北师大版九年级数学下册圆的教案课件
北师大版九年级数学下册《圆——圆内接正多边形》教学PPT课件(2篇)
⊙O的六等分点,顺次连接AB,BC,CD,DE,EF,FA,便得到正六边
形ABCDEF.
E
D
O
F
A
C
B
典例精析
例、 用尺规作圆的内接正方形.
已知:如图,⊙O.
求作:正方形ABCD 内接于⊙O.
O
练一练
作法:
你能简单说明下如
何用尺规做出两条
为切点的⊙O的切线,
∴∠OAP=∠OBP=∠OBQ=∠OCQ.
∴∠PAB=∠PBA=∠QBC=∠QCB.
A
T
E
B
O
Q
S
C
D
R
新知探究
⌒ ⌒
又∵AB=BC,
∴AB=BC,
P
A
T
∴△PAB与△QBC是全等的等腰三角形.
∴∠P=∠Q,PQ=2PA.
同理∠Q=∠R=∠S=∠T,
QR=RS=ST=TP=2PA,
最小要___ _cm.
课堂练习
5.如图,已知正三角形ABC的边长为6,求它的中心角、半径和边心距.
解:设这个正三角形的中心为点O,
A
连接OB,OC,作OH⊥BC于点H,
则∠BOC=360°÷3=120°,
O
∴∠BOH=60°.
在Rt△BOH中,
BH=BC=3,∠OBH=30°,
OH= , =
顶点都在同一圆上的正多边形叫做圆内接正多边形.这个圆叫
做该正多边形的外接圆.
新知讲解
怎样由圆得到多边形呢?
定义:把一个圆 n 等分(n ≥ 3),依次连结各分
点,所得的多边形是这个圆的内接正多边形.
北师大版九年级数学下册3.1圆 课件(共32张PPT)
根据圆的定义,“圆”指 的是“ 圆周 ”,而不 是“圆面”。
O
A
确定一个圆的要素:
一是圆心, 二是半径, 圆心确定其位置, 半径确定其大小.
O
A
如图,连接圆上任意两点的线段 叫做弦,如AB; 经过圆心弦叫做直径, 如直径CD. 我们知道,圆上任意 两点的部分叫做圆弧, 简称弧. 圆的任意一条直径的两个 端点分圆成两条弧,每一 弧都叫做半圆. 弧包括优弧和劣弧,大于半圆的弧叫做优弧,小于 半圆的弧叫做劣弧. 如图中,以A,D为端点的弧有两条:优弧ACD(记 作ACD),劣弧ABD(记作AD或ABD).
B
C
已知圆P的半径为3,点Q在圆P外,点R在圆P上,点 H在圆P内,则PQ___3 = < > ,PR____3,PH_____3. 如图, △ ABC中,∠C=90°,BC=3,AC=6, CD
3 5 为中线,以C为圆心,以 2 为半径作圆,则点A、
B 、 D 与圆 C 的关系如何? 点A在圆外,点B在圆内, 点D在圆上.
解(1)过点A作AD⊥BC,垂足为D, 在Rt△ABC中,∠ABC=30°,AB=220, ∴AD=110(km),110÷20=5.5,12-5.5=6.5>4, ∴A城市受这次台风影响; A (2)在BD及BD的延长线上分别取E,F D 两点,使AE=AF=160千米.由于当A点距 台风中心不超过160千米时,将会受到 台风的影响.所以当台风中心从E点移到 B F点时,该城市都会到这次台风的影响. 在Rt△ADE中,由勾股定理,得DE= 30 15 所以EF=2DE=60 15 (3)当台风中心位于D处时,A市所受这次台风的 风力最大,其最大风马牛不相及力为12110/20=6.5级
(1)分别以点A、点B为圆心,以2cm的长为半径 画圆,两圆的交点即为所求。 P
北师大版九年级数学下册《圆》PPT课件
2. 圆心为 O 的两个同心圆,半径分别为 1 和 2,
若OP= 3 ,则点 P 在( D )
A.大圆内
B.小圆内
o
C.小圆外
D.大圆内,小圆外
要点归纳
P d O
r
Od P
r
P
dO r
P O
Rr
点 P 在⊙O 内 d<r 点 P 在⊙O上 d=r
点 P 在 ⊙O 外 d>r 点 P 在圆环内 r<d<R
劣弧:AF, AD,AC,AE.
F
O
E
(
( (( ((
(
((
优弧:AFE, AFC,AED,AEF. (2) 请写出以点 A 为端点的弦及直径. A
C
弦 AF,AB,AC.其中弦 AB 又是直径. (3) 请任选一条弦,写出这条弦所对的弧.
答案不唯一,如:弦 AF,它所对的弧是 AF.
知识要点
1. 根据圆的定义,“圆”指的是“圆周”,而不是“圆面”.
r rO· r
A
有点组成的图形.定点就是圆心,定长就是 C r r E
半径,以点 O 为圆心的圆记作 ⊙O,读作
“圆 O ”.
有关概念
固定的端点 O 叫做圆心,线段 OA 叫做半径,一
般用 r 表示.
确定一个圆的要素 一是圆心,确定其位置;二是半径,确定其大小.
同心圆 圆心相同,半径不同
等圆
能够重合 的两个圆 叫做等圆.
系?
P
d O
r
Od
r
P
Pd O r
点 P 在 ⊙O 内 点 P 在⊙O上
d< r d =r
点 P 在⊙O 外
d >r
练一练:
《确定圆的条件》圆PPT教学课件-北师大版九年级数学下册
作图: 三角形三条边的垂直平分线的交点.
性质: 三角形的外心到三角形三个顶点的距离相等.
判一判:
下列说法是否正确
(1)任意的一个三角形一定有一个外接圆( √ ) (2)任意一个圆有且只有一个内接三角形( × ) (3)经过三点一定可以确定一个圆( × )
√
(4)三角形的外心到三角形各顶点的距离相等( )
第三章 圆
确定圆的条件
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.复习并巩固圆中的基本概念. 2.理解并掌握三点确定圆的条件并会应用. (重点) 3.理解并掌握三角形的外接圆及外心的概念.(难点)
导入新课
情境引入
假如旋转木马真如短片所说, 是中国发明的, 你能将旋转木马破碎的圆 形底座还原, 以帮助考古学家画进行深入的研究吗?
7.如图, 在平面直角坐标系xOy中, △ABC外接 圆的圆心坐标(是5,___2_)_____, 半径2 是5 ______.
8.已知正△ABC的边长为6, 那么能够完全覆盖这
个正△ABC的最小圆的半径是_2__3_____.
解析:如图, 能够完全覆盖这个正△ABC的最小圆的半径就是△ABC外接
过一点可以作无数个圆 过两点可以作无数个圆
注意:同一直线 上的三个点不能 作圆
不在同一直线上的三个点确定一个圆
概念 外心
经过三角形的三个顶点的圆叫做三 角形的外接圆
解:(1)∵∠ADO=∠ABO=60°, ∠DOA=90°, ∴∠DAO=30°;
(2)求点A的坐标和△AOB外接圆的面积. (2)∵点D的坐标是(0, 3), ∴OD=3. 在直角△AOD中, OA=OD·tan∠ADO=3 3, AD=2OD=6, ∴点A的坐标是(3 3 , 0). ∵∠AOD=90°, ∴AD是圆的直径, ∴△AOB外接圆的面积是9π. 方法总结:图形中求三角形外接圆的面积时, 圆的直径(或半径)长度.
北师大版九年级数学下册第三章3.5确定圆的条件课件(共28张PPT)
判断:
1、经过三点一定可以作圆。(× )
2、三角形的外心就是这个三角形两边垂直平分 线的交点。(√ )
3、三角形的外心到三边的距离相等。(× )
4、等腰三角形的外心一定在这个三角形内。 (×)
1、某一个城市在一块空地新建了三个 居民小区,它们分别为A、B、C,且三个 小区不在同一直线上,要想规划一所中学,
书P125 练习
小结:
课后日记: 今天学了什么:___________ 今天的收获是:______________ 有不明白的地方吗?_______ 它是:_________________
A
如图:⊙O是△ABC的
外接圆, △ABC是⊙O
的内接三角形,点O是
O C △ABC的外心
B
外心是△ABC三条边的垂
直平分线的交点,它到三角
形的三个顶点的距离相等。
如图,请找出图中圆的圆 心,并写出你找圆心的方法?
A
O C
B
画出过以下三角形的顶点的圆
A
O ●
B
C
(图一)
A
O ●
┐
B
C
(图二)
A O ●
(1)只有确定了圆心和圆的半径,这个圆的位 置和大小才唯一确定。
(2)经过一个已知点能作无数个圆!
(3)经过两个已知点A、B能作无数个圆!这 些圆的圆心在线段AB的垂直平分线上。
(4)不在同一直线上的三个点确定一个圆。
(5)外接圆,外心的概念。
巩固新知 应用新知
2、如图,
一 根 5m 长 的 绳
于直角三角形斜边中点,钝角三角形的外心位于三角形外.
老师期望:
作三角形的外接圆是必备基本技能,定要熟练掌握.
北师大版九年级下册数学《弧长及扇形的面积》圆说课教学课件复习提高
(3)转动轮转no,传送带上的物品A 被传送多少厘米? n cm
18
创设情境 出示目标
知识 经历探索弧长计算公式和扇形面积计算公
目标
式的过程;了解弧长计算公式和扇形面积 计算公式,并运用公式解决问题。
能力 了解弧长和扇形面积公式后,能运用公 目标 式解决问题,训练学生的数学运用能力 。
情感 体验教学活动充满着探索与创造,感受 目标 数学的严谨性以及数学结论的确定性 。
周长约是6.70m, 面积约是3.58㎡
创设情境 温故知新
(1)已知⊙O的半径为R,⊙O的周长是 多少?⊙O的面积是多少?
C=2πR,S⊙O=πR2
A
R
(2)什么叫圆心角?
O B
顶点在圆心,两边和圆相交所组成 的角叫做圆心角如图中的∠AOB
创设情境 出示目标
如图,某传送带的一个转动轮的半 径为10cm. (1)转动轮转一周,传送带上的物品 A被传送多少厘米? 20πcm (2)转动轮转1o,传送带上的物品A 被传送多少厘米? cm
∴(78π
+
2 4
)x=12.4,又78π
+
2 4
≈3.10(米 2)
所以,x=4.00(米)
答:该输水管中水的 流速应达到每秒4.00米
B
A
O
课件
巩固旧知 出示目标
巩固旧知 出示目标
生活中的圆弧与扇形
创设情境 出示目标
创设情境 出示目标
创设情境 出示目标
创设情境 出示目标
我们上体育课掷铅球练习时, 要在指定的圆圈内进行,这个 圆的直径是2.135m。这个圆的 周长与面积是多少呢?(结果 精确到0.01)
A
B
扇形
北师大版九年级数学下册第三章《第三章 第1节 圆》优质课件
当OA=1cm时,点A在 ⊙O内 ; 点在圆上,点在圆 内.
当OB=4cm时,点B在 ⊙O外 .
例2.已知:如图,矩形ABCD的对角 线相交于点O, 试猜想:矩形的四个顶点能在同一 个圆上吗?
AA
DD
OO
BB
CC
答:在矩形ABCD中,有OA=OB=OC=OD,四个顶点 在同一个圆上,故矩形四个顶点能在同一个圆上.
2.(新疆建设兵团·中考)如图,王大爷家屋后有一块
长12m,宽8m的矩形空地,他在以BC为直径的半圆内种
菜,他家养的一只羊平时拴在A处,为了不让羊吃到菜,
拴羊的绳子可以选用( )
A.3m
B.5m
C.7m
D.9m
答案:A
3.(泉州·中考) 已知三角形的三边长分别为3,4,5, 则它的边与半径为1的圆的公共点个数所有可能的情况是 ________.(写出符合的一种情况即可) 【解析】∵圆心的位置不确定,∴交点个数共有5种情况即 0、1、2、3、4.故答案为0或1或2或3、4. 答案:2(符合答案即可)
善性是难能可贵的,也是高尚和值得称赞 的。
——亚里士多德
You made my day!
这一 样个 的人 人所 才受 有的 学教 问育 。超
过 了 自 己 的 智 力 ,
我们,还在路上……
【规律方法】1.判断点与圆的位置关系的方法:
设⊙O的半径为r,则点P与⊙O的位置关系有
(1)点P在⊙O上
OP=r
(2)点P在⊙O内
OP<r
(3)点P在⊙O外
OP>r
2.要证明几个点在同一个圆上,只要证明这几个点到同一
个定点的距离相等.
通过本课时的学习,需要我们掌握:
1.从运动和集合的观点理解圆的定义. 2.点与圆的位置关系. 3.证明几个点在同一个圆上的方法.
北师大版九年级数学下册《圆——弧长及扇形的面积》教学PPT课件(2篇)
C
A
D
B
探究新知
在一块空旷的草地上有一根柱子,柱子上栓
着一条长3m的绳子,绳子的另一端栓着一只狗。
(1)这只狗的最大活动区域有多大?
n°
(2)如果这只狗只能绕柱子转过 n°角,
那么它的最大活动区域有多大?
解:(1)这只狗的最大活动区域是圆的面积,即9πm2 .
(2)狗的活动区域是扇形,扇形是圆的一部分,360°的圆心角对应的是圆面积,
A. 3π
B.4π
C.5π
D.6π
新知探究
4 . 如图的五个半圆,邻近的两个半圆相切,两只小虫同时出发,以相同
的速度从A点爬到B点,甲虫沿ADA1,A1EA2,A2FA3,A3GB路线爬行,乙虫沿
ACB路线爬行,则下列结论正确的是( C )
A.甲先到B点
C.甲、乙同时到B点
B.乙先到B点
D.无法确定
− ×1×
=
π- .
课堂小结
1.弧长公式:
2.扇形面积公式:
或
注意: 求图形的面积:
割补法、组合法
(1)公式中 n 表示1°的圆心角的倍数;
(2)若圆心角的单位不全是度,则需先化为度后再计算.
(3)题设没有标明精确度的,结果可以用 π 表示.
课堂小测
1.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.
则半径为2的“等边扇形”的面积为( C
S 扇形1ຫໍສະໝຸດ lR2)
课堂小测
2. 如图,5个圆的圆心在同一条直线上, 且互相相切.若大圆直径是12,4
12cm,那么弧AC的长是( C)
A.10cm
北师大版初中九年级下册数学课件 《圆》
知1-练
4 下列图形中,四个顶点一定在同一个圆上的是( B ) A.菱形、平行四边形 B.矩形、正方形 C.正方形、菱形 D.矩形、平行四边形
知识点 2 与圆有关的概念
知2-讲
弦:连接圆上任意两点的线段(如图中的AC)叫做弦,
经过圆心的弦(如图中的AB)叫做直径.
注意: 1.弦和直径都是线段. 2.直径是弦,是经过圆心的特殊弦,是
(1)圆的两种定义中确定圆的条件是相同的,即圆心和 半径.两者缺一不可; (2)“点在圆上”和“圆过点”表示的意义都是:这个点在 圆周上. 特别提醒:圆是“圆周”,而非“圆面”.
知1-练
1 体育老师想利用一根3m长的绳子在操场上画一个 半径为3m的圆,你能帮他想想办法吗?
解:将绳子的一端A固定,然后拉紧绳子的另一端B,并绕
知2-练
2 【中考·杭州】如图,已知AC是⊙O的直径,点B在圆 周上(不与点A,C重合),点D在AC的延长线上,连 接BD交⊙O于点E,若∠AOB=3∠ADB,则(D ) A.DE=EB B. DE2=EB C. DE3=DO D.DE=OB
知2-练
3 【中考·潍坊】点A,C为半径是3的圆周上两点,点B ︵
A
B.F,G,H
C.G,H,E
D.H,E,F
知3-练
3 【中考·贵港】如图,已知P是⊙O外一点,Q是⊙O上的动点,
线段PQ的中点为M,连接OP,OM. 若⊙O的半径为2,OP=4,
则线段OM的最小值是( )
A.0
B
B.1
C.2
D.3
知3-练
4 如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在
归纳
知1-导
1. 圆心为O、半径为r的圆可以看成是所有到定 2. 点O的距离等于定长r的点的集合. 3. 确定一个圆的两个要素:圆心、半径.圆心确 4. 定圆的位置,半径确定圆的大小.
北师大版九年级数学下册圆课件
视察车轮, 你发现了什么?
圆的定义
平面上到定点的距离等于定长的所有点组成的图 形叫做圆
.
O
圆上每一个点到定点的距离都等于定长 到定点的距离等于定长的所有点都在这个圆上
圆的定义1
如图,在一个平面内,线段OA绕它固定的一个端
点O旋转一周,另一个端点A所形成的图形叫做圆.
A
固定的端点O叫做圆心
E O●
B 直径:经过圆心的弦叫直径
F 直径是圆中
C
最长的弦
线段EF是弦吗?
弧:圆上任意两点间的部分叫做圆弧,简称弧.
半圆:一条直径的两个端点把圆分成两条弧,
每一条弧都叫做半圆。
劣弧:小于半圆的弧叫做劣弧;
(如图中的AC )
B
优弧:大于半圆的弧叫做优弧。
O·
A
C
(用三个字母表示,如图中的ABC )
静态:圆心为O、半径为r 的圆可以看成是所有到 定点O的距离等于定长r 的点组成的图形.
• 篮球是圆吗?
圆必须在一个平面内
• 以2cm为半径画圆,能画多少个? • 以点O为圆心画圆,能画多少个? • 由此,你发现半径和圆心分别有什么作用?
半径确定圆的大小;圆心确定圆的位置
1、以2厘米为半径画的圆?这些圆的位置和大小 有什么特点?
把车轮做成圆形,车轮上各点到车轮中心(圆心) 的距离都等于车轮的半径,当车轮在平面上滚动时, 车轮中心与平面的距离保持不变.因此,当车辆在平 坦的路上行驶时,坐车的人会感觉到非常安稳,这 就是车轮都做成圆形的数学道理.
与圆有关的概念
弦:连结圆上任意两点的线段叫做弦。 A 如图,弦有线段 AB、 BC、AC
大小相同(半径相同),位置不同(圆心不 同), 这样的两个圆叫做等圆 2、以点O为圆心画的圆?这些圆的位置和大小有 什么特点?
北师大版九年级数学下册:3.1《圆》教案
北师大版九年级数学下册:3.1《圆》教案一. 教材分析北师大版九年级数学下册3.1《圆》是学生在学习了直线、射线、线段的基础上,进一步对圆的概念、性质和圆与其他几何图形的关系进行探讨。
本节课的内容包括圆的定义、圆的半径和直径、圆的周长和面积等,这些都是基础知识,对于学生来说比较抽象,需要通过实例和操作来理解和掌握。
二. 学情分析九年级的学生已经具备了一定的几何基础,对直线、射线、线段等概念有一定的了解。
但是,圆的概念比较抽象,学生可能难以理解。
因此,在教学过程中,需要通过实例和操作来帮助学生理解和掌握圆的概念。
同时,学生对于实际操作和图形观察比较感兴趣,可以利用这一点来提高学生的学习兴趣。
三. 教学目标1.知识与技能:理解圆的定义,掌握圆的半径和直径的性质,会计算圆的周长和面积。
2.过程与方法:通过实例和操作,培养学生的观察能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.圆的定义和性质。
2.圆的周长和面积的计算。
五. 教学方法采用问题驱动法、实例教学法、合作学习法等,通过引导学生观察、思考、讨论,激发学生的学习兴趣,培养学生的观察能力、思维能力和创新能力。
六. 教学准备1.准备相关的实例和图片,用于引导学生观察和理解圆的概念。
2.准备圆的模型或图片,用于讲解圆的性质。
3.准备圆的周长和面积的计算公式,用于讲解和练习。
七. 教学过程1.导入(5分钟)通过展示生活中的圆形物体,如硬币、车轮等,引导学生观察和思考:什么是圆?圆有哪些特点?2.呈现(10分钟)讲解圆的定义和性质,引导学生理解圆的概念。
展示圆的半径和直径的性质,让学生通过观察和操作,理解半径和直径的关系。
3.操练(10分钟)让学生分组合作,用圆规和直尺画圆,测量圆的半径和直径,计算圆的周长和面积。
通过实际操作,让学生加深对圆的概念的理解。
4.巩固(10分钟)出示一些有关圆的练习题,让学生独立完成,检查学生对圆的概念和计算方法的掌握情况。
九年级数学北师大版初三下册--第三单元3.2《圆的对称性》课件
归纳
知2-导
1.在同圆或等圆中,相等的圆心角所对的弧相等,所对 的弦相等.
2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦 中有一组量相等,那么它们所对应的其余各组量都分 别相等.
(来自教材)
知2-讲
例2 下列命题中,正确的是( C ) ①顶点在圆心的角是圆心角;
形、圆、等腰三角形,这些图形中只是轴对称图
形的有( A )
A.1个
B.2个
C.3个
D.4个
知1-练
4 【2017·黄石】下列图形中既是轴对称图形,又是 中心对称图形的是( D )
知2-导
知识点 2 圆心角与所对的弧、弦之间的关系
在同圆或等圆中,如果两个圆心角所对的弧相等,那 么它们所对的弦相等 吗?这两个圆心角相等吗?你是怎 么想的?
②相等的圆心角所对的弧也相等;
③在等圆中,圆心角不等,所对的弦也不等.
A.①和②
B.②和③
C.①和③
D.①②③
知2-讲
导引:①根据圆心角的定义知,顶点在圆心的角是圆心角, 故正确;②缺少条件,必须是在同圆或等圆中,相等 的圆心角所对的弧才相等,故错误;③根据弧、弦、 圆心角之间的关系定理,可知在等圆中,若圆心角相 等,则所对的弦相等,若圆心角不等,则所对的弦也 不等,故正确.
总结
知2-讲
本题考查了对弧、弦、圆心角之间的关系的理解,对于 圆中的一些易混易错结论应结合图形来解答.特别要注 意:看是否有“在同圆或等圆中”这个前提条件.
知2-练
1 下面四个图形中的角,是圆心角的是( D )
知2-练
2 如图,AB为⊙O的弦,∠A=40°,则A︵B所对的 圆心角等于( C ) A.40° B.80° C.100° D.120°
北师大版九年级下册数学《圆周角和圆心角的关系》圆PPT课件教学课件(第2课时)
北京师范大学出版社 九年级 | 下册
北京师范大学出版社 九年级 | 下册
课时小结:
1.本节课我们探索了圆的对称性. 2.利用圆的轴对称性研究了垂径定理及其逆定理. 3.垂径定理和勾股定理相结合,构造直角三角形,可解决弦长、半径、 弦心距等计算问题.
北京师范大学出版社 九年级 | 下册
课后作业:
(一)课本习题3.2,1、2.试一试1. (二) 预习课本:P94~97内容
新课讲解
知识点2 直角所对的弦是直径
在如图中,圆周角∠A=90°,弦BC是直径吗?为什么?
新课讲解
90°的圆周角所对的弦是直径.
新课讲解
典例分析
例 如图,已知经过原点的⊙P与x轴、y轴分别交于A,B 两点,点C是劣弧OB上一点,则∠ACB等于( B ) A.80° B.90° C.100° D.无法确定
拓展与延伸
已知在半径为4的⊙O中,弦AB=4 3 ,点P在圆上,则 ∠APB=_6_0_°__或__1_2_0_°_.
第3单元 · 圆
圆的对称性
北京师范大学出版社 九年级 | 下册
问题: 前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?
我们是用什么方法研究轴对称图形的?
北京师范大学出版社 九年级 | 下册
交点,即垂足. 4.将纸打开,新的折痕与圆交于另一点B,如图.
问题:(1)右图是轴对称图形吗? 如果是,其对称轴是什么?
(2)你能发现图中有哪些等量关系? 说一说你的理由。
北京师范大学出版社 九年级 | 下册
总结得出垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的 弧。 推理格式:如图所示 ∵CD⊥AB,CD为⊙O的直径 ∴AM=BM,AD BD, AC BC .
专题 圆内接正多边形-九年级数学下册教学课件(北师大版)
(2)
在(1)的基础上,连接BO并延长与DE相交,连
接AG交BO延长线于N,连接CN,如图2所示;
课堂小结
正多边形和
圆 的 关 系
正n边形各顶点等分其外
接圆.
中心
圆内接正
多边形
正多边形的
有 关 概 念
半径
边心距
中心角
正多边形的
有关计算
添加辅助线的方法:
连半径,作边心距
过边心距、边长的一半和内接圆半径构造直角三角
形,通过解直角三角形求解即可.
【详解】解:如图所示,
此正六边形中AB=4,则∠AOB=60° .
∵OA=OB,
∴△OAB是等边三角形,
∵ OG⊥AB,
∴∠AOG=30°,
∴ OG=4×
故选:D.
= .
2.如图,正六边形ABCDEF内接于○O,半径为6,
北师大版九年级下册
第三章 圆
3.8 圆内接正多边形
新课导入
讲授新课
当堂检测
课堂小结
学习目标
1、掌握正多边形与圆的相互关系,理解正多边形与圆的相关
概念;
2、理解并掌握正多边形半径、中心角、边心距、边长的概念
及其相互之间的关系;
3、学会运用正多边形与圆的关系解决与圆相关的几何问题,
注意正多边形与圆的相互联系;
落在阴影区域的概率为 _____.
【答案】
【分析】如图,将阴影部分分割成图形中的小三角
形,令小三角形的面积为a,分别表示出阴影部分的
面积和正六边形的面积,根据概率公式求解即可.
【详解】解:如图,
根据题意得:图中每个小三角形的面积都相等,
新北师大版九年级数学下册《圆周角和圆心角的关系》优质教学课件
4、如图,A,B,C三点在⊙O上,∠AOC=100°,∠ABC=
。
第1题
A
O
B
C
第2题
A B
O C
第3题
课堂小结
小结与思考 通过本节课的学习你有什么收获? 你还有什么疑惑? 请与同伴交流!
课堂总结
你有什么收获?
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
总结 反思 同学们,我们今天的探索很成功,
圆周角
A.
A.
A.
O.
O.
O.
B
C
B
C
B
C
圆周角定义: 顶点在圆上,
并且两边都和圆相交的角
A
叫圆周角.
特征:
① 角的顶点在圆上.
B
② 角的两边都与圆相交.
.
O C
1.判别下列各图形中的角是不是圆周角。
A
O B
⌒ ⌒
有没有圆周角?
有没有圆心角?
它们有什么共同的特点?
C
它们都对着同一条弧
下列图形中,哪些图形中的圆心角∠BOC和
九年级下册数学 第三章 圆
圆周角和圆心角的关系
学习目标 1、 认识圆周角; 2、 探究并证明圆周角和圆心角的关系; 3、会用圆周角和圆心角的关系进行简单的推理和计算。
1.圆心角的定义? 答:顶点在圆心的角叫圆心角.
O.
B
C
点与圆的位置关系有哪些?
当角的顶点发生变化时,这个角的位置有哪几种情况?
∠AOB=_________度.
D B
A E
C
O
第2题
第3题
课堂检测
B组
1、如图,AB是⊙O的直径,C、D、E是⊙O上的点. 若∠ACE=60°,则∠BDE=
北师大版九年级数学下册《圆——圆周角和圆心角的关系》教学PPT课件(6篇)
D
O2
O1
E
B
F
新知探究
【跟踪训练】
1.圆内接四边形ABCD中,∠A, ∠B, ∠C的度数之比是
135°
1:2:3,则这个四边形最大角的度数是_________.
D
A
2.四边形ABCD内接于圆,AD∥BC,AB+CD=AD+BC ,
25
若AD=4,BC=6,则四边形ABCD的面积为_______.
A
A
O
O
BB
C
C
课堂小测
3. 如图,点B,C在⊙O上,且BO=BC,则圆周角∠BAC等于( D )
A
A.60°
B.50°
C.40°
D.30°
O
B
C
课堂小测
4 . 如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E.若
∠AOD=60°,则∠DBC的度数为( A)
A.30°
B.40°
C.50°
B
D.60°
D
C
OC垂直平分AD
(1)OC与AD的位置关系是__________________;
A
平行
(2)OC与BD的位置关系是___________;
4
(3)若OC=2cm,则BD=______cm.
O1
O
B
新知探究
4.如图,△ABC的顶点均在⊙O上, AB=4, ∠C=30°,求⊙O的直径.
解:连接AO并延长交⊙O于点E,
3 . 当圆心(O)在圆周角(∠ABC)的外部时,圆周角∠ABC与圆
心角∠AOC的大小关系会怎样?
提示:能否也转化为1的情况?
A
C
过点B作直径BD.由1可得:
北师大版九年级数学下《3.1圆》课件(共33张PPT)
一石激起千层浪 奥运五环
乐在其中
祥子
小憩片刻
2.观察车轮, 你发现了什么?
1.什么是半径,什么是直径? 通常如何表示?
r
r
•r do
2.同圆内半径有什么特点? • o
同圆内,半径有无数条,长度都相等。
观察画圆过程
回答: (1)圆上各点到定点 (圆心) 的距离都等于 定长(半径r) 。
(2)到定点的距离等于定长的点都 在 同一个圆上 。 一、 新知识识记
思考:点与圆有哪些位置关系?
由图可以看出:
点
在⊙O内。
点
在⊙O上。
点
在⊙O外。
D
●
●A
●
O
●
E
C
●
B
●
你能根据点P到圆心O的距离d与⊙O的半径r的大 小关系,确定点P与⊙O的位置关系吗?
总结
点与圆的位置关系有三种: 点在圆外、点在圆上、点在圆内。
点在圆外,即这个点到圆心的距离_大__于__半径; 点在圆上,即这个点到圆心的距离__等__于__半径; 点在圆内,即这个点到圆心的距离_小__于___半径。
北师大版九年级下册第三章《圆》
3.1 圆
学习目标: 理解圆的概念,理解点和圆的位置关系, 并能根据条件画出符合条件的点或圆形, 初步形成集合的观念;经历形成圆的概 念的过程与点和圆位置关系的过程。 学习重点:圆及其有关概念,点与圆的 位置关系。 学习难点:用集合的观念描述圆。
1.从下面的图片中你能发现哪种常见的图形?
5
羊的活动区域.
5m 4m o
5m 4m o
正确答案
3. 如 图 , 一 根
6m 长 的 绳 子 ,
北师大版九年级数学下册课件:3.8圆内接正多边形
2
2
22
(2)顺次连接 AB,BC,CD,DA.
知识点一:圆内接正多边形的相关概念
∴正六边形的中心角为60°,边长为4,边心距为 2 3 .
获取新知 知识点二:正多边形的作图 已知⊙O的半径为R,求作⊙O的内接正六边形.
分析:因为正六边形每条边所对的圆心角为 60º, 所以正六边形的边长与圆的半径 相等. 因此,在半径为R的圆上依次截取等于 R 的弦, 即可将圆六等分.
正 多 边 形 的 所以∠ABC = ∠BCD= ∠CDA= ∠DAB=90°. 圆内接正 例2 用尺规作圆的内接正方形. 有 关 概 念 所以正六边形的边长与圆的半径 . 多边形 各边都相等的多边形是正多边形
解:(1)如图①,点O即为所求.
C.2∶3
D.2∶π
一个圆的内接正四边形和外切正四边形的面积的比是( )
所以∠ABC = ∠BCD= ∠CDA= ∠DAB=90°.
即四边形ABCD为⊙O的内接正方形.
随堂演练 1.下列说法正确的是( D ) A.各边都相等的多边形是正多边形 B.一个圆有且只有一个内接正多边形 C.圆内接正四边形的边长等于半径
D.圆内接正n边形的中心角度数为 360o
n
2. 一个圆的内接正四边形和外切正四边形
例2 用尺规作圆的内接正方形. 已知:如图,⊙O. 求作:正方形ABCD内接于⊙O.
作法:
(1)如图,作两条互相垂直的直径AC,BD.
(2)顺次连接 AB,BC,CD,DA.
由作图过程可知,四个中心角都是90°,
所以AB=BC= CD=DA. 因为AC,BD都是直径,
你能简单说明下如 何用尺规做出两条 垂直的直径吗?
F
类比学习
最新北师大版九年级数学下册《圆周角和圆心角的关系》优质教学课件
证明:连接BD.
AB = AD,BAD = 60, B
O
△ABD是等边三角形, ABD = 60.
C
D
ACD = ABD = 60.
证明:
四边形ABCD是圆内接四边形,
BCD BAD =180.
又∵BAD = 60,
BCD =120. AB = AD,
B
ACB = ACD. ACD = 1 BCD = 60.
2.与圆周角有关的问题:弦的 条件需转化成弧的条件。
A O
C
D
1.要理解好圆周角定理的推论. 2.构造直径所对的圆周角是圆中的常用方法.引辅助线的 方法: (1)构造直径上的圆周角. (2)构造同弧所对的圆周角. 3.要多观察图形,善于识别圆周角与圆心角,构造同弧所 对的圆周角也是常用方法之一.
同弧或等弧所对的圆周角相等
教师寄语
我们一生中要认识许多人,组建许多 集体,在集体生活中,我们要学会理解和 宽容,关爱和担当,才能被赋予更大的责 任,从而拥有更多发展的机会,更好的参 与社会、国家的建设,让我们与集体共同
感谢各位聆听
B、60°;
P
C、90°;
D、45°
3、如图,∠A=50°, ∠ABC=60 °
BD是⊙O的直径,则∠AEB等于( B)
A、70°;
B、110°;
C、90°;
D、120°
B
4、如图,△ABC的顶点A、B、C
都在⊙O上,∠C=30 °,AB=2,
则⊙O的半径是 2 。
解:连接OA、OB
∵∠C=30 ° ,∴∠AOB=60 °
B C
A
O
D
EF
1.掌握圆周角定理几个推论的内容,会熟练运 用推论解决问题. 2.培养学生观察、分析及理解问题的能力. 3.在学生自主探索推论的过程中,经历猜想、 推理、验证等环节,获得正确的学习方式.
九年级数学下册北师大版课件:3.5 确定圆的条件 (共12张PPT)
初中数学
●O ●O
● O ● O
● B
讲授正课
3.作圆 ,使它过已知点 A,B,C(A,B,C三点不在同一条直线上 ),你能 作出几个这样的圆?
你准备如何(确定圆心,半径)作圆? 其圆心的位置有什么特点?与A,B,C有什么关系? 老师提示: 能否转化为2的情况:经过两点A,B的圆的圆心 在线段AB的垂直平分线上.
A ●O
C
老师提示: 多边形的顶点与圆的位置关系称为接.
初中数学
随堂练习
分别作出锐角三角形,直角三角形,钝角三角形的外接圆,并说 明与它们外心的位置情况
A
A ●O B C B ┐ ●O C A ●O C
B
锐角三角形的外心位于三角形内,直角三角形的外心位于直角 三角形斜边中点,钝角三角形的外心位于三角形外.
第三章
3.5 确定圆的条 件
圆
初中数学
情景导入
类比确定直线的条件: 经过一点可以作无数条直线;
● A
● A
● B
经过两点只能作一条直线.
初中数学
情景导入
1.想一想,经过一点可以作几个圆? 经过两点,三点,…,呢?
●
O ●O
●
●
●
O
●
O
●
A
●
O
● ●
A
O
●
O
●
B
O
O
1.作圆,使它过已知点A.你能作出几个这样的圆?
老师期望: 作三角形的外接圆是必备基本技能,定要熟练掌握. 初中数学
随堂练习
经过布置同一条直线上的四个点
是否一定能作出一个圆?举例说明.
初中数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章圆§3.1 车轮为什么做成圆形学习目标:经历形成圆的概念的过程,经历探索点与圆位置关系的过程;理解圆的概念,理解点与圆的位置关系.学习重点:圆及其有关概念,点与圆的位置关系.学习难点:用集合的观念描述圆.学习方法:指导探索法.学习过程:一、例题讲解:【例1】如图,Rt△ABC的两条直角边BC=3,AC=4,斜边AB上的高为CD,若以C为圆心,分别以r1=2cm,r2=2.4cm,r3=3cm为半径作圆,试判断D点与这三个圆的位置关系.【例2】如何在操场上画出一个很大的圆?说一说你的方法.【例3】已知:如图,OA、OB、OC是⊙O的三条半径,∠AOC=∠BOC,M、N分别为OA、OB 的中点.求证:MC=NC.【例4】设⊙O的半径为2,点P到圆心的距离OP=m,且m使关于x的方程2x2-22x +m-1=0有实数根,试确定点P的位置.【例5】城市规划建设中,某超市需要拆迁.爆破时,导火索的燃烧速度与每秒0.9厘米,点导火索的人需要跑到离爆破点120米以外的安全区域,这个导火索的长度为18厘米,那么点导火索的人每秒跑6.5米是否安全?【例6】由于过渡采伐森林和破坏植被,使我国某些地区多次受到沙尘暴的侵袭.近来A 市气象局测得沙尘暴中心在A市正东方向400km的B处,正在向西北方向移动(如图3-1-5),距沙尘暴中心300km的范围内将受到影响,问A市是否会受到这次沙尘暴的影响?二、随堂练习1.已知圆的半径等于5cm,根据下列点P到圆心的距离:(1)4cm;(2)5cm;(3)6cm,判定点P与圆的位置关系,并说明理由.2.点A在以O为圆心,3cm为半径的⊙O内,则点A到圆心O的距离d的范围是.三、课后练习1.P为⊙O内与O不重合的一点,则下列说法正确的是()A.点P到⊙O上任一点的距离都小于⊙O的半径B.⊙O上有两点到点P的距离等于⊙O的半径C.⊙O上有两点到点P的距离最小D.⊙O上有两点到点P的距离最大2.若⊙A的半径为5,点A的坐标为(3,4),点P的坐标为(5,8),则点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不确定3.两个圆心为O的甲、乙两圆,半径分别为r1和r2,且r1<OA<r2,那么点A在()A .甲圆内B .乙圆外C .甲圆外,乙圆内D .甲圆内,乙圆外4.以已知点O 为圆心作圆,可以作( )A .1个B .2个C .3个D .无数个5.以已知点O 为圆心,已知线段a 为半径作圆,可以作( )A .1个B .2个C .3个D .无数个6.已知⊙O 的半径为3.6cm ,线段OA=725cm ,则点A 与⊙O 的位置关系是( )A .A 点在圆外B .A 点在⊙O 上C .A 点在⊙O 内D . 不能确定 7.⊙O 的半径为5,圆心O 的坐标为(0,0),点P 的坐标为(4,2),则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .点P 在⊙O 上或⊙O 外 8.在△ABC 中,∠C=90°,AC=BC=4cm ,D 是AB 边的中点,以C 为圆心,4cm 长为半径作圆,则A 、B 、C 、D 四点中在圆内的有( )A .1个B .2个C .3个D .4个9.如图,在△ABC 中,∠ACB=90°,AC=2cm ,BC=4cm ,CM 为中线,以C 为圆心,5cm 为半径作圆,则A 、B 、C 、M 四点在圆外的有 ,在圆上的有 ,在圆内的有 .10.一点和⊙O 上的最近点距离为4cm ,最远距离为9cm ,则这圆的半径是 cm .11.圆上各点到圆心的距离都等于 ,到圆心的距离等于半径的点都在 .12.在Rt △ABC 中,∠C=90°,AB=15cm ,BC=10cm ,以A 为圆心,12cm 为半径作圆,则点C 与⊙A 的位置关系是 .13.⊙O 的半径是3cm ,P 是⊙O 内一点,PO=1cm ,则点P 到⊙O 上各点的最小距离是 .14.作图说明:到已知点A 的距离大于或等于1cm ,且小于或等于2cm 的所有点组成的图形.15.菱形的四边中点是否在同一个圆上?如果在同一圆上,请找出它的圆心和半径.16.在Rt △ABC 中,BC=3cm ,AC=4cm ,AB=5cm ,D 、E 分别是AB 和AC 的中点.以B 为圆心,以BC 为半径作⊙B ,点A 、C 、D 、E 分别与⊙B 有怎样的位置关系?17.已知:如图,矩形ABCD 中,AB=3cm ,AD=4cm .若以A 为圆心作圆,使B 、C 、D 三点中至少有一点在圆内,且至少有一点在圆外,求⊙A 的半径r 的取值范围.18.如图,公路MN和公路PQ在P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪声的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由;如果受影响,已知拖拉机的速度为18km/时,那么学样受影响的时间为多少秒?19.在等腰三角形ABC中,B、C为定点,且AC=AB,D为BC的中点,以BC为直径作⊙D,问:(1)顶角A等于多少度时,点A在⊙D上?(2)顶角A等于多少度时,点A在⊙D内部?(3)顶角A等于多少度时,点A在⊙D外部?20.如图,点C在以AB为直径的半圆上,∠BAC=20°,∠BOC等于()A.20°B.30°C.40° D.50°21.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,BC=9,AB=12,M为AB的中点,以CD为直径画圆P,判断点M与⊙P的位置关系.22.生活中许多物品的形状都是圆柱形的.如水桶、热水瓶、罐头、茶杯、工厂里用的油桶、贮气罐以及地下各种管道等等.你知道这是为什么吗?尽你所知,请说出一些道理.§3.2 圆的对称性(第一课时)学习目标:经历探索圆的对称性及相关性质的过程.理解圆的对称性及相关知识.理解并掌握垂径定理.学习重点:垂径定理及其应用.学习难点:垂径定理及其应用.学习方法:指导探索与自主探索相结合。
学习过程:一、举例:【例1】判断正误:(1)直径是圆的对称轴.(2)平分弦的直径垂直于弦.【例2】若⊙O的半径为5,弦AB长为8,求拱高.【例3】如图,⊙O的直径AB和弦CD相交于点E,已知AE=6cm,EB=2cm,∠CEA=30°,求CD 的长.【例4】如图,在⊙O中,弦AB=8cm,OC⊥AB于C,OC=3cm,求⊙O的半径长.【例5】如图1,AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,EC和DF 相等吗?说明理由.如图2,若直线EF平移到与直径AB相交于点P(P不与A、B重合),在其他条件不变的情况下,原结论是否改变?为什么?如图3,当EF∥AB时,情况又怎样?如图4,CD为弦,EC⊥CD,FD⊥CD,EC、FD分别交直径AB于E、F两点,你能说明AE和BF为什么相等吗?二、课内练习:1、判断:⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.()⑵平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧.()⑶经过弦的中点的直径一定垂直于弦.()⑷圆的两条弦所夹的弧相等,则这两条弦平行. ()⑸弦的垂直平分线一定平分这条弦所对的弧. ()2、已知:如图,⊙O 中,弦AB∥CD,AB<CD,直径MN⊥AB,垂足为E,交弦CD于点F.图中相等的线段有 .图中相等的劣弧有 .3、已知:如图,⊙O 中, AB为弦,C 为 AB 的中点,OC交AB 于D ,AB = 6cm ,CD = 1cm. 求⊙O 的半径OA.4.如图,圆O与矩形ABCD交于E、F、G、H,EF=10,HG=6,AH=4.求BE的长.5.储油罐的截面如图3-2-12所示,装入一些油后,若油面宽AB=600mm,求油的最大深度.6.“五段彩虹展翅飞”,我省利用国债资金修建的,横跨南渡江的琼州大桥(如图3-2-16)已于今年5月12日正式通车,该桥的两边均有五个红色的圆拱,如图(1).最高的圆拱的跨度为110米,拱高为22米,如图(2)那么这个圆拱所在圆的直径为米.三、课后练习:1、已知,如图在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点,求证:AC=BD2、已知AB、CD为⊙O的弦,且AB⊥CD,AB将CD分成3cm和7cm 两部分,求:圆心O到弦AB的距离3、已知:⊙O弦AB∥CD 求证:⋂=⋂BD AC4、已知:⊙O半径为6cm,弦AB与直径CD垂直,且将CD分成1∶3两部分,求:弦AB的长.5、已知:AB为⊙O的直径,CD为弦,CE⊥CD交AB于EDF⊥CD交AB于F求证:AE=BF6、已知:△ABC内接于⊙O,边AB过圆心O,OE是BC的垂直平分线,交⊙O于E、D两点,求证,⋂=⋂BC21 AE7、已知:AB为⊙O的直径,CD是弦,BE⊥CD于E,AF⊥CD于F,连结OE,OF求证:⑴OE=OF ⑵CE=DF8、在⊙O中,弦AB∥EF,连结OE、OF交AB于C、D求证:AC=DB9、已知如图等腰三角形ABC中,AB=AC,半径OB=5cm,圆心O到BC的距离为3cm,求ABC的长10、已知:⊙O与⊙O'相交于P、Q,过P点作直线交⊙O于A,交⊙O'于B使OO'与AB平行求证:AB=2OO'11、已知:AB为⊙O的直径,CD为弦,AE⊥CD于E,BF⊥CD于F求证:EC=DF§3.2 圆的对称性(第二课时)学习目标:圆的旋转不变性,圆心角、弧、弦之间相等关系定理.学习重点:圆心角、弧、弦之间关系定理.学习难点:“圆心角、弧、弦之间关系定理”中的“在同圆或等圆”条件的理解及定理的证明.学习方法:指导探索法.学习过程:一、例题讲解:【例1】已知A,B是⊙O上的两点,∠AOB=1200,C是的中点,试确定四边形OACB的形状,并说明理由.【例2】如图,AB、CD、EF都是⊙O的直径,且∠1=∠2=∠3,弦AC、EB、DF是否相等?为什么?【例3】如图,弦DC、FE的延长线交于⊙O外一点P,直线PAB经过圆心O,请你根据现有圆形,添加一个适当的条件:,使∠1=∠2.二、课内练习:1、判断题(1)相等的圆心角所对弦相等()(2)相等的弦所对的弧相等()2、填空题⊙O中,弦AB的长恰等于半径,则弦AB所对圆心角是________度.3、选择题如图,O 为两个同圆的圆心,大圆的弦AB 交小圆于C 、D 两点,OE ⊥AB ,垂足为E ,若AC =2.5 cm ,ED =1.5 cm ,OA =5 cm ,则AB长度是___________.A 、6 cmB 、8 cmC 、7 cmD 、7.5 cm4、选择填空题如图2,过⊙O 内一点P 引两条弦AB 、CD ,使AB =CD ,求证:OP 平分∠BPD .证明:过O 作OM ⊥AB 于M ,ON ⊥CD 于N .A OM⊥PB B OM⊥ABC ON⊥CD D ON⊥PD三、课后练习:1.下列命题中,正确的有( )A .圆只有一条对称轴B .圆的对称轴不止一条,但只有有限条C .圆有无数条对称轴,每条直径都是它的对称轴D .圆有无数条对称轴,经过圆心的每条直线都是它的对称轴2.下列说法中,正确的是( )A .等弦所对的弧相等B .等弧所对的弦相等C .圆心角相等,所对的弦相等D .弦相等所对的圆心角相等 3.下列命题中,不正确的是( )A .圆是轴对称图形B .圆是中心对称图形C .圆既是轴对称图形,又是中心对称图形D .以上都不对4.半径为R 的圆中,垂直平分半径的弦长等于( )A .43RB .23RC .3RD .23R5.如图1,半圆的直径AB=4,O 为圆心,半径OE ⊥AB ,F 为OE 的中点,CD ∥AB ,则弦CD 的长为( )A.23B.3C.5D.256.已知:如图2,⊙O的直径CD垂直于弦AB,垂足为P,且AP=4cm,PD=2cm,则⊙O的半径为()A.4cm B.5cm C.42cm D.23cm7.如图3,同心圆中,大圆的弦AB交小圆于C、D,已知AB=4,CD=2,AB的弦心距等于1,那么两个同心圆的半径之比为()A.3:2 B.5:2 C.5:2D.5:48.半径为R的⊙O中,弦AB=2R,弦CD=R,若两弦的弦心距分别为OE、OF,则OE:OF=()A.2:1 B.3:2 C.2:3 D.09.在⊙O中,圆心角∠AOB=90°,点O到弦AB的距离为4,则⊙O的直径的长为()A.42B.82C.24 D.1610.如果两条弦相等,那么()A.这两条弦所对的弧相等B.这两条弦所对的圆心角相等C.这两条弦的弦心距相等D.以上答案都不对11.⊙O中若直径为25cm,弦AB的弦心距为10cm,则弦AB的长为.12.若圆的半径为2cm,圆中的一条弦长23cm,则此弦中点到此弦所对劣弧的中点的距离为.13.AB为圆O的直径,弦CD⊥AB于E,且CD=6cm,OE=4cm,则AB= .14.半径为5的⊙O内有一点P,且OP=4,则过点P的最短的弦长是,最长的弦长是.15.弓形的弦长6cm,高为1cm,则弓形所在圆的半径为 cm.16.在半径为6cm的圆中,垂直平分半径的弦长为 cm.17.一条弦把圆分成1:3两部分,则弦所对的圆心角为.18.弦心距是弦的一半时,弦与直径的比是,弦所对的圆心角是.19.如图4,AB、CD是⊙O的直径OE⊥AB,OF⊥CD,则∠EOD ∠BOF,⌒AC⌒AE,AC AE.20.如图5,AB为⊙O的弦,P是AB上一点,AB=10cm,OP=5cm,PA=4cm,求⊙O的半径.21.如图6,已知以点O为公共圆心的两个同心圆,大圆的弦AB交小圆于C、D.(1)求证:AC=DB;(2)如果AB=6cm,CD=4cm,求圆环的面积.22.⊙O的直径为50cm,弦AB∥CD,且AB=40cm,CD=48cm,求弦AB和CD之间的距离.23.如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?24.已知一弓形的弦长为46,弓形所在的圆的半径为7,求弓形的高.25.如图,已知⊙O1和⊙O2是等圆,直线CF顺次交这两个圆于C、D、E、F,且CF交O1O2于点M,⌒⌒EFCD ,O1M和O2M相等吗?为什么?。