∽△ACE ,还需添加的条件是 .4.质疑拓展:下列四个条件:(1)△ABC的两边长分别是2和5,△DEF的两边长分别是3和7.5,夹角都是40°(2)△ABC的三边长分别是3、4、5,△DEF的三边长分别是9、12、15(3)腰长都是2,有一个角是80°的两个等腰三角形(4)在△ABC和△DEF中,∠C =∠F=90°,AB=6,AC=4,DE=1.5,DF=1,其中能够判定△ABC∽△DEF的个数是()A.1个B.2个C.3个D.4个5.学习小结:6.达标检测:(1)在△ABC和△DEF中,已知∠A=∠D,则当时,△ABC∽△DEF.(2)△ABC中,AB=12,AC=18,点E在AB上,且AE=6,点F在AC上,连接EF,使得△AEF 与△ABC相似,则AF= .(3)下列能够判定△ABC∽△DEF的是()A.ABDE=ACDF,∠A=∠D B.ABDF=ACDE,∠C =∠FC.BCEF=ACDF,∠B =∠E D.ABDE=EFBC,∠B=∠E(4)如图一,在四边形ABCD中,BD平分∠ABC,AB=8,BD=6,要使△ABD∽△DBC,则BC 长为.(5)如图二,△ABC中,点D、E在AC、AB边上,若△ABD∽△ACE,AD=5,AB=10,AE=7,则AC= .(6)下列四个条件:①△ABC的两边长分别是2和5,△DEF的两边长分别是3和7.5,夹角都是40°;②△ABC的三边长分别是3、4、5,△DEF的三边长分别是9、12、15;③腰长都是2,有一个角是80°的两个等腰三角形;④在△ABC和△DEF中,∠C =∠F=90°,AB=6,AC=4,DE=1.5,DF=1,其中能够判定△ABC∽△DEF的是.(7)如图三,三个正方形拼成一个矩形ABEF,求证:①△ACE∽△DCA②∠1+∠2+∠3=90°7.学习反思:。

九年级数学下册探索三角形相似的条件学案苏科版

九年级数学下册探索三角形相似的条件学案苏科版

课题: 6.4探索三角形相似的条件(1)学习目标:1.掌握平行线分线段成比例定理及其推论,学会灵活应用;2.经历“操作——观察——探索——说理”的数学活动过程,发展合情推理和有条理的表达能力.学习重点:探索“见平行,得相似”的相关结论.学习难点:成比例的线段中对应线段的确定.学习过程:一.【情境创设】如图,画三条互相平行的直线l1、l2、l3,再任意画2条直线 a、b,使 a、b分别与l1、l2、l3相交于点A、B、C和点D、E、F.二.【问题探究】问题1(1)度量所画图中AB、BC、DE、EF的长度,并计算对应线段的比值,你有什么发现?(2)如果任意平移l3,再度量AB、BC、DE、EF的长度.这些比值还相等吗?总结:(1)问题2. 如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,△ADE与△ABC有什么关系?总结:(2)三.【拓展提升】问题3.(1).如果再作MN∥DE,共有多少对相似三角形?(2).若AM=5,ME=2,ND=1.5,求AD长。

(2)如图,△ABC 中,DE∥BC,GF∥AB,DE、GF交于点O,则图中与△ABC相似的三角形共有多少个?请你写出来.问题4 如图,在△ABC 中,DG ∥EH ∥FI ∥BC . (1)请找出图中所有的相似三角形;(2)如果AD =1,DB =3,那么DG ∶BC =_____.四.【课堂小结】这节课你有哪些收获和困惑? 【当堂反馈】1、如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l2、l 3分别交于点A 、B 、C 和点D 、E 、F ,设AB =3,BC =5,DE=4求EF 的长.2、如图,OC 是∠AOB 内的一条射线,点D 、D '在OC 上,过点D 、D '分别作OA 、OB 的垂线,垂足分别为E 、E '和F 、F '.(1)图中有几对相似三角形?是哪几对? (2) 与 相等吗?为什么?DE D E ''DFD F ''中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8 B.4 C.12 D.16【答案】A【解析】∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DA=DB,EA=EC,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A.2.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得A.B.C.D.【答案】A【解析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x千米/小时,故选A.3.在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.11【答案】B【解析】试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=12BC=2,DF∥BC,EF=12AB=32,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+32)=1.故选B.4.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.1【答案】D【解析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选D.【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.5.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤3a b2 =.你认为其中正确信息的个数有A.2个B.3个C.4个D.5个【答案】D【解析】试题分析:①如图,∵抛物线开口方向向下,∴a<1.∵对称轴xb12a3=-=-,∴2b a3=-<1.∴ab>1.故①正确.②如图,当x=1时,y<1,即a+b+c<1.故②正确.③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.④如图,当x=﹣1时,y>1,即a﹣b+c>1,∵抛物线与y轴交于正半轴,∴c>1.∵b<1,∴c﹣b>1.∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.⑤如图,对称轴b12a3=-=-,则3a b2=.故⑤正确.综上所述,正确的结论是①②③④⑤,共5个.故选D.6.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,4【答案】B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.7.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是()A.74 B.44 C.42 D.40【答案】C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.8.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则b a的值是( )A.B.-C.4 D.-1【答案】A【解析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=,∴b a=()2=.故选A .9.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是( )A .掷一枚正六面体的骰子,出现1点的概率B .抛一枚硬币,出现正面的概率C .从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D .任意写一个整数,它能被2整除的概率 【答案】C【解析】解:A .掷一枚正六面体的骰子,出现1点的概率为16,故此选项错误; B .掷一枚硬币,出现正面朝上的概率为12,故此选项错误; C .从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:11123=+≈0.33;故此选项正确;D .任意写出一个整数,能被2整除的概率为12,故此选项错误. 故选C .10.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C【解析】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c=-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =. 故选C .考点:抛物线与x 轴的交点. 二、填空题(本题包括8个小题)11.如图,a ∥b ,∠1=40°,∠2=80°,则∠3= 度.【答案】120 【解析】如图,∵a ∥b ,∠2=80°,∴∠4=∠2=80°(两直线平行,同位角相等) ∴∠3=∠1+∠4=40°+80°=120°. 故答案为120°.12.如果一个正多边形的中心角为72°,那么这个正多边形的边数是 . 【答案】5【解析】试题分析:中心角的度数=360n︒36072n︒︒=,5n=考点:正多边形中心角的概念.13.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,则∠ADB′等于_____.【答案】40°.【解析】∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案为40°.14.某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.【答案】1.【解析】分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.详解:∵竹竿的高度竹竿的影长=1.52.5∴旗杆的高度,旗杆的影长=30旗杆的高度,解得:旗杆的高度=1.52.5×30=1.故答案为1.点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.15.某广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n>1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律:按上规律推断,S与n的关系是________________________________.【答案】S=1n-1【解析】观察可得,n=2时,S=1;n=3时,S=1+(3-2)×1=12;n=4时,S=1+(4-2)×1=18;…;所以,S与n的关系是:S=1+(n-2)×1=1n-1.故答案为S=1n-1.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.16.已知一个多边形的每一个内角都是144,则这个多边形是_________边形.【答案】十【解析】先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【详解】解:180°﹣144°=36°,360°÷36°=1,∴这个多边形的边数是1.故答案为十.【点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.17.若分式的值为0,则a的值是.【答案】1.【解析】试题分析:根据分式的值为0的条件列出关于a的不等式组,求出a的值即可.试题解析:∵分式的值为0,∴,解得a=1.考点:分式的值为零的条件.18.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.【答案】8【解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).故答案为:8【点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.三、解答题(本题包括8个小题)19.如图所示,在△ABC中,BO、CO是角平分线.∠ABC=50°,∠ACB=60°,求∠BOC 的度数,并说明理由.题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.若∠A=n°,求∠BOC的度数.【答案】(1)125°;(2)125°;(3)∠BOC=90°+12 n°.【解析】如图,由BO、CO是角平分线得∠ABC=2∠1,∠ACB=2∠2,再利用三角形内角和得到∠ABC+∠ACB+∠A=180°,则2∠1+2∠2+∠A=180°,接着再根据三角形内角和得到∠1+∠2+∠BOC=180°,利用等式的性质进行变换可得∠BOC=90°+12∠A,然后根据此结论分别解决(1)、(2)、(3).【详解】如图,∵BO、CO是角平分线,∴∠ABC=2∠1,∠ACB=2∠2,∵∠ABC+∠ACB+∠A=180°,∴2∠1+2∠2+∠A=180°,∵∠1+∠2+∠BOC=180°,∴2∠1+2∠2+2∠BOC=360°,∴2∠BOC﹣∠A=180°,∴∠BOC=90°+12∠A,(1)∵∠ABC=50°,∠ACB=60°,∴∠A=180°﹣50°﹣60°=70°,∴∠BOC=90°+12×70°=125°;(2)∠BOC=90°+12∠A=125°;(3)∠BOC=90°+12 n°.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数:①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.20.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【答案】10,1.【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为1m.考点:一元二次方程的应用题.21.为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?【答案】(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.【解析】分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.详解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=1050×360°=72°, 活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有12+650×2000=720(人). 点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.22.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.【答案】见详解【解析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨=== ∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.23.如图中的小方格都是边长为1的正方形,△ABC 的顶点和O 点都在正方形的顶点上.以点O 为位似中心,在方格图中将△ABC 放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.【答案】(1)作图见解析;(2)作图见解析;5π(平方单位).【解析】(1)连接AO 、BO 、CO 并延长到2AO 、2BO 、2CO 长度找到各点的对应点,顺次连接即可.(2)△A′B′C′的A′、C′绕点B′顺时针旋转90°得到对应点,顺次连接即可.A′B′在旋转过程中扫过的图形面积是一个扇形,根据扇形的面积公式计算即可.【详解】解:(1)见图中△A′B′C′(2)见图中△A″B′C″ 扇形的面积()22901242053604S πππ=+=⋅=(平方单位). 【点睛】本题主要考查了位似图形及旋转变换作图的方法及扇形的面积公式.24.如图,△ABC 内接于⊙O ,过点C 作BC 的垂线交⊙O 于D ,点E 在BC 的延长线上,且∠DEC =∠BAC .求证:DE 是⊙O 的切线;若AC ∥DE ,当AB =8,CE =2时,求⊙O 直径的长.【答案】(1)见解析;(2)⊙O 直径的长是5【解析】(1)先判断出BD 是圆O 的直径,再判断出BD ⊥DE ,即可得出结论;(2)先判断出AC ⊥BD ,进而求出BC=AB=8,进而判断出△BDC ∽△BED ,求出BD ,即可得出结论.【详解】证明:(1)连接BD ,交AC 于F ,∵DC⊥BE,∴∠BCD=∠DCE=90°,∴BD是⊙O的直径,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵弧BC=弧BC,∴∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴BD⊥DE,∴DE是⊙O切线;解:(2)∵AC∥DE,BD⊥DE,∴BD⊥AC.∵BD是⊙O直径,∴AF=CF,∴AB=BC=8,∵BD⊥DE,DC⊥BE,∴∠BCD=∠BDE=90°,∠DBC=∠EBD,∴△BDC∽△BED,∴BDBE=BCBD,∴BD2=BC•BE=8×10=80,∴BD=45.即⊙O直径的长是45.【点睛】此题主要考查圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,第二问中求出BC=8是解本题的关键.25.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.登山多长时间时,甲、乙两人距地面的高度差为50米?【答案】(1)10,30;(2)y=15(02)3030(211)x xx x≤≤⎧⎨-≤≤⎩;(3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.【解析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度﹣甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x 值.综上即可得出结论.【详解】(1)(300﹣100)÷20=10(米/分钟),b=15÷1×2=30,故答案为10,30;(2)当0≤x≤2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30,当y=30x﹣30=300时,x=11,∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=()()1502 3030211x xx x⎧≤≤⎪⎨-≤≤⎪⎩;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=50时,解得:x=4,当30x﹣30﹣(10x+100)=50时,解得:x=9,当300﹣(10x+100)=50时,解得:x=15,答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.26.某种型号油电混合动力汽车,从A地到B地燃油行驶需纯燃油费用76元,从A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?【答案】(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.【解析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.【详解】(1)设每行驶1千米纯用电的费用为x元,根据题意得:760.5 x = 26 x解得:x=0.26经检验,x=0.26是原分式方程的解,答:每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,得:0.26y+(260.26﹣y)×(0.26+0.50)≤39解得:y≥74,即至少用电行驶74千米.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E 为矩形ABCD 边AD 的中点,在矩形ABCD 的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P 从点B 出发,沿着B ﹣E ﹣D 的路线匀速行进,到达点D .设运动员P 的运动时间为t ,到监测点的距离为y .现有y 与t 的函数关系的图象大致如图2所示,则这一信息的来源是( )A .监测点AB .监测点BC .监测点CD .监测点D【答案】C 【解析】试题解析:A 、由监测点A 监测P 时,函数值y 随t 的增大先减少再增大.故选项A 错误;B 、由监测点B 监测P 时,函数值y 随t 的增大而增大,故选项B 错误;C 、由监测点C 监测P 时,函数值y 随t 的增大先减小再增大,然后再减小,选项C 正确;D 、由监测点D 监测P 时,函数值y 随t 的增大而减小,选项D 错误.故选C .2.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C【解析】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =. 故选C .考点:抛物线与x 轴的交点.3.如图,若数轴上的点A ,B 分别与实数﹣1,1对应,用圆规在数轴上画点C ,则与点C 对应的实数是( )A .2B .3C .4D .5【答案】B 【解析】由数轴上的点A 、B 分别与实数﹣1,1对应,即可求得AB=2,再根据半径相等得到BC=2,由此即求得点C 对应的实数.【详解】∵数轴上的点 A ,B 分别与实数﹣1,1 对应,∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴与点 C 对应的实数是:1+2=3.故选B .【点睛】本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键. 4.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .3【答案】D【解析】设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有()x3=31---,解得x=23+1.故选D.5.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A.不是轴对称图形,也不是中心对称图形.故错误;B.不是轴对称图形,也不是中心对称图形.故错误;C.是轴对称图形,也是中心对称图形.故正确;D.不是轴对称图形,是中心对称图形.故错误.故选C.【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.6.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1【答案】B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.7.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C 也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )A.6个B.7个C.8个D.9个【答案】A【解析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【详解】如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.8.关于x的一元二次方程230-+=有两个不相等的实数根,则实数m的取值范围x x m是()A.94m<B.94m C.94m>D.94m【答案】A【解析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【详解】∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<94,故选A.【点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A.56 B.58 C.63 D.72【答案】B【解析】试题分析:第一个图形的小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个.考点:规律题10.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( )A .(2,1)B .(2,0)C .(3,3)D .(3,1)【答案】A 【解析】根据位似变换的性质可知,△ODC ∽△OBA ,相似比是13,根据已知数据可以求出点C 的坐标.【详解】由题意得,△ODC ∽△OBA ,相似比是13, ∴OD DC OB AB=, 又OB=6,AB=3,∴OD=2,CD=1,∴点C 的坐标为:(2,1),故选A .【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.二、填空题(本题包括8个小题)11.二次函数2y ax bx =+的图象如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为___【答案】3【解析】试题解析::∵抛物线的开口向上,顶点纵坐标为-3,∴a>1.-24ba=-3,即b2=12a,∵一元二次方程ax2+bx+m=1有实数根,∴△=b2-4am≥1,即12a-4am≥1,即12-4m≥1,解得m≤3,∴m的最大值为3,12.若a2+3=2b,则a3﹣2ab+3a=_____.【答案】1【解析】利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值.【详解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案为1.【点睛】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键.13.若点(a,1)与(﹣2,b)关于原点对称,则b a=_______.【答案】12.【解析】∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴b a=12 =12.故答案为12.考点:关于原点对称的点的坐标.14.飞机着陆后滑行的距离S(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t﹣1.2t2,那么飞机着陆后滑行_____秒停下.【答案】1【解析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.【详解】由题意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750即当t=1秒时,飞机才能停下来.故答案为1.【点睛】本题考查了二次函数的应用.解题时,利用配方法求得t=2时,s取最大值.15.若4a+3b=1,则8a+6b-3的值为______.【答案】-1【解析】先求出8a+6b的值,然后整体代入进行计算即可得解.【详解】∵4a+3b=1,∴8a+6b=2,8a+6b-3=2-3=-1;故答案为:-1.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.16.如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过三角形的直角顶点C,以点D为顶点,作90°的∠EDF,与半圆交于点E,F,则图中阴影部分的面积是____.【答案】π﹣1.【解析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【详解】连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=1,四边形DMCN是正方形,2则扇形FDE的面积是:2902360π⨯=π.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵DMG DNHGDM HDNDM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=1.则阴影部分的面积是:π﹣1.故答案为π﹣1.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.17.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=35,则BC的长为_____.【答案】4【解析】试题解析:∵3 cos5BDC∠=,可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,。

初中数学九年级下册苏科版6.4探索三角形相似的条件优秀教学案例

初中数学九年级下册苏科版6.4探索三角形相似的条件优秀教学案例
3.采用多元化的评价方式,如课堂问答、小组报告、作业批改等,确保评价的客观性和公正性。
4.根据评价结果,教师及时调整教学策略,以满足学生的个性化需求,提高教学效果。
四、教学内容与过程
(一)导入新课
在导入新课环节,我将利用学生的已有知识,通过以下步骤激发他们对相似三角形的学习兴趣:
1.复习旧知:简要回顾上一节课所学的三角形知识,如三角形的分类、性质等,为新课的学习做好铺垫。
1.定义讲解:明确相似三角形的定义,即对应角相等、对应边成比例的两个三角形为相似三角形。
2.判定条件:详细讲解相似三角形的判定条件,包括对应角相等、对应边成比例和AAA相似定理。
3.实例演示:通过具体实例,演示如何运用相似三角形的判定条件解决实际问题,如求线段长度、证明线段平行等。
4.互动提问:在讲解过程中,适时向学生提问,了解他们对相似三角形判定条件的理解和掌握情况。
二、教学目标
(一)知识与技能
1.理解并掌握相似三角形的定义及判定条件,包括对应角相等、对应边成比例和AAA相似定理。
2.学会运用相似三角形的性质解决实际问题,如求线段长度、证明线段平行等。
3.培养学生运用几何画板、尺规作图等工具绘制相似三角形的能力,提高他们的动手操作能力。
4.提高学生分析问题、解决问题的能力,使他们能够将相似三角形的性质运用到其他数学领域,如平面几何、立体几何等。
此外,利用多媒体教学手段,如几何画板、PPT等,展示丰富的图片和动画,让学生在视觉上感受相似三角形的魅力。情景创设旨在让学生在实践中学习,提高他们对数学知识的认同感和应用意识。
(二)问题导向
以问题为导向的教学方法,有助于激发学生的求知欲和思考能力。在本章节的教学中,我将设计一系列具有启发性和挑战性的问题,引导学生自主探究相似三角形的性质。

苏教科版初中数学九年级下册6.4 探索三角形相似的条学案2(新版)

苏教科版初中数学九年级下册6.4 探索三角形相似的条学案2(新版)

TB:小初高题库苏教科版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!苏科版初中数学和你一起共同进步学业有成!探索三角形相似的条件学习目标:1、使学生掌握应用判定条件1、2、3解决有关问题.TB:小初高题库2、了解通过以比例形式、等积形式寻找一对三角形相似的论证过程. 重点:使学生掌握判定条件1、2、3,并会运用它判定三角形相似. 难点:探索几何命题的说明思路教学流程预习导航1、判定两个三角形相似,共有三种方法:(1)两角对应相等;(2)两边对应成比例且夹角相等;(3)三边对应成比例。

2、要做两个形状完全相同的两个三角形框架,其中一个框架的三边长分别为3、4、5,另一个框架的一边长为6,怎样选料可以使两个三角形相似?3、如图,在⊿ABC 中,AB=12,BC=18,AC=15,D 为AC 上一点,CD=AC 在AB 上找一点E ,得到⊿23ADE ,若图中两个三角形相似,求DE 的长。

4、在⊿ABC 中,AB=8cm ,BC=16cm ,点P 从点A 开始 沿AB 边向点B 以2cm/s 的速度移动,点Q 从点B 开始沿BC边向点C 以4cm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,经过几秒钟后⊿PBQ 与⊿ABC 相似?合作探究1.我们学习了几种判定三角形相似的方法?2.叙述平行线判别相似三角形的条件3.如图,在Rt ⊿ABC 中,△ACB =90°,CD 是斜边AB 上的高。

(1)图中有哪几对相似三角形?请用符号把它们表示出来,并说明理由;(2)AC 是哪两条线段的比例中项?为什么?4.如图,在正方形ABCD 中,点M 、N 分号在AB 、BC 上,AB =4,AM =1,BN =0.75。

(1)△ADM 与△BMN 相似吗?为什么?(2)求∠DMN 的度数。

当堂达标1、如图AB ∥CD ∥EF ,则图中相似三角形的对数为( )A 、 1对B 、 2对C 、 3对D 、 4对2、已知40°和50°分别为两个∆Rt 中的一个锐角,判定这两个∆Rt (填写是或否)相似.P NTB:小初高题库3、如图,锐角ABC ∆的高CD 和BE 相交于点O ,图中与ODB ∆相似的三角形有 ( )A 4个B 3个C 2个D 1个4、如图,在ABC ∆中,C ABC ∠=∠2,BD 平分ABC ∠,试说明:AB·BC = AC·CD5、将两块完全相同的等腰直角三角板摆放成如图所示的样子,假设图中的所有点、线都在同一平面内,回答下列问题:(1)图中共有 个三角形.(2)图中有相似(不包括全等)三角形吗?如果有,就把它们一一写出来,并说明为什么。

推荐K12学习江苏省徐州市铜山县九年级数学下册6.4探索三角形相似的条件2教案新版苏科版

推荐K12学习江苏省徐州市铜山县九年级数学下册6.4探索三角形相似的条件2教案新版苏科版
先独立思考,再小组讨论.
设计拓展延伸的目的是为了进 一步加深学生相似判定方法的理解,同时培养学生分析问题、解决问题的能力.
课堂小结
通过这节课的学习,你学习到什么新知识?获得了什么经验?还有什么疑问?
学生讨论小结本节课内容.
培养学生反思自己学习过程的意识,充分发挥学生的 主体作用,从而培养学生归纳、整理、表达的能力.
通过学生相互讨论,提高学生的观察分析能力,培养学生善于思考的良好习惯.
得出结论
两角分别相等的两个三角形相似.
对于课本提供的证明,需要老师加以引导.
尝试交流
例1如图,在△ABC和△A′B′C′中,已知∠A=50°,∠B=∠B′=60°,∠C′=70°,△ABC与 △A′B′C′相似吗?为什么?
例2如图,在Rt△ABC中,∠ACB=90°,CD是△ABC的高.找出图中所有的相似三角形.
1.“两角分别相等的两个三角形相似”的判定方法的探究证明;
2. 会准确地运用判定方法判定三角形是否相似.
教学过程(教师)
学生活动
设计思路
回顾思考
1.判定两个三角形全等有哪些方法?
2.如果要判定两个三角形是不是相似,是否一定需要一一验证所有的对应角和对应边的关系?
3.我们学过哪种判定三角形相似的方法?
如果把2AB=EF改为3AB=EF呢?
创设情境,引导学生积极思考,小组合作,带领学生画图探究.
关于三角形相似的判定“两角对应相等的两个三角形相似”的证明尽量通过两种方法,培养学生合情推理和说理的能力.
通过操作 使学生感悟到只要满足∠A=∠E,∠B=∠F的条件,两个三角形就能相似.两种方法的证明培养学生合情推理和说理的能力.
练习1判似.( )
(2)所有 的等腰直角三角形都相似.( )

九年级数学下册 6.4 探索三角形相似的条件导学案2(新版)苏科版

九年级数学下册 6.4 探索三角形相似的条件导学案2(新版)苏科版

6.4 探索三角形相似的条件 学习目标: 1.探索三角形相似的条件(2):如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

2.会用三角形相似的条件解决有关问题,提高合情推理和有条理的表达能力。

一、知识链接: 1.怎样的两个三角形相似?相似三角形有什么性质? △ ABC 与△A ′B ′C ′中,满足 条件时,△ABC ∽△A ′B ′C ′; 若△ABC ∽△A ′B ′C ′,则可得: 。

二、自主探究: 相似三角形判定方法二:如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似;几何语言:∵在△ABC 和△A ′B ′C ′中,'C 'A AC 'B 'A AB =, ,∴ 。

三、知识应用: 1.如图,在△ABC 中,D 在AB 上,要说明△ACD ∽△ABC 相似,已经具备了条件 ,还需添加的条件是 , 或 或 .2.如图,在△ABC 中,AB =4cm ,AC =2cm ,(1)在AB 上取一点D ,当AD =________时,△ACD ∽△ABC ; (2)在AC 的延长线上取一点E ,当CE =________时,△AEB ∽△ABC ,此时,BE 与DC 有怎样的位置关系?BE DC 。

3.如图,△ABC 中,AB =12,BC =18,AC =15,D 为AC 上一点, CD =10,在AB 上找一点E ,得到△ADE ,当AE= 时, 图中两个三角形相似。

四、精讲释疑: 1.如图,若 。

试说明:(1)△ABC ∽△BDC (2)∠ABC =∠CDB(3)CA·BD=CB·ABC'B'A'C B A CB CD AC BC =A C D B AB C D C BP C B A2.已知:如图,在正方形ABCD 中,Q 是CD 中点,BP=3CP 。

2016春苏科版数学九下6.4《探索三角形相似的条件》word导学案1

2016春苏科版数学九下6.4《探索三角形相似的条件》word导学案1

6.4 探索三角形相似的条件(1)年级: 班级: 姓名: 日期: 编者: 审核人: 一、学习目标:1.经历两个三角形相似的探索过程;2.能说出识别两个三角形相似的方法:有两个角分别相等的两个三角形相似;3.直角三角形被斜边上的高分成的两个小直角三角形与原直角三角形相似。

学习重难点:掌握相似三角形的判定定理,并能熟练地运用时重点也是难点 。

二、学习内容: 1.导学预习:判定两个三角形全等有哪些方法;判定两个三角形相似是否一定要知道他们的对应角相等,对应边成比例呢? 2.小组讨论:学习课本内容,解决下列问题:(1)如果一个三角形的 角分别与另一个三角形的 角对应相等,那么这两个三角形相似.(2)如图:△ABC 和△A B C '''中,∠ A =40°,∠B =80°,∠A '=80°,∠B '=60°. △ABC 和△A B C '''相似吗?为什么?(3)如图18.3.5,△ABC 中,DE ∥BC ,EF ∥AB ,证明:△ADE ∽△EFC .图18.3.53.展示提升:想一想,议一议,意见相同吗。

(1)每个图形中的两个三角形相似吗,为什么?⑴AB ∥CD⑵DE ∥BC(3)∠ADE =∠C4.质疑拓展:在图(4)中找出所有相似的三角形。

5.学习小结:学完这节课,我知道了6.达标检测:(1)下列各组三角形一定相似的是( )A .两个直角三角形B .两个钝角三角形C .两个等腰三角形D .两个等边三角形 (2)△ABC 的两个角分别是60°和72°,和△A B C '''的两个角分别是60°和48°,△ABC 和△A B C '''(3)如图, D 是△ABC 的边AC 上一点,连接BD ,△ABC ∽△BDC ,则需要添加的条件是(4)如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB ,DF ∥AC ,求证:△ABC ∽△DEF .ABCD E(1) (2)ABDE(3)(4)D BAABCDEF 第4题总结一下吧。

【最新苏科版精选】苏科初中数学九下《6.4 探索三角形相似的条件》word教案 (3).doc

【最新苏科版精选】苏科初中数学九下《6.4 探索三角形相似的条件》word教案 (3).doc

精品【初中语文试题】6.4探索三角形相似的条件(3)教学目标 :1、通过探索与交流,得出两个三角形只要具备两边对应成比例,并且夹角相等的条件,即可判断两个三角形相似的方法;2、尝试选择判断两个三角形相似的方法,并能灵活解决生活中一些简单的实际问题. 教学重点:了解两个三角形相似的条件(二)的探究思路。

教学难点:两个三角形相似的条件(二)的选择和应用。

教学过程一、情境创设:前面一节课我们探索了三角形相似的条件,回忆一下,我们探索两个三角形相似,可以从哪几个方面考虑找出条件?二、合作探究:1、如图,在△ABC 和△A ′B ′C ′中,∠A =∠A ′,2=''=''C A ACB A AB ,比较∠B 和∠B ′的大小.由此,你能判断△ABC 和△A ′B ′C ′相似吗?为什么?2、在上题的条件下,设K C A AC B A AB =''='',改变k 的值的大小,再试一试,你能判断△ABC和△A ′B ′C ′相似吗?由此得判定方法二:如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似;几何语言:∵在△ABC 和△A ′B ′C ′中,∠A =∠A ′,'C 'A AC'B 'A AB =, ∴△ABC ∽△A ′B ′C ′,3、如图,在△ABC 和△A ′B ′C ′中,∠B =∠B ′,要使△ABC ∽△A ′B ′C ′,还需要添加什么条件?三、练习巩固:1、下列条件能判定△ABC ∽△A ′B ′C ′的有 ( ) (1)∠A =45°,AB =12,AC =15,∠A ′=450,A ′B ′=16,A ′C ′=20 (2)∠A =47°,AB =1.5,AC =2,∠B ′=47°,A ′B ′=2.8,B ′C ′=2.1 (3)∠A =47°,AB =2,AC =3,∠B ′=47°,A ′B ′=4,B ′C ′=6 A 、0个 B 、1个 C 、2个 D 、3个2、如图,在△ABC 中,P 为AB 上的一点,在下列条件中:①∠AC P =∠B ;②∠APC =∠ACB ;③A C 2=AP •AB ;④AB •CP =AP •CB ,能满足△APC ∽△ACB 的条件是 ( )A 、①②④B 、①③④C 、②③④D 、①②③BCP AA CD BA B C A ′ B ′C ′ B ″ C ″ AB C A ′ B′ C ′精品【初中语文试题】(例2图) (例3图) 3、如图,在△ABC 中,D 在AB 上,要说明△ACD ∽△ABC 相似,已经具备了条件 ,还需添加的条件是 ,或 或 .4、如图,已知23EC AE BD AD ==,试求BCDE的值;例5、如图,在正方形ABCD 中,点M 、N 分别在AB 、BC 上,AB =4,AM =1,BN=0.75,(1)△ADM 与△BMN 相似吗?为什么?(2)求∠DMN 的度数;例6、如图,△ABC 中,AB =12,BC =18,AC =15,D 为AC 上一点,CD =32AC ,在AB 上找一点E ,得到△ADE ,若图中两个三角形相似,求AE 的长;四、小结思考:五、教学反思:A DECB BDAM B N C。

苏科版九年级数学下册6.4探索三角形相似的条件教案学案

苏科版九年级数学下册6.4探索三角形相似的条件教案学案

苏科版九年级数学下册6.4探索三角形相似的条件教案学案苏科版九年级数学下册6.4探索三角形相似的条件教案学案6.4 探索三角形相似的条件(1)教学目标 1.掌握平行线分线段成比例定理及其推论,学会灵活应用;2.经历“操作——观察——探索——说理”的数学活动过程,发展合情推理和有条理的表达能力.教学重点探索“见平行,得相似”的相关结论.教学难点成比例的线段中对应线段的确定.教学过程(教师)学生活动设计思路作图活动活动一:如图,画三条互相平行的直线l1、l2、l3,再任意画2条直线 a、b,使 a、b分别与l1、l2、l3相交于点A、B、C和点D、E、F.创设情境,通过学生独立作图.活动引入,激发学生的探究兴趣.探索新知提出问题(1)度量所画图中AB、BC、DE、EF的长度,并计算对应线段的比值,你有什么发现?(2)如果任意平移l3,再度量AB、BC、DE、EF的长度.这些比值还相等吗?活动二:如图,在△ABC中,点D、E分别在AB、AC上,且DE ∥BC,△ADE与△ABC有什么关系?组织学生积极操作与思考,利用小组合作的方式进行度量操作探究.问题1的设置仅说明当平行于三角形一边的直线与其他两边相交时,所构成的三角形与原三角形相似.与其他两边的延长线、反向延长线相交的情况由学生思考、解答.通过学生相互讨论,提高学生的观察分析能力,培养学生善于思考的良好习惯.得出结论两条直线被一组平行线所截,所得的对应线段成比例.平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似.通过操作、思考等数学活动,归纳出平行线分线段成比例定理和判定三角形相似的条件.教学中应结合实例向学生说明,在三角形中“见平行,想相似”也是解题的一种思路.尝试交流1.如果再作MN∥DE,共有多少对相似三角形?2.如图,△ABC 中,DE∥BC,GF∥AB,DE、GF交于点O,则图中与△ABC相似的三角形共有多少个?请你写出来. 1.学生独立完成;2.利用展台学生代表讲评.设计尝试交流的目的是为了加深学生对相似判定方法(1)的理解,同时为后续学习作好铺垫.题 1也可以向学生介绍相似三角形的传递性.拓展延伸如图,在△ABC中,DG∥EH∥FI∥BC.(1)请找出图中所有的相似三角形;(2)如果AD=1,DB=3,那么DG∶BC=_____.设计拓展延伸的目的是为了进一步加深学生平行线分线段成比例定理的理解,同时培养学生分析问题、解决问题的能力.课堂小结通过这节课的学习,你学习到什么新知识?获得了什么经验?还有什么疑问?学生讨论小结本节课内容.培养学生反思自己学习过程的意识,充分发挥学生的主体作用,从而培养归纳、整理、表达的能力.课后作业1.必做题:课本54-55页练习第1、2题;课本习题6.4第1、3、7题.2.选做题:课本习题6.4第2、4题.学生独立完成.布置课后作业的主要目的是巩固本节课所学知识.。

苏科版数学九下《探索三角形相似的条件》word同步教案

苏科版数学九下《探索三角形相似的条件》word同步教案

数学教学设计教材:义务教育教科书·数学(九年级下册)作者:张洁(连云港市新海实验中学)6.4 探索三角形相似的条件(1)目标1.掌握平行线分线段成比例定理及其推论,学会灵活应用;2.经历“操作——观察——探索——说理”的数学活动过程,发展合情推理和有条理的表达能力重点探索“见平行,得相似”的相关结论.难点成比例的线段中对应线段的确定.教学过程(教师)学生活动图,画三条互相平行的直线l1、l2、l3,再任意画2条直线别与l1、l2、l3相交于点A、B、C和点D、E、F.创设情境,通过学生独立作图.活动的探究兴画图中AB、BC、DE、EF的长度,并计算对应线段的比现?意平移l3,再度量AB、BC、DE、EF的长度.这些比值组织学生积极操作与思考,利用小组合作的方式进行度量操作探究.问题1的设置仅说明当平行于三角形一边的直线与其他两边相交时,所构成的三角形与原三角形相似.与其他两边的延长线、反向延长线相交的情况由学生思考、解答.通过提高学力,培养良好习惯a bb b a,在△ABC 中, 点D 、E 分别在AB 、AC 上,且DE ∥ABC 有什么关系?一组平行线所截,所得的对应线段成比例.形一边的直线和其他两边相交,所截得的三角形与原三角通过操作、思考等数学活动,归纳出平行线分线段成比例定理和判定三角形相似的条件.教学中应结合实例向学生说明,在三角形中“见平行,想相似”也是解题的一种思路.MN ∥DE ,共有多少对相似三角形? ABC 中,DE ∥BC ,GF ∥AB ,DE 、GF 交于点O ,则图的三角形共有多少个?请你写出来.1.学生独立完成;2.利用展台学生代表讲评.设的是为似判定方同时为垫.题绍相似三OABCDE G FBC中,DG∥EH∥FI∥BC.图中所有的相似三角形;D=1,DB=3,G∶BC=_____.设的是为生平行定理的理生分析问能力.的学习,你学习到什么新知识?获得了什么经验?还有什学生讨论小结本节课内容.培学习过程挥学生的培养归纳能力.课本54-55页练习第1、2题;课本习题6.4第1、3、7题.课本习题6.4第2、4题.学生独立完成.布要目的学知识.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§6. 探索三角形相似的条件(2)
学习目标:1.探索“两角分别相等的两个三角形相似”的判定方法;
2.运用三角形相似解决有关问题;
3.经历“操作——观察——探索——说理”的数学活动过程,发展合情推理和有条理的表达能力.学习重点:掌握“两角分别相等的两个三角形相似”.
学习难点:.1.“两角分别相等的两个三角形相似”的判定方法的探究证明;
2.会准确地运用判定方法判定三角形是否相似.
学习过程:
复习引入
1.判定两个三角形全等有哪些方法?
2.如果要判定两个三角形是不是相似,是否一定需要一一验证所有的对应角和对应边的关系?3.我们学过哪种判定三角形相似的方法?
【新知探究】师生互动、揭示通法
问题1如图,小明用一张纸遮住了3个三角形的一部分,你能画出这3个三角形吗?
提出问题:(1)如图,如果∠A=∠C,∠B=∠D,AB=CD,那么第一个三角形与第二个三角形全等吗?为什么?
如图,如果∠A=∠E,∠B=∠F,2AB=EF,那么第一个三角形与第三个三角形相似吗?
如果把2AB=EF改为3AB=EF呢?
得出结论
问题2. 如图,在△ABC 和△A ′B ′C ′中,已知∠A =50°,∠B =∠B′=60°,∠C′=70°,△ABC 与△A′B′C′相似吗?为什么?
问题3. 如图,在Rt △ABC 中,∠ACB =90°,CD 是△ABC 的高.找出图中所有的相似三角形.
问题4如图,在△ABC 中BD ⊥AC , AE ⊥BC ,图中一定和△BDC 相似的三角形有几个? 它们分别是哪些三角形?
拓展延伸
过△ABC (∠C >∠B )的边AB 上一点D 作一条直线与另一边AC 相交,截得的小三角形与△ABC 相似,这样的直线有几条?请把它们一一作出来.
A
【回扣目标】学有所成、悟出方法
通过这节课的学习,你学习到什么新知识?获得了什么经验?还有什么疑问?当堂反馈
见课本57页1、2、3。

相关文档
最新文档