2011年湖北省宜昌市中考数学试题

合集下载

2011年下学期宜昌市统考七年级数学试题及答案评分细则

2011年下学期宜昌市统考七年级数学试题及答案评分细则

DCBA2011年秋季宜昌市(城区)期末调研考试七年级数学试题 (全卷三大题24小题 满分:120分 时限: 120分钟)一、选择题(每小题3分,共45分) 1、2-的倒数是( )A .2- B. 2 C.21 D. 21- 2、用一个平面去截一个几何体,截面的形状为三角形,则这个几何体不可能是( )3、下列计算错误的是( )A. 33=-B. ()422=--C. 32418-=⎪⎭⎫ ⎝⎛-÷ D. ()823-=-4、在数轴上与表示数3-的点的距离等于2的点表示的数是( )A. 1B. 5-C. 1-或5-D. 1-或5 5、下列事件是确定事件的是( )A .我校同学中将来出现一位数学家B .从一副扑克牌中抽出一张扑克,恰好是大王C .未来十年内,印度洋地区不会发生海啸D .从装有9个红球的袋中任意摸出一个球,这个球是红球 6、下列图形中不是正方体的展开图的是( )DCBA7、2010年我国国内生产总值为40.12万亿元,人民生活总体达到小康水平,其中40.12万亿元用科学计数法表示应为( )亿元。

A. 41012.40⨯B. 410012.4⨯C. 510012.4⨯D. 610012.4⨯ 8、如图,AB=CD ,则下列结论不一定成立的是(A. BC AC >B. BD AC =C. BD BC AB =+D. BC CD AB =+ 9、某冰箱降价30%后,每台售价a 元,则该冰箱每台原价应为( )A. a 3.0元B. a 7.0元C.3.0a 元 D. 7.0a 元 10、用一根10厘米长的铁丝围成一个长方形,如果其长为a 厘米,那么宽为( )厘米A .a 210- B. a -5 C. a -10 D. a 25- 11、已知:∠1=1°30',∠2=1°18',则∠1与∠2的数量关系为( )A. ∠1=∠2B. ∠1-∠2=12'C. ∠1-∠2=22'D. ∠2-∠1=12'12、如图,在2011年12月份的日历中,圈出成“V ”型数阵的三个数,则这三个数的和可能是( )A. 10B. 39C. 70D. 8213、下列说法中,正确的是( )A. 连接两点的线段就叫做两点的距离B. AB=BC ,则点B 是线段AC 的中点C .过直线外一点有且只有一条直线与这条直线平行 D. 过直线外一点有无数条直线与这条直线垂直14、如果代数式y x a 2与b y x 23是同类项,则b a -的值为( )A. 1B. -1C. 2D. -215、如图,利用量桶和体积相同的小球进行了如下操作,第一次放入3个球,第二次放入4个球,第三次放入5个球,按这种方式操作下去,若第n 次放入球后桶中开始有水溢出,则n 的值为( )A. 9B. 10C. 11D. 12二、解答题(本大题共6小题,计42分) 16. (本题6分)解方程 24)2(31-=--x x17. (本题6分) 先化简,再求值:)2(2)3(2222y x xy xy y x +---,其中1,2-==y x18. (本题7分)根据要求完成下列题目: ⑴ 图中有 块小正方体;⑵ 请在下面方格纸中分别画出它的主视图,左视图和俯视图。

湖北省宜昌市中考数学试卷含答案解析版

湖北省宜昌市中考数学试卷含答案解析版

2017年湖北省宜昌市中考数学试卷一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)有理数﹣15的倒数为( ) A .5 B .15 C .−15 D .﹣52.(3分)如下字体的四个汉字中,是轴对称图形的是( )A .B .C .D .3.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是( )A .美B .丽C .宜D .昌4.(3分)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为( )A .量角器B .直尺C .三角板D .圆规5.(3分)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC 报验点,电缆拉放长度估计1200千米.其中准确数是( )A .27354B .40000C .50000D .12006.(3分)九一(1)班在参加学校4×100m 接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为( )A .1B .12C .13D .14 7.(3分)下列计算正确的是( )A .a 3+a 2=a 5B .a 3?a 2=a 5C .(a 3)2=a 5D .a 6÷a 2=a 38.(3分)如图,在△AEF 中,尺规作图如下:分别以点E ,点F 为圆心,大于12EF 的长为半径作弧,两弧相交于G ,H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是( )A .AO 平分∠EAFB .AO 垂直平分EFC .GH 垂直平分EFD .GH 平分AF9.(3分)如图,要测定被池塘隔开的A ,B 两点的距离.可以在AB 外选一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,连接ED .现测得AC=30m ,BC=40m ,DE=24m ,则AB=( )A .50mB .48mC .45mD .35m10.(3分)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是( )A .①②B .①③C .②④D .③④11.(3分)如图,四边形ABCD 内接⊙O ,AC 平分∠BAD ,则下列结论正确的是( )A .AB=ADB .BC=CDC .AB̂=AD ̂ D .∠BCA=∠DCA 12.(3分)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是( )手工制品手串 中国结 手提包 木雕笔筒 总数量(个)200 100 80 70 销售数量(个) 190 100 76 68A .手串B .中国结C .手提包D .木雕笔筒13.(3分)△ABC 在网格中的位置如图所示(每个小正方形边长为1),AD ⊥BC 于D ,下列选项中,错误的是( )A .sin α=cos αB .tanC=2C .sin β=cos βD .tan α=114.(3分)计算(x+y)2−(x−y)24xy 的结果为( ) A .1 B .12 C .14 D .015.(3分)某学校要种植一块面积为100m 2的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( )A. B.C. D.二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)计算:23×(1﹣14)×.17.(6分)解不等式组{x2≥−12(1−x)<4−3x..18.(7分)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00 第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)1500 1200 1300 1300 1200 (1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?19.(7分)“和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BC∥x轴.(1)当0≤x≤10,求y关于x的函数解析式;(2)求C点的坐标.20.(8分)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学着作《九章算术》,其勾股数组公式为:{a=12(m2−n2)b=mnc=12(m2+n2).其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.21.(8分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.22.(10分)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.23.(11分)正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与B ,C 不重合),以O 为顶点在BC 所在直线的上方作∠MON=90°.(1)当OM 经过点A 时,①请直接填空:ON (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE=OA ,过E 点作EF 垂直于直线BC ,垂足为点F ,作EH ⊥CD 于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且OG=1.在ON 上存在点P ,过P 点作PK 垂直于直线BC ,垂足为点K ,使得S △PKO =4S △OBG ,连接GP ,求四边形PKBG 的最大面积.24.(12分)已知抛物线y=ax 2+bx+c ,其中2a=b >0>c ,且a+b+c=0.(1)直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根;(2)证明:抛物线y=ax 2+bx+c 的顶点A 在第三象限;(3)直线y=x+m 与x ,y 轴分别相交于B ,C 两点,与抛物线y=ax 2+bx+c 相交于A ,D 两点.设抛物线y=ax 2+bx+c 的对称轴与x 轴相交于E .如果在对称轴左侧的抛物线上存在点F ,使得△ADF 与△BOC 相似,并且S △ADF =12S △ADE ,求此时抛物线的表达式.2017年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017?宜昌)有理数﹣15的倒数为()A.5 B.15C.−15D.﹣5【考点】17:倒数.【分析】根据倒数的定义,找出﹣15的倒数为﹣5,此题得解.【解答】解:根据倒数的定义可知:﹣15的倒数为﹣5.故选D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.2.(3分)(2017?宜昌)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:根据轴对称图形的概念可知,A为轴对称图形.故选:A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)(2017?宜昌)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌【考点】I8:专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有“爱”字一面的相对面上的字是宜.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)(2017?宜昌)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A.量角器B.直尺 C.三角板D.圆规【考点】1O:数学常识.【分析】利用圆规的特点直接得到答案即可.【解答】解:圆规有两只脚,一铁脚固定,另一脚旋转,故选D.【点评】本题考查了简单的数学知识,稍有点数学常识的同学就会做出正确的回答,难度不大.5.(3分)(2017?宜昌)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.1200【考点】1H:近似数和有效数字.【分析】利用精确数和近似数的区别进行判断.【解答】解:27354为准确数,4000、50000、1200都是近似数.故选A.【点评】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.6.(3分)(2017?宜昌)九一(1)班在参加学校4×100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A.1 B.12C.13D.14【考点】X4:概率公式.【分析】根据概率公式进行解答.【解答】解:甲跑第一棒的概率为14.故选:D.【点评】本题考查了概率公式.随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.7.(3分)(2017?宜昌)下列计算正确的是()A.a3+a2=a5B.a3?a2=a5C.(a3)2=a5D.a6÷a2=a3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】由合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则即可得出结论.【解答】解:A、a3+a2=a5.不正确;B、a3?a2=a5正确;C、(a3)2=a6≠a5,不正确;D、a6÷a2=a4≠a3,不正确;故选:B.【点评】本题考查了合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则;熟记有关法则是关键.8.(3分)(2017?宜昌)如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列于12结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.(3分)(2017?宜昌)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m【考点】KX:三角形中位线定理.【分析】根据中位线定理可得:AB=2DE=48m.【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,AB,∴DE=12∵DE=24m,∴AB=2DE=48m,故选B.【点评】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.10.(3分)(2017?宜昌)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①② B.①③ C.②④ D.③④【考点】L3:多边形内角与外角.【分析】根据多边形的内角和定理即可判断.【解答】解:∵①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是180°;∴①③剪开后的两个图形的内角和相等,故选B.【点评】本题考查了三角形内角和、四边形的内角和以及多边形的内角和定理.11.(3分)(2017?宜昌)如图,四边形ABCD内接⊙O,AC平分∠BAD,则下列结论正确的是()A .AB=ADB .BC=CDC .AB̂=AD ̂ D .∠BCA=∠DCA 【考点】M4:圆心角、弧、弦的关系.【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.【解答】解:A 、∵∠ACB 与∠ACD 的大小关系不确定,∴AB 与AD 不一定相等,故本选项错误;B 、∵AC 平分∠BAD ,∴∠BAC=∠DAC ,∴BC=CD ,故本选项正确;C 、∵∠ACB 与∠ACD 的大小关系不确定,∴AB̂与AD ̂不一定相等,故本选项错误; D 、∠BCA 与∠DCA 的大小关系不确定,故本选项错误.故选B .【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.12.(3分)(2017?宜昌)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是( )手工制品手串 中国结 手提包 木雕笔筒 总数量(个)200 100 80 70 销售数量(个) 190 100 76 68A .手串B .中国结C .手提包D .木雕笔筒【考点】18:有理数大小比较;1D :有理数的除法.【分析】分别求出各手工制品的销售率,再比较大小即可.【解答】解:∵手串的销售率=190200=1920<1;中国结的销售率=100100=1;手提包的销售率=7680=1920<1;木雕笔筒的销售率=6870=3435<1,∴销售率最高的是中国结.故选B.【点评】本题考查的是有理数的大小比较,熟知有理数大小比较的法则是解答此题的关键.13.(3分)(2017?宜昌)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列选项中,错误的是()A.sinα=cosαB.tanC=2 C.sinβ=cosβD.tanα=1【考点】T1:锐角三角函数的定义.【分析】观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2√2,AD=2,CD=1,AC=√5,利用锐角三角函数一一计算即可判断.【解答】解:观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2√2,AD=2,CD=1,AC=√5,∴sinα=cosα=√22,故①正确,tanC=ADCD=2,故②正确,tanα=1,故D正确,③∵sinβ=CDAC =√55,cosβ=2√55,∴sinβ≠cosβ,故C错误.故选C.【点评】本题考查锐角三角函数的应用.等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.(3分)(2017?宜昌)计算(x+y)2−(x−y)24xy 的结果为( ) A .1 B .12 C .14 D .0【考点】66:约分.【分析】分子利用平方差公式进行因式分解,然后通过约分进行化简.【解答】解:(x+y)2−(x−y)24xy =(x+y+x−y)(x+y−x+y)4xy =4xy 4xy =1.故选:A .【点评】本题考查了约分.约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.15.(3分)(2017?宜昌)某学校要种植一块面积为100m 2的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( ) A . B . C .D .【考点】GA :反比例函数的应用.【分析】易知x 、y 是反比例函数,再根据边长的取值范围即可解题.【解答】解:∵草坪面积为100m 2,∴x 、y 存在关系y=100x ,∵两边长均不小于5m ,∴x ≥5、y ≥5,则x ≤20,故选 C .【点评】反比例函数确定y 的取值范围,即可求得x 的取值范围,熟练掌握是解题的关键.二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)(2017?宜昌)计算:23×(1﹣14)×.【考点】1G :有理数的混合运算.【专题】11 :计算题;511:实数.【分析】原式先计算括号中的减法运算,再计算乘方运算,最后算乘法运算即可得到结果.【解答】解:原式=8×34×12=3. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(6分)(2017?宜昌)解不等式组{x 2≥−12(1−x)<4−3x.. 【考点】CB :解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:{x2≥−1①2(1−x)<4−3x②,由①得:x≥﹣2,由②得:x<2,故不等式组的解集为﹣2≤x<2.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(7分)(2017?宜昌)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00 第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)1500 1200 1300 1300 1200 (1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?【考点】W4:中位数;V5:用样本估计总体.【分析】(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;(2)根据平均数等于数据之和除以总个数求出平均每天需要租用自行车却未租到车的人数,再加上700即可.【解答】解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300;(2)平均每天需要租用自行车却未租到车的人数:(1500+1200+1300+1300+1200)÷5=1300,∵YC市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=2000.【点评】本题考查了中位数,平均数以及用样本估计总体.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷总个数.19.(7分)(2017?宜昌)“和谐号”火车从车站出发,在行驶过程中速度y (单位:m/s )与时间x (单位:s )的关系如图所示,其中线段BC ∥x 轴.(1)当0≤x ≤10,求y 关于x 的函数解析式;(2)求C 点的坐标.【考点】FH :一次函数的应用.【分析】(1)根据函数图象和图象中的数据可以求得当0≤x ≤10,y 关于x 的函数解析式;(2)根据函数图象可以得到当10≤x ≤30时,y 关于x 的函数解析式,然后将x=30代入求出相应的y 值,然后线段BC ∥x 轴,即可求得点C 的坐标.【解答】解:(1)当0≤x ≤10时,设y 关于x 的函数解析式为y=kx ,10k=50,得k=5,即当0≤x ≤10时,y 关于x 的函数解析式为y=5x ;(2)设当10≤x ≤30时,y 关于x 的函数解析式为y=ax+b ,{10a +b =5025a +b =80,得{a =2b =30, 即当10≤x ≤30时,y 关于x 的函数解析式为y=2x+30,当x=30时,y=2×30+30=90,∵线段BC ∥x 轴,∴点C 的坐标为(60,90).【点评】本题考查了一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.20.(8分)(2017?宜昌)阅读:能够成为直角三角形三条边长的三个正整数a ,b ,c ,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学着作《九章算术》,其勾股数组公式为:{a =12(m 2−n 2)b =mn c =12(m 2+n 2).其中m >n >0,m ,n 是互质的奇数. 应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【考点】KT :勾股数;KQ :勾股定理.【分析】由n=1,得到a=12(m 2﹣1)①,b=m ②,c=12(m 2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=12(m 2﹣1)①,b=m ②,c=12(m 2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,12(m 2﹣1)=5,解得:m=±√11(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,12(m 2+1)=5,解得:m=±3,∵m >0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.【点评】本题考查了勾股定理的逆定理,分类讨论是解题的关键.21.(8分)(2017?宜昌)已知,四边形ABCD 中,E 是对角线AC 上一点,DE=EC ,以AE 为直径的⊙O 与边CD 相切于点D .B 点在⊙O 上,连接OB .(1)求证:DE=OE ;(2)若CD ∥AB ,求证:四边形ABCD 是菱形.【考点】MC:切线的性质;L9:菱形的判定.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形A∴D是平行四边形,∠DOE=30°,∴∠DAE=12∴∠1=∠DAE,∴CD=AD,∴?ABCD是菱形.【点评】此题是切线的性质,主要考查了同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.22.(10分)(2017?宜昌)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【考点】AD:一元二次方程的应用;B7:分式方程的应用.【分析】(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x 亿元,则线路敷设的投资为2x 亿元,搬迁安置的投资是4x 亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x 、b 的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y ,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得.【解答】解:(1)三年用于辅助配套的投资将达到54×23=36(亿元);(2)设2015年年初,对辅助配套的投资为x 亿元,则线路敷设的投资为2x 亿元,搬迁安置的投资是4x 亿元,根据题意,得:{2x +2x +b +2x +2b =54x +(1+1.5b 2x )x +x +(1+1.5b 2x )x +4=36, 解得:{x =5b =8, ∴市政府2015年年初对三项工程的总投资是7x=35亿元;(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y ,由题意,得:20(1﹣y )2=5,解得:y 1=,y 2=(舍)答:搬迁安置投资逐年递减的百分数为50%.【点评】本题主要考查一元二次方程、二元一次方程组的应用,理解题意、准确梳理题中所涉数量关系,找到题目蕴含的相等关系是解题的关键.23.(11分)(2017?宜昌)正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与B ,C 不重合),以O 为顶点在BC 所在直线的上方作∠MON=90°.(1)当OM 经过点A 时,①请直接填空:ON 不可能 (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE=OA ,过E 点作EF 垂直于直线BC ,垂足为点F ,作EH ⊥CD 于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且OG=1.在ON 上存在点P ,过P 点作PK 垂直于直线BC,垂足为点K,使得S△PKO=4S△OBG,连接GP,求四边形PKBG的最大面积.【考点】LO:四边形综合题.【分析】(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△CBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.【解答】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB,在正方形ABCD中,∠BAO=90°﹣∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中{∠EOF =∠BAO∠EFO =∠BOE =AO∴△OFE ≌△ABO (AAS ),∴EF=OB ,OF=AB ,又OF=CF+OC=AB=BC=BO+OC=EF+OC ,∴CF=EF ,∴四边形EFCH 为正方形;(2)∵∠POK=∠OGB ,∠PKO=∠OBG ,∴△PKO ∽△OBG ,∵S △PKO =4S △OBG ,∴S △PKOS △OBG =(OP OG )2=4, ∴OP=2,∴S △POG =12OG?OP=12×1×2=1,设OB=a ,BG=b ,则a 2+b 2=OG 2=1,∴b=√1−a 2,∴S △OBG =12ab=12a √1−a 2=12√−a 4+a 2=12√−(a 2−12)2+14,∴当a 2=12时,△OBG 有最大值14,此时S △PKO =4S △OBG =1,∴四边形PKBG 的最大面积为1+1+14=94.【点评】本题为四边形的综合应用,涉及矩形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)①中注意反证法的应用,在(1)②中证得CE=EF是解题的关键,在(2)中确定出△OBG面积的最大值是解题的关键.本题考查知识点较多,综合性较强,难度适中.24.(12分)(2017?宜昌)已知抛物线y=ax2+bx+c,其中2a=b>0>c,且a+b+c=0.(1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根;(2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c相交于A,D两点.设抛物线y=ax2+bx+c的对称轴与x轴相交于E.如果在对称轴左侧的抛物线上存在点F,使得△ADF与△BOC相似,并且S△ADF=1S△ADE,求此时抛物线的表达式.2【考点】HF:二次函数综合题.【专题】15 :综合题;535:二次函数图象及其性质.【分析】(1)根据a+b+c=0,结合方程确定出方程的一个根即可;(2)表示出抛物线的对称轴,将2a=b代入,并结合a+b+c=0,表示出c,判断顶点坐标即可;(3)根据表示出的b与c,求出方程的解确定出抛物线解析式,由直线y=x+m与x,y轴交于B,C两点,表示出OB=OC=|m|,可得出三角形BOC为等腰直角三角形,确定出三角形三角形ADE面积,根据三角形ADF等于三角形ADE面积的一半求出a的值,即可确定出抛物线解析式.【解答】解:(1)∵抛物线y=ax2+bx+c,a+b+c=0,∴关于x的一元二次方程ax2+bx+c=0的一个根为x=1;(2)证明:∵2a=b,∴对称轴x=﹣b=﹣1,2a把b=2a 代入a+b+c=0中得:c=﹣3a ,∵a >0,c <0,∴△=b 2﹣4ac >0,∴4ac−b 24a <0,则顶点A (﹣1,4ac−b 24a )在第三象限;(3)由b=2a ,c=﹣3a ,得到x=−b±√b 2−4ac 2a =−2a±4a 2a ,解得:x 1=﹣3,x 2=1, 二次函数解析式为y=ax 2+2ax ﹣3a ,∵直线y=x+m 与x ,y 轴分别相交于点B ,C 两点,则OB=OC=|m|,∴△BOC 是以∠BOC 为直角的等腰直角三角形,即此时直线y=x+m 与对称轴x=﹣1的夹角∠BAE=45°,∵点F 在对称轴左侧的抛物线上,则∠DAF >45°,此时△ADF 与△BOC 相似,顶点A 只可能对应△BOC 的直角顶点O ,即△ADF 是以A 为直角顶点的等腰直角三角形,且对称轴为x=﹣1,设对称轴x=﹣1与OF 交于点G ,∵直线y=x+m 过顶点A (﹣1,﹣4a ),∴m=1﹣4a ,∴直线解析式为y=x+1﹣4a ,联立得:{y =x +1−4a y =ax 2+2ax −3a, 解得:{x =−1y =−4a 或{x =1a −1y =1a−4a , 这里(﹣1,﹣4a )为顶点A ,(1a ﹣1,1a﹣4a )为点D 坐标, 点D 到对称轴x=﹣1的距离为1a ﹣1﹣(﹣1)=1a ,AE=|﹣4a|=4a ,∴S △ADE =12×1a ×4a=2,即它的面积为定值,。

湖北省宜昌市中考数学试卷含答案解析版

湖北省宜昌市中考数学试卷含答案解析版

2017年湖北省宜昌市中考数学试卷一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)有理数﹣15的倒数为( ) A .5 B .15 C .−15 D .﹣52.(3分)如下字体的四个汉字中,是轴对称图形的是( )A .B .C .D .3.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是( )A .美B .丽C .宜D .昌4.(3分)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为( )A .量角器B .直尺C .三角板D .圆规5.(3分)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC 报验点,电缆拉放长度估计1200千米.其中准确数是( )A .27354B .40000C .50000D .12006.(3分)九一(1)班在参加学校4×100m 接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为( )A .1B .12C .13D .14 7.(3分)下列计算正确的是( )A .a 3+a 2=a 5B .a 3?a 2=a 5C .(a 3)2=a 5D .a 6÷a 2=a 38.(3分)如图,在△AEF 中,尺规作图如下:分别以点E ,点F 为圆心,大于12EF 的长为半径作弧,两弧相交于G ,H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是( )A .AO 平分∠EAFB .AO 垂直平分EFC .GH 垂直平分EFD .GH 平分AF9.(3分)如图,要测定被池塘隔开的A ,B 两点的距离.可以在AB 外选一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,连接ED .现测得AC=30m ,BC=40m ,DE=24m ,则AB=( )A .50mB .48mC .45mD .35m10.(3分)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是( )A .①②B .①③C .②④D .③④11.(3分)如图,四边形ABCD 内接⊙O ,AC 平分∠BAD ,则下列结论正确的是( )A .AB=ADB .BC=CDC .AB̂=AD ̂ D .∠BCA=∠DCA 12.(3分)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是( )手工制品手串 中国结 手提包 木雕笔筒 总数量(个)200 100 80 70 销售数量(个) 190 100 76 68A .手串B .中国结C .手提包D .木雕笔筒13.(3分)△ABC 在网格中的位置如图所示(每个小正方形边长为1),AD ⊥BC 于D ,下列选项中,错误的是( )A .sin α=cos αB .tanC=2C .sin β=cos βD .tan α=114.(3分)计算(x+y)2−(x−y)24xy 的结果为( ) A .1 B .12 C .14 D .015.(3分)某学校要种植一块面积为100m 2的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( )A. B.C. D.二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)计算:23×(1﹣14)×.17.(6分)解不等式组{x2≥−12(1−x)<4−3x..18.(7分)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00 第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)1500 1200 1300 1300 1200 (1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?19.(7分)“和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BC∥x轴.(1)当0≤x≤10,求y关于x的函数解析式;(2)求C点的坐标.20.(8分)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学着作《九章算术》,其勾股数组公式为:{a=12(m2−n2)b=mnc=12(m2+n2).其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.21.(8分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.22.(10分)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.23.(11分)正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与B ,C 不重合),以O 为顶点在BC 所在直线的上方作∠MON=90°.(1)当OM 经过点A 时,①请直接填空:ON (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE=OA ,过E 点作EF 垂直于直线BC ,垂足为点F ,作EH ⊥CD 于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且OG=1.在ON 上存在点P ,过P 点作PK 垂直于直线BC ,垂足为点K ,使得S △PKO =4S △OBG ,连接GP ,求四边形PKBG 的最大面积.24.(12分)已知抛物线y=ax 2+bx+c ,其中2a=b >0>c ,且a+b+c=0.(1)直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根;(2)证明:抛物线y=ax 2+bx+c 的顶点A 在第三象限;(3)直线y=x+m 与x ,y 轴分别相交于B ,C 两点,与抛物线y=ax 2+bx+c 相交于A ,D 两点.设抛物线y=ax 2+bx+c 的对称轴与x 轴相交于E .如果在对称轴左侧的抛物线上存在点F ,使得△ADF 与△BOC 相似,并且S △ADF =12S △ADE ,求此时抛物线的表达式.2017年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017?宜昌)有理数﹣15的倒数为()A.5 B.15C.−15D.﹣5【考点】17:倒数.【分析】根据倒数的定义,找出﹣15的倒数为﹣5,此题得解.【解答】解:根据倒数的定义可知:﹣15的倒数为﹣5.故选D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.2.(3分)(2017?宜昌)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:根据轴对称图形的概念可知,A为轴对称图形.故选:A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)(2017?宜昌)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌【考点】I8:专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有“爱”字一面的相对面上的字是宜.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)(2017?宜昌)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A.量角器B.直尺 C.三角板D.圆规【考点】1O:数学常识.【分析】利用圆规的特点直接得到答案即可.【解答】解:圆规有两只脚,一铁脚固定,另一脚旋转,故选D.【点评】本题考查了简单的数学知识,稍有点数学常识的同学就会做出正确的回答,难度不大.5.(3分)(2017?宜昌)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.1200【考点】1H:近似数和有效数字.【分析】利用精确数和近似数的区别进行判断.【解答】解:27354为准确数,4000、50000、1200都是近似数.故选A.【点评】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.6.(3分)(2017?宜昌)九一(1)班在参加学校4×100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A.1 B.12C.13D.14【考点】X4:概率公式.【分析】根据概率公式进行解答.【解答】解:甲跑第一棒的概率为14.故选:D.【点评】本题考查了概率公式.随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.7.(3分)(2017?宜昌)下列计算正确的是()A.a3+a2=a5B.a3?a2=a5C.(a3)2=a5D.a6÷a2=a3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】由合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则即可得出结论.【解答】解:A、a3+a2=a5.不正确;B、a3?a2=a5正确;C、(a3)2=a6≠a5,不正确;D、a6÷a2=a4≠a3,不正确;故选:B.【点评】本题考查了合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则;熟记有关法则是关键.8.(3分)(2017?宜昌)如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列于12结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.(3分)(2017?宜昌)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m【考点】KX:三角形中位线定理.【分析】根据中位线定理可得:AB=2DE=48m.【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,AB,∴DE=12∵DE=24m,∴AB=2DE=48m,故选B.【点评】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.10.(3分)(2017?宜昌)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①② B.①③ C.②④ D.③④【考点】L3:多边形内角与外角.【分析】根据多边形的内角和定理即可判断.【解答】解:∵①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是180°;∴①③剪开后的两个图形的内角和相等,故选B.【点评】本题考查了三角形内角和、四边形的内角和以及多边形的内角和定理.11.(3分)(2017?宜昌)如图,四边形ABCD内接⊙O,AC平分∠BAD,则下列结论正确的是()A .AB=ADB .BC=CDC .AB̂=AD ̂ D .∠BCA=∠DCA 【考点】M4:圆心角、弧、弦的关系.【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.【解答】解:A 、∵∠ACB 与∠ACD 的大小关系不确定,∴AB 与AD 不一定相等,故本选项错误;B 、∵AC 平分∠BAD ,∴∠BAC=∠DAC ,∴BC=CD ,故本选项正确;C 、∵∠ACB 与∠ACD 的大小关系不确定,∴AB̂与AD ̂不一定相等,故本选项错误; D 、∠BCA 与∠DCA 的大小关系不确定,故本选项错误.故选B .【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.12.(3分)(2017?宜昌)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是( )手工制品手串 中国结 手提包 木雕笔筒 总数量(个)200 100 80 70 销售数量(个) 190 100 76 68A .手串B .中国结C .手提包D .木雕笔筒【考点】18:有理数大小比较;1D :有理数的除法.【分析】分别求出各手工制品的销售率,再比较大小即可.【解答】解:∵手串的销售率=190200=1920<1;中国结的销售率=100100=1;手提包的销售率=7680=1920<1;木雕笔筒的销售率=6870=3435<1,∴销售率最高的是中国结.故选B.【点评】本题考查的是有理数的大小比较,熟知有理数大小比较的法则是解答此题的关键.13.(3分)(2017?宜昌)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列选项中,错误的是()A.sinα=cosαB.tanC=2 C.sinβ=cosβD.tanα=1【考点】T1:锐角三角函数的定义.【分析】观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2√2,AD=2,CD=1,AC=√5,利用锐角三角函数一一计算即可判断.【解答】解:观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2√2,AD=2,CD=1,AC=√5,∴sinα=cosα=√22,故①正确,tanC=ADCD=2,故②正确,tanα=1,故D正确,③∵sinβ=CDAC =√55,cosβ=2√55,∴sinβ≠cosβ,故C错误.故选C.【点评】本题考查锐角三角函数的应用.等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.(3分)(2017?宜昌)计算(x+y)2−(x−y)24xy 的结果为( ) A .1 B .12 C .14 D .0【考点】66:约分.【分析】分子利用平方差公式进行因式分解,然后通过约分进行化简.【解答】解:(x+y)2−(x−y)24xy =(x+y+x−y)(x+y−x+y)4xy =4xy 4xy =1.故选:A .【点评】本题考查了约分.约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.15.(3分)(2017?宜昌)某学校要种植一块面积为100m 2的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( ) A . B . C .D .【考点】GA :反比例函数的应用.【分析】易知x 、y 是反比例函数,再根据边长的取值范围即可解题.【解答】解:∵草坪面积为100m 2,∴x 、y 存在关系y=100x ,∵两边长均不小于5m ,∴x ≥5、y ≥5,则x ≤20,故选 C .【点评】反比例函数确定y 的取值范围,即可求得x 的取值范围,熟练掌握是解题的关键.二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)(2017?宜昌)计算:23×(1﹣14)×.【考点】1G :有理数的混合运算.【专题】11 :计算题;511:实数.【分析】原式先计算括号中的减法运算,再计算乘方运算,最后算乘法运算即可得到结果.【解答】解:原式=8×34×12=3. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(6分)(2017?宜昌)解不等式组{x 2≥−12(1−x)<4−3x.. 【考点】CB :解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:{x2≥−1①2(1−x)<4−3x②,由①得:x≥﹣2,由②得:x<2,故不等式组的解集为﹣2≤x<2.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(7分)(2017?宜昌)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00 第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)1500 1200 1300 1300 1200 (1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?【考点】W4:中位数;V5:用样本估计总体.【分析】(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;(2)根据平均数等于数据之和除以总个数求出平均每天需要租用自行车却未租到车的人数,再加上700即可.【解答】解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300;(2)平均每天需要租用自行车却未租到车的人数:(1500+1200+1300+1300+1200)÷5=1300,∵YC市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=2000.【点评】本题考查了中位数,平均数以及用样本估计总体.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷总个数.19.(7分)(2017?宜昌)“和谐号”火车从车站出发,在行驶过程中速度y (单位:m/s )与时间x (单位:s )的关系如图所示,其中线段BC ∥x 轴.(1)当0≤x ≤10,求y 关于x 的函数解析式;(2)求C 点的坐标.【考点】FH :一次函数的应用.【分析】(1)根据函数图象和图象中的数据可以求得当0≤x ≤10,y 关于x 的函数解析式;(2)根据函数图象可以得到当10≤x ≤30时,y 关于x 的函数解析式,然后将x=30代入求出相应的y 值,然后线段BC ∥x 轴,即可求得点C 的坐标.【解答】解:(1)当0≤x ≤10时,设y 关于x 的函数解析式为y=kx ,10k=50,得k=5,即当0≤x ≤10时,y 关于x 的函数解析式为y=5x ;(2)设当10≤x ≤30时,y 关于x 的函数解析式为y=ax+b ,{10a +b =5025a +b =80,得{a =2b =30, 即当10≤x ≤30时,y 关于x 的函数解析式为y=2x+30,当x=30时,y=2×30+30=90,∵线段BC ∥x 轴,∴点C 的坐标为(60,90).【点评】本题考查了一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.20.(8分)(2017?宜昌)阅读:能够成为直角三角形三条边长的三个正整数a ,b ,c ,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学着作《九章算术》,其勾股数组公式为:{a =12(m 2−n 2)b =mn c =12(m 2+n 2).其中m >n >0,m ,n 是互质的奇数. 应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【考点】KT :勾股数;KQ :勾股定理.【分析】由n=1,得到a=12(m 2﹣1)①,b=m ②,c=12(m 2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=12(m 2﹣1)①,b=m ②,c=12(m 2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,12(m 2﹣1)=5,解得:m=±√11(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,12(m 2+1)=5,解得:m=±3,∵m >0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.【点评】本题考查了勾股定理的逆定理,分类讨论是解题的关键.21.(8分)(2017?宜昌)已知,四边形ABCD 中,E 是对角线AC 上一点,DE=EC ,以AE 为直径的⊙O 与边CD 相切于点D .B 点在⊙O 上,连接OB .(1)求证:DE=OE ;(2)若CD ∥AB ,求证:四边形ABCD 是菱形.【考点】MC:切线的性质;L9:菱形的判定.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形A∴D是平行四边形,∠DOE=30°,∴∠DAE=12∴∠1=∠DAE,∴CD=AD,∴?ABCD是菱形.【点评】此题是切线的性质,主要考查了同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.22.(10分)(2017?宜昌)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【考点】AD:一元二次方程的应用;B7:分式方程的应用.【分析】(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x 亿元,则线路敷设的投资为2x 亿元,搬迁安置的投资是4x 亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x 、b 的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y ,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得.【解答】解:(1)三年用于辅助配套的投资将达到54×23=36(亿元);(2)设2015年年初,对辅助配套的投资为x 亿元,则线路敷设的投资为2x 亿元,搬迁安置的投资是4x 亿元,根据题意,得:{2x +2x +b +2x +2b =54x +(1+1.5b 2x )x +x +(1+1.5b 2x )x +4=36, 解得:{x =5b =8, ∴市政府2015年年初对三项工程的总投资是7x=35亿元;(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y ,由题意,得:20(1﹣y )2=5,解得:y 1=,y 2=(舍)答:搬迁安置投资逐年递减的百分数为50%.【点评】本题主要考查一元二次方程、二元一次方程组的应用,理解题意、准确梳理题中所涉数量关系,找到题目蕴含的相等关系是解题的关键.23.(11分)(2017?宜昌)正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与B ,C 不重合),以O 为顶点在BC 所在直线的上方作∠MON=90°.(1)当OM 经过点A 时,①请直接填空:ON 不可能 (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE=OA ,过E 点作EF 垂直于直线BC ,垂足为点F ,作EH ⊥CD 于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且OG=1.在ON 上存在点P ,过P 点作PK 垂直于直线BC,垂足为点K,使得S△PKO=4S△OBG,连接GP,求四边形PKBG的最大面积.【考点】LO:四边形综合题.【分析】(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△CBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.【解答】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB,在正方形ABCD中,∠BAO=90°﹣∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中{∠EOF =∠BAO∠EFO =∠BOE =AO∴△OFE ≌△ABO (AAS ),∴EF=OB ,OF=AB ,又OF=CF+OC=AB=BC=BO+OC=EF+OC ,∴CF=EF ,∴四边形EFCH 为正方形;(2)∵∠POK=∠OGB ,∠PKO=∠OBG ,∴△PKO ∽△OBG ,∵S △PKO =4S △OBG ,∴S △PKOS △OBG =(OP OG )2=4, ∴OP=2,∴S △POG =12OG?OP=12×1×2=1,设OB=a ,BG=b ,则a 2+b 2=OG 2=1,∴b=√1−a 2,∴S △OBG =12ab=12a √1−a 2=12√−a 4+a 2=12√−(a 2−12)2+14,∴当a 2=12时,△OBG 有最大值14,此时S △PKO =4S △OBG =1,∴四边形PKBG 的最大面积为1+1+14=94.【点评】本题为四边形的综合应用,涉及矩形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)①中注意反证法的应用,在(1)②中证得CE=EF是解题的关键,在(2)中确定出△OBG面积的最大值是解题的关键.本题考查知识点较多,综合性较强,难度适中.24.(12分)(2017?宜昌)已知抛物线y=ax2+bx+c,其中2a=b>0>c,且a+b+c=0.(1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根;(2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c相交于A,D两点.设抛物线y=ax2+bx+c的对称轴与x轴相交于E.如果在对称轴左侧的抛物线上存在点F,使得△ADF与△BOC相似,并且S△ADF=1S△ADE,求此时抛物线的表达式.2【考点】HF:二次函数综合题.【专题】15 :综合题;535:二次函数图象及其性质.【分析】(1)根据a+b+c=0,结合方程确定出方程的一个根即可;(2)表示出抛物线的对称轴,将2a=b代入,并结合a+b+c=0,表示出c,判断顶点坐标即可;(3)根据表示出的b与c,求出方程的解确定出抛物线解析式,由直线y=x+m与x,y轴交于B,C两点,表示出OB=OC=|m|,可得出三角形BOC为等腰直角三角形,确定出三角形三角形ADE面积,根据三角形ADF等于三角形ADE面积的一半求出a的值,即可确定出抛物线解析式.【解答】解:(1)∵抛物线y=ax2+bx+c,a+b+c=0,∴关于x的一元二次方程ax2+bx+c=0的一个根为x=1;(2)证明:∵2a=b,∴对称轴x=﹣b=﹣1,2a把b=2a 代入a+b+c=0中得:c=﹣3a ,∵a >0,c <0,∴△=b 2﹣4ac >0,∴4ac−b 24a <0,则顶点A (﹣1,4ac−b 24a )在第三象限;(3)由b=2a ,c=﹣3a ,得到x=−b±√b 2−4ac 2a =−2a±4a 2a ,解得:x 1=﹣3,x 2=1, 二次函数解析式为y=ax 2+2ax ﹣3a ,∵直线y=x+m 与x ,y 轴分别相交于点B ,C 两点,则OB=OC=|m|,∴△BOC 是以∠BOC 为直角的等腰直角三角形,即此时直线y=x+m 与对称轴x=﹣1的夹角∠BAE=45°,∵点F 在对称轴左侧的抛物线上,则∠DAF >45°,此时△ADF 与△BOC 相似,顶点A 只可能对应△BOC 的直角顶点O ,即△ADF 是以A 为直角顶点的等腰直角三角形,且对称轴为x=﹣1,设对称轴x=﹣1与OF 交于点G ,∵直线y=x+m 过顶点A (﹣1,﹣4a ),∴m=1﹣4a ,∴直线解析式为y=x+1﹣4a ,联立得:{y =x +1−4a y =ax 2+2ax −3a, 解得:{x =−1y =−4a 或{x =1a −1y =1a−4a , 这里(﹣1,﹣4a )为顶点A ,(1a ﹣1,1a﹣4a )为点D 坐标, 点D 到对称轴x=﹣1的距离为1a ﹣1﹣(﹣1)=1a ,AE=|﹣4a|=4a ,∴S △ADE =12×1a ×4a=2,即它的面积为定值,。

2011年中考数学试题及解析171套试题试卷_121

2011年中考数学试题及解析171套试题试卷_121

湖北省黄石市2011年初中毕业生学业考试一、仔细选一选(每小题3分,共30分)的值为( )A.2B. -2C. 2±D. 不存在2.黄石市2011年6月份某日一天的温差为11℃,最高气温为t ℃,则最低气温可表示为( )A. (11+t)℃B. (11-t)℃C. (t-11)℃D. (-t-11)℃ 3.双曲线21k y x -=的图像经过第二、四象限,则k 的取值范围是( ) A.12k > B. 12k < C. 12k = D. 不存在4. 有如下图形:①函数1y x =+的图形;②函数1y x=的图像;③一段弧;④平行四边形,其中一定是轴对称图形的有( )A.1个B.2个C.3个D.4个 5.如图(1)所示的几何体的俯视图是( )6.2010年12月份,某市总工会组织该市各单位参加“迎新春长跑活动”,将报名的男运动员分成3组:青年组,中年组,老年组。

各组人数所占比例如图(2)所示,已知青年组有120人,则中年组与老年组人数分别是( )A.30,10B.60,20C.50,30D.60,107.将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3),则三角板的最大边的长为( ) A. 3cm B. 6cmC.cmD. cm8.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n 个点最多可确定21条直线,则n 的值为( )A. 5B. 6C. 7D. 89.设一元二次方程(1)(2)(0)x x m m --=>的两根分别为,αβ,且αβ<,则,αβ满足( )A. 12αβ<<<B. 12αβ<<<C. 12αβ<<<D. 1α<且 2β>10.已知梯形ABCD 的四个顶点的坐标分别为(1,0)A -,(5,0)B ,(2,2)C ,(0,2)D ,直线2y kx =+将梯形分成面积相等的两部分,则k 的值为( ) A. 23-B.29-C. 47-D. 27- 二、认真填一填(每小题3分,共18分) 228x -A B CD 图(1) 中年人 30%老年人 10%青年人 60%30° 图(3) 图(2)12.为响应“红歌唱响中国”活动,某乡镇举行了一场“红歌”歌咏比赛,组委会规定:任何一名参赛选手的成绩x表(一)根据表(一)提供的信息得到n = .13.有甲、乙两张纸条,甲纸条的宽是乙纸条宽的2倍,如图(4)。

湖北省宜昌市中考数学试题及答案

湖北省宜昌市中考数学试题及答案

题目简单更要仔细哟!九年级生学业考试 数 学 试 卷(课改实验区使用)(考试形式:闭卷 全卷共五大题25小题 卷面分数:120分 考试时限:120分钟)考生注意:1.本试卷分为两卷,解答第I 卷(1~2页)时请将解答结果填写在第II 卷(3~8页)上指定的位置,否则答案无效,交卷时只交第II 卷. 2.答卷时允许使用科学计算器.以下数据和公式供参考:二次函数y =ax 2+bx +c 图象的顶点坐标是)44,2(2ab ac a b -- ;扇形面积S =3602r n π.第Ⅰ卷(选择题、填空题 共45分)一、选择题:(下列各小题都给出了四个选项,其中只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在第II 卷上指定的位置. 本大题共10小题,每小题3分,计30分)1. 图中物体的形状类似于( ).(A )棱柱 (B )圆柱 (C )圆锥 (D )球(第1题)2.化简20的结果是( ).(A)25 (B)52 (C) 210. (D)543. 如图所示,BC =6,E 、F 分别是线段AB 和线段AC 的中点, 那么线段EF 的长是( ).(A )6 (B )5 (C )4.5 (D )34.有6张背面相同的扑克牌,正面上的数字分别是4,5,6,7,8,9.若将这六张牌背面朝上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是9的概率为( ).(A)23 (B) 12 (C) 13 (D) 165.在5×5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是( ).(A)先向下移动1格,再向左移动1格 (B)先向下移动1格,再向左移动2格 (C)先向下移动2格,再向左移动1格 (D)先向下移动2格,再向左移动2格图1 图2 (第5题) (第3题)6. 三峡大坝坝顶从7月到9月共92天将对游客开放,每天限接待1000人,在整个开放期间最多能接待游客的总人数用科学记数法表示为( )人. (A )92×103 (B )9.2×104 (C )9.2×103 (D )9.2×1057.如图,希望中学制作了学生选择棋类、武术、摄影、刺绣四门校本 课程情况的扇形统计图. 从图中可以看出选择刺绣的学生为( ). (A)11% (B)12% (C) 13% (D) 14%8.某城市进行旧城区人行道的路面翻新,准备对地面密铺彩色地砖, 有人提出了4种地 砖的形状供设计选用:①正三角形,②正四边形,③正五边形,④正六边形.其中不 能进行密铺的地砖的形状是( ).(A) ① (B) ② (C) ③ (D) ④9.实数m 、n 在数轴上的位置如图所示,则下列不等关系正确的是( ). (A )n <m (B ) n 2<m 2 (C )n 0<m 0(D )| n |<| m | (第9题)10.如图所示的函数图象的关系式可能是( ). (A )y = x (B )y =x 1 (C )y = x 2 (D) y = 1x二、填空题:(请将答案填写在第II 卷上指定的位置.本大题共5小题,每小题3分,计15分)11.如果收入15元记作+15元,那么支出20元记作 元. 12.如图,直线AB 、CD 相交于点O ,若∠1=28°,则∠2= .13.已知,在Rt △ABC 中∠C =90°,∠BAC =30°,AB =10,那么BC = .14.甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:15.如图,时钟的钟面上标有1,2,3,……,12共12个数,一条 直线把钟面分成了两部分.请你再用一条直线分割钟面,使钟面被 分成三个不同的部分且各部分所包含的几个数的和都相等,则其 中的两个部分所包含的几个数分别是 和. 。

湖北宜昌中考数学试题及答案(绝对精品经典卷)

湖北宜昌中考数学试题及答案(绝对精品经典卷)

X 市初中毕业生学业及升学考试数学试卷注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效. 3.填空题和解答题用0.5毫米的黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题(本大题10个小题,每小题只有唯一正确答案,每小题3分,共30分)1.下列实数中,无理数是( ) A .-52B .π CD .|-2| 2.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是( ) A .(x -1)2=4 B .(x +1)2=4 C .(x -1)2=16 D .(x +1)2=16 3.已知:直线l 1∥l 2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( )A .30°B .35°C .40°D .45°4|x -y -3|互为相反数,则x +y 的值为( ) A .3 B .9 C .12 D .275.对于一组统计数据:2,3,6,9,3,7,下列说法错误..的是( ) A .众数是3 B .中位数是6 C .平均数是5 D .极差是76.已知点M (1-2m ,m -1)关于x 轴的对称点...在第一象限,则m 的取值范围在数轴上表示正确的是( )7.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( )A .B .C .D .l 1 1第3题图l 228.如图,点A 是反比例函数y =2x(x >0)的图象上任意一点,AB ∥x 轴交反比例函数y =-3x的图象于点B ,以AB 为边作□ABCD ,其中C 、D在x 轴上,则S □ABCD 为( ) A .2 B .3 C .4 D .59.如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若BF =2,则PE 的长为( )A .2B .CD .310.已知:顺次连结矩形各边的中点,得到一个菱形,如图①;再顺次连结菱形各边的中点,得到一个新的矩形,如图②;然后顺次连结新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2012个图形中直角三角形的个数有( ) A .8048个 B .4024个 C .2012个 D .1066个二、填空题(本大题共8个小题,每小题3分,共24分)11-(-2)-2--2)0=__▲__. 12.若92+-y x 与3--y x 互为相反数,则x+y=__▲__13. 如图,已知正方形ABCD 的对角线长为ABCD 沿直线EF 折叠,则图中阴影部分的周长为__▲__14.已知:多项式x 2-kx +1是一个完全平方式,则反比例函数y =1k x-的解析式为_▲__ 15.如图,在直角坐标系中,四边形OABC 是直角梯形,BC ∥OA ,⊙P 分别与OA 、OC 、BC 相切于点E 、D 、B ,与AB 交于点F .已知A (2,0),B (1,2),则tan ∠FDE =__▲__.A CB A . B .C .D .图① 图② 图③第8题图第9题图A DE P Q第13题图16.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为__▲__cm 2.(结果可保留根号)17.新定义:[a ,b ]为一次函数y =ax +b (a ≠0,a ,b 为实数)的“关联数”.若“关联数”[1,m -2]的一次函数是正比例函数,则关于x 的方程11x -+1m=1的解为__▲__.18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE —ED —DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:AD =BE =5;cos ∠ABE =35;当0<t ≤5时,y =25t 2;当t =294秒时,△ABE ∽△QBP ;其中正确的结论是__▲__(填序号). 三、解答题19.(本题满分7分)先化简,后求值:211()(3)31a a a a +----g ,其中a+1.图(1) 图(2)第17题图Q第15题图cm第15题图20.(本题满分8分)如图,Rt △ABC 中,∠C =90°,将△ABC 沿AB 向下翻折后,再绕点A 按顺时针方向旋转α度(α<∠BAC ),得到Rt △ADE ,其中斜边AE 交BC 于点F ,直角边DE 分别交AB 、BC 于点G 、H . (1)请根据题意用实线补全图形; (2)求证:△AFB ≌△AGE .21.(本题满分8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.αADEF G C BH第20题图CB22.(本题满分9分)如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图.已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m .设油罐横截面圆心为O ,半径为5m ,∠D =56°,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)23.(本题满分10分)荆州素有“中国淡水鱼都”之美誉.某水产经销商在荆州鱼博会上批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y (元)与进货量x (千克)之间的函数关系式; (2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?)第23题图第22题图24.(本题满分12)已知:y 关于x 的函数y =(k -1)x 2-2kx +k +2的图象与x 轴有交点. (1)求k 的取值范围;(2)若x 1,x 2是函数图象与x 轴两个交点的横坐标,且满足(k -1)x 12+2kx 2+k +2=4x 1x 2. ①求k 的值;②当k ≤x ≤k +2时,请结合函数图象确定y 的最大值和最大值.25.(本题满分12分)如图甲,四边形OABC 的边OA 、OC 分别在x 轴、y 轴的正半轴上,顶点在B 点的抛物线交x 轴于点A 、D ,交y 轴于点E ,连结AB 、AE 、BE .已知tan ∠CBE=13,A (3,0),D (-1,0),E (0,3). (1)求抛物线的解析式及顶点B 的坐标; (2)求证:CB 是△ABE 外接圆的切线;(3)试探究坐标轴上是否存在一点P ,使以D 、E 、P 为顶点的三角形与△ABE 相似,若存在,直接写出....点P 的坐标;若不存在,请说明理由; (4)设△AOE 沿x 轴正方向平移t 个单位长度(0<t ≤3)时,△AOE 与△ABE 重叠部分的面积为s ,求s 与t 之间的函数关系式,并指出t 的取值范围.图甲图乙(备用图)参考答案一、选择题(每选对一题得3分,共30分)1.B 2.A 3.B 4.D 5.B 6.A 7.B 8.D 9.C 10.B二、填空题(每填对一题得3分,共24分)11.-1 12.27 13.8 14.y =1x 或y =-3x15.1216.360 17.x =3 18.①③④ 19.解:原式=311a a ---=21a -. 当a+1. 20.解:(1)画图,如图1; (2)由题意得:△ABC ≌△AED .∴AB =AE ,∠ABC =∠E .在△AFB 和△AGE中,,,,ABC E AB AE αα∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AFB ≌△AGE (ASA). 21.解:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.2分 (2)如图2;(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D 粽的人有3200人. (4)如图3;(列表方法略,参照给分).开始A B C D B C D A C D A B D A B C图3图2α 图1D EF GC BHP (C 粽)=312=14. 答:他第二个吃到的恰好是C 粽的概率是14. 22.解:如图4,连结AO 、BO .过点A 作AE ⊥DC 于点E ,过点O 作ON ⊥DC 于点N ,ON 交⊙O 于点M ,交AB 于点F .则OF ⊥AB . ∵OA =OB =5m ,AB =8m , ∴AF =BF =12AB =4(m),∠AOB =2∠AOF . 在Rt △AOF 中,sin ∠AOF =AF AO=0.8=sin53°.∴∠AOF =53°,则∠AOB =106°.∵OF3(m),由题意得:MN =1m , ∴FN =OM -OF +MN =3(m).∵四边形ABCD 是等腰梯形,AE ⊥DC ,FN ⊥AB , ∴AE =FN =3m ,DC =AB +2DE . 在Rt △ADE 中,tan56°=AEDE=32,∴DE =2m ,DC =12m ∴S 阴=S 梯形ABCD -(S 扇OAB -S △OAB )=12(8+12)×3-(106360π×52-12×8×3)=20(m2). 答:U 型槽的横截面积约为20m 2.23.解:(1)y =26 (2040),24 (40).x x x x ⎧⎨>⎩≤≤(2)设该经销商购进乌鱼x 千克,则购进草鱼(75-x )千克,所需进货费用为w 元.由题意得:40,89%(75)95%93%75.x x x >⎧⎨⨯-+⨯⎩≥解得x ≥50.由题意得w =8(75-x )+24x =16x +600. ∵16>0,∴w 的值随x 的增大而增大. ∴当x =50时,75-x =25,W 最小=1400(元).答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.24.解:(1)当k =1时,函数为一次函数y =-2x +3,其图象与x 轴有一个交点. 当k ≠1时,函数为二次函数,其图象与x 轴有一个或两个交点, 令y =0得(k -1)x 2-2kx +k +2=0.△=(-2k )2-4(k -1)(k +2)≥0,解得k ≤2.即k ≤2且k =1.图4综上所述,k 的取值范围是k ≤2. (2)①∵x 1≠x 2,由(1)知k <2且k =1. 由题意得(k -1)x 12+(k +2)=2kx 1.将(*)代入(k -1)x 12+2kx 2+k +2=4x 1x 2中得: 2k (x 1+x 2)=4x 1x 2. 又∵x 1+x 2=21k k -,x 1x 2=21k k +-, ∴2k ·21k k -=4·21k k +-. 解得:k 1=-1,k 2=2(不合题意,舍去). ∴所求k 值为-1.②如图5,∵k 1=-1,y =-2x 2+2x +1=-2(x -12)2+32. 且-1≤x ≤1.由图象知:当x =-1时, y 最小=-3;当x =12时,y 最大=32. ∴y 的最大值为32,最小值为-3. 25.(1)解:由题意,设抛物线解析式为y =a (x -3)(x +1). 将E (0,3)代入上式,解得:a =-1. ∴y =-x 2+2x +3.则点B (1,4).…………………………………………………………………………………2分 (2)如图6,证明:过点B 作BM ⊥y 于点M ,则M (0,4). 在Rt △AOE 中,OA =OE =3,∴∠1=∠2=45°,AE. 在Rt △EMB 中,EM =OM -OE =1=BM ,∴∠MEB =∠MBE =45°,BE∴∠BEA =180°-∠1-∠MEB =90°. ∴AB 是△ABE 外接圆的直径.………………………………………………………………3分 在Rt △ABE 中,tan ∠BAE =BE AE =13=tan ∠CBE , ∴∠BAE =∠CBE .在Rt △ABE 中,∠BAE +∠3=90°,∴∠CBE +∠3=90°. ∴∠CBA =90°,即CB ⊥AB .∴CB 是△ABE 外接圆的切线.………………………………………………………………5分图5图6(3)P 1(0,0),P 2(9,0),P 3(0,-13).………………………………………………………8分 (4)解:设直线AB 的解析式为y =kx +b .将A (3,0),B (1,4)代入,得30,4.k b k b +=⎧⎨+=⎩解得2,6.k b =-⎧⎨=⎩∴y =-2x +6.过点E 作射线EF ∥x 轴交AB 于点F ,当y =3时,得x =32,∴F (32,3).…………9分 情况一:如图7,当0<t ≤32时,设△AOE 平移到△DNM 的位置,MD 交AB 于点H ,MN 交AE 于点G .则ON =AD =t ,过点H 作LK ⊥x 轴于点K ,交EF 于点L . 由△AHD ∽△FHM ,得AD HK FM HL =.即332t HK HKt =--.解得HK =2t .∴S 阴=S △MND -S △GNA -S △HAD =12×3×3-12(3-t )2-12t ·2t =-32t 2+3t .…………11分情况二:如图8,当32<t ≤3时,设△AOE 平移到△PQR 的位置,PQ 交AB 于点I ,交AE 于点V .由△IQA ∽△IPF ,得AQ IQ FP IP =.即3332IQ t IQt -=--.解得IQ =2(3-t ).∴S 阴=S △IQA -S △VQA =12×(3-t )×2(3-t )-12(3-t )2=12(3-t )2=12t 2-3t +92. 综上所述:s =22333 0),221933 (3).222t t t t t t ⎧-+<⎪⎪⎨⎪-+<⎪⎩≤≤(……………………………………………………12分图8图7。

湖北省各市县2011年中考数学试题分类解析专题(1-12)-6

湖北省各市县2011年中考数学试题分类解析专题(1-12)-6

湖北省2011年中考数学专题6:函数的图像与性质 选择题1. (湖北黄石3分)双曲线21k y x -=的图像经过第二、四象限,则k 的取值范围是A.12k >B. 12k <C. 12k =D. 不存在【答案】B 。

【考点】反比例函数的性质。

【分析】据反比例函数的图象经过第二、四象限得到关于k 的不等式:210k <-,解之即求出k 的取值范围12k <。

故选B 。

2.(湖北黄石3分)设一元二次方程(1)(2)(0)x x m m --=>的两根分别为 , αβ,且αβ<,则 , αβ满足A. 12αβ<<<B. 12αβ<<<C. 12αβ<<<D. 1α<且 2β> 【答案】 D 。

【考点】抛物线与x 轴的交点,一元二次方程根与系数的关系,图象平移的性质。

【分析】一元二次方程(1)(2)(0)x x m m --=>的根可以理解为二次函数(1)(2)(0)y x x m m =--->与x 轴的交点的横坐标。

令m =0,则函数(1)(2)y x x =--的图象与x 轴的交点分别为(1,0),(2,0),∴由平移的性质,(1)(2)(0)y x x m m =--->的图象可以理解为由(1)(2)y x x =--的图象向下平移得到。

∴它与x 轴的交点总在点(1,0)和(2,0)之外,即α<1,β>2。

故选D 。

3.(湖北黄石3分)已知梯形ABCD 的四个顶点的坐标分别为A (-1,0),B (5,0),C (2,2),D(0,2),直线2y kx =+将梯形分成面积相等的两部分,则k 的值为A.23-B.29-C. 47-D. 27-【答案】A 。

【考点】一次函数综合题。

【分析】根据题目提供的点的坐标求得梯形的面积,利用直线将梯形分成相等的两部分,求得直线与梯形的边围成的三角形的面积,从而求得其解析式即可:∵梯形ABCD 的四个顶点的坐标分別为A (-1,0),B (5,0),C (2,2),D (0,2),∴梯形的面积为:62282+⨯= 。

2011年湖北宜昌市中考数学试卷(word版及答案)

2011年湖北宜昌市中考数学试卷(word版及答案)

2012年玉林市防城港市初中毕业暨升学考试语文(全卷满分120分,考试时间150分钟)注意事项:1.请将答案填写在答题卡上,在试卷上作答无效。

考试结束,将本试卷和答题卡一并交回。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的选项标号涂黑。

3.非选择题,用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答。

一、识字写字、口语交际与综合性学习(15分)1.下列词语中加点字的读音,完全正确的一项是(3分)A.绚.丽(xuàn)迤.逦(yī)妖娆.(yáo)姹.紫嫣红(chà)B.恬.雅(tián)静穆.(mù)蛰.伏(zhé)韬.光养晦(tāo)C.作揖.(yī)沏.茶(qiè)阐.述(chǎn)笑容可掬.(jī)D.矫.健(jiǎo)剽.悍(biāo)震慑.(shè)扣人心弦.(xián)2.下列各组词语中,有一个错别字的一组是(3分)A.憧憬萦绕安之若素风度翩翩B.慷慨呵护脍炙人口顶礼膜拜C.凝望谛听兴志勃勃流连忘返D.玲珑浩瀚绝然不同不言而喻4.请你在答题中认真书写,评卷老师将根据你全卷书写情况评分。

(3分)根据下面活动情景,完成4~5题。

西昌中学团委组织全校同学开展“你心目中本学期十大新闻评选”活动。

活动结束后,作为学校广播站记者的一员,你将参与采访学校团委书记,然后就这次评选活动给本地媒体写一则消息。

4.你向受访者这样提一个问题:________________(含标点限30个字内)(3分)5.你写的消息的标题是:______________________(限20个字内)(3分)二、古诗文与名著阅读(23分)6.根据课文和要求,写出下列空缺的古诗文名句。

(每小题2分,共10分)(1)青山遮不住,________________。

(辛弃疾《菩萨蛮·书江西造口壁》)(2)乱花渐欲迷人眼,________________。

2011年湖北省宜昌市中考数学试题(WORD解析版)

2011年湖北省宜昌市中考数学试题(WORD解析版)

2011年湖北省宜昌市中考数学试卷—解析版一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每小题3分,计45分)1、(2011•宜昌)如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A、轴对称性B、用字母表示数C、随机性D、数形结合考点:生活中的轴对称现象。

分析:根据轴对称的定义可以得出,数学美体现在蝴蝶图案的对称性.解答:解:用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的对称性.故选A.点评:此题主要考查了轴对称的应用,根据图形得出一种数学美,有利于同学们的生活的喜爱以及数学与生活之间的联系.2、(2011•宜昌)如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作()A、+0.02克B、﹣0.02克C、0克D、+0.04克考点:正数和负数。

分析:首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答解答:解:根据题意可得:超出标准质量记为+,所以低于标准质量记为:﹣,因此,低于标准质量0.02克记为﹣0.02克.故选B.点评:此题主要考查了正负数表示的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.3、(2011•宜昌)要调查城区九年级8000名学生了解禁毒知识的情况,下列调查方式最合适的是()A、在某校九年级选取50名女生B、在某校九年级选取50名男生C、在某校九年级选取50名学生D、在城区8000名九年级学生中随机选取50名学生考点:全面调查与抽样调查。

专题:分类讨论。

分析:本题需要根据具体情况正确选择普查或抽样调查等方法,并理解有些调查是不适合使用普查方法的.要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.解答:解:要调查城区九年级8000名学生了解禁毒知识的情况,就对所有学生进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可.考虑到抽样的全面性,所以应在城区8000名九年级学生中随机选取50名学生.故选D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4、(2011•宜昌)我市大约有34万中小学生参加了“廉政文化进校园”教育活动,将数据34万用科学记数法表示,正确的是()A、0.34×105B、3.4×105C、34×105D、340×105考点:科学记数法—表示较大的数。

2011年宜昌中考数学试题答案

2011年宜昌中考数学试题答案

参考答案与评分说明(一)阅卷评分说明1.正式阅卷前先进行试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔高或降低评分标准.试评的试卷必须在阅卷后期全部予以复查,防止阅卷前后期评分标准宽严不一致.2.评分方式为分小题分步累计评分,解答过程的某一步骤发生笔误,只要不降低后继部分的难度,而后继部分再无新的错误,后继部分可评应得分数的50%;若是几个相对独立的得分点,其中一处错误不影响其它得分点的评分.3.最小记分单位为1分,不得将评分标准细化至1分以下(即不得记小数分).因实行网上双人阅卷得到的最后总分按四舍五入取整.4.发现解题中的错误后仍应继续评分,直至将解题过程评阅完毕,确定最后得分点后,再评出该题实际得分.5.本参考答案只给出一种或几种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实行分小题分步累计评分.6.合理精简解题步骤者,其简化的解题过程不影响评分. (二)参考答案及评分标准一、选择题(每小题3分,计45分)题号 12 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 AB D BC AD A B D C D C C B 二、解答题(本大题有9小题,计75分) 16.解:原式=11)1(+⨯+x x x (3分,省略不扣分) =x (6分) 当x =1时,原式=1.(7分)(直接代入求值得到1,评4分)17.解:由①,得x =y +1,(2分),代入②,得2(y +1)+y =2. (3分)解得y =0. (4分), 将y =0代入①,得x =1. (6分) [或者:①+②,得3x =3,(2分)∴x =1. (3分) 将x =1代入①,得1-y =1, (4分) ∴y =0.(6分)]∴原方程组的解是⎩⎨⎧==01y x . (7分)18.证明:(1)∵AB 与CD 是平行四边形ABCD 的对边,∴AB ∥CD ,(1分)∴∠F=∠FAB .(3分)(2)在△ABE 和△FCE 中,∵ ∠FAB=∠F (4分) ∠AEB=∠FEC (5分) BE=CE (6分) ∴ △ABE ≌△FCE . (7分) 19.解:(1)设y=kx+b. (1分)由题意,得⎩⎨⎧=+=+6201042008b k b k (3分).解得⎩⎨⎧-==20041b k (5分)∴y =x -2004.(2)当x =2011时,y =2011-2004 (6分)=7. (7分)∴该市2011年因“限塑令”而减少的塑料消耗量约为7万吨.20.解:(1)∵图案中正三角形的边长为2,∴高为3 .(1分) ∴正三角形的面积为21×2×3 = 3 . (2分) (2)∵图中共有11个正方形, ∴图中正方形的面积和为11×(2×2)=44. (3分)第20题∵图中共有2个正六边形,∴图中正六边形的面积和为2×(6×21×2× 3 )=123 .(4分)∵图中共有10个正三角形,∴图中正三角形的面积和为10 3 .∵镶嵌图形的总面积为44+10 3 +123 =44+22 3 (5分)≈81.4,∴点O 落在镶嵌图案中正方形区域的概率为3224444+ (7分)≈0.54.(8分)答:点O 落在镶嵌图案中正方形区域的概率为0.54.(“≈”写为“=”不扣分)21.解:(1)∵AE ⊥EF , EF ∥BC ,∴AD ⊥BC . (1分)在△ABD 和△ACD 中,∵BD =CD ,∠ADB =∠ADC ,AD =AD ,∴△ABD ≌△ACD . (或者:又∵BD =CD ,∴AE 是BC 的中垂线.) (2分) ∴AB =AC . (3分)(2)连BO ,∵AD 是BC 的中垂线,∴BO =CO . (或者:证全等也可得到BO =CO .)又AO =CO ,∴AO =BO =CO . (4分) ∴点O 是△ABC 外接圆的圆心. (5分) (3)解法1:∵∠ABE =∠ADB=90°,∴∠ABD+∠BAD=∠AEB+∠BAE=90°,∴∠ABD=∠AEB . 又∵∠BAD=∠EAB , ∴△ABD ∽△AEB .∴AB AD AE AB = (或者:由三角函数得到ABADAE AB =) (6分) 在Rt △ABD 中,∵AB=5,BD=21BC=3, ∴AD=4. (7分)∴AE=425. (8分)解法2:∵AO =BO , ∴∠ABO =∠BAO .∵∠ABE =90°,∴∠ABO +∠OBE =∠BAO +∠AEB =90°. ∴∠OBE =∠OEB , ∴OB =OE . (6分)在 Rt △ABD 中,∵AB=5,BD=21BC=3,∴AD=4.设 OB =x , 则 OD =4-x ,由32+(4-x)2=x 2,解得x=825. (7分) ∴AE =2OB =425.(8分) 解法3:设AO 的延长线与⊙O 交于点E 1,则AE 1是⊙O 的直径, ∴∠ABE 1=90°.在Rt △ABE 和Rt △ABE 1中,∵∠BAE =∠BAE 1,∠ABE =∠ABE 1=90°,AB =AB,∴△ABE ≌△ABE 1,∴AE=AE 1. (6分) (同方法2) ∵BO=825. (7分) ∴AE=2OB=425. (8分)22.解:(1)设尹进2008到2010年的月工资的平均增长率为x,则,2000(1+x )2=2420. (1分)解 得 ,x 1=-2.1 , x 2=0.1, (2分 ) x 1=-2.1与题意不合,舍去. ∴尹进2011年的月工资为2420×(1+0.1)=2662元. (3分)第21题OFDCABE图1ZO Y X C B AP 1图2DECBAP图3D PBCAFEC(2)设甲工具书单价为m 元,第一次选购y 本.设乙工具书单价为n 元,第一次选购z 本.则由题意, 可列方程:m +n =242, ① (4分)ny +mz =2662, ② (6分) my +nz =2662-242. ③ (7分)(②,③任意列对一个给2分;②,③全对也只给3分)由②+③,整理得,(m +n )(y +z )=2×2662-242, (8分)由①,∴242(y +z )=2×2662-242,∴ y +z =22-1=21. (9分) 答:尹进捐出的这两种工具书总共有23本. (10分) (只要得出23本,即评1分)23.解:(1)共2分.(标出了圆心,没有作图痕迹的评1分)看见垂足为Y (X )的一 条 垂 线 (或 者∠ABC 的平分线)即评1分,(2)①当⊙P 与Rt △ABC 的边 AB 和BC 相切时,由角平分线的性质,动点P 是∠ABC 的平分线BM 上的点.如图1,在∠ABC 的平分线BM 上任意确定点P 1 (不为∠ABC 的顶点),∵ OX =BOsin ∠ABM, P 1Z =BP 1sin ∠ABM .当 BP 1>BO 时 ,P 1Z >OX,即P 与B 的距离越大,⊙P 的面积越大. 这时,BM 与AC 的交点P 是符合题意的、BP 长度最大的点. (3分.此处没有证明和结论不影响后续评分)如图2,∵∠BPA >90°,过点P 作PE ⊥AB ,垂足为E ,则E 在边AB 上.∴以P 为圆心、PC 为半径作圆,则⊙P 与边CB 相切于C ,与边AB 相切于E ,即这时的⊙P 是符合题意的圆.(4分.此处没有证明和结论不影响后续评分) 这时⊙P 的面积就是S 的最大值.∵∠A =∠A ,∠BCA =∠AEP =90°,∴ Rt △ABC ∽Rt △APE , (5分) ∴BCPEAB PA =. ∵AC =1,BC =2,∴AB =5.设PC =x ,则PA =AC -PC =1-x, PC =PE , ∴251x x =-, ∴x =522+ . (6分) ②如图3,同理可得:当⊙P 与Rt △ABC 的边AB 和AC 相切时,设PC =y ,则152y y =-, ∴y=512+. (7分)③如图4,同理可得:当⊙P 与Rt △ABC 的边BC 和AC 相切时,设PF =z ,则122z z =-, ∴z=32. (8分) 由①,②,③可知:∵ 5 >2,∴ 5+2>5+1>3,∵当分子、分母都为正数时,若分子相同,则分母越小,这个分数越大,(或者:∵x=522+=25-4, y=512+ =215- 5,∴y-x=24549->0, ∴y>x. ∵z-y=645721532-=-->0)∴52251232+>+>2, (9分,没有过程直接得出酌情扣1分)∴ z >y >x. ∴⊙P 的面积S 的最大值为π94. (10分)24.解:(1)∵(0,21-)在y =ax 2+bx +c 上,∴ 21-=a×02+b×0+c , ∴ c =21-.(1分) (2)又可得 n =21-.∵ 点(m -b ,m 2-mb +n )在y =ax 2+bx +c 上, ∴ m 2-mb 21-=a (m -b )2+b (m -b )21-, ∴(a -1)(m -b )2=0, (2分)若(m -b )=0,则(m -b , m 2-mb +n )与(0,21-)重合,与题意不合. ∴ a =1.(3分,只要求出a =1,即评3分) ∴抛物线y =ax 2+bx +c ,就是y =x 2+bx 21-. △=b 2-4ac =b 2-4×(21-)>0,(没写出不扣分) ∴抛物线y =ax 2+bx +c 与x 轴的两个交点的横坐标就是关于x 的二次方程0=ax 2+bx+c 的两个实数根,∴由根与系数的关系,得x 1x 2=21-. (4分) (3)抛物线y =x 2+bx 21-的对称轴为x =2b-,最小值为422+-b . (没写出不扣分)设抛物线y =x 2+bx 21-在x 轴上方与x 轴距离最大的点的纵坐标为H ,在x 轴下方与x轴距离最大的点的纵坐标为h .①当2b-<-1,即b >2时,在x 轴上方与x 轴距离最大的点是(1,y o ), ∴|H |=y o =21+b >25, (5分)在x 轴下方与x 轴距离最大的点是(-1,y o ),∴|h |=|y o |=|21-b |=b -21>23, (6分) ∴|H |>|h |.∴这时|y o |的最小值大于25. (7分)② 当-1≤2b-≤0,即0≤b ≤2时,在x 轴上方与x 轴距离最大的点是(1,y o ),∴|H |=y o =21+b ≥21,当b =0时等号成立.yO x第24题在x 轴下方与x 轴距离最大点的是 (2b-,422+-b ),∴|h |=|422+-b |=422+b ≥21,当b =0时等号成立.∴这时|y o |的最小值等于21. (8分)③ 当0<2b-≤1,即-2≤b <0时,在x 轴上方与x 轴距离最大的点是(-1,y o ),∴|H |=y o =|1+(-1)b 21-|=|21-b |=21-b >21 在x 轴下方与x 轴距离最大的点是 (2b-,422+-b ),∴|h |=|y o |=|422+-b |=422+b >21.∴ 这 时 |y o |的 最 小 值 大 于 21. (9分)④ 当1<2b-,即b <-2时,在x 轴上方与x 轴距离最大的点是(-1,y o ),∴|H |=21-b >25,在x 轴下方与x 轴距离最大的点是(1,y o ),∴|h |=|21+b |=-(b +21)>23,∴|H |>|h |,∴这时|y o |的最小值大于25. (10分)综上所述,当b =0,x 0=0时,这时|y o |取最小值,为|y o |=21. (11分)。

湖北省宜昌市中考数学试卷及答案

湖北省宜昌市中考数学试卷及答案
(1)求证:△ABE≌△DCE
(2)若BE平分ABC,且AD=10,求AB的长(7分)
(第 18 题)
19. 如图,华庆号船位于航海图上平面直角坐标系中的点A(10,2)处时,点C、海岛B 的位置在y轴上,且CBA30,CAB60。
(1)求这时船A与海岛B之间的距离;
(2)若海岛B周围16海里内有海礁,华庆号船继续沿AC向C航行有无触礁危险?请说明理由(7分)
又BE平分∠ABC,∴∠ABE=∠EBC5分
∴∠ABE=∠AEB, ∴AB=AE.6分
又AE1AD,∴AB5.7分
2
(说明:合理精简解题步骤不影响评分)
19 .解:
(1)证明:∵∠CBA=30°,∠CAB=60°,ACB90°.1分
在Rt△ACB中,∵cos60AC,AB20.4分
AB
(2)在Rt△ACB中,tan60°=BC,
A.颖颖上学经过十字路口时遇到绿灯
B.不透明袋子中放了大小相同的一个乒乓球、二个玻璃球,从中去摸取出乒乓球
C.你这时正在解答本试卷的第12题
D.明天我市最高气温为60℃
13.如图,菱形ABCD中,AB=15,ADC120°,则B、D两点之间的距离为()。
A.15
B.153
2
C.7.5D.15
(第 13 题)
A
A
A
B
二、解答题(本大题有9小题,计75分)
16.解:原式=(a1)
1
a22a1
···························································2分
=(a1)
1
(a1)2
······························································4分

湖北13市州(加直辖县级行政区)2011年中考数学试题汇编(word版含

湖北13市州(加直辖县级行政区)2011年中考数学试题汇编(word版含

2011年十堰市初中毕业生学业考试数学试题注意事项:1.本卷共有4页,共有25小题,满分120分,考试时限120分钟。

2.答题前,考生先将自己的姓名、准考证号填写在试卷和答题卡指定的位置,并认真核对条形码上准考证号和姓各,在答题卡规定的位置贴好条形码。

3.考生必须保持答题卡的整洁,考试结束后,请将本试卷和条题卡一并上交。

一、选择题:(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选面中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内。

1.(湖北十堰3分)下列实数中是无理数的是A.2B.4C.13D.3.14【答案】A。

2. (湖北十堰3分)函数4y x=-中自变量x的取值范围是A.x≥0 B.x≥4 C.x≤4 D.x>4【答案】B。

3. (湖北十堰3分)下面几何体的主视图是【答案】C。

4.(湖北十堰3分)据统计,十堰市2011年报名参加九年级学业考试总人数为26537人,则26537用科学记数法表示为(保留两个有效数字)A.2.6×104 B.2.7×104 C. 2.6×105 D. 2.7×105【答案】B。

5.(湖北十堰3分)如图,Rt△ABC中,∠ACB=90°,DE过点C,且DE//AB,若∠ACD=500,则∠B的度数是A.50°B.40°C.30°D.25°【答案】B。

6.(湖北十堰3分)工人师傅常用角尺平分一个任意角。

做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合。

过角尺顶点C作射线OC。

由做法得△MOC≌△NOC的依据是A.AAS B.SAS C.ASA D.SSS【答案】D。

7. (湖北十堰3分)已知x-2y=-2,则3-x+2y的值是A.0 B.1 C.3 D.5【答案】D。

8.(湖北十堰3分)现有边长相同的正三角、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是A.正方形和正六边形B.正三角形和正方形C.正三角形和正六边形D.正三角形、正方形和正六边形【答案】A。

湖北省各市县2011年中考数学试题分类解析专题(1-12)-11

湖北省各市县2011年中考数学试题分类解析专题(1-12)-11

湖北省2011年中考数学专题1:实数一、选择题1.(湖北武汉3分)有理数-3的相反数是A.3.B.-3.C.31D.31-. 【答案】A 。

【考点】相反数。

【分析】根据相反数的意义,只有符号不同的数为相反数,得-3的相反数是3。

故选A 。

2.(湖北武汉3分)据报道,2011年全国普通高等学校招生计划约675万人.数6750000用科学计数法表示为A.675×104. B.67.5×105. C.6.75×106. D.0.675×107. 【答案】C 。

【考点】科学计数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键要正确确定a 的值以及n 的值。

在确定n 的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。

6750000一共7位,从而6750000=6.75×106。

故选C 。

3.(湖北黄石3分)4的值为A.2B. -2C. 2±D. 不存在【答案】A 。

【考点】算术平方根。

【分析】直接根据算术平方根的定义求解:因为4的算术平方根是2,所以 4=2。

故选A 。

4.(湖北黄石3分)黄石市2011年6月份某日一天的温差为11℃,最高气温为t℃,则最低气温可表示 为A. (11+t)℃B. (11-t)℃C. (t-11)℃D. (-t -11)℃【答案】C 。

【考点】列代数式。

【分析】由已知可知,最高气温-最低气温=温差,从而最低气温=最高气温-温差= t -11。

故选C 。

5.(湖北十堰3分)下列实数中是无理数的是A .2B .4C .13D .3.14【答案】A 。

【考点】无理数。

【分析】根据无理数的概念对各选项进行逐一分析即可:解:A 、 2是开方开不尽的数,故是无理数,故本选项正确;B 、 4=2,2是有理数,故本选项错误;C 、 13是分数,分数是有理数,故本选项错误;D 、3.14是小数,小数是有理数,故本选项错误。

宜昌中考数学试题卷及答案

宜昌中考数学试题卷及答案

宜昌中考数学试题卷及答案本文为宜昌中考数学试题卷及答案,按照试题卷格式书写。

请阅读并认真解答。

一、选择题(共25小题,每题4分,满分100分)在下列各题A、B、C、D四个选项中只有一项符合题目要求,将其标号填入题前的括号内。

1. 下图是一个校园平面图,其中有一个校园行道,行道宽度是多少?()A. 2.5m B. 3m C. 3.5m D. 4m2. 正方形ABCD的边长为12cm,P、Q分别是BC边和CD边上的两个点,且 PQ = 8cm,连结AP并延长与BC边交于点E,连接BE,求BE的长。

()A. 10cm B. 12cm C. 14cm D. 16cm3. 已知a,b,c是一个等差数列,且c>b>a,若c—b=4,则等差数列的公差为多少?()A. 2 B. 3 C. 4 D. 54. 已知函数y = f(x)的图象为一条直线,其斜率为2,截距为3,那么f(-2)的值为多少?()A. -4 B. -1 C. 1 D. 4......二、解答题(共5小题,每题12分,满分60分)请将解题过程和答案写在答题卡上。

1. 计算下列各式的值:(4x^2)^3 ×(2x^2)^22. 已知等腰梯形ABCD,AB ∥ CD,AB = CD,AD=12cm,BC=8cm,求AB边长的长。

3. 某商品原价为280元,先降价20%,再上调10%后的价格是多少?4. 20个小朋友一起合作清扫学校操场,第1天完成了总工作量的1/5,第2天完成了剩余工作量的1/4,以后每天都完成剩余工作量的1/3,问第几天能够完成清扫操场的工作?5. 用连乘或连加的形式表示下列各式:1.2 × 1.2 × 1.2 × 1.2 × 1.2 和3+6+9+12+…+96+99三、应用题(共2小题,每题20分,满分40分)请阅读并分析题目,然后解答。

1. 某工程队7台机器35天能完成一项工程,如果再增加3台相同的机器,这项工程需要多少天才能完成?2. 一辆长车和一辆短车同时从甲、乙两地相向而行,长车每小时行40km,短车每小时行30km,从甲点出发时,两车相隔140km,两车相遇后还需要行多少km才能到达乙地?四、填空题(共5小题,每题8分,满分40分)填写下表空格中的数值,使各行、各列和对角线上的数之和均相等。

湖北省各市县2011年中考数学试题分类解析专题(1-12)

湖北省各市县2011年中考数学试题分类解析专题(1-12)

湖北省2011年中考数学专题12:押轴题 解答题1.(湖北武汉12分)如图1,抛物线23y ax bx =++经过A (-3,0),B (-1,0)两点. (1)求抛物线的解析式;(2)设抛物线的顶点为M ,直线29y x =-+与y 轴交于点C ,与直线OM 交于点D.现将抛物线平移,保持顶点在直线OD 上.若平移的抛物线与射线CD (含端点C )只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q (0,3)作不平行于x 轴的直线交抛物线于E ,F 两点.问在y 轴的负半轴上是否存在点P ,使△PEF 的内心在y 轴上.若存在,求出点P 的坐标;若不存在,请说明理由.【答案】解:(1)∵抛物线23y ax bx =++经过A (-3,0),B (-1,0)两点 ∴933030a b a b -+=⎧⎨-+=⎩,解得14a b =⎧⎨=⎩。

∴抛物线的解析式为243y x x =++。

(2)由(1)配方得()221y x =+-,∴抛物线的顶点M (-2,,1)。

∴直线OD 的解析式为12y x =。

∴设平移的抛物线的顶点坐标为(h ,12h ),∴平移的抛物线解析式为()21h h2y x =-+. ①当抛物线经过点C 时,∵C (0,9),∴h2+21h=9, 解得h=11454±-。

∴ 当 11454--≤h<11454+- 时,平移的抛物线与射线CD 只有一个公共点。

②当抛物线与直线CD 只有一个公共点时,由()21h h 292x x -+=-+y 得()2212h 2h h 902x x +-+++-=,∴△=(-2h +2)2-4(h2+21h -9)=0, 解得h=4。

此时抛物线y=(x -4)2+2与射线CD 唯一的公共点为(3,3),符合题意。

综上所述:平移的抛物线与射线CD 只有一个公共点时,顶点横坐标的值或取值范围是 h=4或11454--≤h<11454+-.(3)将抛物线平移,当顶点至原点时,其解析式为2y x =设EF 的解析式为y =k x +3(k≠0).假设存在满足题设条件的点P (0,t ),如图,过P 作GH ∥x 轴,分别过E ,F 作GH 的垂线,垂足为G ,H .∵△PEF 的内心在y 轴上,∴∠GEP=∠EPQ=∠QPF=∠HFP 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年湖北省宜昌市中考数学真题试卷本试卷共24小题,满分120分,考试时间120分钟.注意事项:本试卷分试题卷和答题卡两部分,请将答案答在答题卡上每题对应的答题区域内,答在试题卷上无效。

考试结束,请将本试题卷和答题卡一并上交。

以下数据、公式供参考:3 ≈1.7;l 弧长=180nπR(R 为半径,l 为弧长);二次函数y =ax 2+bx +c 图象的顶点坐标是(ab ac a b 44,22--)。

一、选择题 (在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每小题3分,计45分)1.如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的(■).(A)轴对称性 (B)用字母表示数 (C)随机性 (D)数形结合2.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作(■).(A)+0.02克 (B)-0.02克 (C) 0克 (D)+0.04克3.要调查城区九年级8000名学生了解禁毒知识的情况,下列调查方式最合适的是(■). (A)在某校九年级选取50名女生 (B)在某校九年级选取50名男生(C)在某校九年级选取50名学生 (D)在城区8000名九年级学生中随机选取50名学生 4.我市大约有34万中小学生参加了“廉政文化进校园”教育活动,将数据34万用科学记数法表示,正确的是(■ ).(A)0.34×105(B)3.4×105(C)34×105(D)340×1055.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( ■).(A)a <b (B)a =b (C)a >b (D)ab >0(第5题)ba6.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小的变化情况是(■). (A)越来越小 (B)越来越大 (C)大小不变 (D)不能确定 7.下列计算正确的是(■).(A)3a -a =3 (B)2a·a 3=a 6(C)(3a 3)2=2a 6(D)2a÷a=2 8.一个圆锥体按如图所示摆放,它的主视图是(■).9.按图1的方法把圆锥的侧面展开,得到图2,其半径OA =3,圆心角∠AOB =120°,则AB 的长为(■).(A)π (B)2π (C)3π (D)4π 10.下列说法正确的是(■).(A)若明天降水概率为50%,那么明天一定会降水 (B)任意掷一枚均匀的1元硬币,一定是正面朝上 (C)任意时刻打开电视,都正在播放动画片《喜洋洋》 (D)本试卷共24小题11.如图是教学用直角三角板,边AC =30cm ,∠C =90°, tan ∠BAC =33,则边BC 的长为(■). (A)330 cm (B) 320 cm (C) 310 cm (D) 35 cm12.如图,在梯形ABCD 中,AB ∥CD ,AD =BC , 点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点, 则下列结论一定正确的是(■). (A)∠HGF =∠GHE (B)∠GHE =∠HEF (C)∠HEF =∠EFG (D)∠HGF =∠HEF 13.如图,矩形OABC 的顶点O 为坐标原点,点 A 在x 轴上,点B 的坐标为(2,1).如果将矩形第9题图1B第11题第12题BG(A)(B)(C)(D)第8题OABC 绕点O 顺时针旋转180°,旋转后的图形为 矩形OA 1B 1C 1,那么点B 1的坐标为(■).(A)(2,1) (B)(-2,1) (C)(-2,-1) (D)(2,-1)14.夷昌中学开展 “阳光体育活动”,九年级一班全体同学在2011年4月18日16时分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师在此时统计了该班正在参加这三 项活动的人数,并绘制了如图所示的频数分布直方图和扇形统计图.根据这两个统计图,可以知道此时该班正在参加乒乓球活动的人数是(■). (A)50 (B)25 (C)15 (D)10 15.如图,直线y =x +2与双曲线y=xm 3-在第二象限有两个交点,那么m 的取值范围在数轴上表示为(■).(D)(C)(B)(A)-2-1432-2-1432-2-1432-2-14320110101二、解答题 (请将解答结果书写在答题卡上指定的位置.本大题共9小题,16~19每小题7分,20~21每小题8分,22~23每小题10分,24题11分,合计75分) 16.先将代数式11)(2+⨯+x x x 化简,再从-1,1两数中选取一个适当的数作为x 的值代入求值.第14题50篮球17.解方程组⎩⎨⎧=+=-221y x y x .18.如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F.(1)证明:∠DFA =∠FAB ; (2)证明:△ABE ≌△FCE .19.某市实施“限塑令”后,2008年大约减少塑料消耗约4万吨.调查结果分析显示,从2008年开始,五年内该市因实施“限塑令”而减少的塑料消耗量y(万吨)随着时间x(年)逐年成直线上升,y 与x 之间的关系如图所示. (1)求y 与x 之间的关系式;(2)请你估计,该市2011年因实施“限塑令”而减少的塑料消耗量为多少?20.如图,某商标是由边长均为2的正三角形、正方形、正六边形的金属薄片镶嵌而成的镶嵌图案.Fy (万吨)(1)求这个镶嵌图案中一个正三角形的面积;(2)如果在这个镶嵌图案中随机确定一个点O ,那么点概率为多少?(结果保留二位小数)21.如图,D 是△ABC 的边BC 的中点,过AD 延长线上的点E 作AD 的垂线EF ,E 为垂足,EF与AB 的延长线相交于点F ,点O 在AD 上,AO =CO ,BC ∥EF .(1)证明:AB =AC ;(2)证明:点O 是△ABC 的外接圆的圆心;(3)当AB =5,BC =6时,连接BE ,若∠ABE =90°,求AE22.随着经济的发展,尹进所在的公司每年都在元月一次性的提高员工当年的月工资。

尹进2008年的月工资为2000元,在2010年时他的月工资增加到2420元,他2011年的月工资按2008到2010年的月工资的平均增长率继续增长. (1)尹进2011年的月工资为多少?(2)尹进看了甲、乙两种工具书的单价,认为用自己2011年6月份的月工资刚好购买若干本甲种工具书和一些乙种工具书,当他拿着选定的这些工具书去付书款时,发现自己计算书第20题款时把这两种工具书的单价弄对换了,故实际付款比2011年6月份的月工资少了242元,于是他用这242元又购买了甲、乙两种工具书各一本,并把购买的这两种工具书全部捐献给西部山区的学校.请问,尹进总共捐献了多少本工具书?23.如图1,Rt △ABC 两直角边的边长为AC =1,BC =2.(1)如图2,⊙O 与Rt △ABC 的边AB 相切于点X ,与边CB 相切于点Y .请你在图2中作出并标明⊙O 的圆心O ;(用尺规作图,保留作图痕迹,不写作法和证明)(2)P 是这个Rt △ABC 上和其内部的动点,以P 为圆心的⊙P 与Rt △ABC 的两条边相切.设⊙P 的面积为s ,你认为能否确定s 的最大值?若能,请你求出s 的最大值;若不能,请你说明不能确定s 的最大值的理由.24.已知抛物线y =ax 2+bx +c 与直线y =mx +n 相交于两点,这两点的坐标分别是(0,21)和(m -b ,m 2-mb +n ),其中a ,b ,c ,m ,n 为实数,且a ,m 不为0. (1)求c 的值;(2)设抛物线y =ax 2+bx +c 与x 轴的两个交点是(x 1,0)和(x 2,0),求x 1x 2的值; (3)当-1≤x ≤1时,设抛物线y =ax 2+bx +c 上与x第23题图2图1XA这时|y o|的最小值.参考答案与评分说明(一)阅卷评分说明1.正式阅卷前先进行试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔高或降低评分标准.试评的试卷必须在阅卷后期全部予以复查,防止阅卷前后期评分标准宽严不一致.2.评分方式为分小题分步累计评分,解答过程的某一步骤发生笔误,只要不降低后继部分的难度,而后继部分再无新的错误,后继部分可评应得分数的50%;若是几个相对独立的得分点,其中一处错误不影响其它得分点的评分.3.最小记分单位为1分,不得将评分标准细化至1分以下(即不得记小数分).因实行网上双人阅卷得到的最后总分按四舍五入取整.4.发现解题中的错误后仍应继续评分,直至将解题过程评阅完毕,确定最后得分点后,再评出该题实际得分.5.本参考答案只给出一种或几种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实行分小题分步累计评分.6.合理精简解题步骤者,其简化的解题过程不影响评分.(二)参考答案及评分标准一、选择题(每小题3分,计45分)二、解答题(本大题有9小题,计75分)16.解:原式=11)1(+⨯+x x x (3分,省略不扣分) =x (6分) 当x =1时,原式=1.(7分)(直接代入求值得到1,评4分)17.解:由①,得x =y +1,(2分),代入②,得2(y +1)+y =2. (3分)解得y =0. (4分), 将y =0代入①,得x =1. (6分) [或者:①+②,得3x =3,(2分)∴x =1. (3分)将x =1代入①,得1-y =1, (4分) ∴y =0.(6分)] ∴原方程组的解是⎩⎨⎧==01y x . (7分)18.证明:(1)∵AB 与CD 是平行四边形ABCD 的对边,∴AB ∥CD ,(1分)∴∠F=∠FAB .(3分)(2)在△ABE 和△FCE 中,∵ ∠FAB=∠F (4分) ∠AEB=∠FEC (5分) BE=CE (6分) ∴ △ABE ≌△FCE . (7分) 19.解:(1)设y=kx+b. (1分)由题意,得⎩⎨⎧=+=+6201042008b k b k (3分).解得⎩⎨⎧-==20041b k (5分)∴y =x -2004.(2)当x =2011时,y =2011-2004 (6分)=7. (7分)∴该市2011年因“限塑令”而减少的塑料消耗量约为7万吨20.解:(1)∵图案中正三角形的边长为2,∴高为3 .(1分)∴正三角形的面积为21×2×3 = 3 . (2分) (2)∵图中共有11个正方形, ∴图中正方形的面积和为11×(2×2)=44. (3分) ∵图中共有2个正六边形,∴图中正六边形的面积和为2×(6×21×2× 3 )=123 .(4分)∵图中共有10个正三角形,∴图中正三角形的面积和为10 3 .∵镶嵌图形的总面积为44+103 +123 =44+22 3 (5分)≈81.4,第20题∴点O 落在镶嵌图案中正方形区域的概率为3224444+ (7分)≈0.54.(8分)答:点O 落在镶嵌图案中正方形区域的概率为0.54.(“≈”写为“=”不扣分) 21.解:(1)∵AE ⊥EF , EF ∥BC ,∴AD ⊥BC . (1分)在△ABD 和△ACD 中,∵BD =CD ,∠ADB =∠ADC ,AD =AD ,∴△ABD ≌△ACD . (或者:又∵BD =CD ,∴AE 是BC 的中垂线.) (2分) ∴AB =AC . (3分)(2)连BO ,∵AD 是BC 的中垂线,∴BO =CO . (或者:证全等也可得到BO =CO .)又AO =CO ,∴AO =BO =CO . (4分) ∴点O 是△ABC 外接圆的圆心. (5分) (3)解法1:∵∠ABE =∠ADB=90°,∴∠ABD+∠BAD=∠AEB+∠BAE=90°, ∴∠ABD=∠AEB . 又∵∠BAD=∠EAB , ∴△ABD ∽△AEB . ∴AB AD AE AB = (或者:由三角函数得到ABAD AE AB =) (6分) 在Rt △ABD 中,∵AB=5,BD=21BC=3, ∴AD=4. (7∴AE=425. (8分)解法2:∵AO =BO , ∴∠ABO =∠BAO .∵∠ABE =90°,∴∠ABO +∠OBE =∠BAO +∠AEB =90°. ∴∠OBE =∠OEB , ∴OB =OE . (6分) 在 Rt △ABD 中,∵AB=5,BD=21BC=3,∴AD=4. 设 OB =x , 则 OD =4-x ,由32+(4-x)2=x 2,解得x=825. (7分) ∴AE =2OB =425.(8分) 解法3:设AO 的延长线与⊙O 交于点E 1,则AE 1是⊙O 的直径, ∴∠ABE 1=90°. 在Rt △ABE 和Rt △ABE 1中,∵∠BAE =∠BAE 1,∠ABE =∠ABE 1=90°,AB =AB,图1ZX∴△ABE ≌△ABE 1,∴AE=AE 1. (6分) (同方法2) ∵BO=825. (7分) ∴AE=2OB=425. (8分) 22.解:(1)设尹进2008到2010年的月工资的平均增长率为x,则,2000(1+x )2=2420. (1分)解 得 ,x 1=-2.1 , x 2=0.1, (2分 ) x 1=-2.1与题意不合,舍去. ∴尹进2011年的月工资为2420×(1+0.1)=2662元. (3分)(2)设甲工具书单价为m 元,第一次选购y 本.设乙工具书单价为n 元,第一次选购z 本.则由题意, 可列方程:m +n =242, ① (4分)ny +mz =2662, ② (6分) my +nz =2662-242. ③ (7分)(②,③任意列对一个给2分;②,③全对也只给3分)由②+③,整理得,(m +n )(y +z )=2×2662-242, (8分) 由①,∴242(y +z )=2×2662-242,∴ y +z =22-1=21. (9分)答:尹进捐出的这两种工具书总共有23本. (10分) (只要得出23本,即评1分) 23.解:(1)共2分.(标出了圆心,没有作图痕迹的评1分)看见垂足为Y (X )的一 条 垂 线 (或 者∠ABC 的平分线)即评1分,(2)①当⊙P 与Rt △ABC 的边 AB 和BC 相切时,由角平分线的性质,动点ABC 的平分线BM 上的点.如图1,在∠ABC 的平分线BM 上任意确定点P 1 (不为∠ABC 的顶点),∵ OX =BOsin ∠ABM, P 1Z =BP 1sin ∠ABM .当 BP 1>BO 时 ,P 1Z >OX,即P 与B 的距离越大,⊙P 的面积越大. 这时,BM 与AC 的交点P 是符合题意的、BP 长度最大的点.(3分.此处没有证明和结论不影响后续评分)如图2,∵∠BPA >90°,过点P 作PE ⊥AB ,垂足为E ,则E 在边AB 上.图2E图3DA ∴以P 为圆心、PC 为半径作圆,则⊙P 与边CB 相切于C ,与边AB 相切于E , 即这时的⊙P 是符合题意的圆.(4分.此处没有证明和结论不影响后续评分) 这时⊙P 的面积就是S 的最大值.∵∠A =∠A ,∠BCA =∠AEP =90°,∴ Rt △ABC ∽Rt △APE , (5分) ∴BCPE AB PA =. ∵AC =1,BC =2,∴AB =5.设PC =x ,则PA =AC -PC =1-x, PC =PE ,∴251x x =-, ∴x =522+ . (6分) ②如图3,同理可得:当⊙P 与Rt △ABC 的边AB 和AC 相切时,设PC =y ,则152yy =-, ∴y=512+. (7分)③如图4,同理可得:当⊙P 与Rt △ABC 的边BC 和AC 相切时,设PF =z ,则122z z =-, ∴z=32. (8分) 由①,②,③可知:∵5 >2,∴ 5+2>5+1>3,∵当分子、分母都为正数时,若分子相同,则分母越小,这个分数越大, (或者:∵x=522+=25-4, y=512+ =215- 5,∴y-x=24549->0, ∴y>x. ∵z-y=645721532-=-->0) ∴52251232+>+>2, (9分,没有过程直接得出酌情扣1分) ∴ z >y >x. ∴⊙P 的面积S 的最大值为π94. (10分) 24.解:(1)∵(0,21-)在y =ax 2+bx +c 上,∴ 21-=a×02+b×0+c , ∴ c =21-.(1分) (2)又可得 n =21-.∵ 点(m -b ,m 2-mb +n )在y =ax 2+bx +c 上, ∴ m 2-mb 21-=a (m -b )2+b (m -b )21-, ∴(a -1)(m -b )2=0, (2分)若(m -b )=0,则(m -b , m 2-mb +n )与(0,21-)重合,与题意不合. ∴ a =1.(3分,只要求出a =1,即评3分) ∴抛物线y =ax 2+bx +c ,就是y =x 2+bx 21-. △=b 2-4ac =b 2-4×(21-)>0,(没写出不扣分) ∴抛物线y =ax 2+bx +c 与x 轴的两个交点的横坐标就是关于x 的二次方程0=ax 2+bx +c 的两个实数根,∴由根与系数的关系,得x 1x 2=21-. (4分) (3)抛物线y =x 2+bx 21-的对称轴为x =2b-,最小值为422+-b . (没写出不扣分)设抛物线y =x 2+bx 21-在x 轴上方与x 轴距离最大的点的纵坐标为H ,在x 轴下方与x 轴距离最大的点的纵坐标为h .①当2b-<-1,即b >2时,在x 轴上方与x 轴距离最大的点是(1,y o ), ∴|H |=y o =21+b >25, (5分)在x 轴下方与x 轴距离最大的点是(-1,y o ),∴|h |=|y o |=|21-b |=b -21>23, (6分) ∴|H |>|h |.∴这时|y o |的最小值大于25. (7分)② 当-1≤2b-≤0,即0≤b ≤2时,在x 轴上方与x 轴距离最大的点是(1,y o ), ∴|H |=y o =21+b ≥21,当b =0时等号成立. 在x 轴下方与x 轴距离最大点的是 (2b-,422+-b ),∴|h |=|422+-b |=422+b ≥21,当b =0时等号成立.第24题∴这时|y o |的最小值等于21. (8分) ③ 当0<2b-≤1,即-2≤b <0时, 在x 轴上方与x 轴距离最大的点是(-1,y o ), ∴|H |=y o =|1+(-1)b 21-|=|21-b |=21-b >21 在x 轴下方与x 轴距离最大的点是 (2b-,422+-b ),∴|h |=|y o |=|422+-b |=422+b >21.∴ 这 时 |y o |的 最 小 值 大 于 21. (9分) ④ 当1<2b-,即b <-2时, 在x 轴上方与x 轴距离最大的点是(-1,y o ),∴|H |=21-b >25, 在x 轴下方与x 轴距离最大的点是(1,y o ),∴|h |=|21+b |=-(b +21)>23,∴|H |>|h |,∴这时|y o |的最小值大于25. (10分)综上所述,当b =0,x 0=0时,这时|y o |取最小值,为|y o |=21. (11分)。

相关文档
最新文档