九年级数学二次函数应用题 含答案

合集下载

(完整版)二次函数应用题(含答案)整理版

(完整版)二次函数应用题(含答案)整理版

(完整版)二次函数应用题(含答案)整理版题目1:某公司的销售额可以用二次函数$y=-2x^2+20x$来表示,其中$x$表示月份(从1开始),$y$表示对应月份的销售额。

求解下列问题:问题1:请计算公司第6个月的销售额。

解答:将$x=6$代入二次函数中,可得:$y=-2\times6^2+20\times6=-72+120=48$所以公司第6个月的销售额为48。

问题2:请问公司销售额最高的月份是哪个月?解答:二次函数$y=-2x^2+20x$是一个开口朝下的抛物线,最高点即为销售额最高的月份。

通过求导数,我们可以找到函数的最高点。

首先,求导得到一次函数$y'=-4x+20$,令$y'=0$,解方程可得$x=5$。

因此,公司销售额最高的月份是第5个月。

题目2:一架火箭从地面起飞后,高度$h$(以米为单位)随时间$t$(以秒为单位)变化的规律可以用二次函数$h=-5t^2+100t$表示。

求解下列问题:问题1:请问火箭多少秒后达到最大高度?解答:同样地,通过求导数,我们可以找到火箭高度的最高点。

将二次函数$h=-5t^2+100t$求导得到一次函数$h'=-10t+100$,令$h'=0$,解方程可得$t=10$。

因此,火箭在10秒后达到最大高度。

问题2:请计算火箭达到最大高度时的高度。

解答:将$t=10$代入二次函数中,可得:$h=-5\times10^2+100\times10=-500+1000=500$所以火箭达到最大高度时的高度为500米。

以上是对二次函数应用题的解答,希望能帮助到您。

中考二次函数应用题(附答案解析)

中考二次函数应用题(附答案解析)

中考二次函数应用题(附答案解析)二次函数应用题1.某果农在销瓯柑时,经市场调査发现:瓯柑若售价为5元/千克,日销售量为34千克,若售价每提高1元/千克,日销售量就减少2千克.现设瓯柑售价为x元/千克(x≥5且为正整数).(1)若某日销售量为24千克,求该日瓯柑的单价;(2)若政府将销售价格定为不超过15元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给果农补贴a元后(a为正整数),果农发现最大日收入(日收入=销售额+政府补贴)还是不超过350元,并且只有5种不同的单价使日收入不少于340元,请直按写出所有符合题意的a的值.2.某地在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为: y81620712x x xx x x+≤≤⎧=⎨-+≤≤⎩(,为整数)(,为整数),每件产品的利润z(元)与月份x(月)的关系如表:x123456789101112z191817161514131211101010(1)请你根据表格直接写出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?3.某商场购进一种每件成本为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;(3)疫情期间,有关部门规定每件商品的利润率不得超过30%,那么将售价定为多少,来保证每天获得的总利润最大,最大总利润是多少?(利润率=利润÷成本×100%)(4)疫情过后,有关部门规定每件商品的利润率不得超过50%,每销售一件商品便向某慈善机构捐赠a 元(10≤a ≤25),捐赠后发现,该商品每天销售的总利润仍随着售价的增大而增大.请直接写出a 的取值范围.4.某服装厂批发应季T 恤衫,其单价y (元)与一次批发数量x (件)(x 为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 5.嘉琪第一期培植盆景与花卉各40盆,售后统计,盆景的平均每盆利润是120元,花卉的平均每盆利润是15元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.嘉琪计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元).(1)第二期盆景的数量为_________盆,花卉的数量为_________盆; (2)用含x 的代数式分别表示1W ,2W ;(3)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?6.为响应政府“节能”号召,某强照明公司减少了白炽灯的生产数量,引进新工艺生产一种新型节能灯,己知这种节能灯的出厂价为每个20元.某商场试销发现,销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个. (1)求出每月销售量y (个)与销售单价x (元)之间的函数关系式;(2)设该商场每月销售这种节能灯获得的利润为w (元)与销售单价x (元)之间的函数关系式;(3)若每月销售量不少于200个,且每个节能灯的销售利润至少为7元,则销售单价定为多少元时,所获利润最大?最大利润是多少?7.如图,用长30米的竹篱笆围成一个矩形菜园,其中一面靠墙,墙长10米,墙的对面有一个2米宽的门,设垂直于墙的一边长为x 米,菜园的面积为S 平方米.(1)直接写出S与x的函数关系式;(2)若菜园的面积为96平方米,求x的值;(3)若在墙的对面再开一个宽为a(0<a<3)米的门,且面积S的最大值为124平方米,直接写出a的值.8.榴莲上市的时候,某水果行以“线上”与“线下”相结合的方式一共销售了100箱榴莲.已知“线上”销售的每箱利润为100元,“线下”销售的每箱利润y(元)与销售量x(箱)(20≤x≤60)之间的函数关系如图中的线段AB.(1)求y与x之间的函数关系;(2)当“线下”的销售利润为4350元时,求x的值;(3)实际“线下”销售时,每箱还要支出其它费用a元(a>0),若“线上”与“线下”售完这100箱榴莲所获得的总利润为w元,当20≤x≤45时,w随x增大而增大,求a的取值范围.9.为缓解停车难的问题,太阳山小区利用一块长方形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52m,宽为28m,阴影部分设计为停车位,其余部分是等宽的通道,已知停车位占地面积为640m2.(1)求通道的宽是多少米;(2)该停车场共有64个车位,据调查发现:当每个车位的月租金为400元时,可全部租出;当每个车位的月租金每上涨10元时,就会少租出1个车位,当每个车位的月租金上涨时,停车场的月租金收入会超过27000元吗?10.从下列两题中选择1题完成,两题都完成的仅批改第1题.(1)第1题:某宾馆有50个房间供游客居住.当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对居住的每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大? 第2题:张大爷佩戴能计步的运动手环进行快走锻炼,两次锻炼后整理数据如下表.与第一次锻炼相比,张大爷第二次锻炼时步数在增加,平均步长在减少,其中步数增长的百分率是其平均步长减少的百分率的3倍.设平均步长减少的百分率为x (0<x <0.5).(2)根据题意完成表格填空①_________,②_________.(3)求平均步长减少的百分率x ;【温馨提示:数学运算可以先约分后化简】(4)张大爷发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求张大爷这500米的平均步长.【参考答案】二次函数应用题1.(1)10元/千克(2)2244w x x =-+(515x ≤≤,且x 为正整数)最大值是242元,最小值为170元 (3)106 107 108 【解析】 【分析】(1)根据售价每提高1元/千克,日销售量就减少2千克,且某日销售量为24千克,列方程可解答;(2)根据题意,利用销售额等于销售量乘以销售单价,列出函数关系式,根据二次函数的性质及配方法可求得答案;(3)由题意得:2340244350x x a ≤-++≤,由二次函数的对称性可知x 的取值为9,10,11,12,13,从而计算可得a 值. (1)解:根据题意得342524x --=(), 解得10x =.答:该日瓯柑的单价是10元/千克; (2)解:根据题意得222342524422212112121124]2[w x x x x x x x =--=-+=--+-=--+()()(),由题意得515x ≤≤,且x 为正整数, ∵20-< ,∴11x =时,w 有最大值是242元, ∵11-5=6,15-11=4,抛物线开口向下,∴5x =时,w 有最小值是22511242170--+=()元;则w 关于x 的函数表达式为:23425244[]w x x x x =--=-+()(515x ≤≤,且x 为正整数);(3)解:由题意得2340244350x x a ≤-++≤,∵只有5种不同的单价使日收入不少于340元,5为奇数, ∴由二次函数的对称性可知,x 的取值为9,10,11,12,13 当9x =或13时,2244234x x -+=; 当10x =或12时,2244240x x -+=, 当11x =时,2244242x x -+=.∵补贴后不超过350元,234+106=340,242+108=350, ∴当106a =或107或108时符合题意. 答:所有符合题意的a 值为:106,107,108. 【点睛】本题主要考查二次函数的应用.得到每天可售出的千克数是解决本题的突破点;本题需注意x 的取值应为整数.解题的关键是熟练掌握待定系数法求函数解析式、根据销售额的相等关系列出函数解析式及二次函数的性质. 2.(1)()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数(2)()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数(3)当6x =时,w 有最大值为196. 【解析】 【分析】(1)观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =,则z 与x 的关系式可得;(2)分三种情况:当16x 时,当79x ≤≤时,当1020x ≤≤时,分别写出w 关于x 的函数关系式并化简,则可得答案;(3)分别写出当16x 时,当78x 时,当912x 时的函数最大值,然后比较取最大值即可. (1)解:观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =.z ∴与x 的关系式为:()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数; (2)解:当16x 时,2(20)(8)12160w x x x x =-++=-++; 当79x ≤≤时,2(20)(20)40400w x x x x =-+-+=-+; 当1020x ≤≤时,10(20)10200w x x =-+=-+;w ∴与x 的关系式为:()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数;(3)解:当16x 时,212160w x x =-++2(6)196x =--+,6x ∴=时,w 有最大值为196;当79x ≤≤时,2240400(20)w x x x =-+=-,w 随x 增大而减小,7x ∴=时,w 有最大值为169;当1020x ≤≤时,10200w x =-+,w 随x 增大而减小, 10x ∴=时,w 有最大值为100;100169196<<,6x ∴=时,w 有最大值为196.【点睛】本题考查了二次函数在实际问题中的应用,理清题中的数量关系正确列式并分段计算是解题的关键.3.(1)180(100180)y x x =-+<≤ (2)228018000(100180)W x x x =-+-<≤(3)将售价定为130元,每天获得的总利润最大,最大总利润是1500元 (4)2025a ≤≤ 【解析】 【分析】(1)设y 与x 之间的函数关系式为(0)y kx b k =+≠,利用待定系数法可求出其解析式,再求出x 的取值范围即可;(2)根据利润=(售价-单价)×销售量,即可得出答案;(3)根据题意可求出x 的取值范围,再根据二次函数的性质,即可得出答案;(4)根据题意可求出x 的取值范围和W 与x 、a 的关系式,再将其配方,根据该商品每天销售的总利润仍随着售价的增大而增,即可得出关于a 的不等式,解出a 的解集即可得出答案. (1)解:设y 与x 之间的函数关系式为(0)y kx b k =+≠, 根据图象可知点(130,50)和点(150,30)在y kx b =+的图象上,∴5013030150k b k b =+⎧⎨=+⎩, 解得:1180k b =-⎧⎨=⎩.∴180y x =-+. 令0y =,则1800x -+=, 解得:180x =,∴y 与x 之间的函数关系式为180(100180)y x x =-+<≤; (2)根据题意可得2(100)(100)(180)28018000W x y x x x x =-=--+=-+-,即每天的利润W 与销售单价x 之间的函数关系式为228018000(100180)W x x x =-+-<≤; (3)根据题意可得:10030%100x -≤, 解得:130x ≤. ∴100130x <≤.∵2228018000(140)1600W x x x =-+-=--+, ∴当130x =时,W 有最大值,且2max (130140)16001500W =--+=(元).故将售价定为130元,每天获得的总利润最大,最大总利润是1500元; (4)根据题意可知10050%100x -≤ 解得:150x ≤.22228018000(180)(140)40160024a a W x x a x x a ⎡⎤=-+---+=--++-+⎢⎥⎣⎦.∵该商品每天销售的总利润仍随着售价的增大而增大, ∴1401502a+≥, 解得:20a ≥. ∵1025a ≤≤, ∴2025a ≤≤. 【点睛】本题考查一次函数与二次函数的实际应用.根据题意找到等量关系,列出等式是解题关键.4.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩(2)一次批发250件时,获得的最大利润为6250元【解析】 【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答. (1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70;综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩(2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+ =()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元. 【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键. 5.(1)40x +,60x -(2)212404800W x x =-++,215900W x =-+(3)6x =时,W 最大,最大利润为5778元 【解析】 【分析】(1)根据第二期培植盆景与花卉共100盆,培植的盆景比第一期增加x 盆列式即可; (2)根据利润=平均利润×销售数量列式计算即可;(3)表示出总利润W ,根据二次函数的性质求出最大值即可. (1)解:由题意得:第二期盆景的数量为()40x +盆,则花卉的数量为()()1004060x x -+=-盆,故答案为:40x +,60x -;(2)解:由题意得:21(40)(1202)2404800W x x x x =+-=-++,()2156015900W x x =-=-+;(3)解:由题意得:22122404800159002255700W W W x x x x x -++--+=++=+=,∵对称轴为254x =,而x 为正整数, ∴当6x =时,5778W =, 当7x =时,5777W =, ∵57785777>,∴6x =时,W 最大,最大利润为5778元. 【点睛】本题主要考查了二次函数的应用,找到合适的数量关系列出算式是解题的关键. 6.(1)10500y x =-+ (2)21070010000w x x =-+-(3)销售单价定为30元时,所获利润最大,最大利润是2000元. 【解析】 【分析】(1)根据“销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个”可得函数解析式;(2)由(1)及题意可进行求解;(3)由题意可得10500200207x x -+≥⎧⎨-≥⎩,然后根据(2)及二次函数的性质可进行求解.(1)解:由题意得:()250102510500y x x =--=-+;(2)解:由(1)及题意得:()()220105001070010000w x x x x =--+=-+-;(3)解:由题意可得10500200207x x -+≥⎧⎨-≥⎩,解得:2730x ≤≤,由(2)可知21070010000w x x =-+-, ∵100-<,即开口向下,对称轴为直线352bx a=-=, ∴当2730x ≤≤时,w 随x 的增大而增大,∴当x =30时,所获利润最大,最大利润为1090070030100002000w =-⨯+⨯-=; 答:销售单价定为30元时,所获利润最大,最大利润是2000元.【点睛】本题主要考查二次函数的应用,熟练掌握二次函数中的销售问题是解题的关键.7.(1)S=﹣2x2+32x(2)12(3)2.8【解析】【分析】(1)根据矩形面积公式即可写出函数关系式;(2)根据(1)所得关系式,将S=96代入即可求解;(3)再开一个宽为a的门,即矩形的另一边长为(32-2x+a)m,根据矩形的面积公式即可求解.(1)根据题意得,S=(30﹣2x+2)x=﹣2x2+32x;(2)当S=96时,即96=﹣2x2+32x,解得:x1=12,x2=4,∵墙长10米,∴30﹣8+2=25>10,∴x的值为12;(3)∵S=(30﹣2x+a+2)x=﹣2x2+(32+a)x,∵32﹣2x+a≤10,则x≥12a+11,∵面积取得最大值为S=124,∴﹣2x2+(32+a)x=124,把x=12a+11代入,得﹣2(12a+11)2+(32+a)(12a+11)=124,解得a=2.8.答:a的值为2.8.【点睛】本题主要考查二次函数的应用,根据矩形面积公式得出函数解析式是根本,根据养鸡场的长不超过墙长取舍是关键.8.(1)y=﹣0.5x+160(20≤x≤60)(2)x的值为30(3)a的取值范围为0<a<15.5【解析】【分析】(1)根据函数图象中的数据,可以计算出y与x之间的函数关系;(2)根据题意和(1)中的结果,可以得到x(﹣0.5x+160)=4350,然后求解即可;(3)根据题意,可以得到利润w与m的函数关系式,再根据二次函数的性质,可以求得a的取值范围.(1)解:(1)设y与x的函数关系式为y=kx+b,∵点(20,150),(60,130)在该函数图象上,∴20150 60130k bk b+=⎧⎨+=⎩,解得0.5160kb=-⎧⎨=⎩,即y与x的函数关系式为y=﹣0.5x+160(20≤x≤60);(2)由题意可得,xy=4350,又∵y=﹣0.5x+160,∴x(﹣0.5x+160)=4350,解得x1=30,x2=290(舍去),即x的值30;(3)设“线下”销售榴莲x箱,则“线上”销售榴莲(100﹣x)箱,总利润为w元,由题意可得,w=x(﹣0.5x+160﹣a)+100(100﹣x)=﹣12x2+(60﹣a)x+10000,该函数的对称轴为直线x=﹣6012()2a-⨯-=60﹣a,∵当20≤x≤45时,w随x增大而增大,∴60﹣a>44.5,解得a<15.5,∴0<a<15.5.【点睛】本题考查二次函数的应用、一次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,写出相应的方程和函数关系式,利用数形结合的思想解答.9.(1)通道的宽是6米;(2)停车场的月租金收入会超过27000元.【解析】(1)解:设通道的宽是x m,则阴影部分可合成长为(52-2x)米,宽为(28-2x)米的长方形,依题意得:(28-2x)(52-2x)=640,整理得:x2-40x+204=0,解得:x1=6,x2=34.又∵28-2x>0,∴x<14,∴x =6.答:通道的宽是6米;(2)解:设当每个车位的月租金上涨y 元时,停车场的月租金收入为w 元,则可租出(6410y -)个车位, 依题意得:w =(400+y )(6410y -)=110-y 2+24y +25600=110-(y -120)2+27040, ∵110-<0, ∴当y =120时,w 取得最大值,最大值为27040.又∵27040>27000,∴停车场的月租金收入会超过27000元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,理解题意,设出未知数,列出方程和二次函数关系式是解题关键.10.(1)房价为350元时,宾馆利润最大;(2)①0.6(1-x );②10000(1+3x );(3)x =0.1;(4)王老师这500米的平均步幅为0.5米【解析】【分析】(1)设房价为(180+10x )元,宾馆总利润为y 元,根据利润=(房价-支出)×房间数量,列出关系式求解即可;(2)根据题意结合表格中的数据求解即可;(3)根据距离=步长×步数列出方程求解即可;(4)先由(3)求出两次张大爷的步数,即可得到500m 的步数,从而即可求出步长.(1)解:设房价为(180+10x )元,宾馆总利润为y 元,依题意得:()22(1801020)(50)103408000101710890y x x x x x =+--=-++=--+∵-10<0,抛物线开口向下,∴当x =17时,y 有最大值,180+10x=350元,答:房价为350元时,宾馆利润最大.(2)解:由题意得第二次锻炼的平均步长为()0.61x -,第二次锻炼的平均步数为()1000013x +,故答案为:()0.61x -;()1000013x +;(3)解:由题意得:10000(1+3x)×0.6(1-x)=7020.解得:1170.5 30x=>(舍去),20.1x=∴x=0.1;(4)解:根据题意可得:10000+10000(1+0.1×3)=23000,500÷(24000-23000)=0.5(m).答:王老师这500米的平均步幅为0.5米.【点睛】本题主要考查了二次函数的应用,列代数式,一元二次方程的应用,有理数混合计算的应用,正确理解题意是解题的关键.。

中考经典二次函数应用题(含答案)

中考经典二次函数应用题(含答案)

二次函数应用题1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡"政策的实施,商场决定采取适当的降价措施。

调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围). (2)当x 为何值时,S 有最大值?并求出最大值.(参考公式:二次函数2y ax bx c =++(0a ≠),当2bx a=-时,244ac b y a -=最大(小)值)4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:月份 1月 5月 销售量 3。

9万台 4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m %.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数).5.831 5.9166.083 6.164)5、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.6、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。

二次函数的应用题(含答案)

二次函数的应用题(含答案)

二次函数的应用题(含答案)1.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.2.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.3.如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.(1)写出A、B两点的坐标;(2)二次函数L2:y=kx2﹣4kx+3k(k≠0),顶点为P.①直接写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由.4.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.5.如图,抛物线y=﹣x 2+bx+c 经过坐标原点,并与x 轴交于点A (2,0). (1)求此抛物线的解析式; (2)写出顶点坐标及对称轴;(3)若抛物线上有一点B ,且S △OAB =8,求点B 的坐标.6.如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A ′B ′O .(1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍?若存在,请求出P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB ′A ′B 是哪种形状的四边形?并写出四边形PB ′A ′B 的两条性质.7.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每 辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出) (1)公司每日租出x 辆车时,每辆车的日租金为 _________ 元(用含x 的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?8.某工厂生产一种合金薄板(其厚度忽略不计),这写薄板的形状均为正方向,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价﹣成本价),①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?9.牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,得到如下数据:(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(3)菏泽市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?答案得×,解得±;x得,﹣,﹣+解得,y=﹣时,×+1=,故,5.(2012•黑龙江)解:(1)把(0,0),(2,0)代入y=﹣x2+bx+c,得,解得b=2,c=0,所以解析式为y=﹣x2+2x;(2)∵a=﹣1,b=2,c=0,∴﹣=﹣=1,==1,∴顶点为(1,1),对称轴为直线x=1;(3)设点B的坐标为(a,b),则×2|b|=8,∴b=8或b=﹣8,∵顶点纵坐标为1,8>1(或﹣x2+2x=8中,x无解),∴b=﹣8,∴﹣x2+2x=﹣8,解得x解:(1)△A′B′O是由△ABO绕原点O逆时针旋转90°得到的,又A(0,1),B(2,0),O(0,0),∴A′(﹣1,0),B′(0,2).设抛物线的解析式为:y=ax2+bx+c(a≠0),∵抛物线经过点A′、B′、B,∴,解得:,∴满足条件的抛物线的解析式为y=﹣x2+x+2.(2)∵P为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=﹣x2+x+2.连接PB,PO,PB′,∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,=×1×2+×2×x+×2×y,=x+(﹣x2+x+2)+1,=﹣x2+2x+3.假设四边形PB′A′B的面积是△A′B′O面积的4倍,则4=﹣x2+2x+3,即x2﹣2x+1=0,解得:x1=x2=1,此时y=﹣12+1+2=2,即P(1,2).∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.(3)四边形PB′A′B为等腰梯形,答案不唯一.①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.或用符号表示:①∠B′A′B=∠PBA′或∠A′B′P=∠BPB′;②PA′=B′B;③B′P∥A′B;④B′A′=PB.由表格中的数据,得,解得﹣<==35解:(1)画图如图:由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0),∵这个一次函数的图象经过(20,500)、(30,400)这两点,∴,解得:,∴函数关系式是y=﹣10x+700.(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得:W=(x﹣10)(﹣10x+700),=﹣10x2+800x﹣7000,=﹣10((x﹣40)2+9000,∴当x=40时,W有最大值9000.(3)对于函数W=﹣10((x﹣40)2+9000,当x≤35时,W的值随着x值的增大而增大,故销售单价定为35元∕件时,工艺厂试销该工艺品每天获得的利润最大.。

中考二次函数应用题(含答案解析)

中考二次函数应用题(含答案解析)

中考二次函数应用题(含答案解析)二次函数应用题1.如图,有一位同学在兴趣小组实验中,设计了一个模拟滑雪场地截面图,平台AB (水平)与x 轴的距离为6,与y 轴交于B 点,与滑道AM :y =k x交于A ,且AB =2,MN ⊥x 轴,测得MN =1,P 到x 轴的距离为3,设ON=b .(1)k 的值为_______,点P 的坐标是________,b =_________;(2)当一号球落到P 点后立即弹起,弹起后沿另外一条抛物线G 运动,若它的最高点Q 的坐标为(8,5)①求G 的解析式,并说明抛物线G 与滑道AM 是否还能相交;②在x 轴上有线段NC =1,若一号球恰好能倍NC 接住,则NC 向上平移距离d 的最大值和最小值各是多少?2.2022年冬奥会成功在北京张家口举行,奥林匹克精神鼓舞了越来越多的年轻人从事冰雪运动,在长8m ,高6m 的斜面上,滑雪运动员P 从顶端腾空而起,最终刚好落在斜面底端,其轨迹可视为抛物线的一部分.按如图方式建立平面直角坐标系,设斜面所在直线的函数关系式为1y kx b =+,运动员轨迹所在抛物线的函数关系式为2214y ax x c =++,设运动员P 距离地面的高度为()m h ,腾空过程中离开斜面的距离为()m d ,回答下列问题:(1)分别求出1y 、2y 与x 之间的函数关系式;(2)求出d 的最大值和此时点P 的坐标.3.某企业研发出一种新产品,该产品的成本为每件3000元.在试用期间营销部门建议: ①购买不超过10件时,每件销售价为3600元;②购买超过10件,每多购一件,所购产品的销单价均降5元,但最低销售单价为3200元.根据以上信息解决下列问题:(1)直接写出购买产品______件时,销售单价恰好为3200元;x>,且x为整数),该公司所获利润为y元,求y与x之(2)设购买这种产品x件(其中10间的函数解析式,并写出自变量x的取值范围;(3)在试用期间,当购买产品的件数超过10件时,为使销售数量越多,公司所利润越大,公司应将最低销售单价调整为多少元(其它销售条件不变)?4.某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长>50m),中间用一道墙隔开(如图).已知计划中的建筑材料可建围墙的总长为50m,设两间饲养室合计长x (m),总占地面积为y(m2).(1)求y关于x的函数表达式和自变量的取值范围;(2)在所给出的坐标系中画出函数的图象;(3)利用图象判断:若要使两间饲养室占地总面积达到200m2,则各道墙的长度为多少? 5.因为疫情,体育中考中考生进入考点需检测体温.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x (分钟)的变化情况,数据如下:时间x(分钟)0123456789915<≤x人数y(人)0170320450560650720770800810810(1)研究表中数据发现9分钟内考生进入考点的累计人数是时间的二次函数,请求出9分钟内y与x之间的函数关系式.(2)如果考生一进考点就开始排队测量体温,体温检测点有2个,每个检测点每分钟检测20人,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?6.李大爷每年春节期间都会购进一批新年红包销售,根据往年的销售经验,这种红包平均每天可销售50袋,每袋盈利3元,若每袋降价0.5元,平均每天可多售出25袋,设每袋降x 元,平均每天的利润为y 元.(1)请求出y 与x 的函数表达式;(2)若李大爷想让每天的利润最大化,应该降价多少元销售?最大利润为多少元? 7.某网店经销甲、乙两种品牌的西梅,若甲种品牌西梅每千克利润为10元,乙种品牌西梅每千克利润为20元,则每周能卖出甲种品牌西梅40千克,乙种品牌西梅20千克.为了促进销售,该店决定把甲、乙两种品牌西梅的零售单价都降价x 元.经调查,若甲、乙两种品牌西梅零售单价分别每降1元,则这两种品牌西梅每周均可多销售10千克.(1)直接写出甲、乙两品牌西梅每周的销售量y 甲,y 乙(千克)与降价x (元)之间的函数关系式.(2)该网店每周销售甲、乙两种品牌西梅获得的总利润记为W (元),求W 的最大值. 8.某服装厂批发应季T 恤衫,其单价y (元)与一次批发数量x (件)(x 为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 9.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每次下降的百分率相同.(1)求每次下降的百分率.(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?(3)在(2)的条件下,若使商场每天的盈利达到最大值,则应涨价多少元?此时每天的最大盈利是多少?10.小亮创办了一个微店商铺,营销一款小型LED 护眼台灯,成本是20元/盏,在“双十一”前20天进行了网上销售后发现,该台灯的日销售量p (盏)与时间x (天)之间满足一次函数关系,且第1天销售了78盏,第2天销售了76盏.护眼台灯的销售价格y (元/盏)与时间x (天)之间符合函数关系式1254y x =+(120x ≤≤,且x 为整数). (1)求日销售量p (盏)与时间x (天)之间的函数关系式;(2)在这20天中,哪天的日销售利润最大?最大日销售利润是多少?(3)“双十一”当天,小亮采用如下促销方式:销售价格比前20天中最高日销售价格降低a 元;日销售量比前20天最高日销售量提高了7a 盏;日销售利润比前20天中的最大日销售利润多了30元,求a 的值.(注:销售利润=售价-成本).【参考答案】二次函数应用题1.(1)12,(4,3),12 (2)21(8)58y x =--+,不能相交,理由见解析;d 的最大值是3,最小值是158 【解析】【分析】(1)由题意写出点A 的坐标,代入k y x =即可求出k 值,得到12y x =,将点P 、点M 的纵坐标分别代入12y x=求出点P 和点M 的横坐标,即可求解; (2)①由抛物线G 的最高点Q 的坐标写出抛物线的顶点式2(8)5y a x =-+,将点A 坐标代入求出a 值,即可得到抛物线的解析式;求出抛物线上12x =时对应的y 值,判断此点在点M 的上方还是下方,即可得出抛物线与AM 是否相交.②当线段NC 平移后的线段11N C 的1N 点在抛物线上,即1N 点与D 重合时,平移距离最大,当线段NC 平移后的线段22N C 的2C 点在抛物线上时,平移距离最小,求出相应坐标即可求解.(1) 解:平台AB (水平)与x 轴的距离为6,AB =2,∴点A 、点B 的坐标为(2,6)A ,(0,6)B .将(2,6)A 代入k y x =得,62k =, 解得12k =, ∴滑道AM 所在图象的函数解析式为:12y x = 点P 到x 轴的距离为3,∴点P 的纵坐标为3P y =,将3P y =代入到12y x =得,1243P x ==,∴点P 的坐标为(4,3),MN ⊥x 轴,测得MN =1,∴点M 的纵坐标为1=M y ,将1=M y 代入到12y x =得,12121M x ==, ∴点M 的坐标为(12,1),12ON ∴=,故答案依次为:12,(4,3),12;(2)解:①由题意抛物线G 的最高点Q 的坐标为(8,5),∴设抛物线G 的函数解析式为:2(8)5y a x =-+,将点P 坐标代入2(8)5y a x =-+得23(48)5a =-+,解得18a =-, ∴设抛物线G 的函数解析式为:21(8)58y x =--+, 点M 的纵坐标(12,1),设12x =时抛物线G 上对应点为点D ,则点D 的坐标(12,)D y ,将12x =代入到21(8)58y x =--+,解得3D y =, D M y y >,∴一号球可以飞行到点M 的正上方,∴抛物线G 与滑道AM 不能相交;②将线段NC 向上平移,平移后线段与抛物线有交点时,说明可以接到一号球,如图所示,当线段NC 平移后的线段11N C 的1N 点与D 重合时,平移距离最大,∴最大平移距离为303D N y y -=-=;当线段NC 平移后的线段22N C 的2C 点在抛物线上时,平移距离最小,1NC =,12ON =,∴点C 的坐标为(13,0),∴点2C 的横坐标为13,将213C x =代入到21(8)58y x =--+,解得2158C y = ∴最小平移距离为21515088C C y y -=-=; ∴平移距离d 的最大值是3,最小值是158. 【点睛】本题考查反比例函数、二次函数的实际应用,熟练掌握待定系数法求反比例函数解析式、二次函数顶点式,通过点的坐标判断函数图像是否相交等是解题的关键.2.(1)1364y x =-+,2211684y x x =-++; (2)max 85d =m ,P (4,5) 【解析】【分析】(1)把点(8,0)和(0,6)分别代入直线的函数关系式1y kx b =+,运动员轨迹所在抛物线的函数关系式2214y ax x c =++,,进而得出答案; (2)设与抛物线2211684y x x =-++相切,且与1364y x =-+平行的直线:334y x h =-+,那么切点就是所求的点P ,直线1364y x =-+与直线334y x h =-+之间的距离就是所求的距离.(1)解:把点(8,0)和(6,0)代入直线 1y kx b =+得,806k b b +=⎧⎨=⎩解得346k b ⎧=-⎪⎨⎪=⎩ ∴1364y x =-+ 把点(8,0)和(6,0)代入抛物线2214y ax x c =++得, 210=8846a c c⎧⨯+⨯+⎪⎨⎪=⎩解得86c ⎨⎪=⎩ ∴2211684y x x =-++ (2)解:设与抛物线2211684y x x =-++相切的直线为334y x h =-+, 联立2y 与3y 得:211684x x -++34x h =-+, 化简得:20168x x h ++-=- ∵抛物线2y 与直线3y 相切∴20168x x h ++-=-有两个相等的实数根 ∴ ∆=114()(8)08h -⨯-⨯-= 解得8h =∴3384y x =-+ 联立抛2y 和3y 解得:45x y =⎧⎨=⎩此时点P 的坐标为(4,5)如图,过点A 作AC ⊥直线3y ,垂足为点C ,∵ 直线AC 与直线1y 垂直且过点A (0,6)∴直线AC 的解析式为4463y x =+ 联立3y 和4y 得34384463y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩解得2518225 y⎪⎪⎨⎪=⎪⎩∴点C的坐标为(2425,18225)线段AC的长度就是所求的d,max 408 255d===.【点睛】本题考查了一次函数和二次函数图像的综合题,解题的关键是数形结合,熟练掌握抛物线的三种解析式,特别是顶点式;还要注意当直线与抛物线相切时距离最大;两条直线互相垂直的直线:121k k=-.3.(1)90(2)()2200905650(1090)x x xyx x x x⎧≥⎪=⎨-+<<⎪⎩,为整数,为整数(3)公司应将最低销售单价调整为3325元【解析】【分析】(1)购买这种产品x件时,销售单价恰好为3200元,由题意得:3600-5(x-10)=3200,即可求解;(2)分10<x<90和x≥90两种情况,分别求解即可;(3)根据(2)中求出的函数解析式,结合二次函数与一次函数的增减性求解即可.(1)解:设购买这种产品x件时,销售单价恰好为3200元,由题意得:3600-5(x-10)=3200,解得:x=90,故答案为:90;(2)当x≥90时,一件产品的利润为:3200-3000=200元,故此时y与x的函数关系式为:y=200x(x≥90);当10<x<90时,一件产品的利润为:3600-5(x-10)-3000=(-5x+650)元,故此时y与x的函数关系式为:y=x[-5x+650]=-5x²+650x(10<x<90);故答案为:()2200905650(1090)x x xyx x x x⎧≥⎪=⎨-+<<⎪⎩,为整数,为整数;(3)要满足购买数量越大,利润越多.故y随x的增大而增大,y=200x,y随x的增大而增大,y=-5x2+650x,其对称轴为x=65,故当10≤x≤65时,y随x的增大而增大,若一次购买65件,设置为最低售价,则可以避免y随x增大而减小的情况发生,故x=65时,设置最低售价为3600-5×(65-10)=3325(元),所以公司应将最低销售单价调整为3325元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).4.(1)215033y x x =-+ 其中0<x <50 (2)画函数图象见解析(3)各道墙的长度分别为20m ,10m 或者30m ,20m 3时,总面积达到200m 2 【解析】【分析】(1)根据题意用含x 的代数式表示出饲养室的宽,由矩形的面积=长×宽计算即可; (2)确定特殊点位置,继而可得函数图象;(3)构建方程即可解决问题.(1)解:∵围墙的总长为50 m ,2间饲养室合计长x m ,∴饲养室的宽=503x - m , ∴总占地面积为y =x •503x -=-13x 2+503x (0<x <50); (2)解:y =-13x 2+503x =()216252533x --+, 顶点坐标为(25,6253), 当y =200时,()216252520033x --+=, 解得x =20或30,图象经过点(20,200)和(30,200),当y =0时,()2162525033x --+=, 解得x =0或50,图象经过点(0,0)和(50,0),描点,连线,函数图象如图所示.(3)解:当两间饲养室占地总面积达到200 m 2时,则-13x 2+503x =200, 解得:x =20或30;答:各道墙长分别为20 m 、10 m 或30 m 、203 m 时,总面积达到200 m 2. 【点睛】此题主要考查了二次函数的应用,同时也利用了矩形的性质,解题时首先正确了解题意,然后根据题意列出方程即可解决问题.5.(1)210180y x x =-+(2)排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)2【解析】【分析】(1)利用待定系数法可求解析式;(2)设第x 分钟时的排队人数为w 人,由二次函数的性质和一次函数的性质可求当x =7时,w 的最大值=490,当9<x ≤15时,210≤w <450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m 个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解.(1)根据表格中数据可知,当x =0时,y =0,∴二次函数的关系式可设为:y =ax 2+bx ,将()()1,1703450,,代入,得 17093450a b a b =⎧⎨=⎩++ 解得:10180a b =-⎧⎨=⎩, ∴9分钟内y 与x 之间的函数关系式()21018009y x x x =-≤≤+; (2)设第x 分钟时的排队人数为w 人,()810915y x =<≤由题意可得:w =y −40x =210140(09)81040(915)x x x x x ⎧-≤≤⎨-≤⎩+<, ①当0≤x ≤9时,w =−10x 2+140x =−10(x −7)2+490,∴当x =7时,w 的最大值=490,②当9<x ≤15时,w =810−40x ,w 随x 的增大而减小,∴210≤w <450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810−40x =0,解得:x =20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m 个检测点,由题意得:12×20(m +2)≥810,解得m ≥118, ∵m 是整数,∴m ≥118的最小整数是2, ∴一开始就应该至少增加2个检测点.【点睛】本题考查了二次函数的应用,二次函数的性质,一次函数的性质,一元一次不等式的应用,理解题意,求出y 与x 之间的函数关系式是本题的关键.6.(1)y =−50x 2+100x +150(2)应该降价1元销售,最大利润为200元.【解析】【分析】(1)根据题意和题目中的数据,可以写出y 与x 的函数表达式;(2)将(1)中函数关系式化为顶点式,然后利用二次函数的性质即可得到x 为何值时,y 取得最大值.(1)解:由题意可得,y =(3−x )(50+0.5x ×25)=−50x 2+100x +150, 即y 与x 的函数表达式是y =−50x 2+100x +150;(2)由(1)知:y =−50x 2+100x +150=−50(x −1)2+200,∴当x =1时,y 取得最大值,此时y =200,答:若李大爷想让每天的利润最大化,应该降价1元销售,最大利润为200元.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,写出相应的函数关系式,利用二次函数的性质求最值.7.(1)4010y x =+甲,2010y x =+乙(2)1520元【解析】【分析】(1)原销售量加增加的销售量,增加的销售量等于降价的元数乘以10;(2)每千克实际利润乘以实际销售量得到每种西梅的总利润,两种西梅总利润的和即为总利润,而后配方把解析式化为顶点式,求出最大利润.(1)4010y x =+甲,2010y x =+乙;(2)(10)(4010)(20)(2010)w x x x x =-++-+22400601040018010x x x x =+-++-220240800x x =-++()22061520x =--+.∵-20<0,∴当x =6时,w 有最大值,最大值为1520元.【点睛】本题考查了销售利润问题,解决此类问题的关键是熟练掌握总利润与每千克利润和销售量的关系.8.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)一次批发250件时,获得的最大利润为6250元【解析】【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答.(1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70; 综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+ =()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元.【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键.9.(1)每次下降的百分率为20%;(2)每千克应涨价5元;(3)应涨价7.5元,此时每天的最大盈利是6125元.【解析】【分析】(1)设每次下降的百分率是x ,找出等量条件列方程求解即可;(2)设每千克应涨价a 元,利润为W ,找出等量条件列方程求解即可;(3)根据(2)中的()()=1050020W a a +-,求二次函数的最值即可.(1)解:设每次下降的百分率是x ,则由题意列方程得:()2501=32x -解之得:1=1.8x (舍去),1=0.2x ,故每次下降的百分率是20%;(2)解:设每千克应涨价a 元,利润为W ,则由题意列方程得: ()()=1050020W a a +-令(10)(50020)=6000W a a =+-,解方程得:5a =或10a =,∵要尽快减少库存,∴取5a =,即每千克应涨价5元;(3)解:由(2)可得()22(10)(50020)=203005000=207.56125W a a a a a =+--++--+, 当3007.52(20)a =-=⨯-时,W 取最大值为6125元, ∴应涨价7.5元,此时每天的最大盈利是6125元.【点睛】本题考查一元二次方程的实际应用:增长率问题,二次函数的实际应用:销售问题,解该类题的关键是找出等量条件列方程求解,将销售问题中的最大利润问题转化成求二次函数最值问题.10.(1)日销售量p (盏)与时间x (天)之间函数关系为p-x 280(2)当x =10时,销售利润最大,w 最大=450元(3)a 的值为6【解析】【分析】(1)利用待定系数法求解设该台灯的日销售量p (盏)与时间x (天)之间满足一次函数关系为p kx b =+,代入数据得:k+b=782=76k b ⎧⎨+⎩,解方程组即可; (2)设日销售利润用w 表示,根据日销售利润=(售价-成本)×销量,列函数关系w x x 128025204然后配方为顶点式即可;(3)根据函数的性质p-x 280,k =-2<0,y 随x 的增大而减小,x =1时,p 最大=-218078盏,小亮采用如下促销方式:日销售量为(78+7a ),根据1254y x =+,k =104>,y 随x 的增大而二增大,x =20时y 最大=12025=304⨯+元/盏,得出小亮采用如下促销方式:销售价格为(30-a )元/盏,利用销量×每盏台灯的利润=450+30,列方程即可.(1)解:设该台灯的日销售量p (盏)与时间x (天)之间满足一次函数关系为p kx b =+,代入数据得:k+b=782=76k b ⎧⎨+⎩, 解得:k=-2=80b ⎧⎨⎩, ∴日销售量p (盏)与时间x (天)之间函数关系为p-x 280;(2)解:设日销售利润用w 表示,w x x 128025204x x21104002 x 21104502, 当x =10时,销售利润最大,w 最大=450元; (3)∵p -x 280,k =-2<0,y 随x 的增大而减小,∴x =1时,p 最大=-218078盏,小亮采用如下促销方式:日销售量为(78+7a ), ∵1254y x =+,k =104>,y 随x 的增大而二增大,x =20时y 最大=12025=304⨯+元/盏, ∴小亮采用如下促销方式:销售价格为(30-a )元/盏, 根据题意:a a302078745030, 整理得a +a-2783000, 解得125067a a ==-,(舍去), ∴a 的值为6.【点睛】本题考查待定系数法求一次函数解析式及其性质,二次函数性质在销售中的应用,一元二次方程在销售中的应用,掌握待定系数法求一次函数解析式及其性质,二次函数性质在销售中的应用,一元二次方程在销售中的应用是解题关键.。

(完整版)经典二次函数应用题(含答案)

(完整版)经典二次函数应用题(含答案)

二次函数应用题1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围).(2)当x 为何值时,S 有最大值?并求出最大值.(参考公式:二次函数2y ax bx c =++(0a ≠),当2bx a=-时,244ac b y a -=最大(小)值)4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:月份 1月 5月 销售量3.9万台4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数). 34 5.83135 5.91637 6.08338 6.164)5、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.6、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。

经典二次函数应用题(含答案)

经典二次函数应用题(含答案)

经典二次函数应用题(含答案)二次函数应用题1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).(2)当x为何值时,S有最大值?并求出最大值.(3)在(2)的基础上,设直线x =t (0<t<10)与抛物线交于点N ,当t 为何值时,△BCN 的面积最大,并求出最大值.6、已知抛物线y =ax 2+bx +c 的顶点A (2,0),与y 轴的交点为B (0,-1).(1)求抛物线的解析式;(2)在对称轴右侧的抛物线上找出一点C ,使以BC 为直径的圆经过抛物线的顶点A . 并求出点C 的坐标以及此时圆的圆心P 点的坐标. yo C D x二次函数应用题答案1、解:(1) (130-100)×80=2400(元)(2)设应将售价定为x 元,则销售利润 130(100)(8020)5x y x -=-+⨯ 24100060000x x =-+-24(125)2500x =--+. 当125x =时,y 有最大值2500. ∴应将售价定为125元,最大销售利润是2500元.2、解:(1)(24002000)8450x y x ⎛⎫=--+⨯ ⎪⎝⎭,即2224320025y x x =-++. (2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=. 得12100200x x ==,.要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元.(3)对于2224320025y x x =-++,当241502225x =-=⎛⎫⨯- ⎪⎝⎭时, 150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值. 所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元. 3、4、解:(1)设p 与x 的函数关系为(0)p kx b k =+≠,根据题意,得 3.95 4.3.k b k b +=⎧⎨+=⎩,解得0.13.8.k b =⎧⎨=⎩,所以,0.1 3.8p x =+. 设月销售金额为w 万元,则(0.1 3.8)(502600)w py x x ==+-+.化简,得25709800w x x =-++,所以,25(7)10125w x =--+.当7x =时,w 取得最大值,最大值为10125.答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元.(2)去年12月份每台的售价为501226002000-⨯+=(元),去年12月份的销售量为0.112 3.85⨯+=(万台),根据题意,得2000(1%)[5(1 1.5%) 1.5]13%3936m m -⨯-+⨯⨯=.令%m t =,原方程可化为27.514 5.30t t -+=.214(14)47.5 5.3143715t ±--⨯⨯∴==.10.528t ∴≈,2 1.339t ≈(舍去) 答:m 的值约为52.8.5、解:(1)根据题意得65557545.k b k b +=⎧⎨+=⎩,解得1120k b =-=,. 所求一次函数的表达式为120y x =-+.(2)(60)(120)W x x =--+ 21807200x x =-+- 2(90)900x =--+, 抛物线的开口向下,∴当90x <时,W 随x 的增大而增大,而6087x ≤≤, ∴当87x =时,2(8790)900891W =--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(3)由500W =,得25001807200x x =-+-,整理得,218077000x x -+=,解得,1270110x x ==,.由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤.。

中考必练二次函数综合应用题(带答案)

中考必练二次函数综合应用题(带答案)

中考必练二次函数综合应用题(带答案)二次函数应用题1.某果农在销瓯柑时,经市场调査发现:瓯柑若售价为5元/千克,日销售量为34千克,若售价每提高1元/千克,日销售量就减少2千克.现设瓯柑售价为x元/千克(x≥5且为正整数).(1)若某日销售量为24千克,求该日瓯柑的单价;(2)若政府将销售价格定为不超过15元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给果农补贴a元后(a为正整数),果农发现最大日收入(日收入=销售额+政府补贴)还是不超过350元,并且只有5种不同的单价使日收入不少于340元,请直按写出所有符合题意的a的值.2.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查,在一段时间内,销售单价是40元,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.x>),请你分别用x的代数式来表示销售(1)不妨设该种品牌玩具的销售单价为x元(40量y件和销售该品牌玩具获得利润ω元.(2)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?3.某地草莓已经到了收获季节,已知草莓的成本价为10元/千克,投入市场销售后,发现该草莓销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围.(2)若产量足够,当该品种的草莓定价为多少时,每天销售获得的利润最大?最大利润是多少?4.某服装厂批发应季T恤衫,其单价y(元)与一次批发数量x(件)(x为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 5.问题提出(1)如图①,在矩形ABCD 中,4AB =,6BC =,点F 是AB 的中点,点E 在BC 上,2BE EC =,连接FE 并延长交DC 的延长线于点G ,求CG 的长;问题解决(2)如图②,某生态农庄有一块形状为平行四边形ABCD 的土地,其中4km AB =,6km BC =,60B ∠=︒.管理者想规划出一个形状为EMP 的区域建成亲子采摘中心,根据设计要求,点E 是AD 的中点,点P 、M 分别在BC 、AB 上,PM AB ⊥.设BP 的长为(km)x ,EMP 的面积为y 2(km ).①求y 与x 之间的函数关系式;②为容纳更多的游客,要求EMP 的面积尽可能的大,请求出EMP 面积的最大值,并求出此时BP 的长.6.某公司分别在A ,B 两城生产同种产品,共100件.A 城生产产品的成本y (万元)与产品数量x (件)之间具有函数关系220100y x x =++,B 城生产产品的每件成本为60万元.(1)当A 城生产多少件产品时,A ,B 两城生产这批产品成本的和最小,最小值是多少?(2)从A 城把该产品运往C ,D 两地的费用分别为1万元/件和3万元/件;从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元/件.C 地需要90件,D 地需要10件,在(1)的条件下,怎样调运可使A ,B 两城运费的和最小?7.安徽省在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y (万元)与年产量x (万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额-生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x的取值范围):并求年产量多少万件时,所获毛利润最大(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润8.某商场销售一款服装,经市场调查发现,每月的销售量y(件)与销售单价x(元/件)之间的函数关系如表格所示.同时,商场每出售1件服装,还要扣除各种费用150元.销售单价x(元/件)260240220销售量y(件)637791(1)求y与x之间的函数关系式;(2)当销售单价为多少元时,商场每月能够获得最大利润?最大利润是多少?(3)4月底,商场还有本款服装库存580件.若按(2)中获得最大月利润的方式进行销售,到12月底商场能否销售完这批服装?请说明理由.9.某商店购进一批成本为每件30元的商品,销售单价为40元时,每天销售量为80件,经调查发现,销售单价每上涨1元,每天销售量减少2件.设该商品每天的销售量y (件)与销售单价x(元).(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)求当销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?(3)若商店按单价不低于成本价且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润最大?最大利润是多少?(4)若商店要使销售该商品每天获得的利润不低于800元,试利用函数图象确定销售单价最多为多少元?10.某商场将进价为30元的台灯以40元售出,平均每月能售出600个.调查发现,售价在40元至70元范围内,这种台灯的售价每上涨1元,其销售量就减少10个.为了实现每月获得最大的销售利润,这种台灯的售价应定为多少?最大利润为多少元?【参考答案】二次函数应用题1.(1)10元/千克(2)2244w x x =-+(515x ≤≤,且x 为正整数)最大值是242元,最小值为170元(3)106 107 108【解析】【分析】(1)根据售价每提高1元/千克,日销售量就减少2千克,且某日销售量为24千克,列方程可解答;(2)根据题意,利用销售额等于销售量乘以销售单价,列出函数关系式,根据二次函数的性质及配方法可求得答案;(3)由题意得:2340244350x x a ≤-++≤,由二次函数的对称性可知x 的取值为9,10,11,12,13,从而计算可得a 值.(1)解:根据题意得342524x --=(), 解得10x =.答:该日瓯柑的单价是10元/千克;(2)解:根据题意得222342524422212112121124]2[w x x x x x x x =--=-+=--+-=--+()()(),由题意得515x ≤≤,且x 为正整数,∵20-< ,∴11x =时,w 有最大值是242元,∵11-5=6,15-11=4,抛物线开口向下,∴5x =时,w 有最小值是22511242170--+=()元;则w 关于x 的函数表达式为:23425244[]w x x x x =--=-+()(515x ≤≤,且x 为正整数);(3)解:由题意得2340244350x x a ≤-++≤,∵只有5种不同的单价使日收入不少于340元,5为奇数,∴由二次函数的对称性可知,x 的取值为9,10,11,12,13当9x =或13时,2244234x x -+=;当10x =或12时,2244240x x -+=,当11x =时,2244242x x -+=.∵补贴后不超过350元,234+106=340,242+108=350,∴当106a =或107或108时符合题意.答:所有符合题意的a 值为:106,107,108.【点睛】本题主要考查二次函数的应用.得到每天可售出的千克数是解决本题的突破点;本题需注意x 的取值应为整数.解题的关键是熟练掌握待定系数法求函数解析式、根据销售额的相等关系列出函数解析式及二次函数的性质.2.(1)y=1000−10x ,w =−10x 2+1300x −30000;(2)商场销售该品牌玩具获得的最大利润为8640元.【解析】【分析】(1)由销售单价每涨1元,就会少售出10件玩具,得y =600−(x −40)×10=1000−10x ,利润w =(1000−10x )(x −30)=−10x 2+1300x −30000;(2)首先求出x 的取值范围,然后把w =−10x 2+1300x −30000转化成y =−10(x −65)2+12250,结合x 的取值范围,求出最大利润.(1)解:由题意得:销售量y=600−(x −40)×10=1000−10x ,销售玩具获得利润w =(1000−10x )(x −30)=−10x 2+1300x −30000;(2)解:根据题意得10001054045x x -≥⎧⎨≥⎩, 解之得:45≤x ≤46,w =−10x 2+1300x −30000=−10(x −65)2+12250,∵a =−10<0,对称轴是直线x =65,∴当45≤x ≤46时,w 随x 增大而增大.∴当x =46时,w 最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.【点睛】本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.3.(1)10300y x =-+,1030x ≤≤;(2)当该品种的草莓定价为20元时,每天销售获得的利润最大,为1000元.【解析】【分析】(1)由图象可知每天销售量y (千克)与销售单价x (元/千克)之间是一次函数的关系,设y kx b =+,将(10,200),(15,150)代入解析式求解即可;(2)设利润为w 元,求得w 与x 的关系式,然后利用二次函数的性质求解即可.(1)解:由图象可知每天销售量y (千克)与销售单价x (元/千克)之间是一次函数的关系, 设y kx b =+,将(10,200),(15,150)代入解析式,可得1020015150k b k b +=⎧⎨+=⎩,解得10300k b =-⎧⎨=⎩ 即10300y x =-+,由题意可得,10x ≥,103000x -+≥,解得1030x ≤≤即10300y x =-+,1030x ≤≤,(2)解:设利润为w 元,则2(10)(10300)104003000w x x x x =--+=-+-,∵100-<,开口向下,对称轴为20x,1030x ≤≤ ∴当20x时,w 有最大值,为1000元,【点睛】此题考查了一次函数与二次函数的应用,解题的关键是掌握二次函数的性质,理解题意,找到题中的等量关系,正确列出函数关系式.4.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)一次批发250件时,获得的最大利润为6250元【解析】【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答.(1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70; 综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+=()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元.【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键.5.(1)1CG =(2)①2311388y x x =-+;②EMP 面积的最大值为21213km 32,此时BP 的长为11km 2 【解析】【分析】(1)证明FEB GEC △∽△,依据相似三角形的性质进行求解即可;(2)①分点P 在点H 左侧和右侧两种情况讨论求解即可;②由二次函数的性质可得解.(1)在矩形ABCD 中,90ABC BCD BCG ∠=∠=∠=︒,∵FEB GEC ∠=∠,∴FEB GEC △∽△,∴BF BE CG CE =, ∵4AB =,6BC =,点F 是AB 的中点,2BE EC =,∴2BF =,4BE =,2CE =,∴242CG =, ∴1CG =.(2)①过点E 作EH //AB 交BC 于点H ,交射线MP 于点G ,易得四边形ABHE 是平行四边形, ∴4EH AB ==.∵EH //AB ,PM AB ⊥,∴60PHG B ∠=∠=︒,EG PM ⊥,即EG 是PME △边MP 上的高.∵点E 是AD 的中点,∴3BH AE ==.如图1-1,当点P 在点H 左侧时,3PH x =-,∴1322x HG PH -==, ∴311422x x EG EH HG --=+=+=. 如图1-2,当点P 在点H 右侧时,3PH x =-,∴1322x HG PH -==, ∴311422x x EG EH HG --=-=-=, ∴PME △的边MP 上的高112x EG -=. 在Rt MBP 中,3sin 60x MP BP =⋅︒=∴2113113113222x x y MP EG x -=⋅==. ②)222311333111213112y x x x x ⎫==-=-⎪⎝⎭ ∴当112x =时,1213y =最大 ∴EMP 21213,此时BP 的长为11km 2. 【点睛】 本题是一道相似形的综合题,考查了全等三角形的判定及性质,相似三角形的判定及性质,三角函数值的运用.在解答时添加辅助线构建全等形和相似形是关键.6.(1)A 城生产20件,最小值是5700万元;(2)从A 城把该产品运往C 地的产品数量为20件,则从A 城把该产品运往D 地的产品数量为0件;从B 城把该产品运往C 地的产品数量为70件,则从B 城把该产品运往D 地的产品数量为10件时,可使A ,B 两城运费的和最小.【解析】【分析】(1)设A ,B 两城生产这批产品的总成本的和为W (万元),则W 等于A 城生产产品的总成本加上B 城生产产品的总成本,由此可列出W 关于x 的二次函数,将其写成顶点式,根据二次函数的性质可得答案;(2)设从A 城把该产品运往C 地的产品数量为n 件,分别用含n 的式子表示出从A 城把该产品运往D 地的产品数量、从B 城把该产品运往C 地的产品数量及从B 城把该产品运往D 地的产品数量,再列不等式组求得n 的取值范围,然后用含n 的式子表示出A ,B 两城总运费之和P ,根据一次函数的性质可得答案.(1)解:设A ,B 两城生产这批产品的总成本的和为W (万元),则22010060(100)W x x x =+++-2406100x x =-+2(20)5700x =-+,∴当20x时,W 取得最小值,最小值为5700万元, ∴城生产20件,A ,B 两城生产这批产品成本的和最小,最小值是5700万元;(2) 设从A 城把该产品运往C 地的产品数量为n 件,则从A 城把该产品运往D 地的产品数量为(20)n -件,从B 城把该产品运往C 地的产品数量为(90)n -件,则从B 城把该产品运往D 地的产品数量为(1020)n -+件,运费的和为P (万元),由题意得:20010200n n -⎧⎨-+⎩, 解得1020n ,3(20)(90)2(1020)P n n n n =+-+-+-+60390220n n n n =+-+-+-2130n n =-+130n =-+,根据一次函数的性质可得:P 随n 增大而减小,∴当20n =时,P 取得最小值,最小值为110,∴从A 城把该产品运往C 地的产品数量为20件,则从A 城把该产品运往D 地的产品数量为0件;从B 城把该产品运往C 地的产品数量为70件,则从B 城把该产品运往D 地的产品数量为10件时,可使A 、B 两城运费的和最小.【点睛】本题考查了二次函数和一次函数在实际问题中的应用,解题的关键是理清题中的数量关系并熟练掌握一次函数和二次函数的性质.7.(1)21(0100)10y x x =≤≤,130(0100)10z x x =-+≤≤; (2)21(75)1125(0100)5W x x =--+≤≤,年产量75万件时,所获毛利润最大; (3)今年最多可获得1080万元的毛利润【解析】【分析】(1)利用待定系数法可求出y 与x 以及z 与x 之间的函数关系式;(2)根据(1)的表达式及毛利润=销售额-生产费用,可得出w 与x 之间的函数关系式; (3)首先求出x 的取值范围,再利用二次函数增减性得出答案即可.(1)解:设y 与x 之间的函数关系式为2y ax =,21000100a =⨯,得110a =, 即y 与x 之间的函数关系式为21(0100)10y x x =≤≤; 设z 与x 的函数关系式为z kx b =+,3010020b k b =⎧⎨+=⎩,得1,1030k b ⎧=-⎪⎨⎪=⎩ 即z 与x 的函数关系式为130(0100)10z x x =-+≤≤; (2)解:由题意可得, 2211130(75)112510105W zx y x x x x ⎛⎫=-=-+-=--+ ⎪⎝⎭, 即W 与x 之间的函数关系式为21(75)1125(0100)5W x x =--+≤≤, ∵21(75)11255W x =--+, ∴当75x =时,W 取得最大值,此时1125W =,即年产量75万件时,所获毛利润最大;(3)解:∵今年投入生产的费用不会超过360万元,∴360y ≤,令y =360,得2136010x =, 解得:x =±60(负值舍去),由图象可知,当0<y ≤360时,0<x ≤60, ∵21(75)11255W x =--+, ∴当60x =时,W 取得最大值,此时1080W =,即今年最多可获得1080万元的毛利润.【点睛】本题考查了二次函数的应用及一次函数的应用,解题的关键是利用待定系数法求函数解析式,注意培养自己利用数学知识解决实际问题的能力,难度一般.8.(1)724510y x =-+ (2)当售价为250元时,商场每月所获利润最大,最大利润为7000元(3)不能,理由见解析【解析】【分析】(1)根据表格数据判断为一次函数,设y kx b =+,用待定系数法求出解析时; (2)利润=单件利润⨯销售数量,化简为二次函数的顶点式,根据函数性质判断; (3)计算按(2)中获得最大月利润的方式进行销售时的数量,与580比较.(1)解:由表格可知,此函数为一次函数,故设y kx b =+;则有24077{22091k b k b +=+=, 解得710245k b ⎧=-⎪⎨⎪=⎩, 724510y x ∴=-+; (2)设销售利润为w 元,由题意得:7(150)(245)10w x x =--+ 273503675010x x =-+- 27(250)700010x =--+ 7010a =-<, w ∴有最大值,∴当250x =时,w 取最大值,7000w =最大,答:当售价为250元时,商场每月所获利润最大,最大利润为7000元;(3)当250x =时,70y =(件),70(124)560580⨯-=<,∴12月底不能销售完这批服装.【点睛】本题考查一次函数和二次函数的实际应用,解题关键用待定系数法求出一次函数解析式,注意二次函数最值讨论时,一般整理成顶点式,再通过看a 值确定最大值或最小值. 9.(1)y =-2x +160(2)定价为55元时,每天的销售利润有最大值为1250(3)销售单价定为50元时,该超市每天的利润最大,最大利润1200元(4)70元【解析】【分析】(1)根据题意可得y 与x 的关系式;(2)由题意得w =(x -30)(-2x +160)=-2(x -55)2+1250,即可求解;(3)根据二次函数的关系式和单价的取值范围可得最大利润;(4)由题意可得:(x -30)(-2x +160)=800,再根据函数的图象可得答案.(1)依题意得,y =80-2(x -40)=-2x +160;(2)由题意得:2(30)(2160)2(55)1250w x x x =--+=--+,20-<,∴当55x =时,w 有最大值,此时,1250w =,(3)20-<,故当55x <时,w 随x 的增大而增大,而3050x ≤≤,∴当50x =时,w 有最大值,此时,1200w =,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(4)由题意得:(30)(2160)800x x --+≥,解得:4070x ≤≤,∴销售单价最多为70元.【点睛】此题主要考查了二次函数的应用,正确利用销量×每件的利润=w 得出函数关系式是解题关键.10.这种台灯的售价应定为65元时,最大利润为12250元.【解析】【分析】设这种台灯应涨价x 元,那么就少卖出10x 个,根据“总利润=每个台灯的利润×销售量”列出函数解析式,最后运用二次函数求最值即可.【详解】解:设售价为x 元,根据题意得:()()()2306001040106512250W x x x =---=--+⎡⎤⎣⎦,∴当x =65时,12250y =最大,答:这种台灯的售价应定为65元时,最大利润为12250元.【点睛】本题主要考查二次函数的应用,根据“总利润=每个台灯的利润×销售量”列出函数解析式是解答本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学专题二次函数的应用题
一、解答题
1.一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为
2.5米时,达到最大高度
3.5米,然后准确落入篮圈。

已知篮圈中心到地面的距离为3.05米。

(1)建立如图所示的直角坐标系,求抛物线的解析式;
(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?
2.某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.(1)试求y与x之间的关系式;
(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?
3.在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5)(1)求这个二次函数的解析式;
米,)2)该男同学把铅球推出去多远?(精确到0.01

元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件)某商场以每件42,4.
件)可看成是一次函数关系:/(元与每件的销售价
之间的函数关系式(每天的销售与每件的销售价写出商场卖这种服装每天的销售利润1.
利润是指所卖出服装的销售价与购进价的差);
2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少?
5.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路
线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件),在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。

(1)求这条抛物线的解析式;
(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3米,问此次跳水会不会失误?并通过计算说明理由
6.某服装经销商甲,库存有进价每套400元的A品牌服装1200套,正常销售时
每套600元,每月可卖出100套,一年内刚好卖完,现在市场上流行B品牌服装,此品牌服装进价每套200元,售出价每套500元,每月可买出120套(两套服装的市场行情互不影响)。

目前有一可进B品牌的机会,若这一机会错过,估计一年内进不到这种服装,可是,经销商手头无流动资金可用,只有低价转让A品牌服装,经与经销商乙协商,达成协议,转让价格(元/套)与转让数量(套)有
如下关系:
转让数量(套)120011001000900800700600500400300200100 价格(元/套)240250260270 280290 300310 320330 340 350
方案1:不转让A品牌服装,也不经销B品牌服装;
方案2:全部转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装;
方案3:部份转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装,同时经销A品牌服装。

问:
①经销商甲选择方案1与方案2一年内分别获得利润各多少元?
,请问他转让给3经销商甲选择哪种方案可以使自己一年内获得最大利润?若选用方案②
经销商乙的A品牌服装的数量是多少(精确到百套)?此时他在一年内共得利润多少元?
元的价格购进一种商品,试销中发现,这种商品每天的销量30(件)与每某商场以每件7.
x(元)满足一次函数:件的销售价(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数数关系式.
(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?
米长的篱笆围成一个矩形花圃,设矩形的边408.如图,一边靠学校院墙,其它三边用
米,面积为平方米。

2时,x的值;(1 )求:与x米之间的函数关系式,并求当
y满足关系式米,如果x ,(2 )设矩形的边即矩形成黄金矩形,、求此黄金矩形的长和宽
9.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O 恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,
水流喷出的高度如图建立直角坐标系,的任一平面上,抛物线形状如图所示,OA且在过
之间的关系式是. 请回答下列问题:与水平距离
1.柱子OA的高度为多少米?
2.喷出的水流距水平面的最大高度是多少米?
3.若不计其它因素,水池的半径至少要多少米,才能喷出的水流不至于落在池外?
参考答案
2+3.5。

y=ax ,3.5),故可设其解析式为、1解:(1)由于抛物线的顶点是(0 又由于抛物线过(1.5,3.05),
于是求得a=-0.2。

2+3.5。

y=-0.2x ∴抛物线的解析式为
(2)当x=-2.5时,y=2.25。

(米)。

∴球出手时,他距地面高度是2.25-1.8-0.25=0.202、解:(1)依题意设y=kx+b,则有
所以y=-30x+960(16≤x≤32).
(2)每月获得利润P=(-30x+960)(x-16)
=30(-x+32)(x-16)
2 +48x-512)=30(-x
2 +1920.=-30(x-24)所以当x=24时,P有最大值,最
大值为1920.
元.元时,才能使每月获得最大利润,最大利润为1920答:当价格为243、解:(1)设二次
函数的解析式为

顶点坐标为(6,5)
A(0,2)在抛物线上
= 0)当时,(2(不合题意,舍去)x=x=6-,
≈13.75(米)x=. 13.75米答:该同学把铅球抛出与每件的销售价之间的函数关系为)由题意,销售利润4、解:(1
2+330x-8568
,即=-3 =)(-42)(-3+204
2+507 (=-3x-55))配方,得(2
. 元元时,可取得最大利润,每天最大销售利润为∴当每件的销售价为55507可编辑范本5、解:(1)在给定的直角坐标系下,设最高点为A,入水点为B,
抛物线的解析式为
的纵坐标为,且顶点A(2,-10),由题意,知O(00),B
a=,b=-2 或,a= ,c=0
b= ,c=0 解得,
轴右侧,∴>0
∵抛物线对称轴在y
又∵抛物线开口向下,∴a<0,b>0
2+y=
x∴抛物线的解析式为x
)当运动员在空中距池边的水平距离为米时,(2
时,即
∴此时运动员距水面的高为
. 因此,此次跳水会失误
=480000(元)、6解:经销商甲的进货成本是=①若选方案1,则获利1200×
600-480000=240000(元)
品牌服装B套,一年内刚好卖空可2若选方案,得转让款1200×240=288000元,可进购。

1440×500-480000=240000获利(元)品牌服装套,B元,xA②设转让品牌服装套,则转让价格是每套可进购全部售出可编辑范本
品牌服装后得款元,此时还剩A品牌服装(1200-xB)套,全部售出A品牌服装后得款60
)元,共获利,故当1200-xx=600(元。

0套时,可的最大利润330000
)7、(1
(2).元元时,最大销售利润为432 当定价为42
)1 8、

当时,
则①(2)当
又②
解得,①由、②
不合题意,舍去,20+ 其中
y=8,∴x=20-
20-4,长为当矩形成黄金矩形时,宽为8.
高度为米. (9、1)OA
,即水流距水平面的最大高为米. 时,2()当
)(3不合题意,其中. 米,才能使喷出的水流不至于落在池外答:水池的半径至少要 2.5
可编辑范本
[此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]可编辑范本。

相关文档
最新文档