八(2)函数专题训练卷23

合集下载

2020届高考文科数学复习练习题(二):函数 专题训练

2020届高考文科数学复习练习题(二):函数 专题训练

专题二函数函数是中学数学中的重点内容,是描述变量之间依赖关系的重要数学模型.本章内容有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——一次函数、二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.§2-1 函数【知识要点】要了解映射的概念,映射是学习、研究函数的基础,对函数概念、函数性质的深刻理解在很多情况下要借助映射这一概念.1、设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.记作f:A→B,其中x叫原象,y叫象.2、设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种映射叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域.所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域.函数的值域由定义域与对应法则完全确定.3、函数是一种特殊的映射.其定义域和值域都是非空的数集,值域中的每一个元素都有原象.构成函数的三要素:定义域,值域和对应法则.其中定义域和对应法则是核心.【复习要求】1.了解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象.2.能根据函数三要素判断两个函数是否为同一函数.3.掌握函数的三种表示法(列表法、图象法和解析法),理解函数符号f(x)(对应法则),能依据一定的条件求出函数的对应法则.4.理解定义域在三要素的地位,并会求定义域.【例题分析】例1 设集合A和B都是自然数集合N.映射f:A→B把集合A中的元素x映射到集合B中的元素2x+x,则在映射f作用下,2的象是______;20的原象是______.【分析】由已知,在映射f作用下x的象为2x+x.所以,2的象是22+2=6;设象20的原象为x,则x的象为20,即2x+x=20.由于x∈N,2x+x随着x的增大而增大,又可以发现24+4=20,所以20的原象是4.例2 设函数则f(1)=______;若f(0)+f(a)=-2,则a的所有可能值为______.【分析】从映射的角度看,函数就是映射,函数解析式就是映射的法则.所以f(1)=3.又f(0)=-1,所以f(a)=-1,当a≤0时,由a-1=-1得a=0;当a>0时,由-a2+2a+2=-1,即a2-2a-3=0得a=3或a=-1(舍).综上,a=0或a=3.例3 下列四组函数中,表示同一函数的是( )(A) (B)(C) (D)【分析】(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数.(B)中两个函数的定义域相同,化简后为y=|x|及y=|t|,法则也相同,所以选(B).【评析】判断两个函数是否为同一函数,就是要看两个函数的定义域与法则是否完全相同.一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致.(2)对解析式进行合理变形的情况下,看法则是否一致.例4 求下列函数的定义域(1) (2)(3) (4)解:(1)由|x-1|-1≥0,得|x-1|≥1,所以x-1≥1或x-1≤-1,所以x≥2或x≤0.所以,所求函数的定义域为{x|x≥2或x≤0}.(2)由x2+2x-3>0得,x>1或x<-3.所以,所求函数的定义域为{x|x>1或x<-3}.(3)由得x<3,且x≠0,x≠1,所以,所求函数的定义域为{x|x<3,且x≠0,x≠1}(4)由所以-1≤x≤1,且x≠0.所以,所求函数定义域为{x|-1≤x≤1,且x≠0}.例5 已知函数f(x)的定义域为(0,1),求函数f(x+1)及f(x2)的定义域.【分析】此题的题设条件中未给出函数f(x)的解析式,这就要求我们根据函数三要素之间的相互制约关系明确两件事情:①定义域是指x的取值范围;②受对应法则f制约的量的取值范围在“已知”和“求”当中是一致的.那么由f(x)的定义域是(0,1)可知法则f制约的量的取值范围是(0,1),而在函数f(x+1)中,受f直接制约的是x+1,而定义域是指x的范围,因此通过解不等式0<x+1<1得-1<x<0,即f(x+1)的定义域是(-1,0).同理可得f(x2)的定义域为{x|-1<x<1,且x≠0}.例6 如图,用长为l的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形的底边长为2x,求此框架围成的面积y与x的函数关系式,并指出定义域.解:根据题意,AB=2x.所以,根据问题的实际意义.AD>0,x>0.解所以,所求函数定义域为【评析】求函数定义域问题一般有以下三种类型问题.(1)给出函数解析式求定义域(如例4),这类问题就是求使解析式有意义的自变量的取值范围.正确的解不等式或不等式组在解决这类问题中是重要的.中学数学中常见的对变量有限制的运算法则有:①分式中分母不为零;②偶次方根下被开方数非负;③零次幂的底数要求不为零;④对数中的真数大于零,底数大于零且不等于1;⑤y=tan x,则,k∈Z.(2)不给出f(x)的解析式而求定义域(如例5).其解决办法见例5的分析.(3)在实际问题中求函数的定义域(如例6).在这类问题中除了考虑解析式对自变量的限制,还应考虑实际问题对自变量的限制.另外,在处理函数问题时要有一种随时关注定义域的意识,这是极其重要的.比如在研究函数单调性、奇偶性、最值等问题时,首先要考虑的就是函数的定义域.例7 (1)已知,求f(x)的解析式;(2)已知,求f(3)的值;(3)如果f(x)为二次函数,f(0)=2,并且当x=1时,f(x)取得最小值-1,求f(x)的解析式;(4)*已知函数y=f(x)与函数y=g(x)=2x的图象关于直线x=1对称,求f(x)的解析式.【分析】(1)求函数f(x)的解析式,从映射的角度看就是求对应法则,于是,我们一般有下面两种方法解决(1)这样的问题.方法一.通过这样“凑型”的方法,我们可以明确看到法则f是“原象对应于原象除以原象的平方减1”.所以,方法二.设,则.则,所以这样,通过“换元”的方法也可以明确看到法则是什么.(2)用“凑型”的方法,(3)因为f(x)为二次函数,并且当x=1时,f(x)取得最小值-1,所以,可设f(x)=a(x-1)2-1,又f(0)=2,所以a(0-1)2-1=2,所以a=3.f(x)=3(x-1)2-1=3x2-6x+2.(4)这个问题相当于已知f(x)的图象满足一定的条件,进而求函数f(x)的解析式.所以,可以类比解析几何中求轨迹方程的方法求f(x)的解析式.设f(x)的图象上任意一点坐标为P(x,y),则P关于x=1对称点的坐标为Q(2-x,y),由已知,点Q在函数y=g(x)的图象上,所以,点Q的坐标(2-x,y)满足y=g(x)的解析式,即y=g(2-x)=22-x,所以,f(x)=22-x.【评析】由于已知条件的不同,求函数的解析式的常见方法有象(1)(2)所用到的“凑形”及“换元”的方法;有象(3)所用到的待定系数法;也有象(4)所用到的解析法.值得注意的是(4)中所用的解析法.在求函数解析式或者求轨迹方程时都可以用这种方法,是一种通法.同时也表明函数和它的图象与曲线和它的方程之间有必然的联系.例8 已知二次函数f(x)的对称轴为x=1,且图象在y轴上的截距为-3,被x轴截得的线段长为4,求f(x)的解析式.解:解法一设f(x)=ax2+bx+c,由f(x)的对称轴为x=1,可得b=-2a;由图象在y轴上的截距为-3,可得c=-3;由图象被x轴截得的线段长为4,可得x=-1,x=3均为方程ax2+bx+c=0的根.所以f(-1)=0,即a-b+c=0,所以a=1.f(x)=x2-2x-3.解法二因为图象被x轴截得的线段长为4,可得x=-1,x=3均为方程f(x)=0的根.所以,设f(x)=a(x+1)(x-3),又f(x)图象在y轴上的截距为-3,即函数图象过(0,-3)点.即-3a=-3,a=1.所以f(x)=x2-2x-3.【评析】二次函数是非常常见的一种函数模型,在高中数学中地位很重.二次函数的解析式有三种形式:一般式y=ax2+bx+c;顶点式y=a(x-h)2+k,其中(h,k)为顶点坐标;双根式y=a(x-x1)(x-x2),其中x1,x2为函数图象与x轴交点的横坐标,即二次函数所对应的一元二次方程的两个根.例9 某地区上年度电价为0.8元/kW·h,年用电量为a kW·h.本年度计划将电价降到0.55元/kW·h至0.75元/kW·h之间,而用户期望电价为0.40元/kW·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.30元/kW·h.(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;(2)设k=0.2a,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%?解:(1)依题意,当实际电价为x元/kW·h时,用电量将增加至故电力部门的收益为.(2)易知,上年度的收益为(0.8-0.3)a,依题意,且0.55≤x≤0.75,解得0.60≤x≤0.75.所以,当电价最低定为0.60元/kW·h时,仍可保证电力部门的收益比上年至少增长20%.练习2-1一、选择题1.已知函数的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N=( )(A){x|x>1} (B){x|x<1} (C){x|-1<x<1} (D)2.图中的图象所表示的函数的解析式为( )(A)(B)(C)(D)y=1-|x-1|(0≤x≤2)3.已知f(x-1)=x2+2x,则( )(A) (B) (C) (D)4.已知若f(x)=3,则x的值是( )(A)0 (B)0或 (C) (D)二、填空题5.给定映射f:(x,y)→(x+2y,x-2y),在映射f下(0,1)的象是______;(3,1)的原象是______.6.函数的定义域是______.7.已知函数f(x),g(x)分别由下表给出x 1 2 3 x 1 2 3f(x) 1 3 1 g(x) 3 2 1则f[g(1)]的值为______;满足f[g(x)]>g[f(x)]的x的值是______.8.已知函数y=f(x)与函数y=g(x)=2x的图象关于点(0,1)对称,则f(x)的解析式为______.三、解答题9.已知f(x)=2x+x-1,求g(-1),g[f(1)]的值.10.在如图所示的直角坐标系中,一运动物体经过点A(0,9),其轨迹方程为y=ax2+c(a<0),D=(6,7)为x轴上的给定区间.为使物体落在区间D内,求a的取值范围.11.如图,直角边长为2cm的等腰Rt△ABC,以2cm/s的速度沿直线l向右运动,求该三角形与矩形CDEF重合部分面积y(cm2)与时间t的函数关系(设0≤t≤3),并求出y的最大值.§2-2 函数的性质【知识要点】函数的性质包括函数的定义域、值域及值的某些特征、单调性、奇偶性、周期性与对称性等等.本章着重研究后四个方面的性质.本节的重点在于理解与函数性质有关的概念,掌握有关判断、证明的基本方法以及简单的应用.数形结合是本节常用的思想方法.1.设函数y=f(x)的定义域为D,如果对于D内的任意一个x,都有-x∈D,且f(-x)=-f(x),则这个函数叫做奇函数.设函数y=g(x)的定义域为D,如果对于D内任意一个x,都有-x∈D,且g(-x)=g(x),则这个函数叫做偶函数.由奇函数定义可知,对于奇函数y=f(x),点P(x,f(x))与点(-x,-f(x))都在其图象上.又点P与点关于原点对称,我们可以得到:奇函数的图象是以坐标原点为对称中心的中心对称图形;通过同样的分析可以得到,偶函数的图象是以y轴为对称轴的轴对称图形.2.一般地,设函数y=f(x)的定义域为A,区间MA.如果取区间M中的任意两个值x1,x2,改变量x=x2-x1>0,则当y=f(x2)-f(x1)>0时,就称函数y=f(x)在区间M上是增函数;当y=f(x2)-f(x1)<0时,就称函数y=f(x)在区间M上是减函数.如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M上具有单调性,区间M称为单调区间.在单调区间上,增函数的图象是上升的,减函数的图象是下降的.3.一般的,对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域中的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.4.一般的,对于函数f(x),如果存在一个不为零的常数a,使得当x取定义域中的每一个值时,f(a+x)=f(a-x)都成立,则函数y=f(x)的图象关于直线x=a对称.【复习要求】1.理解函数的单调性、最大值、最小值及其几何意义;会用定义证明函数的单调性,会利用函数的单调性处理有关的不等式问题;2.了解函数奇偶性的含义.能判断简单函数的奇偶性.3.了解函数周期性的含义.4.了解函数单调性、奇偶性和周期性之间的联系,并能解决相关的简单问题.【例题分析】例1 判断下列函数的奇偶性.(1) (2)(3)f(x)=x3-3x; (4)(5)解:(1)解,得到函数的定义域为{x|x>1或x≤0},定义域区间关于原点不对称,所以此函数为非奇非偶函数.(2)函数的定义域为{x|x≠0},但是,由于f(1)=2,f(-1)=0,即f(1)≠f(-1),且f(1)≠-f(-1),所以此函数为非奇非偶函数.(3)函数的定义域为R,又f(-x)=(-x)3-3(-x)=-x3+3x=-f(x),所以此函数为奇函数.(4)解,得-1<x<1,又所以此函数为奇函数.(5)函数的定义域为R,又,所以此函数为奇函数.【评析】由函数奇偶性的定义,可以得到下面几个结论:①一个函数是奇(或偶)函数的必要不充分条件是定义域关于原点对称;②f(x)是奇函数,并且f(x)在x=0时有定义,则必有f(0)=0;③既是奇函数又是偶函数的函数,其解析式一定为f(x)=0.判定函数奇偶性按照其定义可以分为两个步骤:①判断函数的定义域是否关于原点对称;②考察f(-x)与f(x)的关系.由此,若以奇偶性为标准可以把函数分为奇函数,偶函数,既奇又偶函数和非奇非偶函数四类.例2 设函数f(x)在R上有定义,给出下列函数:①y=-|f(x)|;②y=xf(x2);③y=-f(-x);④y=f(x)-f(-x).其中必为奇函数的有______.(填写所有正确答案的序号)【分析】①令F(x)=-|f(x)|,则F(-x)=-|f(-x)|,由于f(x)与f(-x)关系不明确,所以此函数的奇偶性无法确定.②令F(x)=xf(x2),则F(-x)=-xf[(-x)2]=-xf(x2)=-F(x),所以F(x)为奇函数.③令F(x)=-f(-x),则F(-x)=-f[-(-x)]=-f(x),由于f(x)与f(-x)关系不明确,所以此函数的奇偶性无法确定.④令F(x)=f(x)-f(-x),则F(-x)=f(-x)-f[-(-x)]=f(-x)-f(x)=-F(x),所以F(x)为奇函数.所以,②④为奇函数.例3 设函数f(x)在R上有定义,f(x)的值不恒为零,对于任意的x,y∈R,恒有f(x+y)=f(x)+f(y),则函数f(x)的奇偶性为______.解:令x=y=0,则f(0)=f(0)+f(0),所以f(0)=0,再令y=-x,则f(0)=f(x)+f(-x),所以f(-x)=-f(x),又f(x)的值不恒为零,故f(x)是奇函数而非偶函数.【评析】关于函数方程“f(x+y)=f(x)+f(y)”的使用一般有以下两个思路:令x,y为某些特殊的值,如本题解法中,令x=y=0得到了f(0)=0.当然,如果令x=y=1则可以得到f(2)=2f(1),等等.令x,y具有某种特殊的关系,如本题解法中,令y=-x.得到f(2x)=2f(x),在某些情况下也可令y=,y=x,等等.总之,函数方程的使用比较灵活,要根据具体情况作适当处理.在不是很熟悉的时候,要有试一试的勇气.例4 已知二次函数f(x)=x2+bx+c满足f(1+x)=f(1-x),求b的值,并比较f(-1)与f(4)的大小.解:因为f(1+x)=f(1-x),所以x=1为二次函数图象的对称轴,所以,b=-2.根据对称性,f(-1)=f(3),又函数在[1,+∞)上单调递增,所以f(3)<f(4),即f(-1)<f(4).例5已知f(x)为奇函数,当x≥0时,f(x)=x2-2x,(1)求f(-1)的值;(2)当x<0时,求f(x)的解析式.解:(1)因为f(x)为奇函数,所以f(-1)=-f(1)=-(12-2×1)=1.(2)方法一:当x<0时,-x>0.所以,f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x.方法二:设(x,y)是f(x)在x<0时图象上一点,则(-x,-y)一定在f(x)在x>0时的图象上.所以,-y=(-x)2-2(-x),所以y=-x2-2x.例6 用函数单调性定义证明,函数y=ax2+bx+c(a>0)在区间上为增函数.证明:设,且x1<x2f(x2)-f(x1)=(ax22+bx2+c)-(ax12+bx1+c)=a(x22-x12)+b(x2-x1)=a(x2+x1)(x2-x1)+b(x2-x1)=(x2-x1)[a(x1+x2)+b]因为x1<x2,所以x2-x1>0,又因为,所以,所以f(x2)-f(x1)>0,函数y=ax2+bx+c(a>0)在区间上为增函数.例7 已知函数f(x)是定义域为R的单调增函数.(1)比较f(a2+2)与f(2a)的大小;(2)若f(a2)>f(a+6),求实数a的取值范围.解:(1)因为a2+2-2a=(a-1)2+1>0,所以a2+2>2a,由已知,f(x)是单调增函数,所以f(a2+2)>f(2a).(2)因为f(x)是单调增函数,且f(a2)>f(a+6),所以a2>a+6,解得a>3或a<-2.【评析】回顾单调增函数的定义,在x1,x2为区间任意两个值的前提下,有三个重要的问题:x=x2-x1的符号;y=f(x2)-f(x1)的符号;函数y=f(x)在区间上是增还是减.由定义可知:对于任取的x1,x2,若x2>x1,且f(x2)>f(x1),则函数y=f(x)在区间上是增函数;不仅如此,若x2>x1,且函数y=f(x)在区间上是增函数,则f(x2)>f(x1);若f(x2)>f(x1),且函数y=f(x)在区间上是增函数,则x2>x1;于是,我们可以清晰地看到,函数的单调性与不等式有着天然的联系.请结合例5例6体会这一点.函数的单调性是极为重要的函数性质,其与其他问题的联系、自身的应用都很广泛,在复习中要予以充分注意.例8 设f(x)是定义域为(-∞,0)∪(0,+∞)的奇函数,且它在区间(-∞,0)上是减函数.(1)试比较f(-2)与-f(3)的大小;(2)若mn<0,且m+n<0,求证:f(m)+f(n)>0.解:(1)因为f(x)是奇函数,所以-f(3)=f(-3),又f(x)在区间(-∞,0)上是减函数,所以f(-3)>f(-2),即-f(3)>f(-2).(2)因为mn<0,所以m,n异号,不妨设m>0,n<0,因为m+n<0,所以n<-m,因为n,-m∈(-∞,0),n<-m,f(x)在区间(-∞,0)上是减函数,所以f(n)>f(-m),因为f(x)是奇函数,所以f(-m)=-f(m),所以f(n)>-f(m),即f(m)+f(n)>0.例9函数f(x)是周期为2的周期函数,且f(x)=x2,x∈[-1,1].(1)求f(7.5)的值;(2)求f(x)在区间[2n-1,2n+1]上的解析式.解:(1)因为函数f(x)是周期为2的周期函数,所以f(x+2k)=f(x),k∈Z.所以f(7.5)=f(-0.5+8)=f(-0.5)=.(2)设x∈[2n-1,2n+1],则x-2n∈[-1,1].所以f(x)=f(x-2n)=(x-2n)2,x∈[2n-1,2n+1].练习2-2一、选择题1.下列函数中,在(1,+∞)上为增函数的是( )(A)y=x2-4x (B)y=|x| (C) (D)y=x2+2x2.下列判断正确的是( )(A)定义在R上的函数f(x),若f(-1)=f(1),且f(-2)=f(2),则f(x)是偶函数(B)定义在R上的函数f(x)满足f(2)>f(1),则f(x)在R上不是减函数(C)定义在R上的函数f(x)在区间(-∞,0]上是减函数,在区间(0,+∞)上也是减函数,则f(x)在R上是减函数(D)不存在既是奇函数又是偶函数的函数3.已知函数f(x)是R上的奇函数,并且是周期为3的周期函数,又知f(1)=2.则f(2)=( )(A)-2 (B)2 (C)1 (D)-14.设f(x)是R上的任意函数,则下列叙述正确的是( )(A)f(x)f(-x)是奇函数 (B)f(x)|f(-x)|是奇函数(C)f(x)-f(-x)是偶函数 (D)f(x)+f(-x)是偶函数二、填空题5.若函数f(x)=4x2-mx+5在区间[-2,+∞)是增函数,则m的取值范围是______;f(1)的取值范围是______.6.已知函数f(x)是定义在(-∞,+∞)上的偶函数.当x∈(-∞,0)时,f(x)=x-x4,则当x∈(0,+∞)时,f(x)=______.7.设函数为奇函数,则实数a=______.8.已知函数f(x)=x2-cos x,对于上的任意x1,x2,有如下条件:①x1>x2;②③|x1|>x2.其中能使f(x1)>f(x2)恒成立的条件序号是______三、解答题9.已知函数f(x)是单调减函数.(1)若a>0,比较与f(3)的大小;(2)若f(|a-1|)>f(3),求实数a的取值范围.10.已知函数(1)判断函数f(x)的奇偶性;(2)当a=1时,证明函数f(x)在区间[2,+∞)上是增函数.11.定义在(0,+∞)上的函数f(x)满足①f(2)=1;②f(xy)=f(x)+f(y),其中x,y 为任意正实数,③任意正实数x,y满足x≠y时,(x-y)[f(x)-f(y)]>0恒成立.(1)求f(1),f(4)的值;(2)试判断函数f(x)的单调性;(3)如果f(x)+f(x-3)≤2,试求x的取值范围.§2-3 基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质.【知识要点】1.一次函数:y=kx+b(k≠0)(1)定义域为R,值域为R;(2)图象如图所示,为一条直线;(3)k>0时,函数为增函数,k<0时,函数为减函数;(4)当且仅当b=0时一次函数是奇函数.一次函数不可能是偶函数.(5)函数y=kx+b的零点为2.二次函数:y=ax2+bx+c(a≠0)通过配方,函数的解析式可以变形为(1)定义域为R:当a>0时,值域为;当a<0时,值域为;(2)图象为抛物线,抛物线的对称轴为,顶点坐标为.当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.(3)当a>0时,是减区间,是增区间;当a<0时,是增区间,是减区间.(4)当且仅当b=0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式=b2-4ac>0时,函数有两个变号零点;当判别式=b2-4ac=0时,函数有一个不变号零点;当判别式=b2-4ac<0时,函数没有零点.3.指数函数y=a x(a>0且a≠1)(1)定义域为R;值域为(0,+∞).(2)a>1时,指数函数为增函数;0<a<1时,指数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y=log a x(a>0且a≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x,使得x n=a (a∈R,n>1,n∈N+),则x叫做a的n次方根.负数没有偶次方根.;(2)分数指数幂,;n,m∈N*,且为既约分数).,且为既约分数).(3)幂的运算性质a m a n=a m+n,(a m)n=a mn,(ab)n=a nb n,a0=1(a≠0).(4)一般地,对于指数式a b=N,我们把“b叫做以a为底N的对数”记为log a N,即b=log a N(a>0,且a≠1).(5)对数恒等式:=N.(6)对数的性质:零和负数没有对数(对数的真数必须大于零!);底的对数是1,1的对数是0.(7)对数的运算法则及换底公式:;;.(其中a>0且a≠1,b>0且b≠1,M>0,N>0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y=x,y=x2,y=x3,这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.【例题分析】例1化简下列各式:(1); (2);(3); (4)log2[log3(log464)];(5).解:(1)(2)(3)(4)log2[log3(log464)]=log2[log3(log443)]=log2[log33]=log21=0.(5)【评析】指数、对数运算是两种重要的运算,在运算过程中公式、法则的准确、灵活使用是关键.例2已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值为8,试确定f(x)的解析式.解:解法一设f(x)=ax2+bx+c(a≠0),依题意解之得所以所求二次函数为f(x)=-4x2+4x+7.解法二f(x)=a(x-h)2+k(a≠0),为f(2)=-1,f(-1)=-1,所以抛物线的对称轴为,又f(x)的最大值为8,所以.因为(-1,-1)点在抛物线上,所以,解得a=-4.所以所求二次函数为.例3 (1)如果二次函数f(x)=x2+(a+2)x+5在区间(2,+∞)上是增函数,则a的取值范围是______.(2)二次函数y=ax2-4x+a-3的最大值恒为负,则a的取值范围是______.(3)函数f(x)=x2+bx+c对于任意t∈R均有f(2+t)=f(2-t),则f(1),f(2),f(4)的大小关系是_______.解:(1)由于此抛物线开口向上,且在(2,+∞)上是增函数,画简图可知此抛物线对称轴或与直线x=2重合,或位于直线x=2的左侧,于是有,解之得.(2)分析二次函数图象可知,二次函数最大值恒为负的充要条件是“二次项系数a<0,且判别式<0”,即,解得a∈(-∞,-1).(3)因为对于任意t∈R均有f(2+t)=f(2-t),所以抛物线对称轴为x=2,又抛物线开口向上,做出函数图象简图可得f(2)<f(1)<f(4).例4已知函数f(x)=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,求实数m的范围.解:当m=0时,f(x)=-3x+1,其图象与x轴的交点为,符合题意;当m<0时,注意到f(0)=1,又抛物线开口向下,所以抛物线与x轴的两个交点必在原点两侧.所以m<0符合题意;当m>0时,注意到f(0)=1,又抛物线开口向上,所以抛物线与x轴的两个交点必在原点同侧(如果存在),所以若满足题意,则解得0<m≤1.综上,m∈(-∞,1].【评析】在高中阶段,凡“二次”皆重点,二次函数,一元二次方程,一元二次不等式,二次曲线都应着重去理解、掌握.例2、3、4 三个题目充分体现了数形结合思想及运动变化思想的运用.这两种数学思想在函数问题的解决中被普遍使用.例5 (1)当a≠0时,函数y=ax+b与y=b ax的图象只可能是( )(2)函数y=log a x,y=log b x,y=log c x,y=log d x的图象分别是图中的①、②、③、④,则a,b,c,d的大小关系是______.【分析】(1)在选项(A)中,由y=ax+b图象可知a<0,b>1,所以b a<b0=1(根据以为底的指数函数的性质),所以y=b ax=(b a)x应为减函数.在选项(B)中,由y=ax+b图象可知a>0,b>1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.在选项(C)中,由y=ax+b图象可知a>0,0<b<1,所以b a<b0=1,所以y=b ax=(b a)x应为减函数.与图形提供的信息相符.在选项(D)中,由y=ax+b图象可知a<0,0<b<1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.综上,选C.(2)如图,作直线y=1与函数y=log a x,y=log b x,y=log c x,y=log d x的图象依次交于A,B,C,D四点,则A,B,C,D四点的横坐标分别为a,b,c,d,显然,c<d<a<b.【评析】在本题的解决过程中,对函数图象的深入分析起到了至关重要的作用.这里,对基本初等函数图象的熟悉是前提,对图象的形态的进一步研究与关注是解决深层问题要重点学习的,例4中“注意到f(0)=1”,例5中“作直线y=1”就是具体的表现,没有“熟悉”和“深入的研究”是不可能“注意到”的,也作不出“直线y=1”.例6已知幂函数.(1)若f(x)为偶函数,且在(0,+∞)上是增函数,求f(x)的解析式;(2)若f(x)在(0,+∞)上是减函数,求k的取值范围.解:(1)因为f(x)在(0,+∞)上是增函数,所以,解得-1<k<3,因为k∈Z,所以k=0,1,2,又因为f(x)为偶函数,所以k=1,f(x)=x2.(2)因为f(x)在(0,+∞)上是减函数,所以,解得k<-1,或k>3(k∈Z).例7比较下列各小题中各数的大小(1);(2)lg2与lg(x2-x+3);(3)0.50.2与0.20.5;(4);(5);(6)a m+a-m与a n+a-n(a>0,a≠1,m>n>0)【分析】(1)函数y=log2x在区间(0,+∞)上是增函数,所以log20.6<log21=0,函数y=log0.6x在区间(0,+∞)上是减函数,所以所以.(2)由于,所以lg2<lg(x2-x+3).(3)利用幂函数和指数函数单调性.0.50.2>0.20.2>0.20.5.(4)因为.根据不等式的性质有(5)因为比较与log32,只需比较与log32,因为y=log3x是增函数,所以只需比较与2的大小,因为,所以,所以,综上,(6),当a>1时,因为m>n>0,a m>a n,a m+n>1,所以a m+a-m>a n+a-n;当0<a<1时,因为m>n>0,a m<a n,a m+n<1,所以a m+a-m>a n+a-n.综上,a m+a-m>a n+a-n.例8已知a>2,b>2,比较a+b,ab的大小.【分析】方法一(作商比较法),又a>2,b>2,所以,所以,所以a+b<ab.方法二(作差比较法),因为a>2,b>2,所以2-a<0,2-b<0,所以a+b-ab<0,即a+b<ab.方法三(构造函数)令y=f(a)=a+b-ab=(1-b)a+b,将y看作是关于a的一次函数,因为1-b<0,所以此函数为减函数,又a∈(2,+∞),y最大<f(2)=(1-b)×2+b=2-b<0,所以a+b-ab<0,即a+b<ab.【评析】两个数比较大小的基本思路:如果直接比较,可以考虑用比较法(包括“作差比较法”与“作商比较法”,如例8的方法一与方法二),或者利用函数的单调性来比较(如例7(1)(2)(3),例8的方法三).如果用间接的方法可以尝试对要比较的两数进行适当的变形,转化成对另两个数的比较,也可以考虑借助中间量来比较(如例7(4)(5)(6)).例9若log2(x-1)<2,则x的取值范围是______.解:log2(x-1)<2,即log2(x-1)<log24,根据函数y=log2x的单调性,可得x-1<4,所以x<5,结合x-1>0,所以x的取值范围是1<x<5.例10 已知A,B为函数y=log8x的图象上两点,分别过A,B作y轴的平行线与函数y=log2x的图象交于C,D两点.(1)如果A,B两点的连线经过原点O,请问C,D,O三点也共线么?证明你的结论.(2)当A,B,O三点共线并且BC与x轴平行时,求A点的坐标.略解:(1)设A(x1,log8x1),B(x2,log8x2),由于A,B,O在同一条直线上,所以又设C(x1,log2x1),D(x2,log2x2),于是有同样可得结合①式,有k OC=k OD,即C,D,O三点共线.(2)当BC∥x轴时,即。

19-2-3 一次函数与方程、不等式同步训练 人教版数学八年级下册

19-2-3  一次函数与方程、不等式同步训练 人教版数学八年级下册

19.2.3一次函数与方程、不等式同步训练一、单选题1.若直线y=﹣2x﹣4与直线y=4x+b的交点在第二象限,则b的取值范围是()A.﹣4<b<8B.﹣4<b<0C.b>8D.﹣2≤b≤82.一次函数的图象交x轴于(2,0),交y轴于(0,3),当函数值大于0时,x的取值范围是()A.x>2B.x<2C.x>3D.x<33.如图,在平面直角坐标系中,一次函数y=ax+b经过A,B两点,若点B的坐标为(3,0),则不等式ax+b>0的解是()A.x>0B.x>3C.x<0D.x<34.如图,在平面直角坐标系中,直线y=x−2与y=kx+b(k<0)相交于点M,点M的纵坐标为1,则关于x的不等式x−2≤kx+b的解集是()A.x≤1B.x<3C.x≤3D.x<15.用图象法解某二元一次方程组时,在同一平面直角坐标系中作出相应的两个一次函数图象,如图,则所解的二元一次方程组为().A .{y =−x +2y =2x −1B .{y =2x −1y =32x −12C .{y =2x −1y =−32x +52D .{y =−x +2y =32x −126.如图,直线y =kx +b 经过点A(−1,m)和点B(−2,0),直线y =2x 过点A ,则不等式2x <kx +b <0的解集为( )A .x <−2B .−2<x <−1C .−2<x <0D .−1<x <07.如图,直线y =k 1x +b 1与x 轴交于点(-4,0),直线y =k 2x +b 2与x 轴交于点(3,0),则不等式组{k 1x +b 1>0k 2x +b 2>0的解集是( )A .x >−4B .x <3C .-4<x <3D .x <−4或x >38.已知一次函数y =kx +b 的图象如图所示,当x <1时,y 的取值范围是( )A.-2<y<0B.-4<y<0C.y<-2D.y<-4二、填空题9.已知方程kx+b=0的解为x=3,那么直线y=kx+b与x轴的交点坐标为_____ 10.在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点,请写出x−1图像上和谐点的坐标:__________.函数y=3411.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为________.12.一次函数y=mx-n(m,n为常数)的图象如图所示,则不等式mx-n≥0的解集是______________.x+b的图像交于点P.下面有四个结13.如图,已知正比例函数y1=ax与一次函数y2=12论:①a<0;①b<0;①当x>0时,y1>0;①当x<−2时,y1>y2.其中正确的是______.(填序号)14.如图,已知一次函数y=mx+n的图像经过点P(−2,3),则关于x的不等式mx−m+n< 3的解集为_______.三、解答题15.如图,在平面直角坐标系中,直线y=−2x+10与x轴交于点B,与y轴交于点C,与直x交于点A,点M是y轴上的一个动点,设M(0,m).线y=12(1)若MA+MB的值最小,求m的值;(2)若直线AM将△ACO分割成两个等腰三角形,请求出m的值,并说明理由.16.如图,一次函数y=kx+b的图象经过点A(﹣2,6),与x轴交于点B,与正比例函数y=3x的图象交于点C,点C的横坐标为1.(1)求AB的函数表达式;S△BOC,求点D的坐标.(2)若点D在y轴负半轴,且满足S△COD=1317.如图,直线l1的函数解析式为y=−2x+4,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.(1)求直线l2的函数解析式;(2)求△ADC的面积;(3)在直线l2上是否存在点P,使得△ADP面积是△ADC面积的2倍?如果存在,请求出P坐标;如果不存在,请说明理由.18.已知直线y=kx+b经过点B(1,4),且与直线y=﹣x﹣11平行.(1)求直线AB的解析式并求出点C的坐标;(2)根据图象,写出关于x的不等式0<2x﹣4<kx+b的解集;(3)现有一点P在直线AB上,过点P作PQ①y轴交直线y=2x﹣4于点Q,若线段PQ的长为3,求P点坐标.。

八年级数学下册专题训练十二函数图象信息题作业新版新人教版

八年级数学下册专题训练十二函数图象信息题作业新版新人教版

∵点(9,300),(12,0)在该函数图象上,
9k+b=300,
k=-100,
∴ 12k+b=0, 解得 b=1 200,
即乙车返回过程中,乙车离 A 市的距离 y1(km)与乙车所用时间 x(h)的函数解析式
是 y1=-100x+1 200
(3)设乙车出发 m h,两车之间的距离是 120 km, 当 0<m<5 时,100m-60m=120,解得 m=3; 当 5.5<m<8 时,100(m-5.5)+120+300=500,解得 m=6.3; 当 9<m<12 时,乙车返回的速度为:300÷(12-9)=100(km/h), 100(m-8)+100(m-9)=120,解得 m=9.1;
9.(鄂州中考)在“看图说故事”活动中,某学习小组设计了一个问题情境:小明 从家跑步去体育场,在那里锻炼了一阵后又走到文具店买圆规,然后散步走回 家.小明离家的距离y(km)与他所用的时间x(min)的关系如图所示:
(1)小明家离体育场的距离为________km,小明跑步的平均速度为________km/min; (2)当15≤x≤45时,请直接写出y关于x的函数表达式; (3)当小明离家2 km时,求他离开家所用的时间.
5.如图,在矩形ABED中,AB=4,BE=EC=2,动点P从点E出发沿路径 ED→DA→AB以每秒1个单位长度的速度向终点B运动,则下列能反映△BCP的面积 S与点P的运动时间t(s)的函数关系的图象是( D )
类型四 从函数图象中获取信息 6.小苏和小林在一条300米的直道上进行慢跑,先到终点的同学会在跑道的尽头等 待.在整个过程中,小苏和小林之间的距离y(单位:米)与跑步时间t(单位:秒)的对 应关系如图所示,下列说法: ①小苏和小林在第19秒时相遇; ②小苏和小林之间的最大距离为30米; ③先到终点的同学用时58秒跑完了全程; ④先到终点的同学用时50秒跑完了全程. 其中正确的个数是( C ) A.1个 B.2个 C.3个 D.4个

精品试卷沪教版(上海)八年级数学第二学期第二十章一次函数专题训练练习题(无超纲)

精品试卷沪教版(上海)八年级数学第二学期第二十章一次函数专题训练练习题(无超纲)

八年级数学第二学期第二十章一次函数专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),且y的值随着x的值的增大而减小,则m的值为()-A.6-B.C.3 D.32、如图,l1反映了某公司产品的销售收入与销售量的关系;l2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量()A.小于12件B.等于12件C.大于12件D.不低于12件3、如图,过点A(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是()A .y =2x +3B .y =x ﹣3C .y =x +3D .y =3﹣x4、如图,直线y =x +2与反比例函k y x=的图像在第一象限交于点P .若OP =k 的值为( )A .6B .8C .10D .125、如图,直线l 是一次函数y kx b =+的图象,下列说法中,错误的是( )A .0k <,0b >B .若点(-1,1y )和点(2,2y )是直线l 上的点,则12y y <C .若点(2,0)在直线l 上,则关于x 的方程0kx b +=的解为2x =D .将直线l 向下平移b 个单位长度后,所得直线的解析式为y kx =6、甲、乙两名运动员在笔直的公路上进行自行车训练,行驶路程S (千米)与行驶时间t (小时)之间的关系如图所示,下列四种说法:①甲的速度为40千米/时;②乙的速度始终为50千米/时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,t =0.5或t =2或t =4,其中正确的是( )A .①③B .①④C .①②③D .①③④7、直线y =2x -1不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限8、若点(2,)A m 在一次函数27y x =-的图象上,则点A 到x 轴的距离是( )A .2B .2-C .3D .3-9、甲、乙两名同学在一段2000m 长的笔直公路上进行自行车比赛,开始时甲在起点,乙在甲的前方200m 处,他们同时同向出发匀速前进,甲的速度是8m/s ,乙的速度是6m/s ,先到达终点者在终点处等待.设甲、乙两人之间的距离是y (m ),比赛时间是x (s ),整个过程中y 与x 之间的函数关系的图象大致是( )A .B .C .D .10、关于一次函数242y mx m =--的图像与性质,下列说法中正确的是( )A .y 随x 的增大而增大;B .当 m =3时,该图像与函数6y x =-的图像是两条平行线;C .不论m 取何值,图像都经过点(2,2) ;D .不论m 取何值,图像都经过第四象限.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一次函数y kx b =+(k 、b 是常数,0k ≠)的图像与x 轴交于点()2,0,与y 轴交于点()0,m .若1m ,则k 的取值范围为______.2、如图,平面直角坐标系中有三点A (2,3)、B (1,4)、C (0,1),在x 轴上找一点D ,使得四边形ABCD 的周长最小,则OD =__.3、如图,已知直线1l :y kx b =+与直线2l :y mx n =+相交于点1l :(4,3)P --,则关于x 的不等式mx n kx b +<+的解集为 _____.4、当k=_____时,函数y=(k﹣1)x+k2﹣1是一个正比例函数.5、点A(3,y1,),B(-2,y2)都在直线y=kx+b的图像上,且y随x的增大而减小.则y1与y2的大小关系是_______.三、解答题(5小题,每小题10分,共计50分)x于点A.1、如图1,在平面直角坐标系中,已知直线AC:y=2x-6,交直线AO:y=12(1)直接写出点A的坐标________;(2)若点E在直线AC上,当S△AOE=6时,求点E的坐标;(3)如图2,若点B在x轴正半轴上,当△BOC的面积等于△AOC的面积一半时,求∠ACO+∠BCO的大小.2、阅读下列一段文字,然后回答问题.已知在平面内两点()111,P x y 、()222,P x y ,其两点间的距离12PP =连线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为21x x -或21y y -.(1)已知A 、B 两点在平行于y 轴的直线上,点A 的纵坐标为4,点B 的纵坐标为1-,试求A 、B 两点之间的距离;(2)已知一个三角形各顶点坐标为(1,6)D 、(2,2)E -、(4,2)F ,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标以及PD PF +的最短长度.3、疫情期间,乐清市某医药公司计划购进N 95型和一次性成人口罩两种款式.若购进N 95型10箱和一次性成人口罩20箱,需要32500元;若购进N 95型30箱和一次性成人口罩40箱,需要87500元.(1)N 95型和一次性成人口罩每箱进价分别为多少元?(2)由于疫情严峻急需口罩,老板决定再次购进N 95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N 95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N 95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N 95型多少箱?(3)若销售一箱N 95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?4、如图,长方形ABCD 中,BC =8,CD =5,点E 为边AD 上一动点,连接CE ,随着点E 的运动,四边形ABCE 的面积也发生变化.(1)写出四边形ABCE 的面积y 与AE 的长x (0<x <8)之间的关系式;(2)当x =3时,求y 的值;(3)当四边形ABCE的面积为35时,求DE的长.5、成都市某在建地铁工程需要将一批水泥运送到施工现场,现有甲、乙两种货车可以租用.已知2辆甲种货车和3辆乙种货车一次可运送46吨水泥,1辆甲种货车和2辆乙种货车一次可运送28吨水泥.(1)求每辆甲种货车和每辆乙种货车一次分别能装运多少吨水泥?(2)已知甲种货车每辆租金为450元,乙种货车每辆租金为400元,现租用甲、乙共9辆货车.请求出租用货车的总费用W(元)与租用甲种货车的数量a(辆)之间的函数关系式.(3)在(2)的条件下,为了保障能拉完这批水泥,发现甲种货车不少于5辆,请你为该企业设计如何租车费用最少?并求出最少费用是多少元?-参考答案-一、单选题1、D【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-2<0,解之即可得出m<2,进而可得出m=-3.【详解】解:∵一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),∴m2-3=6,即m2=9,解得:m=-3或m=3.又∵y的值随着x的值的增大而减小,∴m-2<0,∴m<2,∴m =-3.故选:D .【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m 的方程及一元一次不等式是解题的关键.2、C【分析】根据图象找出1l 在2l 的上方即收入大于成本时,x 的取值范围即可.【详解】解:根据函数图象可知,当12x >时,12l l >,即产品的销售收入大于销售成本,该公司盈利. 故选:C .【点睛】本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x 的取值范围是本题的关键.3、D【分析】先求出点B 的坐标,然后运用待定系数法就可求出一次函数的表达式.【详解】解:由图可知:A (0,3),x B =1.∵点B 在直线y =2x 上,∴y B =2×1=2,∴点B 的坐标为(1,2),设直线AB 的解析式为y =kx +b ,则有:32b k b =⎧⎨+=⎩, 解得:13k b =-⎧⎨=⎩, ∴直线AB 的解析式为y =-x +3;故选:D .【点睛】本题主要考查了直线图象上点的坐标特征、用待定系数法求一次函数的解析式等知识,根据题意确定直线上两点的坐标是关键.4、B【分析】设,2,P x x 再利用20,OP建立方程,再解方程可得答案.【详解】解:由题意设,2,P x x 20,OP 222220,x x整理得:2280,x x420,x x124,2,x xP 在第一象限,则()2,4,P248,k xy故选B【点睛】本题考查的是一次函数与反比例函数的交点问题,勾股定理的应用,掌握“利用勾股定理求解点P 的坐标”是解本题的关键.5、B【分析】根据一次函数图象的性质和平移的规律逐项分析即可.【详解】解:A.由图象可知,0k <,0b >,故正确,不符合题意;B. ∵-1<2,y 随x 的增大而减小,∴12y y >,故错误,符合题意;C. ∵点(2,0)在直线l 上,∴y =0时,x =2,∴关于x 的方程0kx b +=的解为2x =,故正确,不符合题意;D. 将直线l 向下平移b 个单位长度后,所得直线的解析式为y kx =+b -b =kx ,故正确,不符合题意; 故选B .【点睛】本题考查了一次函数的图象与性质,以及一次函数的平移,熟练掌握性质和平移的规律是解答本题的关键.6、D【分析】分析图像上每一段表示的实际意义,再根据行程问题计算即可.【详解】①甲的速度为120403=,故正确; ②1t 时,已的速度为50501=,1t >后,乙的速度为120503531-=-,故错误; ③行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确;④由①②③得:甲的函数表达式为:40y t =,已的函数表达为:01t 时,50y t =,1t >时,3515y t =+,0.5=t 时,甲、乙两名运动员相距115040522=⨯-⨯=,2t =时,甲、乙两名运动员相距(35215)2405=⨯+-⨯=, 4t =时,甲、乙两名运动员相距为404(35415)5⨯-⨯+=,故正确.故选:D .【点睛】本题为一次函数应用题,此类问题主要通过图象计算速度,即分析每一段表示的实际意义进而求解.7、B【分析】根据一次函数的图象特点即可得.【详解】 解:一次函数21y x =-的一次项系数20>,常数项10-<,∴直线21y x =-经过第一、三、四象限,不经过第二象限,故选:B .【点睛】本题考查了一次函数的图象,熟练掌握一次函数的图象特点是解题关键.8、C【分析】点A 到x 轴的距离,就是点A 的纵坐标m 的绝对值|m |,所以,将点A (2,m )代入一次函数y =2x -7,求出m 的值即可.【详解】 解:点(2,)A m 在一次函数27y x =-的图象上,(2,)A m ∴满足一次函数的解析式27y x =-,2273m ∴=⨯-=-,∴点A 到x 轴的距离是|3|3-=,故选:C .【点睛】本题考查了一次函数图象上的点的坐标特征,在这条直线上的点的坐标一定适合这条直线的解析式.9、C【分析】先算出甲到达终点的时间,由此算出二者之间的最大距离,再算出乙到达终点的时间,由此找出点的坐标,结合点的坐标利用待定系数法求出函数解析式,根据函数解析式分析四个选项即可得出结论.【详解】解:当甲跑到终点时所用的时间为:2000÷8=250(秒),此时甲乙间的距离为:2000﹣200﹣6×250=300(米),乙到达终点时所用的时间为:(2000﹣200)÷6=300(秒),∴最高点坐标为(250,300).甲追上乙时,所用时间为200(86)100÷-=(秒)当0≤x ≤100时,设y 关于x 的函数解析式为y =k 1x +b 1,有1112001000b k b =⎧⎨+=⎩, 解得:112200k b =-⎧⎨=⎩, 此时y =﹣2x +200;当100<x ≤250时,设y 关于x 的函数解析式为y =k 2x +b 2,有22221000250300k b k b +=⎧⎨+=⎩, 解得:222200k b =⎧⎨=-⎩, 此时y =2x ﹣200;当250<x ≤300时,设y 关于x 的函数解析式为y =k 3x +b 3,有33332503003000k b k b +=⎧⎨+=⎩, 解得:3361800k b =-⎧⎨=⎩, 此时y =﹣6x +1800.∴整个过程中y 与x 之间的函数图象是C .故选:C .【点睛】此题考查了一次函数的应用,解题的关键是理解题意,找到题中的关键点,利用待定系数法求得每段函数解析式.10、D【分析】根据一次函数的增减性判断A ;根据两条直线平行时,k 值相同而b 值不相同判断B ;根据一次函数图象与系数的关系判断C 、D .【详解】A 、一次函数242y mx m =--中,∵2k m =,m 的符号未知,故不能判断函数的增减性,故本选项不正确;B 、当m =3时,一次函数242y mx m =--与6y x =-的图象不是两条平行线,故本选项不正确;C 、一次函数242y mx m =--2(2)2m x =--,过定点()2,2-,故本选项不正确;D 、一次函数242y mx m =--2(2)2m x =--,过定点()2,2-,则不论m 取何值,图像都经过第四象限,故本选项正确.故选D .【点睛】本题考查了两条直线的平行问题:若直线y 1=k 1x +b 1与直线y 2=k 2x +b 2平行,那么k 1=k 2,b 1≠b 2.也考查了一次函数的增减性以及一次函数图象与系数的关系.二、填空题1、12k <-【分析】将已知点()2,0、()0,m 代入y kx b =+后可得2m k =-,再根据m 的取值范围可得k 的取值范围.【详解】解:∵一次函数y kx b =+(k 、b 是常数,0k ≠)的图像与x 轴交于点()2,0,与y 轴交于点()0,m , ∴02m b k b=⎧⎨=+⎩,∴2m k =-,∵1m ,∴21k ->,即12k <-. 故答案为:12k <-.【点睛】本题考查待定系数法求一次函数解析式,解一元一次不等式,能代入点求得m 和k 的关系是解题关键.2、12【分析】找点C 关于x 轴的对称点C ',连接AC ',则AC '与x 轴的交点即为点D 的位置,先求出直线AC '的解析式,继而可得出点D 的坐标,进而可求出OD 的长度.【详解】解:作点C 关于x 轴的对称点C ',连接AC ',则AC '与x 轴的交点即为点D 的位置,∵点C '坐标为(0,﹣1),点A 坐标为(2,3),∴设直线AC '的表达式为y kx b =+,将A (2,3)、C '(0,﹣1),代入y kx b =+,得:321k b b =+⎧⎨-=⎩,解得:21k b =⎧⎨=-⎩, ∴直线C 'A 的解析式为:21y x =-,当0y =时,021x =-,解得:12x =, 故点D 的坐标为(12,0). ∴12OD =. 故答案为:12.【点睛】本题主要考查了最短线路问题,求一次函数表达式,一次函数与x 轴的交点,解题的关键是根据“两点之间,线段最短”,并且利用了正方形的轴对称性.3、4x >-【分析】观察函数图象可得当4x >-时,直线直线2l :y mx n =+在直线1l :y kx b =+的下方,于是得到不等式mx n kx b +<+的解集.【详解】解:根据图象可知,不等式mx n kx b +<+的解集为4x >-.故答案为:4x >-.【点睛】本题考查了一次函数的交点问题及不等式,解题的关键是掌握数形结合的解题方法.4、−1【分析】根据正比例函数的定义可得k −1≠0, k 2-1=0,解方程求得k 的值即可.【详解】解:∵函数y =(k ﹣1)x +k 2﹣1是一个正比例函数,∴k −1≠0, k 2-1=0,解得:k =−1故答案为:−1【点睛】本题主要考查的是一次函数和正比例函数的定义,掌握定义是解题的关键.5、12y y <【分析】根据y 随x 的增大而减小及32>-即可得出结论.【详解】∵点A (3,y 1,),B (-2,y 2)都在直线y=kx +b 的图像上,且y 随x 的增大而减小,32>- ∴12y y <.故答案为:12y y <.【点睛】本题考查的是一次函数图象上点的坐标特点,根据一次函数的增减性判断y 1与y 2的大小关系是解答此题的关键.三、解答题1、(1)A (4,2);(2)E (2,-2)或(6,6);(3)∠ABO +∠DBO =45°【分析】(1)联立方程组可求解;(2)设点E 的坐标为(a ,b ),分两种情况讨论:当点E 在A 点上方时;当点E 在A 点下方时求解即可;(3)由面积关系可求OB 的长,由全等三角形的性质和等腰直角三角形的性质可求解.【详解】解:(1)联立方程组可得:{y =12y y =2y −6, 解得:{y =4y =2, ∴点A (4,2),故答案为(4,2);(2)∵直线y =2x -6与y 轴交于点M ,令2x -6=0,解得:x =3,∴点M (3,0),设点E 的坐标为(a ,b ),当点E 在A 点上方时,则y △yyy =y △yyy −y △yyy =12×3y −12×3×2=6,解得:b =6,把b =6代入y =2x -6得:x =6,∴E 的坐标为(6,6),当点E在A点下方时,则y△yyy=y△yyy+y△yyy=12×3|y|+12×3×2=6,解得:b=-2或2(舍去),把b=-2代入y=2x-6得:x=2, ∴E的坐标为(2,-2),综上:E(2,-2)或(6,6)(3)由(2)得:C(0,-6),∵△BOC 的面积等于△AOC 面积的一半,∴12×OC ×OB =12×12×OC ×4,∴BO =2,如图,作点B 关于y 轴的对称点B ',连接B 'C ,AB ',过点A 作AH ⊥x 轴于H 点,∴OB =OB '=2,BB '⊥CO ,∴BC =B 'C ,又∵BB '⊥CO ,∴∠BCO =∠B 'CO ,∵AH =B 'O =2,B 'H =6=CO ,∠AHB '=∠B 'OC =90°,∴△AHB '≌△B 'OC (SAS ),∴∠AB 'H =∠B 'CO ,AB '=B 'C ,∴∠AB 'H +∠CB 'O =∠B 'CO +∠CB 'O =90°,∴∠B 'CA =∠ACO +∠B'CO =45°,综上所述:当点B 在x 轴正半轴上时,∠ACO +∠BCO =45°.【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,勾股定理等知识,灵活运用这些性质解决问题是本题的关键.,0),√732、(1)5;(2)能,理由见解析;(3)(134【分析】(1)根据文字提供的计算公式计算即可;(2)根据文字中提供的两点间的距离公式分别求出DE、DF、EF的长度,再根据三边的长度即可作出判断;(3)画好图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最短,然后有待定系数法求出直线DG的解析式即可求得点P的坐标,由两点间距离也可求得最小值.【详解】(1)∵A、B两点在平行于y轴的直线上∴AB=|4−(−1)|=5即A、B两点间的距离为5(2)能判定△DEF的形状由两点间距离公式得:yy=√(−2−1)2+(2−6)2=5,DF=,yy=|4−(−2)|=65∵DE=DF∴△DEF是等腰三角形(3)如图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最小-,且PG=PF由对称性知:点G的坐标为(4,2)∴PD+PF=PD+PG≥DG即PD+PF的最小值为线段DG的长设直线DG的解析式为y=yy+y(y≠0),把D、G的坐标分别代入得:{y+y=64y+y=−2解得:{y=−83 y=263即直线DG的解析式为82633 y x=-+上式中令y=0,即−83y+263=0,解得y=134即点P的坐标为(134,0)由两点间距离得:DG=yy=√(4−1)2+(−2−6)2=√9+64=√73所以PD+PF的最小值为√73【点睛】本题是材料阅读题,考查了等腰三角形的判定,待定系数法求一次函数的解析式,两点间线段最短,关键是读懂文字中提供的两点间距离公式,把两条线段的和的最小值问题转化为两点间线段最短问题.3、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元.【分析】(1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,联立求解即可;(2)设购进N95型a箱,依题意得:2250×(1+10%)a+500×80%×(80-a)≤115000,求出a的范围,结合a为正整数可得a的最大值;(3)设购进的口罩获得最大的利润为w,依题意得:w=500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答.【详解】(1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得:{10y+20y=32500 30y+40y=87500,解得:{y=2250y=500,答:N95型和一次性成人口罩每箱进价分别为2250元、500元.(2)解:设购进N95型a箱,则一次性成人口罩为(80﹣a)套,依题意得:2250(1+10%)y+500×80%(80﹣y)≤115000.解得:a≤40.∵a取正整数,0<a≤40.∴a的最大值为40.答:最多可购进N95型40箱.(3)解:设购进的口罩获得最大的利润为w,则依题意得:w=500a+100(80﹣a)=400a+8000,又∵0<a≤40,∴w随a的增大而增大,∴当a=40时,W=400×40+8000=24000元.即采购N95型40个,一次性成人口罩40个可获得最利润为24000元.答:最大利润为24000元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式.4、(1)y=52y+20(0<x<8);(2)当x=3时,求y的值为552;(3)DE的长为2.【分析】(1)根据梯形面积公式直接代入即可得函数关系式;(2)将y=3代入函数解析式求解即可得;(3)将y=35代入函数解析式求解,然后利用图形可得yy=yy−yy,将线段长代入求解即可.【详解】解:(1)四边形ABCE为直角梯形,y=12(y+8)×5=52y+20(0<y<8),∴四边形ABCE面积y与x之间的函数关系式为:y=52y+20(0<y<8);(2)当y=3时,y=52×3+20=27.5,∴y的值为27.5;(3)当y=35时,35=52y+20,解得:y=6,∴yy=yy−yy=8−6=2,∴DE的长为2.【点睛】题目主要考查一次函数的应用,理解题意,根据梯形面积列出一次函数解析式是解题关键.5、(1)甲种货车一次原装8吨水泥,乙种货车一次能装10吨水泥(2)y=50y+3600(3)租用甲货5辆,租用乙货车4辆时,费用最少,为3850元【分析】(1)设甲种货车一次原装y吨水泥,乙种货车一次能装y吨水泥,依题意列出二元一次方程组,故可求解;(2)根据甲种货车有y辆,则乙种货年有(9)a-辆,即可列出函数关系;(3)先根据题意求出a的取值,再根据一次函数的性质即可求解.(1)解:设甲种货车一次原装y吨水泥,乙种货车一次能装y吨水泥,由题意得,{2y+3y=46 y+2y=28,解得810xy=⎧⎨=⎩,∴设甲种货车一次原装8吨水泥,乙种货车一次能装10吨水泥.(2)解:∵甲种货车有y辆,∴乙种货年有(9)a-辆.∴y=450y+400(9−y)=50y+3600(3)解:∵{y≥59−y≥0,∴5≤y≤9,∵y=50y+3600,50>0,∴y随y的增大而增大,∴当y=5时,有y yyy=3850(元)∴租用甲货5辆,租用乙货车4辆时,费用最少,为3850元.【点睛】此题主要考查方程组与函数的实际应用,解题的关键是根据题意找到数量关系列出方程与函数求解.。

八年级下册数学第17章 函数及其图象测试题(二)

八年级下册数学第17章 函数及其图象测试题(二)

第17章函数及其图象测试题(二)(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 若y=mx+m-1是正比例函数,则m的值为()A.0 B.1 C.1-D.2 2. 关于正比例函数y=-3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=13时,y=13.对于双曲线2kyx-=,当x>0时,y随x的增大而增大,则k的取值范围为()A.k<2 B.k≤2 C.k>2 D.k≥24. 正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A B C D5. 把函数y=x的图象向上平移3个单位,则下列各坐标所表示的点中,在平移后的直线上的是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)6. 已知函数y=ax-3和y=kx的图象交于点P(2,-1),则关于x,y的二元一次方程组3y axy kx=-⎧⎨=⎩,的解是()A.21xy=-⎧⎨=-⎩,B.21xy=⎧⎨=-⎩,C.21xy=⎧⎨=⎩,D.21xy=-⎧⎨=⎩,7. 若点(-1,m)和(2,n)在直线y=-x+b上,则m,n,b的大小关系是()A.m>n>b B.m<n<b C.m>b>n D.b<m<n8. 设min(x,y)表示x,y中的最小值.例如min{0,2}=0,min{12,8}=8,则关于x的函数y=min{3x,-x+4}可以表示为()A.y=()(3141)y x xx x=⎧-+≥⎪⎨⎪⎩,<B.y=()413()1x xx x-+≥⎧⎪⎨⎪⎩<,C.y=3x D.y=-x+49. 如图1,在平面直角坐标系中,点A(m,6),B(3,n)均在反比例函数(0)ky kx=>的图象上,若三角形AOB的面积为8,则k的值为()A.3 B.6 C.9 D.12图1 图210. 如图2,直线142yx=+与x轴,y轴分别交于点A和点B,点C(-4,2),点D为线段OB的中点,点P为OA上一动点,当PC+PD的值最小时,点P的坐标为()A.(-1,0)B.(-2,0)C.(-3,0)D.(-4,0)二、填空题(本大题共6小题,每小题3分,共18分)11. 若点P的坐标是(2a+1,a-4),且P点到两坐标轴的距离相等,则P点的坐标是.12. 若点A(a,2a+3)在第二、四象限两坐标轴夹角的平分线上,则a= .13. 如图3,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n的解集是.图3 图414. 某商场对一款运动鞋五天中的售价与销量关系的调查显示,售价是销量的反比例函数(统计数据见下表).已知该运动鞋的进价为180元/双,要使该款运动鞋每天的销售利润达到2400元,则其售价应定为元/双.15. 已知关于x的一次函数y=(m-3)x+m+2的图象经过第一、二、四象限,则关于x的一次函数y=(m+2)x-m+3必经过第象限.16. 如图4,三角形OAB的顶点A在双曲线6(0)y xx=>上,顶点B在双曲线4(0)y xx=-<上,AB中点P恰好落在y轴上,则三角形OAB的面积为.三、解答题(本大题共7小题,共52分)17.(6分)已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.18.(6分)已知一次函数y=(3-m)x+2m-9的图象与y轴的负半轴相交,y随x的增大而减小,且m为整数.(1)求m的值.(2)当-1≤x≤2时,求y的取值范围.19.(6分)已知y=y1+y2,y1与(x-1)成反比例,y2与x成正比例,且当x=2时,y1=4,y=2.求y关于x的函数表达式.20.(8分)如图5所示,在平面直角坐标系中,直线AC与x轴交于点A,与y轴交于点B(0,52),且与反比例函数10(0)y xx=>的图象交于点C,CD⊥y轴于点D,CD=2.(1)求直线AC的表达式;(2)根据函数图象,直接写出当反比例函数10(0)y xx=>的函数值y≥5时,自变量x的取值范围;(3)设点P是x轴上的点,若三角形PAC的面积等于10,直接写出点P的坐标.售价x(元/双)200 240 250 400销售量y(双)30 25 24 15图521.(8分)如图6,已知A (a ,-2a ),B (-2,a )两点是反比例函数my x=与一次函数y=kx+b 图象的两个交点.(1)求一次函数和反比例函数的表达式; (2)求三角形BAO 的面积;(3)观察图象,直接写出不等式0mkx b x+->的解集.图622.(8分)某小学为每个班级配备了一种可加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y (℃)与通电时间x (分)的关系如图7所示,回答下列问题:(1)当0≤x ≤8时,求y 与x 之间的函数表达式; (2)求出图中a 的值;(3)某天早上7∶20,李老师将放满水后的饮水机电源打开,若他想在8∶00上课前能喝到不超过40℃的温开水,问:他应在什么时间段内接水?图723.(10分)甲、乙两人同时登山,两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图8所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是 米/分钟,乙在A 地提速时距地面的高度b 为 米;(2)若乙提速后,乙的速度是甲登山速度的3倍,请求甲和乙提速后y 和x 之间的函数关系式; (3)登山多长时间时,乙追上了甲,此时乙距A 地的高度为多少米?图8附加题(20分,不计入总分)24. 近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4 mg/L,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图9所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应自变量的取值范围;(2)当空气中的CO浓度达到34 mg/L时,井下3 km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?图9(山东于秀坤)第17章 函数及其图象测试题(二)一、1. B 2. C 3. A 4. A 5. D 6. B 7. C 8. A 9. B 10. B二、11. (-9,-9)或(3,-3) 12. -1 13. x<-2 14. 300 15. 一、二、三 16. 5 三、17. (1)P (0,-3). (2)P (-12,-9). (3)P (2,-2).18. 解:(1)因为一次函数y=(3-m )x+2m-9的图象与y 轴的负半轴相交,y 随x 的增大而减小, 所以3−m <0,2m−9<0,解得3<m <4.5.因为m 为整数,所以m=4.(2)由(1)知,m=4,则该一次函数表达式为y=-x-1. 因为-1≤x≤2,所以-3≤-x-1≤0,即y 的取值范围是-3≤y≤0.19. 解:根据题意,设111k y x =-,y 2=k 2x (k 1,k 2≠0). 因为y=y 1+y 2,所以121k y k x x =+-. 因为当x=2时,y 1=4,y=2,所以11242 2.k k k =⎧⎨+=⎩,.所以k 1=4,k 2=-1.所以41y x x =--. 20. 解:(1)因为CD ⊥y 轴于点D ,CD=2,所以点C 的横坐标为2.把x=2代入反比例函数10(0)y x x =>得,1052y ==.所以C (2,5). 设直线AC 的表达式为y=kx+b ,把B (0,52),C (2,5)代入得522 5.b k b ⎧=⎪⎨⎪+=⎩,解得545.2k b ⎧=⎪⎪⎨⎪=⎪⎩, 所以直线AC 的表达式为5542y x =+. (2)由图象可知,当反比例函数10(0)y x x=>的函数值y ≥5时,自变量x 的取值范围是0<x ≤2. (3)P (-6,0)或(2,0).21. 解:(1)因为A (a ,-2a ),B (-2,a )两点在反比例函数my x=的图象上,所以m=-2a ·a=-2a ,解得a=1,m=-2.所以A (1,-2),B (-2,1),反比例函数的表达式为2y x=-.将点A (1,-2),点B (-2,1)代入y=kx+b 中,得221k b k b +=-⎧⎨-+=⎩,,解得11.k b =-⎧⎨=-⎩,所以一次函数的表达式为y=-x-1.(2)在直线y=-x-1中,令y=0,则-x-1=0,解得x=-1,所以C (-1,0). 所以S △AOB =S △AOC +S △BOC =12×1×2+12×1×1=32. (3)x<-2或0<x<1.22. 解:(1)当0≤x ≤8时,设y 与x 之间的函数表达式为y=kx+b (k ≠0).将(0,20),(8,100)代入y=kx+b ,得208100b k b =⎧⎨+=⎩,,解得1020.k b =⎧⎨=⎩,所以当0≤x ≤8时,y 与x 之间的函数表达式为y=10x+20. (2)当8≤x ≤a 时,设y 与x 之间的函数表达式为22(0)k y k x=≠. 将(8,100)代入2k y x =,得2100kx=,解得k 2=800. 所以当8≤x ≤a 时,y 与x 之间的函数表达式为800y x=. 将(a ,20)代入800y x=,解得a=40. (3)依题意,得800x≤40,解得x ≥20. 因为x ≤40,所以20≤x ≤40.所以他应在7∶40~8∶00时间段内接水. 23. 解:(1)10 30(2)设甲的函数关系式为y=kx+b.由题意,得10020300b k b +⎧⎨⎩=,=,解得10=100.k b ⎧⎨⎩=,所以甲的关系式为y=10x+100.设乙提速后的函数关系式为y=mx+n.由于m=30,且图象经过(2,30),所以30=2×30+n ,解得n=-30. 所以乙提速后的关系式为y=30x-30.(3)由题意,得10x+100=30x-30 ,解得x=6.5. 把x=6.5代入y=10x+100,得y=165.所以相遇时乙距A 地的高度为165-30=135(米)答:登山6.5分钟,乙追上了甲,此时乙距A 地的高度为135米.24. 解:(1)因为爆炸前浓度呈直线型增加,所以可设y 与x 的函数关系式为y=k 1x+b (k 1≠0),由图象知y=k 1x+b 过点(0,4)与(7,46),则b =4,7k 1+b =46,解得k 1=6,b =4.则y=6x+4,此时自变量x 的取值范围是0≤x≤7.(不取x=0不扣分,x=7可放在第二段函数中)因为爆炸后浓度成反比例下降,所以可设y 与x 的函数关系式为y =2k x(k 2≠0). 由图象知y =2k x 过点(7,46),所以27k =46.所以k 2=322.所以y =322x.此时自变量x 的取值范围是x >7. (2)当y=34时,由y=6x+4,得6x+4=34,x=5.所以撤离的最长时间为7-5=2(小时).所以撤离的最小速度为3÷2=1.5(km/h ).(3)当y=4时,由y=322x,得x=80.5. 80.5-7=73.5(小时).所以矿工至少在爆炸后73.5小时才能下井.。

2022-23学年人教版九年级数学上学期压轴题汇编专题08 二次函数的实际应用—销售问题(含详解)

2022-23学年人教版九年级数学上学期压轴题汇编专题08 二次函数的实际应用—销售问题(含详解)

2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题08 二次函数的实际应用—销售问题考试时间:120分钟 试卷满分:100分姓名:__________ 班级:__________考号:__________题号一 二 三 总分得分评卷人得 分 一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022九下·嘉祥开学考)某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅游团的人数每增加一人,每人的单价就降低10元,若这个旅行社要获得最大营业额,则这个旅游团的人数是( )A .55B .56C .57D .582.(2分)(2021九上·北京月考)商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价上涨1元,则每星期就会少卖10件.每件商品的售价上涨x 元(x 正整数),每星期销售的利润为y 元,则y 与x 的函数关系式为( )A .y =10(200﹣10x )B .y =200(10+x )C .y =10(200﹣10x )2D .y =(10+x )(200﹣10x )3.(2分)(2021九上·淮北月考)某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量 y (件)与销售单价 x (元)之间满足函数关系式 5550y x =-+ ,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?( )A .90元,4500元B .80元,4500元C .90元,4000元D .80元,4000元4.(2分)(2021九上·江干月考)某店销售一款运动服,每件进价100元,若按每件128元出售,每天可卖出100件,根据市场调查结果,若每件降价1元,则每天可多卖出5件,要使每天获得的利润最大,则每件需要降价( )元。

考点08 二次函数实际应用问题的7大类型-原卷版 2023-2024学年九年级数学考点归纳与解题策略

考点08 二次函数实际应用问题的7大类型-原卷版 2023-2024学年九年级数学考点归纳与解题策略

考点08 二次函数实际应用问题的7大类型1 围栏篱笆图形类问题的解决方法几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.面积的最值问题应设图形的一边长为自变量,所求面积为函数,建立二次函数的模型,利用二次函数有关知识求得最值,要注意函数自变量的取值范围.一般涉及到矩形等四边形问题,把图形的面积公式掌握,把需要用到的边和高等用未知数表示,即可表示出面积问题的二次函数的关系式,通过最值问题的解决方法,即可求出最值等问题,注意自变量的取值范围问题。

2 图形运动问题的解决思路此类问题一般具体分析动点所在位置,位置不同,所求的结果也不一样,一般把每一段的解析式求出来,根据解析式判断函数类型,从而判断图像形状。

3 拱桥问题的解决方法◆1、建立二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.◆2、建立二次函数模型解决实际问题的一般步骤:(1)根据题意建立适当的平面直角坐标系;(2)把已知条件转化为点的坐标;(3)合理设出函数解析式;(4)利用待定系数法求出函数解析式;(5)根据求得的解析式进一步分析、判断并进行有关的计算.4 销售问题◆1、销售问题中的数量关系:销售利润=销售收入﹣成本;销售总利润=销售量×单价利润◆2、求解最大利润问题的一般步骤:(1)建立利润与价格之间的函数关系式:运用“总利润 = 单件利润×总销量”或“总利润 = 总售价 - 总成本”;(2)结合实际意义,确定自变量的取值范围;(3)在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.◆3、在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.5 投球问题的解决方法此类问题一般需要建立平面直角坐标系,设定好每个点的坐标,分析好题目中的每句话的含义是解决这类问题的关键,有排球、足球、高尔夫球、篮球等,首先根据已知条件确定设定的解析式形式,求出解析式,再根据题意了解问题所求的实质是什么求出即可。

难点解析冀教版八年级数学下册第二十一章一次函数专题练习试题(含答案解析)

难点解析冀教版八年级数学下册第二十一章一次函数专题练习试题(含答案解析)

八年级数学下册第二十一章一次函数专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一次函数y 1=kx +1和y 2=x ﹣2.当x <1时,y 1>y 2,则k 的值可以是( )A .-3B .-1C .2D .42、已知正比例函数y kx =的图像经过点(2,-4)、(1,1y )、(-1,2y ),那么1y 与2y 的大小关系是( )A . 12y y <B . 12y y =C . 12y y >D .无法确定3、已知点()1,3x -,()2,4x 都在直线21y x =-+上,则1x 与2x 的大小关系为( )A .12x x >B .12x x =C .12x x <D .无法比较4、甲、乙两地相距120千米,A 车从甲地到乙地,B 车从乙地到甲地,A 车的速度为60千米/小时,B 车的速度为90千米/小时,A ,B 两车同时出发.设A 车的行驶时间为x (小时),两车之间的路程为y (千米),则能大致表示y 与x 之间函数关系的图象是( )A.B.C.D.5、如图,一个小球由静止开始沿一个斜坡滚下,其速度每秒增加的值相同.用t表示小球滚动的时间,v表示小球的速度.下列能表示小球在斜坡上滚下时v与t的函数关系的图象大致是()A.B.C .D .6、关于一次函数31y x =-+,下列结论不正确的是( )A .图象与直线3y x =-平行B .图象与y 轴的交点坐标是(0,1)C .y 随自变量x 的增大而减小D .图象经过第二、三、四象限7、下列函数中,y 是x 的一次函数的是( )A .y =1x B .y =﹣3x +1 C .y =2 D .y =x 2+18、点()11,A x y 和()22,B x y 都在直线y x m =-+上,且12x x ≥,则1y 与2y 的关系是( )A .12y y ≤B .12y y ≥C .12y y <D .12y y >9、若一次函数y kx b =+(k ,b 为常数,0k ≠)的图象不经过第三象限,那么k ,b 应满足的条件是( )A .0k <且0b >B .0k >且0b >C .0k >且0b ≥D .0k <且0b ≥10、点A (﹣1,y 1)和点B (﹣4,y 2)都在直线y =﹣2x 上,则y 1与y 2的大小关系为( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .y 1≥y 2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若y=mx|m﹣1|是正比例函数,则m的值______.2、用待定系数法确定一次函数表达式所需要的步骤是什么?①设——设函数表达式y=___,②代——将点的坐标代入y=kx+b中,列出关于___、___的方程③求——解方程,求k、b④写——把求出的k、b值代回到表达式中即可.3、如图,已知函数y=ax+b和y=kx的图象交于点P,则二元一次方程组y ax by kx=+⎧⎨=⎩的解是________;当ax+b≤kx时,x的取值范围是____________.4、画出函数y=-6x与y=-6x+5的图象.(1)这两个函数的图象形状都是______,并且倾斜程度______.(2)函数y=-6x的图象经过______,函数y=-6x+5的图象与y轴交于点______,即它可以看作由直线y=-6x向______平移______个单位长度而得到.5、如图,在平面直角坐标系xOy 中,直线l 1,l 2分别是关于x ,y 的二元一次方程a 1x +b 1y =c 1,a 2x +b 2y =c 2的图象,则二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为___.三、解答题(5小题,每小题10分,共计50分)1、已知A ,B 两地相距的路程为12km ,甲骑自行车从A 地出发前往B 地,同时乙步行从B 地出发前往A 地,如图的折线OCD 和线段EF ,分别表示甲、乙两人与A 地的路程y 甲、y 乙与他们所行时间x (h )之间的函数关系,且OC 与EF 相交于点P .(1)求y 乙与x 的函数关系式以及两人相遇地点P 与A 地的路程;(2)求线段OC 对应的y 甲与x 的函数关系式;(3)求经过多少h ,甲、乙两人相距的路程为6km .2、-辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条公路分别从甲、乙两地同时出发,匀速行驶.已知轿车比货车每小时多行驶20km ;两车相遇后休息了24分钟,再同时继续行驶,设两车之间的距离为y (km ),货车行驶时间为x (h ),请结合图像信息解答下列问题:(1)货车的速度为______km/h,轿车的速度为______km/h;(2)求y与x之间的函数关系式(写出x的取值范围),并把函数图像画完整;(3)货车出发______h,与轿车相距30km.3、平面直角坐标系中,已知直线l1经过原点与点P(m,2m),直线l2:y=mx+2m﹣3(m≠0).(1)求证:点(﹣2,﹣3)在直线l2上;(2)当m=2时,请判断直线l1与l2是否相交?4、一个皮球从16m的高处落下,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半,h表示反弹高度(单位:m),n表示落地次数.(1)写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式;(2)求皮球第几次落地后的反弹高度为18 m.5、已知直线y=﹣x+2与x轴、y轴分别交于点A和点B,点C是x轴上一定点,其坐标为C(1,0),一个动点P从原点出发沿O﹣B﹣A﹣C﹣O方向移动,连接PC.(1)当线段PC 与线段AB 平行时,求点P 的坐标,并求此时△POC 的面积与△AOB 的面积的比值.(2)当△AOB 被线段PC 分成的两部分面积相等时,求线段PC 所在直线的解析式;(3)若△AOB 被线段PC 分成的两部分面积比为1:5时,求线段PC 所在直线的解析式.-参考答案-一、单选题1、B【解析】【分析】先求出不等式的解集,结合x <1,即可得到k 的取值范围,即可得到答案.【详解】解:根据题意,∵y 1>y 2,∴12kx x +>-,解得:(1)3k x ->-,∴10k -<,∴1k <;31x k <--, ∵当x <1时,y 1>y 2, ∴311k -<- ∴2k >-,∴21k -<<;∴k 的值可以是-1;故选:B .【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.2、A【解析】【分析】先求出正比例函数解析式2y x =-根据正比例函数2y x =-的图象性质,当k <0时,函数随x 的增大而减小,可得y 1与y 2的大小.【详解】解:∵正比例函数y kx =的图像经过点(2,-4)、代入解析式得42k -=解得2k =-∴正比例函数为2y x =-∵2k =-<0,∴y 随x 的增大而减小,由于-1<1,故y 1<y 2.故选:A .【点睛】本题考查了正比例函数图象上点的坐标特征,用到的知识点为:正比例函数y kx =的图象,当k <0时,y 随x 的增大而减小是解题关键.3、A【解析】【分析】根据一次函数的增减性分析,即可得到答案.【详解】∵直线21y x =-+上,y 随着x 的增大而减小又∵34-<∴12x x >故选:A .【点睛】本题考查了一次函数的增减性;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.4、C【解析】【分析】分别求出两车相遇、B 车到达甲地、A 车到达乙地时间,分0≤x ≤45、45<x ≤43、43<x ≤2三段求出函数关系式,进而得到当x =43时,y =80,结合函数图象即可求解. 【详解】解:当两车相遇时,所用时间为120÷(60+90)=45小时,B车到达甲地时间为120÷90=43小时,A车到达乙地时间为120÷60=2小时,∴当0≤x≤45时,y=120-60x-90x=-150x+120;当45<x≤43时,y=60(x-45)+90(x-45)=150x-120;当43<x≤2是,y=60x;由函数解析式的当x=43时,y=150×43-120=80.故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.5、C【解析】【分析】静止开始沿一个斜坡滚下,其速度每秒增加的值相同即可判断.【详解】解:由题意得,小球从静止开始,设速度每秒增加的值相同为a.00v v at a t∴=+=+⨯,即v at=.故是正比例函数图象的一部分.故选:C .【点睛】本题考查了函数关系式,这是一个跨学科的题目,实际上是利用“即时速度=初始速度+加速度⨯时间”,解题的关键是列出函数关系式.6、D【解析】【分析】根据一次函数的性质对A 、C 、D 进行判断;根据一次函数图象上点的坐标特征对D 进行判断,0k >,y 随x 的增大而增大,函数从左到右上升;0k <,y 随x 的增大而减小,函数从左到右下降.由于y kx b =+与y 轴交于(0,)b ,当0b >时,(0,)b 在y 轴的正半轴上,直线与y 轴交于正半轴;当0b <时,(0,)b 在y 轴的负半轴,直线与y 轴交于负半轴.【详解】解:A 、函数31y x =-+的图象与直线3y x =-平行,故本选项说法正确;B 、把0x =代入311y x =-+=,所以它的图象与y 轴的交点坐标是(0,1),故本选项说法正确;C 、30k =-<,所以y 随自变量x 的增大而减小,故本选项说法正确;D 、30k =-<,10b =>,函数图象经过第一、二、四象限,故本选项说法不正确;故选:D .【点睛】本题考查了一次函数的性质,以及k 对自变量和因变量间的关系的影响,熟练掌握k 的取值对函数的影响是解决本题的关键.7、B【解析】【分析】利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.【详解】解:∵y=1x不符合一次函数的形式,故不是一次函数,∴选项A不符合题意;∵形如y=kx+b(k,b为常数).∴y=﹣3x+1中,y是x的一次函数.故选项B符合题意;∵y=2是常数函数,∴选项C不符合题意;∵y=x2+1不符合一次函数的形式,故不是一次函数,∴选项D不符合题意;综上,y是x的一次函数的是选项B.故选:B.【点睛】本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.8、A【解析】【分析】根据一次函数图象的增减性,结合横坐标的大小关系,即可得到答案.【详解】解:∵直线y=-x+m的图象y随着x的增大而减小,又∵x1≥x2,点A(x1,y1)和B(x2,y2)都在直线y=-x+m上,故选:A .【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.9、D【解析】【分析】根据一次函数图象与系数的关系解答即可.【详解】 解:一次函数(y kx b k =+、b 是常数,0)k ≠的图象不经过第三象限,0k ∴<且0b ≥,故选:D .【点睛】本题主要考查了一次函数图象与系数的关系,直线y =kx +b 所在的位置与k 、b 的符号有直接的关系为:k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b =0时,直线过原点;b <0时,直线与y 轴负半轴相交.10、B【解析】【分析】由直线y =-2x 的解析式判断k =−2<0,y 随x 的增大而减小,再结合点的坐标特征解题即可.【详解】解:∵一次函数中一次项系数k =-2<0,∴y 随x 的增大而减小,∴y1<y2.故选B.【点睛】本题考查一次函数的增减性,是重要考点,难度较易,掌握相关知识是解题关键.二、填空题1、2【解析】【分析】根据次数等于1,且系数不等于零求解即可.【详解】解:由题意得|m-1|=1,且m≠0,解得m=2,故答案为:2.【点睛】本题主要考查了正比例函数的定义,正比例函数的定义是形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.2、kx+b k b【解析】略3、42xy=-⎧⎨=⎩x≥-4【分析】根据图像可知,函数y ax b =+和y kx =交于点P (-4,-2),即可得二元一次方程组y ax b y kx =+⎧⎨=⎩的解;根据函数图像可知,当4x ≥-时,ax b kx +≤.【详解】解:根据图像可知,函数y ax b =+和y kx =交于点P (-4,-2),则二元一次方程组y ax b y kx =+⎧⎨=⎩的解是=4=2x y -⎧⎨-⎩, 由图像可知,当4x ≥-时,ax b kx +≤,故答案为:=4=2x y -⎧⎨-⎩;4x ≥-. 【点睛】本题考查了一次函数与二元一次方程组,解题的关键是掌握一次函数的性质.4、 一条直线 相同 原点 (0,5) 上 5【解析】略5、21x y =-⎧⎨=⎩【解析】【分析】本题可以通过直线与方程的关系得到方程组的解.【详解】解:因为直线l 1,l 2分别是关于x ,y 的二元一次方程a 1x +b 1y =c 1,a 2x +b 2y =c 2的图象,其交点为(-2,1),所以二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解为21x y =-⎧⎨=⎩, 故答案为:21x y =-⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.三、解答题1、 (1)612y x 乙,9km(2)18y x 甲(3)经过14小时或1小时,甲、乙两人相距6km . 【解析】【分析】(1)根据题意和函数图象中的数据,可以得到y 乙与x 的函数关系式以及两人相遇地点与A 地的距离;(2)根据函数图象中的数据,可以计算出线段OP 对应的y 甲与x 的函数关系式;(3)根据(1)和(2)中的结果,分两种情况讨论,可以得到经过多少小时,甲、乙两人相距6km .(1)解:设y 乙与x 的函数关系式是y kx b =+乙,∵点E (0,12),F (2,0)在函数y 乙=kx +b 的图象上,∴2012k b b ,解得612k b ,即y 乙与x 的函数关系式是612y x 乙,当x =0.5时,60.512=9y 乙,即两人相遇地点P 与A 地的距离是9km ;(2)解:设线段OC 对应的y 甲与x 的函数关系式是y 甲=ax ,∵点(0.5,9)在函数y 甲=ax 的图象上,∴9=0.5a , 解得a =18,即线段OP 对应的y 甲与x 的函数关系式是y 甲=18x ;(3) 解:①令186126,x x 即24126,x 24126x 或24126,x 解得:34x =或1,4x = 甲从A 地到达B 地的时间为:122=183小时, 经检验:34x =不符合题意,舍去, ②当甲到达B 地时,乙离B 地6千米所走时间为:6=16(小时), 综上所述,经过14小时或1小时,甲、乙两人相距6km .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.其中第三问要注意进行分类讨论.2、 (1)80,100(2)当02x ≤≤时,180360y x =-+;当2 2.4x <≤时,0y =;当2.44x <≤时,180432y x =-;当4 4.9x <≤时,8032y x =-,图见解析 (3)116或7730【解析】【分析】(1)结合图象可得经过两个小时,两车相遇,设货车的速度为/xkm h ,则轿车的速度为()20/x km h +,根据题意列出方程求解即可得;(2)分别求出各个时间段的函数解析式,然后再函数图象中作出相应直线即可;(3)将30y =代入(2)中各个时间段的函数解析式,求解,同时考虑解是否在相应时间段内即可.(1)解:由图象可得:经过两个小时,两车相遇,设货车的速度为/xkm h ,则轿车的速度为()20/x km h +,∴()202360x x ++⨯=,解得:80x =,20100x +=,∴货车的速度为80/km h ,则轿车的速度为100/km h ,故答案为:80;100;(2)当02x ≤≤时,图象经过()0,360,()2,0点,设直线解析式为:()0y kx b k =+≠,代入得:36002b k b =⎧⎨=+⎩, 解得:360180b k =⎧⎨=-⎩, ∴当02x ≤≤时,180360y x =-+;24分钟0.4=小时,∵两车相遇后休息了24分钟,∴当2 2.4x <≤时,0y =;当 2.4x =时,轿车距离甲地的路程为:802160km ⨯=,货车距离乙地的路程为:1002200km ⨯=, 轿车到达甲地还需要:160100 1.6h ÷=,货车到达乙地还需要:20080 2.5h ÷=,∴当2.44x <≤时,()()80 2.4100 2.4180432y x x x =-+-=-;当4 4.9x <≤时,()16080 2.48032y x x =+-=-;当 2.4x =时,0y =;当4x =时,288y =;当 4.9x =时,360y =;∴函数图象分别经过点()2.4,0,()4,288,()4.9,360,作图如下:(3)①当02x ≤≤时,令30y =可得:30180360x =-+, 解得:116x h =; ②当2.44x <≤时,令30y =可得:30180432x =-, 解得:7730x h =; ③当4 4.9x <≤时,令30y =可得:308032x =-;解得::31440x =<,不符合题意,舍去; 综上可得:货车出发116h 或7730h ,与轿车相距30km , 故答案为:116或7730.【点睛】题目主要考查一元一次方程的应用,一次函数的应用,利用待定系数法确定一次函数解析式,作函数图象等,理解题意,熟练掌握运用一次函数的基本性质是解题关键.3、 (1)见解析(2)直线l1与l2不相交【解析】【分析】(1)将所给点代入直线2l中,看等式是否成立,再判断该点是否在直线上;(2)求出1l解析式与2l比较,发现系数相同,故不可能相交.【详解】(1)把x=﹣2代入y=mx+2m﹣3得,y=﹣2m+2m﹣3=﹣3,∴点(﹣2,﹣3)在直线l2上;(2)∵直线l1经过原点与点P(m,2m),∴直线l1为y=2x,当m=2时,则直线l2:y=2x+1,∵x的系数相同,∴直线l1与l2不相交.【点睛】本题考查平面直角坐标系中的直线解析式求法、点是否在直线上的判断、两直线是否相交,掌握这些是解题关键.4、 (1)h162n(n为正整数);(2)皮球第7次落地后的反弹高度为18 m.【解析】【分析】(1)由题意可知,每次落地后的反弹高度都减半,依次可得表示反弹高度与落地次数的对应函数关系;(2)把h18=代入(1)中解析式即可解题.(1)解:根据题意得,表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式:h162n=(n为正整数);(2)把h18=代入h162n=,得116 82n =,2n=16×8=27,n=7故皮球第7次落地后的反弹高度为18 m.【点睛】本题考查一次函数的应用,是基础考点,掌握相关知识是解题关键.5、 (1)P(0,1);△POC的面积与△AOB的面积的比值为14;(2)y=﹣2x+2;(3)线段PC所在直线的解析式为:y=4x﹣4或y=45-x+45【解析】【分析】(1)先求出A、B坐标,进而求出△ABC的面积,再利用待定系数法求得PC所在直线解析式,进而求得点P坐标和△POC的面积即可;(2)根据三角形一边上的中线将三角形面积平分可得点P与点B重合,此时P(0,2),利用待定系数法求得PC所在直线解析式即可;(3)分①当点P在线段AB上时和②当点P在线段OB上时两种情况,根据三角形面积公式求出点P 纵坐标,进而求得点P坐标,再利用待定系数法求PC所在直线的解析式即可.(1)解:∵直线y=﹣x+2与x轴、y轴分别交于点A和点B,∴A(2,0),B(0,2),∴OA=OB=2,∴∠OAB=∠OBA=45°,∴1122222AOBS OA OB∆=⋅⋅=⨯⨯=.当线段PC与线段AB平行时,可画出图形,设PC所在直线的解析式为y=﹣x+m,∵C(1,0),∴﹣1+m=0,解得,m=1,∴PC所在直线的解析式为:y=﹣x+1,∴P(0,1);此时,11111222 OPCS OP OC∆=⋅⋅=⨯⨯=,∴1::21:42OPC AOBS S∆∆==.即P(0,1);△POC的面积与△AOB的面积的比值为14;(2)解:由题意可知,点C是线段OA的中点,当△AOB被线段PC分成的两部分面积相等时,点P与点B 重合,此时P(0,2),设PC所在直线的解析式为:y=kx+b,∴2k bb+=⎧⎨=⎩,解得,22kb=-⎧⎨=⎩,∴线段PC所在直线的解析式为:y=﹣2x+2.(3)解:根据题意,需要分类讨论:①当点P在线段AB上时,如图所示,此时1255 APC AOBS S∆∆==,过点P作PD⊥x轴于点D,∴1225APC S AC PD ∆=⋅⋅=,解得:45PD =,∴AD =PD =45,∴OD =OA ﹣AD =2﹣45=65,∴P (45,65),设线段PC 所在直线的解析式:y =k 1x +b 1,∴111106455k b k b +=⎧⎪⎨+=⎪⎩,解得,1144k b =⎧⎨=-⎩, ∴线段PC 所在直线的解析式:y =4x ﹣4;②当点P 在线段OB 上时,如图所示,此时1255POC AOB S S ∆∆==,∴1225POC S OP OC ∆=⋅⋅=,解得,45OP =, ∴P (0,45),设线段PC 所在直线的解析式:y =k 2x +b 2,∴222045k b b +=⎧⎪⎨=⎪⎩,解得,224545k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴线段PC所在直线的解析式:y=45-x+45;综上可知,线段PC所在直线的解析式为:y=4x﹣4或y=45-x+45.【点睛】本题考查待定系数法求一次函数的解析式、一次函数图象与坐标轴交点问题、坐标与图形、三角形的面积公式、三角形的中线性质,熟练掌握待定系数法求一次函数的解析式,利用数形结合和分类讨论思想求解是解答的关键.。

高三数学选择题专题训练(17套)含答案

高三数学选择题专题训练(17套)含答案

(每个专题时间:35分钟,满分:60分)1.函数y =的定义域是( )A .[1,)+∞B .23(,)+∞ C .23[,1] D .23(,1]2.函数221()1x f x x -=+, 则(2)1()2f f = ( ) A .1 B .-1 C .35D .35-3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为( )A .2 BC .1 D4.不等式221x x +>+的解集是( ) A .(1,0)(1,)-+∞ B .(,1)(0,1)-∞- C .(1,0)(0,1)- D .(,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+=( )A .12-B .12C. D6.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为( ) A .2 B .4 C .6 D .127.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件。

那么p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8.不同直线,m n 和不同平面,αβ,给出下列命题 ( )①////m m αββα⎫⇒⎬⊂⎭ ② //////m n n m ββ⎫⇒⎬⎭ ③ ,m m n n αβ⊂⎫⇒⎬⊂⎭异面 ④ //m m αββα⊥⎫⇒⊥⎬⎭其中假命题有:( ) A .0个 B .1个C .2个D .3个9. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S > 成立的最大自然数n 是 ( ) A .4005 B .4006 C .4007 D .400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为 ( )A .43B .53C .2D .7311.已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为 ( )A .2140B .1740C .310D .712012. 如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔正方体的表面积(含孔内各面)是A .258B .234C .222D .2101.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则()U C A B 等于( )A .{1,2,4}B .{4}C .{3,5}D .∅2.︒+︒15cot 15tan 的值是( )A .2B .2+3C .4D .334 3.命题p :若a 、b ∈R ,则|a |+|b|>1是|a +b|>1的充要条件;命题q :函数y=2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真4.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率为( )A .32 B .33 C .22 D .235.设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1B .-1C .2D .216.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题:其中真命题的个数是( ) ①若m ⊂α,n ∥α,则m ∥n ; ②若m ∥α,m ∥β,则α∥β; ③若α∩β=n ,m ∥n ,则m ∥α且m ∥β; ④若m ⊥α,m ⊥β,则α∥β.A .0B .1C .2D .37.已知函数y=log 2x 的反函数是y=f —1(x ),则函数y= f —1(1-x )的图象是( )8.已知a 、b 是非零向量且满足(a -2b) ⊥a ,(b -2a ) ⊥b ,则a 与b 的夹角是( )A .6π B .3π C .32π D .65π 9.已知8)(xa x -展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或2810.如图,A 、B 、C 是表面积为48π的球面上三点,AB=2,BC=4,∠ABC=60º,O 为球心,则直线OA 与截面ABC 所成的角是( ) A .arcsin 63 B .arccos 63C .arcsin 33 D .arccos 3311.定义在R 上的偶函数f(x)满足f(x)=f(x +2),当x ∈[3,4] 时,f(x)= x -2,则 ( ) A .f (sin21)<f (cos 21) B .f (sin 3π)>f (cos 3π) C .f (sin1)<f (cos1) D .f (sin 23)>f (cos 23) 12.如图,B 地在A 地的正东方向4 km 处,C 地在B 地的北偏东30°方向2 km 处,河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km ,现要在曲线PQ 上任意选一处M 建一座码头,向B 、C 两地转运货物,经测算,从M 到B 、C 两地修建公路的费用都是a 万元/km 、那么修建这两条公路的总费用最低是( )A .(7+1)a 万元B .(27-2) a 万元C .27a 万元D .(7-1) a 万元专题训练(三)1.已知平面向量a =(3,1),b =(x ,–3),且a b ⊥,则x= ( ) A .-3 B .-1 C .1 D .3 2.已知{}{}2||1|3,|6,A x x B x xx =+>=+≤则A B =( )A .[)(]3,21,2-- B .(]()3,21,--+∞C . (][)3,21,2--D .(](],31,2-∞-3.设函数2322,(2)()42(2)x x f x x x a x +⎧->⎪=--⎨⎪≤⎩在x=2处连续,则a= ( )A .12-B .14- C .14 D .134.已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a …2n a +等于( )A .2)12(-nB .)12(31-nC .14-nD .)14(31-n5.函数f(x)22sin sin 44f x x x ππ=+--()()()是( ) A .周期为π的偶函数 B .周期为π的奇函数 C . 周期为2π的偶函数 D ..周期为2π的奇函数6.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( )A .0.1536B . 0.1808C . 0.5632D . 0.97287.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( )A .23 B . 76 C . 45 D . 568.若双曲线2220)x y kk -=>(的焦点到它相对应的准线的距离是2,则k= ( ) A . 6 B . 8C . 1D . 49.当04x π<<时,函数22cos ()cos sin sin xf x x x x =-的最小值是( ) A . 4 B . 12 C .2 D . 1410.变量x 、y 满足下列条件:212,2936,2324,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎨+=⎪⎪≥≥⎩ 则使z=3x+2y 的值最小的(x ,y )是 ( )A . ( 4.5 ,3 )B . ( 3,6 )C . ( 9, 2 )D . ( 6, 4 )11.若tan 4f x x π=+()(),则( ) A . 1f -()>f (0)>f (1) B . f (0)>f(1)>f (-1) C . 1f ()>f (0)>f (-1) D . f (0)>f(-1)>f (1) 12.如右下图,定圆半径为 ( b ,c ), 则直线ax+by+c=0 与直线 x –y+1=0的交点在( )A . 第四象限B . 第三象限C .第二象限D . 第一象限1.设集合P={1A .{1,2} B . {3,4} C . {1} D . {-2,-1,0,1,2}2.函数y=2cos 2x+1(x ∈R )的最小正周期为 ( )A .2πB .πC .π2D .π43.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( )A .140种B .120种C .35种D .34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( )A .33π100cmB . 33π208cmC . 33π500cmD . 33π3416cm 5.若双曲线18222=-by x 的一条准线与抛物线x y 82=的准线重合,则双曲线的离心率为 ( )A .2B .22C . 4D .246.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )A .0.6小时B .0.9小时C .1.0小时D .1.5小时 7.4)2(x x +的展开式中x 3的系数是( ) A .6 B .12 C .24 D .488.若函数)1,0)((log ≠>+=a a b x y a 的图象过两 点(-1,0)和(0,1),则( )A .a =2,b=2B .a = 2 ,b=2C .a =2,b=1D .a = 2 ,b= 29.将一颗质地均匀的骰子(它是一种各面上分 别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( )A .5216B .25216C .31216D .9121610.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是( )A .1,-1B .1,-17C .3,-17 D.9,-1911.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A 点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( )A .3B .32C .43D .6512.设函数)(1)(R x xxx f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )A .0个B .1个C .2个D .无数多个人数(人)时间(小时)专题训练(五)1.若θθθ则角且,02sin ,0cos <>的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.对于10<<a ,给出下列四个不等式,其中成立的是( )① )11(log )1(log a a a a +<+ ②)11(log )1(log aa a a +>+ ③aa a a 111++<④aaaa 111++>A .①与③B .①与④C .②与③D .②与④3.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点;命题βα//:q . 则q p 是的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件 4.圆064422=++-+y x y x 截直线x -y -5=0所得弦长等于( ) A .6 B .225 C .1 D .5 5.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是( )A .21p pB .)1()1(1221p p p p -+-C .211p p -D .)1)(1(121p p --- 6.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =⋅满足,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 7.已知函数1)2sin()(--=ππx x f ,则下列命题正确的是( )A .)(x f 是周期为1的奇函数B .)(x f 是周期为2的偶函数C .)(x f 是周期为1的非奇非偶函数D .)(x f 是周期为2的非奇非偶函数 8.已知随机变量ξ的概率分布如下:则==)10(ξP ( )A .932 B .103 C .93 D .103 9.已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标是21时,点P 到坐标原点的距离是( )A .26 B .23 C .3D .210.设A 、B 、C 、D 是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到该平面的距离是球半径的一半,则球的体积是( )A .π68B .π664C .π224D .π27211.若函数)sin()(ϕω+=x x f 的图象(部分)如图所示,则ϕω和的取值是( )A .3,1πϕω==B .3,1πϕω-==C .6,21πϕω==D .6,21πϕω-== 12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐, 并且这2人不.左右相邻,那么不同排法的种数是( )A .234B .346C .350D .3631.设集合U A .{2} B .{2,3} C .{3} D . {1,3} 2.已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若( ) A .21 B .-21 C .2 D .-23.已知a +b 均为单位向量,它们的夹角为60°,那么|a +3b |=( ) A .7 B .10C .13D .44.函数)1(11>+-=x x y 的反函数是 ( )A .)1(222<+-=x x x yB .)1(222≥+-=x x x y C .)1(22<-=x x x y D .)1(22≥-=x x x y5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-426.设)2,0(πα∈若,53sin =α则)4cos(2πα+=( ) A .57B .51C .27 D .47.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( ) A .23B .3C .27 D .48.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .]21,21[-B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则ST等于( )A .91 B .94 C .41 D .31 11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )A .95 B .94 C .2111 D .2110 12.已知ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为( )A .3-21B .21-3C .-21-3D .21+31.已知集合}032|{|,4|{22<--=<=x x x N x x M ,则集合N M ⋂=( ) A .{2|-<x x } B .{3|>x x } C .{21|<<-x x } D . {32|<<x x }2.函数)5(51-≠+=x x y 的反函数是( ) A .)0(51≠-=x x y B .)(5R x x y ∈+=C .)0(51≠+=x xy D .)(5R x x y ∈-=3.曲线1323+-=x x y 在点(1,-1)处的切线方程为( ) A .43-=x y B .23+-=x y C .34+-=x y D .54-=x y4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6π C .12π-D .12π 6.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( ) A .75° B .60° C .45° D .30° 7.函数xe y -=的图象( ) A .与xe y =的图象 关于y 轴对称B .与xe y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与xe y -=的图象关于坐标原点对称 8.已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 9.已知向量a 、b 满足:|a |=1,|b |=2,|a -b |=2,则|a +b |=( ) A .1B .2C .5D .610.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 11.函数x x y 24cos sin +=的最小正周期为( )A .4π B .2π C .π D .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( ) A .56个 B .57个 C .58个 D .60个专题训练(八)1、设集合22,1,,M x y xy x R y R =+=∈∈,2,0,,N x y xy x R y R =-=∈∈,则集合MN 中元素的个数为( )A .1B .2C .3D .42、函数sin 2xy =的最小正周期是( ) A .2πB .πC .2πD .4π3、记函数13xy -=+的反函数为()y g x =,则(10)g =( ) A . 2 B . 2-C . 3D . 1- 4、等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为( )A . 81B . 120C .168D . 1925、圆2240x y x +-=在点(P 处的切线方程是( )A . 20x +-=B . 40x +-=C . 40x -+=D . 20x +=6、61x ⎫⎪⎭展开式中的常数项为( )A . 15B . 15-C . 20D . 20-7、若△ABC 的内角满足sin A +cos A >0,tan A -sin A <0,则角A 的取值范围是( )A .(0,4π) B .(4π,2π) C .(2π,43π) D .(43π,) 8、设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A . 5B .C .D . 549、不等式113x <+<的解集为( )A . ()0,2B . ()()2,02,4- C . ()4,0- D . ()()4,20,2--10、正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A .B .C . 3D .11、在ABC 中,3,4AB BC AC ===,则边AC 上的高为( )A .B .C . 32D .12、4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )A . 12 种B . 24 种C 36 种D . 48 种1.设集合U={1U A .{5} B .{0,3} C .{0,2,3,5} D . {0,1,3,4,5}2.函数)(2R x e y x∈=的反函数为( ) A .)0(ln 2>=x x y B .)0)(2ln(>=x x y C .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为( ) A .26 B . 6C .66 D .36 4. 函数)1()1(2-+=x x y 在1=x 处的导数等于( ) A .1 B .2 C .3 D .45.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 A .160 B .180 C .200 D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .21 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y xB .0422=++x y xC .03222=-++x y x D .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( ) A .-3 B .-2 C .-1 D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为( )A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b =( ) A .231+ B .31+ C .232+ D .32+1.设集合A .PQ P = B .P Q 包含Q C .P Q Q = D . P Q 真包含于P2. 不等式21≥-xx 的解集为( ) A . )0,1[- B . ),1[+∞- C .]1,(--∞ D .),0(]1,(+∞--∞ 3.对任意实数,,a b c 在下列命题中,真命题是( )A .""ac bc >是""a b >的必要条件B .""ac bc =是""a b =的必要条件C .""ac bc >是""a b >的充分条件D .""ac bc =是""a b =的充分条件 4.若平面向量b 与向量)2,1(-=的夹角是o 180,且53||=,则=b ( ) A . )6,3(- B . )6,3(- C . )3,6(- D . )3,6(-5.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点。

2020-2021学年八年级数学苏科版下册反比例函数与几何综合题专题练习(2)

2020-2021学年八年级数学苏科版下册反比例函数与几何综合题专题练习(2)

2021八年级下册反比例函数与几何综合解答题专题练习(2)1.如图,在平面直角坐标系中,四边形ABCD 是平行四边形,点A 、B 在x 轴上,点C 、D 在第二象限,点M 是BC 中点.已知AB=6,AD=8,∠DAB=60°,点B 的坐标为(-6,0).(1)求点D 和点M 的坐标;(2)如图∠,将□ABCD 沿着x 轴向右平移a 个单位长度,点D 的对应点D 和点M 的对应点M '恰好在反比例函数ky x=(x>0)的图像上,请求出a 的值以及这个反比例函数的表达式; (3)如图∠,在(2)的条件下,过点M ,M '作直线l ,点P 是直线l 上的动点,点Q 是平面内任意一点,若以,B C '',P 、Q 为顶点的四边形是矩形,请直接写出所有满足条件的点Q 的坐标. 2.如图,正方形AOCB 的边长为4,反比例函数的图象过点()3,4E .(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC 交于点D ,直线12y x b =-+过点D ,与线段AB 相交于点F ,求点F 的坐标;(3)连接,OF OE ,探究AOF ∠与EOC ∠的数量关系,并证明.3.阅读理解:己知:对于实数a≥0,b≥0,满足 a = b 时,等号成立,此时取得代数式a+b 的最小值.根据以上结论,解决以下问题:(1)拓展:若a>0,当且仅当a=___时,a+1a有最小值,最小值为____; (2)应用:∠如图1,已知点P 为双曲线y=4x(x>0)上的任意一点,过点P 作PA∠x 轴,PB 丄y 轴,四边形OAPB 的周长取得最小值时,求出点P 的坐标以及周长最小值: ∠如图2,已知点Q 是双曲线y=8x(x>0)上一点,且PQ∠x 轴, 连接OP 、OQ ,当线段OP 取得最小值时,在平面内取一点C ,使得以0、P 、Q 、C 为顶点的四边形是平行四边形,求出点C 的坐标.4.在平面直角坐标系第一象限中,已知点A 坐标为()1,0,点D 坐标为()1,3,点G 坐标为()1,1,动点E 从点G 出发,以每秒1个单位长度的速度匀速向点D 方向运动,与此同时,x 轴上动点B 从点A 出发,以相同的速度向右运动, 两动点运动时间为:(02)t t <<, 以AD AB 、分别为边作矩形ABCD , 过点E 作双曲线交线段BC 于点F ,作CD 中点M ,连接BE EF EM FM 、、、 (1)当1t =时,求点F 的坐标.(2)若BE 平分AEF ∠, 则t 的值为多少? (3)若EMF ∠为直角, 则t 的值为多少?5.如图,在直角坐标系xOy 中,矩形ABCD 的DC 边在x 轴上,D 点坐标为(6,0)-边AB 、AD 的长分别为3、8,E 是BC 的中点,反比例函数ky x=的图象经过点E ,与AD 边交于点F .(1)求k 的值及经过A 、E 两点的一次函数的表达式;(2)若x 轴上有一点P ,使PE PF +的值最小,试求出点P 的坐标;(3)在(2)的条件下,连接EF 、PE 、PF ,在直线AE 上找一点Q ,使得QEF PEF S S ∆∆=直接写出符合条件的Q 点坐标.6.如图,在平面直角坐标系中,直线12y x =-与反比例函数ky x=的图象交于A ,B 两点(点A 在点B 左侧),已知A 点的纵坐标是2.(1)求反比例函数的表达式;(2)点A 上方的双曲线上有一点C ,如果ABC 的面积为30,直线BC 的函数表达式.7.如图,双曲线y 1=1k x与直线y 2=2x k 的图象交于A 、B 两点.已知点A 的坐标为(4,1),点P (a ,b)是双曲线y 1=1k x上的任意一点,且0<a <4. (1)分别求出y 1、y 2的函数表达式;(2)连接PA 、PB ,得到∠PAB ,若4a =b ,求三角形ABP 的面积; (3)当点P 在双曲线y 1=1k x上运动时,设PB 交x 轴于点E ,延长PA 交x 轴于点F ,判断PE 与PF 的大小关系,并说明理由.8.已知边长为4的正方形ABCD ,顶点A 与坐标原点重合,一反比例函数图象过顶点C ,动点P 以每秒1个单位速度从点A 出发沿AB 方向运动,动点Q 同时以每秒4个单位速度从D 点出发沿正方形的边DC→CB→BA 方向顺时针折线运动,当点P 与点Q 相遇时停止运动,设点P 的运动时间为t .∠求出该反比例函数解析式;∠连接PD ,当以点Q 和正方形的某两个顶点组成的三角形和∠PAD 全等时,求t 值;9.如图,在平面直角坐标系中有Rt ABC ,90BAC ∠=︒,AB AC =,(3,0)A -,(0,1)B ,(,)C m n . (1)请直接写出C 点坐标.(2)将ABC 沿x 轴的正方向平移t 个单位,'B 、'C 两点的对应点、正好落在反比例函数ky x=在第一象限内图象上.请求出t ,k 的值.(3)在(2)的条件下,问是否存x轴上的点M和反比例函数kyx图象上的点N,使得以'B、'C,M,N为顶点的四边形构成平行四边形?如果存在,请求出所有满足条件的点M和点N的坐标;如果不存在,请说明理由.10.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.11.如图,A、B是双曲线y=kx上的两点,过A点作AC∠x轴,交OB于D点,垂足为C,过B点作BE∠x轴,垂足为E.若∠ADO的面积为1,D为OB的中点,(1)求四边形DCEB的面积.(2)求k 的值.12.如图,在∠ABC 中,AC=BC ,AB∠x 轴于A ,反比例函数y=kx(x >0)的图象经过点C ,交AB 于点D ,已知AB=4,BC=52. (1)若OA=4,求k 的值.(2)连接OC ,若AD=AC ,求CO 的长.13.如图,一次函数y kx b =+与反比例函数6(0)y x x=>的图象交于(),6A m ,()3,B n 两点.(1)求一次函数的解析式; (2)根据图象直接写出60kx b x+-<的x 的取值范围; (3)求AOB的面积.14.已知一次函数()10y kx n n =+<和反比例函数()20,0my m x x=>>.(1)如图1,若2n =-,且函数1y 、2y 的图象都经过点()3,4A . ∠求m ,k 的值;∠直接写出当12y y >时x 的范围;(2)如图2,过点()1,0P 作y 轴的平行线l 与函数2y 的图象相交于点B ,与反比例函数()30ny x x=>的图象相交于点C .∠若2k =,直线l 与函数1y 的图象相交点D .当点B 、C 、D 中的一点到另外两点的距离相等时,求m n -的值;∠过点B 作x 轴的平行线与函数1y 的图象相交于点E .当m n -的值取不大于1的任意实数时,点B 、C 间的距离与点B 、E 间的距离之和d 始终是一个定值.求此时k 的值及定值d . 15.如图,已知一次函数y=32 x−3与反比例函数y=kx的图象相交于点A(4,n),与x 轴相交于点B .(1)填空:n 的值为___,k 的值为___;(2)以AB 为边作菱形ABCD ,使点C 在x 轴正半轴上,点D 在第一象限,求点D 的坐标; (3)观察反比例函数y=kx的图象,当y∠−2时,请直接写出自变量x 的取值范围。

押浙江卷第23题(二次函数的应用与综合)(解析版)-备战2024年中考数学临考题号押题

押浙江卷第23题(二次函数的应用与综合)(解析版)-备战2024年中考数学临考题号押题

押浙江卷第23题(二次函数的应用与综合)押题方向:二次函数应用及综合问题2023年浙江真题考点命题趋势2023年湖州卷第21题二次函数的应用从近几年浙江各地中考来看,解答题中二次函数考查内容主要是二次函数的实际应用、二次函数综合,其中二次函数的综合题经常以压轴题出现,试题的整体难度比较高,预计2024年浙江卷还将重视二次函数综合问题的考查。

2023年湖州卷、衢州卷、绍兴卷、舟山、嘉兴卷、丽水卷第23题、杭州卷第22题、金华卷第24题二次函数综合1.(2023•杭州)设二次函数y =ax 2+bx +1(a ≠0,b 是实数).已知函数值y 和自变量x 的部分对应取值如下表所示:x …﹣10123…y…m1n1p…(1)若m =4,①求二次函数的表达式;②写出一个符合条件的x 的取值范围,使得y 随x 的增大而减小.(2)若在m ,n ,p 这三个实数中,只有一个是正数,求a 的取值范围.【思路点拨】(1)①利用待定系数法即可求得;②利用二次函数的性质得出结论;(2)根据题意m ≤0,由﹣=1,得出b =﹣2a ,则二次函数为y =ax 2﹣2ax +1,得出m =a +2a +1≤0,解得a ≤﹣.【解析】解:(1)①由题意得,∴二次函数的表达式是y=x2﹣2x+1;②∵y=x2﹣2x+1=(x﹣1)2,∴抛物线开口向上,对称轴为直线x=1,∴当x<1时,y随x的增大而减小;(2)∵x=0和x=2时的函数值都是1,∴抛物线的对称轴为直线x=﹣=1,∴(1,n)是顶点,(﹣1,m)和(3,p)关于对称轴对称,若在m,n,p这三个实数中,只有一个是正数,则抛物线必须开口向下,且m≤0,∵﹣=1,∴b=﹣2a,∴二次函数为y=ax2﹣2ax+1,∴m=a+2a+1≤0,∴a≤﹣.【点睛】本题考查了二次函数的图象与系数的关系,待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征,能够明确题意得出m=a+2a+1<0是解题的关键.2.(2023•丽水)已知点(﹣m,0)和(3m,0)在二次函数y=ax2+bx+3(a,b是常数,a≠0)的图象上.(1)当m=﹣1时,求a和b的值;(2)若二次函数的图象经过点A(n,3)且点A不在坐标轴上,当﹣2<m<﹣1时,求n的取值范围;【思路点拨】(1)当m=﹣1时,二次函数y=ax2+bx+3图象过点(1,0)和(﹣3,0),用待定系数法可得a的值是﹣1,b的值是﹣2;(2)y=ax2+bx+3图象过点(﹣m,0)和(3m,0),可知抛物线的对称轴为直线x=m,而y=ax2+bx+3的图象过点A(n,3),(0,3),且点A不在坐标轴上,可得m=,根据﹣2<m<﹣1,即得﹣4<n<﹣2;(3)由抛物线过(﹣m,0),(3m,0),可得﹣=m,b=﹣2am,把(﹣m,0),(3m,0)代入y=ax2+bx+3变形可得am2+1=0,故b2+4a=(﹣2am)2+4a=4a(am2+1)=4a×0=0.【解析】(1)解:当m=﹣1时,二次函数y=ax2+bx+3图象过点(1,0)和(﹣3,0),∴,∴a的值是﹣1,b的值是﹣2;(2)解:∵y=ax2+bx+3图象过点(﹣m,0)和(3m,0),∴抛物线的对称轴为直线x=m,∵y=ax2+bx+3的图象过点A(n,3),(0,3),且点A不在坐标轴上,∴由图象的对称性得n=2m,∴m=,∵﹣2<m<﹣1,∴﹣2<<﹣1,∴﹣4<n<﹣2;(3)证明:∵抛物线过(﹣m,0),(3m,0),∴抛物线对称轴为直线x==m,∴﹣=m,∴b=﹣2am,把(﹣m,0),(3m,0)代入y=ax2+bx+3得:,①×3+②得:12am2+12=0,∴am2+1=0,∴b2+4a=(﹣2am)2+4a=4a(am2+1)=4a×0=0.【点睛】本题考查二次函数图象上点坐标的特征,涉及待定系数法,不等式,方程组等知识,解题的关键是整体思想的应用.3.(2023•宁波)如图,已知二次函数y=x2+bx+c图象经过点A(1,﹣2)和B(0,﹣5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤﹣2时,请根据图象直接写出x的取值范围.【思路点拨】(1)用待定系数法求出函数表达式,配成顶点式即可得顶点坐标;(2)求出A关于对称轴的对称点坐标,由图象直接可得答案.【解析】解:(1)把A(1,﹣2)和B(0,﹣5)代入y=x2+bx+c得:,解得,∴二次函数的表达式为y=x2+2x﹣5,∵y=x2+2x﹣5=(x+1)2﹣6,∴顶点坐标为(﹣1,﹣6);(2)如图:∵点A(1,﹣2)关于对称轴直线x=﹣1的对称点C(﹣3,﹣2),∴当y≤﹣2时,x的范围是﹣3≤x≤1.【点睛】本题考查二次函数图象及性质,解题的关键是掌握待定系数法,求出函数表达式.4.(2023•绍兴)已知二次函数y=﹣x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标;②当﹣1≤x≤3时,求y的取值范围;(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.【思路点拨】(1)先把解析式进行配方,再求顶点;(2)根据函数的增减性求解;(3)根据函数的图象和系数的关系,结合图象求解.【解析】解:(1)①∵b=4,c=3时,∴y=﹣x2+4x+3=﹣(x﹣2)2+7,∴顶点坐标为(2,7).②∵﹣1≤x≤3中含有顶点(2,7),∴当x=2时,y有最大值7,∵2﹣(﹣1)>3﹣2,∴当x=﹣1时,y有最小值为:﹣2,∴当﹣1≤x≤3时,﹣2≤y≤7.(2)∵x≤0时,y的最大值为2;x>0时,y的最大值为3,∴抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线开口向下,x≤0时,y的最大值为2,∴c=2,又∵,∴b=±2,∵b>0,∴b=2.∴二次函数的表达式为y=﹣x2+2x+2.【点睛】本题考查了二次函数的性质,掌握数形结合思想是解题的关键.5.(2023•湖州)某水产经销商以每千克30元的价格购进一批某品种淡水鱼,由销售经验可知,这种淡水鱼的日销售量y(千克)与销售价格x(元/千克)(30≤x<60)存在一次函数关系,部分数据如表所示:销售价格x(元/千克)5040日销售量y(千克)100200(1)试求出y关于x的函数表达式.(2)设该经销商销售这种淡水鱼的日销售利润为W元,如果不考虑其他因素,求当销售价格x为多少时,日销售利润W最大?最大的日销售利润是多少元?【思路点拨】(1)设y与x之间的函数关系式为y=kx+b,由表中数据即可得出结论;(2)根据每日总利润=每千克利润×销售量列出函数解析式,根据函数的性质求最值即可.【解析】解:(1)设y关于x的函数表达式为y=kx+b(k≠0).将x=50,y=100和x=40,y=200分别代入,得:,解得:,∴y关于x的函数表达式是:y=﹣10x+600.(2)W=(x﹣30)(﹣10x+600)=﹣10x2+900x﹣18000.当x=﹣=45时,在30≤x<60的范围内,W取到最大值,最大值是2250.答:销售价格为每千克45元时,日销售利润最大,最大日销售利润是2250元.【点睛】本题考查一次函数、二次函数的应用,关键是根据等量关系写出函数解析式.6.(2023•温州)一次足球训练中,小明从球门正前方8m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m时,球达到最高点,此时球离地面3m.已知球门高OB为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?【思路点拨】(1)求出抛物线的顶点坐标为(2,3),设抛物线为y=a(x﹣2)2+3,用待定系数法可得y=﹣(x﹣2)2+3;当x=0时,y=﹣×4+3=>2.44,知球不能射进球门.(2)设小明带球向正后方移动m米,则移动后的抛物线为y=﹣(x﹣2﹣m)2+3,把点(0,2.25)代入得m=﹣5(舍去)或m=1,即知当时他应该带球向正后方移动1米射门,才能让足球经过点O正上方2.25m处.【解析】解:(1)∵8﹣6=2,∴抛物线的顶点坐标为(2,3),设抛物线为y=a(x﹣2)2+3,把点A(8,0)代入得:36a+3=0,解得a=﹣,∴抛物线的函数表达式为y=﹣(x﹣2)2+3;当x=0时,y=﹣×4+3=>2.44,∴球不能射进球门.(2)设小明带球向正后方移动m米,则移动后的抛物线为y=﹣(x﹣2﹣m)2+3,把点(0,2.25)代入得:2.25=﹣(0﹣2﹣m)2+3,解得m=﹣5(舍去)或m=1,∴当时他应该带球向正后方移动1米射门,才能让足球经过点O正上方2.25m处.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,把实际问题转化为数学问题解决.7.(2023•湖州)如图1,在平面直角坐标系xOy中,二次函数y=x2﹣4x+c的图象与y轴的交点坐标为(0,5),图象的顶点为M.矩形ABCD的顶点D与原点O重合,顶点A,C分别在x轴,y轴上,顶点B的坐标为(1,5).(1)求c的值及顶点M的坐标.(2)如图2,将矩形ABCD沿x轴正方向平移t个单位(0<t<3)得到对应的矩形A′B′C′D′.已知边C′D′,A′B′分别与函数y=x2﹣4x+c的图象交于点P,Q,连接PQ,过点P作PG⊥A′B′于点G.①当t=2时,求QG的长;②当点G与点Q不重合时,是否存在这样的t,使得△PGQ的面积为1?若存在,求出此时t的值;若不存在,请说明理由.【思路点拨】(1)运用待定系数法将(0,5)代入y=x2﹣4x+c,即可求得c的值,再利用配方法将抛物线的解析式化为顶点式或运用顶点公式即可求得答案;(2)①当t=2时,D′,A′的坐标分别是(2,0),(3,0).进而可求得点P、Q的纵坐标,利用QG =y Q﹣y G,即可求得答案;②根据题意,得:P(t,t2﹣4t+5),Q(t+1,t2﹣2t+2),G(t+1,t2﹣4t+5),分两种情况:当点G在点Q的上方时,当点G在点Q的下方时,分别求得t的值即可.【解析】解(1)∵二次函数y=x2﹣4x+c的图象与y轴的交点坐标为(0,5),∴c=5,∴y=x2﹣4x+5=(x﹣2)2+1,∴顶点M的坐标是(2,1).(2)①如图1,∵A在x轴上,B的坐标为(1,5),∴点A的坐标是(1,0).当t=2时,D′,A′的坐标分别是(2,0),(3,0).当x=3时,y=32﹣4×3+5=2,即点Q的纵坐标是2.当x=2时,y=1,即点P的纵坐标是1.∵PG⊥A′B′,∴点G的纵坐标是1,∴QG=2﹣1=1.②存在.理由如下:∵△PGQ的面积为1,PG=1,∴QG=2.根据题意,得:P(t,t2﹣4t+5),Q(t+1,t2﹣2t+2),∴G(t+1,t2﹣4t+5),如图2,当点G在点Q的上方时,QG=t2﹣4t+5﹣(t2﹣2t+2)=3﹣2t=2,此时(在0<t<3的范围内).如图3,当点G在点Q的下方时,QG=t2﹣2t+2﹣(t2﹣4t+5)=2t﹣3=2,此时(在0<t<3的范围内).综上所述,存在t,使得△PGQ的面积为1,此时t的值为或.【点睛】本题是二次函数综合题,考查了待定系数法,抛物线的顶点,平移变换的性质,三角形面积等,运用数形结合思想和分类讨论思想是解题关键.8.(2023•金华)如图,直线y=与x轴,y轴分别交于点A,B,抛物线的顶点P在直线AB上,与x轴的交点为C,D,其中点C的坐标为(2,0),直线BC与直线PD相交于点E.(1)如图2,若抛物线经过原点O.①求该抛物线的函数表达式;②求的值.(2)连结PC,∠CPE与∠BAO能否相等?若能,求符合条件的点P的横坐标;若不能,试说明理由.【思路点拨】(1)①由抛物线经过原点O(0,0)、C(2,0),可得抛物线的顶点P(1,),利用待定系数法可得抛物线的函数表达式为y=﹣x2+3x;②先求出A(﹣2,0),B(0,),运用待定系数法可得直线OP的解析式为y=x,过点B作BF∥x轴交OP于点F,F(,),可得BF=,再由BF∥OC,得出△BEF∽△CEO,进而可得===;(2)分四种情形,分别作出图形求解即可.【解析】解:(1)①∵抛物线经过原点O (0,0)、C (2,0),∴对称轴为直线x =1,当x =1时,y =×1+=,∴抛物线的顶点P (1,),设抛物线的解析式为y =a (x ﹣1)2+,把C (2,0)代入,得a +=0,解得:a =﹣,∴y =﹣(x ﹣1)2+=﹣x 2+3x ,∴该抛物线的函数表达式为y =﹣x 2+3x ;②∵直线y =与x 轴,y 轴分别交于点A ,B ,∴A (﹣2,0),B (0,),设直线OP 的解析式为y =kx ,把P (1,)代入,得:k =,∴直线OP 的解析式为y =x ,如图,过点B 作BF ∥x 轴交OP 于点F ,则点F 的纵坐标与点B 的纵坐标相同,∴=x ,解得:x =,∴F (,),∴BF=,∵BF∥OC,∴△BEF∽△CEO,∴===,∴的值为.(2)设点P的横坐标为t,①如图2﹣1,当t>2,存在∠CPE=∠BAO,设∠CPE=∠BAO=α,∠APC=β,则∠APD=α+β,∵∠PCD=∠PAO+∠APC=α+β,∵PC=PD,∴∠PDC=∠PCD=∠APD,∴AP=AD=2t,过点P作PF⊥x轴于点F,则AF=t+2,在Rt△APF中,cos∠BAO==,∴=,∴t=6.②如图2﹣2中,当0<t≤2时,存在∠CPE=∠BAO.过点P作PF⊥x轴于点F,同法cos∠BAO==,∴=,∴t=.③如图2﹣3中,当﹣2<t≤0时,存在∠CPE=∠BAO=α,∵PC=PD,∴∠CPE=α,∴∠BAO﹣∠PDC=α,∴∠APD=∠PDA,∴AD=AP=﹣2t,同法cos∠BAO==,∴=,∴t=﹣.④当t≤﹣2时,同法cos∠BAO==,=,∴t=﹣【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,一次函数与二次函数综合运用,勾股定理,等腰三角形性质,相似三角形的判定和性质等,添加辅助线构造相似三角形是解题关键.9.(2023•浙江)在二次函数y=x2﹣2tx+3(t>0)中.(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为﹣2,求出t的值;(3)如果A(m﹣2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3.求m的取值范围.(2)抛物线y=x2﹣2tx+3对称轴为x=t.若0<t≤3,有t2﹣2t2+3=﹣2,若t>3,有9﹣6t+3=﹣2,解方程并检验可得t的值为;(3)根据A(m﹣2,a),C(m,a)都在这个二次函数的图象上,可得二次函数y=x2﹣2tx+3的对称轴直线x=t即为直线x==m﹣1,由t>0,得m>1,因m﹣2<m,知A在对称轴左侧,C在对称轴右侧,抛物线y=x2﹣2tx+3与y轴交点为(0,3),其关于对称轴直线x=m﹣1的对称点为(2m﹣2,3),由b<3,知4<2m﹣2,m>3;①当A(m﹣2,a),B(4,b)都在对称轴左侧时,y随x的增大而减小,有4<m﹣2,可得m满足的条件为m>6;②当A(m﹣2,a)在对称轴左侧,B(4,b)在对称轴右侧时,B(4,b)到对称轴直线x=m﹣1距离大于A(m﹣2,a)到对称轴直线x=m﹣1的距离,故4﹣(m﹣1)>m﹣1﹣(m﹣2),得:m<4,m满足的条件是3<m<4.【解析】解:(1)将(2,1)代入y=x2﹣2tx+3得:1=4﹣4t+3,(2)抛物线y=x2﹣2tx+3对称轴为x=t.若0<t≤3,当x=t时函数取最小值,∴t2﹣2t2+3=﹣2,解得t=;若t>3,当x=3时函数取最小值,∴9﹣6t+3=﹣2,解得(不符合题意,舍去);综上所述,t的值为;(3)∵A(m﹣2,a),C(m,a)都在这个二次函数的图象上,∴二次函数y=x2﹣2tx+3的对称轴直线x=t即为直线x==m﹣1,∴t=m﹣1,∵t>0,∴m﹣1>0,解得m>1,∵m﹣2<m,∴A在对称轴左侧,C在对称轴右侧,在y=x2﹣2tx+3中,令x=0得y=3,∴抛物线y=x2﹣2tx+3与y轴交点为(0,3),∴(0,3)关于对称轴直线x=m﹣1的对称点为(2m﹣2,3),∵b<3,∴4<2m﹣2,解得m>3;①当A(m﹣2,a),B(4,b)都在对称轴左侧时,∵y随x的增大而减小,且a<b,∴4<m﹣2,解得m>6,此时m满足的条件为m>6;②当A(m﹣2,a)在对称轴左侧,B(4,b)在对称轴右侧时,∵a<b,∴B(4,b)到对称轴直线x=m﹣1距离大于A(m﹣2,a)到对称轴直线x=m﹣1的距离,∴4﹣(m﹣1)>m﹣1﹣(m﹣2),解得:m<4,此时m满足的条件是3<m<4,综上所述,3<m<4或m>6.【点睛】本题考查二次函数的综合应用,涉及函数图象上点坐标的特征,解题的关键是分类讨论思想的应用.10.(2023•衢州)某龙舟队进行500米直道训练,全程分为启航,途中和冲刺三个阶段.图1,图2分别表示启航阶段和途中阶段龙舟划行总路程s(m)与时间t(s)的近似函数图象.启航阶段的函数表达式为s=kt2(k≠0);途中阶段匀速划行,函数图象为线段;在冲刺阶段,龙舟先加速后匀速划行,加速期龙舟划行总路程s(m)与时间t(s)的函数表达式为s=k(t﹣70)2+h(k≠0).(1)求出启航阶段s(m)关于t(s)的函数表达式(写出自变量的取值范围).(2)已知途中阶段龙舟速度为5m/s.①当t=90s时,求出此时龙舟划行的总路程.②在距离终点125米处设置计时点,龙舟到达时,t≤85.20s视为达标.请说明该龙舟队能否达标.(3)冲刺阶段,加速期龙舟用时1s将速度从5m/s提高到5.25m/s,之后保持匀速划行至终点.求该龙舟队完成训练所需时间(精确到0.01s).【思路点拨】(1)把A(20,50)代入s=kt2得出k的值,则可得出答案;(2)①设s=5t+b,把(20,50)代入,得出50=5×20+b,求得b=﹣50,当t=90时,求出s=400,则可得出答案;②把s=375代入s=5t﹣50,求得t=85,则可得出答案;(3)由(1)可知k=,把(90,400)代入s=,求得h=350.求出s=405.125,则可得出答案.【解析】解:(1)把A(20,50)代入s=kt2得50=400k,解得,∴启航阶段总路程s关于时间t的函数表达式为s=(0<t≤20);(2)①设s=5t+b,把(20,50)代入,得50=5×20+b,解得b=﹣50,∴s=5t﹣50.当t=90时,s=450﹣50=400.∴当t=90s时,龙舟划行的总路程为400m.②500﹣125=375,把s=375代入s=5t﹣50,得t=85.∵85<85.20,∴该龙舟队能达标.(3)加速期:由(1)可知k=,把(90,400)代入s=,得h=350.∴函数表达式为s=,把t=91代入s=,解得s=405.125.∴(500﹣405.125)÷5.25≈18.07(s),∴90+1+18.07=109.07(s).答:该龙舟队完成训练所需时间为109,07s.【点睛】本题是二次函数综合题,考查了二次函数的应用,一次函数的性质,二次函数图象上点的坐标特征,待定系数法,根据条件准确得到表达式是解题关键.11.(2024•嘉善县一模)已知二次函数y=ax2+bx+c(a≠0),且a>b>c,a+b+c=0.(1)当b=0时,求方程ax2+bx+c=0的根;(2)已知该二次函数的对称轴为x=m,求证:;(3)已知该二次函数的图象与x轴,y轴分别交于A(x1,0),B(x2,0),C(0,c)三点(A在B的左侧),且x1+4x2=0,若△ABC为直角三角形,求该二次函数表达式.【思路点拨】(1)当b=0时,方程为:ax2+c=0,即可求解;(2)证明a>0且c<0,即可求解;(3)若△ABC为直角三角形,则只存在∠ACB为直角,即可求解.【解析】(1)解:∵a>b>c,a+b+c=0,则a>0且c<0,当b=0时,方程为:ax2+c=0,解得:x=±;(2)证明:由(1)知,a>0且c<0,则a+b=﹣c>0,即a+b>0,则﹣<1,即﹣<,∴;(3)解:∵a>0且c<0,且x1+4x2=0,解:由(1)知,抛物线的表达式为:y=ax2+bx+(﹣a﹣b),则x1+x2=﹣且x1x2=﹣,将x1+4x2=0代入上式两式得:4x2==1+=1+3x2,解得:x2=1,则x1=﹣4,即点A、B的坐标分别为:(﹣4,0)、(1,0),则可大致画出函数的图象如下:若△ABC为直角三角形,则只存在∠ACB为直角,则∵∠ACO+∠OCB=90°,∠OCB+∠OBC=90°,∴∠ACO=∠OBC,∴tan∠ACO=tan∠OBC,则OC2=OA×OB,即CO2=1×4=4,解得:CO=2,则点C(0,﹣2),由题意得,抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),则﹣4a=﹣2,解得:a=,则抛物线的表达式为:y=x2﹣x﹣2.【点睛】本题考查的是二次函数综合运用,涉及到解直角三角形、直角三角形的性质等熟悉二次函数的图象和性质是解题的关键.1.二次函数的应用:应用待定系数法,根据条件准确得到表达式是解题关键.2.二次函数的综合问题:熟练掌握待定系数法求函数的解析式,一次函数的图象与性质,二次函数的图象与性质,函数图象上点的特征是解题的关键.3.要重视数形结合在解决二次函数综合问题中的作用.1.在平面直角坐标系中,设二次函数y=ax2+bx﹣4a(a,b是常数,a≠0).(1)判断该函数图象与x轴的交点个数,并说明理由;(2)若该函数图象的对称轴为直线x=2,A(x1,m),B(x2,m)为该函数图象上的任意两点,其中x1<x2,求当x1,x2为何值时,m=8a;(3)若该函数图象的顶点在第二象限,且过点(1,2),当a<b时求3a+b的取值范围.【思路点拨】(1)依据题意,求出Δ=b2﹣4a(﹣4a)=b2+16a2,进而结合a≠0可以判断Δ>0,即可求解;(2)依据题意,也有对称轴为直线x=2,可得b=﹣4a,从而y=ax2+bx﹣4a=ax2﹣4ax﹣4a,当y1=y2=8a时,即y=ax2﹣4ax﹣4a=8a,然后计算即可求解;(3)依据题意,由(1)知,函数图象与x轴的交点个数为2且图象的顶点在第二象限,则抛物线开口向下,即a<0,进而求解.【解析】解:(1)由题意得,Δ=b2﹣4a(﹣4a)=b2+16a2,又a≠0,∴a2>0.∴16a2>0.又对于任意的b都有b2≥0,∴Δ=b2+16a2>0.∴函数图象与x轴的交点个数为2.(2)∵x=2=﹣,∴b=﹣4a.∴抛物线表达式为y=ax2+bx﹣4a=ax2﹣4ax﹣4a,当y1=y2=8a时,即y=ax2﹣4ax﹣4a=8a,解得x=6或﹣2,则x1=﹣2,x2=6.(3)将(1,2)代入抛物线表达式得:2=a+b﹣4a,则b=3a+2,∵a<b,故a<3a+2,∴解得a>﹣1.∴抛物线的表达式为y=ax2+(3a+2)x﹣4a,由(1)知,函数图象与x轴的交点个数为2且图象的顶点在第二象限,∴抛物线开口向下,即a<0.∴函数的对称轴x=﹣=﹣﹣<0,解得a<﹣,∴﹣1<a<﹣.∴﹣3<3a<﹣2.故﹣1<3a+2<0,即﹣1<b<0.∴﹣4<3a+b<﹣2.∴3a+b的取值范围:﹣4<3a+b<﹣2.【点睛】本题主要考查的是抛物线与x轴的交点、函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.2.在二次函数y=﹣x2+ax+1中(a≠0).(1)当a=2时,①求该二次函数图象的顶点坐标;②当0≤x≤3时,求y的取值范围;(2)若A(a﹣2,b),B(a,c)两点都在这个二次函数的图象上,且b<c,求a的取值范围.【思路点拨】(1)①把解析式化成顶点式即可求得;②根据二次函数的性质,可以得到当0<x<3时,y的取值范围;(2)根据抛物线的对称性及增减性即可解决问题.【解析】解:(1)①把a=2代入得y=﹣x2+2x+1=﹣(x﹣1)2+2,∴抛物线的顶点坐标为(1,2);②∵y=﹣x2+2x+1的开口向下,对称轴为直线x=1,∴当0≤x≤1时,y随x的增大而增大,当1≤x≤3时,y随x的增大而减小,∴当x=1时,y有最大值2.∵当x=0时,y=1;当x=3时,y=﹣2∴当0≤x≤3时,﹣2≤y≤2;(2)抛物线的对称轴为直线,①当,即0≤a≤4时,点B到对称轴的距离小于点A到对称轴的距离,∴,解得a<2,∴0≤a<2②当,即a<0时,点B到对称轴的距离小于点A到对称轴的距离,∴成立,∴a<0③对称轴在点A左侧不合题意,舍去,综上所述,a<2.【点睛】本题考查二次函数图象与系数的关系,二次函数图象上点的坐标特征及二次函数的性质,熟知二次函数的图象和性质及巧用分类讨论的数学思想是解题的关键.3.已知二次函数y=x2﹣2kx+k﹣2的图象过点(5,5).(1)求二次函数的表达式.(2)若A(x1,y1)和B(x2,y2)都是二次函数图象上的点,且x1+2x2=2,求y1+y2的最小值.(3)若点P(a,n)和Q(b,n+2)都在二次函数的图象上,且a<b.对于某一个实数n,若b﹣a的最小值为1,则b﹣a的最大值为多少?【思路点拨】(1)利用待定系数法即可求解;(2)根据图象上点的坐标特征得出y1+y2=﹣4x1+﹣4x2,由x1+2x2=2可知x1=2﹣2x2,即可求得y1+y2=﹣4x1+﹣4x2=5(x2﹣)2﹣,利用二次函数的性质即可求得最小值;(3)由题意可知当点P(a,n)和Q(b,n+2)在对称轴的同侧时b﹣a的值最小,当点P(a,n)和Q (b,n+2)在异侧是b﹣a的值最大,据此求解即可.【解析】解:(1)∵二次函数y=x2﹣2kx+k﹣2的图象过点(5,5),∴5=25﹣10k+k﹣2,∴k=2,∴二次函数的表达式为y=x2﹣4x;(2)∵A(x1,y1)和B(x2,y2)都是二次函数图象上的点,∴y1=﹣4x1,y2=﹣4x2,∴y1+y2=﹣4x1+﹣4x2,∵x1+2x2=2,∴x1=2﹣2x2,∴y1+y2=﹣4x1+﹣4x2=(2﹣2x2)2﹣4(2﹣2x2)+﹣4x2=5﹣4x2﹣4=5(x2﹣)2﹣,∵5>0,∴y1+y2的最小值是﹣;(3)∵抛物线y=x2﹣4x=(x﹣2)2﹣4,∴t图象开口向上,对称轴为直线x=2,∵点P(a,n)和Q(b,n+2)都在二次函数的图象上,且a<b.对于某一个实数n,若b﹣a的最小值为1,∴点P(a,n)和Q(b,n+2)在对称轴的右侧,此时b﹣a=1,则b=a+1,∴a2﹣4a=n①,(a+1)2﹣4(a+1)=n+2②,②﹣①得a=,∴b=a+1=,∴此时点P(,n)和Q(,n+2),当点P是点(,n)的对称点时,则b﹣a的值最大,∵对称轴为直线x=2,∴点(,n)的对称点为(,n),∴此时a=,∴b﹣a的最大值为:﹣=2.【点睛】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数的最值,掌握二次函数的性质是解题的关键.4.定义:对于y关于x的函数,函数在x1≤x≤x2(x1<x2)范围内的最大值,记作M[x1,x2].如函数y=2x,在﹣1≤x≤3范围内,该函数的最大值是6,即M[﹣1,3]=6.请根据以上信息,完成以下问题:已知函数y=(a﹣1)x2﹣4x+a2﹣1(a为常数).(1)若a=2.①直接写出该函数的表达式,并求M[1,4]的值;②已知,求p的值.(2)若该函数的图象经过点(0,0),且M[﹣3,k]=k,求k的值.【思路点拨】(1)①将a值代入运算即可,利用新定义的规定计算即可;②令y=3,求得x值,再利用新定义的规定解答即可;(2)利用待定系数法求得a值,再利用分类讨论的方法,依据新定义的规定列出关于k的方程解答即可.【解析】解:(1)①∵a=2,∴y=x2﹣4x+3.∵[1,4],∴1≤x≤4.∴当x=4时,y=x2﹣4x+3=3,取得最大值,∴M[1,4]=3;②∵,∴当p≤x≤时,函数y取得最大值3,令y=3,则x2﹣4x+3=3,∴x=0或x=4.∴p=0.(2)∵该函数的图象经过点(0,0),∴a2﹣1=0,∴a=±1.当a=1时,y=﹣4x,∵M[﹣3,k]=k,∴k=﹣4×(﹣3)=12,∴k=12.当a=﹣1时,y=﹣2x2﹣4x.∵y=﹣2(x+1)2+2,∴当x=﹣1时,y取得最大值为2,∵M[﹣3,k]=k,∴﹣2k2﹣4k=k,∴k=0(不合题意,舍去)或k=﹣.∵当a=﹣1时,y=﹣2x2﹣4x.∵y=﹣2(x+1)2+2,∴当x=﹣1时,y取得最大值为2,∴k=2.当﹣3≤x≤2时,函数的最大值为2,∴k=2.综上,k的值为12或k=﹣或k=2.【点睛】本题主要考查了二次函数的解析式,一次函数的性质,待定系数法,二次函数图象的性质,本题是新定义型,正确理解新定义的规定并熟练运用是解题的关键.5.设二次函数y=ax2+bx+1(a≠0,b是常数),已知函数值y和自变量x的部分对应取值如表所示:x…﹣10123…y…m1n1p…(1)若m=0时,求二次函数的表达式;(2)当﹣1≤x≤3时,y有最小值为,求a的值;(3)若a<﹣3,求证:n﹣m﹣p>20.【思路点拨】(1)利用待定系数法解答即可;(2)利用抛物线的对称性得出抛物线的对称轴为直线x=1,利用二次函数的性质得到当x=1时,函数y取得最小值,再利用待定系数法解答即可;(3)利用抛物线的对称轴为直线x=1,得到b=﹣2a,则y=ax2﹣2ax+1,利用表格求得m,np的值,并计算出n﹣m﹣p=﹣7a﹣1,再利用不等式的性质解答即可得出结论.【解析】(1)解:当m=0时,抛物线y=ax2+bx+1经过(﹣1,0),(0,1),(2,1)三点,∴,∴,∴二次函数的表达式为y=﹣x+1;(2)解:∵抛物线y=ax2+bx+1经过(0,1),(2,1)两点,∴当x=0或x=2时,y=1,∴抛物线的对称轴为直线x=1,∴y=ax2﹣2ax+1,∵当﹣1≤x≤3时,y有最小值为,∴如果a>0,当x=1时,函数y取得最小值,∴,∴.∴a的值为;如果a<0,则x=﹣1或x=3时,函数y取得最小值,∴a×(﹣1)2﹣2a×(﹣1)+1=,∴a=﹣.综上,a的值为或﹣.(3)证明:由(2)知:抛物线的对称轴为直线x=1,∴=1,∴b=﹣2a.∴y=ax2﹣2ax+1,∴m=a×(﹣1)2﹣2a×(﹣1)+1=3a+1,n=a﹣2a+1=﹣a+1,p=m=3a+1,∴n﹣m﹣p=﹣a+1﹣(3a+1)﹣(3a+1)=﹣7a﹣1.∵a<﹣3,∴﹣7a>21,∴﹣7a﹣1>20.即:n﹣m﹣p>20.【点睛】本题主要考查了二次函数的性质,待定系数法,抛物线上点的坐标的特征,二次函数的极值,熟练掌握二次函数的性质和待定系数法是解题的关键.6.(2024•浙江模拟)已知点A(m,p),B(3,q),C(m+2,p)都在二次函数y=2x2+bx+4的图象上.(1)若m=1,求该二次函数的表达式;(2)求p+q的最大值;(3)若p<q<4,求m的取值范围.【思路点拨】(1)当m=1时,根据二次函数的对称轴为直线x=﹣==m+1求出b即可;(2)根据﹣=m+1得出b=﹣4(m+1),然后求出p+q关于m的二次函数解析式,根据函数的性质求最值;(3)根据p<q<4以及二次函数的性质求出m的取值范围.【解析】解:(1)根据题意得,二次函数的对称轴为直线x=﹣==m+1,当m=1时,﹣=2,∴b=﹣8,∴二次函数的表达式为y=2x2﹣8x+4;(2)∵﹣=m+1,∴b=﹣4(m+1),把A,B坐标分别代入y=2x2+bx+4得,p=2m2﹣4(m+1)m+4=﹣2m2﹣4m+4,q=18﹣4(m+1)×3+4=﹣12m+10,∴p+q=﹣2m2﹣4m+4﹣12m+10=﹣2m2﹣16m+14=﹣2(m﹣4)2+46,∵﹣2<0,∴m=4时,p+q最大值为46;(3)∵p<q,∴m>3或m+2<3,∵q<4,∴﹣12m+10<4,解得m>,∴m的取值范围为<m<1或m>3.【点睛】本题考查待定系数法求函数解析式、二次函数的最值以及二次函数的性质,关键是利用二次函数的性质解答.7.已知二次函数y1=ax(x+b)(a≠0)和一次函数y2=ax+m.(1)若二次函数y1的图象过点(1,0)和(2,2),求二次函数的表达式.(2)若一次函数y2与二次函数y1的图象交于x轴上同一点A,且A不是原点.①求证:m=ab;②若二次函数y1与一次函数y2的另一个交点B为y1的顶点,求b的值.【思路点拨】(1)利用待定系数法解答即可;(2)①令y=0,分别求得两个函数的图象与x轴的交点,依据已知条件列出关于a,b,m的等式,整理即可得出结论;②利用配方法求得抛物线的顶点坐标,将坐标代入一次函数的解析式,再利用①的结论得到关于b的方程,解方程即可得出结论.【解析】(1)解:∵二次函数y1的图象过(1,0),(2,2)点,∴,解得:,∴二次函数的表达式为y=x2﹣x;(2)①证明:令y1=0,则ax(x+b)=0,解得:x=0或x=﹣b.∴抛物线y1=ax(x+b)与x轴交于(0,0)(﹣b,0).令y2=0,则ax+m=0,∴x=﹣.∴直线y2=ax+m与x轴交于(﹣,0),∵若一次函数y2与二次函数y1的图象交于x轴上同一点,且这个点不是原点,∴﹣=﹣b,∴m=ab;②解:∵y1=ax(x+b)=ax2+abx=a(x+)2﹣,∴二次函数的顶点为(﹣,﹣).∵两个函数图象的另一个交点为二次函数的顶点,∴a•(﹣)+m=﹣.由①知:m=ab,∴﹣+ab=﹣,解得:b=0(不合题意,舍去)或b=﹣2.∴若两个函数图象的另一个交点为二次函数的顶点,b的值为﹣2.【点睛】本题主要考查了二次函数的图象与性质,一次函数的图象与性质,待定系数法,函数图象的交点,抛物线上点的坐标的特征,一次函数图象上点的坐标的特征,熟练掌握待定系数法是解题的关键.8.(2024•宁波模拟)设一次函数y1=a(x+m)的图象与x轴交于点A,二次函数的图象与x轴交于A,B两个不同的点,设函数y=y1+y2.(1)设点Q(0,q)在函数y的图象上,若q>c,求证:am>0.(2)若函数y2,y的图象在x轴上截得的线段长分别为d1,d2,求d1,d2的数量关系式.(3)若函数y1的图象分别与函数y2的图象、函数y的图象交于点E(x1,e),F(x2,f),且点E,F不同于点A,求x1﹣x2的值.【思路点拨】(1)把y1与y2相加得y=ax2+(a+b)x+am+c,把点Q代入y,再计算即可.(2)设A(t,0),代入y1得y1=a(x﹣t).设B(k,0),又A(t,0)得y2=ax2﹣(at+ak)x+atk,故y=ax2+(a﹣at﹣ak)x+atk﹣at,设y2=ax2﹣(at+ak)x+atk两根为p、q,再计算即可.(3)由(2)知y1=a(x﹣t),y2=a(x﹣t)(x﹣k),得a(x﹣t)=a(x﹣t)(x﹣k),计算得x1=k+1.由y1=a(x﹣t),y=a(x﹣t)+ax2﹣(at+ak)x+atk,得a(x﹣t)=a(x﹣t)+ax2﹣(at+ak)x+atk,计算得x2=k.故x1﹣x2=k+1﹣k=1.【解析】解:(1)∵y1=a(x+m),,∴y=y1+y2=a(x+m)+ax2+bx+c=ax2+(a+b)x+am+c,∵点Q(0,q)在函数y的图象上,∴q=am+c,即q﹣c=am,∵q>c,∴am>0.(2)设A(t,0),代入y1=a(x+m)得:0=a(t+m),∵a≠0,∴t+m=0,∴m=﹣t,y1=a(x﹣t).设B(k,0),又A(t,0),∴y2=a(x﹣t)(x﹣k)=ax2﹣(at+ak)x+atk,∴y=a(x﹣t)+ax2﹣(at+ak)x+atk=ax2+(a﹣at﹣ak)x+atk﹣at,设y2=ax2﹣(at+ak)x+atk两根为p、q,∴p+q==t+k,pq==tk,∴=(p﹣q)2=(p+q)2﹣4pq=(t+k)2﹣4tk=t2+k2﹣2tk,即=t2+k2﹣2tk=(t﹣k)2,∴d1=,设y=ax2+(a﹣at﹣ak)x+atk﹣at两根为r、s,∴r+s==k+t﹣1,rs==kt﹣t,∴=(r﹣s)2=(r+s)2﹣4rs=(k+t﹣1)2﹣4(kt﹣t)=k2+t2﹣2tk﹣2k+2t+1,∴﹣=|(t2+k2﹣2tk)﹣(k2+t2﹣2tk﹣2k+2t+1)|=|2(k﹣t)﹣1|=±2d1﹣1,答:d1,d2的数量关系式是:﹣=±2d1﹣1.(3)由(2)知y1=a(x﹣t),y2=a(x﹣t)(x﹣k),得a(x﹣t)=a(x﹣t)(x﹣k),∴a(x﹣t)(x﹣k)﹣a(x﹣t)=0,∴a(x﹣t)(x﹣k﹣1)=0,∴x=t,x=k+1,即A(t,0),x1=k+1.由y1=a(x﹣t),y=a(x﹣t)+ax2﹣(at+ak)x+atk,得a(x﹣t)=a(x﹣t)+ax2﹣(at+ak)x+atk,∴ax2﹣(at+ak)x+atk=0,∴x2﹣(t+k)x+tk=0,∴(x﹣t)(x﹣k)=0,∴x=t,x=k,即A(t,0),x2=k.∴x1﹣x2=k+1﹣k=1.【点睛】本题考查了抛物线的知识,掌握抛物线的性质是解题关键.9.如图,小车从点A出发,沿与水平面成30°角光滑斜坡AB下滑,在下滑过程中小车速度逐渐增加,设小车出发点A离水平地面BE的高度为h,小车从点A滑行到最低点B所用的时间为t(秒),小车滑行到点B时的速度为v(厘米/秒).速度v与时间t满足关系:v=10t,高度h与时间t满足关系:(g≠0,g是常数),当小车出发点小车出发点A离水平地面BE的高度为20(厘米)时,小车从点A滑到最低点B需要2秒.(1)当小车出发点A离水平地面BE的高度为45(厘米)时,小车滑到最低点B需要几秒钟?此时小车到达B点时的速度是多少?(2)小车继续在粗糙的水平地面BE上滑行,设滑行的距离为s(厘米),小车从斜坡滑行到点B时速度为v(厘米/秒),小车在水平地面BE上滑行的时间为T(秒),若s与v,T之间满足以下关系:+vT (a≠0,a是常数),当v=20(厘米/秒)时,s=50(厘米),T=5(秒).如果把小车出发点A离水平地面BE的距离h提高到125厘米,那么当滑行到时间T=4秒时,小车在水平地面BE上滑行的距离为多少?【思路点拨】(1)先根据已知条件求出g的值,求出高度h与时间t的函数解析式,再把h=45代入解析式求出t,再把t的值代入y=10t求出速度v;(2)先把v=20,s=50,T=5代入+vT求出a的值,再根据h=125求出t,再求出v,然后求出s即可.【解析】解:(1)当t=2,h=20时,20=g×22,解得g=10,∴h=×10t2=5t2;∴当h=45时,5t2=45,解得t=3或t=﹣3(舍去),此时v=10×3=30(cm/s),答:当小车出发点A离水平地面BE的高度为45(厘米)时,小车滑到最低点B需要3秒钟,此时小车到达B点时的速度是30厘米/秒;(2)把v=20,s=50,T=5代入+vT,则50=﹣a×52+20×5,解得a=4,∴s=﹣2T2+vT,当h=125时,5t2=125,。

基础强化沪教版(上海)八年级数学第二学期第二十一章代数方程专项练习试卷(精选含答案)

基础强化沪教版(上海)八年级数学第二学期第二十一章代数方程专项练习试卷(精选含答案)

八年级数学第二学期第二十一章代数方程专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两人骑自行车从相距60千米的A 、B 两地同时出发,相向而行,甲从A 地出发至2千米时,想起有东西忘在A 地,即返回去取,又立即从A 地向B 地行进,甲、乙两人恰好在AB 中点相遇,已知甲的速度比乙的速度每小时快2.5千米,求甲、乙两人的速度,设乙的速度是x 千米/小时,所列方程正确的是( )A .32302.5x x =+B .32302.5x x =-C .34302.5x x =-D .34302.5x x=+ 2、若直线y x m =-+与直线24y x =+的交点在第一象限,则m 的取值范围是( ).A .4m ≥B .1m ≥-C .4m >D .1m >- 3、若(1)a b s s b a+=≠-,则b 可用含a 和s 的式子表示为( ) A .1a as s ++ B .1a as s -+ C .1a as s -- D .1a as s +- 4、如图所示,若一次函数y =k 1x +b 1的图象l 1与y =k 2x +b 2的图象l 2相交于点P ,则方程组1122,y k x b y k x b =+⎧⎨=+⎩的解是( )A .2,3x y =-⎧⎨=⎩B .3,2x y =⎧⎨=-⎩C .2,3x y =⎧⎨=⎩D .2,3x y =-⎧⎨=-⎩5、要把方程250363y y -=-化为整式方程,方程两边可以同乘以( ) A .3y -6 B .3y C .3 (3y -6) D .3y (y -2)6、某单位向一所希生小学赠送1080件文具,现用A ,B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个,设B 型包装箱每个可以装x 件文具,根据题意列方程为( )A .108010801215x x =+-B .108010801215x x =-- C .108010801215x x =-+ D .108010801512x x =+- 7、下面是四位同学解方程2111x x x +=--过程中去分母的一步,其中正确的是( ) A .21x x +=- B .21x x -=- C .21x x -=- D .21x +=8、2021年6月,怀柔区政府和内蒙古自治区四子王旗政府签订了《2021年东西部协作协议》,在乡村振兴、产业合作、消费帮扶、就业帮扶、教育和健康帮扶方面,按计划推动工作落实.在产业合作过程中,怀柔区为四子王旗提供设备和技术支持.运送设备使用大货车,技术人员乘坐面包车.已知怀柔区与四子王旗相距600千米,若面包车的速度是大货车的1.2倍,两车同时从怀柔区出发,大货车到达四子王旗比面包车多用43小时.求大货车和面包车的速度.设大货车速度为x 千米/小时,下面是四位同学所列的方程:①国国:60060041.23x x =+; ②佳佳:4600600+3 1.2x x=;③富富:60060041.23x x =-;④强强:60046003 1.2x x-=.其中,正确的序号是( ) A .①② B .①③ C .①④ D .②③9、在2020年3月底新过师炎疫情在我国得到快速控制,教育部要求低风险区错时、错峰开学,某校在只有初三年级开学时,一段时间用掉120瓶消毒液,在初二、初一年级也错时、错峰开学后,平均每天比原来多用4瓶消毒液,这样120瓶消毒液比原来少用5天,若设原来平均每天用掉x瓶消毒液,则可列方程是()A.12012054x x-=+B.12012054x x-=-C.12012054x x+=+D.12012054x x+=-10、小明和小强为端午节做粽子,小强比小明每小时少做2个,已知小明做100个粽子的时间与小强做90个所用的时间相等,小明、小强每小时各做粽子多少个?假设小明每小时做x个,则可列方程得()A.1009022x x=-+B.100902x x=-C.100902x x=-D.100902x x=+第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果11mm-=-,那么2m m+=______.2、若关于x的分式方程211x ax+=-的解为正数,则a的取值范围为________.3、如图,一次函数y=kx+b与正比例函数y=2x的图象交于点A,且与y轴交于点B,则一次函数y=2x-1与y=kx+b的图象交点坐标为_____________.4、根据平面直角坐标系中的函数图象判断方程组0.5 1.512y xy x=-+⎧⎨+=⎩的解为____.5、用换元法解方程222212x x x x-+=-时,如设212y x x =-,则将原方程化为关于y 的整式方程是_________ . 三、解答题(5小题,每小题10分,共计50分)1、小明在解分式方程13233x x x--=--时,过程如下: 第一步:方程整理13233x x x -=-- 第二步:去分母……(1)请你说明第一步和第二步变化过程的依据分别是 、 .(2)请把以上解分式方程的过程补充完整.2、某商店第一次用600元购进一款中性笔若干支,第二次又用750元购进该救中性笔,但这次每支中性笔的进价比第一次多1元,所购进的中性笔数量与第一次相同.(1)求第一次购进的每支中性笔的进价是多少元?(2)若这两次购进的中性笔按同一价格进行销售,全部销售完毕后获利不低于450元,求每支中性笔的售价至少是多少元?3、2020年7月24号,四川省人民政府正式批复成立南充临江新区,新区某绿化工程由甲、乙两个工程队共同参加.已知甲,乙工程队在单独完成面积为600m 2绿化时,乙队比甲队多用3天,且甲队每天完成绿化的面积是乙队每天完成面积的2倍.(1)求甲,乙两队每天各完成的绿化面积;(2)因工程进度要求在30天内完成7200m 2绿化,甲、乙两个工程队至少有多少天必须共同参加施工?4、解分式方程:(1)21133x x x x =+++. (2)11222x x x -+=--. 5、2020年3月,象群共计16头从西双版纳州进入普洱市,一路“象”北.当地政府组成大象护卫队,全程跟踪象群迁移轨迹,全景式记录大象“出走”经过.护卫队分成甲、乙两组,甲组行程120km 和乙组行程80km 所用时间相等,已知甲组的速度比乙组速度每小时快3km ,求甲、乙两组的速度.-参考答案-一、单选题1、D【分析】乙的速度是x 千米/小时,则甲的速度为(x +2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,利用时间相等列出方程即可.【详解】设乙的速度是x 千米/小时,则甲的速度为(x +2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,根据时间相等,得34302.5x x=+, 故选D .【点睛】本题考查了分式方程的应用题,正确理解题意,根据相遇时间相等列出方程是解题的关键.2、C【分析】联立两直线解析式求出交点坐标,再根据交点在第一象限列出不等式组求解即可.【详解】解:根据题意,联立方程组24y x m y x =-+⎧⎨=+⎩, 解得:43243m x m y -⎧=⎪⎪⎨+⎪=⎪⎩, 则两直线交点坐标为4(3m -,24)3m +, 两直线交点在第一象限, ∴4032403m m -⎧>⎪⎪⎨+⎪>⎪⎩, 解得:4m >,故选:C .【点睛】本题考查了两直线相交的问题,解二元一次方程组和一元一次不等式组,联立两函数解析式求交点坐标是常用的方法.3、D【分析】 先将a b s b a+=-转化为关于b 的整式方程,然后用a 、s 表示出b 即可. 【详解】 解:∵a b s b a+=-,s ≠1∴()s b a a b -=+, ∴1a asb s +=- 故选:D .【点睛】本题考查解分式方程,解答的关键是熟练掌握分式方程的一般步骤.4、A【分析】根据两个一次函数的交点坐标即可得.【详解】 解:一次函数11y k x b =+的图象1l 与22y k x b =+的图象2l 相交于点(2,3)P -,∴方程组1122y k x b y k x b =+⎧⎨=+⎩的解为23x y =-⎧⎨=⎩, 故选:A .【点睛】本题考查了利用一次函数的交点确定方程组的解,掌握函数图象法是解题关键.5、D【详解】略6、B【分析】根据题意可以列出相应的方程,本题得以解决.【详解】解:由题意可得,108010801215x x=--,故选:B.【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的方程.7、B【分析】去分母根据的是等式的性质2,方程的两边乘以最简公分母,即可将分式方程转化为整式方程.【详解】解:方程的两边同乘(x−1),得2−x=x−1.故选:B.【点睛】本题主要考查了等式的性质和解分式方程,注意:去分母时,不要漏乘不含分母的项.8、C【分析】根据题意设大货车速度为x千米/小时,则面包车的速度为1.2x千米/小时,总路程均为600千米,由路程、速度、时间之间的关系及大货车到达四子王旗比面包车多用43小时,列出方程即可得.【详解】解:设大货车速度为x千米/小时,则面包车的速度为1.2x千米/小时,总路程均为600千米,根据题意可得:60060041.23x x-=,变形为:60046003 1.2x x-=,60060041.23x x=+,∴①④正确,故选:C.【点睛】题目主要考查分式方程的应用,理解题意,熟练运用路程、速度、时间之间的关系是解题关键.9、A【分析】根据天数比原来少用5天建立等量关系.【详解】设原来平均每天用x瓶消毒液,则原来能用120x天现在每天用x+4瓶消毒液,则现在能用1204x+天,再根据少用5天得到等量关系:12012054 x x-=+故选A.【点睛】本题考查分式方程的实际应用,找到等量关系是本题的解题关键.10、C【分析】假设小明每小时做x个,则小强每小时做(x−2)个,根据题意可得:小明做100个粽子的时间与小强做90个所用的时间相等,据此列方程.【详解】解:假设小明每小时做x个,则小强每小时做(x−2)个,由题意得,100902x x=-.故选:C .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.二、填空题1、1【分析】根据已知式子变形计算即可;【详解】11m m-=-, 21m m -=-,∴21m m +=;故答案为:1.【点睛】本题主要考查了代数式求值,准确计算是解题的关键.2、1a <-且【分析】分式方程去分母转化为整式方程,由分式方程的解为正数确定出a 的范围即可.【详解】解:去分母得:21x a x +=- ,解得:1x a =-- ,由分式方程的解为正数,得到10a --> ,且11a --≠ ,解得:a <-1且a ≠-2,故答案为:1a <-且2a ≠-.【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 3、4(3,5)3【分析】首先由一次函数y kx b =+与正比例函数2y x =的图象交于点A ,将2y =代入求得A 点坐标,即为所求.【详解】解: 将2y =代入2y x =,解得1x =,∴(1,2)A ,∴一次函数2y x =与一次函数y kx b =+的图像交点坐标为(1,2), 故答案为:(1,2).【点睛】本题主要考查了两直线相交问题,求出A 点坐标是解答此题的关键.4、11x y =⎧⎨=⎩ 【分析】根据图象得出函数y =−0.5x +1.5与y =2x −1的图象的交点坐标为(1,1),从而求得方程组的解.【详解】解:∵根据图象可知交点为(1,1),所以,方程组0.5 1.512y x y x=-+⎧⎨+=⎩的解为11x y =⎧⎨=⎩, 故答案为: 11x y =⎧⎨=⎩. 【点睛】此题主要考查了二元一次方程组与一次函数的关系,关键是掌握方程组的解就是两函数图象的交点. 5、2201y y --=【分析】 将原方程变形为:()2212212x x x x⨯--=-,结合212y x x =-,换元并化为整式方程即可得到答案. 【详解】 解:∵()2212212x x x x ⨯--=-,212y x x =- ∴原式可化为:121y y-= 化为整式方程为:2201y y --=故答案为:2210y y --=【点睛】本题考查用换元法解分式方程,能够观察并将分式方程正确变形是解题重点.三、解答题1、(1)分式的基本性质,等式的性质;(2)75x =.【分析】(1)根据分式的基本性质是分式的分子与分母都乘以或除以同一个不为0的数或整式,分式的值不变,将异分母方程化为同分母的分式方程,根据等式的性质,方程两边都乘或乘以同一个不为0的数或整式,两边都乘以(x -3),可去分母把分式方程化为整式方程;(2)将方程整理,去分母,去括号,移项合并,系数化1,验根即可.(1)第一步:根据分式的基本性质将等式右边分子分母都乘以-1方程整理13233x x x -=--, 第二步:去分母根据等式的性质,等式两边都乘以(x -3),故答案为:分式的基本性质,等式的性质;(2) 解:13233x x x--=--, 第一步:方程整理13233x x x -=--, 第二步:去分母得:()1233x x --=,去括号得1263x x -+=,移项合并得57x =,系数化1得75x =. 检验:当75x =时,7833055x -=-=-≠, ∴75x =是分式方程的根. 【点睛】本题考查分式的基本性质和等式性质,解分式方程,掌握解分式方程的方法与步骤,注意转化思想的利用是解题关键.2、(1)第一次每支铅笔的进价为4元;(2)每支售价至少是6元.【分析】(1)设第一次每支铅笔进价为x 元,则第二次每支铅笔的进价为x +1元,然后根据题意列出方程求解即可;(2)设售价为y 元,再根据(1)得到的第一次和第二次每支铅笔的进价,然后根据题意列出不等式求解即可.【详解】解:(1)设第一次每支铅笔进价为x 元,由题意得6007501x x =+, 解得:4x =,经检验4x =是原分式方程的解.答:第一次每支铅笔的进价为4元;(2)设售价为y 元,第一次每支铅笔的进价为4元,则第二次每支铅笔的进价为5元, 由题意得:()()7506004545045y y ⨯-+-≥ 解得6y ≥.答:每支售价至少是6元.【点睛】本题主要考查了分式方程的实际应用、一元一次不等式的实际应用,读懂题意、根据题意列出分式方程和不等式成为解答本题的关键.3、(1)甲队每天完成的绿化面积为200m 2,乙队每天完成的绿化面积为100m 2;(2)12天【分析】(1)设乙队每天完成的绿化面积为x m 2,则甲队每天完成的绿化面积为2x m 2,利用工作时间=工作总量÷工作效率,结合甲,乙工程队在单独完成面积为600m 2绿化时乙队比甲队多用3天,即可得出关于x的分式方程,解之经检验后即可得出乙队每天完成的绿化面积,再将其代入2x中即可求出甲队每天完成的绿化面积;(2)设甲、乙两个工程队有m天共同参加施工,则甲工程队单独施工(30﹣m)天,利用工作总量=工作效率×工作时间,结合30天内至少完成7200m2绿化,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设乙队每天完成的绿化面积为x m2,则甲队每天完成的绿化面积为2x m2,依题意得:600x﹣6002x=3,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴2x=2×100=200.答:甲队每天完成的绿化面积为200m2,乙队每天完成的绿化面积为100m2.(2)设甲、乙两个工程队有m天共同参加施工,则甲工程队单独施工(30﹣m)天,依题意得:(200+100)m+200(30﹣m)≥7200,解得:m≥12.答:甲、乙两个工程队至少有12天必须共同参加施工.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.4、(1)x=32;(2)原方程无解.【分析】(1)方程两边同时乘以最简公分母3(x+1),化为整式方程,解此方程后检验即可得答案;(2)方程两边同时乘以最简公分母(x-2),化为整式方程,解此方程后检验即可得答案.解:(1)21133x xx x=+++,方程两边同时乘以3(x+1)得:3x=2x+3x+3,解得:x=32 -,检验:把x=32-,代入3(x+1)=32-≠0,∴原方程的解为:x=32 -.(2)11222xx x-+=--,方程两边同时乘以(x-2)得:1+2(x-2)=x-1,解得:x=2,检验:把x=2代入x-2=0,∴原方程无解;【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5、甲组的速度为9km/h,乙组的速度为6km/h.【分析】设乙组的速度为x km/h,则甲组的速度为(x+3)km/h,根据题意可列出关于x的分式方程,解出方程并检验,即可得出结果.【详解】解:设乙组的速度为x km/h,则甲组的速度为(x+3)km/h,依题意列方程得:120803x x=+经检验,x=6是方程的解∴x+3=6+3=9(km/h)答:甲组的速度为9km/h,乙组的速度为6km/h.【点睛】本题考查分式方程的实际应用.根据题意找出数量关系列出方程是解答本题的关键.。

培优专题23反比例函数的比例系数K和面积的关系-解析版

培优专题23反比例函数的比例系数K和面积的关系-解析版

y
k x
(k
0,
x
0)
的图象经过
OA
的中点
D
,与直角边
AB
交于点 C
,若点
A
的坐标为 4,3,则△AOC
的面
积为( )
A. 5
B. 3
5 C. 2
D. 4.5
【答案】D
【分析】直接根据点 D 是 OA 的中点即可求出 D 点坐标,由 D 点坐标即可求出反比例函数的解析式,故可
得出 AOBC 的面积,由 SA AOC SA AOB SAOBC 即可得出结论
对称的任意两点,BC∥x 轴,AC∥y 轴,△ABC 的面积记为 S,则( )
A. S m
B. S 2m
C. m S 2m
D. S 2m
【答案】B
【分析】根据 A、B 两点在曲线上可设 A、B 两点的坐标,再根据三角形面积公式列出方程,即可得到答
案.
【详解】设点 A(x,y),则点 B(-x,-y),
()
A.4 【答案】C
B.2
C.1
D.6
【分析】根据反比例函数
y=
k x
(k≠0)系数
k
的几何意义得到
SA POA
1 2
4
2, SA BOA
1 2
2
1 ,然后利用
SA POB SA POA SA BOA 进行计算即可.
【详解】解:∵PA⊥x 轴于点 A,交 C2 于点 B,

SA POA
1 2
m m m,
k k,
PA 与 PB 的关系无法确定,结论②错误;
③ 点
P
在反比例函数
y
k x

高三数学函数专题训练题

高三数学函数专题训练题

高三数学函数专题训练题(附详解)第1卷(选择题)一、单选题1. 已知定义在R 上的可导函数f(x)的导函数为f(x),满足f '(x) < f(x),且f(-x) = f(2+x),f(2)=1,则不等式f(x)< e x 的解集为( ) A.(-∞,2) B.(2,+∞) C.(1,+∞) D.(0,+∞)2. 函数y=sinx+2|sinx|,x ∈[0,2x]的图像与直线y=k 有且仅有两个不同的交点,则k 的取值范围为( )A. k ∈ [0,3]B. k ∈ [1,3]C. k ∈(1,3)D. k ∈(0,3) 3. 已知sina 1+cosa= 2,则 tana =( )A. - 43B. - 34C. 43D. 24. 定义在R 上的奇函数f(x)满足f(x+4) = f(x),当x ∈(0,2)时,f(x)=3x -1,则f(2022)+f(2023)=( )A. -2023B. -1C. 1D. 32022 5. 设a=log 20.3,b=0.2,c=(12)0.2,则a,b,c 三者的大小关系为( ) A. a<b<c B. c<a<b C. b<c<a D. a<c<b6. 设函数f(x)(x ∈R)的导函数为f '(x),满足f '(x)>f(x),则当a>0时,f(a)与e a f(0)的大小关系为( )A. f(a)>e a f(0)B. f(a)<e a f(0)C. f(a)=e a f(0)D. 不能确定7. 已知f(x)=2x2x +1+ax+cos2x ,若f (π3)=2,则f(-π3)等于( )A. -2B. -1C. 0D. 18. 已知函数f(x)=√3sin(ωx+φ)(ω>0,-π2<φ<π2),A (13,0)为f(x)图像的对称中心,B 、C 是该图像上相邻的最高点和最低点,且|BC|=4,则下列结论正确的是( ) A. 函数f(x)的对称轴方程为x=43+4k(k ∈Z)B. 若函数f(x )在区间(0,m)内有5个零点,则在此区间内f(x )有且只有2个极小值点C. 函数f(x )在区间(0,2)上单调递增D. f(x -π3)的图象关于y 轴对称9. 已知函数f(x)={|x|x+4√x 36−x,−4<x<2,2≤x<6,若方程f(x)+αx 2=0有5个不等实根,则实数α的取值范围是( )A. (-∞,- √24) ∪ {- 13}B. [- 13,- 14] C. [13,√24] D. ( √24,+∞)∪ { 13} 10. 已知F 1,F 2分别为双曲线x 2-y 23=1的左、右焦点,直线l 过点F 2,且与双曲线右支交于A ,B 两点,O 为坐标原点,△AF 1F 2、△BF 1F 2的内切圆的圆心分别为O 1,O 2,则△OO 1O 2面积的取值范围是( ) A. (1,2√33) B. [1,2√33)C. [1,2√33] D. (1,2√33] 11. 设定义在R 上的函数f(x)与g(x)的导函数分别为f '(x)和g'(x),若g(x)-f(3-x)=2,f '(x)=g'(x-1),且g(x+2)为奇函数,g(1)=1。

精品试题冀教版八年级数学下册第二十一章一次函数专题练习试题(含答案解析)

精品试题冀教版八年级数学下册第二十一章一次函数专题练习试题(含答案解析)

八年级数学下册第二十一章一次函数专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,甲乙两人沿同一直线同时出发去往B 地,甲到达B 地后立即以原速沿原路返回,乙到达B 地后停止运动,已知运动过程中两人到B 地的距离y (km )与出发时间t (h )的关系如图所示,下列说法错误的是( )A .甲的速度是16km/hB .出发时乙在甲前方20kmC .甲乙两人在出发后2小时第一次相遇D .甲到达B 地时两人相距50km2、当2m >时,直线2y x m =+与直线4y x =-+的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限3、平面直角坐标系xOy 中,点P 的坐标为()3,44m m -+,一次函数4123y x =+的图像与x 轴、y 轴分别相交于点A 、B ,若点P 在AOB 的内部,则m 的取值范围为( )A .1m >-或0m <B .31m -<<C .10m -<<D .11m -≤≤4、一次函数21y x =-+的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限5、已知点()14,y -,()22,y 都在直线21y x =-+上,则1y 、2y 大小关系是( )A .12y y <B .12y y =C .12y y >D .不能计较6、已知正比例函数y =3x 的图象上有两点M (x 1,y 1)、N (x 2,y 2),如果x 1>x 2,那么y 1与y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定7、如图,李爷爷要围一个长方形菜园ABCD ,菜园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为24m ,设边BC 的长为xm ,边AB 的长为ym (x >y ).则y 与x 之间的函数表达式为( )A .y =﹣2x +24(0<x <12)B .y =﹣12x +12(8<x <24)C .y =2x ﹣24(0<x <12)D .y =12x ﹣12(8<x <24) 8、如图,已知点(1,2)B 是一次函数(0)y kx b k =+≠上的一个点,则下列判断正确的是( )A .0,0k b >>B .y 随x 的增大而增大C .当0x >时,0y <D .关于x 的方程2kx b +=的解是1x =9、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min 后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min 的时间修好了自行车,并立刻以原速到位于家正西方500m 的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y (m )与小豪的出发时间x (min )之向的函数图象,请根据图象判断下列哪一个选项是正确的( )A .小豪爸爸出发后12min 追上小豪B .小李爸爸的速度为300m /minC .小豪骑自行车的速度为250m /minD .爸爸到达公司时,小豪距离书店500m10、甲、乙两地之间是一条直路,在全民健身活动中,王明跑步从甲地往乙地,陈启浩骑自行车从乙地往甲地,两人同时出发,陈启浩先到达目的地,两人之间的距离s (km )与运动时间t (h )的函数关系大致如图所示,下列说法中错误的是( )A .两人出发1小时后相遇B .王明跑步的速度为8km/hC .陈启浩到达目的地时两人相距10kmD .陈启浩比王明提前1.5h 到目的地第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、直线y 1=-x +m 和y 2=2x +n 的交点如图,则不等式-x +m <2x +n 的解集是_____.2、正比例函数(1)y k x =+图像经过点(1,-1),那么k =__________.3、如图,直线y =kx +b 交坐标轴于A ,B 两点,则关于x 的不等式kx +b <0的解集是_____.4、正比例函数y =kx (k 是常数,k ≠0)的图象是一条经过______的直线,我们称它为直线y =kx .5、已知函数()325m y m x -=-+是关于x 的一次函数,则m =______.三、解答题(5小题,每小题10分,共计50分)1、某校计划为在校运会上表现突出的12名志愿者每人颁发一件纪念品,李老师前往购买钢笔和笔记本作为纪念品,如果买10支钢笔和2本笔记本,需230元;如果买8支钢笔和4本笔记本,需220元.(1)求钢笔和笔记本的单价;(2)售货员提示:当购买的钢笔超过6支时,所有的钢笔打9折.设购买纪念品的总费用为w 元,其中钢笔的支数为a .①当6a >时,求w 与a 之间的函数关系式;②李老师购买纪念品一共花了210元钱,他可能购买了多少支钢笔?2、已知 A 、B 两地相距 3km ,甲骑车匀速从 A 地前往 B 地,如图表示甲骑车过程中离 A 地的路程 y 甲(km )与他行驶所用的时间 x (min )之间的关系.根据图像解答下列问题:(1)甲骑车的速度是 km/min ;(2)若在甲出发时,乙在甲前方 1.2km 的 C 处,两人均沿同一路线同时匀速出发前往 B 地,在第 4 分钟甲追上了乙,两人到达 B 地后停止.请在下面同一平面直角坐标系中画出乙离 B 地的距离 y 乙(km )与所用时间 x (min )的关系的大致图像;(3)在(2)的条件下,求出两个函数图像的交点坐标,并解释它的实际意义.3、如图,直线l 1的函数解析式为y =﹣x +1,且l 1与x 轴交于点A ,直线l 2经过点B ,D ,直线l 1,l 2交于点C .(1)求直线l 2的函数解析式;(2)求△ABC 的面积.4、如图,长方形AOBC 在直角坐标系中,点A 在y 轴上,点B 在x 轴上,已知点C 的坐标是(8,4).(1)求对角线AB 所在直线的函数关系式;(2)对角线AB 的垂直平分线MN 交x 轴于点M ,连接AM ,求线段AM 的长;(3)若点P 是直线AB 上的一个动点,当△PAM 的面积与长方形OACB 的面积相等时,求点P 的坐标.5、已知一次函数y kx b =+的图象经过点()1,1A --和()1,3B .(1)求此一次函数的表达式;(2)点()3,5C --是否在直线AB 上,请说明理由.-参考答案-一、单选题1、D【解析】【分析】由图可知甲10小时所走路程是160km,即得甲的速度是16km/h,可判定A;根据出发时甲距B地80千米,乙距B地60千米,可判断B;由图得乙的速度是6km/h,即可得甲2小时比乙多走20km,可判断C;甲5小时达到B地可求此时乙所走路程为30km,即得甲到达B地时两人相距30km,可判断D.【详解】解:由图可知:甲10小时所走路程是80×2=160(km),∴甲的速度是16km/h,故A正确,不符合题意;∵出发时甲距B地80千米,乙距B地60千米,∴发时乙在甲前方20km,故B正确,不符合题意;由图可得乙的速度是60÷10=6(km/h),∴出发2小时,乙所走路程是6×2=12(km),甲所走路程为16×2=32(km),即甲2小时比乙多走20km,∴甲乙两人在出发后2小时第一次相遇,故C正确,不符合题意;∵甲5小时达到B地,此时乙所走路程为5×6=30(km),∴甲到达B地时两人相距60-30=30(km),故D不正确,符合题意;故选:D.【点睛】本题考查一次函数的应用,解题的关键是理解图象中特殊点的意义.2、B【解析】【分析】根据一次函数解析式中k b 、的值,判断函数的图象所在象限,即可得出结论.【详解】 解:一次函数4y x =-+中,10k =-<,40b =>∴函数图象经过一二四象限∵在一次函数2y x m =+中,10k =>,24b m =>∴直线2y x m =+经过一二三象限函数图象如图∴直线2y x m =-+与4y x =-+的交点在第二象限故选:B .【点睛】本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.3、C【解析】【分析】 由4123y x =+求出A ,B 的坐标,根据点P 的坐标得到点P 在直线443y x =-+上,求出直线与y 轴交点C 的坐标,解方程组求出交点E 的坐标,即可得到关于m 的不等式组,解之求出答案.【详解】 解:当4123y x =+中y =0时,得x =-9;x =0时,得y =12, ∴A (-9,0),B (0,12),∵点P 的坐标为()3,44m m -+,当m =1时,P (3,0);当m =2时,P (6,-4),设点P 所在的直线解析式为y=kx+b ,将(3,0),(6,-4)代入, ∴4,43k b =-=,∴点P 在直线443y x =-+上, 当x =0时,y =4,∴C (0,4),4123443y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩,解得38x y =-⎧⎨=⎩,∴E (-3,8), ∵点P 在AOB 的内部,∴3304448m m -<<⎧⎨<-+<⎩, ∴-1<m <0,故选:C ..【点睛】此题考查了一次函数与坐标轴的交点,两个一次函数图象的交点,解一元一次不等式组,确定点P 在直线443y x =-+上是解题的关键. 4、C【解析】【分析】根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数21y x =-+的图象经过第一、二、四象限,此题得解.【详解】解:∵k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,∴一次函数y =-2x +1的图象不经过第三象限.故选:C .【点睛】本题考查了一次函数图象与系数的关系,牢记“k <0,b >0⇔y=kx+b 的图象在一、二、四象限”是解题的关键.5、C【解析】【分析】根据一次函数的增减性解答.【详解】解:∵直线21y x =-+,k =-2<0,∴y 随着x 的增大而减小,∵点()14,y -,()22,y 都在直线21y x =-+上,-4<2,∴12y y >,故选:C .【点睛】此题考查了一次函数的增减性:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小,熟记性质是解题的关键.6、A【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x 1>x 2即可得出结论.【详解】∵正比例函数y =3x 中,k =3>0,∴y 随x 的增大而增大,∵x 1>x 2,∴y 1>y 2.故选:A .【点睛】本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x 的系数的关系是解题的关键.7、B【解析】【分析】根据菜园的三边的和为24m ,进而得出一个x 与y 的关系式,然后根据题意可得关于x 的不等式,求解即可确定x 的取值范围.【详解】解:根据题意得,菜园三边长度的和为24m ,即224y x +=, 所以1122y x -+=,由y >0得,11202x -+>,解得24x <,当x y >时,即1122x x >-+,解得8x >,∴824x <<,故选:B .【点睛】题目主要考查一次函数的运用及根据条件得出不等式求解,理解题意,利用不等式得出自变量的取值范围是解题关键.8、D【解析】【分析】根据已知函数图象可得0,0k b <>,是递减函数,即可判断A 、B 选项,根据0x >时的函数图象可知y 的值不确定,即可判断C 选项,将B 点坐标代入解析式,可得2k b +=进而即可判断D【详解】A.该一次函数经过一、二、四象限∴ 0,0k b <>, y 随x 的增大而减小,故A,B 不正确;C. 如图,设一次函数(0)y kx b k =+≠与x 轴交于点(,0)C c ()0c >则当x c >时,0y <,故C 不正确D. 将点(1,2)B 坐标代入解析式,得2k b +=∴关于x 的方程2kx b +=的解是1x =故D 选项正确故选D【点睛】本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.9、B【解析】【分析】根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(563,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.【详解】解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:(5x+5×12x)÷5=32x(m/min),∵公司位于家正西方500米,∴(563−10−2)×32x=500+(5+2.5)x,解得x=200,∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×32=300m/min,爸爸到达公司时,丁丁距离商店路程为:3500-(563−12)×(300+200)=5003m.综上,正确的选项为B.故选:B.【点睛】本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.10、C【解析】【分析】根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图象可知,两人出发1小时后相遇,故选项A 正确;王明跑步的速度为24÷3=8(km/h ),故选项B 正确;陈启浩的速度为:24÷1-8=16(km/h ),陈启浩从开始到到达目的地用的时间为:24÷16=1.5(h ),故陈启浩到达目的地时两人相距8×1.5=12(km ),故选项C 错误;陈启浩比王提前3-1.5=1.5h 到目的地,故选项D 正确;故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题1、x <1【解析】略2、-2【解析】【分析】由正比例函数的图象经过点的坐标,利用一次函数图象上点的坐标特征可得出-1=k +1,即可得出k 值.【详解】解:∵正比例函数(1)y k x =+的图象经过点(1,-1),∴-1=k+1,∴k=-2.故答案为:-2.【点睛】本题考查了正比例函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx是解题的关键.3、x<-2【解析】【分析】根据图象,找出在x轴下方的函数图象所对应的自变量的取值即可得答案.【详解】∵点A坐标为(-2,0),∴关于x的不等式kx+b<0的解集是x<-2,故答案为:x<-2【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合;熟练掌握函数图象法是解题关键.4、原点【解析】略5、4【解析】【分析】由一次函数的定义可知x 的次数为1,即|3−m |=1,x 的系数不为0,即()20m -≠,然后对()3120m m -=-≠,计算求解即可.【详解】 解:由题意知()3120m m -=-≠,解得2m =(舍去),4m =故答案为:4.【点睛】本题考查了一次函数,绝对值方程,解不等式.解题的关键根据一次函数的定义求解参数.三、解答题1、 (1)钢笔的单价为20元,笔记本的单价为15元.(2)①3180612w a a ;②6支或10支【解析】【分析】(1)设钢笔的单价为x 元,笔记本的单价为y 元,再根据买10支钢笔和2本笔记本,需230元;买8支钢笔和4本笔记本,需220元,列方程组,再解方程组即可;(2)①当6a >时,由总费用等于购买钢笔与笔记本的费用之和可列函数关系式,②分两种情况列方程,当6a ≤或6,a 再解方程可得答案.(1)解:设钢笔的单价为x 元,笔记本的单价为y 元,则102230,84220x y x y解得:20,15x y答:钢笔的单价为20元,笔记本的单价为15元.(2)解:①当6a >时,w 与a 之间的函数关系式为:0.9201512w a a3180,a所以w 与a 之间的函数关系式为3180612.w a a②当6a ≤时,则201512210,a a解得:6,a =当6a >时,3180210,a解得:10,a =所以李老师购买纪念品一共花了210元钱,他可能购买了6支或10支钢笔.【点睛】本题考查的是二元一次方程组的应用,一次函数的应用,掌握“确定相等关系列二元一次方程组与一次函数的关系式”是解本题的关键.2、 (1)0.5(2)见解析(3)(187,97),它的意义是当出发187min 后,乙离B 的距离和甲离A 地的距离都是97km 【解析】【分析】(1)由甲骑车6min行驶了3km,可得甲骑车的速度是0.5km/min;(2)设乙的速度为x km/min,求出乙的速度,可得乙出发后9min到达B地,即可作出图象;(3)由y甲=0.5x,y乙=1.8-0.2x,可得两个函数图象的交点坐标为(187,97),它的意义是当出发18 7min后,乙离B的距离和甲离A地的距离都是97km.(1)解:甲骑车6min行驶了3km,∴甲骑车的速度是3÷6=0.5(km/min),故答案为:0.5;(2)解:设乙的速度为x km/min,由题意得0.5×4-4x=1.2,∴x=0.2,又A、B两地相距3km,A、C两地相距1.2km,∴B、C两地相距1.8km,∴乙出发后1.8÷0.2=9(min)到达B地,在同一平面直角坐标系中画出乙离B地的距离y乙(km)与所用时间x(min)的关系的大致图象如下:(3)解:由(1)(2)可知,y 甲=0.5x ,y 乙=1.8-0.2x ,由0.5x =1.8-0.2x 得x =187, 当x =187时,y 甲=y 乙=97, ∴两个函数图象的交点坐标为(187,97), 它的意义是当出发187min 后,乙离B 的距离和甲离A 地的距离都是97km . 【点睛】 本题考查一次函数的应用,一元一次方程的应用,解题的关键是读懂题意,求出甲、乙速度从而列出函数关系式.3、 (1)y =12x ﹣3 (2)256 【解析】【分析】(1)设直线l 2的解析式为()0y kx b k =+≠,将点B 、点D 两个点代入求解即可确定函数解析式;(2)当y =0时,代入直线1l 解析式确定点A 的坐标,即可得出ABC 的底边长,然后联立两个函数解析式得出交点坐标,点C 的纵坐标即为三角形的高,利用三角形面积公式求解即可得.(1)解:设直线l 2的解析式为()0y kx b k =+≠,由直线l 2经过点()6,0B ,()4,1D -可得:6041k b k b +=⎧⎨+=-⎩, 解得:123k b ⎧=⎪⎨⎪=-⎩, ∴直线l 2的解析式为132y x =-; (2) 当y =0时,代入直线1l 解析式可得:10x -+=,解得1x =,∴()1,0A ,∴615AB =-=, 联立1321y x y x ⎧=-⎪⎨⎪=-+⎩, 解得:8353x y ⎧=⎪⎪⎨⎪=-⎪⎩,∴85,33C⎛⎫-⎪⎝⎭,∴15255236 ABCS=⨯⨯=.【点睛】题目主要考查利用待定系数法确定一次函数解析式,一次函数交点问题,理解题意,熟练掌握运用一次函数的性质是解题关键.4、(1)142y x=-+;(2)5;(3)点P的坐标为(1285,-445)或(-1285,845)【解析】【分析】(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;(2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB−BM,再次利用勾股定理得出AM的长;(3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;(方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x,−12x +4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.【详解】解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),∴AO=CB=4,OB=AC=8,∴A点坐标为(0,4),B点坐标为(8,0).设对角线AB所在直线的函数关系式为y=kx+b,则有408bk b=⎧⎨=+⎩,解得:124kb⎧=-⎪⎨⎪=⎩,∴对角线AB所在直线的函数关系式为y=-12x+4.(2)∵∠AOB=90°,∴勾股定理得:AB=∵MN垂直平分AB,∴BN=AN=12AB=∵MN为线段AB的垂直平分线,∴AM=BM设AM=a,则BM=a,OM=8-a,由勾股定理得,a2=42+(8-a)2,解得a=5,即AM=5.(3)(方法一)∵OM=3,∴点M坐标为(3,0).又∵点A坐标为(0,4),∴直线AM的解析式为y=-43x+4.∵点P在直线AB:y=-12x+4上,∴设P点坐标为(m,-12m+4),点P到直线AM:43x+y-4=0的距离h2m.△PAM的面积S△PAM=12AM•h=54|m|=SOABC=AO•OB=32,解得m=±1285,故点P的坐标为(1285,-445)或(-1285,845).(方法二)∵S长方形OACB=8×4=32,∴S△PAM=32.设点P的坐标为(x,-12x+4).当点P在AM右侧时,S△PAM=12MB•(yA-yP)=12×5×(4+12x-4)=32,解得:x=1285,∴点P的坐标为(1285,-445);当点P在AM左侧时,S△PAM=S△PMB-S△ABM=12MB•yP-10=12×5(-12x+4)-10=32,解得:x =-1285, ∴点P 的坐标为(-1285,845). 综上所述,点P 的坐标为(1285,-445)或(-1285,845). 【点睛】 本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A 、B 点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM 的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m 的一元一次方程;(方法二)利用分割图形求面积法找出关于x 的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P 有两个.5、 (1)一次函数的表达式为21y x =+;(2)点()3,5C --在直线AB 上,见解析【解析】【分析】(1)把(-1,-1)、(1,3)分别代入y =kx +b 得到关于k 、b 的方程组,然后解方程求出k 与b 的值,从而得到一次函数解析式;(2)先计算出自变量为−3时的函数值,然后根据一次函数图象上点的坐标特征进行判断.(1)解:将()1,1A --和()1,3B 代入y kx b =+,得31k b k b +=⎧⎨-+=-⎩, 解得2k =,1b =,∴一次函数的表达式为21y x =+(2)解:点C 在直线AB 上,理由:当3x =-时,()212315y x =+=⨯-+=-,∴点()3,5C --在直线AB 上.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y =kx +b ,将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数图象上点的坐标特征.。

中考数学复习考点知识讲解与练习23 二次函数图象与性质(提升篇)

中考数学复习考点知识讲解与练习23 二次函数图象与性质(提升篇)

中考数学复习考点知识讲解与练习 专题23 二次函数图象与性质(提升篇)纵观各省市中考题,二次函数为必考点,大题以压轴题形式出现,而压轴题往往分为两到三个小问题,第一问多以求二次函数解析式,二三小题多以图形变换相结合,另外考点以填空或选择题的形式出现,重在对学生二次函数的图象与性质作为考查点,鉴于此,二次函数为中考重中之中的复习内容,无论对中等生还是优秀学生都为巩固学习之内容,本中考数学复习考点知识讲解与练习 专题从基础到综合,分为基础训练篇,巩固提升篇,以数形结合为主线,汇编一系列中考数学复习考点知识讲解与练习 专题对学生补弱提优。

本专缉为老师提供有代表性的常考题,帮助学生为中考冲刺,力争学生能得以全面提升。

一、单选题1.将函数()24+1y x =-+的图象向右平移2个单位.再向下平移4个单位.所得图象的对称轴是() A .2x =-B .2x =C .4x =-D .3x =-2.若数a 使二次函数()2312y a x x a =-+++的图像与y 轴的交点坐标为正数,且使关于x 的不等式组521132x a x x x +≤-⎧⎪+-⎨>⎪⎩有且只有4个整数解,则符合条件的所有整数a 的取值的和是() A .-1B .0C .1D .23.已知二次函数222y x x k =-+-与x 轴两个交点坐标分别为1(0)x ,,2(0)x ,,若()22112424x x x k ---=,则k 的值是() A .2B .-1C .1D .-1或24.已知二次函数21y ax bx =++(a <0)的图象过点(1,0)和(x 1,0),且﹣2<x 1<﹣1,下列4个判断中:①a +b =-1;②a >b ﹣1;③b ﹣a <0;④﹣1<a <﹣12,正确的是( ) A .①②③B .①②④C .①③④D .②③④5.将拋物线C :y=2310x x +-平移到'C ,若两条拋物线C ,'C 关于直线x = 1对称,则下列平移方法中正确的是() A .将抛物线C 向右平移1个单位 B .将抛物线C 向右平移3个单位 C .将抛物线C 向右平移5个单位D .将抛物线C 向右平移6个单位6.已知()13,y -,()22,y -,()31,y 是抛物线24y x =上的点,则() A .123y y y << B .312y y y << C .321y y y <<D .231y y y <<7.在二次函数y=a 2x +bx+c 中,x 与y 的部分对应值如表:则下列说法:①该二次函数的图象经过原点;②该二次函数的图象开口向下;②该二次函数的图象经过点(−1,3);④当x>0时,y 随着x 的增大而增大; ⑤方程a 2x +bx+c=0有两个不相等的实数根.其中正确的个数有( ) A .2个B .3个C .4个D .5个8.函数23y ax bx =++.当1x =与2018x =时,函数值相等,则当2019x =时,函数值等于( ) A .-3B .32-C .32D .39.设函数()()12y x x m =--,23y x=,若当1x =时,12y y =,则() A .当1x >时,12y y < B .当1x <时,12y y > C .当0.5x <时,12y y <D .当5x >时,12y y >10.如图是抛物线()210y ax bx c a =++≠图象的一部分,抛物线的顶点坐标是()1,3A ,与x 轴的一个交点()4,0B ,直线()20y mx n m =+≠与抛物线交于A ,B 两点,下列结论:①20a b +=;②0abc >;③方程23ax bx c ++=有两个相等的实数根;④抛物线与x 轴的另一个交点是1,0;⑤当14x <<时,有12y y >;⑥()a b m am b +>+.(m 为任意实数)其中正确的是()A .①③⑥B .①④⑤C .①③⑤D .②④⑥11.若二次函数2322y x x m =+-的图象与x 轴有两个交点,则关于x 的一元二次方程2322x x m +=的根的情况是() A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定12.在同一平面直角坐标系中,函数y =ax 2﹣bx 与y =bx +a 的图象可能是()A .B .C .D .13.已知二次函数242y x x =--+,关于该函数在31x -≤≤的取值范围内,下列说法正确的是().A .有最大值6,有最小值-3B .有最大值5,有最小值-3C .有最大值6,有最小值5D .有最大值6,有最小值-114.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千,拴绳子的地方距地面都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为()A .0.5米B .2米 C . 3米D .0.85米15.函数221y x x =--的自变量x 的取值范围为全体实数,其中0x ≥部分的图象如图所示,对于此函数有下列结论:①函数图象关于y 轴对称; ②函数既有最大值,也有最小值; ③当1x <-时,y 随x 的增大而减小;④当21a -<<-时,关于x 的方程221x x a --=有4个实数根.其中正确的结论个数是() A .3B .2C .1D .0二、填空题16.一个函数有下列性质:①它的图象不经过第四象限;②图象经过点(1,2);③当x>1时,函数值y 随自变量x 的增大而增大.满足上述三条性质的二次函数解析式可以是_________(只要求写出一个).17.如图,一段抛物线()()202y x x x =--≤≤,记为1C 与x 轴交于两点O ,1A ;将1C 绕点1A 旋转180°得2C ,与x 轴交于点2A ,将2C 绕点2A 旋转180°得3C ,与x 轴交于点3A ……,按此规律继续作下去,直至得到6C ,若点23,2P m ⎛⎫⎪⎝⎭在6C 上,则m =______.18.如图,抛物线224y x x =-+与x 轴交于点O ,A ,把抛物线在x 轴及其上方的部分记为1C ,将1C 以y 轴为对称轴作轴对称得到2C ,2C 与x 轴交于点B ,若直线y = m 与1C ,2C 共有4个不同的交点,则m 的取值范围是_______________.19.抛物线的部分图象如图所示,则当y <0时,x 的取值范围是_____.20.已知抛物线y =(x ﹣m )2+n 与x 轴交于点(1,0),(4,0),则关于x 的一元二次方程(x ﹣m ﹣3)2+n =0的解是_____.21.如图,在△ABC 中,点P 从点A 出发向点C 运动,在运动过程中,设x 表示线段AP 的长,y 表示线段BP 的长,y 与x 之间的函数关系如图②所示,其中,M 为曲线部分的最低点,则△ABC 的面积为________22.如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 的坐标分别为(0,2),(1,0),顶点C 在函数22y x bx =+-的图象上,将正方形沿x 轴正方向平移后得到正方形A B C D '''',当点D 的对应点D '落在抛物线上时,则DD '的长为____________.23.如图,抛物线()()13y a x x =+-与x 轴交于A ,B 两点(点A 在B 的左侧),点C 为抛物线上任意一点....(不与A ,B 重合),BD 为ABC 的AC 边上的高线,抛物线顶点E 与点D 的最小距离为1,则抛物线解析式为______.24.如图,一段抛物线:(2)(02)y x x x =--≤≤记为1C ,它与x 轴交于点1,O A ;将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ⋯如此进行下去,则2020C 的顶点坐标是_______.25.如图,在平面直角坐标系中,点A ,B 是一次函数y x =图像上两点,它们的横坐标分别为1,4,点E 是抛物线248y x x =-+图像上的一点,则ABE △的面积最小值是______. 本号资料@皆来*源于微信公众号:数学第#六感26.在平面直角坐标系中,点A 是抛物线()24y a x k =-+与y 轴的交点,点B 是这条抛物线上的另一点,且//AB x 轴,则以AB 为边的等边三角形ABC 的周长为_____.27.点A 为y 轴正半轴上一点,A ,B ,两点关于x 轴对称,过点A 任作直线交抛物线223y x =于P ,Q 两点.若点A 的坐标为(0,1),且60PBQ ∠=,则所有满足条件的直线PQ 的函数解析式为:_______.28.如图,抛物线223y x x =--+与x 轴交于A ,B 两点,与y 轴交于点C .若E 为射线CA 上一点,(,)F m n 为抛物线上一点,E 、A 是位于直线BF 同侧的不同两点,若2||EFBSn =,连接AF ,FAE AEB ∠=∠,则点E 的坐标为__________.29.如图,已知点B (3,3)、C (0,6)是抛物线24y ax x c =-+ (0a ≠)上两点,A 是抛物线的顶点,P 点是x 轴上一动点,当PA+PB 最小时,P 点的坐标是_____.30.如图,点A 1、A 2、A 3、…、A n 在抛物线y =x 2图象上,点B 1、B 2、B 3、…、B n 在y 轴上,若△A 1B 0B 1、△A 2B 1B 2、…、△A n B n ﹣1B n 都为等腰直角三角形(点B 0是坐标原点),则△A 2022B 2022B 2022的腰长=_____.三、解答题31.新冠肺炎期间,某超市将购进一批口罩进行销售,已知购进4盒甲口罩和6盒乙口罩需260元,购进5盒甲口罩和4盒乙口罩需220元.两种口罩以相同的售价销售,甲口罩的销售量1y (盒)与售价x (元)之间的关系为14008y x =-;当售价为40元时,乙口罩可销售100盒,售价每提高1元,少销售5盒.(1)求甲、乙两种口罩每盒的进价分别为多少元?(2)当乙口罩的售价为多少元时,乙口罩的销售总利润最大?此时甲乙两种口罩的销售利润总和为多少?(3)当甲口罩的销售量不低于乙口罩的销售量的1415,若使两种口罩的总利润最高,求此时的定价为多少?32.如图,抛物线26y ax x c =++交x 轴于A ,B 两点,交y 轴于点C .直线5y x =-经过点B ,C .(1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M .①当AM BC ⊥时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标;②连接AC ,当直线AM 与直线BC 的夹角等于ACB ∠的2倍时,请直接写出点M 的坐标.33.如图,在平面直角坐标系中,直线210y x =-+与x 轴,y 轴相交于A ,B 两点.点C 的坐标是()8,4,连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断ABC 的形状;(2)抛物线上是否存在着一点P ,使PAB △的面积为25?若存在,求出P 的坐标,若不存在,请说明理由;(3)在抛物线上,是否存在着一点M ,使ABM 为以AB 为斜边的直角三角形?若存在,请直接写出M 的坐标;若不存在,请说明理由.34.如图,在平面直角坐标系中,已知抛物线2y ax bx c =++与x 轴交于点A ,点B ,与y 轴交于点C ,其中()4,0A -,()2,0B ,()0,4C -.(1)求该抛物线的函数表达式:(2)若点D 是y 轴上的点,且以A ,C ,D 为顶点的三角形与ABC 相似,求点D 的坐标.(3)点P 是抛物线2y ax bx c =++的对称轴上的一点,点S 是坐标平面内一点,若以A ,C ,P ,S 为顶点的四边形是菱形,请直接写出所有符合条件的点P 的坐标.。

2022年中考数学训练 专题八 二次函数及其应用

2022年中考数学训练 专题八 二次函数及其应用

专题八二次函数及其应用一、单选题1.(2022·衢州)二次函数y=x²的图象平移后经过点(2,0),则下列平移方法正确的是()A. 向左平移2个单位,向下平移2个单位B. 向左平移1个单位,向上平移2个单位C. 向右平移1个单位,向下平移1个单位D. 向右平移2个单位,向上平移1个单位2.(2022·温州)已知(-3,y1),(-2,y2),(1,y3)是抛物线y=-3x2-12x+m上的点,则( )A. y3<y2<y1B. y3<y1<y2C. y2<y3<y1D. y1<y3<y23.(2022·杭州)在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac。

设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,( )A. 若M1=2,M2=2,则M3=0B. 若M1=1,M2=0,则M3=0C. 若M1=0,M2=2,则M3=0D. 若M1=0,M2=0,则M3=04.(2022·杭州)设函数y=a(x-h)2+k(a,h,k是实数,a≠0),当x=1时,y=1,当x=8时,y=8,( )A. 若h=4,则a<0B. 若h=5,则a>0C. 若h=6,则a<0 D. 若h=7,则a>05.(2022·宁波)如图,一次函数(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x= 1.则下列选项中正确的是()A. B. C. D. 当(n为实数)时,6.(2019·温州)已知二次函数,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A. 有最大值﹣1,有最小值﹣2B. 有最大值0,有最小值﹣1C. 有最大值7,有最小值﹣1D. 有最大值7,有最小值﹣27.(2019·衢州)二次函数y=(x-1)2+3图象的顶点坐标是()A. (1,3)B. (1,-3)C. (-1,3) D. (-1,-3)8.(2019·嘉兴)小飞研究二次函数( 为常数)性质时如下结论:①这个函数图象的顶点始终在直线上;②存在一个的值,使得函数图象的顶点与轴的两个交点构成等腰直角三角形;③点与点在函数图象上,若,,则;④当时,随的增大而增大,则的取值范围为其中错误结论的序号是()A. ①B. ②C. ③D. ④9.(2019·湖州)已知a,b是非零实数,,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A. B. C. D.10.(2019·杭州)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. M=N-1或M=N+1B. M=N-1或M=N+2C. M=N或M=N+1 D. M=N或M=N-111.(2019·绍兴)D在平面直角坐标系中,抛物线y=(x+5)(x-3)经变换后得到抛物线y=(x+3)(x-5),则这个变换可以是()A. 向左平移2个单位B. 向右平移2个单位C. 向左平移8个单位D. 向右平移8个单位二、填空题12.(2018·湖州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a >0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a >0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题13.(2018·湖州)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.14.(2018·绍兴)学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形。

专题23 二次函数抛物线与三角形的综合-2023年中考数学二轮复习核心考点拓展训练(原卷版)

专题23 二次函数抛物线与三角形的综合-2023年中考数学二轮复习核心考点拓展训练(原卷版)

专题23 二次函数抛物线与三角形的综合(原卷版)第一部分 典例剖析+针对训练类型一 二次函数与直角三角形的综合1.(2022秋•利川市期末)如图1,抛物线y =ax 2+bx ﹣3交x 轴于点A (4,0)和点B (﹣1,0),交y 轴于点C .(1)求此抛物线的解析式;(2)点P 为直线AC 下方抛物线上一动点,连接PA ,PC ,求△ACP 面积的最大值;(3)如图2直线l 为该抛物线的对称轴,在直线l 上是否存在一点M 使△BCM 为直角三角形,若存在,请求出点M 的坐标,若不存在,请说明理由.针对训练1.(2022秋•渝中区期末)抛物线y =12x 2+bx +c 与x 轴交于点A (﹣2,0)和B (4,0),与y 轴交于点C ,连接BC .点P 是线段BC 下方抛物线上的一个动点(不与点B ,C 重合),过点P 作y 轴的平行线交BC 于M ,交x 轴于N ,设点P 的横坐标为t .(1)求该抛物线的解析式;(2)用关于t 的代数式表示线段PM ,求PM 的最大值及此时点M 的坐标;(3)过点C 作CH ⊥PN 于点H ,S △BMN =9S △CHM ,①求点P 的坐标;②连接CP ,在y 轴上是否存在点Q ,使得△CPQ 为直角三角形,若存在,求出点Q 的坐标;若不存在,请说明理由.类型一 二次函数与等腰三角形的综合典例2(2021秋•重庆期末)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.针对训练1.(2022秋•代县期末)综合与探究如图,抛物线y=ax2+bx+4经过A(﹣1,0),B(2,0)两点,与y轴交于点C,作直线BC.(1)求抛物线和直线BC的函数解析式.(2)D是直线BC上方抛物线上一点,求△BDC面积的最大值及此时点D的坐标.(3)在抛物线对称轴上是否存在一点P,使得以点P,B,C为顶点的三角形是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.2.(2022秋•宁陵县期中)如图,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由.类型三二次函数与等腰直角三角形的综合典例3(2022秋•洛川县校级期末)已知抛物线L₁:y=﹣x2+bx+c与x轴交于A(﹣5,0),B(﹣1,0)两点.(1)求抛物线L1的表达式;(2)平移抛物线L1得到新抛物线L2,使得新抛物线L2经过原点O,且与x轴的正半轴交于点C,记新抛物线L2的顶点为P,若△OCP是等腰直角三角形,求出点P的坐标.针对训练1.(2022秋•铁西区校级期末)已知:如图,抛物线y =ax 2+bx +c (a ≠0)与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式.(2)当△PAB 的面积最大时,求点P 的坐标.(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 作PE ∥x 轴交抛物线于点E ,连接DE ,请问是否存在点P 使△PDE 为等腰直角三角形?请直接写出点P 的坐标.第二部分 专题提优训练1.(2022秋•渝中区校级期末)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣33,0),B (3,0),与y 轴的交点为C ,且tan ∠CAO =233.(1)求该抛物线的函数表达式;(2)点D 为AB 的中点,过点D 作AC 的平行线交y 轴于点E ,点P 为抛物线上第二象限内的一动点,连接PC ,PD ,求四边形PDEC 面积的最大值及此时点P 的坐标;(3)将该抛物线y =ax 2+bx +c 向左平移得到抛物线y ',使y '经过原点,y '与原抛物线的交点为F ,点M 为抛物线y '对称轴上的一点,若以点F ,B ,M 为顶点的三角形是直角三角形,请直接写出所有满足条件的点M 的坐标,并把求其中一个点M 的坐标的过程写出来.2.(2022秋•鞍山期末)在平面直角坐标系xOy中,抛物线C1:y=ax2+bx+c(a≠0)经过(0,2),(﹣2,2)两点.(1)若抛物线C1:y=ax2+bx+c经过(1,0),求抛物线解析式;(2)抛物线C1:y=ax2+bx+c与直线y=x+2有M,N两个交点,O为坐标原点,若△MNO是以MN为腰的等腰三角形,请直接写出a的值;(3)直线y=x+2分别与抛物线C1:y=ax2+bx+c,抛物线C2:y=﹣ax2﹣bx+c恰好有三个公共点,若其中一个公共点是另外两个公共点连接线段的中点,求a的值.3.(2022秋•前郭县期末)如图,抛物线y=ax2﹣ax﹣12a经过点C(0,4),与x轴交于A,B两点,连接AC,BC,M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)直接写出a的值以及A,B的坐标:a= ,A( , ),B( , );(2)过点P作PN⊥BC,垂足为点N,设M点的坐标为M(m,0),试求PQ+2PN的最大值;(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.4.(2022•台山市校级一模)如图,抛物线y=ax2+x+6的图象与直线y=kx+b有唯一交点A(﹣1,4).(1)求抛物线和直线的解析式;(2)若抛物线与x轴的交点分别为点M、N,抛物线的对称轴上是否存在一点P,使PA+PM的值最小?如果有,请求出这个最小值,如果没有,请说明理由.(3)直线y=kx+b与x轴交于点B,点Q是x轴上一动点,请你写出使△QAB是等腰三角形的所有点Q 的横坐标.5.(2022秋•通州区期末)如图,抛物线y1=ax2﹣2x+c的图象与x轴交点为A和B,与y轴交点为D(0,3),与直线y2=﹣x﹣3交点为A和C.(1)求抛物线的解析式;(2)在直线y2=﹣x﹣3上是否存在一点M,使得△ABM是等腰直角三角形,如果存在,求出点M的坐标,如果不存在,请说明理由;(3)若点E是x轴上一个动点,把点E向下平移4个单位长度得到点F,点F向右平移4个单位长度得到点G,点G向上平移4个单位长度得到点H,若四边形EFGH与抛物线有公共点,请直接写出点E的横坐标x E的取值范围.6.(2022秋•临湘市期末)如图,抛物线y=―12x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,求出P点的坐标;如果不存在,请说明理由;(3)点F是第一象限抛物线上的一个动点,当点F运动到什么位置时,△CBF的面积最大?求出△CBF 的最大面积及此时F点的坐标.7.(2022•甘井子区校级模拟)已知抛物线y=ax2+bx+c的顶点A在x轴上.P(x1,y1),Q(x2,y2)是抛物线上两点,若x1<x2<m,则y1>y2;若x1>x2>m,则y1>y2,且当y的绝对值为1时,△APQ为等腰直角三角形(其中∠PAQ=90°).(1)求抛物线的解析式;(用含有m的式子表示)(2)当m>0,x1<m,x2>m,过点Q作QF⊥x轴,若y1•y2=1,探究∠PAO与∠AQF之间数量关系;(3)直线x=m+1(1≤m≤3)交抛物线y=ax2+bx+c于点D,将抛物线y=ax2+bx+c以直线x=m+1为对称轴向右翻折得到新抛物线,直线y=kx经过点D,交原抛物线y=ax2+bx+c的对称轴于点E,交新抛物线于另一点H,问△EAH的面积是否存在最大值或最小值,若存在,求出面积最值和m的值,若不存在,请说明理由.。

专题08二次函数应用(六大类型)(题型专练)(原卷版)2

专题08二次函数应用(六大类型)(题型专练)(原卷版)2

专题08 二次函数应用(六大类型)【题型1 运动类(1)落地模型】【题型2 运动类(2)最值模型】【题型3 经济类二次函数与一次函数初步综合】【题型4 经济类二次函数中的“每每问题”】【题型5 面积类】【题型6 拱桥类】【题型1 运动类(1)落地模型】1.(2022秋•罗山县期末)如图,一位运动员推铅球,铅球运行高度y(m)与水平距离x(m)之间的函数关系式是y=﹣.问:此运动员能把铅球推出多远?()A.12m B.10m C.3m D.4m 2.(2022秋•西岗区校级期末)小强在一次训练中,掷出的实心球飞行高度y (米)与水平距离x(米)之间的关系大致满足二次函数,则小强此次成绩为()A.8米B.9米C.10米D.12米3.(2023•普兰店区一模)在学校运动会上,初三(5)班的运动员掷铅球,铅球的高y(m)与水平距离x(m)之间函数关系式为y=﹣0.2x2+1.6x+1.8,则此运动员的成绩是()A.10m B.4m C.5m D.9m 4.(2023•阿城区一模)一名男生推铅球,铅球行进高度y(单位:米)关于水平距离x(单位:米)的函数解析式是y=﹣x2x,则该男生铅球推出的距离是米.5.(2022秋•未央区期末)体育老师将小华实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=﹣x2+9x+10,由此可知小华此次实心球训练的成绩为米.【题型2 运动类(2)最值模型】6.(2023•泰兴市二模)某学校航模组设计制作的火箭升空高度h(m)与飞行时间t(s)满足函数关系式为h=﹣t2+12t+1.如果火箭在点火升空到最高点时打开降落伞,那么降落伞将在离地面3m处打开.7.(2023春•二道区校级月考)向空中发射一枚信号弹,经x秒后的高度为y 米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此信号弹在第8秒与第14秒时的高度相等,则在秒时信号弹所在高度最高的.8.(2022秋•鄞州区期末)某型号无人机着陆后的滑行距离y(米)与滑行时间t(秒)的函数关系式满足y=﹣t2+60t,则无人机着陆后滑行的最大距离是米.9.(2022秋•交口县期末)某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线是抛物线y=﹣x2+6x(单位:米)的一部分.则水喷出的最大高度是米.时间t(单位:s)的函数解析式是s=30t﹣12t2,汽车刹车后到停下来所用的时间t是()A.2.5s B.1.5s C.1.25s D.不能确定11.(2022秋•栖霞市期末)烟花厂某种礼炮的升空高度h(m)与飞行时间t(s)间的关系是h=﹣2t2+20t+1.若这种礼炮在点升空到最高处引爆,测从点升空到引爆需要的时间为s12.(2022秋•黄冈期末)高速公路上行驶的汽车急刹车时的滑行距离s(m)与时间t(s)的函数关系式为s=30t﹣5t2,遇到紧急情况时,司机急刹车,则汽车最多要滑行m,才能停下来.【题型3 经济类二次函数与一次函数初步综合】13.(2023•鲁甸县二模)某商店销售卡塔尔世界杯的吉祥物,经市场调查发现:该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x与月销售量y的部分对应值如表:售价x/(元/件)304550月销售是y/件300150100(1)求y关于x的函数表达式.(2)若该商品的进价为24元,当售价是多少元时,月销售利润W(元)最大?并求出最大利润.[注:月销售利润=月销售量×(售价﹣进价)]14.(2023•安庆二模)“龙池香尖”是怀宁县一款中国国家地理标志产品,素有:“扬子江心水,蒙山顶上茶”的美誉.某茶庄以600元/kg的价格收购一批龙池香尖,为保护消费者的合法权益,物价部门规定每千克茶叶的利润不低于0元,且不超过进价的60%,经过试销发现,日销量y(kg)与销售单价x(元/kg)满足一次函数关系,部分数据统计如表:x(元/kg)700900…y(kg)9070…(1)根据表格提供的数据,求出y关于x的函数关系式.(2)在销售过程中,每日还需支付其他费用9000元,当销售单价为多少时,该茶庄日利润最大,并求出最大利润.15.(2023•天山区校级二模)某商场销售每件进价为50元的一种商品,物价部门规定每件售价不得高于80元,经市场调查,发现每月的销售量y(件)与每件的售价x(元)满足y=﹣2x+240.(1)商场每月想从这种商品销售中获利2250元,该如何给这种商品定价?(2)请问售价定为多少元时可获得月最大利润?最大利润是多少?16.(2023•长阳县一模)某批发商以24元/箱的进价购进某种蔬菜,销往零售超市,已知这种蔬菜的标价为45元/箱,实际售价不低于标价的八折.批发商通过分析销售情况,发现这种蔬菜的销售量y(箱)与当天的售价x(元/箱)满足一次函数关系,如表是其中的两组对应值.售价x(元/箱)…3538…销售量y(箱)…130124…(1)若某天这种蔬菜的售价为42元/箱,则当天这种蔬菜的销售最为116箱;(2)该批发商销售这种蔬菜能否在某天获利1320元?若能,请求出当天的销售价;若不能,请说明理由.(3)批发商搞优惠活动,购买一箱这种蔬菜,赠送成本为6元的土豆,这种蔬菜的售价定为多少时,可获得日销售利润最大,最大日销售利润是多少元?17.(2023•太康县一模)五一”黄金周期间,丹尼斯百货计划购进A、B两种商品.已知购进3件A商品和2件B商品,需1200元;购进2件A商品和3件B商品,需1300元.(1)A、B两种商品的进货单价分别是多少?(2)设A商品的销售单价为x(单位:元/件),在销售过程中发现:当220≤x≤380时,A商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:销售单价x(元/件)220380日销售量y(件)18020请写出当220≤x≤380时,y与x之间的函数关系式;(3)在(2)的条件下,设A商品的日销售利润为w元,当A商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?18.(2023•东莞市校级一模)某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个.(1)求遮阳伞每天的销售量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售利润最大?19.(2023•青州市二模)某超市购进了一种商品,进价为每件8元,销售过程中发现,该商品每天的销售量y(件)与每件售价x(元)之间存在某种函数关系(其中8≤x≤15,且x为整数),且当x=8时,y=110;当x=10时,y=100;当x=12时,y=90;…,设超市销售这种消毒用品每天获利为w(元).(1)请判断y与x符合哪种函数关系,并求y与x的函数表达式;(2)若该商店销售这种商品每天获润480元,则每件商品的售价为多少元;(3)当每件商品的售价为多少元时,每天的销售利润最大?最大利润是多少元?【题型4 经济类二次函数中的“每每问题”】20.(2023•黄冈二模)某商品市场销售抢手,其进价为每件80元,售价为每件130元,每个月可卖出500件;据市场调查,若每件商品的售价每上涨1元,则每个月少卖2件(每件售价不能高于240元).设每件商品的售价上涨x 元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的涨价多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的涨价多少元时,每个月的利润恰为41800元?根据以上结论,请你直接写出x在什么范围时,每个月的利润不低于41800元?21.(2023•南海区校级模拟)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游城市之一.深圳着名旅游“网红打卡地”东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为5元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯;若每杯价格降低1元,则平均每天可多销售30杯.店家计划在2023年春节期间进行降价促销活动,设每杯奶茶降价为x元时,每天可销售y杯.(1)求y与x之间的函数关系式;(2)当x为多少时,能让店家获得最大利润额?最大利润额为多少?22.(2023•南海区校级模拟)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游城市之一.深圳着名旅游“网红打卡地”东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为5元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯;若每杯价格降低1元,则平均每天可多销售30杯.店家计划在2023年春节期间进行降价促销活动,设每杯奶茶降价为x元时,每天可销售y杯.(1)求y与x之间的函数关系式;(2)当x为多少时,能让店家获得最大利润额?最大利润额为多少?23.(2023•阳信县二模)2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套32元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?(3)如果每天的利润要达到6080元,并且尽可能的让利于顾客,则每套的售价应该定为多少元?24.(2022•都安县校级二模)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该商品,每件售价应定为多少元?(2)每件售价定为多少元时,每天的销售利润最大?最大利润是多少?25.(2022秋•和平区校级期末)某商家销售一种纪念品.每个纪念品进价40元,规定销售单价不低于44元,且不高于52元.销售期间发现,当销售单价定为44元时,每天可售出300个,销售单价每上涨1元,每天销量减少10个.现商家决定提价销售,设每天销售量为y个,销售单价为x元.(1)直接写出y与x之间的函数关系式;(2)求当每个纪念品的销售单价是多少元时,商家每天获利2400元;(3)将纪念品的销售单价定为多少元时,商家每天销售纪念品获得的利润w 元最大?最大利润是多少元?26.(2023•昭阳区模拟)新华书店销售一个系列的儿童书刊,每套进价100元,销售定价为140元,一天可以销售20套.为了扩大销售,增加盈利,减少库存,书店决定采取降价措施.若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求出y与x的函数关系式;(2)若要书店每天盈利1200元,则每套书销售定价应为多少元?(3)当每套书销售定价为多少元时,书店一天可获得最大利润?这个最大利润为多少元?【题型5 面积类】27.(2023•锦江区校级模拟)用长为12米的铝合金型材做一个形状如图所示的矩形窗框,设矩形窗框的宽为x米,窗框的透光面积为S平方米.(铝合金型材宽度不计)(1)求S与x的函数关系式,并写出x的取值范围.(2)求S的最大值.28.(2022秋•仙游县期末)如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度为10m),设矩形花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x的取值范围;(2)当花圃的面积为54m2时,求AB的长;(3)当AB的长是多少米时,围成的花圃的面积最大?29.(2023•武汉模拟)春回大地,万物复苏,又是一年花季到.某花圃基地计划将如图所示的一块长40m,宽20m的矩形空地划分成五块小矩形区域.其中一块正方形空地为育苗区,另一块空地为活动区,其余空地为种植区,分别种植A,B,C三种花卉.活动区一边与育苗区等宽,另一边长是10m.A,B,C三种花卉每平方米的产值分别是2百元、3百元、4百元.(1)设育苗区的边长为xm,用含x的代数式表示下列各量:花卉A的种植面积是m2,花卉B的种植面积是m2,花卉C的种植面积是m2.(2)育苗区的边长为多少时,A,B两种花卉的总产值相等?(3)若花卉A与B的种植面积之和不超过560m2,求A,B,C三种花卉的总产值之和的最大值.【题型6 拱桥类】30.(2023•工业园区校级模拟)如图是一座截面为抛物线的拱形桥,当拱顶离(结水面3米高时,水面宽l为6米,则当水面下降3米时,水面宽度为米.果保留根号)31.(2022秋•江岸区校级期末)一座拱桥的轮廓是抛物线型(如图所示),桥高为8米,拱高6米,跨度20米.相邻两支柱间的距离均为5米,则支柱MN的高度为米.32.(2023•阎良区一模)漪汾桥是太原市首座对称双七拱吊桥,每个桥拱呈大小相等的抛物线型,桥拱如长虹出水,屹立于汾河之上,是太原市地标性建筑之一.如图2所示,单个桥拱在桥面上的跨度OA=60米,在水面的跨度BC=80米,桥面距水面的垂直距离OE=7米,以桥面所在水平线为x轴,OE所在直线为y轴建立平面直角坐标系.(1)求桥拱所在抛物线的函数关系表达式;(2)求桥拱最高点到水面的距离是多少米?33.(2023•阎良区一模)漪汾桥是太原市首座对称双七拱吊桥,每个桥拱呈大小相等的抛物线型,桥拱如长虹出水,屹立于汾河之上,是太原市地标性建筑之一.如图2所示,单个桥拱在桥面上的跨度OA=60米,在水面的跨度BC=80米,桥面距水面的垂直距离OE=7米,以桥面所在水平线为x轴,OE所在直线为y轴建立平面直角坐标系.(1)求桥拱所在抛物线的函数关系表达式;(2)求桥拱最高点到水面的距离是多少米?34.(2023•信阳二模)2023年3月15日新晋高速全线通车,它把山西往河南路程由2小时缩短为1小时前期规划开挖一条双向四车道隧道时,王师傅想把入口设计成抛物线形状(如图),入口底宽AB为16cm,入口最高处OC为12.8米.(1)求抛物线解析式;(2)王师傅实地考察后,发现施工难度大,有人建议抛物线的形状不变,将隧道入口往左平移2m,最高处降为9.8米,求平移后的抛物线解析式;(3)双向四车道的地面宽至少要15米,则(2)中的建议是否符合要求?35.(2023•新城区校级二模)如图1所示是一座古桥,桥拱截面为抛物线,如图2,AO,BC是桥墩,桥的跨径AB为20m,此时水位在OC处,桥拱最高点P离水面6m,在水面以上的桥墩AO,BC都为2m.以OC所在的直线为x 轴、AO所在的直线为y轴建立平面直角坐标系,其中x(m)是桥拱截面上一点距桥墩AO的水平距离,y(m)是桥拱截面上一点距水面OC的距离.(1)求此桥拱截面所在抛物线的表达式;(2)有一艘游船,其左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在河中航行.当水位上涨2m时,水面到棚顶的高度为3m,遮阳棚宽12m,问此船能否通过桥洞?请说明理由.36.(2023•西华县三模)足球比赛中,当守门员远离球门时,进攻队员常常使用吊射战术(把球高高地挑过守门员的头顶,射入球门).一般来说,吊射战术中足球的运动轨迹往往是一条抛物线.摩洛哥与葡萄牙比赛进行中,摩洛哥一位球员在离对方球门30米的点O处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14米时,足球达到最大高度8米.以点O为坐标原点,建立如图所示的平面直角坐标系.(1)求该抛物线的函数表达式;(2)此时,葡萄牙队的守门员在球门前方距离球门线1米处,原地起跳后双手能达到的最大高度为2.8米,在没有摩洛哥队员干扰的情况下,那么他能否在空中截住这次吊射?请说明理由.37.(2023•宝安区三模)如图,在一次足球比赛中,守门员在距地面1米高的P处大力开球,一运动员在离守门员6米的A处发现球在自己头上的正上方距离地面4米处达到最高点Q,球落到地面B处后又一次弹起.已知足球在空中的运行轨迹是一条抛物线,在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度为1米.(1)求足球第一次落地之前的运动路线的函数解析式及第一次落地点B与守门员(点O)的距离;(2)运动员(点A)要抢到第二个落点C,他应再向前跑多少米?(假设点O,A,B,C在同一条直线上,结果保留根号)。

题型八函数的实际应用类型一最优方案问题(专题训练)(原卷版)

题型八函数的实际应用类型一最优方案问题(专题训练)(原卷版)

题型八函数的实际应用类型一最优方案问题(专题训练)1.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱2.某文化用品商店出售书包和文具盒,书包每个定价40元,文具盒每个定价10元,该店制定了两种优惠方案:方案一,买一个书包赠送一个文具盒;方案二:按总价的九折付款,购买时,顾客只能选用其中的一种方案.某学校为给学生发奖品,需购买5个书包,文具盒若干(不少于5个).设文具盒个数为x(个),付款金额为y(元).(1)分别写出两种优惠方案中y与x之间的关系式;方案一:y1=_________;方案二:y2=__________.(2)若购买20个文具盒,通过计算比较以上两种方案中哪种更省钱?(3)学校计划用540元钱购买这两种奖品,最多可以买到__________个文具盒(直接回答即可).3.为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的13,请设计出最省钱的购买方案,并求出最少费用.4.某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成.如图中的射线1l,射线2l分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工x )的函资1y(单位:元)和2y(单位:元)与其当月鲜花销售量x(单位:千克)(0数关系.(1)分别求1y﹑2y与x的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?5.某通讯公司就流量套餐推出三种方案,如下表:A,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?6.黔东南州某销售公司准备购进A、B两种商品,已知购进3件A商品和2件B商品,需要1100元;购进5件A商品和3件B商品,需要1750元.(1)求A、B两种商品的进货单价分别是多少元?(2)若该公司购进A商品200件,B商品300件,准备把这些商品全部运往甲、乙两地销售.已知每件A商品运往甲、乙两地的运费分别为20元和25元;每件B商品运往甲、乙两地的运费分别为15元和24元.若运往甲地的商品共240件,运往乙地的商品共260件.①设运往甲地的A商品为x(件),投资总运费为y(元),请写出y与x的函数关系式;②怎样调运A、B两种商品可使投资总费用最少?最少费用是多少元?(投资总费用=购进商品的费用+运费)7.下面图片是七年级教科书中“实际问题与一元一次方程”的探究3计费问题考虑下列问题:①设一个月内用移动主叫为min(t是正整数)根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费②观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.小明升入初三再看这个问题,发现两种计费方式,每一种都是因主叫时间的变化而引起计费的变化,他把主叫时间视为在正实数范围内变化,决定用函数来解决这个问题.(1)根据函数的概念,小明首先将问题中的两个变量分别设为自变量x和自变量的函数y,请你帮小明写出:x表示问题中的__________,y表示问题中的__________.并写出计费方式一和二分别对应的函数解析式;(2)在给出的正方形网格纸上画出(1)中两个函数的大致图象,并依据图象直接写出如何根据主叫时间选择省钱的计费方式.(注:坐标轴单位长度可根据需要自己确定)8.“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种),请直接写出再次购买农机具的方案有哪几种?9.“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m 件,则有哪几种购买方案? (3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是多少?10.猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A ,B 两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:(1)第一次小李用1100元购进了A ,B 两款玩偶共30个,求两款玩偶各购进多少个; (2)第二次小李进货时店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少? (3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算? (注:利润率100%=⨯利润成本)11.某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.(1)设该商店购进甲型平板电脑x 台,请写出全部售出后该商店获利y 与x 之间函数表达式.(2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润.12.某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数(人)租金(元/辆)商务车6300轿车4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?13.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.14.小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x支,购买费用为y 元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八(2)函数专题训练卷23
1.解方程(1)0
3
7
22=
+
-x
x(2)5
)1
)(
3
(=
-
+x
x
2.如图,已知一次函数)0
(≠
+
=k
b
kx
y的图象与反比例函数
x
y
8
-
=的图象交于A、B两点,
且点A的横坐标与B点的纵坐标都是-2。

(1)求一次函数的表达式;(2)求△AOB的面积。

3.快、慢两车分别从相距360千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达
乙地后,停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地.快、慢两车距各自出
发地的路程y(千米)与出发后所用的时间x(小时)的关系如图所示.
请结合图象信息解答下列问题:
(1)快、慢两车的速度各是多少?
(2)出发多少小时,快、慢两车距各自出发地的路程相
等?
(3)直接写出在慢车到达甲地前,快慢两车相距的路程
为150千米的次数.
八(2)函数专题训练卷23
1.解方程(1)0
3
7
22=
+
-x
x(2)5
)1
)(
3
(=
-
+x
x
2.如图,已知一次函数)0
(≠
+
=k
b
kx
y的图象与反比例函数
x
y
8
-
=的图象交于A、B两点,
且点A的横坐标与B点的纵坐标都是-2。

(1)求一次函数的表达式;(2)求△AOB的面积。

3.快、慢两车分别从相距360千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达
乙地后,停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地.快、慢两车距各自出
发地的路程y(千米)与出发后所用的时间x(小时)的关系如图所示.
请结合图象信息解答下列问题:
(1)快、慢两车的速度各是多少?
(2)出发多少小时,快、慢两车距各自出发地的路程相
等?
(3)直接写出在慢车到达甲地前,快慢两车相距的路程
为150千米的次数.。

相关文档
最新文档