2018届北京市东城区初三一模数学试题及答案模板
北京市各区2018届九年级中考一模数学试卷精选汇编:统计专题(含答案)
统计专题东城区24.随着高铁的建设,春运期间动车组发送旅客量越来越大.相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间铁路发送旅客量情况进行了调查,具体过程如下.(1)收集、整理数据请将表格补充完整:(2)描述数据为了更直观地显示春运期间动车组发送旅客量占比的变化趋势,需要用___________(填“折线图”或“扇形图”)进行描述;(3)分析数据、做出推测预计2019年春运期间动车组发送旅客量占比约为___________,你的预估理由是_________________________________________ .24. 解:(1):56.8%;----------------------1分(2)折线图;----------------------3分(3)答案不唯一,预估的理由须支撑预估的数据,参考数据61%左右.--------5分西城区23.某同学所在年级的500名学生参加“志愿北京”活动,现有以下5个志愿服务项目:A.纪念馆志愿讲解员.B.书香社区图书整理.C.学编中国结及义卖.D.家风讲解员.E.校内志愿服务.要求:每位学生都从中选择一个项目参加,为了了解同学们选择这个5个项目的情况,该同学随机对年级中的40名同学选择的志愿服务项目进行了调查,过程如下:收集数据:设计调查问卷,收集到如下数据(志愿服务项目的编号,用字母代号表示).B,E,B,A,E,C,C,C,B,B,A,C,E,D,B,A,B,E,C,A,D,D,B,B,C,C,A,A,E,B,C,B,D,C,A,C,C,A,C,E,整理、描述诗句:划记、整理、描述样本数据,绘制统计图如下,请补全统计表和统计图.选择各志愿服务项目的人数统计表分析数据、推断结论:-的字母代号)a:抽样的40个样本数据(志愿服务项目的编号)的众数是__________.(填A E-中的两个志愿服务项目,根据该同学的样本数据估计全年级大约有多少名同学选择这两个b:请你任选A E志愿服务项目.【解析】B项有10人,D项有4人.选择各志愿服务项目的人数比例统计图中,B占25%,D占10%.分析数据、推断结论:a.抽样的40个样本数据(志愿服务项目的编号)的众数是C.b:根据学生选择情况答案分别如下(写出任意两个即可).A:50020%100⨯=(人).B:50025%125⨯=(人).C:50030%150⨯=(人).D:50010%50⨯=(人).E:50015%75⨯=(人).海淀区24.某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全.收集数据调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是___________(填字母);A.抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本B.抽取各班体育成绩较好的学生共40名学生的体质健康测试成绩组成样本C.从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本整理、描述数据抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下:整理数据,如下表所示:分析数据、得出结论调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,2017年九年级部分学生体质健康成绩直方图分你能从中得到的结论是_____________,你的理由是________________________________.体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有________名同学参加此项目.24.………………1分………………2分(2)去年的体质健康测试成绩比今年好.(答案不唯一,合理即可)………………3分去年较今年低分更少,高分更多,平均分更大.(答案不唯一,合理即可)………………4分(3)70.………………6分丰台区24.第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.【收集数据】从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:【整理、描述数据】按如下分数段整理、描述这两组样本数据:(说明:优秀成绩为80<x≤100,良好成绩为50<x≤80,合格成绩为30≤x≤50.)【分析数据】两组样本数据的平均分、中位数、众数如下表所示:其中a =__________.【得出结论】(1)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是________校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取一名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为________;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(至少从两个不同的角度说明推断的合理性)24.解:a=80;………………………1分(1)甲;………………………2分(2)110;………………………3分(3)答案不唯一,理由需支持推断结论.如:乙校竞赛成绩较好,因为乙校的平均分高于甲校的平均分说明平均水平高,乙校的中位数75高于甲校的中位数65,说明乙校分数不低于70分的学生比甲校多. ………………………5分石景山区24.某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据:(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.(写出其中一条即可)或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.………………6分(答案不唯一,理由须支撑推断结论)朝阳区24. 水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚. 对于市场最为关注的产量和产量的稳定性,进行了抽样调查,过程如下,请补充完整.收集数据 从甲、乙两个大棚各收集了25株秧苗上的小西红柿的个数:甲 26 32 40 51 44 74 44 63 73 74 81 54 6241 33 54 43 34 51 63 64 73 64 54 33 乙 27 35 46 55 48 36 47 68 82 48 57 66 7527 36 57 57 66 58 61 71 38 47 46 71整理、描述数据 按如下分组整理、描述这两组样本数据说明:45个以下为产量不合格,45个及以上为产量合格,其中45~65个为产量良好,65~85个为产量优秀) 分析数据 两组样本数据的平均数、众数和方差如下表所示:得出结论 a .估计乙大棚产量优秀的秧苗数为 株;b .可以推断出 大棚的小西红柿秧苗品种更适应市场需求,理由为.(至少从两个不同的角度说明推断的合理性)24. 解:整理、描述数据 按如下分组整理、描述这两组样本数据a .估计乙大棚产量优秀的秧苗数为 84 株; …………………………3分b .答案不唯一,理由须支撑推断的合理性. ………………………………5分燕山区22.豆豆妈妈用小米运动手环记录每天的运动情况,下面是她6天的数据记录(1)4月5日,4月6日,豆豆妈妈没来得及作记录,只有手机图片,请你根据图片数据,帮她补全表格. (2)豆豆利用自己学习的统计知识,把妈妈步行距离与燃烧脂肪情况用如下统计图表示出来,请你根据图中提供的信息写出结论: .(写一条即可)步行距离燃烧脂肪4月1日-6日妈妈步行距离与燃烧脂肪情况统计图(3)豆豆还帮妈妈分析出步行距离和卡路里消耗数近似成正比例关系,豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为__________公里.(直接写出结果,精确到个位)22. (1)填数据 ……………………….2′(2)写出一条结论:……………………….4′(3)预估她一天步行约为__________公里.(直接写出结果,精确到个位)门头沟区24.地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态坏境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:76 88 93 65 78 94 89 68 95 5089 88 89 89 77 94 87 88 92 91初二:74 97 96 89 98 74 69 76 72 7899 72 97 76 99 74 99 73 98 74(1)根据上表中的数据,将下列表格补充完整;整理、描述数据:908090608060(2你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).24.(1)补全表格正确:初一:8 …………………………………………1分众数:89 …………………………………………2分中位数:77 …………………………………………3分(2)可以从给出的三个统计量去判断如果利用其它标准推断要有数据说明合理才能得分………………5分大兴区24.甲乙两组各有10名学生,进行电脑汉字输入速度比赛,现将他们的成绩进行统计,过程如下:收集数据各组参赛学生每分钟输入汉字个数统计如下表:分析数据两组数据的众数、中位数、平均数、方差如下表所示:(1)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?(2)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价). 24. (1)乙组成绩更好一些…………………………………………………………………2分(2)答案不唯一,评价需支撑推断结论…………………………………………………6分(说明:评价中只要说对2条即可,每条给2分,共4分)平谷区23.为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整. 收集数据随机抽取甲乙两所学校的20名学生的数学成绩进行分析:甲91 89 77 86 71 31 97 93 72 9181 92 85 85 95 88 88 90 44 91乙84 93 66 69 76 87 77 82 85 8890 88 67 88 91 96 68 97 59 88整理、描述数据的值是.得出结论a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为 .b可以推断出学校学生的数学水平较高,理由为 . (至少从两个不同的角度说明推断的合理性)23.整理、描述数据分段学校30≤x ≤3940≤x ≤4950≤x ≤5960≤x ≤6970≤x ≤7980≤x ≤8990≤x ≤100甲1 1 0 0 3 78乙0 0 1 4 2 8 5 分析数据经统计,表格中m 的值是 88 . ················································· 3 得出结论a 若甲学校有400名初二学生,估计这次考试成绩80分以上人数为 300 . ............. 4 b 答案不唯一,理由须支撑推断结论. .. (7)怀柔区24.某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据 从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:整理、描述数据 按如下分数段整理、描述这两组样本数据:(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.) 分析数据 两组样本数据的平均数、中位数、众数如下表所示:得出结论(1)如果全校有160人选择篮球项目,达到优秀的人数约为 人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高. 你同意 的看法, 理由为 .(至少从两个不同的角度说明推断的合理性) 24.4.0≤x <5.55.5≤x <7.07.0≤x <8.58.5≤x <1010 排球 1 1 2 7 5 篮球21103(1)130;…………………………………………………………………………………………4分项目人数 成绩x(2)答案不唯一,理由需支持判断结论. ………………………………………………………6分延庆区24.从北京市环保局证实,为满足2022年冬奥会对环境质量的要求,北京延庆正在对其周边的环境污染进行综合治理,率先在部分村镇进行“煤改电”改造.在治理的过程中,环保部门随机选取了永宁镇和千家店镇进行空气质量监测.过程如下,请补充完整.请将以上两个表格补充完整;得出结论:可以推断出______镇这一年中环境状况比较好,理由为_____________.(至少从两个不同的角度说明推断的合理性)24.(1)1,9,2.……1分(2)82.5,90.……3分(3)千家店镇……4分理由:千家店镇污染指数平均数为80,永宁镇污染指数平均数为81.3,所以千家店镇污染指数平均数较低,空气质量较好;千家店镇空气质量为优的天数是4天,永宁镇空气质量为优的天数是1天,所以千家店镇空气质量为优的天数多,空气质量较好.…6分顺义区23.中华文明,源远流长,中华汉字,寓意深广,为了传承优秀传统文化,某校九年级组织600名学生参加了一次“汉字听写”大赛.赛后发现所有参赛学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本,成绩如下:90,92,81,82,78,95,86,88,72,66,62,68,89,86,93,97,100,73,76,80,77,81,86,89,82,85,71,68,74,98,90,97,100,84,87,73,65,92,96,60.频数成绩x /分121086401009080706021416请根据所给信息,解答下列问题:(1)a = ,b = , c = ,d = ;(2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,请你估计参加这次比赛的600名学生中成绩“优”等的约有多少人?23.解:(1)a = 14 ,b = 0.35 , c =12 ,d = 0.3 ;………… 2分(2)补全频数分布直方图如下:…………………… 4分(3)估计参加这次比赛的600名学生中成绩“优”等的约有180人.……… 5分161426070809010004681012成绩x /分频数。
【中考汇编】北京市各区2018届中考一模数学试卷精选汇编88页含答案
北京市各区2018届中考一模数学试卷精选汇编目录北京市各区2018届中考一模数学试卷精选汇编:解不等式组(含答案)北京市各区2018届中考一模数学试卷精选汇编:计算题(含答案)北京市各区2018届中考一模数学试卷精选汇编:解四边形(含答案)北京市各区2018届中考一模数学试卷精选汇编:几何证明(含答案)北京市各区2018届中考一模数学试卷精选汇编:几何综合(含答案)北京市各区2018届中考一模数学试卷精选汇编:函数计算及运用(含答案)北京市各区2018届中考一模数学试卷精选汇编:二次函数综合(含答案)北京市各区2018届中考一模数学试卷精选汇编:统计(含答案)解不等式组专题东城区18. 解不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>≥, 并写出它的所有整数解. 18. 解:4+6,23x x x x ⎧⎪⎨+⎪⎩①②>≥, 由①得,-x >2,------------------1分由②得,1x ≤, ------------------2分∴不等式组的解集为-1x 2<≤.所有整数解为-1, 0, 1. ---------------------5分西城区18.解不等式组3(2)4112x x x ++⎧⎪⎨-<⎪⎩≥,并求该不等式组的非负整数解.【解析】解①得,364x x ++≥,22x -≥,1x -≥,解②得,12x -<,3x <,∴原不等式解集为13x -<≤,∴原不等式的非负整数解为0,,2.海淀区18.解不等式组:()5331,263.2x x x x +>-⎧⎪⎨-<-⎪⎩ 18.解:() 5331, 263. 2x x x x +>-⎧⎪⎨-<-⎪⎩①② 解不等式①,得3x >-. …2分解不等式②,得2x <. ………4分所以 原不等式组的解集为32x -<<. ………5分18.解不等式组:341,51 2.2x x x x ≥-⎧⎪⎨->-⎪⎩ 18.解:解不等式①,得1x ≤, ……………………2分解不等式②,得1x >-. ……………………4分∴原不等式组的解集是11x -<≤.………5分石景山区18.解不等式组:3(1)45622x x x x +>++<⎧⎪⎨⎪⎩,. 18.解:原不等式组为3(1)45,62.2x x x x +>++<⎧⎪⎨⎪⎩ 解不等式①,得2x <-. ………………2分 解不等式②,得2x <. ………………4分 ∴原不等式组的解集为<2x -. ………………5分 朝阳区18. 解不等式组 :⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x18. 解:原不等式组为⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x解不等式①,得 5<x . ………………………………………2分解不等式②,得 21>x .………………………………………………4分 ∴ 原不等式组的解集为521<<x . …………………………………5分① ②18.解不等式组:⎩⎪⎨⎪⎧x -32<1,2(x +1)≥x -1.18.解:由(1)得,x-3<2X<5 ……………………….2′(2) 得 2x+2≥x-1x ≥-3 ……………………….4′所以不等式组的解是-3≤x <5……………………….5′ 门头沟区18. 解不等式组:1031+1.x x x ⎧-<⎪⎨⎪-⎩,≤3()18.(本小题满分5分)解不等式①得,x <3, …………………………………………2分解不等式②得,x ≥﹣2, ………………………………4分所以,不等式组的解集是﹣2≤x <3. ………………5分大兴区17.解不等式组:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 并写出它的所有整数解. 17. 解:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 由①,得21-≥x . ………………………………………………………1分 由②,得2<x . …………………………………………………………2分 ∴原不等式组的解集为221<≤-x . ………………………………………4分 它的所有整数解为0,1. …………………………………………………5分① ②18.解不等式组3(1)45,513x x x x -≥-⎧⎪-⎨->⎪⎩,并写出它的所有整数解.... 18.解:3(1)455 3 1x x x x -≥-⎧⎪⎨-->⎪⎩①② 解不等式①,得 x ≤2. ·········································································1 解不等式②,得 x >-1. ·······································································3 ∴原不等式组的解集为12x -<≤. ························································4 ∴适合原不等式组的整数解为0,1,2. ·······················································5 怀柔区18.解不等式组:()⎪⎩⎪⎨⎧<+-<-.1213,213x x x x 18.解:由①得:3x < . ………………………………………………………………………2分由②得:9x >- …………………………………………………………………………4分 原不等式组的解集为93x -<< ………………………………………………………5分 延庆区18.解不等式组:523(2)53.2x x x x -<+⎧⎪⎨+≤⎪⎩, 并写出它的所有整数解. 18.解:由①得,x <4. ……1分由②得,x ≥1 . ……3分∴ 原不等式组的解集为1≤x <4. ……4分∴ 原不等式组的所有整数解为1,2,3. ……5分18.解不等式组:()7+1,2315 1.x x x x +⎧≥-⎪⎨⎪+<-⎩18.解不等式组:()7+12315x x x x +⎧≥-⎪⎨⎪+<-⎩解:解不等式①得 x ≥3- ……………………………………………………………2分 解不等式②得 2x > ………………………………………………………………4分 不等式组的解集是 2x > …………………………………………………………5分计算题专题东城区17.计算:()2012sin 60-π-2++1-3-⎛⎫︒ ⎪⎝⎭. =217.解:原式分分西城区17114sin 3015-⎛⎫+︒- ⎪⎝⎭.【解析】原式1541)52122=+⨯-=+=. 海淀区17.计算:11()3tan 302|3-︒+. 17.解:原式=3323-⨯+- ………………4分=5- ………………5分丰台区1702cos 45(3π)|1-︒+-+-.1702cos 45(3π)|1︒+-+.=211++ ……………………4分= ……………………5分石景山区17.计算:012sin 455(3--++° 17.解:原式=2512⨯-+- ………………4分4=-- ………………5分朝阳区17. 计算:2sin30°+ .8)4()31(01+-+-π17. 解:原式 2213212+++⨯= …………………………………………………4分 225+=. ……………………………………………………………5分燕山区17.计算:4cos30°-12 + 20180 + ||1-317.4cos30°-12 + 20180 + ||1-3 =13132234-++-⨯=3 门头沟区17.计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭.平谷区17.计算:(1013132sin 603-⎛⎫-+-︒ ⎪⎝⎭π.17.解:(1013132sin 603-⎛⎫-+--︒ ⎪⎝⎭π=331312-- ···········································································4 =1 ····································································································5 怀柔区17.计算:102130tan 3)3(31-︒⎪⎭⎫ ⎝⎛-+---π. 17.解:原式331132=--+ …………………………………………………4分.…………………………………………………………………5分延庆区17.计算:0113tan 301(2)()3π-︒+---.17.原式=3⨯33+3-1+1-3 ……4分=23-3 ……5分顺义区17.计算:()01312sin 452π--︒+-.17.解:()01312sin 452π--︒+-112132=-⨯+ (4)分13= ……………………………………………………………………………… 5分4=-解四边形专题东城区21.如图,已知四边形ABCD 是平行四边形,延长BA 至点E ,使AE = AB ,连接DE ,AC .(1)求证:四边形ACDE 为平行四边形;(2)连接CE 交AD 于点O . 若AC=AB =3,1cos 3B =,求线段CE 的长.21.(1) 证明:∵平行四边形ABCD ,∴=AB DC ,AB DC ∥.∵AB =AE ,∴=AE DC ,AE DC ∥.∴四边形ACDE 为平行四边形. -------------------2分(2) ∵=AB AC ,∴=AE AC .∴平行四边形ACDE 为菱形.∴AD ⊥CE .∵AD BC ∥,∴BC ⊥CE.在Rt △EBC 中,BE =6, 1cos 3BC B BE ==, ∴=2BC . 根据勾股定理,求得=42BC 分 西城区21.如图,在ABD △中,ABD ADB ∠=∠,分别以点B ,D 为圆心,AB 长为半径在BD 的右侧作弧,两弧交于点C ,分别连接BC ,DC ,AC ,记AC 与BD 的交点为O . (1)补全图形,求AOB ∠的度数并说明理由;(2)若5AB =,3cos 5ABD ∠=,求BD 的长.BDA【解析】(1)补全的图形如图所示.90AOB ∠=︒. 证明:由题意可知BC AB =,DC AB =, ∵在ABD △中,ABD ADB ∠=∠, ∴AB AD =,∴BC DC AD AB ===, ∴四边形ABCD 为菱形, ∴AC BD ⊥, ∴90AOB ∠=︒.(2)∵四边形ABCD 为菱形, ∴OB OD =.在Rt ABO △中,90AOB ∠=︒,5AB =,3cos 5ABD ∠=,∴cos 3OB AB ABD =⋅∠=, ∴26BD OB ==.ABCDO海淀区21.如图,□ABCD 的对角线,AC BD 相交于点O ,且AE ∥BD ,BE ∥AC ,OE = CD . (1)求证:四边形ABCD 是菱形;(2)若AD = 2,则当四边形ABCD 的形状是__________时,四边形AOBE 的面积取得最大值是_______.C B EOAD21.(1)证明:∵AE BD ∥,BE AC ∥,∴四边形AEBO 是平行四边形. ………………1分 ∵四边形ABCD 是平行四边形,∴DC AB =. ∵OE CD =, ∴OE AB =.∴平行四边形AEBO 是矩形. ………………2分 ∴90BOA ∠=︒. ∴AC BD ⊥.∴平行四边形ABCD 是菱形. ………………3分 (2) 正方形; ………………4分2. ………………5分丰台区21.已知:如图,菱形ABCD ,分别延长AB ,CB 到点F ,E ,使得BF = BA ,BE = BC ,连接AE ,EF ,FC ,CA .(1)求证:四边形AEFC 为矩形;(2)连接DE 交AB 于点O ,如果DE ⊥AB ,AB = 4,求DE 的长.ABCEDF21.(1)证明:∵BF =BA ,BE =BC ,∴四边形AEFC 为平行四边形. ………………………1分 ∵四边形ABCD 为菱形, ∴BA =BC .∴BE =BF .∴BA + BF = BC + BE ,即AF =EC .∴四边形AEFC 为矩形. ………………………2分(2)解:连接DB .由(1)知,AD ∥EB ,且AD =EB . ∴四边形AEBD 为平行四边形 ∵DE ⊥AB ,∴四边形AEBD 为菱形.∴AE =EB ,AB =2AG ,ED =2EG . ………………………4分 ∵矩形ABCD 中,EB =AB ,AB=4, ∴AG =2,AE =4.∴Rt △AEG 中,EG=23.∴ED=43. ………………………5分 (其他证法相应给分)石景山区21.如图,在四边形ABCD 中,90A BCD ∠=∠=°,210BC CD ==,CE AD ⊥于点E . (1)求证:AE CE =;(2)若tan 3D =,求AB 的长.BA CE D21.(1)证明:(法一)过点B 作BH ⊥CE 于H ,如图1. ∵CE ⊥AD ,∴∠BHC =∠CED =90°,190D ∠+∠=︒. ∵∠BCD =90°, ∴1290∠+∠=︒, ∴2D ∠=∠. 又BC =CD∴BHC △≌CED △. ∴BH CE =.∵BH ⊥CE ,CE ⊥AD ,∠A =90°, ∴四边形ABHE 是矩形, ∴AE BH =.∴AE CE =. ………………3分 (法二)过点C 作CH ⊥AB 交AB 的延长线于H .图略,证明略. (2)解: ∵四边形ABHE 是矩形, ∴AB HE =.∵在Rt CED △中,tan 3CE D DE==,设,3DE x CE x ==,∴10210CD x ==. ∴2x =.∴2DE =,6CE =. ………………4分 ∵2CH DE ==.∴624AB HE ==-=. ………………5分朝阳区21. 如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C作AB 的平行线,交DE 的延长线于点F ,连接BF ,CD . (1)求证:四边形CDBF 是平行四边形; (2)若∠FDB =30°,∠ABC =45°,BC =,求DF 的长.21.(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD . ∵E 是BC 中点, ∴CE =BE .∵∠CEF =∠BED , ∴△CEF ≌△BED . ∴CF =BD .∴四边形CDBF 是平行四边形. ………………………2分(2)解:如图,作EM ⊥DB 于点M ,∵四边形CDBF 是平行四边形,BC =24,∴2221==BC BE ,DE DF 2=. 在Rt △EMB 中,2sin =∠⋅=ABC BE EM . ……………………3分在Rt △EMD 中,42==EM DE . …………………4分∴DF =8. ………………………………………………………5分燕山区23. 如图,在△ABC 错误!未找到引用源。
03.北京市东城区2018年中考一模考试试题标准答案
东城区2017-2018学年度第一次模拟检测初三数学试题参考答案及评分标准 2018.5题号 1 2 3 4 5 6 7 8 答案BBDDCABC二、填空题(本题共16分,每小题 2分)9. 1x ≥ 10. ()()22n m m +- 11. 8 12. 2x 13. ②③14. 2y x =+,2 15. 答案不唯一 ,理由须 支撑推断结论 16. 正方形的对角线相等且互相平分,圆的定义三、解答题(本题共68分,17-24题,每题5分,第25题6分,26-27题,每小题7分,第28题8分)3=2-1+9+3-1----------4=23+7------------------------517.解:原式分分18. 解:4+6,23x x x x ⎧⎪⎨+⎪⎩①②>≥,由①得,-x >2,------------------1分由②得,1x ≤, ------------------2分 ∴不等式组的解集为-1x 2<≤.所有整数解为-1, 0, 1. ---------------------5分19.证明: ∵∠BAC =90°,∴∠FBA +∠AFB =90°. -------------------1分 ∵AD ⊥BC ,∴∠DBE +∠DEB =90°.---------------- 2分 ∵BE 平分∠ABC ,∴∠DBE =∠FBA . -------------------3分∴∠AFB =∠DEB . -------------------4分 ∵∠DEB =∠FEA , ∴∠AFB =∠FEA .∴AE =AF . -------------------5分20. (1)证明:()()2=+3-42m m ∆+()2=+1m ∵()2+10m ≥,∴无论实数m 取何值,方程总有两个实根. -------------------2分 (2)解:由求根公式,得()()1,231=2m m x +±+,∴1=1x ,2=+2x m . ∵方程有一个根的平方等于4, ∴()2+24m =.解得=-4m ,或=0m . -------------------5分 21.(1) 证明:∵平行四边形ABCD , ∴=AB DC ,AB DC ∥. ∵AB =AE ,∴=AE DC ,AE DC ∥.∴四边形ACDE 为平行四边形. -------------------2分 (2) ∵=AB AC , ∴=AE AC .∴平行四边形ACDE 为菱形. ∴AD ⊥CE . ∵AD BC ∥, ∴BC ⊥CE.在Rt △EBC 中,BE =6, 1cos 3BC B BE ==, ∴=2BC .根据勾股定理,求得=42BC 分 22.解:(1)∵点()3,A n 在函数()30y x x=>的图象上, ∴=1n ,点()3,1A .∵直线()20y ax a =-≠过点()3,1A , ∴ 321a -= .解得 1a =. ----------------------2分 (2)易求得()0,2B -.如图,12AOB A S OB x =⋅△,1=2ABC A S BC x ⋅△∵=2ABC AOB S S △△,∴=24BC OB =.∴()10,2C ,或()20,6C -. ----------------------5分 23. (1)证明:连接OC .∵»»CDCB = ∴∠1=∠3. ∵OA OC =, ∴∠1=∠2. ∴∠3=∠2. ∴AE OC ∥. ∵AE EF ⊥, ∴OC EF ⊥.∵ OC 是O e 的半径,∴EF 是O e 的切线. ----------------------2分 (2)∵AB 为O e 的直径, ∴∠ACB =90°.根据勾股定理,由AB =5,BC =3,可求得AC =4. ∵AE EF ⊥ , ∴∠AEC =90°. ∴△AEC ∽△ACB . ∴AE ACAC AB =. ∴445AE =. ∴165AE =. ----------------------5分 24. 解:(I):56.8%;----------------------1分(II)折线图; ----------------------3分(III)答案不唯一,预估的理由须支撑预估的数据,参考数据61%左右.--------5分25.解:(1)4.5 . --------------------2分(2)--------------------4分(3) 4.2,点P 是AD 与CE 的交点. --------------------6分26.解:(1) ∵点()0,0O 在抛物线上,∴320a -=,23a =.--------------------2分(2)①对称轴为直线2x =;②顶点的纵坐标为 2a --.--------------------4分 (3) (i )当0a >时,依题意,-20320.a a -⎧⎨-⎩<,≥解得2.3a ≥(ii )当0a <时, 依题意,-20320.a a -⎧⎨-⎩>,≤解得a <-2.综上,2a -<,或23a ≥. --------------------7分27. (1)①75B ∠=︒,45ACB ∠=︒;--------------------2分②作DE ⊥AC 交AC 于点E .Rt △ADE 中,由30DAC ∠=︒,AD =2可得DE =1,AE 3=. Rt △CDE 中,由45ACD ∠=︒,DE=1,可得EC =1. ∴AC 31.Rt △ACH 中,由30DAC ∠=︒,可得AH 33+=; --------------4分(2)线段AH 与AB +AC 之间的数量关系:2AH =AB +AC证明: 延长AB 和CH 交于点F ,取BF 中点G ,连接GH .易证△ACH ≌△AFH .∴AC AF =,HC HF =. ∴GH BC ∥. ∵AB AD =,∴ ABD ADB ∠=∠. ∴ AGH AHG ∠=∠ . ∴ AG AH =.∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==. --------------7分 28. 解:(1)C ; --------------2分 (2)① 60°;② △MNE 是等边三角形,点E 的坐标为()31,;--------------5分③ 直线32y x =+交 y 轴于点K (0,2),交x 轴于点()23T ,0. ∴2OK =,23OT =∴60OKT ∠=︒.作OG ⊥KT 于点G ,连接MG . ∵()M 0,1, ∴OM =1.∴M 为OK 中点 . ∴ MG =MK =OM =1.∴∠MGO =∠MOG =30°,OG 3∴33.2G ⎫⎪⎪⎝⎭, ∵120MON ∠=︒,∴ 90GON ∠=︒.又OG =1ON =,∴30OGN ∠=︒. ∴60MGN ∠=︒.∴G 是线段MN 关于点O 的关联点.经验证,点)E在直线2y x =+上. 结合图象可知, 当点F 在线段GE 上时 ,符合题意.∵G F E x x x ≤≤,∴F x .--------------8分.。
2018年北京市东城区初三一模数学试卷及答案
东城区学年度第一次模拟检测 初三数学学校班级姓名考号一、选择题(本题共分,每小题分)下面各题均有四个选项,其中只有一个..是符合题意的 .如图,若数轴上的点,分别与实数,对应,用圆规在数轴上画点,则与点对应的实数是 .. . 当函数的函数值随着的增大而减小时,的取值范围是 ....为任意实数.若实数,满足,则与实数,对应的点在数轴上的位置可以是.如图,是等边△的外接圆,其半径为.图中阴影部分的面积是. ....点(,)经过某种图形变化后得到点(,),这种图形变化可以是.关于轴对称.关于轴对称.绕原点逆时针旋转°.绕原点顺时针旋转°.甲、乙两位同学做中国结,已知甲每小时比乙少做个,甲做个所用的时间与乙做个所用的时间相同,求甲每小时做中国结的个数. 如果设甲每小时做个,那么可列方程为.....第届冬奥会将于年在北京和张家口举行.冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有张形状、大小、质地均相同的卡片,正面分别印有跳台滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的项目图案,背面完全相同.现将这张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪图案的概率是.....如图是一座立交桥的示意图(道路宽度忽略不计),为入口,,为出口,其中直行道为,,,且;弯道为以点为圆心的一段弧,且,,所对的圆心角均为°.甲、乙两车由口同时驶入立交桥,均以的速度行驶,从不同出口驶出.其间两车到点的距离()与时间()的对应关系如图所示.结合题目信息,下列说法错误..的是.甲车在立交桥上共行驶. 从口出比从口出多行驶.甲车从口出,乙车从口出.立交桥总长为二、填空题(本题共分,每小题分).若根式有意义,则实数的取值范围是..分解因式:..若多边形的内角和为其外角和的倍,则该多边形的边数为..化简代数式,正确的结果为..含°角的直角三角板与直线,的位置关系如图所示,已知,∠°. 以下三个结论中正确的是(只填序号).①②为正三角形; ③.将直线的图象沿轴向上平移个单位长度后,所得直线的函数表达式为,这两条直线间的距离为.. 举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为.甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):如果你是教练,要选派一名选手参加国际比赛,那么你会选派(填“甲”或“乙”),理由是..已知正方形.求作:正方形的外接圆.作法:如图,()分别连接,,交于点;() 以点为圆心,长为半径作.即为所求作的圆.请回答:该作图的依据是.三、解答题(本题共分,第题,每小题分,第题分,第,每小题分,第题分).计算:..解不等式组并写出它的所有整数解..如图,在△中,∠°,⊥于点平分∠交于点,交于点. 求证:..已知关于的一元二次方程.() 求证:无论实数取何值,方程总有两个实数根;() 若方程有一个根的平方等于,求的值..如图,已知四边形是平行四边形,延长至点,使,连接,.()求证:四边形为平行四边形;()连接交于点. 若,,求线段的长..已知函数的图象与一次函数的图象交于点.()求实数的值;() 设一次函数的图象与轴交于点.若点在轴上,且,求点的坐标..如图,为的直径,点,在上,且点是的中点.过点作的垂线交直线于点.()求证:是的切线;()连接. 若,,求线段的长..随着高铁的建设,春运期间动车组发送旅客量越来越大.相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对年至年春运期间铁路发送旅客量情况进行了调查,具体过程如下.()收集、整理数据请将表格补充完整:()描述数据为了更直观地显示春运期间动车组发送旅客量占比的变化趋势,需要用 (填“折线图”或“扇形图”)进行描述; ()分析数据、做出推测预计年春运期间动车组发送旅客量占比约为,你的预估理由是 ..如图,在等腰△中,,点分别为,的中点,连接.在线段 上任取一点,连接 .若 ,设(当点与点重合时,的值为),.小明根据学习函数的经验,对函数随自变量的变换而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:()通过取点、画图、计算,得到了与的几组值,如下表:(说明: 补全表格时,相关数值保留一位小数). (参考数据:,,)建立平面直角坐标系,描出以()补全后的表中各对对应值为坐标的点,画出该函数的图象;()函数的最小值为(保留一位小数),此时点在图中的位置为..在平面直角坐标系中,抛物线与轴交于,两点(点在点左侧).()当抛物线过原点时,求实数的值;()①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含的代数式表示);()当≤时,求实数的取值范围.. 已知△中,是的平分线,且,过点作的垂线,交的延长线于点.()如图,若①直接写出和的度数;②若,求和的长;()如图,用等式表示线段与之间的数量关系,并证明..给出如下定义:对于⊙的弦和⊙外一点(,,三点不共线,且,在直线的异侧),当∠+∠°时,则称点是线段关于点的关联点.图是点为线段关于点的关联点的示意图.在平面直角坐标系中,⊙的半径为.()如图,,.在(,),(,),三点中, 是线段关于点的关联点的是;()如图,(,),,点是线段关于点的关联点.①∠的大小为°;②在第一象限内有一点,点是线段关于点的关联点,判断△的形状,并直接写出点的坐标;③点在直线上,当∠≥∠时,求点的横坐标的取值范围.东城区学年度第一次模拟检测初三数学试题参考答案及评分标准一、选择题(本题共分,每小题分)二、填空题(本题共分,每小题分). . ②③. ,. 答案不唯一,理由须支撑推断结论. 正方形的对角线相等且互相平分,圆的定义三、解答题(本题共分,题,每题分,第题分,题,每小题分,第题分). 解:由①得,,分由②得,,分∴不等式组的解集为.所有整数解为, , . 分.证明:∵∠°,∴∠∠°分∵⊥,∴∠∠°.分∵平分∠,∴∠∠.分∴∠∠分∵∠∠,∴∠∠.∴分. ()证明:∵,∴无论实数取何值,方程总有两个实根. 分()解:由求根公式,得,∴,.∵方程有一个根的平方等于,∴.解得,或分.() 证明:∵平行四边形,∴,.∵,∴,.∴四边形为平行四边形分() ∵,∴.∴平行四边形为菱形.∴⊥.∵,∴⊥.在△中,,,∴.根据勾股定理,求得分.解:()∵点在函数的图象上,∴,点.∵直线过点,∴.解得分()易求得.如图,,∵,∴.∴,或. 分. ()证明:连接.∵∴∠∠.∵,∴∠∠.∴∠∠.∴.∵,∴.∵是的半径,∴是的切线分()∵为的直径,∴∠°.根据勾股定理,由,可求得.∵,∴∠°.∴△∽△.∴.∴.∴. 分. 解:():;分()折线图;分()答案不唯一,预估的理由须支撑预估的数据,参考数据左右分.解:(). 分()分() ,点是与的交点分∵点在抛物线上,.解:()∴,分()①对称轴为直线;②顶点的纵坐标为分() ()当依题意,解得()当依题意,解得综上,,或. 分. ()①,;分②作⊥交于点.△中,由,可得,.△中,由,,可得.∴.△中,由,可得;分()线段与之间的数量关系:证明:延长和交于点,取中点,连接.易证△≌△.∴,.∴.∵,∴.∴.∴.∴. 分.解:();分()①°;②△是等边三角形,点的坐标为;分③直线交轴于点(,),交轴于点.∴,.∴.作⊥于点,连接.∵,∴.∴为中点 .∴ .∴∠∠°,.∴∵,∴ .又,,∴.∴.∴是线段关于点的关联点.经验证,点在直线上.结合图象可知,当点在线段上时,符合题意.∵,∴分。
完整word版,北京市各区2018届九年级中考一模数学试卷精选汇编:压轴题专题(含答案),推荐文档
北京市各区2018届九年级中考一模数学试卷精选汇编压轴题专题东城区28.给出如下定义:对于O O 的弦 MN 和O O 外一点P (M , O , N 三点不共线,且 P , O在直线MN 的异侧),当/ MPN + Z MON= 180°时,则称点 P 是线段MN 关于点O的关联点•图1是点P 为线段MN 关于点O 的关联点的示意图•① / MDN 的大小为加 厂h(\ 丿1.(1)如图•在 A (1 , 0), B (1, 1) , C 「2,0 三占中 是线段MN 关于点O 的关联点的是(2)如图 (0, 1), ND 是线段MN 关于点O 的关联点. ② 在第一象限内有一点E 丿3m,mE 是线段MN 关于点O 的关联点,判断△ MNE 的形状,并直接写出点 E 的坐标;xOy 中,O O 的半径为③点F在直线y 2 2上,当/ MFN汶MDN时,求点F的横坐标X F的取值3范围.------------- 2分28•解:(1) C;(2 [① 60°②△ MNE是等边三角形,点E的坐标为.3,1 ;-------------- 5分③直线y ' x 2交y轴于点K3••• OK 2 , OT 2 .3 •••• OKT 60 •作OG_ KT于点G连接MG•/ M 0, 1 ,•OM1.•M为OK中点••MG=MKOM1.•••/ MGO=Z MO=30°, OG 3.•G迺32 2•/ MON 120 ,GON 90 •又OG 3, ON 1,•OGN 30 ••MGN 60 ••G是线段MN关于点O的关联点•经验证,点E 31在直线y结合图象可知,当点F在线段GE上时,符合题意•T X3 W X F W X E ,• ——w X F W , 3 •------------ 8 分2西城区28.对于平面内的O C和O C外一点Q,给出如下定义:若过点Q的直线与O C存在公共点,记为点A , B,设k AQ BQ,则称点A (或点B )是0 C的k相关依附点”,CQ2AQ 2BQ特别地,当点A和点B重合时,规定AQ BQ , k (或 ).CQ CQ已知在平面直角坐标系xOy中,Q( 1,0) , C(1,0) , O C的半径为r .(1)如图,当r 2时,①若A(0,1)是O C的k相关依附点”,则k的值为______________ .②A2(1 A/2,0)是否为O C的2相关依附点”.答:______________ (填是”或否”).(2)若0 C上存在k相关依附点”点M ,①当r 1,直线QM与O C相切时,求k的值.②当k 3时,求r的取值范围.(3)若存在r的值使得直线y , 3x b与O C有公共点,且公共点时O C的3相关依备用图附点”,直接写出b的取值范围.【解析】(1 [①•②是.(2)①如图,当r 1时,不妨设直线QM与O C相切的切点M在x轴上方(切点M在x轴下方时同理),连接CM,则QM CM ,••• Q( 1,0) , C(1,0) , r 1 ,••• CQ 2 , CM 1 ,• MQ 3 ,此时k 2MQ 3 CQ ,②如图,若直线QM与O C不相切,设直线QM与O C的另一个交点为N (不妨设QN QM,点N , M在x轴下方时同理),作CD QM于点D,则MD ND ,••• MQ NQ (MN NQ) NQ 2ND 2NQ 2DQ ,•/ CQ 2 ,.MQ NQ 2DQ “ k DQ ,CQ CQ•当k、3 时,DQ 3 ,此时CD CQ2 DQ2 1 ,假设O C经过点Q,此时r 2 ,•••点Q早O C外,• r的取值范围是1< r 2 .(3) 3 b 3.3 -海淀区28•在平面直角坐标系xOy中,对于点P和e C,给出如下定义:若e C上存在一点T不与O重合,使点P关于直线OT的对称点P'在eC上,则称P为eC的反射点.下图为eC 的反射点P的示意图.(1)已知点A的坐标为(1,0),e A的半径为2,①在点0(0,0),M(1,2),N(0, 3)中,e A的反射点是 ________ ;②点P在直线y x上,若P为e A的反射点,求点P的横坐标的取值范围;(2)eC的圆心在x轴上,半径为2,y轴上存在点P是eC的反射点,直接写出圆心 C 的横坐标x的取值范围.28 •解(1)①e A的反射点是M , N . ................. 1分②设直线y x与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为 D , E , F , G,过点D作DH丄x轴于点H,如图.A*可求得点D的横坐标为.匕2 .2同理可求得点E , F , G的横坐标分别为,3—.2 2 2点P是e A的反射点,贝U e A上存在一点T,使点P关于直线0T的对称点P'在e A上, 则OP 0P'.•/ K 0P V3 ,••• K 0P W3 •反之,若K 0P W3 , e A上存在点Q,使得OP 0Q,故线段PQ的垂直平分线经过原点,且与e A 相交.因此点P是e A的反射点..•.点P的横坐标x的取值范围是3-2< x< 2,或—2 < x< ^2• ............................... 4分2 2 2 2(2)圆心C的横坐标x的取值范围是4W x W4 • ................. 7分丰台区28.对于平面直角坐标系x0y中的点M和图形W ,她给出如下定义:点P为图形W上一点,点Q 为图形W2上一点,当点M是线段PQ的中点时,称点M是图形W, W2的中立点”如果点P(x i, y i),Q(X2, y2),那么中立点”M的坐标为亠昱,一y2.2 2已知,点A(-3, 0), B(0, 4), C(4, 0).1 1(1)连接BC,在点D(—, 0), E(0, 1), F(0,-)中,可以成为点A和线段BC的中立点”2 2的是_____________ ;(2)已知点G(3, 0), O G的半径为2.如果直线y = - x + 1上存在点K可以成为点A和O G 的中立点”求点K的坐标;(3)以点C 为圆心,半径为2作圆.点N为直线y = 2x + 4上的一点,如果存在点N,使2A ,得y 轴上的一点可以成为点 N 与O C 的中立点”,直接写出点N 的横坐标的取值范围.I I I I ■ I __________________________________ I I ■ I I7 一6 一5 一4 一3 一2 -1 O —1 ―2 3 4 5 6?-1 - -2- -5 6 7 828 .解:(1 )点A 和线段BC 的中立点”的是点D ,点F ;..... 2分(2)点A 和O G 的中立点”在以点0为圆心、半径为1的圆上运动• 因为点K 在直线y=- x+1上, 设点K 的坐标为(x , - x+1 ),则 X 2+ ( - x+1 ) 2=12,解得 X 1=0, X 2=1.所以点K 的坐标为(0,1)或(1, 0) ..... 5分(3) (说明:点N 与O C 的中立点”在以线段NC 的中点P 为圆心、半径为1的圆上运动•圆P 与y 轴相切时,符合题意.) 5 43 2 所以点N 的横坐标的取值范围为-6$N =2.......... 8分vAi28.对于平面上两点 A , B ,给出如下定义:以点A 或B 为圆心,AB 长为半径的圆称为点 B 的“确定圆” •如图为点A , B 的“确定圆”的示意图..(1)已知点A 的坐标为(1,0),点B 的坐标为(3,3),则点A , B 的“确定圆”的面积为 ___________ ;(2)已知点A 的坐标为(0,0),若直线y x b 上只存在一个点 B ,使得点A , B 的“确定 圆”的面积为9 ,求点B 的坐标;(3)已知点A 在以P(m,0)为圆心,以1为半径的圆上,点B 在直线y要使所有点A ,B 的“确定圆”的面积都不小于 9 ,直接写出m 的取值范围.28•解:(1)25 ; .................... 2分A*T x 3上,若(2) •••直线y x b上只存在一个点B,使得点A,B的确定圆”的面积为9 ,•••O A的半AB 3且直线y x b与O A相切于点B,如图,径• AB CD , DCA 45° .①当b 0时,则点B在第二象限.过点B作BE x轴于点E ,••• BE AE 3. 2•••在Rt BEA 中,BAE 45° AB 3,23 2 3,2厂 )2 2②当b 0时,则点B'在第四象限. 同理可得3.2 ^2^3.23,2、 , --- )或(, ).2 2 2 2朝阳区28.对于平面直角坐标系 xOy 中的点P 和线段AB ,其中A(t , 0)、B(t+2 , 0)两点,给出 如下定义:若在线段 AB 上存在一点 Q ,使得P , Q 两点间的距离小于或等于1,则称P 为线段AB 的伴随点. (1) 当 t= 3 时,① 在点P l (1 , 1), P 2 ( 0, 0), P 3 (-2, -1 )中,线段AB 的伴随点是 _____________ ;② 在直线y=2x+b 上存在线段 AB 的伴随点M 、N ,且MN ,求b 的取值范 围; (2) 线段AB 的中点关于点(2, 0)的对称点是 C ,将射线CO 以点C 为中心,顺时 针旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围.28.解:(1)①线段AB 的伴随点是:P 2 ,P 3.............................................2分②如图1,当直线y=2x+b 经过点(3,1)时,b=5,此时b 取得最大值........................................................ 4分如图2,当直线y=2x+b 经过点(1, 1)时,b=3,此时b 取得最小值•••• B(综上所述,点B 的坐标为(b的取值范围是3切< 5.图1 图21(2) t的取值范围是—t 2. ..................................................... 8分2燕山区28 .在Rt△ ABC中,/ ACB=90 ° , CD是AB边的中线,DE丄BC于E,连结CD,点P在射线CB上(与B,C不重合).(1)如果/ A=30 °①如图1,/ DCB= __________ °②如图2,点P在线段CB上,连结DP ,将线段DP绕点D逆时针旋转60 °,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2 )如图3,若点P在线段CB的延长线上,且/ A= (0 ° < <90 ° ),连结DP,将线段DP绕点逆时针旋转2 得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明).28.解:⑴①/ DCB=60 ° .................................................. 1'②补全图形CP=BF ............................................. 3'△ DCP ◎△ DBF ...................................................... 6'(2) BF-BP=2DE tan (8)门头沟区28.在平面直角坐标系xOy中,点M的坐标为(洛,%),点N的坐标为(x2, y2),且为冷, y i y2,我们规定:如果存在点P,使MNP是以线段MN为直角边的等腰直角三角形,那么称点P为点M、N的“和谐点”.(1)已知点A的坐标为(1,3),①若点B的坐标为(3,3),在直线AB的上方,存在点A,B的“和谐点” C,直接写出点C的坐标;②点C在直线x=5上,且点C为点A, B的“和谐点”,求直线AC的表达式.(2 )0 O 的半径为r ,点D(1,4)为点E(1,2)、F (m, n)的“和谐点”,若使得厶DEF 与OO 有交点,画出示意图 直接写出半径r 的取值范围28.(本小题满分8分) 解:(1)0(1,5)或 C 2(3,5).由图可知,B (5,3) •/ A(1,3) ••• AB=4ABC 为等腰直角三角形• BC=4当 C 1 (5,7)时,5k b 7当 C 2(5, 1)时,5k b 1y_l1 II 1 l>II 1 1 1 i HII 1 111 l> 1 H 1 1 1 [| I I 1 1 11 1 -- 1 -- 1 -- :O --- 1 1 --- —1 1 1v r r I V —T ・「■广 n i i i T 1 u I... C i (5,7)或C 2(5, 1)设直线AC 的表达式为 y kx b(k0)TJ---- 「—i J------ J "T---- 「—i J------ J "T备用图26•••综上所述,直线AC的表达式是(2)当点F在点E左侧时:大兴区28.在平面直角坐标系 xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接 D P ,过点P 作DP 的垂线交y 轴于点E ( E 在线段OA 上,O 重合), DPE P , E 的直角”.图P , E 的直角”的图1 图2如图2,在平面直角坐标系 xOy 中,已知二次函数图象与 y 轴交于点F (0,m ),与x 轴分别 交于点B ( 3,0),C ( 12,0).若过点F 作平行于x 轴的直线交抛物线于点 N .(1) 点N 的横坐标为 ____________ ;(2)已知一直角为点 N,M ,K 的“平横纵直角”,若在线段OC 上存在不同的两点 M t 、M 2 使相应的点K i 、K 2都与点F 重合,试求m 的取值范围;E 不与点 平横纵(3)设抛物线的顶点为点Q ,连接BQ与FN交于点H ,当45 Z QHN 60时,求m 的取值范围.28. (1) 9 ....................................................................................................... 1 分(2)方法一:MK 丄MN ,要使线段0C上存在不同的两点M i、就是使以FN为直径的圆与0C有两个交点,即9 r2m 2.又m 0,c 9 .....................................................0 m .2方法m 0,点K在x轴的上方.过N作NW丄OC于点W,设OM x , OK y , 则CW=OC —OW=3, WM= 9 x.由厶MOKNWM ,得,--y x9x m1 29…y xmx . m当ym时,129m—x x ,m m化为2x9x2m 0当△ =0,即924m20 ,9解得m 时,2M2,使相应的点r m.K i、K2都与点F重合,也24 5线段0C 上有且只有一点 M ,使相应的点 K 与点F 重合.线段0C 上存在不同的两点 M i 、M 2,使相应的点K i 、K 2都与点F 重合时,m 的 取值 c9 .0m_2分(3)设抛物线的表达式为:y a(x 3)( x 12) (a 丰0),又抛物线过点F (0, m ),平谷区过点Q 36a .1m(x 363)(x 1 m . 3612)1 m(x 362)25 m . 16做QG 丄x 轴与FN 交于点RFN // x 轴/ QRH =90°BG25tan BQG-,QG 一QG16(dii Z BQG —24 伽又 45 QHN60 ,30BQ45BGBQG 30 BQG 45m 的取值范围为 时,可求出 时,可求出m15 224、3 ,524 5243 . 51|||III II。
2.2017-2018学年北京市东城区初三一模数学试题
北京市东城区2018—2019学年第二学期统一练习(一)初三数学 2019.5一、选择题(本题共16分,每小题2分) 第1-8题均有四个选项,符合题意的选项只有..一个 1.下列立体图形中,主视图是圆的为A .B .C .D .2. 2019年中国北京世界园艺博览会于4月29日在北京延庆举行,会期共162天.预计参观人数将不少于16000000人次.将16000000用科学计数法表示应为 A .16×106B . 1.6×107C .0.16×108D .1.6×1083. 已知实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是A .a >bB .|a |<|b |C .ab >0D .﹣a >b4.如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是A .50°B .60°C .70°D .80° 5. 若一个多边形的每个内角均为120°,则该多边形是A .四边形B .五边形C .六边形D .七边形 6.如果2320a a +-=,那么代数式2231-3()93a a a a+∙-+的值为 A .1 B .12 C .13 D . 147.弹簧原长(不挂重物)15cm ,弹簧总长L (cm)与重物质量x (kg)的关系如下表所示:当重物质量为5kg A .22.5 B .25 C .27.5 D .308.改革开放40年以来,城乡居民生活水平持续快速提升.居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出.下图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比..是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比..是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误..的是 A .2017年第二季度环比有所提高 B .2017年第三季度环比有所提高 C .2018年第一季度同比有所提高 D .2018年第四季度同比有所提高 二、填空题(本题共16分,每小题2分)9x 的取值范围是 .10.有一个质地均匀的正方体,六个面上分别标有1~6这六个整数,投掷这个正方体一次,则出现向上一 面的数字是偶数的概率为 .11.能说明命题“若a >b ,则ac >bc ”是假命题的一个c 值是_______. 12.如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACB =________°.13.《九章算术》中记载:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大小器各容几何?”其大意是:今有大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容量各是多少?设大容器容量为x 斛,小容器容量为y 斛,根据题意,可列方程组为____________.(斛:古量器名,容量单位)14.已知:在□ABCD 中,点E 在DA 的延长线上,13AE AD =,连接CE 交BD 于点F ,则EFFC的值是________.ED上.(1):=________;(2)点P为BD的中点,过点P作直线l∥BC,分别过点B作BM⊥l于点M,过点C作CN⊥l于点N,则矩形BCNM的面积为________.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图,直线BC及直线BC外一点P.求作:直线PE,使得PE∥BC.作法:如图,①在直线BC上取一点A,连接P A;②作∠P AC的平分线AD;③以点P为圆心,P A长为半径画弧,交射线AD于点E;④作直线PE.所以直线PE就是所求作的直线.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=________.∴∠PEA=________.∴PE∥BC.(____________________________________________________)(填推理的依据)1802sin 60+-22019︒-19.解不等式组:()+2124132x x x x -≥-⎧⎪⎨+>⎪⎩20.已知关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根. (1)求a 的取值范围;(2)当a 为符合条件的最大整数时,求此时方程的解.21.如图,在△ABC 中,CD 平分∠ACB ,CD 的垂直平分线分别交AC ,DC ,BC 于点E ,F ,G ,连接DE ,DG .(1)求证:四边形DGCE 是菱形;(2)若∠ACB =30°,∠B =45°,ED =6,求BG 的长.22.在平面直角坐标系xOy 中,直线(0)y kx k =≠与双曲线y =8(0)x x> 交于点A (2,n )(1)求n 及k 的值;(2)点B 是y 轴正半轴上一点,且△OAB 是等腰三角形,请直接写出所有..符合条件的点B 坐标.23.如图,AB与⊙O相切于点A,P为OB上一点,且BP=BA,连接AP并延长交⊙O于点C,连接OC.(1)求证:OC⊥OB;(2)若⊙O的半径为4,AB=3,求AP的长.24.某年级共有400名学生.为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析.下面给出了部分信息.a.不同交通方式学生人数分布统计图如下:b.采用公共交通方式单程所花费时间(分钟)的频数分布直方图如下(数据分成6组:10≤x<20,20≤x<30,30≤x<40,40≤x<50,50≤x<60,60≤x≤70):C.采用公共交通方式单程所花费时间在30≤x<40这一组的是:30 30 31 31 32 33 33 34 35 35 36 37 38 39根据以上信息,完成下列问题:(1) 补全频数分布直方图;(2) 采用公共交通方式单程所花费时间的中位数为_______分;(3) 请你估计全年级乘坐公共交通上学有_______人.其中单程不少于60分钟的有_______人.25. 如图,点E 在弦AB 所对的优弧上,且BE 为半圆,C 是BE 上一动点,连接CA ,CB ,已知AB =4cm ,设B ,C 两点间的距离为cm ,点C 到弦AB 所在直线的距离为1y cm ,A ,C 两点间的距离为2y cm .小明根据学习函数的经验,分别对函数1y ,2y ,随自变量的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整: (1)按照下表中自变量的值进行取点、画图、测量,分别得到了1y ,2y 与的几组对应值;/cm /cm(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,),(x ,)并画出函数,的图象;(3)结合函数图象,解决问题:①连结BE ,则BE 的长约为 cm .②当以A ,B ,C 为顶点组成的三角形是直角三角形时,BC 的长度约为 cm .26.在平面直角坐标系xOy 中,抛物线2691(0)y mx mx m m =-++≠. (1)求抛物线的顶点坐标;(2)若抛物线与x 轴的两个交点分别为A 和B (点A 在点B 的左侧),且AB =4,求m 的值;(3)已知四个点C (2,2),D (2,0),E (5,-2),F (5,6),若抛物线与线段CD 和线段EF 都没有公共点,请直接写出m 的取值范围.27.如图,在正方形ABCD 中,E 是边BC 上一动点(不与点B ,C 重合),连接DE ,点C 关于直线DE 的对称点为C ʹ,连接ACʹ并延长交直线DE 于点P ,F 是AC ′中点,连接DF . (1)求∠FDP 的度数;(2)连接BP ,请用等式表示AP ,BP ,DP 三条线段之间的数量关系,并证明. (3)连接ACACC ′的面积最大值.P28.在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(-3,1),①在点E(0,3),F(3,-3),G(2,-5)中,为点A的“等距点”的是________;②若点B在直线y=x+6上,且A,B两点为“等距点”,则点B的坐标为________;(2)直线l:y=kx-3(k>0)与x轴交于点C,与y轴交于点D,①若(-1,),(4,),是直线l上的两点,且与为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M,N两点为“等距点”,直接写出r的取值范围.。
北京市各区2018届九年级中考一模数学试卷精选汇编:几何综合(含答案)
27. 已知 △ABC 中, AD 是 BAC 的平分线,且 AD=AB, 过点 C 作 AD 的垂线,交 AD 的延长线于点 H .
( 1)如图 1,若 BAC 60
①直接写出 B 和 ACB的度数;
②若 AB=2,求 AC 和 AH 的长; ( 2)如图 2,用等式表示线段 AH 与 AB+AC 之间的数量关系,并证明.
∴ AC 3 1 .
33
Rt△ ACH 中,由 DAC 30 ,可得 AH
;
2
--------------4 分
( 2)线段 AH 与 AB+AC 之间的数量关系: 2AH=AB+AC 证明: 延长 AB 和 CH 交于点 F ,取 BF 中点 G,连接 GH. 易证△ ACH ≌△ AFH . ∴ AC AF , HC HF . ∴ GH ∥ BC . ∵ AB AD , ∴ ABD ADB . ∴ AGH AHG . ∴ AG AH . ∴ AB AC AB AF 2 AB BF 2 AB BG 2 AG 2 AH . --------------7 分
( 2)当 45
90 时,探究 NCE 与 BAM 之间的数量关系并加以证明.
( 3)当 0
90 时,若边 AD 的中点为 F ,直接写出线段 EF 长的最大值.
2 / 21
A
B
A
B
M
D
图1
C
【解析】(1)①补全的图形如C
备用图
D
C
② NCE 2 BAM .
( 2) 1 MCE 2
西城区
27.正方形 ABCD 的边长为 2 ,将射线 AB 绕点 A 顺时针旋转 ,所得射线与线段 BD 交于
最新2018东城区初三数学一模试题及答案word
东城区2017-2018学年度第一次模1拟检测2初三数学3学校______________班级______________姓名_____________考号4____________5考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共16分,每小题2分)6下面各题均有四个选项,其中只有一个..是符合题意的71.如图,若数轴上的点A,B分别与实数-1,1对应,用圆规在数轴8上画点C,则与点C对应的实数是912A. 2B. 310C. 4D. 511 12 13142. 当函数()212y x =--的函数值y 随着x 的增大而减小时,x 的取值15 范围是16A .x >0B .x <1C .1x >D .x 为任意实数173.若实数a ,b 满足a b >,则与实数a ,b 对应的点在数轴上的位置18 可以是192021224.如图,O 是等边△ABC 的外接圆,其半径为3. 图中阴影部分的23 面积是24A .π B .3π2C .2πD .3π 2526 2728 5.点A (4,3)经过某种图形变化后得到点B (-3,4),这种图形变293化可以是30A .关于x 轴对称B .关于y 轴对称31C .绕原点逆时针旋转90°D .绕原点顺时针旋转90°3233 6. 甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个34 所用的时间与乙 做45个所用的时间相同,求甲每小时做中国结35 的个数. 如果设甲每小时做x 个,那么可列方程为36A .30456x x =+ B .30456x x =- C .30456x x =- D .30456x x=+ 377.第24届冬奥会将于2022年在北京和张家口举行.冬奥会的项目有滑38 雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、39 花样滑冰等)、冰球、冰壶等.40如图,有5张形状、大小、质地均相同的卡片,正面分别印有跳台滑雪、41 速度滑冰、冰球、单板滑雪、冰壶五种不同的项目图案,背面完全相同.现42 将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片43 正面恰好是滑雪图案的概率是44454647A.15 B.25C.12D.35488.如图1是一座立交桥的示意图(道路宽度忽略不计), A为入口, F,49G为出口,其中直行道为AB,CG,EF,且AB=CG=EF ;弯道为50以点O为圆心的一段弧,且BC,CD,DE所对的圆心角均为90°.甲、51乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出. 其52间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信53息,下列说法错误..的是545556A. 甲车在立交桥上共行驶8sB. 从F口出比从G口出多行驶5740m58C. 甲车从F口出,乙车从G口出D. 立交桥总长为150m5960二、填空题(本题共16分,每小题2分)61459.1x -有意义,则实数x 的取值范围是__________________.6263 10.分解因式:24m n n -= ________________.6465 11.若多边形的内角和为其外角和的3倍,则该多边形的边数为66 ________________.6768 12. 化简代数式11+122xx x x ⎛⎫+÷ ⎪--⎝⎭,正确的结果为________________. 6970 13. 含30°角的直角三角板与直线l 1,l 2的位置71 关系如图所示,已知l 1//l 2,∠1=60°. 以下三个结论72 中正确的是_____________(只填序号).73 ①2AC BC =; ②BCD △为正三角形; ③AD BD =74 7576 14. 将直线y =x 的图象沿y 轴向上平移2个单位长度后,所得直线的77 函数表达式为 ____________,这两条直线间的距离为____________.7879 15. 举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中80 一项三次挑战失败,则该项成绩为0. 甲、乙是同一重量级别的举重选手,81他们近三年六次重要比赛的成绩如下(单位:公斤):82年份选手2015上半年2015下半年2016上半年2016下半年2017上半年2017下半年甲290(冠军)170(没获奖)292(季军)135(没获奖)298(冠军)300(冠军)乙285(亚军)287(亚军)293(亚军)292(亚军)294(亚军)296(亚军)83如果你是教练,要选派一名选手参加国际比赛,那么你会选派84____________(填“甲”或“乙”),理由是85______________________________________.8616.已知正方形ABCD.87求作:正方形ABCD的外接圆.88作法:如图,89(1)分别连接AC,BD,交于点O ;90(2) 以点O为圆心,OA长为半径作O.9167O 即为所求作的圆.92请回答:该作图的依据是_____________________________________.9394 三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第95 26-27,每小题7分,第28题8分)9617.计算:()212sin 60-π-2++1-33-⎛⎫︒ ⎪⎝⎭.9718. 解不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>≥, 并写出它的所有整数解. 9819. 如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D . BF 平分∠ABC 99 交AD 于点E ,交AC 于点F . 求证:AE =AF .100 101 102 103 104105 20. 已知关于x 的一元二次方程()2320x m x m -+++=.106(1) 求证:无论实数m 取何值,方程总有两个实数根; 107(2) 若方程有一个根的平方等于4,求m 的值.108810911021.如图,已知四边形ABCD 是平行四边形,延长BA 至点E ,使AE = AB ,111 连接DE ,AC .112(1)求证:四边形ACDE 为平行四边形;113(2)连接CE 交AD 于点O . 若AC=AB =3,1cos 3B =,求线段CE 的长.114115116 117 118 119 120 121 122 123124 22. 已知函数()30y x x=>的图象与一次函数()20y ax a =-≠的图象交于点125 A ()3,n .126(1)求实数a 的值;127(2) 设一次函数()20y ax a =-≠的图象与y 轴交于点B .若点C 在y 轴128 上,且=2ABC AOB S S △△,求点C 的坐标.12913023.如图,AB为O的直径,点C,D在O上,且点C是BD的中131点.过点C作AD的垂线EF交直线AD于点E.132(1)求证:EF是O的切线;133(2)连接BC. 若AB=5,BC=3,求线134段AE的长.13513613724.随着高铁的建设,春运期间动车组发送旅客量越来越大.相关部门为138了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018 139年春运期间铁路发送旅客量情况进行了调查,具体过程如下.140(I)收集、整理数据141请将表格补充完整:142143(II)描述数据144为了更直观地显示春运期间动车组发送旅客量占比的变化趋势,需145要用 ___________(填“折线图”或“扇形图”)进行描述;1469(III)分析数据、做出推测147预计2019年春运期间动车组发送旅客量占比约为___________,你148的预估理由是 _________________________________________ .14915025. 如图,在等腰△ABC中,AB=AC,点D,E分别为BC,AB的中点,连接151AD.在线段AD152上任取一点P,连接PB ,PE.若BC =4,AD=6,设PD=x(当点P与点D 153重合时,x的值为0),PB+PE=y.154小明根据学习函数的经验,对函数y随自变量x的变换而变化的规律进155行了探究.156下面是小明的探究过程,请补充完整:157(1)通过158取点、画图、159计算,得到了x160与y的几组值,161如下表:162(说明:补全表格时,相关数值保留一位小数).163(参考数据:2 1.414≈3 1.732≈5 2.236≈)164 x 0 1 23456 y 5.2 4.2 4.6 5.97.69.510(2) 建立平面直角坐标系,描出以补全后的表中各对对应值为坐标165的点,画出该函数的图象;166167168169170171172173174175176177178179180181182183(3)函数y的最小值为______________(保留一位小数),此时点P 184在图1中的位置为 ________________________.18518626.在平面直角坐标系xOy中,抛物线()02342≠-+-=aaaxaxy与x轴187交于A,B两点(点A在点B左侧).188(1)当抛物线过原点时,求实数a的值;189(2)①求抛物线的对称轴;190②求抛物线的顶点的纵坐标(用含a的代数式表示);1911112(3)当AB ≤4时,求实数a 的取值范围. 19219327. 已知△ABC 中,AD 是BAC ∠的平分线,且AD =AB , 过点C 作AD 的垂194线,交 AD195 的延长线于点H .196 (1)如图1,若60BAC ∠=︒197 ①直接写出B ∠和ACB ∠的度数;198 ②若AB =2,求AC 和AH 的长;199 (2)如图2,用等式表示线段AH 与AB +AC 之间的数量关系,并证明. 200201202203204205206207208209 21028.给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P (M ,O ,N 三点211不共线,且P ,O 在直线MN 的异侧),当∠MPN +∠MON=180°时,则称点 P 212是线段MN 关于点O21313的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图. 214 215在平面直角坐标系xOy 中,⊙O 的半径为1.216 (1)如图2, 22,22M ⎛ ⎝⎭,2222N ⎛- ⎝⎭.在A(1,0),B (1,1),)2,0C 217 三点中, 是线段MN 关于点O 的关联点的是 ; 218(2)如图3, M (0,1),N 3122⎛⎫- ⎪ ⎪⎝⎭,点D 是线段 MN 关于点O 的关联219点.220 ①∠MDN 的大小为 °;221 ②在第一象限内有一点E )3,m m ,点E 是线段MN 关于点O 的关联点, 222 判断△MNE 的形状,并直接写出点E 的坐标;223 ③点F 在直线323y x =-+上,当∠MFN ≥∠MDN 时,求点F 的横22414坐标F x 的取值范围.225226 227东城区2017-2018学年度第一次模拟检测228 初三数学试题参考答案及评分标准 2018.5229 一、选择题(本题共16分,每小题2分) 230231二、填空题(本题共16分,每小题 2分)232 9. 1x ≥ 10. ()()22n m m +- 11. 8 12. 2x 13. ②③ 23314. 2y x =+ 15. 答案不唯一 ,理由须 支撑推断结论 16. 234正方形的对角线相等且互相平分,圆的定义 235236三、解答题(本题共68分,17-24题,每题5分,第25题6分,26-27237题,每小题7分,第28题8分)238153=2-1+9+3-1----------42=23+7------------------------5⨯17.解:原式分分239 18. 解:4+6,23x x x x ⎧⎪⎨+⎪⎩①②>≥, 240 由①得,-x >2,------------------1分241 由②得,1x ≤, ------------------2分242 ∴不等式组的解集为-1x 2<≤.243 所有整数解为-1, 0, 1. ---------------------5分244245 24619.证明: ∵∠BAC =90°,247 ∴∠FBA +∠AFB =90°. -------------------1248 分249 ∵AD ⊥BC ,250 ∴∠DBE +∠DEB =90°.---------------- 2分251 ∵BE 平分∠ABC ,252 ∴∠DBE =∠FBA . -------------------3分 25316∴∠AFB =∠DEB . -------------------4分254 ∵∠DEB =∠FEA ,255 ∴∠AFB =∠FEA .256 ∴AE =AF . -------------------5分257258259 26020. (1)证明:()()2=+3-42m m ∆+()2=+1m261 ∵()2+10m ≥,262 ∴无论实数m 取何值,方程总有两个实根. -------------------2分 263(2)解:由求根公式,得()()1,231=2m m x +±+,264 ∴1=1x ,2=+2x m .265 ∵方程有一个根的平方等于4,266 ∴()2+24m =.267 解得=-4m ,或=0m . -------------------5分268 21.(1) 证明:∵平行四边形ABCD , 26917∴=AB DC ,AB DC ∥.270 ∵AB =AE ,271 ∴=AE DC ,AE DC ∥.272 ∴四边形ACDE 为平行四边形.273 -------------------2分274 (2) ∵=AB AC ,275 ∴=AE AC .276 ∴平行四边形ACDE 为菱形.277 ∴AD ⊥CE .278 ∵AD BC ∥,279 ∴BC ⊥CE.280 在Rt △EBC 中,BE =6, 1cos 3BC B BE ==, 281 ∴=2BC .282 根据勾股定理,求得=42BC 分283 22.解:(1)∵点()3,A n 在函数()30y x x =>的图象上, 28418∴=1n ,点()3,1A .285 ∵直线()20y ax a =-≠过点()3,1A ,286 ∴ 321a -= .287 解得 1a =. ----------------------2分288 (2)易求得()0,2B -.289 如图,12AOB A S OB x =⋅△,1=2ABC A S BC x ⋅△290 ∵=2ABC AOB S S △△,291 ∴=24BC OB =.292 ∴()10,2C ,或()20,6C -. ----------------------5分293 23. (1)证明:连接OC .294 ∵CD CB =295 ∴∠1=∠3.296 ∵OA OC =,297 ∴∠1=∠2.298 ∴∠3=∠2. 29919∴AE OC ∥.300 ∵AE EF ⊥,301 ∴OC EF ⊥.302 ∵ OC 是O 的半径,303 ∴EF 是O 的切线. ----------------------2分304 (2)∵AB 为O 的直径,305 ∴∠ACB =90°.306 根据勾股定理,由AB =5,BC =3,可求得AC =4.307 ∵AE EF ⊥ ,308 ∴∠AEC =90°.309 ∴△AEC ∽△ACB . 310 ∴AE AC AC AB=. 311 ∴445AE =. 312 ∴165AE =. ----------------------5分 313 24. 解:(I):56.8%;----------------------1分314(II)折线图; ----------------------3分315(III)答案不唯一,预估的理由须支撑预估的数据,参考数据61%左316右.--------5分31725.解:(1)4.5 . --------------------2分318(2)319320321322323324325326--------------327------4分328329(3) 4.2,点P是AD与CE的交点. --------------------6分330331202126.解:(1) ∵点()0,0O 在抛物线上,∴320a -=,33223a =.--------------------2分 333 (2)①对称轴为直线2x =;334 ②顶点的纵坐标为 2a --.--------------------4分335 (3) (i )当0a >时,336 依题意,-20320.a a -⎧⎨-⎩<,≥ 337 解得2.3a ≥338 (ii )当0a <时,339 依题意,-20320.a a -⎧⎨-⎩>,≤ 340 解得a <-2.341 综上,2a -<,或23a ≥. --------------------7分342343344345346 34727. (1)①75B ∠=︒,45ACB ∠=︒;34822 --------------------2分 349350②作DE ⊥AC 交AC 于点E .351 Rt △ADE 中,由30DAC ∠=︒,AD=2可得DE =1,AE 3=.352 Rt △CDE 中,由45ACD ∠=︒,DE=1,可得EC =1.353 ∴AC 31=+.354 Rt △ACH 中,由30DAC ∠=︒,可得AH 33+=; --------------4355 分356 357(2)线段AH 与AB +AC 之间的数量关系:2AH =AB +AC358 证明: 延长AB 和CH 交于点F ,取BF 中点G ,359 连接GH .360 易证△ACH ≌△AFH .361 ∴AC AF =,HC HF =.362 ∴GH BC ∥.363 ∵AB AD =,364 ∴ ABD ADB ∠=∠.36523 ∴ AGH AHG ∠=∠ .366 ∴ AG AH =.367 ∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==. 368--------------7分369 28. 解:(1)C ; --------------2370 分371 (2)① 60°;372 ② △MNE 是等边三角形,点E 的坐标为)31,;--------------5分 373 ③ 直线32y =+交 y 轴于点K (0,2),交x 轴于点()23T ,0. 374 ∴2OK =,23OT =375 ∴60OKT ∠=︒.376 作OG ⊥KT 于点G ,连接MG .377 ∵()M 0,1,378 ∴OM =1.379 ∴M 为OK 中点 .380 ∴ MG =MK =OM =1.38124 ∴∠MGO =∠MOG =30°,OG382 ∴3.2G ⎫⎪⎪⎝⎭, 383∵120MON ∠=︒, 384∴ 90GON ∠=︒. 385又OG =1ON =, 386∴30OGN ∠=︒. 387∴60MGN ∠=︒. 388∴G 是线段MN 关于点O 的关联点. 389经验证,点)E在直线2y =+上. 390结合图象可知, 当点F 在线段GE 上时 ,符合题意.391∵G F E x x x ≤≤, 392∴F x 分 393 394 .395 396 39739839940040140225。
北京市东城区2018-2019年中考数学一模试卷(含答案解析)
2018 年北京市东城区中考数学一模试卷
一、选择题(此题共30 分,每题 3 分)下边各题均有四个选项,此中只有一个是切合题意的.
1.数据显示: 2018 年我国就业增加高出预期.整年城镇新增就业 1 314 万人,高校毕业生就业创业人数再
创新高.将数据 1 314 用科学记数法表示应为()
A. 1.314 × 103 B. 1.314 × 104 C. 13.14 × 102 D. 0.1314 × 104
2.实数 a, b 在数轴上的对应点的地点如下图,则正确的结论是()
A. |a| < |b| B . a>﹣ b C. b> a D . a>﹣ 2
3.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何差别,此中白球 2 只,红球 6 只,黑球 4 只,将袋中的球搅匀,闭上眼睛随机从袋中拿出 1 只球,则拿出黑球的概率是()A.B.C.D.
4.某健步走运动的喜好者用手机软件记录了某个月(30 天)每日健步走的步数(单位:万步),将记录结
果绘制成了如下图的统计图.在每日所走的步数这组数据中,众数和中位数分别是()
A. 1.2 , 1.3 B . 1.3 , 1.3 C . 1.4 ,1.35D. 1.4 ,1.3
5.如图, AB∥ CD,直线 EF 分别交 AB,CD于 M, N 两点,将一个含有45°角的直角三角尺按如下图的方式
摆放,若∠ EMB=75°,则∠ PNM等于()
A.15° B .25° C .30° D .45°
6.以下哪个几何体,它的主视图、左视图、俯视图都同样()。
2018年北京市东城区中考一模数学试卷含答案解析 精品
2018年北京市东城区初三一模数学试卷一、单选题(共10小题)1.数据显示,2018年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数发表示应为()A.B.C.D.考点:科学记数法和近似数、有效数字答案:A试题解析:科学记数法是一个数表示成a×10的n次幂的形式,其中1≤|a|<10,n为整数,所以根据题意得51 660 000=5.166×107.故选A.2.下列运算中,正确的是()A.x·x3=x3B.(x2)3=x5C.D.(x-y)2=x2+y2考点:整式的运算答案:C试题解析:根据整式的运算公式正确,故选A。
3.有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是()A.B.C.D.考点:概率及计算答案:C试题解析:五张卡片中有三张奇数,则概率为,故选C4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁考点:极差、方差、标准差答案:B试题解析:方差越小发挥越稳定,则选B。
5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.62°考点:平行线的判定及性质答案:A试题解析:如图,∠2=∠3=38°,则∠1=90°-38°=52°6.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE =CB,连接ED. 若量出DE=58米,则A,B间的距离为()A.29米B.58米C.60米D.116米考点:全等三角形的判定全等三角形的性质答案:B试题解析:由题意可得△ABC≌△DEC(SAS),则ED=AB=58,故选B。
北京市东城区2018届九年级5月统一测试(一模)数学试题(PDF版,解析版)
北京市东城区2018届九年级5月统一测试(一模)数学试题一、选择题(本题共16分,每小题2分)1.如图,若数轴上的点A,B分别与实数﹣1,1对应,用圆规在数轴上画点C,则与点C对应的实数是()A.2B.3C.4D.5【分析】先求出AB=2,再根据半径相等得到BC=2,即可解答.【解答】解:∵数轴上的点A,B分别与实数﹣1,1对应,∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴与点C对应的实数是:1+2=3,故选:B.【点评】本题考查了实数与数轴,解决本题的关键是熟记实数与数轴上点的一一对应关系.2.当函数y=(x﹣1)2﹣2的函数值y随着x的增大而减小时,x的取值范围是()A.x>0B.x<1C.x>1D.x为任意实数【分析】利用二次函数的增减性求解即可,并画出了图形,可直接看出.【解答】解:对称轴是:x=1,且开口向上,如图所示,∴当x<1时,函数值y随着x的增大而减小;故选:B.【点评】本题主要考查了二次函数的性质,解题的关键是熟记二次函数的性质.3.若实数a,b满足|a|>|b|,则与实数a,b对应的点在数轴上的位置可以是()A.B.C.D.【分析】根据绝对值的意义,可得答案.【解答】解:由|a|>|b|,得a与原点的距离比b原点的距离远,故选:D.【点评】本题考查了实数与数轴,利用绝对值的意义是解题关键.4.如图,⊙O是等边△ABC的外接圆,其半径为3,图中阴影部分的面积是()A.πB.C.2πD.3π【分析】先根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积.【解答】解:∵△ABC为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积==3π.故选:D.【点评】本题考查了三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆.三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.5.点A(4,3)经过某种图形变化后得到点B(﹣3,4),这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90°D.绕原点顺时针旋转90°【分析】根据旋转的定义得到即可.【解答】解:因为点A(4,3)经过某种图形变化后得到点B(﹣3,4),所以点A绕原点逆时针旋转90°得到点B,故选:C.【点评】本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.6.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为()A.=B.=C.=D.=【分析】根据甲乙的工作时间,可列方程.【解答】解:设甲每小时做x个,乙每小时做(x+6)个,根据甲做30个所用时间与乙做45个所用时间相等,得,故选:A.【点评】本题考查了分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.7.第24届冬奥会将于2022年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有5张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是()A.B.C.D.【分析】先找出滑雪项目图案的张数,再根据概率公式即可得出答案.【解答】解:∵有5张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是;故选:B.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.8.如图1是一座立交桥的示意图(道路宽度忽略不计),A 为人口,F,G 为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O 为圆心的一段弧,且,,所对的圆心角均为90°.甲、乙两车由A 口同时驶入立交桥,均以10m/s 的速度行驶,从不同出口驶出,其间两车到点O 的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误的是()A.甲车在立交桥上共行驶8sB.从F 口出比从G 口出多行驶40mC.甲车从F 口出,乙车从G 口出D.立交桥总长为150m【分析】根据题意、结合图象问题可得.【解答】解:由图象可知,两车通过,,弧时每段所用时间均为2s,通过直行道AB,CG,EF时,每段用时为3s.因此,甲车所用时间为3+2+3=8s,故A正确;根据两车运行路线,从F口驶出比从G口多走,弧长之和,用时为4s,则走40m,故B正确;根据两车运行时间,可知甲先驶出,应从G口驶出,故C错误;根据题意立交桥总长为(3×2+3×3)×10=150m,过D正确;故选:C.【点评】本题考查了动点问题的函数图象,解答时要注意数形结合.二、填空题(本题共16分,每小题2分)9.若式子有意义,则实数x的取值范围是x≥1.【分析】根据二次根式的性质可以得到x﹣1是非负数,由此即可求解.【解答】解:依题意得x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.10.因式分解:m2n﹣4n=n(m+2)(m﹣2).【分析】直接提取公因式n,进而利用平方差公式分解即可.【解答】解:m2n﹣4n=n(m2﹣4)=n(m+2)(m﹣2).故答案为:n(m+2)(m﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.11.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是八.【分析】任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n 边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.12.化简代数式(x+1+)÷,正确的结果为2x.【分析】根据分式的减法和除法可以解答本题.【解答】解:(x+1+)÷====2x,故答案为:2x.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.13.含30°角的直角三角板与直线l1,l2的位置关系如图所示,已知l1∥l2,∠1=60°,以下三个结论中正确的是②③(只填序号)①AC=2BC;②△BCD为正三角形;③AD=BD【分析】根据平行线的性质以及等边三角形的性质即可求出答案.【解答】解:由题意可知:∠A=30°,∴AB=2BC,故①错误;∵l1∥l2,∴∠CDB=∠1=60°,∴△BCD是等边三角形,故②正确;∵△BCD是等边三角形,∴∠BCD=60°,∴∠ACD=∠A=30°,∴AD=CD=BD,故③正确;故答案为:②③【点评】本题考查平行的性质以及等边三角形的性质,解题的关键是熟练运用平行线的性质,等边三角形的性质,含30度角的直角三角形的性质,本题属于中等题型.14.将直线y=x沿y轴向上平移2个单位长度后,所得直线的函数表达式为y=x+2,这两条直线间的距离为.【分析】根据直线y=x沿y轴向上平移2个单位长度,利用左加右减得出即可.利用等面积法求得这两条直线间的距离.【解答】解:∵直线y=x沿y轴向上平移2个单位长度,∴所得直线的函数关系式为:y=x+2.则A(0,2),B(2,0),∴AB=2,过点O作OF⊥AB于点F,则AB•OF=OA•OB,∴OF===,即这两条直线间的距离为.故答案为:y=x+2,.【点评】本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.15.举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为0,甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):年份选手2015年上半年2015年下半年2016年上半年2016年下半年2017年上半年2017年下半年甲290(冠军)170(没获奖)292(季军)135(没获奖)298(冠军)300(冠军)乙285(亚军)287(亚军)293(亚军)292(亚军)294(亚军)296(亚军)如果你是教练,要选派一名选手参加国际比赛,那么你会选择乙(填“甲”或“乙”),理由是乙的比赛成绩比较稳定.【分析】甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定;乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定,据此可得结论.【解答】解:由题可得,甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定;乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定;所以要选派一名选手参加国际比赛,应该选择乙,理由是乙的比赛成绩比较稳定.故答案为:乙,乙的比赛成绩比较稳定.【点评】本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.16.已知:正方形ABCD.求作:正方形ABCD的外接圆.作法:如图,(1)分别连接AC,BD,交于点O;(2)以点O为圆心,OA长为半径作⊙O,⊙O即为所求作的圆.请回答:该作图的依据是正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.【分析】利用正方形的性质得到OA=OB=OC=OD,则以点O为圆心,OA长为半径作⊙O,点B、C、D都在⊙O上,从而得到⊙O为正方形的外接圆.【解答】解:∵四边形ABCD为正方形,∴OA=OB=OC=OD,∴⊙O为正方形的外接圆.故答案为:正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.三、解答题(本题共68分)17.(5分)计算:2sin60°﹣(π﹣2)0+()﹣1+|1﹣|.【分析】直接利用特殊角的三角函数值和零指数幂的性质、负指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:原式=2×﹣1+3+﹣1=+1+=2+1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(5分)解不等式组并写出它的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式4x+6>x得:x>﹣2,解不等式≥x,得:x≤1,则不等式组的解集为﹣2<x≤1,所以不等式组的整数解有﹣1、0、1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(5分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.【分析】根据角平分线的定义和余角的性质即可得到结论.【解答】解:∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【点评】此题考查了等腰三角形的判定、直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.20.(5分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=0.(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程有一个根的平方等于4,求m的值.【分析】(1)先根据方程有两个相等的实数根列出关于m的一元二次方程,求出m的值即可;(2)根据题意得到x=±2是原方程的根,将其代入列出关于m的新方程,通过解新方程求得m的值.【解答】(1)证明:∵△=[﹣(m+3)]2﹣4(m+2)=(m+1)2≥0,∴无论实数m取何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于4,∴x=±2是原方程的根,当x=2时,4﹣2(m+3)+m+2=0.解得m=0;当x=﹣2时,4+2(m+3)+m+2=0,解得m=﹣4.综上所述,m的值为0或﹣4.【点评】本题考查的是根的判别式及一元二次方程的解的定义,在解答(2)时要分类讨论,这是此题的易错点.21.(5分)如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE=AB,连接DE,AC(1)求证:四边形ACDE为平行四边形;(2)连接CE交AD于点O,若AC=AB=3,cosB=,求线段CE的长.【分析】(1)欲证明四边形ACDE是平行四边形,只要证明AE=CD,AE∥CD即可;(2)连接EC,首先证明△BEC是直角三角形,解直角三角形即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=AB,∴AE=CD,∵AE∥CD,∴四边形ACDE是平行四边形.(2)如图,连接EC.∵AC=AB=AE,∴△EBC是直角三角形,∵cosB==,BE=6,∴BC=2,∴EC===4.【点评】本题考查平行四边形的性质和判定、直角三角形的判定、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(5分)已知函数y=(x>0)的图象与一次函数y=ax﹣2(a≠0)的图象交于点A(3,n).(1)求实数a的值;(2)设一次函数y=ax﹣2(a≠0)的图象与y轴交于点B,若点C在y轴上,且S△ABC =2S△AOB,求点C的坐标.【分析】(1)把A(3,n)代入y=(x>0)可得n的值,进而可得A点坐标,再把A点坐标代入一次函数y=ax﹣2可得a的值;(2)首先求出一次函数y=ax﹣2(a≠0)的图象与y轴交点B的坐标,再分两种情况①当C点在y轴的正半轴上或原点时;②当C点在y轴的负半轴上时进行计算即可.【解答】解:(1)∵函数y=(x>0)的图象过A(3,n),∴3n=3,n=1,∴A(3,1)∵一次函数y=ax﹣2(a≠0)的图象过点A(3,1),∴1=3a﹣1,解得a=1;(2)∵一次函数y=ax﹣2(a≠0)的图象与y轴交于点B,∴B(0,﹣2),①当C点在y轴的正半轴上或原点时,设C(0,m),∵S△ABC =2S△AOB,∴×(m+2)×3=2××3,解得:m=0,②当C点在y轴的负半轴上时,设C(0,h),∵S△ABC =2S△AOB,∴×(﹣2﹣h)×3=2××3,解得:h=﹣4,∴C(0,﹣4)或(0,0).【点评】此题主要考查了一次函数与反比例函数交点问题,关键掌握凡是函数图象经过的点必能满足解析式.23.(5分)如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长.【分析】(1)连接OC,根据等腰三角形的性质、平行线的判定得到OC∥AE,得到OC⊥EF,根据切线的判定定理证明;(2)根据勾股定理求出AC,证明△AEC∽△ACB,根据相似三角形的性质列出比例式,计算即可.【解答】(1)证明:连接OC,∵OA=OC,∴∠OCA=∠BAC,∵点C是的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠BCA=90°,∴AC==4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°,∴△AEC∽△ACB,∴=,∴AE==.【点评】本题考查的是切线的判定、圆周角定理以及相似三角形的判定和性质,掌握切线的判定定理、直径所对的圆周角是直角是解题的关键.24.(5分)随着高铁的建设,春运期间动车组发送旅客量越来越大,相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间的铁路发送旅客量情况进行了调查,过程如下.(Ⅰ)收集、整理数据请将表格补充完整:年份20142015201620172018动车组发送旅客量a亿人次0.87 1.14 1.46 1.80 2.17铁路发送旅客总量b亿人次 2.52 2.76 3.07 3.42 3.82动车组发送旅客量占比×100%34.5%41.3%47.6%52.6%56.8%(Ⅱ)描述数据为了更直观地显示动车组发送旅客量占比的变化趋势,需要用折线(填“折线图”或“扇形图”)进行描述;(Ⅲ)分析数据、做出推测预估2019年春运期间动车组发送旅客量占比约为60%,你的预估理由是之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019年增加的百分比接近3%.【分析】(Ⅰ)根据百分比的意义解答可得;(Ⅱ)根据折线图和扇形图的特点选择即可得;(Ⅲ)根据之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019年增加的百分比接近3%.【解答】解:(Ⅰ)年份20142015201620172018动车组发送旅客量a亿人次0.87 1.14 1.46 1.80 2.17铁路发送旅客总量b亿人次 2.52 2.76 3.07 3.42 3.8234.5%41.3%47.6%52.6%56.8%动车组发送旅客量占比×100%(Ⅱ)为了更直观地显示动车组发送旅客量占比的变化趋势,需要用折线图进行描述,故答案为:折线图;(Ⅲ)预估2019年春运期间动车组发送旅客量占比约为60%,你的预估理由是之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019年增加的百分比接近3%.故答案为:60%、之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019年增加的百分比接近3%.【点评】本题考查折线统计图,解题的关键是明确折线统计图的特点,从中可以得到我们需要的信息.25.(6分)如图1,在等腰△ABC中,AB=AC,点D,E分别为BC,AB的中点,连接AD.在线段AD上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P与点D重合时,x的值为0),PB+PE=y.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x与y的几组值,如下表:x0123456y 5.2 4.5 4.2 4.6 5.97.69.5说明:补全表格时,相关数值保留一位小数.(参考数据:≈1.414,≈1.732,≈2.236)(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)函数y的最小值为 4.2(保留一位小数),此时点P在图1中的位置为线段AD上靠近D点三等分点处.【分析】根据题意,作图测量即可【解答】解:(1)根据题意,作图得,y=4.5故答案为:4.5(2)根据数据画图得(3)根据图象,函数y的最小值为4.2,此时点P在图1中的位置为.线段AD 上靠近D点三等分点处【点评】本题为动点问题的函数图象问题,要根据题意细心作图.26.(7分)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a﹣2(a≠0)与x 轴交于A,B两点(点A在点B左侧).(1)当抛物线过原点时,求实数a的值;(2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3)当AB≤4时,求实数a的取值范围.【分析】(1)把原点坐标代入y=ax2﹣4ax+3a﹣2可计算出对应a的值;(2)①②把抛物线解析式配成顶点式可得到抛物线的对称轴和抛物线的顶点的纵坐标;(3)设A(m,0),B(n,0),利用抛物线与x轴的交点问题,则m、n为方程ax2﹣4ax+3a﹣2=0的两根,利用判别式的意义解得a>0或a<﹣2,再利用根与系数的关系得到m+n=4,mn=,然后根据完全平方公式利用n﹣m≤4得到(m+n)2﹣4mn≤16,所以42﹣4•≤16,接着解关于a的不等式,最后确定a的范围.【解答】解:(1)把(0,0)代入y=ax2﹣4ax+3a﹣2得3a﹣2=0,解得a=;(2)①y=a(x﹣2)2﹣a﹣2,抛物线的对称轴为直线x=2;②抛物线的顶点的纵坐标为﹣a﹣2;(3)设A(m,0),B(n,0),∵m、n为方程ax2﹣4ax+3a﹣2=0的两根,∴△=16a2﹣4a(3a﹣2)>0,解得a>0或a<﹣2,∴m+n=4,mn=,而n﹣m≤4,∴(n﹣m)2≤16,即(m+n)2﹣4mn≤16,∴42﹣4•≤16,即≥0,解得a≥或a<0.∴a的范围为a<﹣2或a≥.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.27.(7分)已知△ABC中,AD是∠BAC的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H.(1)如图1,若∠BAC=60°.①直接写出∠B和∠ACB的度数;②若AB=2,求AC和AH的长;(2)如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明.【分析】(1)①先根据角平分线的定义可得:∠BAD=∠CAD=30°,由等腰三角形的性质得:∠B=75°,最后利用三角形内角和可得∠ACB=45°;②如图1,作高线DE,在Rt△ADE中,由∠DAC=30°,AB=AD=2可得DE=1,AE=,在Rt△CDE中,由∠ACD=45°,DE=1,可得EC=1,AC=+1,同理可得AH的长;(2)如图2,作辅助线,构建等腰三角形,易证△ACH≌△AFH,则AC=AF,HC=HF,根据平行线的性质和等腰三角形的性质得:AG=AH,再由线段的和可得结论.【解答】解:(1)①∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B==75°,∴∠ACB=180°﹣60°﹣75°=45°,②如图1,过D作DE⊥AC交AC于点E,在Rt△ADE中,∵∠DAC=30°,AB=AD=2,∴DE=1,AE=,在Rt△CDE中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=+1,在Rt△ACH中,∵∠DAC=30°,∴CH=AC=,∴AH===;(2)线段AH与AB+AC之间的数量关系:2AH=AB+AC.证明:如图2,延长AB和CH交于点F,取BF的中点G,连接GH.易证△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.【点评】本题是三角形的综合题,难度适中,考查了三角形全等的性质和判定、等腰三角形的性质和判定、勾股定理、三角形的中位线定理等知识,熟练掌握这些性质是本题的关键,第二问构建等腰三角形是关键.28.(8分)给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且点P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,⊙O的半径为1.(1)如图2,已知M(,),N((,﹣),在A(1,0),B(1,1),C(,0)三点中,是线段MN关于点O的关联点的是C;(2)如图3,M(0,1),N(,﹣),点D是线段MN关于点O的关联点.①∠MDN的大小为60°;②在第一象限内有一点E(m,m),点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;③点F在直线y=﹣x+2上,当∠MFN≥∠MDN时,求点F的横坐标x的取值范围.【分析】(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件;(2)①如图3﹣1中,作NH⊥x轴于H.求出∠MON的大小即可解决问题;②如图3﹣2中,结论:△MNE是等边三角形.由∠MON+∠MEN=180°,推出M、O、N、E四点共圆,可得∠MNE=∠MOE=60°,由此即可解决问题;③如图3﹣3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,首先证明点E在直线y=﹣x+2上,设直线交⊙O′于E、F,可得F(,),观察图形即可解决问题;【解答】解:(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件,故答案为C.(2)①如图3﹣1中,作NH⊥x轴于H.∵N(,﹣),∴tan∠NOH=,∴∠NOH=30°,∠MON=90°+30°=120°,∵点D是线段MN关于点O的关联点,∴∠MDN+∠MON=180°,∴∠MDN=60°.故答案为60°.②如图3﹣2中,结论:△MNE是等边三角形.理由:作EK⊥x轴于K.∵E(m,m),∴tan∠EOK=,∴∠EOK=30°,∴∠MOE=60°,∵∠MON+∠MEN=180°,∴M、O、N、E四点共圆,∴∠MNE=∠MOE=60°,∵∠MEN=60°,∴∠MEN=∠MNE=∠NME=60°,∴△MNE是等边三角形.③如图3﹣3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,易知E(,1),∴点E在直线y=﹣x+2上,设直线交⊙O′于E、F,可得F(,),观察图象可知满足条件的点F的横坐标x的取值范围≤x≤.F【点评】本题考查一次函数综合题、直线与圆的位置关系、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东城区2017—2018学年第二学期初三综合练习(一)数学试题 2018.5学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.与2-的和为0的数是A .2-B .12-C .12D .22.2018年元旦期间,北京各大公园接待游客达245 000万人次。
其中, “冰雪乐园”吸引了大批游客亲身感受冰雪带来的快乐,一起为北京申办2022年冬奥会助力加油.用科学记数法表示245 000 ,正确的是A .424.510⨯B .52.4510⨯C .62.4510⨯D .60.24510⨯3.一个几何体的三视图如图所示,则这个几何体是A .圆柱B .球C .圆锥D . 棱柱 4.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的中位数和众数分别是5. 在六张卡片上分别写有π,, 1.5,3,0,3-,从中任意抽取一张,卡片上的数为无理数的概率是6.正五边形的每个外角等于A. 36︒B. 60︒C. 72︒D. 108︒7.如图,AB 是O 的直径,点C 在O 上,过点C 作O 的切线交AB 的 延长线于点D ,连接OC ,AC .若50∠的度数是D∠=︒,则AA. 20︒ B.25︒ C.40︒ D.50︒8.小李驾驶汽车以50千米/小时的速度匀速行驶1小时后,途中靠边停车接了半小时电话,然后继续匀速行驶.已知行驶路程y(单位:千米)与行驶时间t(单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为A. 43.5B. 50C. 56D. 589. 如图,已知∠MON=60°,OP是∠MON的角平分线,点A是OP上一点,过点A作ON的平行线交OM于点B,AB=4.则直线AB与ON之间的距离是B.2C.A.D.410. 如图1,ABC△都是等腰直角三角形,其中△和DEF∠=∠=︒,点A与点D重合,点E在AB上,4AB=,C EDF90△沿着线段AB从点A△保持不动,DEF2DE=.如图2,ABC向点B 移动, 当点D 与点B 重合时停止移动.设AD x =,DEF △与ABC △重叠部分的面积为S ,则S 关于x 的函数图象大致是A B C D二、填空题(本题共18分,每小题3分)11.分解因式:224mx my -= .12 .13. 关于x 的一元二次方程230x x m +-=有两个不相等的实数根,则实数m 的取值范围是 .14. 北京的水资源非常匮乏,为促进市民节水,从2017年5月1日起北京市居民用水实行阶梯水价,实施细则如下表:图1 图2北京市居民用水阶梯水价表单位:元/立方米某户居民从2015年1月1日至4月30日,累积用水190立方米,则这户居民4个月共需缴纳水费元.15.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是米.16.在平面直角坐标系xOy 中,记直线1y x =+为l .点1A 是直线l 与y 轴的交点,以1AO 为边做正方形111AOC B ,使点1C 落在在x 轴正半轴上,作射线11C B 交直线l 于点2A ,以21A C 为边作正方形2122A C C B ,使点2C 落在在x 轴正半轴上,依次作下去,得到如图所示的图形.则点4B 的坐标是 ,点n B 的坐标是 .三、解答题(本题共30分,每小题5分) 17.如图,AC 与BD 交于点O ,OA OC =,OB OD = 求证:DC AB ∥.18. 计算:()10136043-⎛⎫-︒+-+- ⎪⎝⎭π.19.解不等式组:()2131,5 4.2x x x x --⎧⎪⎨-+⎪⎩>< 20.先化简,再求值:222442111a a a a a a -+-+÷+--,其中1a =. 21.列方程或方程组解应用题:2015年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元?(1)求反比例函数的解析式;(2)求△BOD的面积.四、解答题(本题共20分,每小题5分)23.如图,ABC∠=︒,CD是边AB上的中线,分别BCA△中,90过点C,D作BA,BC的平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若2∠的值.=,求sin CDBAC DE24.为弘扬中华传统文化,某学校决定开设民族器乐选修课.为了更贴合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,共调查名学生;(2)请把条形图(图1)补充完整;F(3)求扇形统计图(图2)中,二胡部分所对应的圆心角的度数;(4)如果该校共有学生1500名,请你估计最喜爱古琴的学生人数.25. 如图,在⊙O 中,AB 为直径,OC AB ⊥,弦CD与OB 交于点F ,过点,D A 分别作⊙O 的切线交于点G ,且GD 与AB 的延长线交于点E .(1)求证:12∠=∠; (2)已知::1:3OF OB =,⊙O 的半径为3,求AG 的长.26. 在四边形ABCD 中,对角线AC 与BD 交于点O ,E 是OC 上任意一点,AG BE ⊥于点G ,交BD 于点F .(1)如图1,若四边形ABCD 是正方形,判断AF 与BE 的数量关系;明明发现,AF 与BE 分别在AOF △和BOE △中,可以通过证明AOF △和BOE △全等,得到AF 与BE 的数量关系;请回答:AF 与BE 的数量关系是 .(2) 如图2,若四边形ABCD 是菱形, 120ABC ∠=︒,请参考明明思考问题的方法,求AF BE的值.图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)27.在平面直角坐标系xOy 中,抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,与y 轴交于点C .(1)求抛物线()210y ax bx a =++≠的函数表达式;(2)若点D 在抛物线()210y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D 的坐标;(3)在抛物线()210y ax bx a =++≠的对称轴上是否存在点P,使ACP △成为以AC 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.BAC 28. 已知:Rt△A′BC′和 Rt△ABC 重合,∠A′C′B =∠ACB =90°,∠BA′C ′=∠BAC =30°,现将Rt△A′BC′ 绕点B 按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C′C 和线段AA′相交于点D ,连接BD .(1)当α=60°时,A ’B 过点C ,如图1所示,判断BD 和A′A 之间的位置关系,不必证明;(2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明;(3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.29.定义符号{}min a b ,的含义为:当a b ≥时, {}min a b b =,;当a b<时, {}min a b a =,.如:{}min 122-=-,,{}min 121-=-,. (1)求{}2min x -1,-2;(2)已知2min{2,3}3x x k -+-=-, 求实数k 的取值范围; (3) 已知当23x -≤≤时,22min{215,(1)}215x x m x x x --+=--.直接写出实数m 的取值范围.东城区2017-2018学年第二学期初三综合练习(一)数学试题参考答案及评分标准 2018.5一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分)17. 证明:∵在ODC △和OBA △中,∵,,,OD OB DOC BOA OC OA =⎧⎪∠=∠⎨⎪=⎩∴ODC OBA △≌△. …………3分 ∴C A ∠=∠. …………4分 ∴DC AB ∥. …………5分()()1118.36043134415-⎛⎫-︒+-+- ⎪⎝⎭=-+=-解:π分分19. ()2131,8x x x x --⎧⎪⎨-+⎪⎩①②>解:5<2,2x 由①得,<, (2)分1x -由②得,>, …………4分 所以,不等式组的解集为12x -<<. …………5分()()()22224421112211112221131a a a a a a a a a a a a a a a a a -+-+÷+----=+⋅++---=+++=+20.解:分当1a =时,2=原式.…………5分21.解:设每棵柏树苗的进价是x 元,则每棵枣树苗的进价是()25x -元. …………1分根据题意,列方程得:200=120(25)x x -, (3)分解得:15x =.…………5分答:每棵柏树苗的进价是15元. 22. 解:(1)过点C 向x 轴作垂线,垂足为E . ∵CE x ⊥轴,AB x ⊥轴,()4,2A -, ∴CE AB ∥,()4,0B -.∴12OE OC CE OBOAAB===.∵4OB =,2AB =, ∴2OE =,1CE =.∴()2,1C -. …………2分 ∵双曲线k y x=经过点C ,∴2k =-.∴反比例函数的解析式为2y x=-. …………3分(2)∵点D 在AB 上,∴点D 的横坐标为4-. ∵点D 在双曲线2y x=-上,∴点D 的纵坐标为12. …………4分 ∴BODS △11141222OB BD =⋅⋅=⨯⨯=.…………5分四、解答题(本题共20分,每小题5分)23.(1)证明:∵DE BC ∥,CE AB ∥,∴四边形DBCE 是平行四边形.∴CE BD =.又∵CD 是边AB 上的中线, ∴BD AD =. ∴CE DA =. 又∵CE DA ∥,∴四边形ADCE 是平行四边形. ∵90BCA ∠=︒,CD 是斜边AB 上的中线, ∴AD CD =.∴四边形ADCE 是菱形. …………3分 (2)解:作CF AB ⊥于点F .由(1) 可知, .BC DE =设BC x =,则2AC x =. 在Rt ABC △中,根据勾股定理可求得AB =.∵1122AB CF AC BC ⋅=⋅,∴AC BC CF x AB⋅==.∵122CD AB x ==, ∴4sin 5CFCDB CD∠==.…………5分24.解:(1)20÷10%=200(名),…………1分答:一共调查了200名学生;(2)最喜欢古筝的人数:200×25%=50(名),最喜欢琵琶的人数:200×20%=40(名);补全条形图如图;…………3分(3)二胡部分所对应的圆心角的度数为:60×360°=108°;…………4分200=225(名).…………5分(4)1500×30200答:1500名学生中估计最喜欢古琴的学生人数为225.25.(1)证明:连结OD,如图.∵DE为⊙O的切线,OD为半径,∴OD DE⊥.∴90∠+∠=︒.ODC∠=︒,即290ODE∵OC OD=,∴C ODC∠=∠.∴290∠+∠=︒.C而OC OB⊥,26. 解:(1)AF =BE ; …………1分 (2)AFBE= (2)分理由如下:∵四边形ABCD 是菱形,120ABC ∠=︒, ∴AC BD ⊥,60ABO ∠=︒. ∴90FAO AFO ∠+∠=︒.∵AG BE ⊥, ∴90EAG BEA ∠+∠=︒. ∴AFO BEA ∠=∠. 又∵90AOF BOE ∠=∠=︒,∴AOF BOE △∽△. …………3分 ∴AFAOBEOB= .∵60ABO ∠=︒,AC BD ⊥,∴tan 60AO OB=︒=∴AF BE= (5)分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.解:(1)∵抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B , ∴10,1 1.a b a b -+=⎧⎨++=⎩∴1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴抛物线的函数关系式为211122y x x =-++. …………2分(2)∵122b x a =-=,()0,1C ∴抛物线211122y x x =-++的对称轴为直线12x =. 设点E 为点A 关于直线12x =的对称点,则点E 的坐标为()2,0.连接EC 交直线12x =于点D ,此时ACD △的周长最小.设直线EC 的函数表达式为y kx m =+,代入,E C 的坐标,则2m 0,1.k m +=⎧⎨=⎩解得1,21.k m ⎧=-⎪⎨⎪=⎩ 所以,直线EC 的函数表达式为112y x =-+.当12x =时,34y =.∴ 点D 的坐标为13,24⎛⎫ ⎪⎝⎭. (4)分(3)存在.①当点A 为直角顶点时,过点A 作AC 的垂线交y 轴于点M,交对称轴于点1P .∵AO OC ⊥,1AC AP ⊥, ∴90AOM CAM ∠=∠=︒. ∵()0,1C ,()1,0A -, ∴1OA OC ==. ∴45CAO ∠=︒.∴45OAM OMA ∠=∠=︒. ∴1OA OM ==.∴点M 的坐标为()0,1-.设直线AM 对应的一次函数的表达式为11y k x b =+,代入,A M 的坐标,则1110,1.k b b -+=⎧⎨=-⎩ 解得111,1.k b =-⎧⎨=-⎩ 所以,直线AM 的函数表达式为1y x =--. 令12x =,则32y =-.∴点1P 的坐标为13,22⎛⎫- ⎪⎝⎭. …………5分②当点C 为直角顶点时,过点C 作AC 的垂线交对称轴于点2P ,交x 轴于点N .与①同理可得Rt CON △是等腰直角三角形, ∴1OC ON ==. ∴点N 的坐标为()1,0. ∵2CP AC ⊥,1AP AC ⊥, ∴21CP AP ∥. ∴直线2CP 的函数表达式为1y x =-+.令12x =,则12y =.∴点2P 的坐标为11,22⎛⎫ ⎪⎝⎭. …………6分综上,在对称轴上存在点1P 13,22⎛⎫- ⎪⎝⎭,2P 11,22⎛⎫⎪⎝⎭,使ACP △成为以AC 为直角边的直角三角形.…………7分28.解:(1) 当60α=︒时, BD A A '⊥. ------------1分 (2)补全图形如图1,BD A A '⊥仍然成立;------------3分 (3)猜想BD A A '⊥仍然成立.证明:作AE C C '⊥,A F C C ''⊥,垂足分别为点,E F,如图2,则90AEC A FC ''∠=∠=︒.∵BC BC '=,∴BCC BC C ''∠=∠. ∵90ACB A C B ''∠=∠=︒,∴90ACE BCC '∠+∠=︒,'90A C F BC C ''∠+∠=︒. ∴ACE A C F ''∠=∠. 在AEC △和A FC ''△中,90,,,AEC A FC ACE A C F AC A C ''∠=∠=︒⎧⎪''∠=∠⎨⎪''=⎩∴AEC A FC ''△≌△. ∴AE A F '=.在AED △和A FD '△中,图2图190,,,AEC A FD ADE A DF AE A F '∠=∠=︒⎧⎪'∠=∠⎨⎪'=⎩∴AED A FD '△≌△. ∴AD A D '=. ∵AB A B '=, ∴'ABA △为等腰三角形. ∴BD A A '⊥------------7分29.解:(1)∵20x ≥, ∴2x -1≥-1. ∴2-x -1>2. ∴{}2min 2x =--1,-2. ┉┉2分(2) ∵()2211x x k x k -+=-+-2, ∴()2111x k k -+--≥. ∵2min{2,3}3x x k -+-=-, ∴13k --≥. ∴2k -≥. ┉┉5分(3) 37m -≤≤. ┉┉8分。