2017二次函数应用题专题训练
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作品编号:DG13485201600078972981
创作者:玫霸*
2017二次函数应用题专题训练
1.利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元,设每吨材料售价为x元,该经销店的月利润为y元.
(1)当每吨售价为240元时,计算此时的月销售量;
(2)求y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利润,售价应定为每吨多少元?
(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
2.(2010德州)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.
(1)分别求出y1、y2与x之间的函数关系式;
(2)若市政府投资140万元,最多能购买多少个太阳能路灯?
3.(2010恩施)恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇
远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克
香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香
菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每
天有6千克的香菇损坏不能出售.
(1)若存放x 天后,将这批香菇一次性出售,设这批香菇的销售总金额为y 元,试写出y 与x 之间的函数关系式.
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
4(2010河北)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =100
1
x +150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳100
1x 2
元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费).
(1)当x = 1000时,y = 元/件,w 内 = 元;
(2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围);
(3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内
还是在国外销售才能使所获月利润较大?
参考公式:抛物线2
(0)y ax bx c a =++≠的顶点坐标是2
4(,)24b ac b a a
--.
5.某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x (角),零售店每天销售这种面包所获得的利润为y (角).
⑴用含x 的代数式分别表示出每个面包的利润与卖出的面包个数; ⑵求y 与x 之间的函数关系式;
⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?
6.(2010贵阳)某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数,其图象如图所示. (1)每天的销售数量m (件)与每件的销售价格x (元)的函数表达式是 .(3分)
(2)求该商场每天销售这种商品的销售利润y (元)与每件的销售价格x (元)之间的函数表达式;(4分) (3)每件商品的销售价格在什么范围内,每天的销售利润随着销售价格的提高而增加?(3分)
7.(2010荆州)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x (套)与每套的售价1y (万元)之间满足关系式x y 21701-=,月产量x (套)与生产总成本2y (万元)存在如图所示的函数关系. (1)直接写出....2y 与x 之间的函数关系式; (2)求月产量x 的范围;
(3)当月产量x (套)为多少时, 这种设备的利润W (万元)最大?最大利润是多少?
8.(2010青岛)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:10500y x =-+.
(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进