正反比例应用题专项训练

合集下载

正反比例练习题大全

正反比例练习题大全

正反比例的练习题大全判断是否成比例,成什么比例1、正方形的边长和周长成。

()2、正方形的边长和面积成.()3、a是b的5倍,数a和数b成。

()4、如果4a=3b,那么a∶b=3∶4 。

( )5、圆的周长一定,直径和圆周率成。

( )6、8A=B,那么A和B成。

()7、长方体的体积一定,底面积和高成。

()8、如果x 与y成,那么3 x与y也成。

()9、圆的面积与半径的平方成。

()10、圆锥的体积一定,底面积和高成。

()11、三角形的高一定,底和面积成.( )12、路程一定,车轮的直径与车轮的转数成.()13、全班总人数一定,出勤人数和出勤率成。

( )14、从甲地到乙地,已走路程和未走路程成.( )15、减数一定,被减数和差成.( )16、甲数的3/4是乙数,那么甲数与乙成( )17、如果3x=y(x和y都不等于0),x与y。

()18、如果xy=1,x与y。

()(19、)如果5A=B,A与B。

( )(20)如果x+y=6,x与y。

( )(21)如果x与y互为倒数,x与y。

()(22)如果3:x=y:16,x与y。

()(23)如果20:x=12:y,x与y。

()(24)如果ab=k+2(k一定),那么a和b成反比例数成反比例( )25、《小学生作文》的单价一定,总价和订阅的数量.()26、小新跳高的高度和他的身高( )。

27、学校全班的人数一定,每组的人数和级数.( )28、圆柱体积一定,圆柱的底面积和高。

()29、书的总册数一定,每包的册数和包数。

()30、在一块菜地上种的黄瓜和西红柿的面积.()31、小麦每公顷产量一定,小麦的公顷数和总产量.()32、书的总页数一定,已经看的页数和未看的页数。

( )33、轮船行驶的速度一定,行驶的路程和时间。

()34、每吨自来水的价钱一定,用水吨数和所需付的水费。

()35、货物的总重量一定,每辆车的载重量和汽车辆数( )比例36、在圆中,面积和半径()比例 ,周长和半径()比例。

数学正反比例练习题大全

数学正反比例练习题大全

数学正反比例练习题大全
以下是一系列的数学正反比例练题,供学生练和巩固所学的知识。

1. 问题:一个园子总共有120棵树,如果每排10棵,共有几排?
答案:120 ÷ 10 = 12 排
2. 问题:一个长方形花坛的长为8米,宽为10米,如果每平方米能种5棵花,花坛能种多少棵花?
答案:8 × 10 × 5 = 400 棵花
3. 问题:某水果市场每个箱子里放20个苹果,如果共有3000个苹果,需要多少个箱子才能装完?
答案:3000 ÷ 20 = 150 个箱子
4. 问题:一辆车以每小时80公里的速度行驶,行驶300公里需要多少小时?
答案:300 ÷ 80 = 3.75 小时
5. 问题:一个水缸的容量为400升,每分钟排水20升,需要多少分钟才能排完?
答案:400 ÷ 20 = 20 分钟
6. 问题:小明每天花2小时做作业,如果他一共需要做8天,总共需要多少小时?
答案:2 × 8 = 16 小时
7. 问题:一辆公交车每小时能载客60人,需要载完400人,需要多少小时?
答案:400 ÷ 60 = 6.67 小时
8. 问题:某商品原价100元,打8折,现在售价多少?
答案:100 × (1 - 0.8) = 20 元
9. 问题:一桶油装满需要3分钟,如果用两个人一起装,需要多少时间?
答案:3 ÷ 2 = 1.5 分钟
10. 问题:橙子每斤售价5元,小明买了3斤橙子,一共需要支付多少元?
答案:5 × 3 = 15 元
以上是数学正反比例的练习题。

希望能帮助到你,加油!。

正反比例的练习题

正反比例的练习题

正反比例的练习题练习题一:某商店购买10个商品的总价格为20元,那么购买20个商品的总价格是多少?解答:我们可以设商品的单价为x元。

根据题意,10个商品的总价格为20元,那么可以得到等式:10x = 20解得:x = 2因此,商品的单价为2元。

再根据单价,我们可以计算购买20个商品的总价格:20 × 2 = 40所以,购买20个商品的总价格是40元。

练习题二:一辆汽车以每小时60公里的速度行驶,行驶2小时所走的路程是多少?解答:根据题意,汽车以每小时60公里的速度行驶,那么可以得到等式:60 × 2 = 路程解得:路程 = 120公里所以,一辆汽车行驶2小时所走的路程是120公里。

练习题三:甲、乙两人同时开始在同一地点往同一方向行走,甲每分钟行进20米,乙每分钟行进15米。

他们相遇需要多少时间?解答:根据题意,甲每分钟行进20米,乙每分钟行进15米。

他们相遇相当于他们行进的距离之和等于他们相遇的地点距离出发地点的距离。

假设他们相遇所需要的时间为t分钟。

那么可以得到等式:20t + 15t = 距离解得:35t = 距离由于他们同时开始,在同一地点往同一方向行走,所以距离相等,即甲、乙相遇所需要的时间为t分钟。

练习题四:小明在做练习,每分钟可以做6道数学题,如果他共用时18分钟,那么他一共做了多少道数学题?解答:根据题意,小明每分钟可以做6道数学题,共用时18分钟。

假设他一共做了x道数学题。

那么可以得到等式:6 × 18 = x解得:x = 108所以,小明一共做了108道数学题。

练习题五:某工程队10天可以修建完一条公路,现在计划增加工人的数量,问几天可以修建完?解答:根据题意,某工程队10天可以修建完一条公路。

假设增加工人的数量为x人,那么可以设修建完一条公路所需天数为t天。

那么可以得到等式:10 × x = t解得:t = 10x所以,增加工人的数量,修建完一条公路所需的天数是10x天。

正反比例练习题及答案

正反比例练习题及答案

正反比例练习题及答案一、选择题1. 某工厂生产零件,每小时生产零件数与生产时间成反比例。

如果工厂在4小时内生产了120个零件,那么在1小时内可以生产多少个零件?A. 30B. 60C. 120D. 2402. 一个水池的容积是固定的,水管注水的速度与注满水池所需的时间成什么比例?A. 正比例B. 反比例C. 不成比例D. 无法确定3. 某商品的总成本与生产数量成反比例,当生产数量为100时,总成本为5000元。

如果生产数量增加到200,总成本是多少?A. 2500元B. 5000元C. 10000元D. 无法确定4. 某学校学生人数与每个学生分得的图书数量成反比例。

如果学校有200名学生,每人分得5本书,那么当学生人数增加到400时,每人分得多少本书?A. 2.5本B. 5本C. 10本D. 无法确定5. 某工厂的总产量与工作时间成正比例。

如果工厂在8小时内生产了800个单位的产品,那么在4小时内可以生产多少个单位的产品?A. 200B. 400C. 800D. 1600答案:1. B 2. B 3. A 4. A 5. B二、填空题6. 某工厂的工作效率与所需时间成________比例,如果工作效率提高到原来的2倍,那么所需时间将减少到原来的________。

7. 某书店的图书销售量与销售价格成________比例,如果销售价格提高到原来的1.5倍,销售量将减少到原来的________。

8. 某产品的生产成本与生产数量成________比例,如果生产数量增加到原来的3倍,生产成本将增加到原来的________。

9. 某工厂的总产量与工作时间成________比例,如果工作时间减少到原来的一半,总产量将减少到原来的________。

10. 某学校的图书数量与学生人数成________比例,如果学生人数增加到原来的4倍,图书数量将增加到原来的________。

答案:6. 反,1/2 7. 反,2/3 8. 正,3 9. 正,1/2 10. 正,4三、判断题11. 某商品的单价与销售数量成反比例,这种说法是正确的。

数学正反比例练习题大全

数学正反比例练习题大全

数学正反比例练习题大全
1. 正比例练题
- 问题1:如果三辆车可以在4小时内完成一项工作,那么六辆相同的车可以在多少小时内完成同样的工作?
- 问题2:如果5人可以在10天内完成一项任务,那么需要多少人才能在5天内完成相同的任务?
- 问题3:如果一辆汽车以每小时60公里的速度行驶,那么它在3小时内可以行驶多远?
- 问题4:如果用20升汽油行驶80公里,那么用40升汽油可以行驶多远?
- 问题5:某项工作需2小时完成,如果有12人同时进行,那么需要多长时间才能完成?
2. 反比例练题
- 问题1:如果六个工人可以在12天内完成一项任务,那么需要多少个工人才能在4天内完成相同的任务?
- 问题2:如果一项工作可以由10个工人在8小时内完成,那么需要多少个小时才能由5个工人完成?
- 问题3:如果一个有15个人的团队可以在20天内完成一个项目,那么需要多少天才能由25个人完成相同的项目?
- 问题4:如果一块土地上可以建造6个房子,那么在相同大小的土地上可以建造多少个房子?
- 问题5:如果一个工厂的产量与工人数成反比,当有20个工人时产量为1000个单位,那么有30个工人时产量为多少个单位?
这些练习题可以帮助你巩固正反比例的理解和运用。

请根据题意进行计算,并在所给的时间内完成解答。

正反比例应用题练习

正反比例应用题练习

5、用一台打字机打字,6小时打36页,照 这样计算, 如果再打4小时,一共可以打 字多少页?
6、加工一批零件,每个零件所用的时间,由 原来的8分钟减少了2分钟,过去每天生产 这种零件60个,现在每天能生产多少个?
7、幼儿园给小朋友分糖,中班原来共有24人, 每人可以分5块,最近又调进6人,现在每 人可以分多少块糖?
11、配制一种药水,药粉和水的质量比是1:500。 (1)现有水1500千克,要配制这种药水, 需要药粉多少千克?
(2)现有药粉8千克,要配制这种药水,需 要水多少千克?
(3)现在有8克这样的药粉,可以配制出多 少克这样的药水?
1、王师傅加工一批零件,4分钟能加工60 个。 照这样计算,10分钟加工多少个?
2、李师傅加工一批零件,每小时加工60个, 8小时能完成,如果每小时加工80个,可 以提前几小时完成?
3 、学校用地砖铺地。铺3平方米,需要地砖 27块。照这样计算,如ห้องสมุดไป่ตู้要铺地50平方 米,需地砖多少块?
4、学校用地砖铺地。用每块面积0.08 平方米 的地砖,要500块才能铺满 ; 如果改用每 块面积0.05平方米的地砖 ,需要多少块才 能铺满?
8、修一条长6400米的公路,修了20天后,还 剩下4800米,照这样计算,剩下的路还要 修多少天?
9、修一条长3000米的公路,5天修了全长的 75%,照这样计算,剩下的路还要修多少 天?
10、某厂装配电视机。如果每天装20台,15 天可以完成任务,实际4天就装配了100台。 照这样计算,实际几天可以完成任务?

八年级正比例和反比例比例练习题

八年级正比例和反比例比例练习题

八年级正比例和反比例比例练习题1. 正比例关系问题1:某汽车行驶600公里需要消耗30升汽油,如果行驶900公里,需要消耗多少升汽油?解答:设行驶900公里需要消耗的汽油量为x升。

根据正比例关系,可得以下比例:600公里 / 30升 = 900公里 / x升通过交叉乘积,得到:600x =解方程可得:x = 45因此,行驶900公里需要消耗45升汽油。

问题2:某商品的价格为20元,如果买3个,总金额是多少?解答:设买3个商品的总金额为y元。

根据正比例关系,可得以下比例:1个商品 / 20元 = 3个商品 / y元通过交叉乘积,得到:y = 60因此,买3个商品的总金额是60元。

2. 反比例关系问题1:工人A 2小时可以完成一项工作,如果工人B只有1小时的时间,能完成多少该项工作?解答:设工人B在1小时内完成的工作量为y。

根据反比例关系,可得以下比例:工人A的工作时间 / 工人B的工作时间 = 工人B的工作量 / 工人A的工作量通过交叉乘积,得到:2小时 / 1小时 = y / 1解方程可得:y = 2因此,工人B在1小时内能完成2个该项工作。

问题2:某项任务需要10个工人一起完成,如果只有5个工人能来,完成该任务需要多少时间?解答:设完成该任务需要的时间为t小时。

根据反比例关系,可得以下比例:工人数 / 时间 = 原先的工人数 / 原先的时间通过交叉乘积,得到:10个工人 / t小时 = 5个工人 / 1小时解方程可得:t = 2因此,如果只有5个工人能来,完成该任务需要2小时。

以上为八年级正比例和反比例比例练题的部分解答。

年级正比例和反比例比例练习题

年级正比例和反比例比例练习题

年级正比例和反比例比例练习题
正比例和反比例是数学中重要的概念,在年级研究中经常会遇到这两种类型的题目。

以下是一些年级正比例和反比例比例练题,希望能帮助你更好地理解这两种关系。

正比例题目
1. 一辆汽车以每小时60公里的速度行驶,求2小时内汽车行驶的路程。

解答:
设汽车行驶的路程为x公里,则根据正比例关系可得:
60公里/1小时 = x公里/2小时
解方程得:x = 60 * 2 = 120公里
2. 小明去超市买苹果,苹果的单价是每个2元。

如果小明买了5个苹果,他要支付的金额是多少?
解答:
设小明支付的金额为y元,则根据正比例关系可得:
2元/1个 = y元/5个
解方程得:y = 2 * 5 = 10元
反比例题目
1. 一辆车以每小时60公里的速度行驶,行驶1小时后发现油
箱中的油量减少了1/6。

求这辆车油箱的容量。

解答:
设油箱的容量为z升,则根据反比例关系可得:
60公里/1小时 = z升/1/6升
解方程得:z = 60 * (1/6) = 10升
2. 5个工人需要3天时间完成一项任务,如果再增加3个工人,那么完成该任务需要多少天?
解答:
设完成任务需要的天数为t天,则根据反比例关系可得:
5个工人/3天 = 8个工人/t天
解方程得:t = 3 * 5 / 8 = 1.875天,约等于1.88天
以上是一些年级正比例和反比例比例练题的解答,在解题过程中需要注意明确所给的条件,并正确运用正比例和反比例的概念。

希望这些题目对你的研究有所帮助!。

完整版六年级正反比例练习题

完整版六年级正反比例练习题

正反比率的应用二例1、一个水池中水的深度与注水时间的关系如右以下图。

(1)水的深度与注水时间可否成比率?(2)从图中看,注水前,水池中的水深多少米?(3)每分钟向水池中注入的水深多少米?例 2、这个铁球吞没在长方体水槽中,当他把这个铁球拿出水面时,槽里的水面下降了 0.5 厘米,他又将一块棱长是 3 厘米的正方体铁块吞没在水槽中,槽里的水面上升了 0.3 厘米,算一下铁球的体积?例 3、蜡烛燃烧的长度和燃烧的时间成正比率。

一根蜡烛燃烧后的长度是 7 厘米。

蜡烛最初的长度是多少厘米?8 分钟后,蜡烛的长度是12 厘米,18 分钟例 4、甲、乙两人分别从A、B 两地同时出发,相向而行,出发时他们的速度之比是遇后,甲的速度提高了20% ,乙的速度提高了30% ,这样,当甲到达 B 地时,乙离3: 2,他们第一次相A 地还有 14 千米,那么 AB 两地的距离是多少千米?看看你会做吗?1、用不相同的杯子装水,水的高度与杯子的底面积的关系如右图。

( 1)从图中看,水的高度与杯子的底面积可否成比率?成什么比率?为什么?( 2)从图中估计,当杯子的底面积是50 平方厘米时,水深多少厘米?当水深25 厘米时,杯子的底面积是多少平方厘米?2、将一个圆柱体完好吞没在一个装满水的水槽中,拿出后水面下降了9 厘米。

尔后放入一个底面积和圆柱体相同,高是圆柱体1的圆锥,这时水面会上升多少厘米?23、蜡烛燃烧的长度和燃烧的时间成正比率。

一根蜡烛燃烧12 分钟后,蜡烛的长度是17 厘米, 18 分钟后的长度是 9 厘米。

蜡烛最初的长度是多少厘米?4、甲、乙两人分别从A、 B 两地同时出发,相向而行,出发时他们的速度之比是后,甲的速度提高了20% ,乙的速度提高了40% ,当甲到达目的地后,乙还有AB 两地的距离是多少千米?4: 3,他们第一次相遇44 千米到达目的地,那么。

六年级正反比例题100道

六年级正反比例题100道

六年级正反比例题100道正比例题:1. 如果一个苹果的价格是2元,那么5个苹果的价格是多少元。

2. 5本书的价格是20元,那么每本书的价格是多少元。

3. 一个足球的价格是50元,购买3个足球需要多少钱。

4. 如果一辆车每小时行驶60公里,行驶2小时后能行驶多少公里。

5. 4个橙子的总价是16元,1个橙子多少钱。

6. 一条绳子长6米,3条绳子总长多少米。

7. 如果每辆车能载5人,10辆车能载多少人。

8. 一盒巧克力有10块,3盒巧克力有多少块。

9. 每个学生要交100元的学费,10个学生总共交多少钱。

10. 一台电脑的价格是4000元,4台电脑的总价是多少元。

11. 如果1升油的价格是8元,5升油的价格是多少元。

12. 一辆自行车的价格是300元,7辆自行车总共需要多少钱。

13. 1本书的页数是200页,5本书的总页数是多少页。

14. 如果每个学生需要2支铅笔,20个学生需要多少支铅笔。

15. 一棵树的高度是3米,5棵树的总高度是多少米。

16. 1块蛋糕的价格是15元,3块蛋糕总共多少钱。

17. 如果每本杂志售价10元,9本杂志总共多少钱。

18. 一辆车每小时行驶80公里,4小时能行驶多少公里。

19. 如果1公斤米的价格是5元,2公斤米总共多少钱。

20. 每个孩子要喝250毫升的牛奶,8个孩子需要多少牛奶。

21. 一支笔的价格是3元,12支笔总共多少钱。

22. 如果一个篮球的价格是120元,3个篮球的价格是多少元。

23. 一根铅笔的长度是20厘米,4根铅笔的总长度是多少厘米。

24. 如果一个人的工资是3000元,5个人的总工资是多少元。

25. 每条鱼的重量是200克,10条鱼的总重量是多少克。

26. 如果1个西瓜的价格是30元,4个西瓜的价格是多少元。

27. 一辆车的油耗是每公里8升,行驶100公里需要多少升油。

28. 每个学生要用5张纸,25个学生需要多少张纸。

29. 如果一个房间的面积是50平方米,5个这样的房间总面积是多少平方米。

(完整版)正比例和反比例练习题及答案

(完整版)正比例和反比例练习题及答案

正比例和反比例练习题及答案一、对号入座。

1、35:=20÷16==%=2、因为X=2Y,所以X:Y=:,X和Y成比例。

3、一个长方形的长比宽多20%,这个长方形的长和宽的最简整数比是。

4、向阳小学三年级与四年级人数比是3:4,三年级人数比四年级少% 四年级比三年级多%5、甲乙两个正方形的边长比是2:3,甲乙两个正方形的周长比是,甲乙两个正方形的面积比是。

6、一个比例由两个比值是2的比组成,又知比例的外项分别是1.2和5,这个比例是。

7、已知被减数与差的比是5:3,减数是100,被减数是。

8、在一幅地图上量得甲乙两地距离6厘米,乙丙两地距离8厘米;已知甲乙两地间的实际距离是 120千米,乙丙两地间的实际距离是千米;这幅地图的比例尺是。

9、从2:8、1.6:和:这三个比中,选两个比组成的比例是。

10、一块铜锌合金重180克,铜与锌的比是2:3,锌重克。

如果再熔入30克锌,这时铜与锌的比是。

二、明辨是非。

1、一项工程,甲队40天可以完成,乙队50天可以完成。

甲乙两队的工作效率比是4:5。

2、圆柱体与圆锥体的体积比是3:1,则圆柱体与圆锥体一定等底等高。

3、甲数与乙数的比是3:4,甲数就是乙数的。

4、比的前项和后项同时乘以同一个数,比值不变。

5、总价一定,单价和数量成反比例。

6、实际距离一定,图上距离与比例尺成正比例。

7、正方体体积一定,底面积和高成反比例。

8、订阅《今日泰兴》的总钱数和份数成正比例。

三、选择题。

1、把一个直径4毫米的手表零件,画在图纸上直径是8厘米,这幅图纸的比例尺是。

A、1:B、2:1C、1:20D、20:12、已知=1.2、=1.2,所以X和Y比较。

A、X大B、YC、一样大3、如果A×2=B÷3,那么A:B=。

A、2:B、3:C、1:D:14、一个三角形的三个内角的度数比是2:3:4,这个三角形是。

A、锐角三角形B、直角三角形C、钝角三角形5、体积和高都相等的圆柱体和圆锥体,它们底面积的比是。

正比例与反比例练习题

正比例与反比例练习题

正比例与反比例练习题1. 小明每天骑自行车上学,他发现骑行的时间和他的速度成正比。

如果他以每小时10公里的速度骑行,那么上学的时间是多少?解答: 假设骑行的时间是 x 小时,则速度和时间成正比,可以表示为 10/x = k,其中 k 是比例系数。

根据比例关系可得,x = 10/k。

由题意可知,当速度为10公里/小时时,上学时间为x小时,代入公式得到:x = 10/k。

因此,上学的时间为 10/k 小时。

2. 某工厂生产零件的速度和工人数量成正比。

如果有8个工人能够在5小时内生产完500个零件,那么10个工人需要多长时间才能生产1000个零件?解答: 假设生产零件的时间是 x 小时,则工人数量和时间成正比,可以表示为 8/5 = 10/x。

通过交叉乘积得到方程 8x = 50,解得 x = 6.25。

因此,10个工人需要6.25小时才能生产完1000个零件。

3. 小红做作业的速度和作业量成反比。

如果她能够在12小时内完成180页的作业,那么她在4小时内能完成多少页的作业?解答: 假设完成作业的页数是 y 页,则速度和作业量成反比,可以表示为 180/12 = y/4。

通过交叉乘积得到方程 180*4 = 12y,解得 y = 60。

因此,小红在4小时内能完成60页的作业。

4. 某项任务由8个工人在10天内完成,如果增加到12个工人,需要多少天才能完成同样的工作?解答: 假设完成任务的时间是 x 天,则工人数量和时间成反比,可以表示为 8*10 = 12*x。

通过交叉乘积得到方程 80 = 12x,解得 x = 6.67。

因此,增加到12个工人需要6.67天才能完成同样的工作。

由于天数不能为小数,可以向上取整,并得出需要7天才能完成。

5. 某车辆的速度和行驶时间成反比。

如果车辆以每小时80公里的速度行驶,那么行驶1000公里需要多长时间?解答: 假设行驶的时间是 y 小时,则速度和时间成反比,可以表示为 80/y = k,其中 k 是比例系数。

正反比例练习

正反比例练习

学校___________ 班别___________ 姓名_____________ 分数_____________1、填空题。

(1)两种( )的量,一种量变化,另一种量随着( ),如果这两种量中对应的两个数的( )一定,就称这两种量成正比例。

(每空5分)(2)一个房间铺地面积和用砖数量如下表。

(每空5分) ①表中( ) 和( )是相关联的量,( )随着( )的变化而变化。

②第五组中用砖数量与铺地面积这两种量相对应的两个数的比是( ),比值是( )。

③上面求出的比值所表示的意义是每平方米的( ),用砖数量和铺地面积的( )是一定的,所以用砖数量和铺地面积成( )比例。

2、在百货公司的花布柜台上,有一张某种花布的长度和总价的表格。

(1)表中有两个变化的量?(10分)(2)花布的总价和长度是不是成正比例?说明理由。

(30分)拓展题(20分)小丽的爸爸买了某品牌的电动汽车带全家外出旅行,已知汽车行驶时每千米的耗电量一定,请你把下表填写完整。

汽车的耗电量和行驶路程成正比例吗?为什么?正比例学校___________ 班别___________ 姓名_____________ 分数_____________1、用收割机收割一片麦田,每天收割的面积和需要的天数如下表。

填表并回答问题。

(每空5分)(1)每天收割的面积和需要的天数成( )比例。

(2)如果每天收割25公顷,需要( )完成。

(3)如果收割这片麦田用了4天,平均每天收割( )公顷。

2、北京市开通了首条专门为自行车单独建设的专用道路,李老师骑行体验过程中行驶时间与速度情况如下表。

(1)把上表填写完整。

(每空10分)(2)行驶时间和骑行速度成( )比例。

(5分) (3)如果李老师骑完全程用了32.5分,平均每分骑行多少米?(10分)3、张阿姨做一批剪纸,她每时做的个数与所需时间的关系如下表。

(每空5分)(1)表中( )和( )是两种相关联的量,所需时间随着( )的增加而( )。

小学数学《正反比例应用题》练习题

小学数学《正反比例应用题》练习题

《正反比例应用题》练习题老师讲解:1、一天乐乐拿着妈妈给他的钱到超市里去买苹果,平时每斤苹果5元钱,当他到超市的时候发现,由于打折促销,苹果变为每斤4元钱,于是乐乐多买了3斤苹果,问妈妈给了乐乐多少钱?2、加工一个零件,甲需要3分钟,乙需要3.5分钟,丙需要4分钟,现有1285个零件需要加工,如果规定3人用同样时间完成任务,那么各应加工多少个零件?学生练习1、一个旅游团租车出游,平均每人应付车费40元,后来又增加了8人,这样每人应付的车费是35元,总租车费是多少元?2、生产一台拖拉机,甲厂需要2天,乙厂需要3天,丙厂需要4天,现在要生产78台拖拉机,分配给三个厂,如果要求他们同时生产完,那么各应生产多少台拖拉机?老师讲解:1、如图,有A、B两个齿轮互相咬合,如果A齿轮转动12圈时,B 齿轮恰好转动8圈,请问:A、B两个齿轮的齿数之比是多少?(注:图片只是示意图,并不代表实际齿轮数)2、如图,有A、B、C三个齿轮,其中A和B互相咬合,B和C互相咬合,如果A齿轮转动7圈时,B齿轮恰好转动5圈;如果B齿轮转动7圈时,C齿轮恰好转动10圈,请问:这三个齿轮的齿数之比是多少?(注:图片只是示意图,并不代表实际齿轮数)学生讲解:1、如图,有A、B两个齿轮互相咬合,A齿轮有24个齿,B齿轮有30齿,当A齿轮转动了20圈时,B齿轮转动了多少圈?(注:图片只是示意图,并不代表实际齿轮数)2、有A、B、C三个齿轮,其中A和B互相咬合,B和C互相咬合,这三个齿轮的齿数之比是3:4:5,当A、C两个齿轮一共转动64圈时,B齿轮一共转动了多少圈?老师讲解:1、乐乐从家去学校,可以骑车也可以步行,骑车比步行每分钟快150米,骑车所用的时间比步行所用时间少35,那么乐乐每分钟步行多少米?2、某工程,可由若干台机器在规定时间内完成,如果增加2台机器,则只需用规定时间的78就可做完;如果减少两台机器,那么就要推迟1小时做完,如果由一台机器去完成这工程需要多长时间?学生练习:1、完成一件工程,甲的工作效率比乙的工作效率高27,单独做,甲比乙少用4天完成整件工程,问乙单独完成这件工程用多少天?2、某工程,可由若干台机器在规定时间内完成,如果增加3台机器,则只需用规定时间的56就可做完;如果减少3台机器,那么就要推迟2小时做完,如果由一台机器去完成这工程需要多长时间?。

小学正反比例应用题

小学正反比例应用题
1、一个晒盐场用100克海水可以晒出3克盐,如 果一次放入585000吨海水,可以晒出多少盐? 2、一块长方形钢板,长与宽比是5:3,已知长 是75厘米,宽是多少厘米? 3、一篮苹果,如果8个人分,每人正好分6个 如果12个人来分,每人可以分几个? 4、工人师傅制造一批器零件,每个零件所用的 时间由原来的8分钟减少到2.5分钟,过去每天 生产这种零件60个,现在每天能生产多少个?
5、用边长3分米的方砖铺,需要96块;如果改用边长2 分米的方砖铺地,需要多少块砖? 6、小明家到学校共1200米。今天早上上学3分钟共走 了180米,照这样的速度,还要走多少分钟才能到学校 7、袋子里有绿球7个,黄球24个。增加多少个绿球,可 使袋子里绿球与黄球的个数比是5:3? 8、有一项工作,原计划40个人工作18天正好完成任务, 如果每个人的工作效率相同,现在增加5个人,可以提前 几天完成任务?
12、修一段公路,总长12km。开工3天修了1.5km。
照这样计算,修完这段公路还要多少天? 13、儿童节那天开始,亮亮前7天看了210页书,照这 样计算,这个月亮亮一共看了多少页书?
14、A、B两地相距1200千米,甲乙两车同时从两地相 对开出,经过5小时后还相150千米,已知甲车的速度 和乙车的速度比是3:度相同,量得下面3层楼
的高度是8.4m,上面还有7层,这座楼共有多少
米?
10、火车从甲站开往乙站,4.2小时行了全程的 7/9,照这样的速度,火车行完剩下的路程还需 几小时? 11、某车间加工一批零件,如果每小时加工零 件30个,可比原计划提前10小时完成如果每小 时加工零件20个,可比原计划提前6小时完成, 这批零件有多少个?

正比例反比例练习题

正比例反比例练习题

正比例反比例练习题正比例反比例练习题正比例和反比例是数学中常见的关系,它们在现实生活中有着广泛的应用。

通过练习题的形式,我们可以更好地理解和掌握正比例和反比例的概念,以及它们在实际问题中的运用。

1. 正比例练习题问题一:小明去超市买苹果,每个苹果的价格为2元。

如果他买了5个苹果,需要支付多少钱?解答:苹果的价格和购买的数量之间是正比例关系。

根据正比例的定义,我们可以得到以下比例式:苹果的价格/购买的数量 = 2/1。

现在我们已知购买的数量为5个,代入比例式计算:苹果的价格/5 = 2/1,解方程得到苹果的价格 = 2 * 5 = 10元。

因此,小明需要支付10元。

问题二:一辆汽车以每小时60公里的速度行驶,行驶了3小时,它行驶的总路程是多少公里?解答:汽车的速度和行驶的时间之间是正比例关系。

根据正比例的定义,我们可以得到以下比例式:行驶的总路程/行驶的时间 = 60/1。

现在我们已知行驶的时间为3小时,代入比例式计算:行驶的总路程/3 = 60/1,解方程得到行驶的总路程 = 60 * 3 = 180公里。

因此,汽车行驶的总路程是180公里。

2. 反比例练习题问题一:小明在工厂工作,他生产的产品数量和生产所花费的时间之间是反比例关系。

如果他花费4小时生产了30个产品,那么他花费6小时能生产多少个产品?解答:产品数量和生产所花费的时间之间是反比例关系。

根据反比例的定义,我们可以得到以下比例式:产品数量 * 生产所花费的时间 = k,其中k为一个常数。

现在我们已知花费4小时生产了30个产品,代入比例式计算:30 * 4 = k,解方程得到k = 120。

因此,当他花费6小时时,产品数量 * 6 = 120,解方程得到产品数量 = 120/6 = 20个。

问题二:一辆汽车以每小时80公里的速度行驶,行驶了2小时,它行驶的总路程是多少公里?解答:汽车的速度和行驶的时间之间是反比例关系。

根据反比例的定义,我们可以得到以下比例式:速度 * 行驶的时间 = k,其中k为一个常数。

(完整版)正比例和反比例练习题

(完整版)正比例和反比例练习题

一.判断1、圆的面积和圆的半径成正比例。

()2、圆的面积和圆的半径的平方成正比例。

()3、圆的面积和圆的周长的平方成正比例。

()4、正方形的面积和边长成正比例。

()5、正方形的周长和边长成正比例。

()6、长方形的面积一定时,长和宽成反比例。

()7、长方形的周长一定时,长和宽成反比例。

()8、三角形的面积一定时,底和高成反比例。

()9、梯形的面积一定时,上底和下底的和与高成反比例。

()10、圆的周长和圆的半径成正比例。

()11.一个因数不变,积与另一个因数成正比例.()12.长方形的长一定,宽和面积成正比例.()13.大米的总量一定,吃掉的和剩下的成反比例.()14.圆的半径和周长成正比例.()15.分数的分子一定,分数值和分母成反比例.()16.铺地面积一定,方砖的边长和所需块数成反比例.()17.铺地面积一定,方砖面积和所需块数成反比例.()18.除数一定,被除数和商成正比例.()19.分母一定,分子和分数值成正比例()20.圆的面积一定,圆周率与半径成反比例()21.出勤率一定,实际出勤人数和应出勤人数成反比例()22.小明跳高的高度与他的身高成反比例()23.铺地面积一定,每块砖的面积与需要的块数成反比例()24.比的前项一定,比的后项和比值成反比例()25.文具盒的单价一定,买文具盒的个数和总价成正比例( )。

26.水稻产量一定,水稻的种植面积和总产量成反比例( )。

27.一堆货物一定,运出的和剩下的成正比例( )。

28.汽车行驶的速度一定,行驶的时间和路程成正比例( )。

29.比值一定,比的前项和后项成正比例( )。

30.煤的总量一定,每天的烧煤量和烧的天数成正比例( )。

31.李叔叔从家到工厂,骑车的速度和所需要的时间成反比例( )。

32.玉华做12道练习题,做完的与没做的题成正比例( )。

33.长方形面积一定,它的长和宽成正比例( )。

34.长方形的周长一定时,长和宽成反比例。

()35.三角形的面积一定时,底和高成反比例。

正反比例的应用题专项练习

正反比例的应用题专项练习

正反比例的应用题1、用同样的方砖铺地,铺20 平方米要320块,如果铺42 平方米,要用多少块方砖?2、一间教室,用面积是0.16 平方米的方砖铺地,需要275 块,如果用面积是0.25 平方米的方砖铺地,需要方砖多少块?3、建筑工地原来用 4 辆汽车,每天运土60立方米,如果用6 辆同样的汽车来运,每天可以运土多少立方米?4 我国发射的人造地球卫星绕地球运行 3 周约 3.6 小时,运行20 周约需多少小时?5、一种铁丝,7.5 米长重 3 千克,现在有19.5 米长的这种铁丝,重多少千克?6、汽车在高速公路上 3 小时行240千米,照这样计算, 5 小时行多少千米?7、修一条公路,4天修了200米,照这样计算,又修了 6 天,又修了多少米8、小明读一本书,每天读12页,8天可以读完。

如果每天多读4页,几天可以读完?9、今春分配给学校一些植树任务,每天栽200 棵 6 天可以完成任务,现在需要 4 天完成任务,实际每天比原计划多栽多少棵?10、农场用 3 辆拖拉机耕地,每天共耕225公顷,照这样速度,用 5 辆同样拖拉机,每天共耕地多少公顷?11、一艘轮船,从甲地从开往乙地,每小时航行20 千米,12 小时到达,从乙地返回甲地时,每小时多航行 4 千米,几小时可以到达?12、100 千克黄豆可以榨油13千克,照这样计算,要榨豆油6.5 吨,需黄豆多少吨?13、学校计划买54 张桌子,每张30元,如果这笔钱买椅子,可以买90 张,每张椅子多少钱?14、一对互相咬合的齿轮,主动轮有20 个齿,每分钟转60 转,如果要使从动轮每分钟转40 转,从动轮的齿数应是多少?15、把3米长的竹竿直立在地面上,测得影长 1.2 米,同时测得一根旗杆的影长为 4.8 米,求旗杆的高是多少米?16、一个机器零件长5毫米,画在图纸上是 4 厘米,求这幅图纸的比例尺。

(5 分)17、地图上的26 厘米,在比例尺为1∶1300000 的地图上约是多少千米?( 5 分)18、李师傅计划生产450个零件,工作8小时后还差330个零件没有完成,照这样速度,共要几小时完成任务?19、用一批纸装订同样的练习本,如果每本30页,可以装订80 本。

复杂的正反比例应用题

复杂的正反比例应用题
1.学校买来尼龙绳180米,先剪下36米做20根跳绳, 照这样计算,剩下的尼龙绳可以做这样的跳绳多 少根?
2. 学具厂生产一批学具,计划每天生产95套,24 天完成,实际只用了20天完成任务,实际每天比 原计划多生产多少套? 3. 一根钢管,把它锯成8段,需要21分钟,照这样 计算,若锯成12段需要多少分钟?
4. 工厂里有一批煤,计划每天烧6吨,可以烧80天, 实际每天比原计划少烧20%,这批煤可以烧多少 天?
5.某车间原计划每天生产75个零件,20天完成任 务,实际每天比计划多做1/3,这样可以提前几 天完成?
6.工人师傅生产一批零件,原计划每天生产40个, 25天可以完成,实际每天多生产25%,这样多少 天可以完成任务? 7. 时代钟表厂,生产一批手表,原计划每天生 产40只,25天完成任务,实际每天生产50只,实 际比原计划提前几天完16吨,15天可 以运完,现在要求10天运完,每天比原计划多少 吨?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《正反比例应用题专项训练》导学案
学习目标:
1.通过练习讲解,进一步理解和掌握正、反比例应用题的解题规律。

2.通过一题多变的形式,由浅入深,由易到难,培养学生思维的灵活性。

学习重难点:熟练运用比例知识解决应用题。

预习案
1、什么是正比例关系?
2、什么是反比例关系?
判断下面每题中的两种量成什么比例关系?为什么?
1、速度一定,路程和时间()
2、路程一定,速度和时间()
3、单价一定,总价和数量()
4、每小时耕地公顷数一定,耕地的总公顷数和时间( )
探究案
探究一:正反比例应用
一台抽水机5小时抽水40立方米,照这样计算,9小时可抽水多少立方米?
(1)题中涉及哪三种量?哪一种量是一定的?其中哪两种是相关联的量?它们成什么比例关系?
(2)用比例知识解此问题。

(3)如果把题中的问题改成“抽水72立方米需要几小时?”这时工作总量和工作时间成什么比例?该怎样解答?
探究二:正反比例应用
一艘轮船从甲港驶往乙港,每小时航行25千米,12小时到达。

如果每小时航行30千米,多少
小时可以到达乙港?
(1)题中涉及哪三种量?哪一种量是一定的?
其中哪两种是相关联的量?它们成什么比例关系?
(2)用比例知识解此问题。

(3)如果把题中最后一个条件和问题改成“要
10小时到达,每小时需航行多少千米?”这时
速度和时间成什么比例?该怎样解答?
探究三:用比例知识解决铺地问题
(1)一间房子要用瓷砖铺地,用边长3分米的
正方形瓷砖需3200块,用边长4分米的瓷砖
需多少块?
(2)用方砖铺地,铺一块20平方米的地需要
方砖80块,用同样的方砖铺一间60平方米的
会议室,需要这样的方砖多少块?
探究四:用比例知识解决影长问题
小红的身高是1.6米,她的影长是2.5米,如
果同一时间同一地点测得一棵树的影子长是4米,那么这棵树有多高?
探究五:用比例知识解答部分与总体题
某汽车厂的张叔叔小时装配了300个零件,照
这样的速度,再装2小时,一共可装配多少零件?
探究六:巧用比例关系解决问题
一根圆柱形木料锯成3段需要24分钟,锯成5
段需要多少分钟?
检测案
基础篇
1、一辆汽车3小时行135千米,照这样计算,这辆汽车6小时行
多少千米? 2、 “六一”儿童节,育才小学
表演大型团体操。

原来站36行,正
好每行站24人。

后来改站32行,
每行能站多少
人?
3、 一辆汽车从
甲城开往乙城,3
小时行驶180千
米,用这样的速度再行2.4小时
到达乙城。

甲、
乙两城相距多少
千米?
4、东风机械厂有
一批煤,原计划
每天烧15吨,可
烧80天。

实际每
天比原计划节约
20%,这批煤可
烧多少天? 5、 一根竹竿长3米,直立在地面
上,量得它的影
长是1.25米,在同一时间,同一地点量得一棵大
树的影长6.25米,这棵大树高多少米?
6 、用一批纸装订练习本,如果
每本装订30页,可装订1120本。

如果每本装订20页,可装订多少本? 拓 展 篇
1、某工程式队修一条铁路,14天修了700米,还
剩下1100米没
有修。

照这样的进度,修完这条铁路一共需要多少天?
2 、把一根长3米的圆钢锯成60厘米的一段,共需要20分钟。

如果改锯成50厘米的一段,共需要几分钟?
小结:解比例应用题的一般步骤是什么?。

相关文档
最新文档