义务教育新课标八年级上册数学全册教案

合集下载

八级上册数学教案人教版(全册)

八级上册数学教案人教版(全册)

八级上册数学教案人教版(第一部分)一、教学目标1. 知识与技能:使学生掌握本册数学的基本概念、性质、定理和公式,提高学生的数学思维能力和解决问题的能力。

2. 过程与方法:通过自主学习、合作探讨、实践操作等方式,培养学生的数学学习兴趣,提高学生的数学素养。

3. 情感态度与价值观:让学生体验到数学在实际生活中的运用,认识到数学的重要性,培养学生的责任感和使命感。

二、教学内容1. 第一章:实数与函数(1) 实数的概念、性质和运算;(2) 函数的定义、性质和图像;(3) 一次函数、二次函数、反比例函数的解析式、图像和性质。

2. 第二章:几何基础(1) 点、线、面的基本概念和性质;(2) 直线方程、圆方程;(3) 三角形、四边形的性质和判定;(4) 坐标系的应用。

三、教学重点与难点1. 教学重点:实数的运算、函数的性质、几何图形的判定与性质。

2. 教学难点:函数的图像、几何图形的复杂计算和证明。

四、教学方法1. 采用问题驱动法,引导学生主动探究数学问题;2. 运用案例分析法,让学生通过实际例子理解数学概念;3. 利用数形结合法,培养学生直观的数学思维;4. 实施分组合作学习,培养学生的团队协作能力。

五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业完成情况:检查学生作业的准确性、书写规范性,评估学生的学习效果。

3. 考试成绩:定期进行数学考试,对学生的知识掌握程度进行评估。

4. 学生自评:鼓励学生自我评价,反思自己的学习过程,提出改进措施。

八级上册数学教案人教版(第二部分)六、教学安排1. 课时分配:本部分共安排课时,具体分配如下:第一章:实数与函数:课时第二章:几何基础:课时第十五章:课时2. 教学计划:根据课时分配,合理安排每个章节的教学内容,确保教学目标的达成。

七、教学资源1. 教材:使用人教版八级上册数学教材。

2. 教辅资料:提供相应的教辅资料,辅助教学。

部编人教版八年级数学上册优秀教案(全册)

部编人教版八年级数学上册优秀教案(全册)

部编人教版八年级数学上册优秀教案(全册)部编人教版八年级数学上册优秀教案(全册完整版)概述本文档是一份部编人教版八年级数学上册的优秀教案集合。

该教案全册完整,内容包括了八年级数学上册的所有章节和知识点。

教案列表以下是本文档包含的教案列表:1. 第一章:有理数的乘法与除法- 教案1:乘法和除法的基本概念- 教案2:乘方和除法的基本性质- 教案3:有理数的乘除法混合运算2. 第二章:代数式的等值变形- 教案1:代数式的基本概念和性质- 教案2:等式与等值变形的基本规律- 教案3:解一元一次方程式3. 第三章:图形的相似与尺度- 教案1:相似图形的基本概念和性质- 教案2:相似图形的判定和构造- 教案3:相似图形的尺度及应用4. 第四章:初识函数- 教案1:函数的概念和性质- 教案2:函数的表示和读图- 教案3:函数图象的平移和伸缩5. 第五章:一次函数与方程- 教案1:一次函数的概念和性质- 教案2:一次函数的图象和性质- 教案3:一次方程的解与应用6. 第六章:图形的平移和旋转- 教案1:平移的概念和性质- 教案2:平移的表示和图像- 教案3:旋转的概念和性质7. 第七章:数据的搜集、整理与表示- 教案1:数据的搜集和整理- 教案2:数据的图表表示- 教案3:数据的分析和应用8. 第八章:统计与概率- 教案1:统计调查和数据分布- 教案2:概率与事件- 教案3:概率的计算和应用使用说明本文档可以作为教师备课参考,提供了八年级数学上册的优秀教案,可以帮助教师更好地授课和引导学生研究。

每个教案都包括了基本概念、性质、规律和应用等内容,帮助学生深入理解数学知识。

注意事项请在使用教案时,根据具体教学需求进行调整和适应,并注意教学过程中的差异化教学和个性化指导。

2023最新-八年级数学上册教案【优秀5篇】

2023最新-八年级数学上册教案【优秀5篇】

八年级数学上册教案【优秀5篇】作为一位优秀的人民教师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。

我们应该怎么写教案呢?以下是人见人爱的分享的5篇《八年级数学上册教案》,如果能帮助到亲,我们的一切努力都是值得的。

人教版八年级上数学教案篇一一、教学目的:1、掌握菱形概念,知道菱形与平行四边形的关系。

2、理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积。

3、通过运用菱形知识解决具体问题,提高分析能力和观察能力。

4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。

二、重点、难点1、教学重点:菱形的性质1、2.2、教学难点:菱形的性质及菱形知识的综合应用。

三、课堂引入1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2、(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念。

菱形定义:有一组邻边相等的平行四边形叫做菱形。

【强调】菱形(1)是平行四边形;(2)一组邻边相等。

让学生举一些日常生活中所见到过的菱形的例子。

四、例习题分析例1(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:∠四边形ABCD是菱形,∠ CB=CD,CA平分∠BCD.∠∠BCE=∠DCE.又CE=CE,∠∠BCE∠∠COB(SAS)。

∠∠CBE=∠CDE.∠ 在菱形ABCD中,AB∠CD,∠∠AFD=∠FDC∠ ∠AFD=∠CBE.例2(教材P108例2)略五、随堂练习1、若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为。

2、已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积。

3、已知菱形ABCD的周长为20cm,且相邻两内角之比是1∠2,求菱形的对角线的长和面积。

部编版八年级数学上册教案全套

部编版八年级数学上册教案全套

部编版八年级数学上册教案全套
一、教学目标
1. 了解八年级数学上册的整体教学目标和内容。

2. 研究教学要求,明确学生需要达到的知识和能力。

3. 确定教学重点和难点,为教学活动的设计提供指导。

4. 提供教案全套,方便教师进行教学准备和实施。

二、教学内容
1. 教材内容概述:八年级数学上册主要涵盖了数与式、比例与图形、方程与不等式、数据的统计和概率等内容。

2. 各单元教学内容简介:根据教材设置的单元进行内容介绍,包括每个单元的主要知识点和研究要求。

三、教学要求
1. 掌握数与式的基本概念和运算方法。

2. 理解比例与图形相关的概念和原理。

3. 能够解方程、不等式等数学问题。

4. 掌握数据的统计和概率的基本方法和应用。

四、教学重点和难点
1. 教学重点:数与式的运算、比例与图形的应用、方程与不等式的解法、统计与概率的应用。

2. 教学难点:对于一些抽象的数学概念的理解和应用,如方程的解法、统计和概率的应用等。

五、教案全套
1. 每个单元的教学目标和教学内容。

2. 教学活动的设计和安排。

3. 相关教学资源和参考资料。

4. 课堂评价方法和学生自主研究的指导。

六、总结
本份文档提供了部编版八年级数学上册教案全套,包括教学目标、教学内容、教学要求、教学重点和难点、以及教案的设计和安排。

教师可以根据该教案全套进行教学准备和实施,促进学生的数学学习和能力提升。

八年级上册数学教案 八年级上册数学教案(9篇)

八年级上册数学教案 八年级上册数学教案(9篇)

八年级上册数学教案八年级上册数学教案(9篇)作为一名为他人授业解惑的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。

那么大家知道正规的教案是怎么写的吗?下面是细致的小编帮大家收集整理的9篇八年级上册数学教案的相关范文,欢迎参考阅读,希望能够帮助到大家。

八年级上册数学教案篇一第11章平面直角坐标系11.1平面上点的坐标第1课时平面上点的坐标(一)教学目标【知识与技能】1.知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。

2.理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。

已知点的坐标,能在平面直角坐标系中描出点。

3.能在方格纸中建立适当的平面直角坐标系来描述点的位置。

【过程与方法】1.结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。

2.学会用有序实数对和平面直角坐标系中的点来描述物体的位置。

【情感、态度与价值观】通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。

重点难点【重点】认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。

【难点】理解坐标系中的坐标与坐标轴上的数字之间的关系。

教学过程一、创设情境、导入新知师:如果让你描述自己在班级中的位置,你会怎么说?生甲:我在第3排第5个座位。

生乙:我在第4行第7列。

师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。

二、合作探究,获取新知师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?生:3排5号。

师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。

八年级上册数学教案(6篇)

八年级上册数学教案(6篇)

八年级上册数学教案(6篇)八年级上册数学教案(篇1)一、学生起点分析通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.二、教学任务分析《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节.本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.本节课的教学目标是:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;三、教学过程设计本节课设计了6个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:质疑内容:想一想⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.算一算已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长的平方,并提出问题:是整数(或分数)吗?2.剪剪拼拼把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:议一议→释一释→忆一忆→找一找议一议:已知,请问:① 可能是整数吗?② 可能是分数吗?释一释:释1.满足的为什么不是整数?释2.满足的为什么不是分数?忆一忆:让学生回顾“有理数”概念,既然不是整数也不是分数,那么一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础找一找:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:画一画1→画一画2→仿一仿→赛一赛画一画1:在右1的正方形网格中,画出两条线段:1.长度是有理数的线段2.长度不是有理数的线段画一画2:在右2的正方形网格中画出四个三角形(右1) 2.三边长都是有理数2.只有两边长是有理数3.只有一边长是有理数4.三边长都不是有理数仿一仿:例:在数轴上表示满足的解:(右2)仿:在数轴上表示满足的赛一赛:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看!(右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上效果:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容:1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗? 3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.第六环节:布置作业习题2.1六、教学设计反思(一)生活是数学的源泉,兴趣是学习的动力大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.(二)化抽象为具体常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.(三)强化知识间联系,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.八年级上册数学教案(篇2)教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入问题牵引请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2._2-4=()();3._2-2_y+y2=()2.师生共识把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究问题牵引(1)下列各式从左到右的变形是否为因式分解:①(_+1)(_-1)=_2-1;②a2-1+b2=(a+1)(a-1)+b2;③7_-7=7(_-1).(2)在下列括号里,填上适当的项,使等式成立.①9_2(______)+y2=(3_+y)(_______);②_2-4_y+(_______)=(_-_______)2.四、随堂练习,巩固深化课本练习.探研时空计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计15.4.1 因式分解1、因式分解例:练习:15.4.2 提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的最大公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知复习交流下列从左到右的变形是否是因式分解,为什么?(1)2_2+4=2(_2+2);(2)2t2-3t+1= (2t3-3t2+t);(3)_2+4_y-y2=_(_+4y)-y2;(4)m(_+y)=m_+my;(5)_2-2_y+y2=(_-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式4_2-_和_y2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.教师归纳我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4_2-_中的公因式是_,在_y2-yz-y中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法教师提问多项式4_2-8_6,16a3b2-4a3b2-8ab4各项的公因式是什么?师生共识提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学例1把-4_2yz-12_y2z+4_yz分解因式.解:-4_2yz-12_y2z+4_yz=-(4_2yz+12_y2z-4_yz)=-4_yz(_+3y-1)例2分解因式,3a2(_-y)3-4b2(y-_)2思路点拨观察所给多项式可以找出公因式(y-_)2或(_-y)2,于是有两种变形,(_-y)3=-(y-_)3和(_-y)2=(y -_)2,从而得到下面两种分解方法.解法1:3a2(_-y)3-4b2(y-_)2=-3a2(y-_)3-4b2(y-_)2=-[(y-_)23a2(y-_)+4b2(y-_)2]=-(y-_)2 [3a2(y-_)+4b2]=-(y-_)2(3a2y-3a2_+4b2)解法2:3a2(_-y)3-4b2(y-_)2=(_-y)23a2(_-y)-4b2(_-y)2=(_-y)2 [3a2(_-y)-4b2]=(_-y)2(3a2_-3a2y-4b2)例3用简便的方法计算:0.84×12+12×0.6-0.44×12.教师活动引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.教师活动在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题.探研时空利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计15.4.2 提公因式法1、提公因式法例:练习:15.4.3 公式法(一)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知问题牵引请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).学生活动动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.教师活动引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.学生活动从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).教师活动引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学例1把下列各式分解因式:(投影显示或板书)(1)_2-9y2;(2)16_4-y4;(3)12a2_2-27b2y2;(4)(_+2y)2-(_-3y)2;(5)m2(16_-y)+n2(y-16_).思路点拨在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.教师活动启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.学生活动分四人小组,合作探究.解:(1)_2-9y2=(_+3y)(_-3y);(2)16_4-y4=(4_2+y2)(4_2-y2)=(4_2+y2)(2_+y)(2_-y);(3)12a2_2-27b2y2=3(4a2_2-9b2y2)=3(2a_+3by)(2a_-3by);(4)(_+2y)2-(_-3y)2=[(_+2y)+(_-3y)][(_+2y)-(_-3y)] =5y(2_-y);(5)m2(16_-y)+n2(y-16_)=(16_-y)(m2-n2)=(16_-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.探研时空1.求证:当n是正整数时,n3-n的值一定是6的倍数. 2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本P171习题15.4第2、4(2)、11题.板书设计15.4.3 公式法(一)1、平方差公式:例:a2-b2=(a+b)(a-b)练习:15.4.3 公式法(二)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力. 2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知问题牵引1.分解因式:(1)-9_2+4y2;(2)(_+3y)2-(_-3y)2;(3) _2-0.01y2.八年级上册数学教案(篇3)一、创设情景,明确目标多媒体展示:内角三兄弟之争在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?二、自主学习,指向目标学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标三角形的内角和活动一:见教材P11“探究”.展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线L与△ABC的边BC有什么关系?你能想出证明“三角形内角和的方法”吗?证明命题的步骤是什么?证明三角形的内角和定理.小组讨论:有没有不同的证明方法?反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程.三角形三个内角的和等于180°.针对训练:见《学生用书》相应部分三角形内角和定理的应用活动二:见教材P12例1展示点评:题中所求的角是哪个三角形的一个内角吗?你能想出几种解法?小组讨论:三角形的内角和在解题时,如何灵活应用?反思小结:当三角形中已知两角的读数时,可直接用内角和定理求第三个内角;当三角形中未直接给出两内角的度数时,可根据它们之间的关系列方程解决.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.本节学习的数学知识是:三角形的内角和是180°.2.三角形内角和定理的证明思路是什么?3.数学思想是转化、数形结合.《三角形综合应用》精讲精练1. 现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A.1个B.2个C.3个D.4个2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( )A.5B.6C.7D.103.下列五种说法:①三角形的三个内角中至少有两个锐角;②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有________(填序号).《11.2与三角形有关的角》同步测试4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?(2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状.为什么?(3)如图③,在Rt△ABC和Rt△DBE 中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?八年级上册数学教案(篇4)单元(章)主题第三章直棱柱任课教师与班级本课(节)课题3.1 认识直棱柱第 1 课时 / 共课时教学目标(含重点、难点)及设置依据教学目标1、了解多面体、直棱柱的有关概念.2、会认直棱柱的侧棱、侧面、底面.3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.教学重点与难点教学重点:直棱柱的有关概念.教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.教学准备每个学生准备一个几何体,(分好学习小组)教师准备各种直棱柱和长方体、立方体模型教学过程内容与环节预设、简明设计意图二度备课(即时反思与纠正)一、创设情景,引入新课师:在现实生活中,像笔筒、西瓜、草莓、礼品盒等都呈现出了立体图形的形状,在你身边,还有没有这样类似的立体图形呢?析:学生很容易回答出更多的答案。

八年级上册数学全册教案

八年级上册数学全册教案

八年级上册数学全册教案第一章:实数与代数1.1 有理数教学目标:理解有理数的定义及其分类。

掌握有理数的加、减、乘、除运算规则。

教学内容:有理数的定义及分类。

有理数的加法、减法、乘法、除法运算规则。

教学步骤:1. 引入有理数的概念,解释有理数的定义及分类。

2. 通过示例演示有理数的加法、减法、乘法、除法运算规则。

3. 让学生进行练习,巩固所学的运算规则。

1.2 代数式教学目标:理解代数式的概念及其组成。

掌握代数式的运算规则。

教学内容:代数式的概念及其组成。

代数式的运算规则。

教学步骤:1. 引入代数式的概念,解释代数式的组成。

2. 通过示例演示代数式的运算规则。

3. 让学生进行练习,巩固所学的运算规则。

第二章:几何基础2.1 点、线、面教学目标:理解点、线、面的概念及其关系。

教学内容:点、线、面的概念及其关系。

教学步骤:1. 引入点、线、面的概念,解释它们之间的关系。

2. 通过示例展示点、线、面的特征和性质。

3. 让学生进行练习,巩固所学的概念。

2.2 直线与角教学目标:理解直线和角的概念及其性质。

教学内容:直线和角的概念及其性质。

教学步骤:1. 引入直线和角的概念,解释它们的性质。

2. 通过示例展示直线的特征和角的性质。

3. 让学生进行练习,巩固所学的概念。

第三章:方程与不等式3.1 方程的概念与解法教学目标:理解方程的概念及其解法。

教学内容:方程的概念及其解法。

教学步骤:1. 引入方程的概念,解释方程的解法。

2. 通过示例演示方程的解法。

3. 让学生进行练习,巩固所学的解法。

3.2 不等式的概念与解法教学目标:理解不等式的概念及其解法。

教学内容:不等式的概念及其解法。

教学步骤:1. 引入不等式的概念,解释不等式的解法。

2. 通过示例演示不等式的解法。

3. 让学生进行练习,巩固所学的解法。

第四章:函数与图像4.1 函数的概念与性质教学目标:理解函数的概念及其性质。

教学内容:函数的概念及其性质。

教学步骤:1. 引入函数的概念,解释函数的性质。

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)第一章:一元一次方程1.1 认识一元一次方程了解一元一次方程的定义和形式掌握一元一次方程的解法1.2 解一元一次方程学习使用代入法、加减法解一元一次方程练习解不同系数的一元一次方程1.3 应用一元一次方程运用一元一次方程解决实际问题练习列方程解应用题第二章:不等式与不等式组2.1 认识不等式了解不等式的定义和性质学会解不等式2.2 解一元一次不等式学习一元一次不等式的解法练习解不同系数的一元一次不等式2.3 不等式组了解不等式组的概念和解法学会解不等式组第三章:整式的加减3.1 同类项理解同类项的定义和性质学会合并同类项3.2 整式的加减学习整式的加减法则练习整式的加减运算3.3 乘法公式掌握完全平方公式和平方差公式学会应用乘法公式进行整式乘法第四章:函数及其图象4.1 认识函数了解函数的定义和性质学会用图象表示函数4.2 一次函数学习一次函数的定义和图象掌握一次函数的性质和图象的变换4.3 一次函数的应用运用一次函数解决实际问题练习列方程解应用题第五章:平面直角坐标系5.1 平面直角坐标系的定义了解平面直角坐标系的定义和构成学会在坐标系中确定点的位置5.2 坐标轴上的点学习坐标轴上点的特点和表示方法练习坐标轴上点的运算5.3 象限内的点掌握象限内点的坐标特征学会象限内点的坐标运算第六章:数据的收集、整理与描述6.1 数据的收集学习调查方法,掌握收集数据的方式练习使用调查问卷、观察等方法收集数据6.2 数据的整理学习数据的整理方法,如分类、排序等练习使用图表对数据进行整理和展示6.3 数据的描述学习利用统计量描述数据,如平均数、中位数等练习计算和解读统计量,了解数据分布特征第七章:多边形的面积7.1 多边形的定义了解多边形的概念和性质学会多边形的分类和识别7.2 三角形的面积学习三角形面积的计算方法练习计算不同类型的三角形面积7.3 平行四边形和梯形的面积掌握平行四边形和梯形面积的计算方法练习计算平行四边形和梯形面积第八章:概率初步8.1 概率的概念了解概率的定义和性质学会计算简单事件的概率8.2 随机事件的概率学习利用频率估计概率练习计算不同随机事件的概率8.3 概率的加法法则和乘法法则掌握概率的加法法则和乘法法则练习应用概率法则解决实际问题第九章:函数的性质9.1 函数的性质学习函数的单调性、奇偶性、周期性等性质学会运用函数性质解决实际问题9.2 反比例函数学习反比例函数的定义和图象掌握反比例函数的性质和应用9.3 二次函数学习二次函数的定义和图象掌握二次函数的性质和应用第十章:综合复习10.1 复习要点梳理梳理本册书的主要知识点和技能巩固重点,解决疑难问题10.2 复习题训练完成不同难度的复习题,提高解题能力10.3 总复习测试进行全面的复习测试,检验学习成果根据测试结果,制定针对性的改进计划重点和难点解析一、认识一元一次方程:重点关注学生对于方程概念的理解,特别是对“未知数”、“等式”这两个关键词的理解。

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)第一章:勾股定理1.1 勾股定理的发现导入:通过直角三角形的实际测量,让学生感受勾股定理的背景。

探究:引导学生通过实际操作,发现勾股定理,并能够用字母表示。

练习:让学生通过解决实际问题,巩固勾股定理的应用。

1.2 勾股定理的证明导入:通过回顾三角形知识,引导学生思考勾股定理的证明方法。

探究:让学生通过割补、折叠等方法,尝试证明勾股定理。

练习:让学生通过解决实际问题,加深对勾股定理证明的理解。

第二章:实数与方程2.1 实数的分类导入:通过生活中的实例,引导学生理解实数的概念。

探究:让学生通过分类讨论,理解实数的分类,包括有理数和无理数。

练习:让学生通过解决实际问题,加深对实数分类的理解。

2.2 一元一次方程导入:通过实例引入方程的概念,引导学生理解一元一次方程的特点。

探究:让学生通过解方程的方法,掌握一元一次方程的解法。

练习:让学生通过解决实际问题,巩固一元一次方程的应用。

第三章:不等式与不等式组3.1 不等式的概念导入:通过比较大小引入不等式的概念,引导学生理解不等式的表示方法。

探究:让学生通过实际操作,理解不等式的性质。

练习:让学生通过解决实际问题,加深对不等式概念的理解。

3.2 不等式的解法导入:通过实例引入不等式的解法,引导学生掌握解不等式的方法。

探究:让学生通过实际操作,掌握不等式的解法。

练习:让学生通过解决实际问题,巩固不等式的解法。

第四章:函数及其图象4.1 函数的概念导入:通过实例引入函数的概念,引导学生理解函数的表示方法。

探究:让学生通过实际操作,理解函数的性质。

练习:让学生通过解决实际问题,加深对函数概念的理解。

4.2 一次函数的图象导入:通过实例引入一次函数的图象,引导学生理解一次函数图象的特点。

探究:让学生通过实际操作,绘制一次函数的图象。

练习:让学生通过解决实际问题,巩固一次函数图象的应用。

第五章:平面图形的认识5.1 线段的性质导入:通过实例引入线段的概念,引导学生理解线段的性质。

八年级上册数学全册教案

八年级上册数学全册教案

八年级上册数学全册教案第一章:实数与代数式1.1 实数教学目标:理解实数的概念,掌握实数的分类及特点。

能够进行实数的运算。

教学内容:实数的概念及分类:有理数、无理数、整数、分数、正数、负数。

实数的运算:加法、减法、乘法、除法。

教学步骤:1. 引入实数的概念,引导学生思考实数的定义及特点。

2. 讲解实数的分类,通过例子让学生理解各种实数的含义。

3. 引导学生掌握实数的运算规则,进行练习。

1.2 代数式教学目标:理解代数式的概念,能够正确书写代数式。

掌握代数式的运算规则。

教学内容:代数式的概念及书写规则。

代数式的运算:加减法、乘除法、幂的运算。

教学步骤:1. 引入代数式的概念,引导学生思考代数式的定义及书写规则。

2. 讲解代数式的运算规则,通过例子让学生理解并掌握。

3. 进行代数式的运算练习,巩固所学知识。

第二章:方程与不等式2.1 方程教学目标:理解方程的概念,能够解一元一次方程。

教学内容:方程的概念及一元一次方程的解法。

教学步骤:1. 引入方程的概念,引导学生思考方程的定义及解的意义。

2. 讲解一元一次方程的解法,通过例子让学生理解并掌握。

3. 进行一元一次方程的解练习,巩固所学知识。

2.2 不等式教学目标:理解不等式的概念,能够解一元一次不等式。

教学内容:不等式的概念及一元一次不等式的解法。

教学步骤:1. 引入不等式的概念,引导学生思考不等式的定义及解的意义。

2. 讲解一元一次不等式的解法,通过例子让学生理解并掌握。

3. 进行一元一次不等式的解练习,巩固所学知识。

第三章:几何基础3.1 平面几何教学目标:理解平面几何的基本概念,掌握点的坐标表示方法。

教学内容:平面几何的基本概念:点、线、角、平面。

点的坐标表示方法。

教学步骤:1. 引入平面几何的基本概念,引导学生思考点的定义及特点。

2. 讲解点的坐标表示方法,通过例子让学生理解并掌握。

3. 进行点的坐标表示的练习,巩固所学知识。

3.2 直线与射线教学目标:理解直线与射线的概念,能够区分直线、射线和线段。

八年级数学上册教案(6篇)

八年级数学上册教案(6篇)

八年级数学上册教案(6篇)八年级数学上册教案(篇1)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知问题牵引1.分解因式:(1)-9_2+4y2;(2)(_+3y)2-(_-3y)2;(3)_2-0.01y2.知识迁移2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2.教师活动引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.3.分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2.学生活动从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.归纳公式完全平方公式a2±2ab+b2=(a±b)2.二、范例学习,应用所学例1把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(_+y)2-14(_+y)+49;(4)+n4.例2如果_2+a_y+16y2是完全平方,求a的值.思路点拨根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题.探研时空1.已知_+y=7,_y=10,求下列各式的值.(1)_2+y2;(2)(_-y)22.已知_+=-3,求_4+的值.四、课堂总结,发展潜能由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:a2-b2=(a+b)(a-b);a2±ab+b2=(a±b)2.在运用公式因式分解时,要注意:(1)每个公式的形式与特点,通过对多项式的项数、•次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)•在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,•然后再运用公式分解.五、布置作业,专题突破八年级数学上册教案(篇2)Ⅰ.教学任务分析教学目标知识与技能使学生理解正比例函数的概念,会用描点法画正比例函数图象,掌握正比例函数的性质.过程与能力培养学生数学建模的能力.情感与态度实例引入,激发学生学习数学的兴趣.教学重点探索正比例函数的性质.教学难点从实际问题情境中建立正比例函数的数学模型.Ⅱ.教学过程设计问题及师生行为设计意图一、创设问题,激发兴趣问题1将下列问题中的变量用函数表示出来:(1)小明骑自行车去郊游,速度为4km/h,其行驶路程y随时间_变化而变化;(2)三角形的底为10cm,其面积y随高_的变化而变化;(3)笔记本的单价为3元,买笔记本所要的钱数y随作业本数量_的变化而变化.解:(1)y=4_;(2)y=5_;(3)y=3_.教师提出问题,学生独立思考并回答问题.教师点评,并且提醒学生注意用_表示y. 问题引入,为新知作好铺垫.二、诱导参与,探究新知思考:观察函数关系式:① y=4_; ② y=5_; ③ y=3_.这些函数有什么特点?都是y等于一个常量与_的乘积.教师提出问题,并引导学生观察:学生观察思考并回答问题.三、引导归纳,提炼新知(板书)正比例函数的概念:一般地,形如y=k_(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.注意:_ 的取值范围是全体实数.由教师引导,学生观察得出结论.体现学生为主体,教师为主导的关系.通过板书,突出本节课的重点.四、指导应用,发展能力1.下列函数是否是正比例函数?比例系数是多少?(1) 是,比例系数k=8. (2) 不是.(3) 是,比例系数k= . (4) 不是.填空1.若函数y=(2m2+8)_m2-8+(m+3)是正比例函数,则m的值是___-3____.题 1请学生口答,题2学生独立完成,并到黑板板书,教师评价书写规范.在本次活动中,教师要关注:学生能否准确地理解正比例函数的定义,注意二次项系数不能为0.五、探究新知例1 画出正比例函数y=_的图象.解:(1)列表:_ --- -2 -1 0 1 2 ---y --- -2 -1 0 1 2 ---画出函数y=_的图象.(1)列表: (2)描点: (3)连线:想一想除了用描点法外,还有其他简单的方法画正比例函数图象吗?根据两点确定一条直线,我们可以经过原点与点(1,k)画直线,即两点法.同理,画出y=-_的图象.师生共同分析:两个图象的共同点:都是经过原点的直线.不同点:函数y=_的图象从左向右呈上升状态,即随着_的增大y也增大,经过第一、三象限.函数y=-_的图象从左向右呈下降状态,即随_增大y反而减小,经过第二、四象限.归纳:一般地,正比例函数y=k_(k是常数,k≠ 0)的图象是一条经过原点的直线.当k0时,图象经过一、三象限,从左向右上升,即随_的增大y也增大;当k0时,图象经过二、四象限,从左向右下降,即随_增大y反而减小.由于正比例函数y=k_(k是常数,k≠0)的图象是一条直线,•我们可以称它为直线y=k_.六、指导应用,发展能力例2 在同一直角坐标系中画出y=_,y=2_,y=3_的函数图象,并比较它们的异同点.相同点:图象经过一、三象限,从左向右上升;不同点:倾斜度不同,y=_,y=2_,y=3_的函数图象离y轴越来越近.例3 在同一直角坐标系中画出y=-_,y=-2_,y=-3_的函数图象,并比较它们的异同点.相同点:图象经过二、四象限,从左向右下降;不同点:倾斜度不同, y=-_,y=-2_,y=-3_的函数图象离y 轴越来越近.在y=k_中,k的绝对值越大,函数图象越靠近y轴.八年级数学上册教案(篇3)11.1 与三角形有关的线段11.1.1 三角形的边1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点)2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点)3.三角形在实际生活中的应用.(难点)一、情境导入出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.教师利用多媒体演示三角形的形成过程,让学生观察.问:你能不能给三角形下一个完整的定义?二、合作探究探究点一:三角形的概念图中的锐角三角形有( )A.2个B.3个C.4个D.5个解析:(1)以A为顶点的锐角三角形有△ABC、△ADC共2个;(2)以E为顶点的锐角三角形有△EDC共1个.所以图中锐角三角形的个数有2+1=3(个).故选B.方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有n(n-1)2条线段,也可以与线段外的`一点组成n(n-1)2个三角形.探究点二:三角形的三边关系类型一判定三条线段能否组成三角形以下列各组线段为边,能组成三角形的是( )A.2c,3c,5cB.5c,6c,10cC.1c,1c,3cD.3c,4c,9c解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.类型二判断三角形边的取值范围一个三角形的三边长分别为4,7,_,那么_的取值范围是( ) A.3<_<11 B.4<_<7C.-3<_<11 D._>3解析:∵三角形的三边长分别为4,7,_,∴7-4<_<7+4,即3<_<11.故选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.类型三等腰三角形的三边关系已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.类型四三角形三边关系与绝对值的综合若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b -c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计三角形的边1.三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形. 2.三角形的三边关系:两边之和大于第三边,两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既提高了学生学习的兴趣,又增强了学生的动手能力.八年级数学上册教案(篇4)一.教学目标:1.了解方差的定义和计算公式。

八年级上册数学教案 八年级上册数学教案(5篇)

八年级上册数学教案 八年级上册数学教案(5篇)

八年级上册数学教案八年级上册数学教案(5篇)作为一位杰出的老师,常常要写一份优秀的教案,教案有利于教学水平的提高,有助于教研活动的开展。

教案要怎么写呢?书痴者文必工,艺痴者技必良,以下是勤劳的小编给家人们收集的八年级上册数学教案(5篇),仅供借鉴,希望大家能够喜欢。

八年级上册数学教案全集篇一教学目标1.掌握角的平分线的性质定理和它的逆定理的内容、证明及应用.2.理解原命题和逆命题的概念和关系,会找一个简单命题的逆命题.3.渗透角平分线是满足特定条件的点的集合的思想。

教学重点和难点角平分线的性质定理和逆定理的应用是重点.性质定理和判定定理的区别和灵活运用是难点.教学过程设计一、角平分钱的性质定理与判定定理的探求与证明1,复习引入课题.(1)提问关于直角三角形全等的判定定理.(2)让学生用量角器画出图3-86中的∠AOB的角平分线OC.2.画图探索角平分线的性质并证明之.(1)在图3-86中,让学生在角平分线OC上任取一点P,并分别作出表示P点到∠AOB两边的距离的线段PD,PE.(2)这两个距离的大小之间有什么关系?为什么?学生度量后得出猜想,并用直角三角形全等的知识进行证明,得出定理.(3)引导学生叙述角平分线的性质定理(定理1),分析定理的条件、结论,并根据相应图形写出表达式.3.逆向思维探求角平分线的判定定理.(1)让学生将定理1的条件、结论进行交换,并思考所得命题是否成立?如何证明?请一位同学叙述证明过程,得出定理2——角平分线的判定定理.(2)教师随后强调定理1与定理2的区别:已知角平分线用性质为定理1,由所给条件判定出角平分线是定理2.(3)教师指出:直接使用两个定理不用再证全等,可简化解题过程.4.理解角平分线是到角的两边距离都相等的点的集合.(1)角平分线上任意一点(运动显示)到角的两边的距离都相等(渗透集合的纯粹性).(2)在角的内部,到角的两边距离相等的点(运动显示)都在这个角的平分线上(而不在其它位置,渗透集合的完备性).由此得出结论:角的平分线是到角的两边距离相等的所有点的集合.二、应用举例、变式练习练习1填空:如图3-86(1)∠OC平分∠AOB,点P在射线OC上,PD∠OA于DPE∠OB于E.∠---------(角平分线的性质定理).(2)∠PD∠OA,PE∠OB,----------∠OP平分∠AOB(-------------)例1已知:如图3-87(a),ABC的角平分线BD和CE交于F.(l)求证:F到AB,BC和AC边的距离相等;(2)求证:AF平分∠BAC;(3)求证:三角形中三条内角的平分线交于一点,而且这点到三角形三边的距离相等;(4)怎样找∠ABC内到三边距离相等的点?(5)若将“两内角平分线BD,CE交于F”改为“∠ABC的两个外角平分线BD,CE交于F,如图3-87(b),那么(1)~(3)题的结论是否会改变?怎样找∠ABC外到三边所在直线距离相等的点?共有多少个?说明:(1)通过此题达到巩固角平分线的性质定理(第(1)题)和判定定理(第(2)题)的目的.(2)此题提供了证明“三线共点”的一种常用方法:先确定两条直线交于某一点,再证明这点在第三条直线上。

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)教案内容:一、第一章:勾股定理1. 教学目标:理解勾股定理的定义和证明;能够运用勾股定理解决实际问题。

2. 教学重点:勾股定理的表述和证明;勾股定理的应用。

3. 教学难点:勾股定理的证明;解决实际问题时的计算和应用。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍勾股定理的背景和意义;讲解:讲解勾股定理的表述和证明;练习:学生练习解决实际问题;总结:回顾本节课的重点和难点。

二、第二章:平行四边形1. 教学目标:理解平行四边形的定义和性质;能够识别和判断平行四边形。

2. 教学重点:平行四边形的定义和性质;平行四边形的判定。

3. 教学难点:平行四边形的性质证明;平行四边形的判定方法。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍平行四边形的背景和意义;讲解:讲解平行四边形的定义和性质;练习:学生练习识别和判断平行四边形;总结:回顾本节课的重点和难点。

三、第三章:三角形1. 教学目标:理解三角形的定义和性质;能够识别和判断三角形。

2. 教学重点:三角形的定义和性质;三角形的判定。

3. 教学难点:三角形的性质证明;三角形的判定方法。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍三角形的背景和意义;讲解:讲解三角形的定义和性质;练习:学生练习识别和判断三角形;总结:回顾本节课的重点和难点。

四、第四章:数的开方与乘方1. 教学目标:理解数的开方和乘方的概念;能够熟练进行数的开方和乘方运算。

2. 教学重点:数的开方和乘方的概念;数的开方和乘方的运算规则。

3. 教学难点:数的乘方运算;数的开方和乘方的逆运算。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍数的开方和乘方的意义;讲解:讲解数的开方和乘方的概念和运算规则;练习:学生练习进行数的开方和乘方运算;总结:回顾本节课的重点和难点。

五、第五章:实数1. 教学目标:理解实数的定义和性质;能够运用实数解决实际问题。

义务教育新课标八年级上册数学全册教案

义务教育新课标八年级上册数学全册教案
大家要度看
1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.
2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
3.平移法:沿某一方向推移使两三角形重合来找对应元素.
(二)根据位置元素来推理
1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.
2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
3.有公共边的,公共边是对应边.
4.有公共角的,公共角是对应角.
5.有对顶角的,对顶角是对应角一对最长的边是对应边,
一对最短的边是对应边.
一对最大的角是对应角,一对最小的角是对应角
(六)作业
课本P4习题11.1、复习巩固1.2、综合运用3.
∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.
2. 总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.
[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C, 指出其他的对应边和对应角.
1. 分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来.
(七) 板书设计
11.1 全等三角形
一、概念
二、全等三角形的性质
三、性质应用
例1:(运动角度看问题)
例2:(根据位置来推理)
四、小结:找对应元素的方法
运动法:翻折、旋转、平移.
位置法:对应角→对应边,对应边→对应角.
第二课时:全等三角形的性质运用练习课
1、如图,△ABC≌△ADE,则,AB=,∠E=∠.
若∠BAE=120°,∠BAD=40°,则∠BAC=
2.△ABC≌△DEF,且△ABC的周长为12,

八年级数学上册全册教案

八年级数学上册全册教案

八年级数学上册全册教案第1篇:八年级数学上册全册教案11.1与三角形有关的线段11.1.1三角形的边1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点)2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点)3.三角形在实际生活中的应用.(难点)一、情境导入出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.教师利用多媒体演示三角形的形成过程,让学生观察.问:你能不能给三角形下一个完整的定义?二、合作探究探究点一:三角形的概念图中的锐角三角形有( )a.2个b.3个c.4个d.5个解析:(1)以a为顶点的锐角三角形有△abc、△adc共2个;(2)以e为顶点的锐角三角形有△edc共1个.所以图中锐角三角形的个数有2+1=3(个).故选b.方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有n(n-1)2条线段,也可以与线段外的一点组成n(n-1)2个三角形.探究点二:三角形的三边关系【类型一】判定三条线段能否组成三角形以下列各组线段为边,能组成三角形的是( )a.2c,3c,5cb.5c,6c,10cc.1c,1c,3cd.3c,4c,9c解析:选项a中2+3=5,不能组成三角形,故此选项错误;选项b中5+6>10,能组成三角形,故此选项正确;选项未完,继续阅读 >第2篇:七年级数学上册全册优秀教案(人教版)未完,继续阅读 >第3篇:九年级数学上册的全册教案第一章*(二)(课时安排)1.你能*它们吗(二)教学过程:一、提出问题:(1)怎样判别一个三角形是等使三角形?(2)一个等腰三角形满足什么条件时便成为等边三角形?(3)你认为有一个角等于的等腰三角形是等边三角形吗?你能*你的结论吗?二、做一做用两块含角的三角尺,你能拼成一个怎样的三角形?能拼出一个等边三角形吗?说说你的理由。

三、提出问题:通过上述的拼摆,你联想到什么?在直角三角形中,角所对的直角边与斜边有怎样的大小关系?能*你的结论吗?定理:在直角三角形中,如果一个锐角等于,那么它所对的直角边等于斜边的一半。

八级上册数学教案人教版(全册)

八级上册数学教案人教版(全册)

八级上册数学教案人教版(第一部分)一、第一章:勾股定理与面积计算1.1 勾股定理【学习目标】1. 理解勾股定理的定义及其应用。

2. 学会运用勾股定理解决实际问题。

【教学内容】1. 引导学生通过观察直角三角形,发现勾股定理。

2. 讲解勾股定理的证明方法。

3. 举例说明勾股定理在实际问题中的应用。

【课堂练习】1. 完成课后练习题1-5。

2. 运用勾股定理解决实际问题。

1.2 面积计算【学习目标】1. 掌握直角三角形、平行四边形、梯形的面积计算方法。

2. 学会运用面积计算解决实际问题。

【教学内容】1. 复习直角三角形、平行四边形、梯形的面积计算公式。

2. 讲解面积计算在实际问题中的应用。

3. 引导学生通过实际操作,加深对面积计算方法的理解。

【课堂练习】1. 完成课后练习题6-10。

2. 运用面积计算解决实际问题。

二、第二章:一次函数与不等式2.1 一次函数【学习目标】1. 理解一次函数的定义及其图像特点。

2. 学会运用一次函数解决实际问题。

【教学内容】1. 引导学生通过观察图像,理解一次函数的定义。

2. 讲解一次函数的图像特点。

3. 举例说明一次函数在实际问题中的应用。

【课堂练习】1. 完成课后练习题11-15。

2. 运用一次函数解决实际问题。

2.2 不等式【学习目标】1. 掌握不等式的解法及其应用。

2. 学会运用不等式解决实际问题。

【教学内容】1. 讲解不等式的定义及其解法。

2. 举例说明不等式在实际问题中的应用。

3. 引导学生通过实际操作,加深对不等式解法的理解。

【课堂练习】1. 完成课后练习题16-20。

2. 运用不等式解决实际问题。

三、第三章:平行四边形与梯形3.1 平行四边形【学习目标】1. 理解平行四边形的性质及其应用。

2. 学会运用平行四边形解决实际问题。

【教学内容】1. 引导学生通过观察图形,理解平行四边形的性质。

2. 讲解平行四边形的应用实例。

3. 举例说明平行四边形在实际问题中的应用。

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)第一章:一元一次方程1.1 方程与方程的解理解方程的概念,掌握方程的解的定义。

学会解一元一次方程,掌握解方程的基本步骤。

1.2 方程的解法学习使用加减法、乘除法解一元一次方程。

学会使用移项、合并同类项解方程。

1.3 方程的应用学会将实际问题转化为方程,解决实际问题。

练习使用一元一次方程解决实际问题。

第二章:不等式与不等式组2.1 不等式理解不等式的概念,掌握不等式的性质。

学会解一元一次不等式,掌握解不等式的基本步骤。

2.2 不等式组理解不等式组的概念,掌握不等式组的解法。

学会解不等式组,掌握解不等式组的基本步骤。

2.3 不等式的应用学会将实际问题转化为不等式,解决实际问题。

练习使用不等式解决实际问题。

第三章:函数的初步认识3.1 函数的概念理解函数的概念,掌握函数的定义。

学会判断两个变量之间的关系是否为函数。

3.2 函数的性质学习函数的单调性、奇偶性、周期性等基本性质。

学会判断函数的单调性、奇偶性、周期性。

3.3 函数的应用学会将实际问题转化为函数问题,解决实际问题。

练习使用函数解决实际问题。

第四章:整式的加减4.1 整式的概念理解整式的概念,掌握整式的定义。

学会判断两个整式是否相等。

4.2 整式的加减法学习整式的加减法运算,掌握加减法的基本步骤。

学会使用合并同类项进行整式的加减法运算。

4.3 整式的应用学会将实际问题转化为整式问题,解决实际问题。

练习使用整式解决实际问题。

第五章:数据的收集、整理与描述5.1 数据的收集学会使用调查、实验等方法收集数据。

掌握数据的整理方法,如列表、画图等。

5.2 数据的整理学习数据的整理方法,掌握数据的分类、排序等基本操作。

学会使用图表展示数据,如条形图、折线图等。

5.3 数据的描述学习数据的描述方法,掌握数据的平均数、中位数、众数等基本统计量。

学会使用统计量对数据进行描述和分析。

八年级数学(上)全册教案(新人教版)第六章:三角形6.1 三角形的概念理解三角形的基本概念,掌握三角形的定义。

最新部编版八年级数学上册教案(全册)

最新部编版八年级数学上册教案(全册)

最新部编版八年级数学上册教案(全册)目标本教案旨在辅助八年级学生全面了解和掌握最新部编版八年级数学上册的知识点和技能。

通过本教案的研究,学生将能够有效地解决数学问题,提升数学思维能力。

教材概述最新部编版八年级数学上册是八年级学生研究数学的主要教材,共涵盖了多个知识点和技能。

本教材以培养学生的数学思维能力为核心目标,注重知识的启发性教学和综合运用能力的培养。

教学内容本教案全面覆盖了最新部编版八年级数学上册的所有教学内容,包括但不限于以下知识点和技能:1. 数与代数- 整数运算- 分数运算和应用- 二次根式的定义和运算- 代数式的等式与不等式- 一元一次方程与一元一次不等式- 一元一次方程的应用问题2. 几何与运动- 角的概念和性质- 三角形的分类与性质- 平行线与平行四边形- 圆的性质与应用- 相似与全等3. 数据的收集与统计- 统计图的制作与应用- 数据的分析与判断- 概率的概念和计算教学安排本教案为全册的教学安排提供了参考,旨在协助教师有效地组织教学活动和安排研究内容。

每一单元通过明确的课时安排和教学目标,帮助学生系统研究和掌握相应的知识点和技能。

教学活动主要包括:- 听课前预:让学生提前预课本内容,为课堂研究做好准备。

- 导入新知:用生动有趣的方式引入新的知识点,激发学生的研究兴趣。

- 知识讲解与练:通过详细的知识讲解和练,帮助学生理解和掌握知识点。

- 拓展应用与巩固训练:提供拓展应用和巩固训练的机会,加深对知识点的理解和应用能力。

- 课堂总结与复:课堂结束时进行总结和复,强化学生对所学内容的记忆和理解。

评价与反馈为了帮助教师对学生的研究情况进行评估和反馈,教案提供了相应的评价方式和评价标准。

教师可根据学生的表现和作业情况,及时给予适当的评价和反馈,帮助学生提升自我研究能力并改进不足之处。

总结通过本教案的学习和实施,学生将能够全面掌握最新部编版八年级数学上册的知识点和技能。

教师可根据教案的指导和安排,组织有针对性的教学活动,培养学生的数学思维能力和解决问题的能力,提高他们在数学学科上的综合素质。

八年级数学上册教案精选5篇

八年级数学上册教案精选5篇

八年级数学上册教案精选5篇八年级数学上册教案精选5篇培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值。

下面给大家分享八年级数学上册教案,欢迎阅读!八年级数学上册教案(篇1)【教学目标】知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式。

过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解。

情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值。

【教学重难点】重点:掌握用提公因式法把多项式分解因式。

难点:正确地确定多项式的最大公因式。

关键:提公因式法关键是如何找公因式。

方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂。

【教学过程】一、回顾交流,导入新知【复习交流】下列从左到右的变形是否是因式分解,为什么?(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;(5)x2-2xy+y2=(x-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式4x2-x和xy2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由。

【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y。

概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法。

二、小组合作,探究方法教师提问:多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂。

八年级上册数学教案

八年级上册数学教案

八年级上册数学教案八年级上册数学教案(合集15篇)作为一名人民教师,时常需要用到教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

那要怎么写好教案呢?下面是小编精心整理的八年级上册数学教案,仅供参考,大家一起来看看吧。

八年级上册数学教案1【教学目标】知识目标:解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。

能力目标:(1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;(2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。

情感目标:充分调动学生学习的积极性、主动性【教学重点】单项式与多项式的乘法运算【教学难点】推测整式乘法的运算法则。

【教学过程】一、复习引入通过对已学知识的复习引入课题(学生作答)1.请说出单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。

(系数×系数)×(同字母幂相乘)×单独的幂例如:( 2a2b3c) (-3ab)解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c= -6a3b4c2.说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1问:如何计算单项式与多项式相乘?例如:2a2· (3a2 - 5b)该怎样计算?这便是我们今天要研究的问题。

二、新知探究已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)结论单项式与多项式相乘的运算法则:用单项式分别去乘多项式的每一项,再把所得的积相加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C 1B 1C A B A 1第一课时:11.1 全等三角形教学目标:(一) 知识技能: 1、了解全等形及全等三角形的概念。

2、理解掌握全等三角形的性质。

3、能够准确辩认全等三角形的对应元素。

(二) 过程与方法 : 1、在图形变换以用操作的过程中发展空间观念,培养几何直觉。

2、在观察发现生活中的全等形和实际操作中获得全等三角形的体验。

(三) 情感态度与价值观:在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。

教学重点: 全等三角形的性质.教学难点:找全等三角形的对应边、对应角. 教学方法:讲授法,讨论法,情景导入法预习导航:什么是全等三角形?如何找全等三角形的对应边和对应角?全等三角形有哪些性质?教学过程(一) 提出问题,创设情境出示投影片:1.问题:你能发现这两个图形有什么美妙的关系吗?这两个图形是完全重合的.2.那同学们能举出现实生活中能够完全重合的图形的例子吗?生:同一张底片洗出的同大小照片是能够完全重合的。

形状与大小都完全相同的两个图形就是全等形. 3.学生自己动手(同桌两名同学配合)取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样. 4.获取概念让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.记作:△ABC ≌ △A ’B ’C ’ 符号“ ≌ ”读作“全等于”(注意强调书写时对应顶点字母写在对应的位置上)(二).新知探究 利用投影片演示甲DCA B FE1.活动:将△ABC 沿直线BC 平移得△DEF ;将△ABC沿BC 翻折180 得到△DBC ; 将△ABC 旋转180°得△AED .2. 议一议:各图中的两个三角形全等吗?启示:一个图形经过平移、翻折、旋转后,位置变化了,•但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略. 3. 观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? (引导学生从全等三角形可以完全重合出发找等量关系)得到全等三角形的性质:全等三角形的对应边相等. 全等三角形的对应角相等. (三)例题讲解[例1]如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角.1. 分析:△OCA ≌△OBD ,说明这两个三角形可以重合,•思考通过怎样变换可以使两三角形重合?将△OCA 翻折可以使△OCA 与△OBD 重合.因为C 和B 、A 和D 是对应顶点,•所以C 和B 重合,A 和D 重合.∠C=∠B ;∠A=∠D ;∠AOC=∠DOB .AC=DB ;OA=OD ;OC=OB .2. 总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.[例2]如图,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角.1. 分析:对应边和对应角只能从两个三角形中找,所以需将△ABE 和△ACD 从复杂的图形中分离出来.2小结:找对应边和对应角的常用方法有:DCA BO DCA BE 乙D CAB 丙D CAB E(1)有公共边的,公共边是对应边.(2)有公共角的,公共角是对应角.(3)有对顶角的,对顶角是对应角一对最长的边是对应边,一对最短的边是对应边.(4)一对最大的角是对应角,一对最小的角是对应角(5)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.(6)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角(四)课堂练习1、填空点O是平行四边形ABCD的对角线的交点,△AOB绕O旋转180°,可以与△______重合,这说明△AOB≌△______.这两个三角形的对应边是AO与_____,OB与_____,BA与______;对应角是∠AOB与________,∠OBA与________,∠BAO与________.2、判断题1)全等三角形的对应边相等,对应角相等。

()2)全等三角形的周长相等,面积也相等。

()3)面积相等的三角形是全等三角形。

()4)周长相等的三角形是全等三角形。

()(五).课时小结通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,• 并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.找对应元素的常用方法有以下几种:(一)从运动角度看1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素. 2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.3.平移法:沿某一方向推移使两三角形重合来找对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.CBA ED3. 有公共边的,公共边是对应边.4.有公共角的,公共角是对应角.5.有对顶角的,对顶角是对应角一对最长的边是对应边,一对最短的边是对应边.一对最大的角是对应角,一对最小的角是对应角(六)作业课本P4习题11.1、复习巩固1.2、综合运用3.(七)板书设计11.1 全等三角形一、概念二、全等三角形的性质三、性质应用例1:(运动角度看问题)例2:(根据位置来推理)四、小结:找对应元素的方法运动法:翻折、旋转、平移.位置法:对应角→对应边,对应边→对应角.第二课时:全等三角形的性质运用练习课1、如图,△ABC≌△ADE,则,AB= ,∠E=∠.若∠BAE=120°,∠BAD=40°,则∠BAC=2.△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC= .3、△ABC≌△BAD,A和B,C和D是对应顶点,如果AB=8cm,BD=•6cm,AD=5cm,则BC=________cm.第1题4、如图 2,△ABE≌△ACD,AB=AC,BE=CD,∠B=500,∠AEC=1200,则∠DAC的度数等于 .5、如图3,若△ABC≌△DEF,则∠E= °图2图4图3教学反思:6.如图4,△ABD ≌△ACE,对应角是___________________________,对应边是__________________.7、已知:△DEF ≌△MNP ,且EF =NP ,∠F =∠P ,∠D =48°,∠E =52°, MN =12cm ,求:∠P 的度数及DE 的长.8、.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°, 那么在△ABC 中与这100°角对应相等的角是( )A.∠AB.∠BC.∠CD.∠B 或∠C9、如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD ∥BC ,且AD =BC第三课时:11.2 .1 三角形全等的条件(一)教学目标:知识与技能 :1、三角形全等的“边边边”的条件.2、了解三角形的稳定性.3、作一个角等于已知角。

过程与方法: 经历探索三角形全等条件的过程,体会利用操作、 归纳获得数学结论的过程.情感态度价值观: 体会探索全等的条件,通过合作交流,形成良好的思维 教学重点: 三角形全等的条件. 教学难点: 寻求三角形全等的条件. 教学方法: 讨论法,复习导入预习导航: 1、已知三角形三边如何作三角形?2、如何判定三角形全等?3、如何作一个角等于已知角? 教学过程:(一).创设情境,引入新课出示投影片, 已知△ABC ≌△A ′B ′C ′,找出其中相等的边与角.展示课作前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?怎样画? (可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对D ACBC 'B 'A 'C B A应角相等.这样作出的三角形一定与已知的三角形纸片全等).这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题. (二).导入新课 出示投影片 活动1:探究1.只给一个条件(一组边相等或一组角相等),•画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm .②三角形两内角分别为30°和50°. ③三角形两条边分别为4cm 、6cm .学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流. 结果展示:1.只给定一条边时:只给定一个角时: 2.给出的两个条件可能是:一边一内角、两内角、两边.可以发现按这些条件画出的三角形都不能保证一定全等. 给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内角一边. 在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况. 活动2:已知三边作三角形已知一个三角形的三条边长分别为6cm 、8cm 、10cm .你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?1.画图方法:先画一线段AB ,使得AB=6cm ,再分别以A 、B 为圆心,8cm 、10cm 为半径画弧,•两弧交点记作C ,连结线段AC 、BC ,就可以得到三角形ABC,使得它们的①3cm 3cm 3cm 30︒30︒30︒②50︒50︒30︒30︒边长分别为AB=6cm ,AC=8cm ,BC=10cm .2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.•这说明这些三角形都是全等的.3.特殊的三角形有这样的规律,要是任意画一个三角形ABC ,根据前面作法,同样可以作出一个△A ′B ′C ′,使AB=A ′B ′、AC=A ′C ′、BC=B ′C ′.将△A ′B ′C ′剪下,发现两三角形重合.这反映了一个规律:作法:(略)三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”.活动3:定理的应用 用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS ”是证明三角形全等的一个依据.请看例题.[例]如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .[师生共析]要证△ABD ≌△ACD ,可以看这两个三角形的三条边是否对应相等.生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.•例如屋顶的人字梁、大桥钢架、索道支架等. 有前面的结论还可以得到作一个角等于已知角的方法。

相关文档
最新文档