非线性规划1
非线性规划
非线性规划非线性规划是一种涉及非线性目标函数和/或非线性约束条件的优化问题。
与线性规划不同,非线性规划可能存在多个局部最优解,而不是全局最优解。
非线性规划在许多领域都有广泛的应用,如经济学、工程学和管理学等。
非线性规划的一般形式可以表示为:最小化或最大化 f(x),其中 f(x) 是一个非线性函数,x 是决策变量向量。
满足一组约束条件g(x) ≤ 0 和 h(x) = 0,其中 g(x) 和 h(x) 是非线性函数。
为了求解非线性规划问题,可以使用不同的优化算法,如梯度下降法、牛顿法和拟牛顿法等。
这些算法的目标是找到目标函数的最小值或最大值,并满足约束条件。
非线性规划的难点在于寻找全局最优解。
由于非线性函数的复杂性,这些问题通常很难解析地求解。
因此,常常使用迭代算法来逼近最优解。
非线性规划的一个重要应用是在经济学中的生产计划问题。
生产活动通常受到多个因素的限制,如生产能力、原材料和劳动力等。
非线性规划可以帮助确定最佳的生产数量,以最大化利润或最小化成本。
另一个应用是在工程学中的优化设计问题。
例如,优化某个结构的形状、尺寸和材料以满足一组要求。
非线性规划可以帮助找到最佳设计方案,以最大程度地提高性能。
在管理学中,非线性规划可以用于资源分配和风险管理问题。
例如,优化一个公司的广告预算,以最大程度地提高销售额。
非线性规划可以考虑多种因素,如广告投入和市场需求,以找到最佳的广告投放策略。
总之,非线性规划是一种重要的优化方法,用于解决涉及非线性目标函数和约束条件的问题。
它在经济学、工程学和管理学等领域有广泛的应用。
尽管非线性规划的求解难度较大,但通过合适的优化算法,可以找到最佳的解决方案。
第2讲非线性规划1
其一为SUMT外点法,其二为SUMT内点
法.
5
SUTM外点法
对一般的非线性规划: min f X
s.t.hgji
X X
0 0
i 1,2,...,m; j 1,2,...,l.
(1)
m
l
可设:TX , M f X M min0, gi X 2 M hj X 2 (2)
i1
j 1
D X | giX 0,hj X 0,X En
问题(1)可简记为 min f X . XD
定义2 对于问题(1),设 X * D,若存在 0 ,使得对一切
X D,且 X X * ,都有 f X* f X ,则称X*是f(X)在D上的
局部极小值点(局部最优解).特别地当 X X *时,若 f X* f X ,
非线性规划
非线性规划的基本概念 *非线性规划的基本解法
返回 1
非现性规划的基本概念
定义 如果目标函数或约束条件中至少有一个是非线性函数 时的最优化问题就叫做非线性规划问题.
一般形式:
m in f X
s.t.hgijX X Nhomakorabea0 0
i 1,2,...,m ; j 1,2,...,l.
(1)
其中 X x1, x2,, xn T En,f , gi , h j 是定义在 En 上的实值函
function f=fun4(x); f=exp(x(1))
*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
(4) x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’) (5)x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’,options)
非线性规划知识点讲解总结
非线性规划知识点讲解总结1. 非线性规划的基本概念非线性规划是指目标函数和/或约束条件包含非线性项的优化问题。
一般来说,非线性规划问题可以表示为如下形式:\[\min f(x)\]\[s.t. \ g_i(x) \leq 0, \ i=1,2,...,m\]\[h_j(x)=0, \ j=1,2,...,p\]其中,\(x \in R^n\)是优化变量,\(f(x)\)是目标函数,\(g_i(x)\)和\(h_j(x)\)分别表示不等式约束和等式约束。
目标是找到使目标函数取得最小值的\(x\)。
2. 非线性规划的解决方法非线性规划问题的求解是一个复杂的过程,通常需要使用数值优化方法来解决。
目前,常用的非线性规划求解方法主要包括梯度方法、牛顿方法和拟牛顿方法。
(1)梯度方法梯度方法是一种基于目标函数梯度信息的优化方法。
该方法的基本思想是在迭代过程中不断沿着梯度下降的方向更新优化变量,以期望找到最小值点。
梯度方法的优点是简单易实现,但缺点是可能陷入局部最优解,收敛速度慢。
(2)牛顿方法牛顿方法是一种基于目标函数的二阶导数信息的优化方法。
该方法通过构造目标函数的泰勒展开式,并利用二阶导数信息来迭代更新优化变量,以期望找到最小值点。
牛顿方法的优点是收敛速度快,但缺点是计算复杂度高,需要计算目标函数的二阶导数。
(3)拟牛顿方法拟牛顿方法是一种通过近似求解目标函数的Hessian矩阵来更新优化变量的优化方法。
该方法能够克服牛顿方法的计算复杂度高的问题,同时又能保持相对快速的收敛速度。
拟牛顿方法的典型代表包括DFP方法和BFGS方法。
3. 非线性规划的应用非线性规划方法在实际生活和工程问题中都有着广泛的应用。
以下将介绍非线性规划在生产优化、资源分配和风险管理等领域的应用。
(1)生产优化在制造业中,生产线的优化调度问题通常是一个非线性规划问题。
通过对生产线的机器设备、生产工艺和生产速度等因素进行建模,并设置相应的目标函数和约束条件,可以使用非线性规划方法来求解最优的生产调度方案,以最大程度地提高生产效率和减少成本。
非线性规划-讲稿1-2交通系统工程
非线性规划具有广泛的应用领域,能 够处理多变量、多约束条件的问题, 寻求全局最优解。
非线性规划的应用领域
交通规划
非线性规划在交通规划中用于优 化交通网络设计、路线规划、运 输成本最小化等问题。
电力系统
非线性规划用于求解电力系统的 最优潮流、无功优化、电压控制 等问题,提高电力系统的运行效 率和稳定性。
道路是交通系统的骨架,承担着车辆 的行驶和运输任务;车辆是交通系统 的主体,包括私家车、公交车、货车 等,具有移动性和多样性。
交通系统中的问题与挑战
交通拥堵
随着城市人口和车辆的增加, 交通拥堵问题日益严重,影响
出行效率和交通安全。
交通事故
由于驾驶员的疏忽、道路状况 不良等因素,交通事故时有发 生,造成人员伤亡和财产损失 。
环境污染
车辆排放的废气和噪音对环境 造成污染,影响城市居民的生 活质量。
能源消耗
随着车辆数量的增加,能源消 耗量也相应增加,加剧了能源
紧张问题。
非线性规划在交通系统中的重要性
非线性规划是一种数学优化方法,通过建立数 学模型和求解数学模型,寻找最优解,解决复 杂的实际问题。
在交通系统中,非线性规划可以用于解决多种 问题,如路线规划、车辆调度、物流优化等。
多目标路径规划问题
在实际交通系统中,往往存在多个相互冲突的目标,如时 间、距离、费用、路况等。多目标路径规划问题旨在寻找 满足多个目标的最佳路径。
权重因子
通过引入权重因子,对各个目标进行加权处理,将多目标 问题转化为单目标问题。然后利用非线性规划方法进行求 解。
实际应用
多目标路径规划问题在智能交通系统、城市交通规划、大 型物流园区配送路线规划等领域有广泛应用。
数学建模-非线性规划
-32-第三章 非线性规划§1 非线性规划1.1 非线性规划的实例与定义如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。
一般说来,解非线性规划要比解线性规划问题困难得多。
而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。
下面通过实例归纳出非线性规划数学模型的一般形式,介绍有关非线性规划的基本概念。
例1 (投资决策问题)某企业有n 个项目可供选择投资,并且至少要对其中一个项目投资。
已知该企业拥有总资金A 元,投资于第),,1(n i i L =个项目需花资金i a 元,并预计可收益i b 元。
试选择最佳投资方案。
解 设投资决策变量为 ⎩⎨⎧=个项目决定不投资第,个项目决定投资第i i x i 0,1,n i ,,1L =,则投资总额为∑=ni ii xa 1,投资总收益为∑=ni ii xb 1。
因为该公司至少要对一个项目投资,并且总的投资金额不能超过总资金A ,故有限制条件 ∑=≤<ni ii A xa 1另外,由于),,1(n i x i L =只取值0或1,所以还有 .,,1,0)1(n i x x i i L ==−最佳投资方案应是投资额最小而总收益最大的方案,所以这个最佳投资决策问题归结为总资金以及决策变量(取0或1)的限制条件下,极大化总收益和总投资之比。
因此,其数学模型为:∑∑===ni ii ni ii xa xb Q 11maxs.t. ∑=≤<ni ii A xa 1.,,1,0)1(n i x x i i L ==−上面例题是在一组等式或不等式的约束下,求一个函数的最大值(或最小值)问题,其中至少有一个非线性函数,这类问题称之为非线性规划问题。
可概括为一般形式)(min x fq j x h j ,,1,0)(s.t.L =≤ (NP) p i x g i ,,1,0)(L ==-33-其中T n x x x ][1L =称为模型(NP)的决策变量,f 称为目标函数,i g ),,1(p i L =和),,1(q j h j L =称为约束函数。
非线性规划1.ppt
上一页 下一页
主页
2、constr语句的具体用法
① function [f,G]=fun2(x) %fun2.m f=-x(1)^2-x(2)^2+x(1)*x(2)+2*x(1)+5*x(2); G(1)=(x(1)-1)^2 - x(2); G(2)=-2*x(1)+3*x(2)-6;
② x0=[0 1]'; (fun2j.m) opt(13)=0; [x,opt]= constr('fun2',x0,opt) f=opt(8),n=opt(10)
③ 计算结果: x = 1.0e+008 * [ -0.0006 -2.7638 ] f = -7.6369e+016
上一页 下一页
主页
A(x1, y1) e1 = 20
B(x2, y2) e2 = 20
x11 x12
x21 x22
x16
x26
目标:使得吨公里
… …
(a1, b1), d1 = 3 (a2, b2), d2 =5
(a6, b6), d6= 11
min
上一页 下一页
主页
建立规划模型
记工地的位置为(ai, bi),水泥日用量为di, i =
A=[-2,3];b=6;
Aeq=[];beq=[];
lb=[];ub=[];
[x,fval]=fmincon(@fun22,x0,A,b,Aeq,beq,lb,ub,@cont2)
④ x = 1.0e+008*[-0.0006 -2.7649]
fval = -7.6432e+016
非线性规划的基本概念及问题概述
牛顿法在凸优化问题上表现较好,但在非凸问题 上可能陷入局部最优解。
拟牛顿法
01
拟牛顿法是一种改进的牛顿法,通过构造海森矩阵 的近似来降低计算成本。
02
拟牛顿法在每一步迭代中更新搜索方向,并逐渐逼 近最优解。
03
拟牛顿法在处理大规模非线性规划问题时表现较好 ,但仍然需要计算目标函数的二阶导数。
共轭梯度法
共轭梯度法结合了梯度法和牛 顿法的思想,通过迭代更新搜 索方向来寻找最优解。
共轭梯度法的迭代方向是梯度 方向和上一次迭代方向的线性 组合,可以加快收敛速度。
共轭梯度法适用于大规模优化 问题,尤其在约束条件较多或 非凸函数情况下表现较好。
05
非线性规划的挑战与解决方 案
局部最优解问题
局部最优解问题
案例二:生产计划优化问题
总结词
生产计划优化问题旨在通过合理安排生 产计划,降低生产成本并满足市场需求 。
VS
详细描述
生产计划优化问题需要考虑生产过程中的 各种因素,如原材料需求、设备能力、劳 动力成本等。目标函数通常是非线性的, 因为生产成本和产量之间的关系是非线性 的。约束条件可能包括资源限制、交货期 限制等。
例子
最小化成本函数,其中成本是生产量 的函数,生产量受到资源、生产能力 等约束。
最大化问题
最大化目标函数
在给定的约束条件下,找到一组变量 ,使得目标函数达到最大值。
例子
最大化收益函数,其中收益是销售量 的函数,销售量受到市场需求、价格 等约束。
约束条件下的优化问题
01
在满足一系列约束条件下,寻找最优解,使得目标函数达到最 优值。
梯度法适用于目标函数和约束条件比较简单的情况,但对于非凸函数或约束条件复 杂的情况可能不收敛或收敛到局部最优解。
非线性规划的相关概念
非线性规划的相关概念引言非线性规划是数学规划领域中的一个重要研究方向,它是线性规划的推广和扩展。
在许多实际问题中,约束条件和目标函数往往是非线性的,因此需要非线性规划方法来解决这些问题。
本文将介绍非线性规划的基本概念和相关理论。
基本概念1. 可行解在非线性规划中,可行解指的是满足约束条件的解。
具体地,给定约束条件和目标函数,如果存在一组解使得所有约束条件都得到满足,那么这组解就是可行解。
非线性规划的目标是找到一个可行解,使得目标函数值最小或最大。
2. 局部极小解和全局极小解在非线性规划中,局部极小解指的是在某个局部范围内,目标函数值最小的可行解。
全局极小解指的是在整个可行域内,目标函数值最小的可行解。
在非线性规划中,寻找全局极小解往往非常困难,因为非线性规划问题一般没有全局最优解的性质。
因此,通常采用近似算法来寻找接近全局极小解的解。
3. 无约束问题和约束问题非线性规划可以分为无约束问题和约束问题。
无约束问题是指在没有约束条件的情况下,找到目标函数的最小值或最大值。
约束问题是指在满足一组约束条件的情况下,找到目标函数的最小值或最大值。
约束问题通常比无约束问题更加复杂,因为需要考虑约束条件的影响。
相关理论1. 梯度下降法梯度下降法是非线性规划中常用的优化方法之一。
基本思想是通过迭代更新解,使得目标函数值逐渐降低。
具体地,梯度下降法使用目标函数的梯度信息来指导搜索方向,并选择适当的步长来更新解。
该方法通常在局部范围内找到局部极小解,并且易于实现。
2. 牛顿法牛顿法是一种经典的非线性优化方法,广泛应用于非线性规划问题的求解。
它利用目标函数和约束条件的一阶和二阶导数信息来更新解。
具体地,牛顿法通过计算目标函数的海森矩阵来确定搜索方向,并选择适当的步长来更新解。
该方法在局部范围内通常能够快速收敛到极小解。
3. 二次规划二次规划是非线性规划中的一种特殊形式,目标函数是二次函数,约束条件是线性条件。
它可以通过求解一组二次方程组来得到最优解。
非线性规划的基本概念
新点的目标函数值。
解: 由于
f x1 6 x1 4 x2 ,
f x2 4x1 2x2
则函数在 x =[0,1]T 处的最速下降方向是
P
f
x
f
x1 f
x2 x1 0
6 x1 4 x2
4 x1 2 x2
x1 0
4 2
(2)若f1, f2是S上的凸函数, f1 f2是S上的凸函数。 性质2: 设S Rn是非空凸集, f是凸函数,cR1,则集合
HS ( f ,c)xS| f ( x) c 是凸集。
证明:略.
➢ (3) 凸函数的判定 定理1:(一阶条件)
m in f ( x)
s.t. gi ( x) 0, i 1,, p
hi ( x) 0, j 1,, q
➢(4)可行域和可行解:
称
X
x
Rn
gi ( x) hi ( x)
0, i 1,, p 0, j 1,, q
为MP问题的约束集或可行域。
若x在X内,称x为MP的可行解或者可行点。
则称f是S上的凸函数,或f在S上是凸的。 若 f (x1 (1 )x2 ) f ( x1 ) (1 ) f ( x2 ),x1, x2 S
则称f是S上的严格凸函数,或f在S上是严格凸的。
若 f 是S上的(严格)凸函数,称f是S上的(严格) 凹函数, 或f在S上是(严格)凹的。
例 f ( x)|| x||其中xRn是凸函数
4 2
42 22
2
5 1
5
5
5
新点是: x1
x
e
0 1
2
5 1
5
非线性规划
非线性规划(nonlinear programming)1.非线性规划概念非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。
非线性规划研究一个n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。
目标函数和约束条件都是线性函数的情形则属于线性规划。
2.非线性规划发展史公元前500年古希腊在讨论建筑美学中就已发现了长方形长与宽的最佳比例为0.618,称为黄金分割比。
其倒数至今在优选法中仍得到广泛应用。
在微积分出现以前,已有许多学者开始研究用数学方法解决最优化问题。
例如阿基米德证明:给定周长,圆所包围的面积为最大。
这就是欧洲古代城堡几乎都建成圆形的原因。
但是最优化方法真正形成为科学方法则在17世纪以后。
17世纪,I.牛顿和G.W.莱布尼茨在他们所创建的微积分中,提出求解具有多个自变量的实值函数的最大值和最小值的方法。
以后又进一步讨论具有未知函数的函数极值,从而形成变分法。
这一时期的最优化方法可以称为古典最优化方法。
最优化方法不同类型的最优化问题可以有不同的最优化方法,即使同一类型的问题也可有多种最优化方法。
反之,某些最优化方法可适用于不同类型的模型。
最优化问题的求解方法一般可以分成解析法、直接法、数值计算法和其他方法。
(1)解析法:这种方法只适用于目标函数和约束条件有明显的解析表达式的情况。
求解方法是:先求出最优的必要条件,得到一组方程或不等式,再求解这组方程或不等式,一般是用求导数的方法或变分法求出必要条件,通过必要条件将问题简化,因此也称间接法。
(2)直接法:当目标函数较为复杂或者不能用变量显函数描述时,无法用解析法求必要条件。
此时可采用直接搜索的方法经过若干次迭代搜索到最优点。
这种方法常常根据经验或通过试验得到所需结果。
对于一维搜索(单变量极值问题),主要用消去法或多项式插值法;对于多维搜索问题(多变量极值问题)主要应用爬山法。
非线性规划
非线性规划什么是非线性规划?非线性规划(Nonlinear Programming,简称NLP)是一种数学优化方法,用于求解包含非线性约束条件的优化问题。
与线性规划不同,非线性规划中的目标函数和约束条件都可以是非线性的。
非线性规划的数学表达式一般来说,非线性规划可以表示为以下数学模型:minimize f(x)subject to g_i(x) <= 0, i = 1, 2, ..., mh_j(x) = 0, j = 1, 2, ..., px ∈ R^n其中,f(x)是目标函数,g_i(x)和h_j(x)分别是m个不等式约束和p个等式约束,x是优化变量,属于n维实数空间。
非线性规划的解法由于非线性规划问题比线性规划问题更为复杂,因此解决非线性规划问题的方法也更多样。
以下列举了几种常用的非线性规划求解方法:1. 数值方法数值方法是最常用的非线性规划求解方法之一。
它基于迭代的思想,通过不断优化目标函数的近似解来逼近问题的最优解。
常见的数值方法有梯度下降法、牛顿法、拟牛顿法等。
2. 优化软件优化软件是一类针对非线性规划问题开发的专用软件,它集成了各种求解算法和优化工具,可以方便地求解各种类型的非线性规划问题。
常见的优化软件有MATLAB、GAMS、AMPL等。
3. 线性化方法线性化方法是一种将非线性规划问题转化为等价的线性规划问题的求解方法。
它通过线性化目标函数和约束条件,将非线性规划问题转化为线性规划问题,然后利用线性规划的求解方法求解得到最优解。
4. 分类方法分类方法是一种将非线性规划问题分解为若干个子问题求解的方法。
它将原始的非线性规划问题分解为多个子问题,然后将每个子问题分别求解,并逐步逼近原始问题的最优解。
以上仅是非线性规划求解方法的一小部分,实际上还有很多其他的方法和技巧可供选择。
在实际应用中,选择合适的方法和工具是非常重要的。
非线性规划的应用非线性规划在实际生活和工程中有着广泛的应用。
《非线性规划》课件
非线性规划的约束条件
非线性规划的约束条件是指限制问题解的一组方程或不等式。这些约束条件可以包括物理限制、资源约 束和行为限制等。
非线性规划的求解方法
线性化方法
将非线性问题转化为等价的 线性问题,然后使用线性规 划方法求解。
牛顿法
使用牛顿迭代法逐步逼近最 优解。
拟牛顿法
使用近似Hessian矩阵的方法 优化牛顿法。
变尺度法、全局优化方法
1
变尺度法
通过改变尺度,将问题转化为更易求解的形式。
2
全局优化方法
使用启发式算法寻找全局最优解。
非线性规划的应用领域
生产计划问题
优化生产计划,提高效率和利润。
交通运输问题
优化交通网络和运输流程。
优化电力系统
使电力系统运行更加高效和可靠。
决策支持系统
为决策者提供优化建议和决策支持。
医资源分配和治疗方案。
非线性规划的挑战
复杂的问题结构和求解困难。
未来的研究方向
未来的研究方向包括改进算法性能、适用于大规模问题的方法和考虑不确定性的优化模型等。
《非线性规划》PPT课件
在这个《非线性规划》PPT课件中,我们将深入探讨非线性规划的各个方面, 并介绍其在不同领域的应用。让我们一起开启这个激动人心的学习之旅!
什么是非线性规划?
非线性规划是一种在优化问题中寻找最优解的数学方法。它处理的是有非线 性约束条件和目标函数的优化问题。
非线性规划的优化目标
非线性规划基本概念
序列二次规划法原理及步骤
• 原理:序列二次规划法是一种迭代求解非线性规划问题的方法。它在每次迭代中构造一个二次规划子问题,通 过求解该子问题得到原问题的一个近似解,然后利用该近似解的信息构造下一个二次规划子问题,如此循环直 至收敛到最优解。
序列二次规划法原理及步骤
2. 求解二次规划子问题,得到近 似解。
与线性规划不同,非线性规划中的目标函数或约 束条件至少有一个是非线性的。
非线性规划问题通常更加复杂,需要采用特定的 算法和工具进行求解。
非线性规划重要性
01
广泛适用性
非线性规划在各个领域都有广泛 应用,如经济、金融、工程、管 理等。
02
解决复杂问题
03
推动技术进步
非线性规划能够处理涉及复杂非 线性关系的问题,提供更精确的 解决方案。
THANKS
感谢观看
REPORTING
https://
VS
5. 判断终止条件
若满足终止条件,则停止迭代,输出当前 迭代点作为近似最小值点;否则,返回步 骤2继续迭代。
拟牛顿法原理及步骤
原理
1. 初始化
拟牛顿法是一种改进牛顿法的方法, 其基本思想是通过构造一个近似海森 矩阵的逆矩阵来避免直接计算海森矩 阵及其逆矩阵。拟牛顿法利用目标函 数的一阶导数信息来构造一个满足拟 牛顿条件的矩阵来逼近海森矩阵的逆 矩阵,从而在保证收敛速度的同时降 低了计算复杂度。
选择初始点 x0,设置迭代终止条件。 初始化拟牛顿矩阵 B0(或其逆矩阵 H0)。
2. 计算梯度
计算函数在 x0 处的梯度 g0 和 g1。
拟牛顿法原理及步骤
3. 求解搜索方向 通过解线性方程组 Bdp = -gp 或 Hdp = -gp 得到搜索方向 dp。
非线性规划的理论与算法
非线性规划的理论与算法非线性规划(Nonlinear Programming, NLP)是数学规划的一个重要分支,其研究对象是带有非线性约束条件的最优化问题。
非线性规划模型常见于各类工程技术问题的优化,如工业系统优化、经济系统优化、交通运输系统优化等。
本文将介绍非线性规划的基本理论和常用的求解算法。
一、非线性规划模型min f(x)s.t.g(x)≤0,h(x)=0其中,f(x)为目标函数;g(x)≤0与h(x)=0为约束条件;x为决策变量,其取值范围由约束条件决定。
非线性规划模型常见的类型包括无约束问题、等式约束问题和不等式约束问题等。
二、非线性规划的求解算法1. 顺序二次规划算法(Sequential Quadratic Programming, SQP)顺序二次规划算法是一种常用的非线性规划求解算法。
该算法通过构造拉格朗日函数来将非线性规划问题转化为一系列二次规划子问题。
通过迭代求解这些二次规划子问题,最终得到原始非线性规划问题的最优解。
SQP算法具有高效、稳定性强等优点,已广泛应用于实际问题中。
2. 内点法(Interior Point Methods)内点法是一种常用的非线性规划求解算法,可以有效处理约束条件较多的非线性规划问题。
该算法通过构造适当的增广 Lagrange 函数,将非线性规划问题转化为一系列无约束优化问题。
通过迭代求解这些无约束优化问题,最终找到原始非线性规划问题的解。
内点法具有收敛速度快、计算精度高等优点。
3. 遗传算法(Genetic Algorithm, GA)遗传算法是一种模拟生物进化过程的启发式优化算法,常用于求解非线性规划问题。
该算法通过借鉴自然选择、交叉和突变等遗传操作,逐步演化出一组较好的解,寻找最优解。
遗传算法不需要假设目标函数和约束条件的具体形式,因此适用于复杂的非线性规划问题。
4. 粒子群优化算法(Particle Swarm Optimization, PSO)粒子群优化算法是一种模拟鸟群觅食行为的优化算法,也常用于求解非线性规划问题。
非线性规划
非线性规划非线性规划(Nonlinear Programming ,简记为NP)研究的对象是非线性函数的数值最优化问题,是运筹学的最重要分支之一,20世纪50年代形成一门学科,其理论和应用发展十分迅猛,随着计算机的发展,非线性规划应用越来越广泛,针对不同的问题提出了特别的算法,到目前为止还没有适合于各种非线性规划问题的一般算法,有待人们进一步研究.§1 非线性规划基本概念一、引例例7.1 一容器由圆锥面和圆柱面围成. 表面积为S ,圆锥部分高为h ,h 和圆柱部分高2x 之比为a ,1x 为圆柱底圆半径.求21,x x 使面积最大.解: 由条件 a x h =2/22121231x x x ax V ππ+=21212222112221x x x x a x x S πππ+++⋅⋅=所以,数学模型为:212)311(max x x a V π+=s.t. S x x x x a x x =+++21212222112πππ0,21≥x x例7.2 某高校学生食堂用餐,拟购三种食品,馒头0.3元/个,肉丸子1元/个,青菜0.6/碗.该学生的一顿饭支出不能够超过5元.问如何花费达到最满意?解: 设该学生买入馒头,肉丸子,青菜的数量分别为321,,x x x ; 个人的满意度函数即为效用函数为321321321),,(aaax x Ax x x x u =.于是数学模型为321321321),,(max aaax x Ax x x x u =s.t.56.03.0321≤++x x x 321,,x x x 为非负整数二、数学模型称如下形式的数学模型为数学规划(Mathematical Programming 简称MP ) )(min x f z = (7.1) (MP ) t s . 0)(≥x g i m i ,,1 = (7.2) 0)(=x h j l j ,,1 = (7.3)其中Tn x x x x ),,,(21 =是n 维欧几里得空间nR 中的向量(点),)(x f 为目标函数,0)(,0)(=≥x h x g j i 为约束条件.称满足约束条件的向量x 为(MP )问题的一个可行解,全体可行点组成的集合称为可行域.K ={}l j x h mi x g R x j i n,,2,10)(,,2,10)( ===≤∈如果)(),(),(x h x g x f j i 均为线性函数,就是前面所学的线性规划问题(LP).如果至少有一个为非线性函数称为非线性规划问题.由于等式约束0)(=x h j 等价于下列两个不等式约束 0)(,0)(≥-≥x h x h j j 所以(MP)问题又可表示为 )(min x f z =s.t. 0)(≥x g i m i ,,1 = (7.4) 三、数学基础 1、线性代数知识考虑二次型Az z T ,z 为n 维向量正定的二次型:若对于任意0≠z ,有0>Az z T; 半正定的二次型:若对于任意0≠z ,有0≥Az z T ; 负定的二次型:若对于任意0≠z ,有0<Az z T ; 半负定的二次型:若对于任意0≠z ,有0≤Az z T ;不定二次型:0≠∃z ,有0>Az z T,又0≠∃z ,有0<Az z T.二次型Az z T 为正定的充要条件是它的矩阵A 的左上角各阶主子式都大于零. 二次型Az z T 为负定的充要条件是它的矩阵A 的左上角各阶主子式负正相间.2、分析数学知识(1)方向导数和梯度(二维为例)考虑函数),(21x x f Z =,及方向j i lϕϕsin cos +=梯度:Tx f x f j x f i x f x x f ),(),(212121∂∂∂∂=∂∂+∂∂=∇ ; 方向导数:⎪⎪⎭⎫⎝⎛∂∂∂∂=∂∂+∂∂=∂∂ϕϕϕϕsin cos ),(sin cos 2121x f x f x f x f l f )),,(cos(||),(||),(),(21212121l x x gardf x x gardf lx x gardf lx x f T=⋅=⋅∇=考虑等值线00201),(c x x f =上一点),(0201x x 梯度方向 ),(0201x x gardf 即为法线方向n.如果)(x f 二次可微,称⎪⎪⎪⎪⎪⎭⎫⎝⎛=)()()()()()()()()()(212222111211x h x h x h x h x h x h x h x h x h x H nn n n n n为)(x f 在点 x 处的Hesse 矩阵.(2)多元函数泰勒公式:若)(,),(0x f R S x x f u n⊆∈=在点0x 处的某个领域具有二阶连续偏导数,则有x x x f x x x f x f x x f T T∆∆+∇∆+∆∇+=∆+)(21)()()(02000θ 10≤≤θ )||(||)(21)()(||)(||)()(2020000x x x f x x x f x f x x x f x f T TT ∆+∆∇∆+∆∇+=∆+∆∇+=οο 四、最优解的类型定义7.1 (MP)问题的一个可行点*x 被称为整体极小点,如果对于任意的可行点K x ∈,都有不等式)()(*x f x f ≥成立.如果对于任意可行点*,x x K x ≠∈均有)()(*x f x f >,称点*x 是)(x f 的可行解集K上的严格整体极小点.定义7.2 问题(MP)的一个可行点*x 被称为一个局部极小点,如果存在一个正数ε使得对于所有满足关系式ε<-*x x 的可行点x 都有)()(*≥x f x f 成立.如果对任意的可行点K x ∈,*≠x x ,存在一个正数ε使得对于所有满足关系式ε<-*x x 的可行点x 都有)()(*>x f x f 成立.则称*x 是)(x f 在K 上的一个局部严格极小点.显然整体极小点一定是局部极小点,反之不然. 五、凸规划定义7.3 集合K 被称为nR 中的一个凸集,如果对于K 中任意两点21,x x 和任一实数]1,0[∈λ,点K x x ∈-+21)1(λλ.几何解释:当一个集合是凸集时,连接此集合中任意两点的线段也一定包含在此集合内,规定φ空集是凸集.定义7.4 凸函数:)(x f 是凸集K 上的实值函数,如果对于K 中任意两点21,x x 和任意实数]1,0[∈λ有不等式)()1()())1((2121x f x f x x f λλλλ-+≤-+成立.严格凸函数:)(x f 是凸集K 上的实值函数,如果对于K 中任意两点21,x x ,21x x ≠和任意实数)1,0(∈λ,有不等式)()1()())1((2121x f x f x x f λλλλ-+<-+成立.定义7.5 )(x f 是定义在凸集K 上的实值函数,如果)(x f -是K 上凸函数,称)(x f 是凹函数.定理7.1 设)(x f 是凸集K 上的凸函数,则)(x f 在K 中的任一局部极小点都是它的整体极小点.证明: 设*x 是一局部极小点而非整体极小点,则必存在可行点K x ∈(可行域))()(*x f x f <∍.对任一]1,0[∈λ,由于)(x f 的凸性,有 )()()1()())1((***x f x f x f x x f ≤-+≤-+λλλλ当0→λ时,*)1(x x λλ-+与*x 充分接近,与*x 是局部极小矛盾. 证毕. 定义7.6 设有(MP)问题)(min x f kx ∈,若可行域K 是凸集,)(x f 是K 上的凸函数,则称此规划问题为凸规划.定理7.2 凸规划的任一局部极小解为整体极小解. 六、非线性规划问题的求解方法 考虑(MP)问题:lj x h m i x g t s x f j i ,,10)(,,10)(.)(min ===≥ (7.5) 一般来说,MP 问题难以求得整体极小点,只能求得局部极小点.以后我们说求(MP)问题,指的是求局部极小点.1、无约束极小化问题(UMP ) )(min x f nRx ∈ (7.6) 这里)(x f 是定义在n R 上的一个实值函数定理7.3(一阶必要条件)如果)(x f 是可微函数.*x 是上述无约束问题(UMP )的一个局部极小点或局部极大点的必要条件是:0)(*=∇x f .满足0)(=∇x f 的点称为平稳点或驻点.定理7.4 设)(x f 为定义在n R 上的二阶连续可微函数,如果*x 是)(x f 的一个局部极小点,必有nT Ry y x H y x f ∈∀≥=∇0)(0)(**这里)(*x H 表示)(x f 在*x 处的Hesse 矩阵.证明:nE y ∈∀,根据)(x f 在点*x 处的展开式有)()(21)()(2*2**λολλ++=+y x H y x f y x f T)0)((*=∇x f若0)(,*<∍∈∃y x H y R y T n ,当λ充分小时,有 )()(21|2*2λολ>y x H y T∴有)()(**x f y x f <+λ.这和*x 是)(x f 的极小矛盾.定理7.5 设)(x f 是定义在nR 上的二阶连续可微函数,如果点*x 满足0)(*=∇x f ,而且存在*x 的一个邻域0)(),(,),(*≥∈∀∈∀∍*y x H y x x R y x T n 有 ,则*x 是)(x f 的一个局部极小点.在高等数学中求解极值点方法先求出满足0)(=∇x f 的点及不可导点.在这些点判断)(x f 是否取得极小值.2、等式约束的极小化问题考虑 )(min x fl j x h t s j ,,10)(. == (7.7)定义7.7 如果)(,),(),(21x h x h x h l ∇∇∇ 在点x 处线性无关,则称点x 是此约束条件的一个正则点.Langrange 乘子法:引进拉格朗日函数 ∑=-=lj jj x h u x f u x L 1)()(),(其中Tl u u u u ),,,(21 =被称为拉格朗日乘子向量.定理7.6 设l j x h x f j ,,1),(),( =是连续可微函数,*x 是)(x f 在可行集中的一个局 部极小点.在*x 是正则点的假定下必存在一个拉格朗日乘子向量u ,使得),(*u x 满足方程组)(0)()(*1**==∇-∇∑=x h x h u x f lj j j对等式约束,用拉格朗日乘子法求解出平稳点,判断是否极值点.用上述解析法求解无约束和等式约束极值问题的平稳点,再判断是否为极值点.该方法有一定的局限性:(1)它们要求函数是连续的,可微的,实际问题中不一定满足这一条件; (2)上述求平稳点的方程组求解比较困难,有些解不出来; (3)实际问题中有大量的不等式约束.因此求解非线性规划应有更好的新方法.实际应用中一般用迭代法来求解非线性规划问题,即求近似最优解的方法.3、非线性规划问题的求解方法—迭代法迭代法一般过程为:在(MP)问题的可行域K 内选择初始点0:,0=k x ,确定某一方向k p ,使目标函数)(x f 从k x 出发,沿k p 方向使目标函数值下降,即)0(,>∈+=λλK p x x k ,有)()(0x f x f <,进一步确定kλ,使)(m i n )(0k k k k k p x f p x f λλλ+=+>,令k k k k p x x λ+=+1.如果1+k x 已满足某终止条件,1+k x 为近似最优解.否则,从1+k x 出发找一个方向1+k p ,确定步长1+k λ,使K p x x k k k k ∈+=++++1112λ,有)(min )(1102++>++=k k k p x f x f λλ.如此继续,将得到点列{}kx .显然有 >>>>)()()(1kx f x f x f ,即点列{}kx 相对应的目标函数是一个单调下降的数列.当{}kx 是有穷点列时,希望最后一个点是(MP)问题的某种意义下的最优解.当{}kx 为无穷点列时,它有极限点,其极限点是(MP)的某种意义下的最优解(此时称该方法是收敛的).迭代法求解(MP)的注意点:该方法构造的点列{}kx ,其极限点应是近似最优解,即该算法必须是收敛的.迭代法一般步骤:①. 选取初始点0x ,0:=k ②. 构造搜索方向kp ③. 根据kp 方向确定k λ ④. 令k k k k p x xλ+=+1⑤. 若1+k x已满足某终止条件,停止迭代,输出近似最优解1+k x.否则令1:+=k k ,转向第②步.计算终止条件在上述迭代中有:若1+k x满足某终止条件则停止计算,输出近似最优解1+k x.这里满足某终止条件即到达某精确度要求.常用的计算终止条件有以下几个:(1)自变量的改变量充分小时,11||||ε<-+k k x x,或21||||||||ε<-+kk k x x x ,停止计算. (2)当函数值的下降量充分小时,31)()(ε<-+k kx f x f ,或41|)(|)()(ε<-+k k k x f x f x f , 停止计算.(3)在无约束最优化中,当函数梯度的模充分小时51||)(||ε<∇+k x f ,停止计算.迭代法的关键:① 如何构造每一轮的搜索方向kp ② 确定步长k λ关于k λ,前面是以)(min kk p x f λλ+产生的,也有些算法k λ取为一个固定值,这要根据具体问题来确定.关于kp 的选择,在无约束极值问题中只要是使目标函数值下降的方向就可以了,对于约束极值问题则必需为可行下降方向.定义7.8 设0,,:1≠∈→p R x R R f nn,若存在0>δ使),0(δλ∈∀,)()(x f p x f <+λ则称向量p 是函数)(x f 在点x 处的下降方向.定义7.9 设0,,,≠∈∈∈p R p K x R K nn,若存在0>λ使得K p x ∈+λ,称向量p 是点x 处关于K 的可行方向. 若一个向量p 既是目标函数f 在点x 处的下降方向,又是该点处关于可行域K 的可行方向,则称p 为函数f 在点x 处关于区域K 的可行下降方向.根据不同原理产生了不同的kp 和k λ的选择方法,就产生了各种算法. 在以后的讨论中,一维极值的优化问题是讨论求解步长k λ.无约束极值中讨论的最速下降法,共轭方向法,坐标轮换法,牛顿法,变尺度法及有约束极值中讨论的可行方向法都是根据不同的原理选择kp 得到的迭代算法.七、迭代算法的收敛性定义7.10 设有一算法A ,若对任一初始点(可行点),通过A 进行迭代时,或在有限步后停止得到满足要求的点;或得到一个无穷点列,它的任何一个聚点均是满足要求的点,则称此算法A 具有全局收敛性.定义7.11 设(UMP )问题的目标函数Px Qx x x f T+=21)(,Q 为对称半正定矩阵, 若由算法A 进行迭代时,不论初始点0x 如何选择,必能在有限步后停止迭代,得到所要求的点,则称此算法A 有二次有限终止性.定义7.12 设序列{}kr收敛于*r,定义满足∞<=--≤**+∞−→−βhkk k rr r r 1______lim0的非负数h 的上确界为{}k r 的收敛级.若序列的收敛级为h ,就称序列是h 级收敛的.若1=h 且1<β就称序列是以收敛比β线性收敛的. 若1>h 或1=h 且0=β就称序列是超线性收敛的. 如何判别算法的收敛性和收敛速度问题本书不讨论.本书给出的算法中,最速下降法具有全局收敛性、是线性收敛的;改进牛顿法具有全局收敛性、二次有限终止性、是二阶线性收敛的;变尺度法和共轭方向法具有全局收敛性和二次有限终止性、是超线性收敛的;Zoutenddijk 法不具有全局收敛性、改进的T-V 法具有全局收敛性;制约函数法具有全局收敛性.关于这些算法的收敛性的讨论和证明有兴趣的读者可参考其他文献.§2 一维极值问题的优化方法前面讨论迭代算法时,从kx 出发确定沿k p 方向的步长k λ是这样求解的),(min 0k k p x f λλ+>这里k x ,k p 已知.所以,若记)()(λλg p x f k k =+,则为求解)(min 0λλg >的过程.于是我们考虑如下形式的极值问题.)(min x f bx a ≤≤ (7.8)b a R x ,,1∈为任意实数很显然可应用高等数学中学过的解析法,即令0)('=x f 求出平稳点,但如前面所述如果该方程解不出来,怎么办?可用下述迭代算法—0.618法.定义7.13 )(x f 定义在],[b a 上,若存在点∍∈],[*b a x 当*x y x ≤<,有)()(y f x f >,当*x y x ≥>时,)()(y f x f >,称)(x f 在],[b a 中为单峰函数(单谷函数).显然满足定义要求的点*x 是)(x f 在],[b a 中的极小点.在],[b a 中任选两点21,x x ,且b x x a <<<21,根据)(x f 的单峰性,若)()(21x f x f <,则*x 必然位于],[2x a 内,如果)()(21x f x f >,则*x 必然位于],[1b x 内.如果)()(21x f x f =,则*x 必然位于],[21x x ,记此区间为],[11b a .如此继续,得闭区间套⊃⊃⊃⊃],[],[],[11n n b a b a b a .显然 ,1,0],,[*=∈i b a x i i ,又0→-i i a b .由闭区间套性质, *x 为极小值点.闭区间套的选择方法不同,求得的*x 的快慢及求解过程的计算量是不一样的,有一个常用的方法是0.618法.0.618法: 取],[],[b a =βα① 在],[βα中选取1λ和2λ,)(618.0),(382.021αβαλαβαλ-+=-+=,求出)(1λf 和)(2λf 进入②.② 若)()(21λλf f <,取],[],[2λαβα=,若αλ-2已足够小,停止,否则进入③.若)()(21λλf f >,取],[],[1βλβα=,若1λβ-已足够小,停止,否则进入④. 若)()(21λλf f =,取],[],[21λλβα=,若12λλ-已足够小,停止,否则进入①. ③ 取上一步中的1λ为2λ,显然有)(618.02αβαλ-+=,令)(382.01αβαλ-+=,求出)(1λf ,返回②.④ 取上一步的2λ为1λ,则有)(382.01αβαλ-+=,令)(618.02αβαλ-+=,求出)(2λf 返回②.设初始区间为],[b a ,用0.618法,经过k 次迭代后],[βα的长度ka b 618.1)(-=-αβ,只要k 充分大αβ-可以小于任何给定的正数.例7.3 用0.618法求解λλλ2)(min 2+=f单峰区间为[-3,5],2.0=ε解:[α,β]=[-3,5]1λ=-3+0.382×8=0.056 )(1λf =0.1152λ=-3+0.618×8=1.944 )(2λf =7.667由于)(1λf <)(2λf 所以新的不定区间为[α,β] =[-3,1.944] 由于β-α=4.944>0.22λ:=1λ=0.056 )(2λf :=)(1λf =0.115 1λ=-3+0.382×4.944=-1.112 )(1λf =-0.987如此反复得下表7-1:在进行8次迭代后,2.0112.1936.0<+-=-αβ取中间值024.1*-=λ或032.12-=λ作为近似最优解.显然真正极小点是-1.0.一维收索方法很多,如函数逼近法、牛顿法等可参考其他文献.§3 无约束极值的优化方法考虑无约束最优化问题(UMP ))(min x f nR x ∈ (7.9) 前面已经讨论过,求解此无约束优化问题,可以求出平稳点及不可导点的方法.令0)(*=∇x f ,求出平稳点.如果)(*2x f ∇是正定的,则*x 是UMP 的严格局部最优解.若)(x f 在n R 上是凸函数,则是整体最优解.在求解0)(*=∇x f 这n 维方程组比较困难时,就用最优化算法——迭代法.本节将介绍最速下降法,牛顿法,共轭方向法,坐标轮换法,变尺度法.这些算法就是用不同的方法来选择搜索方向k p 而得到的.当然kp 必须是下降方向.定理7.7 设R R f n→:,在点x 处可微,若存在nR p ∈,使0)(<∇p x f T,则向量p是f 在x 处的下降方向.证明:)(x f 可微(在x 处),由泰勒展开式,有 ||)(||)()()(p p x f x f p x f Tλολλ+∇+=+ ,0,0)(><∇λp x f T0)(<∇∴p x f Tλ),(当δλδ0∈∃∴时,有0||)(||)(<+∇p p x f Tλολ),0()()(δλλ∈∀<+∴x f p x fp ∴是)(x f 在点x 的下降方向. 证毕.一、最速下降法最速下降法又称梯度法,选择负梯度方向作为目标函数值下降的方向,是比较古老的一种算法,其它的方法是它的变形或受它的启发而得到的,因此它是最优化方法的基础. 基本思想:迭代法求解无约束最优化(5.9)问题的关键是求下降方向kp .显然最容易想到的是使目标函数值下降速度最快的方向.从当前点kx 出发,什么方向是使)(x f 下降速度最快呢? 由泰勒展开知:||)(||)()()(k k T k k k k p p x f p x f x f λολλ+∇-=+-略去λ的高阶无穷小项,取)(kkx f p -∇=时,函数值下降最多.而)(kx f ∇为)(x f 在kx 处的梯度,所以下降方向kp 取为负梯度方向时,目标函数值下降最快.最速下降法:①. 取初始点0x ,允许误差0>ε,令0:=k ②. 计算)(kkx f p -∇=③. 若ε<||||k p ,停止,点k x 为近似最优解.否则进入④.④. 求 k λ,使)(min )(0kk k k k p x f p x f λλλ+=+≥ ⑤. 令kk k k p x xλ+=+1,1:+=k k ,返回②例7.4 用最速下降法求解下列无约束优化问题1222121225),(m in x x x x x f -+=取初始点Tx )2,2(0= 终止误差 610-=ε解:很显然,该问题的整体最优解为Tx )0,1(*=⎪⎪⎭⎫⎝⎛-=∇215022)(x x x f ,令0,10)(21==⇒=∇x x x f易验证)(*2x f ∇是正定的, ∴是整体最优解. 下面用最速下降法求解T T x x x f x f x f )50,22(),()(2121-=∂∂∂∂=∇ T x )2,2(0=T x f )100,2()(0=∇∴取Tp )100,2(0-=由⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+λλλλ10022210022200p x4)22(2)1002(25)22()(2200+---+-=+λλλλp x f得0)1002(5000)22(4=----=λλλd df020007679.0500008100080==⇒λ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+=0007679.0959984642.11002020007679.0220001p x x λ重复上述过程得 Tx )01824717.0,009122542.1(2=789850288.0)(,078282.0)(,100)(21-=-==x f x f x f图7-1从图7-1可知,{}kx 随着迭代次数的增加,越来越接近与最优解)0,1(,同时也看到,随着迭代次数的增加,收敛速度越来越慢.极小点附近沿着一种锯齿形前进,即产生“拉锯”现象:{}kx沿相互正交的方向小步拐进,趋于最优解的过程非常缓慢.这种现象怎样解释?如何克服?在求k λ时,由于)()(kkp x f λλϕ+=,求导得0)('=λϕ,k λ是)(λϕ的极小点.故有0)()('=⋅+∇=k T k k k k p p x f λλϕ,即0)(=⋅+∇kk k k p p x f λ,又)(11++-∇=k k x f p,即0)(1=⋅+k T k p p 或0)()(1=∇⋅∇+k T k x f x f .也就是最速下降法相邻两个搜索方向是彼此正交的.因此最速下降法是局部下降最快,但不一定是整体下降最快的.在实际应用中一般开始几步用最速下降法,后来用下面介绍的牛顿法.这样两个算法结合起来,求解速度较快.二、牛顿法 基本思想:考虑无约束优化问题(5.9))(min x f nRx ∈ 由前面的讨论知,若能解出方程组0)(=∇x f ,求出平稳点*x ,则可验证*x 是否为极值点.由于0)(=∇x f 难以求解.如果)(x f 具有连续的二阶偏导数,则考虑用)(x f 在点*x 二阶泰勒展开式条件替代)(x f ∇,即由22||)(||))(()(21)()()()(k k k T k k T k k x x x x x f x x x x x f x f x f -+-∇-+-∇+=ο))(()(21)()()()()(2kk T k k T k k x x x f x x x x x f x f x g x f -∇-+-∇+=≈⇒令0))(()()()(2=-∇+∇=∇≈∇kk k x x x f x f x g x f)())((121k k k k x f x f x x ∇∇-=⇒-+即从kx 出发,搜索方向为)())((12kkkx f x f p ∇∇-=-,步长恒为1,得到下一个迭代点1+k x.牛顿法:①. 选取初始点0,0=:k x ,精度0>ε ②. 计算)(kx f ∇,如果ε≤∇||)(||kx f ,计算终止.否则计算)(2kx f ∇,求出搜索方向)())((12kk k x f x f p ∇∇-=-. ③. 令1:,1+=+=+k k p x x k k k ,返回②.例7.5 考虑无约束问题22122214)(m in x x x x x f -+=试分别取初始点(1)T x )1,1(0=,(2)T x )4,3(0=(3)Tx )0,2(0=,取精度要求310-=ε,用牛顿法求解.解:⎪⎪⎭⎫ ⎝⎛--=∇212211228)(x x x x x x f ⎪⎪⎭⎫⎝⎛---=∇22228)(1122x x x x f (1) 取Tx )1,1(0=有Tx f )1,6()(0=∇ ε>=∇0828.6||)(||0x f⎪⎪⎭⎫⎝⎛--=∇2226)(02x fT x f x f p )2500.2,7500.1()())((01020--=∇⋅∇-=-Tp x x )2500.1,7500.0(01--=+= 重复计算结果得表7-2.ε<=0||)(||4x f T x )0,0(4=∴为近似最优解.实际上,该问题最优解为**)0,0(=x(2) 取Tx )4,3(0=,同上计算,得TT x x x )4,8284.2(,)4,8333.2(),4,3(21===有ε<=∇=∇=∇0||)(||,1667.0||)(||,1||)(||210x f x f x f ,这一迭代结果收敛到)(x f 的鞍点T)4,22(.(3) 取Tx )0,2(0=T x f )4,16()(0-=∇ ⎪⎪⎭⎫⎝⎛--=∇2448)(02x f0)(02=∇x f , 即)(02x f ∇不可逆,所以无法求得点1x .牛顿法的主要缺点:(1) 该法的某次迭代反而使目标函数值增大(见上例).(2) 初始点0x 距极小点*x 较远时,产生的点列{}kx可能不收敛,还会出现)(*2x f ∇的奇异情况.(3) )(*2x f ∇的逆矩阵计算量大. 牛顿迭代法的主要优点:当目标函数)(x f 满足一定条件,初始点0x 充分接近极小点*x 时,由牛顿法产生的点列{}kx 不仅能够收敛到*x,而且收敛速度非常快.实际应用中常将最速下降法和牛顿法结合起来使用.牛顿法的改进:上面介绍的牛顿法中,kx 处的搜索方向为)())((12kkkx f x f p ∇∇-=-,步长恒为 1.若通过一维搜索来取最优步长k λ,可防止在迭代中步长恒为1时标目标函数值增大的可能. 改进的牛顿法:①. 取初始点nR x ∈0,允许误差0:,0=>k ε.②. 检验是否满足ε<∇||)(||kx f ,若是,迭代停止,得到k x 为近似最优解.否则进入③.③. 令)())((12kk k x f x f p ∇∇-=-.④. 求k λ,使)()(min kk k k k p x f p x f λλλ+=+. ⑤. 令k k k k p x x λ+=+1,令1+=k k :转②.三、坐标轮换法既然求解非线性规划问题的迭代法是给出初始点0x ,求出一个方向kp ,根据kp 确定步长k λ,使k k k k p x xλ+=+1,如果1+k x 满足某精度要求则停止,否则继续找方向1+k p .显然构造出搜索方向有一定的困难,能否按既定的搜索方向寻找最优解,省去找搜索方向kp 呢?在最速下降法中我们看到相邻两个搜索方向kp 和1+k p是正交的.我们知道在n 维欧氏空间中坐标轴向量n εεε,,,21 是正交的,可否选坐标轴向量为搜索方向kp 为呢?回答是肯定的,这样我们得到了坐标轮换法.基本思想:从1x 出发,取11ε=p ,沿1p 进行一维搜索得到1112p x x λ+=.若2x 满足精度要求,则停止.否则取22ε=p ,2223p x x λ+=.如此继续,, 取n n n n n n p x x p λε+==+1,,若1+n x 满足精度要求,则停止.否则令11ε=+n p ,1112+++++=n n n n p x x λ,如此反复连续,可以求出近似最优解.坐标轮换法的缺点是收敛速度较慢,搜索效率较低,但基本思想简单,沿坐标轴的方向进行搜索.四、共轭方向法和共轭梯度法共轭方向法是一类方法的总称,它原来是为求解目标函数为二次函数的问题而设计的.这类方法的特点是:方法中的搜索方向是与二次函数的系数矩阵Q 有关的所谓共轭方向,用这类方法求解n 元二次函数的极小化问题最多进行n 次一维搜索便可以得到极小点.由于可微的非二次函数在极小点附近的性态近似于二次函数,因此这类方法也用于求可微的非二次函数的UMP 问题.定义7.14 设Q 为n n ⨯对称正定矩阵,如果0=Qy x T称n 维向量x 和y 关于Q 共轭.定义7.15 设k p p p ,,,21 为nR 中一组向量, Q 是一个n n ⨯对称正定矩阵.如果k j i j i Qp p Qp p i T i j T i ,,2,1,,,0,0 =≠≠=,称k p p p ,,,21 为Q 共轭向量组,也称它们为一组Q 共轭方向.当E Q =(单位矩阵)时,为正交方向.定理7.8 若k p p p ,,,21 为矩阵Q 共轭向量组,则它们必线性无关. 证明: 若存在k l l l ,,,21 ,使011=++k k p l p l ,则对任一k j ,,2,1 =,由 0)(11===∑∑==j T j j ki j T j iki iiT jQp p l Qp pl p l Q p又0>j Tj Qp p , 0=∴j l∴ k p p p ,,,21 线性无关. 证毕.由高等代数知识可知, Q 共轭向量组中最多包含n 个向量, n 是向量的维数.反之,可以证明,由n 维空间的任一组基出发可以构造出一组Q 共轭方向11,,,-n pp p .前面我们已经讲述了坐标轮换法,在n 维欧几里德空间中, n εεε,,,21 是一组线性无关的正交向量.从0x 出发,依次使用n εεε,,,21 作为下降方向进行一维精确搜索来确定n x x x ,,,21 ,重复进行得点列{}k x ,最终求得满足精度要求的最优解.刚才我们引进了共轭向量组11,,,-n p p p ,又证明了它们的线性无关性,那么是否可以用这共轭向量组像坐标轮换法一样,从0x 出发依次用11,,,-n pp p 作为下降方向来确定{}kx,最终求得近似最优解?回答是肯定的.这个方法称为共轭方向法.共轭方向法适合任何可微凸函数,且对于二次函数极值)(min x f x p Qx x T T+=21特 别有效.下面的定理告诉我们用共轭方向法求解二次函数的极值,经过n 次迭代就能求得最优解.定理7.9 设Q 为n n ⨯对称正定矩阵,函数x p Qx x x f T T+=21)(,又设 110,,,-n p p p 为一组Q 共轭向量组,且每个i p 是(下面形成的)i x 点处的下降方向.则由任一点0x 出发,按如下迭代至多n 步后收敛,k k k k p x xλ+=+1,这里k λ满足)(m i n )(0k k k k k p x f p x f λλλ+=+>.证明: 欲证至多n 步收敛,即证0)(=∇nx f .下证)(nx f ∇和11,,,-n pp p 正交.p Qx x f +=∇)( p Qx x f kk+=∇∴)( p p x Q p Qx xf k k k k k ++=+=∇++)()(11λkk k k k k Qp x f p Qp Qx λλ+∇=++=)( =+∇=∇---111)()(n n n n Qpx f x f λ 11111)(--++++++∇=n n k k k Qp Qp xf λλQ p Q p x f x f Tn n T k k T k T n )()()()(11111--++++++∇=∇λλkT n n k T k k k T k k T n Qp p Qp p p x f p x f )()()()(11111--++++++∇=∇λλ000+++= )2,,2,1,0(-=n k 又0)(1=∇-n Tn px f0)(=∇∴kT n p x f )1,,1,0(-=n k)(nx f ∇∴和11,,,-n pp p 正交, 又110,,,-n pp p 线性无关.0)(=∇∴nx fnx ∴是问题的最优解. 证毕. 共轭方向法具有二次有限终止性. 由于共轭方向组11,,,-n p p p 的取法有很大的随意性,用不同方式产生一组共轭方向就得到不同的共轭方向法.如果利用迭代点处的负梯度向量为基础产生一组共轭方向,这样的方法叫共轭梯度法.下面对二次函数讨论形成Q 共轭梯度方向的一般方法,然后引到求解无约束化问题上.任取初始点n R x ∈0,若0)(0≠∇x f ,取)(0x f p -∇=,从0x 点沿方向0p 进行一维搜索 ,求得0λ.令0001p x x λ+=,若0)(1=∇x f ,则已获得最优解1*x x =.否则,取0011)(p x f p υ+-∇=,其中0υ的选择要使1p 和0p 关于Q 共轭,由0)(01=Qp p T ,得0100)()()(Qp p x f Q p T T ∇=υ一般地,若已获得Q 共轭方向kp p p ,,,1和依次沿它们进行一维搜索的得到的点列110,,,+k x x x ,若0)(1=∇+k x f ,则最优解为1*+=k x x ,否则∑=+++-∇=ki i i k k p xf p011)(α为使1+k p 和11,,,-k pp p 是共轭,可证0110====-k ααα所以有 k k k k p x f pυ+-∇=++)(11又1+k p和kp 是Q 共轭的.有0)(1=+k Tk Qp p,得kT k k T k k Qpp x f Q p )()()(1+∇=υ 2,,2,1,0-=n k 进一步可得k υ221||)(||||)(||k k x f x f ∇∇=+ 2,,1,0-=n k综合起来得 Fletcher-Reeves 公式2)21110||(||||)(||)()(k k k k k k k x f x f p x f px f p ∇∇=+-∇=-∇=+++υυ 2,,2,1,0-=n k (7.10)共轭梯度法: ①. 选取初始点0x ,给定终止误差0>ε. ②. 计算)(0x f ∇,若ε≤∇||)(||0x f ,停止迭代,输出0x .否则进行③.③. 取)(0x f p -∇=,令0:=k④. 求k λ,)(min )(0kkkk kp x f p x f λλλ+=+≥,令k k k k p x xλ+=+1⑤. 计算)(1+∇k xf ,若ε≤∇+||)(||1k x f ,停止迭代,1*+=k x x 为最优解.否则转⑥.⑥. 若n k =+1,令nx x =:0,转③(已经完成一组共轭方向的迭代,进入下一轮)否则转⑦ ⑦. 取kk k k p xf pυ+-∇=++)(11,其中221||)(||||)(||k k k x f x f ∇∇=+υ,令1:+=k k ,转④当)(x f 是二次函数时上述共轭梯度法至多进行n 步可求得最优解.当)(x f 不是二次函数,共轭梯度法也可以构造11,,,-n p p p ,但已不具有有限步收敛的性质,于是和坐标轮换法一样经过一轮迭代后,采用重新开始的技巧.上述共轭梯度法就是带有再开始技巧的F-R 法.例7.6 用F-R 法求下面问题 2212121252),(m in x x x x x f +-=取初始点T x )2,2(0=,终止误差为610-=ε解:在例7.4中已得Tx f p )100,2()(0-=-∇= Tx )0007679.0,959984642.1(1-= Tx f )038395.0,919969284.1()(1-=∇000368628.010004687756228.3||)(||||)(||20210==∇∇=x f x f υ ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-=+-∇=0015322.092070654.11002000368628.0038395.0919969284.1)(0011p x f p υ⎪⎪⎭⎫ ⎝⎛+--=+0015322.00007679.092070654.1959984642.111λλλp x0378228399.7687703443.3)(11=+-=+λλλd p x df499808794.01=∴λ⎪⎪⎭⎫ ⎝⎛≈⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⨯+--⨯+=+=010********.0999998622.00015322.0499808794.00007679.0)92070654.1(499808794.0959984642.11112p x x λε<=∇0||)(||2x f , ∴最优解⎪⎪⎭⎫⎝⎛==012*x x .五、变尺度法当初始点为)(x f 的其极值点附近时牛顿法收敛速度很快,但缺点是需计算)(2kx f ∇的逆矩阵,在实际问题中目标函数往往相当复杂,计算二阶导数的工作量或者太大或者不可能,在x 的维数很高时,计算逆矩阵也相当费事.如果能设法构造另一个矩阵kH ,用它来逼近二阶导数矩阵的逆矩阵12))((-∇kx f 则可避免上述问题.下面就来研究如何构造12))((-∇kx f 的近似矩阵kH .我们希望:每一步都能以现有的信息来确定下一个搜索方向,每做一次迭代,目标函数值均有所下降,这些近似矩阵最后应收敛于最优解处的海赛矩阵的逆矩阵12))((-∇kx f .p Qx x f xp Qx x x f T T+=∇+=)(21)(考虑于是 )]()([)()()(11111k k k k k k k k x f x f Q x x x x Q x f xf ∇-∇=-⇒-=∇-∇+-+++当)(x f 是非二次函数时,令)]()([111k k k k k x f x f H x x ∇-∇=-+++ (7.11)称为拟牛顿条件.显然,我们构造出来的近似矩阵k H 必须满足上述拟牛顿条件及递推性:k k k H H H ∆+=+1,这里k H ∆称为矫正矩阵.记 k k k kk k x x x x f x f G -=∆∇-∇=∆++11)()( 有 kk k k k k G H H G H x ∆∆+=∆=∆+)(1 .变尺度法即DEP 法是由Davidon 首先提出,后来又被Fletcher 和Powell 改进的算法.记kk T k kT k k k k T k T k k k k kk T k kT k k k k T k T k k kG H G HG G H x G x x H H G H G H G G H x G x x H ∆∆∆∆-∆∆∆∆+=∆∆∆∆-∆∆∆∆=∆+)()()()()()()()(1 (7.12)容易验证1+k H 满足拟牛顿条件,称上式为DEP 公式.变尺度方法计算步骤:(1) 给出初始点nR x ∈0,允许误差0>ε.(2) 若ε<∇||)(||0x f ,停止,0x 为近似最优解;否则转下一步.(3) 取I H =0(单位矩阵),0=:k . (4) )(kk k x f H p ∇-=(5) 求k λ,使)(min )(0kk k k k p x f p x f λλλ+=+≥. (6) 令kk k k p x xλ+=+1(7) 若ε<∇+||)(||1k xf ,1+k x 为最优解,停止;否则当1-=n k 时,令n x x =:0转(3).(即迭代一轮n 次仍没求得最优解,以新的0x 为起点重新开始一轮新的迭代).k k k k k kx x x x f xf G n k -=∆∇-∇=∆-<++11),()(1时,令当.计算kk T k kT k k k k T k T k k kk G H G H G G H x G x x H H∆∆∆∆-∆∆∆∆+=+)()()()(1,令1+=k k :,转(4). §4 约束极值的最优化方法考虑(MP)问题:0)(0)(..)(min =≥x H x g t s x f (7.13)其中Tl T m x h x h x h x g x g x g ))(,),(()(,))(,),(()(11 ==是向量函数.显然 0)(0)(0)(≥-≥⇔=x h x h x h , 于是(MP )问题可以写为:Tm x g x g x g x g t s x f ))(,),(()(0)(..)(min 1 =≥ (7.14)一、积极约束设0x 是(MP )问题(5.14)的一个可行解.对0)(0≥x g i 来说,在点0x 有两种情况:或者0)(0>x g i ,或者0)(0=x g i .0)(0>x g i 时,则0x 不在0)(0=x g i 形成的边界上,称这一约束为0x 的非积极约束;0)(0=x g i 时,0x 处于由0)(0≥x g i 这个约束条件形成的可行域边界上,当0x 有变化时就不满足0)(0=x g i 的条件,所以称为积极约束,记为:{}()|()0,1i I x i g x i m ==≤≤.定义7.16 设x 满足约束条件0)(0≥x g i ),,1(m i =,0)(|{)(==x g i x I i ,}m i ≤≤1,如果)(x g i ∇,)(x I i ∈线性无关,则称点x 是约束条件的一个正则点.二、可行方向、下降方向的代数条件前面我们已经给出可行方向和下降方向的定义,下面给出其代数条件.可行方向:设K 是(MP )问题(5.14)的可行域,K x ∈,0,≠∈p R p n.若存在00>λ使得],0[0λλ∈时有K p x ∈+λ,称p 为x 点处的一个可行方向.由泰勒公式:||)(||)()()(p p x g x g p x g T i i i λολλ+∇+=+当x 为)(x g i 的积极约束时,有0)(=x g i .只要0>λ足够小,)(p x g i λ+和p x g T i )(∇λ同号,于是当0)(>∇p x g T i 时有0)(≥+p x g i λ )(x I i ∈.当x 为)(x g i 的非积极约束时,有0)(>x g i .由)(x g i 的连续性,当0>λ足够小时,由保号性知 0)(≥+p x g i λ )(x I i ∉.所以只要 0)(>∇p x g T i ,)(x I i ∈就可保证0)(≥+p x g i λ,于是p 为x 点处的一个可行方向.称0)(>∇p x g T i ,)(x I i ∈ 为p 在点x 处是可行方向的代数条件.下降方向:设K 是(MP )问题的可行域,K x ∈,0,≠∈p R p n.若存在00>λ使得],0[0λλ∈时,有)()(x f p x f <+λ,称p 为x 点处的一个下降方向.由泰勒公式:||)(||)()()(p p x f x f p x f Tλολλ+∇+=+.当λ足够小时,只要0)(<∇p x f T,有)()(x f p x f <+λ. 称0)(<∇p x f T为p 在x 点处的一个下降方向的代数条件.三、可行下降方向设K 为(MP )问题(5.14)的可行域,K x ∈,若存在0,≠∈p R p n,p 既是x 点处的下降方向又是可行方向,则称p 为点x 处的可行下降方向.定理7.10 考虑非线性规划问题(5.14),K x ∈,),,1)()(m i x g x f i =(和在x点处可微,若*x 是局部极小点,则x 点处必不存在可行下降方向,即不存在p 同时满足:⎪⎩⎪⎨⎧∈>∇<∇)(0)(0)(x I i p x g p x f Ti T证明:反证法,设局部极小点x 处存在可行下降方向p ,于是1λ∃,当],0[1λλ∈时有)()(x f p x f <+λ,又p 为可行方向.2λ∃∴当],0[2λλ∈时K p x ∈+λ,这与x 是。
一非线规划问题的几种求解方法1罚函数法外点法
第三步:主程序main1.m
%最速下降方法实现一个非线性最优化问题 % min f(x)=2*x1^2+x2^2 global x0 x0=[ 1 1 ]; yefi=0.0001; k=1; d=-fun1gra(x0); lamada=1;
主程序main1.m(续)
while sqrt(sum(d.^2))>=yefi
对参数nonlcon的进一步示例
x12 x22 x32 100
x12 10x32 60
x1 x22 Leabharlann 3 802个不等式约束,x13
x
2 2
x3
80
2个等式约束
3个决策变量x1,x2,x3 如果nonlcon以‘mycon1’作为参数值,则程序 mycon1.m如下
对照约束条件编写myfun1.m
一、非线性规划问题的几种求解方法 1. 罚函数法(外点法)
min f (x) s.t. gi (x) 0(i 1,2,, m)
h j (x) 0( j 1,2,,l)
基本思想: 利用目标函数和约束函数构造辅助函数:
F(x,) f (x) P(x)
要求构造的函数 F(x, ) 具有这样的性质:当 点x位于可行域以外时,F(x, )取值很大,而
离可行域越远则越大;当点在可行域内时,
函数 F(x, ) f (x)
因此可以将前面的有约束规划问题转换为下 列无约束规划模型:
min F(x,) f (x) P(x)
其中称为 P(x)罚项, 称为罚因子,
F (x, ) 称为罚函数。
P( x) 的定义一般如下:
m
l
P(x) (gi (x)) (hj (x))
越是接近极值点,收敛越慢;
非线性规划理论和算法
非线性规划理论和算法非线性规划是一种数学规划问题,其目标函数和约束条件是非线性的。
与线性规划相比,非线性规划更具挑战性,因为非线性函数的特性使得求解过程更加困难。
然而,非线性规划在实际应用中具有广泛的应用领域,例如优化问题、工程规划、经济决策等。
为了解决非线性规划问题,需要发展相应的理论和算法。
1.非线性规划理论凸规划理论:凸规划是非线性规划的一个特殊情况,其目标函数和约束条件都是凸函数。
凸规划具有许多重要的性质,如唯一最优解、稀疏性、全局最优解等。
凸规划理论为非线性规划提供了重要的指导。
拉格朗日乘子法:拉格朗日乘子法是一种常用的求解非线性规划的方法,其基本思想是通过构建拉格朗日函数将原问题转化为无约束优化问题。
拉格朗日乘子法为非线性规划提供了一种有效的解法。
拟牛顿法:拟牛顿法是一类迭代方法,用于求解无约束和约束非线性优化问题。
其基本思想是通过构建近似的黑塞矩阵来更新方向。
拟牛顿法具有收敛速度快和全局收敛性好的优点,被广泛应用于实际问题求解中。
2.非线性规划算法直接方法:直接方法包括穷举法、划分法、割平面法等。
这些方法适用于问题维度和约束条件较少的情况,可以通过枚举或分割解空间来找到最优解。
然而,直接方法的计算复杂度较高,在高维问题中效率较低。
迭代方法:迭代方法通过迭代更新方向来逐步逼近最优解。
常用的迭代方法包括牛顿法、拟牛顿法、共轭梯度法等。
这些方法在求解非线性规划问题时表现出较好的收敛性和效率。
近年来,随着计算机性能的提高和优化算法的进一步发展,一些先进的非线性规划算法也得到了广泛应用,例如粒子群优化算法、遗传算法、模拟退火算法等。
这些算法基于不同的策略和模拟自然现象的原理,可以有效克服非线性规划问题中的局部最优和高维度等挑战。
总结起来,非线性规划理论和算法是解决实际问题中非线性优化问题的重要工具。
非线性规划理论提供了问题求解的基本原理和数学模型,而非线性规划算法则根据不同问题的特点和性质选择合适的求解方法。
管理运筹学06非线性规划
对于大规模问题,梯度法可能会收敛到局部最优解而非全局 最优解。
牛顿法
优点
牛顿法具有二次收敛速度,即随着迭 代次数的增加,收敛速度会加快。
缺点
牛顿法需要计算目标函数的Hessian矩 阵,计算量大,且对于非凸问题,可 能陷入局部最优解。
拟牛顿法
优点
拟牛顿法具有类似于牛顿法的收敛速 度,但计算量较小。
解器。
SciPy的非线性规划求解器基于 优化算法,如梯度下降法和牛 顿法等,可以求解无约束和有
约束的非线性规划问题。
SciPy的接口简洁明了,易于使 用,适合Python程序员使用。
SciPy还提供了大量的示例和文 档,可以帮助用户更好地理解 和使用非线性规划求解器。
R语言
01 02 03 04
R语言是一种开源的统计计算语言,广泛应用于数据分析和统计建模 等领域。
THANKS FOR WATCHING
感谢您的观看
它通过迭代算法寻找使目标函数取得 极值的解,广泛应用于各种实际问题 的优化,如金融、物流、生产计划等 。
非线性规划的分类
约束优化问题
在给定的约束条件下最小化或最大化目标函数。
无约束优化问题
在无任何约束条件下最小化或最大化目标函数。
混合整数非线性规划问题
目标函数和约束条件中包含整数变量,且为非线性。
03
MATLAB的非线性规划求解器支持多种算法,包括内点法、梯度法、 牛顿法等,可以根据问题的规模和特性选择合适的算法。
04
MATLAB的用户界面友好,易于学习和使用,适合初学者和专家使用。
Python的SciPy库
SciPy是一个开源的Python数 学库,提供了大量的数学函数 和算法,包括非线性规划的求
第四章 非线性规划1-约束极值问题
第四章 非线性规划⎧⎪⎧⎨⎨⎪⎩⎩无约束最优化问题线性规划约束最优化问题非线性规划⎧⎨⎩凸规划约束最优化问题非凸规划⎧⎨⎩直接解法约束最优化问题求解方法间接解法间接解法是将约束优化问题转化为一系列无约束优化问题来解的一种方法。
由于这类方法可以选用有效的无约束优化方法,且易于处理同时具有不等式约束和等式约束的问题,因而在工程优化中得到了广泛的应用。
直接解法是在满足不等式约束的可行设汁区域内直接按索问题的约束最优解。
第一节 目标函数的约束极值问题所谓约束优化设计问题的最优性条件.就是指在满足等式和不等式约束条件下,其目标函数值最小的点必须满足的条件,须注意的是,这只是对约束的局部最优解而言。
对于带有约束条件的目标函数,其求最优解的过程可归结为:一、约束与方向的定义 一)起作用约束与松弛约束对于一个不等式约束()0g X ≤来说,如果所讨论的设计点()k X 使该约束()0g X =(或者说()k X当时正处在该约束的边界上)时,则称这个约束是()k X点的一个起作用约束或紧约束,而其他满足()0g X <的约束称为松弛约束。
冗余约束40g ≤当一个设计点同时有几个约束起作用时,即可定义起作用约束集合为{}()()()|()0,1,2,,k k u I X u g X u m ===其意义是对()k X点此时所有起作用约束下标的集合。
二)冗余约束如果一个不等式约束条件的约束面(即()0g X =)对可行域的大小不发生影响,或是约束面不与可行域D 相交,即此约束称为冗余约束。
三)可行方向可行方向:一个设计点()k X 在可行域内,沿某一个方向S 移动,仍可得到一个属于可行域的新点,则称该方向为可行方向。
1)设计点为自由点 设计点()k X 在可行域内是一个自由点,在各个方向上都可以作出移动得到新点仍属于可行域,如图所示。
2)设计点为约束边界点当设计点()k X 处于起作用约束i g 上时,它的移动就会受到可行性的限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何安排生产才能使利润最大?
2
中南大
罗捍东
解:设 x1、x2分别表示两种产品的产量,那么该问 题的数学模型可以表示为:
max Z 2 x1 3x2 x1 2 x2 8 4x 16 1 s.t 4 x 12 2 x1 , x2 0
3
中南大
罗捍东
2 1 2
1 2 2
f X
(1)
X , X X 0,1
(1) (2)
(1)
1 X
1 X
( 2)
( 2)
f X
2
(1)
1 X
( 2)
1 1 2 2 f1 X f 2 X 1 f1 X f 2 X 1 2 f X 1 f X 20
4
则数学模型为:
中南大
罗捍东
由于目标函数是非线性函数, 此问题是一个非线性 规划问题, 非线性规划的建模过程与线性规划是完全 一样的, 一般模型为:
min f X
(1) i 1, 2, m j 1, 2, l (2) (3)
hi X 0 s.t g X 0 j
例1续:在资源分配问题中, 若甲、乙两产品的 单位利润C1和C2与该产品产量与有关, C1 =4-x1, C2 =3-0.2x2, 则相应的目标函数为:
Z (4 x1 ) x1 (3 0.2 x2 ) x2
max Z ( 4 x1 ) x1 (3 0.2 x2 ) x2 x1 2 x2 8 4 x 16 1 s .t 4 x2 12 x1 , x2 0
中南大
罗捍东
所以f(X)= f1(X)+ f2(X)也是R上的凸函数。
由性质1和2,我们有:凸函数的任意非负线性 组合还是凸函数。
性质3:设 f(X)是凸集 R上的凸函数,则对每一 实数β,集合: Sβ={ X| X∈R,f(X)≤β} …(10) 是凸集(Sβ称为水平集)。
14
中南大
罗捍东
三、凸函数和凹函数
设f (X)为定义在En中某个凸集R上的函数,若对
X , X
(1)
(2)
有:
R及 0,1
(1)
f X
(1)
1 X
(1)
(2)
f X 1 f X
2
(8)
则称f(X)为R上为凸函数。若对 有:
X , X
(2)
R及 0,1
f X (1) 1 X (2) < f X (1) 1 f X 2
则称f(X)为R上为严格凸函数。
(9)
15
中南大
罗捍东
同理可定义凹函数和严格凹函数。 凸函数和凹函数的几何意义十分明显。若函数图 形上任意两点的联线处处都在这个函数图形的上方, 它当然是下凸的。凹函数则是下凹的 ( 上凸的 ) 。线 性函数既可看做凸函数,也可看做凹函数。
8
中南大
二、极值问题
罗捍东
由于线性规划的目标函数为线性函数,可行域 为凸集,因而,求出的最优解就是整个可行域的全 局最优解。非线性规划却不然,有时求出的某个解 虽是一部分可行城上的极值点,但却并不一定是整 个可行域的全局最优解。 设f(X)为定义在n维欧氏空间En的某一区域R上 的n元实函数,其中X= x1 , x2 , xn T 。若在X*某邻 域内都有对f(X)≥f(X*),则称X*为f(X)在R上的局部 极小点(或相对极小点),f(X*)为局部极小值。若在X *某邻域内都有f(X) > f(X*),则称X*为对 f(X)在R上 的严格局部极小点,f(X*)为严格局部极小值。
对局部极大值,该定理的结论仍然成立。
由数学分析知道,▽f (X )的方向为f (X)等值面 (等值线)的法线(在点X处)方向,沿这个方向函数值 增加最快。 满足式(6)式的点称为平稳点(或驻点),极值 点必为驻点;但驻点不一定是极值点。
11
中南大
罗捍东
定理2 (充分条件):设R是En上的某一开集,f (X) 在R上具有二阶连续偏导数。X*∈R,若▽f (X*) =0, 且对任何非零单位向量Z有: ZTH(X*)Z >0 …(7) 则X*为f(X)的严格局部极小点。此处H(X*)为f (X)在 点X*处的海赛(Hesse)矩阵。即:
证明:任取X (1), X (2)∈Sβ,则有 f (X (1))≤β,f (X(2))≤β 由于f(X) 是凸集R上的凸函数,故对任意实数 α (0<α<1) 。
21
中南大
(1)
罗捍东
(2)
X 1 X R 且 2 (1) (2) (1) f X 1 X f X 1 f X
(4) j 1, 2, , l (5)
非线性规划的几何表示特点
6
中南大
罗捍东
2 2 min f ( X ) x1 2 x2 2 例 2: h( X ) x1 x2 6 0
6
解:可行域R为直线AB(如下图): x1 x2 6=0 x2 f(X)=4 若令等值线(面) :f(X)=C A f(X)= 2 由图可见,等值线 f (X)=2和约束条件直 线AB相切,切点D即 为此问题的最优解: xl*=x2*=3,其目标 函数值 f(X*)=2。
0
19
所以函数λf (X)也是R上的凸函数。
中南大
罗捍东
性质2:设f1(X),f2(X)是凸集R上的凸函数,
则f (X)= f1(X)+ f2(X)也是凸集R上的凸函数。
证明:对 有
f1 X
f1 X
1
1 f X f X 1 f X
f (X* ) f (X* ) f (X* ) = = = =0 x1 x2 xn
或
6
10
f (X )=0
*
中南大
* *
罗捍东
* * T
f (X ) f (X ) f(X ) , , , 其中 f (X ) = x2 xn x1
为函数f (X )在点X*处的梯度。
12
中南大
罗捍东
证明:将f(X)在X*进行泰勒展开, 并记: Z X X * ,其中Z为单位向量。
f X f X Z f X
*
*
f X
* T
Z
1 2 T * 2 Z H ( X ) Z o( ) 2
*
1 2 T * 2 f X Z H ( X ) Z o( ) 2
其中X=(x1, x2,…, xn)T为决策变量,hi(X)、 gj(X)分别是X的函数。
5
中南大
hi ( X ) 0 hi ( X ) 0
罗捍东
若约束条件为 hi(X)=0, 可化为:
因此,非线性规划的数学模型可以写成如下形式:
min f X g j X 0
(2)
(1) f X (1) (X (2)-X (1))- f X
f X
2
-f X (1)
f ( x)
f x
(1)
1 f x
2
f x (1) 1 x (2)
0
凸函数 的图示
x 1 x
(1) (2)
x
(1)
x
(2)
x
16
中南大
罗捍东
17
中南大
罗捍东
18
中南大
凸函数有以下性质:
罗捍东
性质1:设f(X)是凸集R上的凸函数,则对λ, 函数λf (X)也是R上的凸函数(λ > 0)。 证明:因为f(X)是凸集R上的凸函数
9
中南大
罗捍东
若对R上所有X≠X*都有f(X)≥f(X*),则称X*为 f(X)在R上的全局极小点(或绝对极小点),f(X*)为全 局极小值。若对R上所有X≠X*都有 f(X)>f(X*),则 称X*为对f(X)在R上的严格全局极小点,f(X*)为严 格全局极小值。同理定义极大点(值)。 定理 1( 必要条件 ) :设 R 是 n 维欧氏空间 En 上的 某一开集,f(X)在R上可微,且在X*∈R取得局部 极小值,则必有:
7
3 2
D
C
B 2 3 6
x1
中南大
罗捍东
在这个例子中,约束条件对最优解是有影响的。 若将约束条件变为:
h( X ) x1 x2 6
则非线性规划的最优解是xl*=x2*=2,即图中 的C点。这时f(X*)=0。由于最优点位于可行域的内 部,故对这个问题的最优解来说,约束条件实际上 是不起作用的。在求这个问题的最优解时,可不考 虑约束条件,就相当于没有这个约束一样。 由第一部分知道,如果线性规划问题的最优解存 在,则其最优解只能在其可行域的边界上(顶点)达到; 而非线性规划的最优解则可能在其可行域的任意一点 达到。因此,求解非线性规划的任一算法都不能只考 察可行域极点的目标函数值来寻找最优解。
则
X 1 X
(1)
(2)
S
于是,Sβ是凸集。 下面讨论凸函数的判别定理。
22
中南大
罗捍东
定理3 (一阶条件):设f (X)是开凸集R上的凸函 数,若f (X)是可微函数,则f (X)为R上为凸函数的 充要条件是:对 X 1 , X 2 R , X 1 X 2 恒有: f X