河北省沧州市2013-2014学年第一学期期末考试九年级数学试卷(word版)

合集下载

沧州市第十四中学2013-2014学年度第一学期九年级期末试卷 2

沧州市第十四中学2013-2014学年度第一学期九年级期末试卷 2

沧州市第十四中学2013-2014学年度第一学期九年级期末试卷物 理出题人:卢秀芳 审核人:霍正文请同学们注意:考试时间80分钟,满分100分一、选择题(本题共35题,每小题2分,共70分。

在每题列出的四个选项中,只有一项最符合题目要求,将正确选项的字母涂在答题卡上,写在试卷上无效)1.小明闻到烟味,对爸爸说:“你一吸烟,我和妈妈都跟着被动吸烟。

”小明这样说的科学依据是A .一切物体都是由分子组成的B .分子在不停地做无规则的运动C .分子之间存在相互作用力 D.有的分子之间只有引力,有的分子之间只有斥力2.下列说法正确的是( )A 、温度高的物体具有的内能多,温度低的物体具有的内能少B 、夏日,在阳光照射下,地面温度高于湖水表面温度是因为水的比热容较大C 、塑料吸盘能牢牢地吸附在玻璃上,说明分子间存在着吸引力D 、物体吸收热量,内能一定增加,温度一定升高3.用电压表分别测量电路中两盏电灯的电压,结果它们两端的电压相等,由此判断两盏电灯的连接方式是:( )A .一定是串联B .一定是并联C .串联、并联都有可能 D .无法判断.4.在如图6-3(a )所示电路中,当闭合开关后,两个电压表指针偏转均为图6-33(b )所示,则电阻R1和R2两端的电压分别为( ) A .4.8V , 1.2V B . 6V , 1.2VC .1.2V , 6VD .1.2V , 4.8V 5.将两只滑动变阻器按如图6-6所示方法连接,要使这两只变阻器连入电路的电阻最大,应把滑片P 1、P 2放在( )A .滑片P 1放在最右端,滑片P 2也放在最右端B .滑片P 1放在最左端,滑片P 2也放在最左端 图6-3 2图6-6C .滑片P 1放在最右端,滑片P 2放在最左端D .滑片P 1放在最左端,滑片P 2放在最右端6.在图6-8所示电路中,电源电压保持不变,当开关 S 1闭合,S 2断开时,电压表的读数是3V ;当开关S 1断开,S 2闭合时,电压表的示数是5V ,则S 2断开时,灯L 1和L 2两端的电压分别为( )A.2V 和3VB.3V 和2VC.2V 和8VD.2V 和5V 7.家庭电路中正在使用的两盏白炽电灯,若甲灯比乙灯亮,则( )A .甲灯两端的电压大于乙灯两端的电压B .甲灯灯丝电阻大于乙灯灯丝电阻C .甲灯中的电流小于乙灯中的电流D .甲灯的电功率大于于乙灯的电功率8.当温度降低到相当低时,某些物质的电阻会变为零,这时的物质叫做超导体.假如科学家能研制出常温下的超导体,则下列设备不能使用超导体的是 ( )A .电动机线圈B .电热毯C .电磁起重机D .远距离输电中的输电导线9.如图7-6是四冲程内燃机工作循环中的一个冲程,它是 ( )A .压缩冲程,将内能转化为机械能B .压缩冲程,将机械能转化为内能C .做功冲程,将内能转化为机械能D .做功冲程,将机械能转化为内能10.当滑片向左移动时,下列说法正确的是( )A .电流表示数变大,电压表示数变小B .电流表示数变大,电压表示数变大C .电流表示数变小,电压表示数变小D .电流表示数变小,电压表示数变大11.定值电阻甲、乙中的电流与两端电压关系如图4所示。

沧州市数学九年级上册期末试卷(带解析)

沧州市数学九年级上册期末试卷(带解析)

沧州市数学九年级上册期末试卷(带解析)一、选择题1.已知圆锥的底面半径为3cm ,母线为5cm ,则圆锥的侧面积是 ( )A .30πcm 2B .15πcm 2C .152πcm 2 D .10πcm 2 2.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π3.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A .3B .31+C .31-D .234.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC = B .AD AEAB AC= C .△ADE ∽△ABCD .:1:2ADEABCS S=5.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )A .−2B .2C .−4D .46.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .157.如图,在Rt ABC ∆中,90C CD AB ∠=︒⊥,,垂足为点D ,一直角三角板的直角顶点与点D 重合,这块三角板饶点D 旋转,两条直角边始终与AC BC 、边分别相交于G H 、,则在运动过程中,ADG ∆与CDH ∆的关系是( )A .一定相似B .一定全等C .不一定相似D .无法判断8.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x < B .2x > C .0x < D .0x > 9.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( )A .1B .2C .3D .410.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值3 11.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定12.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80°13.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π- B .8433π- C .8233π- D .843π- 14.用配方法解方程2250x x --=时,原方程应变形为( ) A .2(1)6x -=B .2(1)6x +=C .2(1)9x +=D .2(1)9x -=15.如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( )A .3:2B .3:1C .1:1D .1:2二、填空题16.关于x 的一元二次方程20x a +=没有实数根,则实数a 的取值范围是 . 17.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD .若AC =2,则cosD =________.18.如图,△ABC 周长为20cm ,BC=6cm,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,则△AMN 的周长为________cm.19.若53x y x +=,则yx=______. 20.抛物线286y x x =++的顶点坐标为______.21.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.22.数据2,3,5,5,4的众数是____.23.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .24.如图,四边形ABCD 内接于⊙O ,若∠BOD=140°,则∠BCD=_____.25.有一块三角板ABC ,C ∠为直角,30ABC ∠=︒,将它放置在O 中,如图,点A 、B 在圆上,边BC 经过圆心O ,劣弧AB 的度数等于_______︒26.如图,⊙O是正五边形ABCDE的外接圆,则∠CAD=_____.27.设二次函数y=x2﹣2x﹣3与x轴的交点为A,B,其顶点坐标为C,则△ABC的面积为_____.28.某公园平面图上有一条长12cm的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.29.若函数y=(m+1)x2﹣x+m(m+1)的图象经过原点,则m的值为_____.30.已知二次函数y=3x2+2x,当﹣1≤x≤0时,函数值y的取值范围是_____.三、解答题31.某商店销售一种商品,经市场调查发现:该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x、月销售量y、月销售利润w(元)的部分对应值如下表:售价x(元/件)4045月销售量y(件)300250月销售利润w(元)30003750注:月销售利润=月销售量×(售价-进价)(1)①求y关于x的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为.32.如图,四边形OABC为矩形,OA=4,OC=5,正比例函数y=2x的图像交AB于点D,连接DC,动点Q从D点出发沿DC向终点C运动,动点P从C点出发沿CO向终点O运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了t s.(1)求点D的坐标;(2)若PQ∥OD,求此时t的值?(3)是否存在时刻某个t,使S△DOP=52S△PCQ?若存在,请求出t的值,若不存在,请说明理由;(4)当t为何值时,△DPQ是以DQ为腰的等腰三角形?33.已知关于的方程,若方程的一个根是–4,求另一个根及的值. 34.如图,AB是⊙O的弦,AB=4,点P在AmB上运动(点P不与点A、B重合),且∠APB=30°,设图中阴影部分的面积为y.(1)⊙O的半径为;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.35.(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是ABC的中点,∴MA=MC①又∵∠A =∠C ② ∴△MAB ≌△MCG ③ ∴MB =MG 又∵MD ⊥BC ∴BD =DG ∴AB +BD =CG +DG 即CD =DB +BA根据证明过程,分别写出下列步骤的理由: ① , ② , ③ ;(理解运用)如图1,AB 、BC 是⊙O 的两条弦,AB =4,BC =6,点M 是ABC 的中点,MD ⊥BC 于点D ,则BD = ;(变式探究)如图3,若点M 是AC 的中点,(问题呈现)中的其他条件不变,判断CD 、DB 、BA 之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC 是⊙O 的直径,点A 圆上一定点,点D 圆上一动点,且满足∠DAC =45°,若AB =6,⊙O 的半径为5,求AD 长.四、压轴题36.如图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点p 从A 开始折线A ——B ——C ——D 以4cm/秒的 速度 移动,点Q 从C 开始沿CD 边以1cm/秒的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动的时间t (秒)(1)t 为何值时,四边形APQD 为矩形.(2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时,⊙P 和⊙Q 外切?37.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C 在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围(3)在图3中,M 为抛物线1C 在第一象限内的一点,若MCB ∠为锐角,且3tan MCB ∠>,直接写出点M 横坐标M x 的取值范围___________38.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.39.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,6BD =CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).40.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF =,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题解析:∵底面半径为3cm , ∴底面周长6πcm ∴圆锥的侧面积是12×6π×5=15π(cm 2), 故选B .2.B解析:B 【解析】 【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案. 【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=. 故选:B. 【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.3.B解析:B 【解析】 【分析】设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,设AB =2,则易求出CF 3CEF ∽△AEB ,可得32EF CF BE AB ==,于是设EF =3x ,则2BE x =,然后利用等腰直角三角形的性质可依次用x 的代数式表示出CF 、CD 、DE 、DG 、EG 的长,进而可得CG 的长,然后利用正切的定义计算即得答案. 【详解】解:设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形, ∴△CEF ∽△AEB , 设AB =2,∵∠ADB =30°, ∴BD =23,∵∠BDC =∠CBD =45°,CF ⊥BD , ∴CF=DF=BF =12BD =3, ∴3EF CF BE AB ==, 设EF =3x ,则2BE x =,∴()23BF CF DF x ===+, ∴()()2223226CD DF x x ==+=+,()()233223DE DF EF x x x =+=++=+,∴()()222232622EG DG DE x x ===+=+,∴()()226262CG CD DG x x x =-=+-+=,∴()62tan 312x EG ACD CG x+∠===+.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.4.D解析:D【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AE AB AC =, ∴21()4ADE ABC S DE S BC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误.故选D.5.B解析:B【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k 的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选B .点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.D解析:D【解析】【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D .【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.7.A解析:A【解析】【分析】根据已知条件可得出A DCB ∠∠=,ADG CDH ∠∠=,再结合三角形的内角和定理可得出AGD CHD ∠∠=,从而可判定两三角形一定相似.【详解】解:由已知条件可得,ADC EDF CDB C 90∠∠∠∠====︒,∵A ACD ACD DCH 90∠∠∠∠+=+=︒,∴A DCH ∠∠=,∵ADG EDC EDC CDH 90∠∠∠∠+=+=︒,∴ADG CDH ∠∠=,继而可得出AGD CHD ∠∠=,∴ADG ~CDH .故选:A .【点睛】本题考查的知识点是相似三角形的判定定理,灵活利用三角形内角和定理以及余角定理是解此题的关键.8.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x 的取值范围.【详解】222(1)1y x x x =-+=--+,∵图像的对称轴为x=1,a=-10<,∴当x 1<时,y 随着x 的增大而增大,故选:C.【点睛】此题考查二次函数的性质,当a 0a 0<时,对称轴左增右减,当>时,对称轴左减右增. 9.B解析:B【解析】【分析】将x=2代入方程即可求得k 的值,从而得到正确选项.【详解】解:∵一元二次方程x 2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B.【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.10.A解析:A【解析】【分析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.11.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.12.C解析:C【解析】【分析】连接OD,根据∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性质即可解决问题.【详解】连接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA=OD,∴∠BAD=∠ADO=12(180°﹣40°)=70°.故选C.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.13.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.14.A解析:A【解析】【分析】方程常数项移到右边,两边加上1变形即可得到结果.【详解】方程移项得:x 2−2x =5,配方得:x 2−2x +1=6,即(x−1)2=6.故选:A .【点睛】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.15.D解析:D【解析】【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EF BC FC ,利用点E 是边AD 的中点得出答案即可.【详解】解:∵▱ABCD ,故AD ∥BC ,∴△DEF ∽△BCF , ∴=DE EF BC FC, ∵点E 是边AD 的中点, ∴AE=DE=12AD , ∴12EF FC =. 故选D .二、填空题16.a >0.【解析】试题分析:∵方程没有实数根,∴△=﹣4a <0,解得:a >0,故答案为a >0. 考点:根的判别式.解析:a >0.【解析】试题分析:∵方程20x a +=没有实数根,∴△=﹣4a <0,解得:a >0,故答案为a >0. 考点:根的判别式.17.【解析】试题分析:连接BC ,∴∠D=∠A ,∵AB 是⊙O 的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.18.8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线解析:8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC周长为20cm, BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.19.【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵,∴3x+3y=5x,∴2x=3y,∴.故答案为:.【点睛】本题考查比例的解析:2 3【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵53x yx+=,∴3x+3y=5x,∴2x=3y,∴23 yx =.故答案为:2 3 .【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换.20.【解析】【分析】直接利用公式法求解即可,横坐标为:,纵坐标为:.【详解】解:由题目得出:抛物线顶点的横坐标为:;抛物线顶点的纵坐标为:抛物线顶点的坐标为:(-4,-10).故答案为解析:()4,10--【解析】【分析】 直接利用公式法求解即可,横坐标为:2b a -,纵坐标为:244ac b a-. 【详解】解:由题目得出: 抛物线顶点的横坐标为:84221b a -=-=-⨯; 抛物线顶点的纵坐标为:22441682464104414ac b a -⨯⨯--===-⨯ 抛物线顶点的坐标为:(-4,-10).故答案为:(-4,-10).【点睛】本题考查二次函数的知识,掌握二次函数的图象和性质是解题的关键.21.1, ,【解析】【分析】分别利用当DP ∥AB 时,当DP ∥AC 时,当∠CDP=∠A 时,当∠BPD=∠BAC 时求出相似三角形,进而得出结果.【详解】BC =6,CD=2,∴BD=4,①如图解析:1,83 ,32【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。

河北省沧州市2014届九年级上学期期末考试数学试题(WORD版)冀教版

河北省沧州市2014届九年级上学期期末考试数学试题(WORD版)冀教版

河北省沧州市2014届九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分.各题均为单选)4.一个矩形的面积是6,则这个矩形的一组邻边长x与y的函数关系的图象大致是()5.如图,AB为⊙O的直径,点C在⊙O上.若∠C=16°,则∠BOC的度数是()变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是()当P在BC上从B向C移动而R不动时,那么下列结论成立的是()9.某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175亿元,二月、三10.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()11.已知反比例函数y=的图象经过点(1,2),则k的值是_________.12.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是_________.13.如图是引拉线固定电线杆的示意图.已知:CD⊥AB,CD=m,∠CAD=∠CBD=60°,则拉线AC的长是_________m.14.如图,扇子(阴影部分)的圆心角为x°,余下扇形的圆心角为y°,x与y的比通常按黄金比来设计,这样的扇子外形较美观,若黄金比为0.6,则x为_________.15.△ABC的顶点都在方格纸的格点上,则sinA=_________.16.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为_________mm.17.(3分)如图,桌面上有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆三个图形,则一点随机落在_________内的概率较大.18.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A的坐标为(1,0),则E点的坐标为_________.19.如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为_________.20.(3分)(2012•深圳)如图,双曲线y=(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线.已知点P坐标为(1,3),则图中阴影部分的面积为_________.三、解答题(共7小题,满分60分)21.(8分)(2012•江西)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.22.(8分)(2012•遵义)如图,4张背面完全相同的纸牌(用①、②、③、④表示),在纸牌的正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌出现的所有可能结果;(2)以两次摸出牌上的结果为条件,求能判断四边形ABCD是平行四边形的概率.23.(8分)(2012•泰安)如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为G,BG交AE于点H.(1)求证:△ABE∽△ECF;(2)找出与△ABH相似的三角形,并证明;(3)若E是BC中点,BC=2AB,AB=2,求EM的长.24.(8分)(2011•广安)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?25.(9分)(2012•荆州)如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)26.(9分)(2011•淄博)已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?27.(10分)(2012•盐城)如图所示,AC⊥AB,AB=2,AC=2,点D是以AB为直径的半圆O上一动点,DE⊥CD交直线AB于点E,设∠DAB=α(0°<α<90°).(1)当α=18°时,求的长;(2)当α=30°时,求线段BE的长;(3)若要使点E在线段BA的延长线上,则α的取值范围是_________.(直接写出答案)是平行四边形的概率为:=RC=MR=ER=EC=×,EM=.AB=4AOF==3=,((×﹣)x+AB=2,∴的长为:∴AB=2AB=,AD=∴BE=BE=,ABC=,。

九年级上册沧州数学期末试卷测试卷(含答案解析)

九年级上册沧州数学期末试卷测试卷(含答案解析)

九年级上册沧州数学期末试卷测试卷(含答案解析) 一、选择题 1.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( )A .(0,﹣1)B .(﹣2,﹣1)C .(2,﹣1)D .(0,1)2.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( )A .3(1)10x +=B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=3.如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D 都在格点上,点E 在AB 的延长线上,以A 为圆心,AE 为半径画弧,交AD 的延长线于点F ,且弧EF 经过点C ,则扇形AEF 的面积为( )A .58πB .58πC .54π D .54π 4.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80° 5.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+6.关于2,6,1,10,6这组数据,下列说法正确的是( ) A .这组数据的平均数是6 B .这组数据的中位数是1C .这组数据的众数是6D .这组数据的方差是10.2 7.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC 相似的条件是( )A .∠AED=∠B B .∠ADE=∠C C .AD DE AB BC = D .AD AE AC AB= 8.方程2x x =的解是( )A .x=0B .x=1C .x=0或x=1D .x=0或x=-1 9.一组数据0、-1、3、2、1的极差是( ) A .4B .3C .2D .1 10.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( )A .y =32x −2B .y =32x +2C .y =3()22x -D .y =3()22x + 11.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为( )A .12×108B .1.2×108C .1.2×109D .0.12×109 12.如图,AB 为O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )A .54B .36C .32D .27二、填空题13.已知tan (α+15°)3α的度数为______°. 14.若53x y x +=,则y x=______. 15.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.16.若圆锥的底面半径为3cm ,高为4cm ,则它的侧面展开图的面积为_____cm 2.17.某一时刻身高160cm 的小王在太阳光下的影长为80cm ,此时他身旁的旗杆影长10m ,则旗杆高为______.18.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)19.一元二次方程x 2﹣4=0的解是._________20.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为_____cm 2.(结果保留π)21.在▱ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35,则EF BF的值为_____.22.若32x y =,则x y y+的值为_____. 23.如图,将二次函数y =12 (x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.24.如图,Rt △ABC 中,∠ACB =90°,BC =3,tan A =34,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,点F 是DE 上一动点,以点F 为圆心,FD 为半径作⊙F ,当FD =_____时,⊙F 与Rt △ABC 的边相切.三、解答题25.如图,平行四边形ABCD 中,30B ∠=︒,过点A 作AE BC ⊥于点E ,现将ABE ∆沿直线AE 翻折至AFE ∆的位置,AF 与CD 交于点G .(1)求证:CG BF CD CF ⋅=⋅;(2)若43AB =,8AD =,求DG 的长.26.某果园有100棵橙子树,平均每棵结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就要减少.根据经验估计,每增种1棵树,平均每棵树就少结5个橙子.设果园增种x 棵橙子树,果园橙子的总产量为y 个.(1)求y 与x 之间的关系式;(2)增种多少棵橙子树,可以使橙子的总产量在60 420个以上?27.某网店打出促销广告:最潮新款服装30件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买2件,所买的每件服装的售价均降低6元.已知该服装成本是每件200元.设顾客一次性购买服装x 件时,该网店从中获利y 元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围.(2)顾客一次性购买多少件时,该网店从中获利最多,并求出获利的最大值?28.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y 2x 80=-+. 设这种产品每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?29.如图,在平面直角坐标系中,一次函数13y x =-的图像与x 轴交于点A .二次函数22y x bx c =-++的图像经过点A ,与y 轴交于点C ,与一次函数13y x =-的图像交于另一点()2,B m -.(1)求二次函数的表达式;(2)当12y y >时,直接写出x 的取值范围;(3)平移AOC ∆,使点A 的对应点D 落在二次函数第四象限的图像上,点C 的对应点E落在直线AB 上,求此时点D 的坐标.30.抛物线y =﹣x 2+bx+c 的对称轴为直线x =2,且顶点在x 轴上.(1)求b 、c 的值;(2)画出抛物线的简图并写出它与y 轴的交点C 的坐标;(3)根据图象直接写出:点C 关于直线x =2对称点D 的坐标 ;若E(m ,n)为抛物线上一点,则点E 关于直线x =2对称点的坐标为 (用含m 、n 的式子表示).31.如图,在Rt ABC ∆中,90C =∠,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:ADG ∆∽FEB ∆;(2)若2AD GD =,则ADG ∆面积与BEF ∆面积的比为 .32.甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是 ;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y =a (x ﹣h )2+k ,顶点坐标是(h ,k ),∴y =2(x ﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C .【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.2.D解析:D【解析】【分析】根据题意分别用含x 式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案.【详解】解:设增长率为x ,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2, 根据题意可列方程为233(1)3(1)10x x ++++=.故选:D .【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式. 3.B解析:B【解析】【分析】连接AC ,根据网格的特点求出r=AC 的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解.【详解】连接AC ,则r=AC=22251=+扇形的圆心角度数为∠BAD=45°,∴扇形AEF 的面积=()2455360π⨯⨯=58π 故选B.此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.4.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A ,根据圆周角定理计算即可.【详解】∵BC 是⊙O 的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D .【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.5.A解析:A【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.6.C解析:C【解析】【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可.【详解】解:数据从小到大排列为:1,2,6,6,10,中位数为:6;众数为:6; 平均数为:()112661055⨯++++=; 方差为:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦. 故选:C .本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键.7.C解析:C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A、∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB,故A选项错误;B、∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB,故B选项错误;C、AD DEAB BC=不能判定△ADE∽△ACB,故C选项正确;D、AD AEAC AB=,且夹角∠A=∠A,能确定△ADE∽△ACB,故D选项错误.故选:C.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.8.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】解:2x x=,方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.9.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.10.D解析:D【解析】【分析】先确定抛物线y=3x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x 2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.11.B解析:B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】120 000 000=1.2×108,故选:B .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.D解析:D【解析】【分析】由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠切线性质得到90∠=BAO∴∠=-=AOB903654=OD OA∠=∠∴OAD ODA∠=∠+∠AOB OAD ODAADC ADO∴∠=∠=27故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键二、填空题13.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.14.【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵,∴3x+3y=5x,∴2x=3y,∴.故答案为:.【点睛】本题考查比例的解析:2 3【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵53x yx+=,∴3x+3y=5x,∴2x=3y,∴23 yx =.故答案为:2 3 .【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换.15.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π. 【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 16.15【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】解析:15π【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长5()cm ==∴圆锥的侧面展开图的面积()23515cmππ=⨯⨯=故填:15π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 17.20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm ,根据相同时刻的物高与影长成比例,得到160::10,解得.故答案是:20m .解析:20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm ,根据相同时刻的物高与影长成比例,得到160:80x =:10,解得x 20=.故答案是:20m .【点睛】本题考查的是相似三角形的应用,掌握相似三角形的性质是解题的关键.18.或【解析】【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有解析:5 或1555【解析】【分析】根据黄金分割比为12计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有AC=12AB=12×10=5, 当AC<BC 时,则有×10=5-,∴AC=AB-BC=10-(555- )=1555- ,∴AC 长为555 cm 或1555 cm.故答案为:555 或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.19.x=±2【解析】移项得x2=4,∴x=±2.故答案是:x=±2.解析:x=±2【解析】移项得x 2=4,∴x=±2.故答案是:x=±2.20.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可. 由题意得圆锥的母线长∴圆锥的侧面积. 考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 21..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵B 解析:38.【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.22..【解析】【分析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.解析:52.【解析】【分析】根据比例的合比性质变形得:325.22 x yy++==【详解】∵32xy=,∴325.22 x yy++==故答案为:5 2 .【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.23.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.24.或【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE =AB=5解析:209或145【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根据相似三角形的性质得到DF=209;如图2,当⊙F与Rt△ABC的边AC相切时,延长DE交AB于H,推出点H为切点,DH为⊙F的直径,根据相似三角形的性质即可得到结论.【详解】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,∴DF=HF,∵Rt△ABC中,∠ACB=90°,BC=3,tan A=BCAC=34,∴AC=4,AB=5,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,∴∠DCE =∠ACB =90°,DE =AB =5,CD =AC =4,∵FH ⊥AC ,CD ⊥AC ,∴FH ∥CD ,∴△EFH ∽△EDC ,∴FH CD =EF DE , ∴4DF =55DF , 解得:DF =209; 如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,∵∠A =∠D ,∠AEH =∠DEC∴∠AHE =90°,∴点H 为切点,DH 为⊙F 的直径,∴△DEC ∽△DBH ,∴DE BD =CD DH , ∴57=4DH, ∴DH =285, ∴DF =145, 综上所述,当FD =209或145时,⊙F 与Rt △ABC 的边相切, 故答案为:209或145. 【点睛】 本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.三、解答题25.(1)见解析;(2【解析】【分析】(1)根据平行四边形的性质得AB∥CD,AB=CD,通过两角对应相等证明△FCG∽△FBA,利用对应边成比例列比例式,进行等量代换后化等积式即可;(2)根据直角三角形30°角所对的直角边等于斜边的一半及勾股定理,求出BE的长,再由折叠性质求出BF长,结合(1)的结论代入数据求解.【详解】解(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD=BC∴∠GCF=∠B, ∠CGF=∠BAF,∴△FCG∽△FBA,∴CG CF AB BF= ,∴CG CF CD BF∴CG BF CD CF⋅=⋅.(2)∵AE BC⊥,∴∠AEB=90°,∵∠B=30°, AB=∴AE=123 2AB ,由勾股定理得,BE=6,由折叠可得,BF=2BE=12,∵AD=BC=8,∴CF=4∵CG BF CD CF⋅=⋅,∴124CG=,∴CG=3,∴.【点睛】本题考查平行四边形的性质和相似三角形的判定与性质,平行四边形的性质即为相似三角形判定的条件,利用相似三角形的对应边成比例是解答问题的关键.26.(1)y=600-5x(0≤x<120);(2)7到13棵【解析】【分析】(1)根据增种1棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,然后根据函数关系式y=-5x 2+100x+60000=60420,结合一元二次方程解法得出即可.【详解】解:(1)平均每棵树结的橙子个数y (个)与x 之间的关系为:y=600-5x (0≤x <120);(2)设果园多种x 棵橙子树时,可使橙子的总产量为w ,则w=(600-5x )(100+x )=-5x 2+100x+60000当y=-5x 2+100x+60000=60420时,整理得出:x 2-20x+84=0,解得:x 1=14,x 2=6,∵抛物线对称轴为直线x=1002(5)-⨯-=10, ∴增种7到13棵橙子树时,可以使果园橙子的总产量在60420个以上.【点睛】此题主要考查了二次函数的应用,准确分析题意,列出y 与x 之间的二次函数关系式是解题关键.27.(1)y=100x (010x ≤≤的整数) y=2-3130x +x(1030x <≤的整数);(2)购买22件时,该网站获利最多,最多为1408元.【解析】【分析】(1)根据题意可得出销售量乘以每台利润进而得出总利润;(2)根据一次函数和二次函数的性质求得最大利润.【详解】(1)当010x ≤≤的整数时,y 与x 的关系式为y=100x ;当1030x <≤的整数时, 1030062002x y x , y=2-3130x x + (1030x <≤的整数),∴y 与x 的关系式为:y=100x (010x ≤≤的整数), y=2-3130x +x(1030x <≤的整数)(2)当(010x ≤≤的整数),y=100x,当x=10时,利润有最大值y=1000元;当10˂x≤30时,y=23130x x -+,∵a=-3<0,抛物线开口向下,∴y 有最大值,当x=22123b a -=时,y 取最大值, 因为x 为整数,根据对称性得:当x=22时,y 有最大值=1408元˃1000元,所以顾客一次性购买22件时,该网站获利最多.【点睛】本题考查分段函数及一次函数和二次函数的性质,利用函数性质求最值是解答此题的重要途径,自变量x 的取值范围及取值要求是解答此题的关键之处.28.(1)2w 2x 120x 1600=-+-;(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.【解析】试题分析:(1)根据销售额=销售量×销售价单x ,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元. 考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值.29.(1)2y x 2x 3=-++;(2)2x <-或3x >;(3)()4,5D -.【解析】【分析】(1)先求出A,B 的坐标,再代入二次函数即可求解;(2)根据函数图像即可求解;(3)先求出C 点坐标,再根据平移的性质得到3EF FD ==,设点(),3E a a -,则()3,6D a a +-,把D 点代入二次函数即可求解.【详解】解:(1)令0y =,得3x =,∴()3,0A .把()2,B m -代入3y x =-,解得()2,5B --. 把()3,0A ,()2,5B --代入2y x bx c =-++, 得093542b c b c =-++⎧⎨-=--+⎩,∴23b c =⎧⎨=⎩, ∴二次函数的表达式为2y x 2x 3=-++.(2)由图像可知,当12y y >时,2x <-或3x >.(3)令0x =,则3y =,∴()0,3C .∵平移,∴AOC DFE ∆≅∆,∴3EF FD ==.设点(),3E a a -,则()3,6D a a +-,∴()()263233a a a -=-++++,∴11a =,26a =-(舍去). ∴()4,5D -.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的运用.30.(1)b =4,c =﹣4;(2)见解析,(0,﹣4);(3)(4,﹣4),(4﹣m ,n)【解析】【分析】(1)根据图象写出抛物线的顶点式,化成一般式即可求得b 、c ;(2)利用描点法画出图象即可,根据图象得到C (0,﹣4);(3)根据图象即可求得.【详解】解:(1)∵抛物线y =﹣x 2+bx+c 的对称轴为直线x =2,且顶点在x 轴上,∴顶点为(2,0),∴抛物线为y =﹣(x ﹣2)2=﹣x 2+4x ﹣4,∴b =4,c =﹣4;(2)画出抛物线的简图如图:点C 的坐标为(0,﹣4);(3)∵C (0,﹣4),∴点C 关于直线x =2对称点D 的坐标为(4,﹣4);若E (m ,n )为抛物线上一点,则点E 关于直线x =2对称点的坐标为(4﹣m ,n ), 故答案为(4,﹣4),(4﹣m ,n ).【点睛】本题主要考查了二次函数的图像及其对称性,熟练掌握二次函数的图像与性质是解题的关键.31.(1)见解析;(2)4.【解析】【分析】 (1)先证∠AGD=∠B ,再根据∠ADG=∠BEF=90°,即可证明;(2)由(1)得ADG ∆∽FEB ∆,则△ADG 面积与△BEF 面积的比=2AD EF ⎛⎫ ⎪⎝⎭=4. 【详解】(1)证:在矩形DEFG 中,GDE FED ∠=∠=90°∴GDA FEB ∠=∠=90°∵C GDA ∠=∠=90°∴A AGD A B ∠+∠=∠+∠=90°∴AGD B ∠=∠在ADG ∆和FEB ∆中∵AGD B ∠=∠,GDA FEB ∠=∠=90°∴ADG ∆∽FEB ∆(2)解:∵四边形DEFG 为矩形,∴GD=EF ,∵△ADG ∽△FEB ,∴224ADGBEF S AD AD S EF GD ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭故答案为4.【点睛】本题考查了相似三角形的判定与性质,根据题意证得△ADG ∽△FEB 是解答本题的关键.32.(1)12;(2)13【解析】【分析】(1)根据甲、乙两所医院分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是:2142=; 故答案为:12.(2)将甲、乙两医院的医生分别记为男1、女1、男2、女2,画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴P(2名医生来自同一所医院的概率) =41 123.【点睛】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.。

河北省沧州市2014届九年级上期末数学试卷及答案

河北省沧州市2014届九年级上期末数学试卷及答案

在 BC 上从 B 向 C 移动而 R 不动时,那么下列结论成立的是( )
A 线段 EF 的长逐渐增大
B.线段 EF 的长逐渐减小
(2)以两次摸出牌上的结果为条件,求能判断四边形 ABCD 是平行四边形的概率.
23.(8 分)(2012•泰安)如图,E 是矩形 ABCD 的边 BC 上一点,EF⊥AE,EF 分别交 AC,CD 于 点 M,F,BG⊥AC,垂足为 G,BG 交 AE 于点 H. (1)求证:△ABE∽△ECF; (2)找出与△ABH 相似的三角形,并证明; (3)若 E 是 BC 中点,BC=2AB,AB=2,求 EM 的长.
A.74°
B.48°
C.32°
D 16°

6.如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转
动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),
则指针指在甲区域内的概率是( )
A.1
B.
C.
D

7.如图,已知矩形 ABCD 中,R、P 分别是 DC、BC 上的点,E、F 分别是 AP、RP 的中点,当 P
24.(8 分)(2011•广安)广安市某楼盘准备以每平方米 6000 元的均价对外销售,由于国务院有关 房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调 后,决定以每平方米 4860 元的均价开盘销售. (1)求平均每次下调的百分率. (2)某人准备以开盘价均价购买一套 100 平方米的住房,开发商给予以下两种优惠方案以供选 择:①打 9.8 折销售;②不打折,一次性送装修费每平方米 80 元,试问哪种方案更优惠? 25.(9 分)(2012•荆州)如图所示为圆柱形大型储油罐固定在 U 型槽上的横截面图.已知图中 ABCD 为等腰梯形(AB∥DC),支点 A 与 B 相距 8m,罐底最低点到地面 CD 距离为 1m.设油罐横 截面圆心为 O,半径为 5m,∠D=56°,求:U 型槽的横截面(阴影部分)的面积.(参考数据: sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)

河北省沧州市届九级上期末数学试卷及答案

河北省沧州市届九级上期末数学试卷及答案

河北省沧州市2014届九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分.各题均为单选)5.如图,AB为⊙O的直径,点C在⊙O上.若∠C=16°,则∠BOC的度数是()6.如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是()C移动而R不动时,那么下列结论成立的是()9.某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175亿元,二月、三月平均每月的增长率是为()B11.已知反比例函数y=的图象经过点(1,2),则k的值是_________.12.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是_________.13.如图是引拉线固定电线杆的示意图.已知:CD⊥AB,CD=m,∠CAD=∠CBD=60°,则拉线AC的长是_________m.14.如图,扇子(阴影部分)的圆心角为x°,余下扇形的圆心角为y°,x与y的比通常按黄金比来设计,这样的扇子外形较美观,若黄金比为0.6,则x为_________.15.△ABC的顶点都在方格纸的格点上,则sinA=_________.16.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为_________mm.17.(3分)如图,桌面上有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆三个图形,则一点随机落在_________内的概率较大.18.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A的坐标为(1,0),则E点的坐标为_________.19.如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为_________.20.(3分)(2012•深圳)如图,双曲线y=(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线.已知点P坐标为(1,3),则图中阴影部分的面积为_________.三、解答题(共7小题,满分60分)21.(8分)(2012•江西)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.22.(8分)(2012•遵义)如图,4张背面完全相同的纸牌(用①、②、③、④表示),在纸牌的正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌出现的所有可能结果;(2)以两次摸出牌上的结果为条件,求能判断四边形ABCD是平行四边形的概率.23.(8分)(2012•泰安)如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为G,BG交AE于点H.(1)求证:△ABE∽△ECF;(2)找出与△ABH相似的三角形,并证明;(3)若E是BC中点,BC=2AB,AB=2,求EM的长.24.(8分)(2011•广安)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?25.(9分)(2012•荆州)如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)26.(9分)(2011•淄博)已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?27.(10分)(2012•盐城)如图所示,AC⊥AB,AB=2,AC=2,点D是以AB为直径的半圆O上一动点,DE⊥CD 交直线AB于点E,设∠DAB=α(0°<α<90°).(1)当α=18°时,求的长;(2)当α=30°时,求线段BE的长;(3)若要使点E在线段BA的延长线上,则α的取值范围是_________.(直接写出答案)是平行四边形的概率为:=RC=MR=ER=EC=2=EM==AB=4=0.8=sin53=3=(﹣(×(﹣x+AB=2,的长为:πAB=2BD=AB=AD==3BE=BE=AB=2 ABC==。

河北省2013-2014学年九年级第一学期期末模拟试题(数学)

河北省2013-2014学年九年级第一学期期末模拟试题(数学)

河北省2013-2014学年九年级第一学期期末模拟试题(数学)本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题。

本试卷满分为120分,考试时间为120分钟。

卷Ⅰ(选择题,共42分)一、选择题(本大题共16个小题,1-6小题,每小题2分;7-16小题,每小题3分,共42分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图1,空心圆柱的主视图是 ……………………………………………………( )2.下列各点在反比例函数y=x2的图象上的是 …………………………………( ) A .(-1,-2) B .(-1,2)C .(-2,-1)D .(2,1) 3.小明沿着与地面成30º的坡面向下走了2米,那么他下降………………………( )A .1米B .3米C .23米D .332米 4.若x 1、x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2的值是………………( ) A .-2 B .2C .3D .15.如图2,⊙O 是△ABC 的外接圆,已知∠ABO =30º,则∠ACB………( )A .30ºB .45ºC .50ºD .60º 6.若二次函数y =ax 2的图象经过点P (-3,2),则该图象必经过点 ……………( ) A .(2,3) B .(-2,-3)C .(3,2)D .(-3,-2)7.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他 区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球 ………………………( ) A .12个 B .16个 C .20个 D .30个8.已知两圆相切,圆心距为5 cm ,若其中一个圆的半径是3 cm ,则另一个圆的半径是( ) A .8 cm B .3 cm C .2 cm D .2 cm 或8 cm9.如图3,矩形的两条对角线的一个交角为60 o ,两条对角线的长度的和为24 cm ,则这个矩形的一条较短边为 ………………………………………………………( )A .12 cmB .8 cmC .6 cmD .5 cm10.如图4,在正方形ABCD 中,E 为AB 的中点,G ,F 分别为AD ,BC 边上的点, 若AG =1,BF =2,∠GEF =90° ) A. 3B .2C. 5D .311.在反比例函数y =xm中,当x >0时,y 随x 的增大而增大,则二次函数y =mx 2+mx 的图象大致是图中的 ……………………………………………………………( )图2 图4312.如图5,AD为⊙O直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别如下:)A.甲对,乙不对B.甲不对,乙对C.两人都对D.两人都不对13.菱形的周长为8 cm,高为1 cm,则该菱形较大的内角的度数为………………()A.160°B.150°C.135°D.120°14.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(-2,0),则抛物线y=ax2+bx的对称轴为………………………………………………………………………()A.直线x=-1B.直线x=1C.直线x=-2D.直线x=-415.将正方形图6-1作如下操作:第1次:分别连接各边中点如图6-2,得到5个正方形;第2次:将图6-2左上角正方形按上述方法再分割如图6-3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是()A.502 B.503C.504 D.50516.如图7-1,在Rt△ABC中,∠ACB=90°,点P以每秒1cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止,过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图7-2所示,当点P运动5秒时,PD的长是………………………………………………………………………………()A.2 cmB.1.8 cmC.1.5 cmD.1.2 cm卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚。

九年级上册沧州数学期末试卷测试卷(含答案解析)

九年级上册沧州数学期末试卷测试卷(含答案解析)

九年级上册沧州数学期末试卷测试卷(含答案解析)一、选择题1.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个2.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 723.下列是一元二次方程的是( )A .2x +1=0B .x 2+2x +3=0C .y 2+x =1D .1x=1 4.在平面直角坐标系中,如图是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题:①a +b +c =0;②b >2a ;③方程ax 2+bx +c =0的两根分别为﹣3和1;④b 2﹣4ac >0,其中正确的命题有( )A .1个B .2个C .3个D .4个 5.对于二次函数2610y x x =-+,下列说法不正确的是( )A .其图象的对称轴为过(3,1)且平行于y 轴的直线.B .其最小值为1.C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.6.如图,////AD BE CF ,直线12l l 、与这三条平行线分别交于点、、A B C 和点D E F 、、.已知AB =1,BC =3,DE =1.2,则DF 的长为( )A .3.6B .4.8C .5D .5.2 7.已知二次函数y =(a ﹣1)x 2﹣x+a 2﹣1图象经过原点,则a 的取值为( )A .a =±1B .a =1C .a =﹣1D .无法确定 8.如图,△ABC 内接于⊙O ,若∠A=α,则∠OBC 等于( )A .180°﹣2αB .2αC .90°+αD .90°﹣α 9.抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .y =(x+1)2+3B .y =(x+1)2﹣3C .y =(x ﹣1)2﹣3D .y =(x ﹣1)2+3 10.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .7511.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=14412.下列说法正确的是( )A .所有等边三角形都相似B .有一个角相等的两个等腰三角形相似C .所有直角三角形都相似D .所有矩形都相似二、填空题13.如图,⊙O 是△ABC 的外接圆,∠A =30°,BC =4,则⊙O 的直径为___.14.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)15.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.16.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.17.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表x… -1 0 1 2 3 … y … -3 -3 -1 39 … 关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.18.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.19.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.20.已知关于x 的一元二次方程(m ﹣1)x 2+x+1=0有实数根,则m 的取值范围是 .21.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.22.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.23.如图,在△ABC 中,AC :BC :AB =3:4:5,⊙O 沿着△ABC 的内部边缘滚动一圈,若⊙O 的半径为1,且圆心O 运动的路径长为18,则△ABC 的周长为_____.24.若关于x 的一元二次方程22(1)0k x x k -+-=的一个根为1,则k 的值为__________. 三、解答题25.解方程:(1)3x 2-6x -2=0; (2)(x -2)2=(2x +1)2. 26.定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图①,在对角互余四边形ABCD 中,∠B =60°,且AC ⊥BC ,AC ⊥AD ,若BC =1,则四边形ABCD 的面积为 ;(2)如图②,在对角互余四边形ABCD 中,AB =BC ,BD =13,∠ABC+∠ADC =90°,AD =8,CD =6,求四边形ABCD 的面积;(3)如图③,在△ABC 中,BC =2AB ,∠ABC =60°,以AC 为边在△ABC 异侧作△ACD ,且∠ADC =30°,若BD =10,CD =6,求△ACD 的面积.27.“2020比佛利”无锡马拉松赛将于3月22日鸣枪开跑,本次比赛设三个项目:A .全程马拉松;B .半程马拉松;C .迷你马拉松.小明和小红都报名参与该赛事的志愿者服务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为 ;(2)请利用树状图或列表法求两人被分配到同一个项目组的概率.28.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.29.如果一个直角三角形的两条直角边的长相差2cm,面积是242cm,那么这个三角形的两条直角边分别是多少?30.在2017年“KFC”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)31.如图,E是正方形ABCD的CD边上的一点,BF⊥AE于F,(1)求证:△ADE∽△BFA;(2)若正方形ABCD的边长为2,E为CD的中点,求△BFA的面积,32.在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=a2x+bx+c(a<0)经过点A,B,(1)求a、b满足的关系式及c的值,(2)当x<0时,若y=a2x+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围,(3)如图,当a=−1时,在抛物线上是否存在点P,使△PAB的面积为32?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由,【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.2.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH,即可解决问题;【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,AD=BC,∵DF=CF,BE=CE,∴12DH DFHB AB==,12BG BEDG AD==,∴13 DH BGBD BD==,∴BG=GH=DH,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFC ABCD S S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.3.B解析:B【解析】【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为2的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A 、方程2x+1=0中未知数的最高次数不是2,是一元一次方程,故不是一元二次方程;B 、方程x 2+2x+3=0只含一个未知数,且未知数的最高次数为2的整式方程,故是一元二次方程;C 、方程y 2+x =1含有两个未知数,是二元二次方程,故不是一元二次方程;D 、方程1x=1不是整式方程,是分式方程,故不是一元二次方程. 故选:B.【点睛】 本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.是否符合定义的条件是作出判断的关键.4.C解析:C【解析】【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x =﹣1,且过点(1,0),根据对称轴可得抛物线与x 轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x =﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可.【详解】由图象可知:抛物线开口向上,对称轴为直线x =﹣1,过(1,0)点,把(1,0)代入y =ax 2+bx +c 得,a +b +c =0,因此①正确;对称轴为直线x =﹣1,即:﹣2b a=﹣1,整理得,b =2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(﹣3,0),因此方程ax 2+bx +c =0的两根分别为﹣3和1;故③是正确的;由图可得,抛物线有两个交点,所以b 2﹣4ac >0,故④正确;故选C .【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x 轴,y 轴的交点,以及增减性上寻找其性质.5.D解析:D【解析】【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案.【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键. 6.B解析:B【解析】【分析】根据平行线分线段成比例定理即可解决问题.【详解】解:////AD BE CF ,AB DE BC EF ∴=,即1 1.23EF=, 3.6EF ∴=,3.6 1.24.8DF EF DE ∴++===,故选B .【点睛】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.7.C解析:C【解析】【分析】将(0,0)代入y =(a ﹣1)x 2﹣x+a 2﹣1 即可得出a 的值.【详解】解:∵二次函数y =(a ﹣1)x 2﹣x+a 2﹣1 的图象经过原点,∴a 2﹣1=0,∴a =±1,∵a ﹣1≠0,∴a≠1,∴a 的值为﹣1.故选:C .【点睛】本题考查了二次函数,二次函数图像上的点满足二次函数解析式,熟练掌握这一点是解题的关键,同时解题过程中要注意二次项系数不为0.8.D解析:D【解析】连接OC ,则有∠BOC=2∠A=2α,∵OB=OC ,∴∠OBC=∠OCB ,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2α=180°,∴∠OBC=90°-α,故选D.9.D解析:D【解析】【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【详解】抛物线y=x2先向右平移1个单位得y=(x﹣1)2,再向上平移3个单位得y=(x﹣1)2+3.故选D.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.10.D解析:D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴2234,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,75 ==.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.11.D解析:D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.12.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.二、填空题13.8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=解析:8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为8,故答案为:8.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.14.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.15.【解析】【分析】通过延长MN交DA延长线于点E,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt△DMF和Rt△DCF中,利用勾股定理列方程求DM 长,根1【解析】【分析】通过延长MN交DA延长线于点E,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt△DMF和Rt△DCF中,利用勾股定理列方程求DM长,根据圆的性质即可求解.【详解】如图,延长MN交DA延长线于点E,过D作DF⊥BC交BC延长线于F,连接MD,∵四边形ABCD是菱形,∴AB=BC=CD=4,AD∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN,∴△EAN ≌BMN,∴AE=BM,EN=MN,∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=232-,x 2=232(不符合题意,舍去) ∴DM=232+,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM,∴其外接圆的半径长为1312DM .31.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X 字型”全等模型是解答此题的突破口,也是解答此题的关键.16.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.17.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴x=24113b b ac-±--±==−1±132,∵1x<0,∴1x=−1-132<0,∵-4≤-13≤-3,∴133222 -≤-≤-,∴-3≤−1−13≤ 2.5-,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.18.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连解析:115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.19.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得. 【详解】解:如图,连接D解析:4 5【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF∴323x x DE x x DF ∴45DE DF , ∴45CE CF .故答案为:45. 【点睛】 本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.20.m≤且m≠1.【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=即1-4(-1)(m-1)≥0解得m≥,又一元二次方程所以m-1≠0综上m≥且m≠1.解析:m≤54且m≠1. 【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=240b ac -≥即1-4(-1)(m-1)≥0解得m≥34,又一元二次方程所以m-1≠0综上m≥34且m≠1. 21.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.22.y =-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y =-5(x +2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x 2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键. 23.30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ解析:30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG ,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BM ,DG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,继而则有矩形DEPG 、矩形EQNF 、矩形DFMH ,从而可知DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN ,∠PEF =90°,根据题意可知四边形CPEQ 是边长为1的正方形,根据相似三角形的判定可得△DEF ∽△ACB ,根据相似三角形的性质可知:DE ∶EF ∶FD =AC ∶CB ∶BA =3∶4∶5,进而根据圆心O 运动的路径长列出方程,求解算出DE 、EF 、FD 的长,根据矩形的性质可得:GP 、QN 、MH 的长,根据切线长定理可设:AG =AH =x ,BN =BM =y ,根据线段的和差表示出AC 、BC 、AB 的长,进而根据AC ∶CB ∶BA =3∶4∶5列出比例式,继而求出x 、y 的值,进而即可求解△ABC 的周长.【详解】∵AC ∶CB ∶BA =3∶4∶5,设AC =3a ,CB =4a ,BA =5a (a >0)∴()()()222222=345AC CB a a a BA ++==∴△ABC 是直角三角形,设⊙O 沿着△ABC 的内部边缘滚动一圈,如图所示,连接DE 、EF 、DF ,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BMDG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,∴DG ∥EP ,EQ ∥FN ,FM ∥DH ,∵⊙O 的半径为1∴DG =DH =PE =QE =FN =FM =1,则有矩形DEPG 、矩形EQNF 、矩形DFMH ,∴DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN,∠PEF =90°又∵∠CPE =∠CQE =90°, PE =QE =1∴四边形CPEQ 是正方形,∴PC =PE =EQ =CQ =1,∵⊙O的半径为1,且圆心O运动的路径长为18,∴DE+EF+DF=18,∵DE∥AC,DF∥AB,EF∥BC,∴∠DEF=∠ACB,∠DFE=∠ABC,∴△DEF∽△ABC,∴DE:EF:DF=AC:BC:AB=3:4:5,设DE=3k(k>0),则EF=4k,DF=5k,∵DE+EF+DF=18,∴3k+4k+5k=18,解得k=32,∴DE=3k=92,EF=4k=6,DF=5k=152,根据切线长定理,设AG=AH=x,BN=BM=y,则AC=AG+GP+CP=x+92+1=x+5.5,BC=CQ+QN+BN=1+6+y=y+7,AB=AH+HM+BM=x+152+y=x+y+7.5,∵AC:BC:AB=3:4:5,∴(x+5.5):(y+7):(x+y+7.5)=3:4:5,解得x=2,y=3,∴AC=7.5,BC=10,AB=12.5,∴AC+BC+AB=30.所以△ABC的周长为30.故答案为30.【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点.24.0【解析】把x =1代入方程得,,即,解得.此方程为一元二次方程,,即,故答案为0.解析:0【解析】把x =1代入方程得,2110k k -+-=,即20k k -=,解得120,1k k ==.此方程为一元二次方程,10k ∴-≠,即1k ≠,0.k ∴=故答案为0.三、解答题25.(1)x 1=1x 2=12)x 1=13,x 2=-3 【解析】【分析】(1)利用配方法解方程即可;(2)先移项,然后利用因式分解法解方程.【详解】(1)解:x 2-2x =23 x 2-2x +1=23+1 (x -1)2=53x -1=±3∴x 1=1x 2=1(2)解:[ (x -2)+(2x +1)] [ (x -2)-(2x +1)]=0(3x -1) (-x -3)=0∴x 1=13,x 2=-3 【点睛】 本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解题的关键.26.(1)2)36;(3. 【解析】【分析】(1)由AC ⊥BC ,AC ⊥AD ,得出∠ACB=∠CAD=90°,利用含30°直角三角形三边的特殊关系以及勾股定理,就可以解决问题;(2)将△BAD 绕点B 顺时针旋转到△BCE ,则△BCE ≌△BAD ,连接DE ,作BH ⊥DE 于H ,作CG ⊥DE 于G ,作CF ⊥BH 于F .这样可以求∠DCE=90°,则可以得到DE 的长,进而把四边形ABCD 的面积转化为△BCD 和△BCE 的面积之和,△BDE 和△CDE 的面积容易算出来,则四边形ABCD 面积可求;(3)取BC 的中点E ,连接AE ,作CF ⊥AD 于F ,DG ⊥BC 于G ,则BE=CE=12BC ,证出△ABE 是等边三角形,得出∠BAE=∠AEB=60°,AE=BE=CE ,得出∠EAC=∠ECA= =30°,证出∠BAC=∠BAE+∠EAC=90°,得出,设AB=x ,则,由直角三角形的性质得出CF=3,从而CG=a ,AF=y ,证明△ACF ∽△CDG ,得出=AF AC CG CD ,求出,由勾股定理得出y 2x)2-32=3x 2-9,b 2=62-a 2=102-(2x+a)2,(2x+a)2+b 2=132,整理得出a=216x x -,进而得)216=6x -,得出[)2166x -]2=3x 2-9,解得x 2,得出y 22,解得,得出角形面积即可得出答案.【详解】解:(1)∵AC ⊥BC ,AC ⊥AD ,∴∠ACB =∠CAD =90°,∵对角互余四边形ABCD 中,∠B =60°,∴∠D =30°,在Rt △ABC 中,∠ACB =90°,∠B =60°,BC =1,∴∠BAC =30°,∴AB=2BC =2,AC在Rt △ACD 中,∠CAD =90°,∠D =30°,∴AD=3,CD =2AC =,∵S △ABC =12•AC•BC =12×3×1=32, S △ACD ═12•AC•AD =12×3×3=33, ∴S 四边形ABCD =S △ABC +S △ACD =23,故答案为:23;(2)将△BAD 绕点B 顺时针旋转到△BCE ,如图②所示:则△BCE ≌△BAD ,连接DE ,作BH ⊥DE 于H ,作CG ⊥DE 于G ,作CF ⊥BH 于F .∴∠CFH =∠FHG =∠HGC =90°,∴四边形CFHG 是矩形,∴FH =CG ,CF =HG ,∵△BCE ≌△BAD ,∴BE =BD =13,∠CBE =∠ABD ,∠CEB =∠ADB ,CE =AD =8,∵∠ABC+∠ADC =90°, ∴∠DBC+∠CBE+∠BDC+∠CEB =90°,∴∠CDE+∠CED =90°, ∴∠DCE =90°,在△BDE 中,根据勾股定理可得:DE 22CD CE +2268+=10,∵BD =BE ,BH ⊥DE ,∴EH =DH =5,∴BH 22BE EH 22135-12,∴S △BED =12•BH•DE =12×12×10=60, S △CED =12•CD•CE =12×6×8=24, ∵△BCE ≌△BAD ,∴S 四边形ABCD =S △BCD +S △BCE =S △BED ﹣S △CED =60﹣24=36;(3)取BC 的中点E ,连接AE ,作CF ⊥AD 于F ,DG ⊥BC 于G ,如图③所示:则BE=CE=12 BC,∵BC=2AB,∴AB=BE,∵∠ABC=60°,∴△ABE是等边三角形,∴∠BAE=∠AEB=60°,AE=BE=CE,∴∠EAC=∠ECA=12∠AEB=30°,∴∠BAC=∠BAE+∠EAC=90°,∴AC3,设AB=x,则AC3,∵∠ADC=30°,∴CF=12CD=3,DF3=3设CG=a,AF=y,在四边形ABCD中,∠ABC+∠BCD+∠ADC+∠BAC+∠DAC=360°,∴∠DAC+∠BCD=180°,∵∠BCD+∠DCG=180°,∴∠DAC=∠DCG,∵∠AFC=∠CGD=90°,∴△ACF∽△CDG,∴AFCG =ACCD,即ya=36x,∴y3ax在Rt△ACF中,Rt△CDG和Rt△BDG中,由勾股定理得:y2=32﹣32=3x2﹣9,b2=62﹣a2=102﹣(2x+a)2,(2x+a)2+b2=132,整理得:x2+ax﹣16=0,∴a=2 16xx-,∴y3ax3x×216xx-=)23166x-,∴[()23166x-]2=3x2﹣9,整理得:x4﹣68x2+364=0,解得:x2=34﹣622,或x2=34+622(不合题意舍去),∴x2=34﹣622,∴y2=3(34﹣622)﹣9=93﹣1822=93﹣21728=(6627-)2,∴y=66﹣33,∴AF=66﹣33,∴AD=AF+DF=66,∴△ACD的面积=12AD×CF=12×66×3=3662.【点睛】此题是四边形综合题,主要考查了新定义的理解和应用,相似三角形的判定和性质,勾股定理,等边三角形的判定与性质,旋转的性质,全等三角形的性质,含30°角的直角三角形的性质等知识;本题综合性强,有一定难度.27.(1)13;(2)13.【解析】【分析】(1)直接利用概率公式计算;(2)先利用画树状图展示所有9种等可能的结果数,找出两人被分配到同一个项目组的结果数,然后根据概率公式计算.【详解】解:(1)小明被分配到“迷你马拉松”项目组的概率为13;(2)画树状图为:共有9种等可能的结果数,其中两人被分配到同一个项目组的结果数为3,所以两人被分配到同一个项目组的概率=39=13.【点睛】此题主要考查概率的求解,解题的关键是熟知树状图的画法. 28.(1)见解析;(2)见解析.【解析】【分析】(1)先运用SAS判定△AED≌△FDE,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【详解】(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=12AD=12AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【点睛】本题考查旋转的性质、全等三角形的判定(SAS )与性质的运用,解题关键是掌握旋转的性质、全等三角形的判定(SAS )与性质的运用.29.一条直角边的长为 6cm ,则另一条直角边的长为8cm .【解析】【分析】可设较短的直角边为未知数x ,表示出较长的边,根据直角三角形的面积为24列出方程求正数解即可.【详解】解:设一条直角边的长为xcm ,则另一条直角边的长为(x+2)cm .根据题意列方程,得1(2)242x x •+=. 解方程,得:x 1=6,x 2=8-(不合题意,舍去).∴一条直角边的长为 6cm ,则另一条直角边的长为8cm .【点睛】本题考查一元二次方程的应用;用到的知识点为:直角三角形的面积等于两直角边积的一半.30.14【解析】【分析】根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.【详解】根据题意画出树状图如下:一共有4种情况,确保两局胜的有1种,所以,P =14 . 考点:列表法与树状图法.31.(1)见详解;(2)45【解析】【分析】。

河北省沧州市九年级上学期数学期末考试试卷

河北省沧州市九年级上学期数学期末考试试卷

河北省沧州市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果抛物线y=x2-6x+c-2的顶点到x轴的距离是3,那么c的值等于()A . 8B . 14C . 8或14D . -8或-142. (2分)(2017·双桥模拟) 下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .3. (2分)如图,在⊙O中,弦AC=2,点B是圆上一点,且∠ABC=45°,则⊙O的半径是()A . 2B . 4C .D .4. (2分)(2019·昌图模拟) 关于x的一元二次方程有两个实数根,则m的取值范围是()A . m≤1B . m<1C . ﹣3≤m≤1D . ﹣3<m<15. (2分)(2019·本溪) 下列事件属于必然事件的是()A . 打开电视,正在播出系列专题片“航拍中国”B . 若原命题成立,则它的逆命题一定成立C . 一组数据的方差越小,则这组数据的波动越小D . 在数轴上任取一点,则该点表示的数一定是有理数6. (2分)已知反比例函数y=−的图象上有两点A(x1 , y1)、B(x2 , y2),且x1<x2 ,那么下列结论正确的是()A . y1<y2B . y1>y2C . y1=y2D . 不能确定7. (2分)若点A(n,2)与B(-3,m)关于原点对称,则n-m等于()A . -1B . -5C . 1D . 58. (2分)如图,该图形绕点O按下列角度旋转后,不能与其自身重合的是()A . 72°B . 108°C . 144°D . 216°9. (2分)若A(1,b1),B(-2,b2)是反比例函数y=-图象上的两个点,则b1与b2的大小关系是().A . b1<b2B . b1=b2C . b1>b2D . 大小不确定10. (2分)(2017·保定模拟) 已知mn≠1,且5m2+2010m+9=0,9n2+2010n+5=0,则的值为()A . ﹣402B .C .D .二、填空题 (共6题;共14分)11. (1分)已知点P(1,2)在反比例函数的图象上,根据图象判断,当x>1时,y的取值范围是________12. (1分)(2018·湖北模拟) 如图,在平面直角坐标系xOy中,点A,B在双曲线y= (k是常数,且k≠0)上,过点A作AD⊥x轴于点D,过点B作BC⊥y轴于点C,已知点A的坐标为(4,),四边形ABCD的面积为4,则点B的坐标为________.13. (1分)已知正方形的边长为2cm,那么它外接圆的半径长是________cm.14. (9分)抛物线y=3(x-2)2的开口方向是________,顶点坐标为________,对称轴是________.当x________时,y随x的增大而增大;当x=________时,y有最________值是________,它可以由抛物线y=3x2向________平移________个单位得到.15. (1分)(2012·淮安) 若圆锥的底面半径为2cm,母线长为5cm,则此圆锥的侧面积是________ cm2 .16. (1分) (2016九上·东营期中) 如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为________.三、解答题 (共9题;共97分)17. (20分)解方程:(1) 3x2﹣5x﹣2=0(2) x2﹣6x=5(3) 2x2﹣6x﹣1=0(4) 3x(x+2)=5(x+2)18. (10分)(2018·黄梅模拟) △OAB是⊙O的内接三角形,∠AOB=120°,过O作OE⊥AB于点E,交⊙O 于点C,延长OB至点D,使OB=BD,连CD.(1)求证: CD是⊙O切线;(2)若F为OE上一点,BF的延长线交⊙O于G,连OG,,CD=6 ,求S△GOB.19. (10分)钟表的分针匀速旋转一周需要60分钟.(1)指出它的旋转中心.;(2)经过45分钟,分针旋转了多少度?20. (9分) (2017八下·南京期中) 在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(9)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:(1)按表格数据格式,表中的a=________;b=________;(2)请估计:当次数s很大时,摸到白球的频率将会接近________;(3)请推算:摸到红球的概率是________(精确到0.1);(4)试估算:口袋中红球有多少只?21. (6分) (2018九上·南召期中) 某水果店出售一种水果,经过市场估算,若每个售价为元时,每周可卖出个.经过市场调查,如果每个水果每降价元,每周可多卖出个,若设每个水果的售价为元.(1)则这一周可卖出这种水果为________ 个(用含的代数式表示);(2)若该周销售这种水果的收入为元,那么每个水果的售价应为多少元?22. (7分)(2019·信阳模拟) 如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线.交BC于点E.(1)求证:BE=EC(2)填空:①若∠B=30°,AC=2 ,则DB=________;②当∠B=________度时,以O,D,E,C为顶点的四边形是正方形.23. (10分) (2017九上·禹州期末) 如图,点A(1,6)和点B在反比例函数图象上,AD⊥x轴于点D,BC⊥x 轴于点C,DC=5.(1)求反比例函数的表达式和点B的坐标;(2)连接AB,在线段DC上是否存在一点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,请说明理由.24. (10分) (2016九上·温州期末) 某农场拟建三件矩形饲养室,饲养室一面靠现有墙(墙可用长≤20m),中间用两道墙隔开,已知计划中的建筑材料可建围墙的总长为60m,设饲养室宽为x(m),总占地面积为y(m2)(如图所示).(1)求y关于x的函数表达式,并直接写出自变量x的取值范围;(2)三间饲养室占地总面积有可能达到210m2吗?请说明理由.25. (15分)如图,已知二次函数y1=﹣x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b.(1)求二次函数y1的解析式及点B的坐标:(2)由图象写出满足y1<y2的自变量x的取值范围(3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共14分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共97分)17-1、17-2、17-3、17-4、18-1、18-2、19-1、19-2、20-1、20-2、20-3、20-4、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。

河北省沧州市九年级(上)期末数学试卷 (2)

河北省沧州市九年级(上)期末数学试卷 (2)

第4页(共7页)
21.(10 分)有两个可以自由转动的均匀转盘 A、B,都被分成了 3 等份,并在 每份内均标有数字,如图所示,规则如下:
①分别转动转盘 A、B. ②两个转盘停止后,将两个指针所指份内的数字相乘(若指针停在等分线上,那
么重转一次,直到指针指向某一份为止). (1)用列表法(或树状图)分别求出数字之积为 3 的倍数和为 5 的倍数的概率; (2)小亮和小芸想用这两个转盘做游戏,他们规定:数字之积为 3 的倍数时,
A.10%
B.5%
C.15%
D.20%
6.(3 分)二次函数 y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是( )
第1页(共7页)
A.a<0 C.当﹣1<x<3 时,y>0
B.b2﹣4ac<0 D.﹣
7.(3 分)已知 a,b,c 分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0

14.(3 分)如图,已知点 A,B,C 在⊙O 上,AC∥OB,∠BOC=40°,则∠ABO=
度.
15.(3 分)直线 y=x+3 上有一点 P(3,n),则点 P 关于原点的对称点 P′为

16.(3 分)如图,是 4×4 的正方形网格,把其中一个标有数字的白色小正方形
涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方
三、解答题(本大题共 6 个小题,共 66 分)
19.
;20.(﹣6,2);21.
;22.;23.
;24.(0,3);4;
第7页(共7页)
D 向点 C 运动,当其中一个动点到达端点时,另一个动点也随之停止运动.则

沧州市九年级上学期数学期末考试试卷

沧州市九年级上学期数学期末考试试卷

沧州市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)已知一元二次方程x2+x-1=0,下列判断正确的是()A . 该方程有两个相等的实数根B . 该方程有两个不相等的实数根C . 该方程无实数根D . 该方程根的情况不确定2. (2分) (2019九下·惠州月考) 下列图形中,即是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)(2019·宁波模拟) 如图,点B、C、D在⊙O上,若∠BCD=140°,则∠BOD的度数是()A . 40°B . 50°C . 80°D . 90°4. (2分) (2019九上·无锡月考) ⊙O的半径为4,点P到圆心O的距离为d,如果点P在圆内,则d()A . d<4B . d=4C . d>4D . 0≤d<45. (2分)(2018·吉林模拟) 已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象大致是()A .B .C .D .6. (2分)(2019·宜宾) 已知抛物线与y轴交于点A ,与直线(k为任意实数)相交于B , C两点,则下列结论错误的是()A . 存在实数k ,使得为等腰三角形B . 存在实数k ,使得的内角中有两角分别为30°和60°C . 任意实数k ,使得都为直角三角形D . 存在实数k ,使得为等边三角形7. (2分) (2017九上·五莲期末) 二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,系列结论:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)若点A(﹣2,y1),点B(,y2),点C(,y2)在该函数图象上,则y1<y3<y2;(5)若m≠2,则m(am+b)>2(2a+b),其中正确的结论有()A . 2个B . 3个C . 4个D . 5个8. (2分)(2019·泰山模拟) 如图,在菱形ABCD中,∠A=60°,4D=4,点F是AB的中点,过点F作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△A'E’F',设点P、P’分别是EF、E'F'的中点,当点A’与点B重合时,四边形PP’CD的面积为()A . 7B . 6C . 8D . 8 -49. (2分) (2019九上·交城期中) 某商品的进价为每件40元,当售价为每件80元时,每星期可卖出200件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出8件,店里每周利润要达到8450元.若设店主把该商品每件售价降低x元,则可列方程为()A .B .C .D .10. (2分)(2017·丰润模拟) 如图,已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y= (x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①双曲线的解析式为y= (x>0);②E点的坐标是(5,8);③sin∠COA= ;④AC+OB=12 .其中正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共8分)11. (1分)若一元二次方程(a≠0)有一个根为1,则 ________;若有一个根是-1,则b与、c之间的关系为________;若有一个根为0,则c=________.12. (1分)(2019·江岸模拟) 将抛物线y=x2+2x向右平移1个单位后的解析式为________.13. (2分)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为________14. (1分) (2017九上·文安期末) 在一个不透明的口袋中装有12个白球、16个黄球、24个红球、28个绿球,除颜色其余都相同,小明通过多次摸球实验后发现,摸到某种颜色的球的频率稳定在0.3左右,则小明做实验时所摸到的球的颜色是________.15. (2分)(2017·信阳模拟) 若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是________,侧面积为________.16. (1分) (2018七上·和平期末) 如图所示,在一条笔直公路 p 的两侧,分别有甲、乙两个村庄,现要在公路 p 上建一个汽车站,使汽车站到甲、乙两村的距离之和最小,你认为汽车站应该建在________处(填A 或 B 或C),理由是________.三、解答题 (共9题;共77分)17. (5分) (2018九上·林州期中)(1) 2x2﹣5x﹣1=0;(2) 6x2﹣3x﹣1=2x﹣218. (2分)如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED。

沧州市初三数学九年级上册期末试卷

沧州市初三数学九年级上册期末试卷

沧州市初三数学九年级上册期末试卷一、选择题1.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin aAO β=C .tan BC a β=D .cos aBD β=2.如图,在△ABC 中,DE ∥BC ,若DE =2,BC =6,则ADE ABC 的面积的面积=( )A .13B .14C .16D .193.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80°4.方程(1)(2)0x x --=的解是( ) A .1x =B .2x =C .1x =或2x =D .1x =-或2x =-5.下列说法中,不正确的是( ) A .圆既是轴对称图形又是中心对称图形 B .圆有无数条对称轴 C .圆的每一条直径都是它的对称轴D .圆的对称中心是它的圆心6.在平面直角坐标系中,将抛物线y =2(x ﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是( )A.y=2(x+1)2+4 B.y=2(x﹣1)2+4C.y=2(x+2)2+4 D.y=2(x﹣3)2+47.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定8.如图,AB是⊙O的弦,∠BAC=30°,BC=2,则⊙O的直径等于()A.2 B.3 C.4 D.69.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A.16B.13C.12D.5610.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是()A.8 B.9 C.10 D.1111.将二次函数y=x2的图象沿y轴向上平移2个单位长度,再沿x轴向左平移3个单位长度,所得图象对应的函数表达式为()A.y=(x+3)2+2B.y=(x﹣3)2+2C.y=(x+2)2+3D.y=(x﹣2)2+3 12.如图,在⊙O中,AB为直径,圆周角∠ACD=20°,则∠BAD等于()A.20°B.40°C.70°D.80°13.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A .2332π-B .233π- C .32π-D .3π-14.二次函数y =()21x ++2的顶点是( ) A .(1,2)B .(1,−2)C .(−1,2)D .(−1,−2)15.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .2cmB .4cmC .6cmD .8cm二、填空题16.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .17.已知∠A =60°,则tan A =_____.18.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .19.关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.20.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号)21.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.22.已知关于x 的方程a (x +m )2+b =0(a 、b 、m 为常数,a ≠0)的解是x 1=2,x 2=﹣1,那么方程a (x +m +2)2+b =0的解_____.23.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m .24.已知⊙O 半径为4,点,A B 在⊙O 上,21390,sin 13BAC B ∠=∠=,则线段OC 的最大值为_____.25.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.26.已知 x 1、x 2 是关于 x 的方程 x 2+4x -5=0的两个根,则x 1 + x 2=_____.27.如图,△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,E 、F 分别为AC 、AD 上两动点,连接CF 、EF ,则CF +EF 的最小值为_____.28.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.29.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____. 30.如图,Rt △ABC 中,∠ACB =90°,BC =3,tan A =34,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC,点F是DE上一动点,以点F为圆心,FD为半径作⊙F,当FD=_____时,⊙F与Rt△ABC的边相切.三、解答题31.如图,在Rt△ABC中,∠C=90°,矩形DEFG的顶点G、F分别在边AC、BC上,D、E 在边AB上.(1)求证:△ADG∽△FEB;(2)若AD=2GD,则△ADG面积与△BEF面积的比为.32.在矩形ABCD中,AB=3,AD=5,E是射线..DC上的点,连接AE,将△ADE沿直线AE 翻折得△AFE.(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;(2)如图②,点F在矩形ABCD内,连接CF,若DE=1,求△EFC的面积;(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为.33.如图,点C在以AB为直径的圆上,D在线段AB的延长线上,且CA=CD,BC=BD.(1)求证:CD与⊙O相切;(2)若AB=8,求图中阴影部分的面积.34.如图,在平面直角坐标系中,⊙O 的半径为1,点A 在x 轴的正半轴上,B 为⊙O 上一点,过点A 、B 的直线与y 轴交于点C ,且OA 2=AB •AC .(1)求证:直线AB 是⊙O 的切线;(2)若AB =3,求直线AB 对应的函数表达式.35.一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们被称为该对角线为相似对角线.(1)如图1,正方形ABCD 的边长为4,E 为AD 的中点,1AF =,连结CE .CP ,求证:EF 为四边形AECF 的相似对角线.(2)在四边形ABCD 中,120BAD ︒∠=,3AB =,6AC =,AC 平分BAD ∠,且AC 是四边形ABCD 的相似对角线,求BD 的长.(3)如图2,在矩形ABCD 中,6AB =,4BC =,点E 是线段AB (不取端点A .B )上的一个动点,点F 是射线AD 上的一个动点,若EF 是四边形AECF 的相似对角线,求BE 的长.(直接写出答案) 四、压轴题36.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E.在射线CD上取点F,使32DF CD=,以DE、DF等邻边作矩形DEGF,设3AQ x=(1)用关于x的代数式表示BQ、DF.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)在点P的整个运动过程中,当AP为何值时,矩形DEGF是正方形.37.如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.(1)求m,n的值及抛物线的解析式;(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.38.()1尺规作图1:已知:如图,线段AB和直线且点B在直线上求作:点C,使点C在直线上并且使ABC为等腰三角形.作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C.()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.39.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.40.如图,在⊙O 中,弦AB 、CD 相交于点E ,AC =BD ,点D 在AB 上,连接CO ,并延长CO 交线段AB 于点F ,连接OA 、OB ,且OA 5tan ∠OBA =12. (1)求证:∠OBA =∠OCD ;(2)当△AOF 是直角三角形时,求EF 的长;(3)是否存在点F ,使得S △CEF =4S △BOF ,若存在,请求EF 的长,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、BDC DCAβ∠=∠=∠,故A选项正确;B、在Rt△ADC中,cos∠ACD=DCAC, ∴cosβ=2aAO,∴AO=2cosa,故B选项错误;C、在Rt△BCD中,tan∠BDC=BCDC, ∴ tanβ=BCa∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=DCDB, ∴ cosβ=aBD∴cosaBDβ=,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键. 2.D解析:D【解析】【分析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【详解】解:∵DE ∥BC ∴△ADE ∽△ABC.又因为DE =2,BC =6,可得相似比为1:3. 即ADE ABC 的面积的面积=2213:=19.故选D. 【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.3.D解析:D 【解析】 【分析】根据三角形的内接圆得到∠ABC=2∠IBC ,∠ACB=2∠ICB ,根据三角形的内角和定理求出∠IBC+∠ICB ,求出∠ACB+∠ABC 的度数即可; 【详解】解:∵点I 是△ABC 的内心, ∴∠ABC =2∠IBC ,∠ACB =2∠ICB , ∵∠BIC =130°,∴∠IBC +∠ICB =180°﹣∠CIB =50°, ∴∠ABC +∠ACB =2×50°=100°,∴∠BAC =180°﹣(∠ACB +∠ABC )=80°. 故选D . 【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.4.C解析:C 【解析】 【分析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案. 【详解】解:∵(1)(2)0x x --=, ∴x -1=0或x -2=0, 解得:1x =或2x =. 故选:C. 【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.5.C解析:C【分析】圆有无数条对称轴,但圆的对称轴是直线,故C圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C【点睛】此题主要考察对称轴图形和中心对称图形,难度不大6.A解析:A【解析】【分析】只需确定原抛物线解析式的顶点坐标平移后的对应点坐标即可.【详解】解:原抛物线y=2(x﹣1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(﹣1,4).即所得抛物线的顶点坐标是(﹣1,4).所以,平移后抛物线的表达式是y=2(x+1)2+4,故选:A.【点睛】本题主要考查了二次函数图像的平移,抛物线的解析式为顶点式时,求出顶点平移后的对应点坐标,可得平移后抛物线的解析式,熟练掌握二次函数图像的平移规律是解题的关键. 7.B解析:B【解析】【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.8.C解析:C【分析】如图,作直径BD,连接CD,根据圆周角定理得到∠D=∠BAC=30°,∠BCD=90°,根据直角三角形的性质解答.【详解】如图,作直径BD,连接CD,∵∠BDC和∠BAC是BC所对的圆周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直径,∠BCD是BD所对的圆周角,∴∠BCD=90°,∴BD=2BC=4,故选:C.【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.9.B解析:B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有 2共2个,∴卡片上的数为无理数的概率是21 = 63.故选B.【点睛】本题考查了无理数的定义及概率的计算. 10.D解析:D【解析】计算最大数19与最小数8的差即可.【详解】19-8=11,故选:D.【点睛】此题考查极差,即一组数据中最大值与最小值的差.11.A解析:A【解析】【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:将二次函数y=x2的图象沿y轴向上平移2个单位长度,得到:y=x2+2,再沿x轴向左平移3个单位长度得到:y=(x+3)2+2.故选:A.【点睛】解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.12.C解析:C【解析】【分析】连接OD,根据∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性质即可解决问题.【详解】连接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA=OD,∴∠BAD=∠ADO=12(180°﹣40°)=70°.故选C.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.13.B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,2{34AAB BD∠=∠=∠=∠,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF-S△ABD=26021233602π⨯-⨯=233π故选B.14.C解析:C【解析】【分析】因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),即可求出y=()21x++2的顶点坐标.解:∵二次函数y=()21x ++2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握. 15.B解析:B【解析】【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.【详解】解:∵从半径为6cm 的圆形纸片剪去13圆周的一个扇形, ∴剩下的扇形的角度=360°×23=240°, ∴留下的扇形的弧长=24061880ππ⨯=, ∴圆锥的底面半径248r ππ==cm ; 故选:B.【点睛】此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长. 二、填空题16.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB 的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.17.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18.15【解析】【分析】由在比例尺为1:50000的地图上,量得A 、B 两地的图上距离AB=3cm ,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A 、B 两地的图上距离AB=3cm ,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A 、B 两地的实际距离3×500000=1500000cm=15km ,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.19.x1=-12,x2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程的解是,(a ,m ,b 均为常数,a≠0),∴方程变形为,即解析:x 1=-12,x 2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,a≠0),∴方程2(3)0a x m b +++=变形为2[(3)]0a x m b +++=,即此方程中x +3=-9或x +3=11,解得x 1=-12,x 2=8,故方程2(3)0a x m b +++=的解为x 1=-12,x 2=8.故答案为x 1=-12,x 2=8.【点睛】此题主要考查了方程解的含义.注意观察两个方程的特点,运用整体思想进行简便计算. 20.()【解析】 设它的宽为xcm .由题意得 .∴ .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约解析:(10510-)【解析】设它的宽为x cm .由题意得51:20x -=. ∴10510x =- .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即51-,近似值约为0.618. 21.2﹣2【解析】【分析】取BC 中点G ,连接HG ,AG ,根据直角三角形的性质可得HG =CG =BG =BC =2,根据勾股定理可求AG =2,由三角形的三边关系可得AH≥AG ﹣HG ,当点H 在线段AG 上时,解析:25﹣2【解析】【分析】取BC 中点G ,连接HG ,AG ,根据直角三角形的性质可得HG =CG =BG =12BC =2,根据勾股定理可求AG =25,由三角形的三边关系可得AH ≥AG ﹣HG ,当点H 在线段AG 上时,可求AH 的最小值.【详解】解:如图,取BC 中点G ,连接HG ,AG ,∵CH⊥DB,点G是BC中点∴HG=CG=BG=12BC=2,在Rt△ACG中,AG在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为2,故答案为:2【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式.22.x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,解析:x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.23.4【解析】【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】 根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案. 【详解】 解:由题意得出:1.62.8=身高教学楼高影长教学楼影长, 即,1.62.825.2=教学楼高 解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.24.【解析】【分析】过点A 作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出.83+ 【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明ABC AEO ∆∆,由三角函数可得出23AO AE =,进而求得6AE =,再通过证明AEB AOC ∆∆,可得出23OC BE =,根据三角形三边关系可得:BE OE OB ≤+,由勾股定理可得OE =,求出BE 的最大值,则答案即可求出.【详解】解:过点A 作AE ⊥AO,并使∠AEO =∠ABC,∵OAE BAC AEO ABC ∠=∠⎧⎨∠=∠⎩, ∴ABC AEO ∆∆, ∴tan AC AO B AB AE ∠==, ∵13sin 13B ∠=, ∴2213313cos 11313B ⎛⎫∠=-= ⎪ ⎪⎝⎭, ∴213sin 213tan cos 3313B B n B ∠∠===∠, ∴23AO AE =, 又∵4AO =,∴6AE =,∵90,90EAB BAO OAC BAO ∠+∠=︒∠+∠=︒, ∴ =EAB OAC ∠∠, 又∵AC AO AB AE=, ∴AEB AOC ∆∆, ∴23OC AC BE AB ==, ∴23OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+, ∵222264213OE AE AO =+=+=, ∴2134OE OB +=,∴BE 的最大值为:2134,∴OC 的最大值为:()28433=. 【点睛】 本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形.25.【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出,由此即可解决问题.【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴,∵AE 是直径,∴∠ABE=90°,【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=, ∴3AB =∴AB =故答案为:5本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.26.-4【解析】【分析】根据根与系数的关系即可求解.【详解】∵x1、x2 是关于 x 的方程 x2+4x5=0的两个根,∴x1 x2=-=-4,故答案为:-4.【点睛】此题主要考解析:-4【解析】【分析】根据根与系数的关系即可求解.【详解】∵x1、x2是关于 x 的方程 x2+4x-5=0的两个根,∴x1+ x2=-41=-4,故答案为:-4.【点睛】此题主要考查根与系数的关系,解题的关键是熟知x1+ x2=-ba.27.【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案解析:24 5【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC边上的中线,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=12×BC×AD=12×AC×BM,∴BM=642455 BC ADAC,即CF+EF的最小值是245,故答案为:245.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.28.1,,【解析】【分析】根据P的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP∥AB时∴△DCP∽△BCA∴即,解得DP=1如图:当P在AB上,即DP∥AC∴△DC解析:1,83,32 【解析】【分析】 根据P 的不同位置,分三种情况讨论,即可解答. 【详解】解:如图:当DP ∥AB 时∴△DCP ∽△BCA∴DC DP BC AB =即263DP =,解得DP=1 如图:当P 在AB 上,即DP ∥AC∴△DCP ∽△BCA∴BD DP BC AC =即6264DP -=,解得DP=83 如图,当∠CPD=∠B ,且∠C=∠C 时,∴△DCP ∽△ACB∴PD CD AB AC =即243DP =,解得DP=32故答案为1,83,32. 【点睛】本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P 点是解答本题的关键.29.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+)2﹣,∴函数的对称轴为x=﹣,∴当﹣1≤x≤0时,函数有最解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.30.或【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE =AB=5解析:209或145【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根据相似三角形的性质得到DF =209;如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,推出点H 为切点,DH 为⊙F 的直径,根据相似三角形的性质即可得到结论.【详解】 如图1,当⊙F 与Rt △ABC 的边AC 相切时,切点为H ,连接FH ,则HF ⊥AC ,∴DF =HF ,∵Rt △ABC 中,∠ACB =90°,BC =3,tan A =BC AC =34, ∴AC =4,AB =5,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,∴∠DCE =∠ACB =90°,DE =AB =5,CD =AC =4,∵FH ⊥AC ,CD ⊥AC ,∴FH ∥CD ,∴△EFH ∽△EDC ,∴FH CD =EF DE , ∴4DF =55DF , 解得:DF =209; 如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,∵∠A =∠D ,∠AEH =∠DEC∴∠AHE =90°,∴点H 为切点,DH 为⊙F 的直径,∴△DEC ∽△DBH , ∴DE BD =CD DH , ∴57=4DH, ∴DH =285, ∴DF =145, 综上所述,当FD =209或145时,⊙F 与Rt △ABC 的边相切, 故答案为:209或145. 【点睛】 本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.三、解答题31.(1)证明见解析;(2)4.【解析】【分析】(1)易证∠AGD=∠B ,根据∠ADG=∠BEF=90°,即可证明△ADG ∽△FEB ;(2)相似三角形的性质解答即可.【详解】(1)证明:∵∠C=90°,∴∠A+∠B=90°,∵四边形DEFG 是矩形,∴∠GDE=∠FED=90°,∴∠GDA+∠FEB=90°,∴∠A+∠AGD=90°,∴∠B=∠AGD ,且∠GDA=∠FEB=90°,∴△ADG ∽△FEB .(2)解:∵△ADG ∽△FEB , ∴AD EF DG BE=, ∵AD =2GD, ∴2AD DG=,∴224ADG FEB S S ==.【点睛】本题考查了相似三角形的判定与性质,求证△ADG ∽△FEB 是解题的关键.32.(1)证明见解析;(2)513;(3)53、5、15【解析】【分析】(1)利用同角的余角相等,证明∠CEF =∠AFB ,即可解决问题;(2)过点F 作FG ⊥DC 交DC 与点G ,交AB 于点H,由△FGE ∽△AHF 得出AH=5GF ,再利用勾股定理求解即可;(3)分①当∠EFC=90°时; ②当∠ECF=90°时;③当∠CEF=90°时三种情况讨论解答即可.【详解】(1)解:在矩形ABCD 中,∠B =∠C =∠D =90°由折叠可得:∠D =∠EFA =90°∵∠EFA =∠C =90°∴∠CEF +∠CFE =∠CFE +∠AFB =90°∴∠CEF =∠AFB在△ABF 和△FCE 中∵∠AFB =∠CEF ,∠B =∠C =90°△ABF ∽△FCE(2)解:过点F 作FG ⊥DC 交DC 与点G ,交AB 于点H ,则∠EGF =∠AHF =90° 在矩形ABCD 中,∠D =90°由折叠可得:∠D =∠EFA =90°,DE =EF =1,AD =AF =5∵∠EGF =∠EFA =90°∴∠GEF +∠GFE =∠AFH +∠GFE =90°∴∠GEF =∠AFH在△FGE 和△AHF 中∵∠GEF =∠AFH ,∠EGF =∠FHA =90°∴△FGE ∽△AHF∴EF AF =GF AH ∴15=GF AH∴AH =5GF在Rt △AHF 中,∠AHF =90°∵AH 2+FH 2=AF 2∴(5 GF )2+(5 -GF )2=52∴GF =513∴△EFC的面积为12×513×2=513;(3)解:①当∠EFC=90°时,A、F、C共线,如图所示:设DE=EF=x,则CE=3-x,∵AC=22223534AD CD+=+=,∴CF=34-x, ∵∠CFE=∠D=90°, ∠DCA=∠DCA, ∴△CEF∽△CAD, ∴CE EFCA AD=,即534x=,解得:ED=x=5(345)-;②当∠ECF=90°时,如图所示:∵AD=1AF=5,AB=3, ∴1BF221AF AB-设1DE=x,则1E C=3-x,∵∠DCB=∠ABC=90°,111CF E F AB∠=∠∴11CE F∽1BF A,∴11111E C E FF B F A=,即345x x-=,解得:x=1E D=53;由折叠可得 :222E F E D= ,设2E C x=,则2223E F DE x==+,2549CF=+=,在RT△22E F C中,∵2222222CF CE E F +=,即9²+x²=(x+3)²,解得x=2E C =12, ∴231215DE =+=;③当∠CEF=90°时,AD=AF,此时四边形AFED 是正方形,∴AF=AD=DE=5,综上所述,DE 的长为:53、5、15、5(345)-. 【点睛】 本题考查了翻折的性质,相似三角形的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.33.(1)见解析; (2)8833π-【解析】【分析】(1)连接OC ,由圆周角定理得出∠ACB=90°,即∠ACO+∠BCO=90°,由等腰三角形的性质得出∠A=∠D=∠BCD ,∠ACO=∠A ,得出∠ACO=∠BCD ,证出∠DCO=90°,则CD ⊥OC ,即可得出结论;(2)证明OB=OC=BC ,得出∠BOC=60°,∠D=30°,由直角三角形的性质得出CD=3OC=43,图中阴影部分的面积=△OCD 的面积-扇形OBC 的面积,代入数据计算即可.【详解】证明:连接OC ,如图所示:∵AB 是⊙O 的直径,∴∠ACB=90°,即∠ACO+∠BCO=90°,∵CA=CD ,BC=BD ,∴∠A=∠D=∠BCD ,又∵OA=OC ,∴∠ACO=∠A ,∴∠ACO=∠BCD ,∴∠BCD+∠BCO=∠ACO+∠BCO=90°,即∠DCO=90°,∴CD ⊥OC ,∵OC 是⊙O 的半径,∴CD 与⊙O 相切;(2)解:∵AB=8,∴OC=OB=4,由(1)得:∠A=∠D=∠BCD ,∴∠OBC=∠BCD+∠D=2∠D ,∵∠BOC=2∠A ,∴∠BOC=∠OBC ,∴OC=BC ,∵OB=OC ,∴OB=OC=BC ,∴∠BOC=60°,∵∠OCD=90°,∴∠D=90°-60°=30°,∴,∴图中阴影部分的面积=△OCD 的面积-扇形OBC 的面积=122604360⨯π83π. 【点睛】本题考查了切线的判定、圆周角定理、等腰三角形的判定与性质、等边三角形的判定与性质、含30°角的直角三角形的性质、扇形面积公式、三角形面积公式等知识;熟练掌握切线的判定和圆周角定理是解题的关键.34.(1)见解析;(2)33y x =-+ 【解析】【分析】,(1)连接OB ,根据题意可证明△OAB ∽△CAO ,继而可推出OB ⊥AB ,根据切线定理即可求证结论;(2)根据勾股定理可求得OA =2及A 点坐标,根据相似三角形的性质可得OB AB CO AO =,进而可求CO 的长及C 点坐标,利用待定系数法,设直线AB 对应的函数表达式为y =kx +b ,再把点A 、C 的坐标代入求得k 、b 的值即可.【详解】(1)证明:连接OB .∵OA 2=AB •AC ∴OA AB AC OA=, 又∵∠OAB =∠CAO ,∴△OAB ∽△CAO ,∴∠ABO =∠AOC ,又∵∠AOC =90°,∴∠ABO =90°,∴AB ⊥OB ;∴直线AB 是⊙O 的切线;(2)解:∵∠ABO =90°,3AB =OB =1, ∴()2222312OA AB OB =+=+=, ∴点A 坐标为(2,0),∵△OAB ∽△CAO ,∴OB AB CO AO =, 即132CO =, ∴23CO =, ∴点C 坐标为23⎛ ⎝⎭;设直线AB 对应的函数表达式为y =kx +b , 则02233k b b =+⎧⎪⎨=⎪⎩,。

沧州市数学九年级上册期末试卷(带解析)

沧州市数学九年级上册期末试卷(带解析)

沧州市数学九年级上册期末试卷(带解析)一、选择题1.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100°B.72°C.64°D.36°2.如图,某水库堤坝横断面迎水坡AB的坡比是1:3,堤坝高BC=50m,则应水坡面AB的长度是()A.100m B.1003m C.150m D.503m3.如图,△ABC内接于⊙O,连接OA、OB,若∠ABO=35°,则∠C的度数为()A.70°B.65°C.55°D.45°4.已知52xy=,则x yy-的值是()A.12B.2 C.32D.235.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A.180°﹣2αB.2αC.90°+αD.90°﹣α6.一个扇形的半径为4,弧长为2π,其圆心角度数是( ) A .45B .60C .90D .180 7.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=- B .()247x +=- C .()2425x += D .()247x +=8.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )A .平均分不变,方差变大B .平均分不变,方差变小C .平均分和方差都不变D .平均分和方差都改变 9.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( ) A . B . C . D .10.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A .12B .1C .2D .211.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103)B .(16345)C .(20345)D .(163,3 12.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( ) A .12 B .13 C 10D 310 13.下列说法正确的是( )A .所有等边三角形都相似B .有一个角相等的两个等腰三角形相似C.所有直角三角形都相似D.所有矩形都相似14.如图,△ABC中,∠C=90°,∠B=30°,AC=7,D、E分别在边AC、BC上,CD =1,DE∥AB,将△CDE绕点C旋转,旋转后点D、E对应的点分别为D′、E′,当点E′落在线段AD′上时,连接BE′,此时BE′的长为()A.23B.33C.27D.3715.下表是二次函数y=ax2+bx+c的部分x,y的对应值:x…﹣1﹣12121322523…y…2m﹣1﹣74﹣2﹣74﹣1142…可以推断m的值为()A.﹣2 B.0 C.14D.2二、填空题16.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.17.如图,在△ABC和△APQ中,∠PAB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是________.18.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.19.如图,矩形ABCD 中,2AB =,点E 在边CD 上,且BC CE =,AE 的延长线与BC 的延长线相交于点F ,若CF AB =,则tan DAE ∠=______.20.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .21.如图,O 的直径AB 与弦CD 相交于点53E AB AC ==,,,则tan ADC ∠=______.22..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.23.已知 x 1、x 2 是关于 x 的方程 x 2+4x -5=0的两个根,则x 1 + x 2=_____.24.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.25.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接 CP ,以 CP 为 边,在 PC 的右侧作等边△CPQ ,连接 AQ 交 BD 延长线于 E ,当△CPQ 面积最小时,QE=____________.26.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.27.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.28.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.29.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.30.如图,一次函数y =x 与反比例函数y =k x(k >0)的图像在第一象限交于点A ,点C 在以B (7,0)为圆心,2为半径的⊙B 上,已知AC 长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题31.如图,Rt △FHG 中,∠H=90°,FH ∥x 轴,=0.6GH FH,则称Rt △FHG 为准黄金直角三角形(G 在F 的右上方).已知二次函数21y ax bx c =++的图像与x 轴交于A 、B 两点,与y轴交于点E (0,3-),顶点为C (1,4-),点D 为二次函数22(1)0.64(0)y a x m m m =--+->图像的顶点.(1)求二次函数y 1的函数关系式;(2)若准黄金直角三角形的顶点F 与点A 重合、G 落在二次函数y 1的图像上,求点G 的坐标及△FHG 的面积;(3)设一次函数y=mx+m 与函数y 1、y 2的图像对称轴右侧曲线分别交于点P 、Q. 且P 、Q 两点分别与准黄金直角三角形的顶点F 、G 重合,求m 的值并判断以C 、D 、Q 、P 为顶点的四边形形状,请说明理由.32.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点F 是AD 上一点,连接AF 交CD 的延长线于点E .(1)求证:△AFC ∽△ACE ;(2)若AC =5,DC =6,当点F 为AD 的中点时,求AF 的值.33.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt △ABC 在正方形网格中,请你只用无刻度的直尺......在网格中找到一点 D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(画出1个即可);(2)如图2,在四边形ABCD 中,80,140ABC ADC ︒︒∠=∠=,对角线BD 平分∠ABC .求证: BD 是四边形ABCD 的“相似对角线”;运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,∠EFH =∠HFG =30.连接EG ,若△EFG 的面积为43FH 的长.34.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x 元,每天售出y 件.(1)请写出y 与x 之间的函数表达式;(2)当x 为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w 元,当x 为多少时w 最大,最大值是多少?35.某小型工厂9月份生产的A 、B 两种产品数量分别为200件和100件,A 、B 两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A 、B 两种产品的生产数量和出厂单价,10月份A 产品生产数量的增长率和A 产品出厂单价的增长率相等,B 产品生产数量的增长率是A 产品生产数量的增长率的一半,B 产品出厂单价的增长率是A 产品出厂单价的增长率的2倍,设B 产品生产数量的增长率为x (0x >),若10月份该工厂的总收入增加了4.4x ,求x 的值.四、压轴题36.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 的半径为3,点C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫ ⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.37.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF.(1)求证:BE=FD ;(2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =ABCD 的面积; (3)如图3,若AD=BC ;①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长.38.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。

九年级上册沧州数学期末试卷测试卷(含答案解析)

九年级上册沧州数学期末试卷测试卷(含答案解析)

九年级上册沧州数学期末试卷测试卷(含答案解析)一、选择题1.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)2.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( ) A .1a = B .1a =- C .1a ≠- D .1a ≠ 3.二次函数y =3(x -2)2-1的图像顶点坐标是( )A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1)4.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( ) A .m ≥1 B .m ≤1 C .m ≥-1 D .m ≤-1 5.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是( ) A .k >-1B .k≥-1C .k <-1D .k≤-16.对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1. C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.7.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100°8.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变D .平均分和方差都改变9.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.410.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( )A .16k ≤B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 11.下列方程中,有两个不相等的实数根的是( ) A .x 2﹣x ﹣1=0 B .x 2+x +1=0 C .x 2+1=0 D .x 2+2x +1=0 12.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 A .相离 B .相切 C .相交 D .无法判断二、填空题13.如图,⊙O 是△ABC 的外接圆,∠A =30°,BC =4,则⊙O 的直径为___.14.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.15.抛物线y =3(x+2)2+5的顶点坐标是_____.16.抛物线y=ax 2-4ax+4(a≠0)与y 轴交于点A .过点B(0,3)作y 轴的垂线l ,若抛物线y=ax 2-4ax+4(a≠0)与直线l 有两个交点,设其中靠近y 轴的交点的横坐标为m ,且│m│<1,则a 的取值范围是______.17.某校五个绿化小组一天的植树的棵数如下:9,10,12,x ,8.已知这组数据的平均数是10,那么这组数据的方差是_____.18.一组数据:2,5,3,1,6,则这组数据的中位数是________.19.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.20.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.21.如图,ABO 三个顶点的坐标分别为(24),(60),(00)A B ,,,,以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是30(,),则点A '的坐标是______.22.若m 是关于x 的方程x 2-2x-3=0的解,则代数式4m-2m 2+2的值是______. 23.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.24.如图,一次函数y =x 与反比例函数y =kx(k >0)的图像在第一象限交于点A ,点C 在以B (7,0)为圆心,2为半径的⊙B 上,已知AC 长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题25.如图1,AB 、CD 是圆O 的两条弦,交点为P .连接AD 、BC .OM ⊥ AD ,ON ⊥BC ,垂足分别为M 、N.连接PM 、PN.图1 图2(1)求证:△ADP ∽△CBP;(2)当AB⊥CD时,探究∠PMO与∠PNO的数量关系,并说明理由;(3)当AB⊥CD时,如图2,AD=8,BC=6, ∠MON=120°,求四边形PMON的面积.26.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,求a的取值范围.27.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D 作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)求证:BF=EF;28.A箱中装有3张相同的卡片,它们分别写有数字1,2,4;B箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A箱、B箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率.(2)如果取出A箱中卡片上的数字作为十位上的数字,取出B箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.29.某公司经销一种成本为10元的产品,经市场调查发现,在一段时间内,销售量y (件)与销售单价x(元/件)的关系如下表:()x元/件⋯15202530⋯件⋯550500450400⋯y()设这种产品在这段时间内的销售利润为w(元),解答下列问题:(1)如y是x的一次函数,求y与x的函数关系式;(2)求销售利润w与销售单价x之间的函数关系式;(3)求当x为何值时,w的值最大?最大是多少?30.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:甲1061068乙79789经过计算,甲进球的平均数为8,方差为3.2.(1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?31.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了四次测试,测试成绩如表(单位:环):第一次第二次第三次第四次甲9887乙10679(1)根据表格中的数据,分别计算甲、乙两名运动员的平均成绩;(2)分别计算甲、乙两人四次测试成绩的方差;根据计算的结果,你认为推荐谁参加省比赛更合适?请说明理由.32.如图,BD、CE是ABC的高.∽;(1)求证:ACE ABD(2)若BD=8,AD=6,DE=5,求BC的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ), ∴抛物线2(1)2y x =-+的顶点坐标是(1,2). 故选D .2.D解析:D 【解析】 【分析】由函数是二次函数得到a-1≠0即可解题. 【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0, 解得:a≠1, 故选你D. 【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.3.D解析:D 【解析】 【分析】由二次函数的顶点式,即可得出顶点坐标. 【详解】解:∵二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ), ∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1). 故选:D . 【点睛】此题考查了二次函数的性质,二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ).4.C解析:C 【解析】 【分析】根据函数解析式可知,开口方向向上,在对称轴的右侧y 随x 的增大而增大,在对称轴的左侧,y 随x 的增大而减小. 【详解】解:∵函数的对称轴为x=222b m m a -=-=-,又∵二次函数开口向上,∴在对称轴的右侧y 随x 的增大而增大, ∵x >1时,y 随x 的增大而增大, ∴-m≤1,即m ≥-1 故选:C . 【点睛】本题考查了二次函数的图形与系数的关系,熟练掌握二次函数的性质是解题的关键.5.C解析:C 【解析】试题分析:由题意可得根的判别式,即可得到关于k 的不等式,解出即可. 由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.6.D解析:D 【解析】 【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案. 【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意. 故选:D. 【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.7.A解析:A【解析】试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解.解:连结BC,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=90°﹣50°=40°,∴∠ADC=∠B=40°.故选A.考点:圆周角定理.8.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.9.D解析:D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】a b c解:∵////∴AB DEBC EF=即1.5 1.82EF=解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.10.C解析:C【解析】【分析】一元二次方程有实数根,则根的判别式∆≥0,且k≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k≥0且k≠0,解得:116k≤且k≠0.故选:C.【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意k≠0.11.A解析:A【解析】【分析】逐项计算方程的判别式,根据根的判别式进行判断即可.【详解】解:在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故该方程有两个不相等的实数根,故A符合题意;在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故该方程无实数根,故B不符合题意;在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故该方程无实数根,故C不符合题意;在x2+2x+1=0中,△=22﹣4×1×1=0,故该方程有两个相等的实数根,故D不符合题意;故选:A.【点睛】本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.12.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.二、填空题13.8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=解析:8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为8,故答案为:8.本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.14.【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【解析:2 3【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是360120360=23,故答案为2 3 .【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.15.(﹣2,5)【解析】【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点解析:(﹣2,5)【解析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点睛】本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,顶点坐标为(h,k),对称轴为x=h.16.a>或a<.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围. 【详解】解:如解析:a>13或a<15-.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围.【详解】解:如图,观察图形抛物线y=ax2-4ax+4的对称轴为直线422axa-=-= ,设抛物线与直线l交点(靠近y轴)为(m,3),∵│m│<1,∴-1<m<1.当a>0时,若抛物线经过点(1,3)时,开口最大,此时a值最小,将点(1,3)代入y=ax2-4ax+4,得,3=a-4a+4解得a=1 3 ,∴a>1 3 ;当a<0时,若抛物线经过点(-1,3)时,开口最大,此时a值最大,将点(-1,3)代入y=ax2-4ax+4,得,3=a+4a+4解得a=1 5 - ,∴a<1 5 -.a的取值范围是a>13或a<15-.故答案为:a>13或a<15-.【点睛】本题考查抛物线的性质,首先明确a值与开口的大小关系,观察图形,即数形结合的思想是解答此题的关键.17.2【解析】【分析】首先根据平均数确定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],计算方差即可.【详解】∵组数据的平均数是10,∴(9+10+12+x+8解析:2【解析】【分析】首先根据平均数确定x的值,再利用方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],计算方差即可.【详解】∵组数据的平均数是10,∴15(9+10+12+x+8)=10,解得:x=11,∴S2=15[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(8﹣10)2],=15×(1+0+4+1+4),=2.故答案为:2.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中解析:3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.19.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.20.140°.【解析】 【分析】根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB 的度数,进而可求出∠BOC 的度数. 【详解】∵点O 是△ABC解析:140°.【解析】【分析】根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB 的度数,进而可求出∠BOC 的度数.【详解】∵点O 是△ABC 的内切圆的圆心,∴OB 、OC 为∠ABC 和∠ACB 的角平分线,∴∠OBC=12∠ABC ,∠OCB=12∠ACB , ∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=12(∠ABC+∠ACB )=40°, ∴∠BOC=180°-40°=140°.故答案为:140°【点睛】 本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.21.(1,2)【解析】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2).解析:(1,2)【解析】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的12,∴点A′的坐标是(2×12,4×12),即(1,2).故答案为(1,2).22.-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2解析:-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2-2x-3=0的解,∴m2-2m-3=0,∴m2-2m=3,∴4m-2m2+2= -2(m2-2m)+2= -2×3+2= -4.故答案为:-4.【点睛】本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.23.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求解析:25【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=221310+=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=22,由AC∥BD可得△ACE∽△BDE,∴13 CE ACDE BD==,∴CE=14CD=10,在Rt△ECF中,sin∠AEC=225210CFCE=⨯=,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.24.或【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB 中,AD=m,BD=解析:9yx=或16yx=【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为7,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB中,AD=m,BD=7-m,根据勾股定理列方程即可求出m的值,进而可得A点坐标,即可求出该反比例函数的表达式.【详解】过A作AD垂直于x轴,设A点坐标为(m,n),∵A在直线y=x上,∴m=n,∵AC长的最大值为7,∴AC过圆心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A点在反比例函数y=kx(k>0)的图像上,∴当m=3时,k=9;当m=4时,k=16,∴该反比例函数的表达式为:9yx=或16yx=,故答案为9yx=或16yx=【点睛】本题考查一次函数与反比例函数的性质,理解题意找出AC的最长值是通过圆心的直线是解题关键.三、解答题25.(1)证明见解析;(2)∠PMO=∠PNO,理由见解析;(3)S平行四边形PMON3【解析】【分析】(1)利用同弧所对的圆周角相等即可证明相似,(2)由OM⊥ AD,ON⊥BC得到M、N为AB、CD的中点,再由直角三角形斜边中线等于斜边一半即可解题,(3)由三角形中位线性质得∠QBC=90°,进而证明∠QCB=∠PBD,得到四边形MONP为平行四边形即可解题.【详解】(1)因为同弧所对的圆周角相等,所以∠A=∠C, ∠D=∠B,所以△ADP∽△CBP.(2)∠PMO=∠PNO因为OM⊥ AD,ON⊥BC,所以点M、N为AB、CD的中点,又AB⊥CD,所以PM=12AD,PN=12BC,所以,∠A=∠APM,∠C=∠CPN,所以∠AMP=∠CNP,得到∠PMO与∠PNO. (3)连接CO并延长交圆O于点Q,连接BD.因为AB⊥CD,AM=12AD,CN=12BC,所以PM=12AD,PN=12BC.由三角形中位线性质得,ON=1BQ 2.因为CQ为圆O直径,所以∠QBC=90°,则∠Q+∠QCB=90°,由∠DPB=90°,得∠PDB+∠PBD=90°,而∠PDB=∠Q,所以∠QCB=∠PBD,所以BQ=AD,所以PM=ON.同理可得,PN=OM.所以四边形MONP为平行四边形.S平行四边形3【点睛】本题考查了相似三角形的判定和性质,圆的基本知识,圆周角的性质,直角三角形的性质,平行四边形的判定,综合性强,熟悉圆周角的性质是求解(1)的关键,利用斜边中线等于斜边一半这一性质是求解(2)的关键,证明四边形MONP为平行四边形是求解(3)的关键.26.a<2且a≠1【解析】【分析】根据一元二次方程的定义和判别式的意义得到a﹣1≠0且△=(﹣2)2﹣4(a﹣1)>0,然后解两个不等式得到它们的公共部分即可.【详解】∵关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,∴a﹣1≠0且△=(﹣2)2﹣4(a﹣1)>0,解得:a<2且a≠1.【点睛】本题考查了一元二次方程根的情况与判别式的关系,对于一元二次方程ax2+bx+c=0(a≠0),判别式△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;注意a≠0这一隐含条件,避免漏解.27.见解析【解析】分析:(1)连接OD,由已知易得∠B=∠C,∠C=∠ODC,从而可得∠B=∠ODC,由此可得AB∥OD,结合DF⊥AB即可得到OD⊥DF,从而可得DF与⊙O相切;(2)连接AD,由已知易得BD=CD,∠BAD=∠CAD,由此可得DE=DC,从而可得DE=BD,结合DF⊥AB即可得到BF=EF.详解:(1)连结OD,∵AB=AC,∴∠B=∠C,∵OC=OD,∴∠ODC=∠C,∴∠ODC=∠B,∴OD∥AB,∵DF⊥AB,∴DF⊥OD,∴直线DF与⊙O相切;(2)连接AD.∵AC是⊙O的直径,∴AD ⊥BC ,又AB=AC ,∴BD=DC ,∠BAD=∠CAD ,∴DE=DC ,∴DE=DB ,又DF ⊥AB ,∴BF=EF .点睛:(1)连接OD ,结合已知条件证得OD ∥AB 是解答第1小题的关键;(2)连接AD 结合已知条件和等腰三角形的性质证得DE=DC=BD 是解答第2小题的关键.28.(1)29;(2)59. 【解析】【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于放回实验.列举出符合题意:“两张卡片上的数字恰好相同”的各种情况的个数,再根据概率公式解答即可.(2)列举出符合题意:“两张卡片组成的两位数能被3整除”的各种情况的个数,再根据概率公式解答即可【详解】(1)由题意可列表:∴一共有9种情况,两张卡片上的数字恰好相同的有2种情况,∴两张卡片上的数字恰好相同的概率是29; (2)由题意可列表:∴一共有9种情况,两张卡片组成的两位数能被3整除的有5种情况,∴两张卡片组成的两位数能被3整除的概率是59. 考点:列表法与树状图法.29.(1)10700y x =-+;(2)(10)(10700)w x x =--+;(3)当40x =时,w 的值最大,最大值为9000元【分析】(1)根据待定系数法即可求出一次函数解析式;(2)根据题意列出二次函数即可求解;(3)根据二次函数的性质即可得到最大值.【详解】(1)设y 与x 的函数关系式为y=kx+b把(15,550)、(20,500)代入得5501550020k b k b =+⎧⎨=+⎩解得10700k b =-⎧⎨=⎩∴10700y x =-+(2)∵成本为10元,故每件利润为(x-10)∴销售利润(10)(10700)w x x =--+(3)(10)(10700)w x x =--+=210(40)9000x --+∵-10<0,∴当40x =时,w 的值最大,最大值为9000元.【点睛】本题主要考查二次函数的应用,理解题意抓住相等关系函数解析式是解题的关键.30.(1)乙平均数为8,方差为0.8;(2)乙.【解析】【分析】(1)根据平均数、方差的计算公式计算即可;(2)根据平均数相同时,方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.【详解】(1)乙进球的平均数为:(7+9+7+8+9)÷5=8,乙进球的方差为:15[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均数相同,而S 甲2=3.2,S 乙2=0.8,∴S 甲2>S 乙2,∴乙的波动较小,成绩更稳定,∴应选乙去参加定点投篮比赛.【点睛】本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 21n=[(x 1x -)2+(x 2x -)2+…+(x n x -)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.31.(1)甲的平均成绩是8,乙的平均成绩是8,(2)推荐甲参加省比赛更合适.理由见解析.【分析】(1)根据平均数的计算公式即可得甲、乙两名运动员的平均成绩;(2)根据方差公式即可求出甲、乙两名运动员的方差,进而判断出荐谁参加省比赛更合适.【详解】(1)甲的平均成绩是:(9+8+8+7)÷4=8,乙的平均成绩是:(10+6+7+9)÷4=8,(2)甲的方差是:()()()()22229-8+8-8+8-8+7-148⎡⎤⨯⎣⎦=12, 乙的方差是:()()()()2222-8+6-8+7-8+9-814⎡⎤⨯⎣⎦10=52. 所以推荐甲参加省比赛更合适.理由如下:两人的平均成绩相等,说明实力相当;但是甲的四次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加省比赛更合适.【点睛】本题考查了方差、算术平均数,解决本题的关键是掌握方差、算术平均数的计算公式.32.(1)见解析;(2)BC =253. 【解析】【分析】(1)BD 、CE 是ABC 的高,可得90ADB AEC ∠=∠=︒,进而可以证明ACE ABD ∽; (2)在Rt ABD 中,8BD =,6AD =,根据勾股定理可得10AB =,结合(1)ACE ABD ∽,对应边成比例,进而证明AED ACB ∽,对应边成比例即可求出BC 的长.【详解】解:(1)证明:BD 、CE 是ABC ∆的高,90ADB AEC ∴∠=∠=︒,A A ∠=∠,ACE ABD ∴∽;(2)在Rt ABD 中,8BD =,6AD =,根据勾股定理,得10AB ==,ACE ABD ∽, ∴AC AE AB AD=, A A ∠=∠,AED ACB ∴∽, ∴DE AD BC AB=, 5DE =,5102563BC ⨯∴==. 【点睛】本题考查了相似三角形的判定与性质,解决本题的关键是掌握相似三角形的判定与性质.。

沧州市沧县九年级上册期末数学试卷(有答案)【精编】.doc

沧州市沧县九年级上册期末数学试卷(有答案)【精编】.doc

河北省沧州市沧县九年级(上)期末数学试卷一、选择题(本大题共10个小题;每小题3分,共30分)1.在Rt△ABC中,∠C=90°,AB=5,BC=3,则tan A的值是()A.B.C.D.2.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数3.下列说法正确的是()A.任意两个等腰三角形相似B.任意两个直角三角形相似C.任意两个等腰直角三角形相似D.任意两个钝角三角形相似4.图中,有三个矩形,其中相似的是()A.甲和乙B.甲和丙C.乙和丙D.没有相似的矩形5.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米6.我们知道方程2+2﹣3=0的解是1=1,2=﹣3,现给出另一个方程(2+3)2+2(2+3)﹣3=0,它的解是()A.1=1,2=3B.1=1,2=﹣3C.1=﹣1,2=3D.1=﹣1,2=﹣37.若,则的值是()A.1B.2C.3D.48.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm9.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为,y,剪去部分的面积为20,若2≤≤10,则y与的函数图象是()A.B.C.D.10.某同学在用描点法画二次函数y=a2+b+c的图象时,列出了下面的表格:A.﹣11B.﹣2C.1D.﹣5二、准确填空(本大题共10个小题;每小题3分,共30分)11.如图,圆心角∠AOB=20°,将旋转n°得到,则的度数是度.12.七(1)班举行投篮比赛,每人投5球.如图是全班学生投进球数的扇形统计图,则投进球数的众数是.13.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交轴的正半轴于点C,则∠BAC等于度.14.把二次函数y=2﹣12化为形如y=a(﹣h)2+的形式.15.如图,点A、B、C在半径为9的⊙O上,的长为2π,则∠ACB的大小是.16.如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为.17.如图,四边形ABCD是菱形,E、F、G、H分别是各边的中点,随机地向菱形ABCD内掷一粒米,则米粒落到阴影区域内的概率是.18.已知二次函数y=a2+b+c的图象如图所示,则这个二次函数的表达式是y=.19.某经济开发区今年1月份工业产值达50亿元,第一季度总产值175亿元,问二三月份月平均增长率是多少?设平均每月增长的百分率为,根据题意得方程.20.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为.三、简答题(本题共3个小题;每小题8分,共24分)21.如图,已知点A(a,3)是一次函数y1=+1与反比例函数y2=的图象的交点.(1)求反比例函数的解析式;(2)在y轴的右侧,当y1>y2时,直接写出的取值范围;(3)求点A与两坐标轴围成的矩形OBAC的面积.22.如图,△ABC和△A'B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A落在AB边上时.(1)求CA旋转到CA′所构成的扇形的弧长.(2)判断BC与A′B′的位置关系.23.如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.四、证明与解答(本题共4个小题,共36分)24.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.25.如图,Rt△ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC 于点F,现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1,若△E1FA1∽△E1BF,求AD的长度.26.在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程2﹣5+2=0,操作步骤是:第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在轴上另一点D处时,点D的横坐标为n即为该方程的另一个实数根;(1)在图2中,按照“第四步“的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);(2)结合图1,请证明“第三步”操作得到的m就是方程2﹣5+2=0的一个实数根.27.在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m.拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).①如图1,若BC=4m,则S=m2.②如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其它条件不变则在BC的变化过程中,当S取得最小值时,边BC的长为m.河北省沧州市沧县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题;每小题3分,共30分)1.在Rt△ABC中,∠C=90°,AB=5,BC=3,则tan A的值是()A.B.C.D.【分析】根据勾股定理,可得AC的长,根据正切函数的定义,可得答案.【解答】解:由勾股定理,得AC==4,由正切函数的定义,得tan A==,故选:A.【点评】本题考查了锐角三角函数,利用正切函数的定义是解题关键.2.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数【分析】根据各自的定义判断即可.【解答】解:有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的方差,故选:A.【点评】此题考查了统计量的选择,弄清方差表示的意义是解本题的关键.3.下列说法正确的是()A.任意两个等腰三角形相似B.任意两个直角三角形相似C.任意两个等腰直角三角形相似D.任意两个钝角三角形相似【分析】根据相似三角形的判定方法对各个选项进行分析,从而得到答案.【解答】解:A、不正确,因为没有说明角或边相等的条件,故不相似;B、不正确,只知道一个直角相等,不符合相似三角形判定的条件,故不相似;C、正确,因为其三对角均相等,符合相似三角形的判定条件,故相似;D、因为没有说明角或边相等的条件,故不相似;故选:C.【点评】本题考查了相似三角形的判定:一组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.4.图中,有三个矩形,其中相似的是()A.甲和乙B.甲和丙C.乙和丙D.没有相似的矩形【分析】如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形,据此作答.【解答】解:三个矩形的角都是直角,甲、乙、丙相邻两边的比分别为2:3,1.5:2.5=3:5,1:1.5=2:3,∴甲和丙相似,故选:B.【点评】本题主要考查相似多边形的概念,一定要考虑对应角相等,对应边成比例.5.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.【解答】解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC===5,∴小车上升的高度是5m.故选:A.【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.6.我们知道方程2+2﹣3=0的解是1=1,2=﹣3,现给出另一个方程(2+3)2+2(2+3)﹣3=0,它的解是()A.1=1,2=3B.1=1,2=﹣3C.1=﹣1,2=3D.1=﹣1,2=﹣3【分析】先把方程(2+3)2+2(2+3)﹣3=0看作关于2+3的一元二次方程,利用题中的解得到2+3=1或2+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程(2+3)2+2(2+3)﹣3=0看作关于2+3的一元二次方程,所以2+3=1或2+3=﹣3,所以1=﹣1,2=﹣3.故选:D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.7.若,则的值是()A.1B.2C.3D.4【分析】先设=,用分别表示出,y,,进而代入解答即可.【解答】解:设=,则=2,y=7,=5,把=2,y=7,=5代入,故选:B.【点评】此题考查比例的性质,关键是设=解答.8.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.【点评】此题主要考查了垂径定理以及勾股定理,得出AC的长是解题关键.9.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为,y,剪去部分的面积为20,若2≤≤10,则y与的函数图象是()A.B.C.D.【分析】先根据图形的剪切确定变化过程中的函数关系式,确定函数类型,再根据自变量及函数的取值范围确定函数的具体图象.【解答】解:∵是剪去的两个矩形,两个矩形的面积和为20,∴y=10,∴y是的反比例函数,∵2≤≤10,∴答案为A.故选:A.【点评】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.10.某同学在用描点法画二次函数y=a2+b+c的图象时,列出了下面的表格:A.﹣11B.﹣2C.1D.﹣5【分析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.【解答】解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,﹣2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,函数解析式为y=﹣32+1=2时y=﹣11,故选:D.【点评】本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.二、准确填空(本大题共10个小题;每小题3分,共30分)11.如图,圆心角∠AOB=20°,将旋转n°得到,则的度数是20度.【分析】先根据旋转的性质得=,则根据圆心角、弧、弦的关系得到∠DOC=∠AOB=20°,然后根据圆心角的度数等于它所对弧的度数即可得到的度数.【解答】解:∵将旋转n°得到,∴=,∴∠DOC=∠AOB=20°,∴的度数为20度.故答案为20.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了旋转的性质.12.七(1)班举行投篮比赛,每人投5球.如图是全班学生投进球数的扇形统计图,则投进球数的众数是3球.【分析】根据众数的定义及扇形统计图的意义即可得出结论.【解答】解:∵由图可知,3球所占的比例最大,∴投进球数的众数是3球.故答案为:3球.【点评】本题考查的是扇形统计图,熟知扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数是解答此题的关键.13.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交轴的正半轴于点C,则∠BAC等于60度.【分析】求出OA、AC,通过余弦函数即可得出答案.【解答】解:∵A(0,1),B(0,﹣1),∴AB=2,OA=1,∴AC=2,在Rt△AOC中,cos∠BAC==,∴∠BAC=60°,故答案为60.【点评】本题考查了垂径定理的应用,关键是求出AC、OA的长.14.把二次函数y=2﹣12化为形如y=a(﹣h)2+的形式y=(﹣6)2﹣36.【分析】由于二次项系数为1,所以直接加上一次项系数的一半的平方凑完全平方式,把一般式转化为顶点式.【解答】解:y=2﹣12=(2﹣12+36)﹣36=(﹣6)2﹣36,即y=(﹣6)2﹣36.故答案为y=(﹣6)2﹣36.【点评】本题考查了二次函数解析式的三种形式:(1)一般式:y=a2+b+c(a≠0,a、b、c为常数);(2)顶点式:y=a(﹣h)2+;(3)交点式(与轴):y=a(﹣1)(﹣2).15.如图,点A、B、C在半径为9的⊙O上,的长为2π,则∠ACB的大小是20°.【分析】连结OA、OB.先由的长为2π,利用弧长计算公式求出∠AOB=40°,再根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半得到∠ACB=∠AOB=20°.【解答】解:连结OA、OB.设∠AOB=n°.∵的长为2π,∴=2π,∴n=40,∴∠AOB=40°,∴∠ACB=∠AOB=20°.故答案为20°.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),同时考查了圆周角定理.16.如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为 1.4m.【分析】判断出△ABC和△AED相似,再根据相似三角形对应边成比例列式计算即可得解.【解答】解:由题意得,DE∥BC,所以,△ABC∽△AED,所以,=,即=,解得h=1.4m.故答案为:1.4m.【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,熟记性质并列出比例式是解题的关键.17.如图,四边形ABCD是菱形,E、F、G、H分别是各边的中点,随机地向菱形ABCD内掷一粒米,则米粒落到阴影区域内的概率是.【分析】先求出阴影部分的面积与菱形的面积之比,再根据概率公式即可得出答案.【解答】解:∵四边形ABCD是菱形,E、F、G、H分别是各边的中点,∴四边形HGFE的面积是菱形ABCD面积的,∴米粒落到阴影区域内的概率是;故答案为:.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.18.已知二次函数y=a2+b+c的图象如图所示,则这个二次函数的表达式是y=2﹣2.【分析】根据函数的图象可以得到,函数的顶点是(1,﹣1),并且经过点(0,0)和(2,0),可以设函数解析式是:y=a(﹣1)2﹣1,把点(0,0)代入解析式,就可以求出解析式.【解答】解:根据图象可知顶点坐标(1,﹣1),设函数解析式是:y=a(﹣1)2﹣1,把点(0,0)代入解析式,得:a﹣1=0,即a=1,∴解析式为y=(﹣1)2﹣1,即y=2﹣2.【点评】函数求解析式的方法是待定系数法,当已知函数的顶点时,利用顶点式比较简单,当已知函数经过三点,已知函数经过的三点的坐标时,利用一般式比较简单.19.某经济开发区今年1月份工业产值达50亿元,第一季度总产值175亿元,问二三月份月平均增长率是多少?设平均每月增长的百分率为,根据题意得方程50+50(1+)+50(1+)2=175.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设平均每月增长的百分率为,根据题意可用分别表示二三月份月工业产值,然后根据已知条件列出方程.【解答】解:设平均每月增长的百分率为,那么二三月份月的工业产值分别为50(1+),50(1+)2,∴50+50(1+)+50(1+)2=175.故填空答案:50+50(1+)+50(1+)2=175.【点评】增长率问题,一般形式为a(1+)2=b,a为起始时间的有关数量,b为终止时间的有关数量.20.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为4.【分析】过点A作轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为3,1,可得出横坐标,即可求得AE,BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.【解答】解:过点A作轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S=底×高=2×2=4,菱形ABCD故答案为4.【点评】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.三、简答题(本题共3个小题;每小题8分,共24分)21.如图,已知点A(a,3)是一次函数y1=+1与反比例函数y2=的图象的交点.(1)求反比例函数的解析式;(2)在y轴的右侧,当y1>y2时,直接写出的取值范围;(3)求点A与两坐标轴围成的矩形OBAC的面积.【分析】(1)将点A的坐标代入一次函数的解析式,求得a值后代入一次函数求得b的值后即可确定反比例函数的解析式;(2)y1>y2时y1的图象位于y2的图象的上方,据此求解.(3)根据反比例函数值的几何意义即可求解.【解答】解:(1)将A(a,3)代入一次函数y1=+1得a+1=3,解得a=2,∴A(2,3),将A(2,3)代入反比例函数y2=得=3,解得=6,∴y2=;(2)∵A(2,3),y1=+1,y2=,∴在y轴的右侧,当y1>y2时,的取值范围是>2;(3)∵=6,∴点A与两坐标轴围成的矩形OBAC的面积是6.【点评】本题考查了反比例函数与一次函数的交点问题,能正确的确定点A的坐标是解答本题的关键,难度不大.22.如图,△ABC和△A'B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A落在AB边上时.(1)求CA旋转到CA′所构成的扇形的弧长.(2)判断BC与A′B′的位置关系.【分析】(1)根据三角形内角和定理和直角三角形的性质得到AC=AB=5,∠A=60°,根据旋转的性质得到CA=CA′,根据弧长公式计算;(2)根据旋转变换的性质求出∠BCB′=60°,根据垂直的定义证明.【解答】解:(1)∵∠ACB=90°,∠B=30°,∴AC=AB=5,∠A=60°,由题意得,CA=CA′,∴△CAA′为等边三角形,∴∠ACA′=60°,∴CA旋转到CA′所构成的扇形的弧长==π(cm);(2)BC⊥A′B′,理由如下:∵∠ACA′=60°,∴∠BCA′=30°,∴∠BCB′=60°,又∠B′=30°,∴BC⊥A′B′.【点评】本题考查的是旋转变换的性质,弧长的计算,掌握弧长公式是解题的关键.23.如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.【分析】本题可设小路的宽为m,将4块种植地平移为一个长方形,长为(40﹣)m,宽为(32﹣)m.根据长方形面积公式即可求出小路的宽.【解答】解:设小路的宽为m,依题意有(40﹣)(32﹣)=1140,整理,得2﹣72+140=0.解得1=2,2=70(不合题意,舍去).答:小路的宽应是2m.【点评】本题考查了一元二次方程的应用,应熟记长方形的面积公式.另外求出4块种植地平移为一个长方形的长和宽是解决本题的关键.四、证明与解答(本题共4个小题,共36分)24.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.【分析】(1)代入求平均数公式即可求出三人的平均成绩,比较得出结果;(2)由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.=(83+79+90)÷3=84,【解答】解:(1)=(85+80+75)÷3=80,=(80+90+73)÷3=81.从高到低确定三名应聘者的排名顺序为:甲,丙,乙;(2)∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.【点评】本题考查了算术平均数和加权平均数的计算.平均数等于所有数据的和除以数据的个数.25.如图,Rt△ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F,现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1,若△E1FA1∽△E1BF,求AD的长度.【分析】利用勾股定理列式求出AC,设AD=2,得到AE=DE=DE1=A1E1=,然后求出BE1,再利用相似三角形对应边成比例列式求出DF,然后利用勾股定理列式求出E1F,然后根据相似三角形对应边成比例列式求解得到的值,从而可得AD的值.【解答】解:∵∠ACB=90°,AB=10,BC=6,∴AC===8,设AD=2,∵点E为AD的中点,将△ADF沿DF折叠,点A对应点为A1,点E的对应点为E1,∴AE=DE=DE1=A1E1=,∵DF⊥AB,∠ACB=90°,∠A=∠A,∴△ABC∽△AFD,∴=,即=,解得DF=,在Rt△DE1F中,E1F===,又∵BE1=AB﹣AE1=10﹣3,△E1FA1∽△E1BF,∴=,∴E1F2=A1E1•BE1,即()2=(10﹣3),解得=,∴AD的长为2×=.【点评】本题考查了相似三角形的性质,主要利用了翻折变换的性质,勾股定理等知识,解题的关键是根据三角形相似列出比例式,属于中考常考题型.26.在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程2﹣5+2=0,操作步骤是:第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在轴上另一点D处时,点D的横坐标为n即为该方程的另一个实数根;(1)在图2中,按照“第四步“的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);(2)结合图1,请证明“第三步”操作得到的m就是方程2﹣5+2=0的一个实数根.【分析】(1)根据题意作出图形即可.(2)如图1中,作BD⊥轴于D,利用相似三角形的性质即可解决问题.【解答】解:(1)点D如图所示.(2)如图1中,作BD⊥轴于D.∵∠AOC=∠ACB=∠CDB=90°,∴∠ACO+∠BCD=90°,∠BCD+∠CBD=90°,∴∠ACO=∠CBD,∴△ACO∽△CBD,∴=,∴=,整理得:m2﹣5m+2=0,∴m是方程2﹣5+2=0的实数根.【点评】本题考查相似三角形的判定和性质,一元二次方程的解等知识,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考创新题型.27.在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m.拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).①如图1,若BC=4m,则S=88πm2.②如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其它条件不变则在BC的变化过程中,当S取得最小值时,边BC的长为m.【分析】(1)小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的圆,以A为圆心、为半径的圆、以C为圆心、10﹣为半径的圆的面积和,列出函数解析式,由二次函数的性质解答即可.【解答】解:(1)如图1,拴住小狗的10m 长的绳子一端固定在B 点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B 为圆心、10为半径的圆,以C 为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,∴S =×π•102+•π•62+•π•42=88π,故答案为:88π;(2)如图2,设BC =,则AB =10﹣,∴S =•π•102+•π•2+•π•(10﹣)2=(2﹣5+250)=(﹣)2+,当=时,S取得最小值,∴BC=,故答案为:.【点评】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.。

河北省沧州市九年级上学期期末数学试卷

河北省沧州市九年级上学期期末数学试卷

河北省沧州市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2016·南平模拟) 下列图案中,不是中心对称图形的是()A .B .C .D .2. (2分)下列关于x的方程:(1)2x2﹣x﹣3=0(2)x2+=5(3)x2﹣2+x3=0(4)x2+y2=1,其中是一元二次方程的有()A . 4个B . 3个C . 2个D . 1个3. (2分) (2019九下·保山期中) 二次函数y=﹣(x﹣3)2+1的最大值为()A . ﹣1B . 1C . ﹣3D . 34. (2分)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于5的概率是()A .B .C .D .5. (2分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,将△ABC绕AC所在的直线k旋转一周得到一个旋转体,则该旋转体的侧面积为()A . 30πB . 40πC . 50πD . 60π6. (2分)(2016·昆都仑模拟) 如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为()A . 4﹣πB . 4﹣2πC . 8+πD . 8﹣2π7. (2分)在下列四个函数中,当x>0时,y随x的增大而减小的函数是A . y=2xB .C . y=3x-2D . y=x28. (2分) (2016九上·孝南期中) 模拟x2﹣6x=1,左边配成一个完全平方式得()A . (x﹣3)2=10B . (x﹣3)2=9C . (x﹣6)2=8D . (x﹣6)2=109. (2分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则的值为()A .B .C .D .10. (2分) (2018九上·防城港期中) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①ac>0;②当x≥1时,y随x的增大而减小;③2a+b=0;④b2-4ac<0;⑤4a-2b+c>0,其中正确的个数是()A . 1B . 2C . 3D . 411. (2分)(2018·湘西) 已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A . 相交B . 相切C . 相离D . 无法确定12. (2分) (2019九上·开州月考) 在同一平面直角坐标系中,若正比例函数,y随x的增大而减小,则它和二次函数的图象大致是()A . (A)B . (B)C . (C)D . (D)二、填空题: (共6题;共6分)13. (1分) (2019八下·余杭期末) 一元二次方程(x+3)2-2=0的根是________ .14. (1分)如图,正方形ABOC的边长为2,反比例函数y=过点A,则k的值是________15. (1分) (2019九上·嘉兴期末) 如图,等腰△ABC的顶角∠BAC=50°,以AB为直径的半圆分别交BC,AC于点D,E.则的度数是 ________ 度.16. (1分)(2018·聊城) 已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是________.17. (1分)如图,△AOB,AB∥x轴,OB=2,点B在反比例函数y=上,将△AOB绕点B逆时针旋转,当点O的对应点O′落在x轴的正半轴上时,AB的对应边A′B恰好经过点O,则k的值为________.18. (1分)如图,在直角坐标系中,点A在y轴上,△OAB是等腰直角三角形,斜边OA=2,将△OAB绕点O逆时针旋转90°得△,则点的坐标为________三、解答题 (共7题;共78分)19. (7分) (2017九上·潜江期中) 根据要求,解答下列问题.仔细观察小聪同学所求的三个方程的解.①方程x2-2x+1=0的解为x1=1,x2=1;②方程x2-3x+2=0的解为x1=1,x2=2;③方程x2-4x+3=0的解为x1=1,x2=3;…………(1)根据以上方程特征及其解的特征,请猜想:①方程x2-9x+8=0的解为________;②关于x的方程________的解为x1=1,x2=n.(2)请用配方法解方程x2-9x+8=0,以验证猜想结论的正确性.20. (10分) (2019九下·临洮月考) 某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1 ,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.21. (10分)(2017·吴中模拟) 如图,AB是⊙O的直径,BC是弦,过点O作OE⊥BC于H交⊙O于E,在OE 的延长线上取一点D,使∠ODB=∠AEC,AE与BC交于F.(1)判断直线BD与⊙O的位置关系,并给出证明;(2)当⊙O的半径是5,BF=2 ,EF= 时,求CE及BH的长.22. (15分)(2017·连云港模拟) 如图,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y 轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边)(1)求抛物线的解析式及A,B两点的坐标;(2)若(1)中抛物线的对称轴上有点P,使△ABP的面积等于△ABC的面积的2倍,求出点P的坐标;(3)在(1)中抛物线的对称轴l上是否存在一点Q,使AQ+CQ的值最小?若存在,求AQ+CQ的最小值;若不存在,请说明理由.23. (10分) (2017九上·秦皇岛开学考) 某水果店销售一种水果的成本价是5元/千克.在销售过程中发现,当这种水果的价格定在7元/千克时,每天可以卖出160千克.在此基础上,这种水果的单价每提高1元/千克,该水果店每天就会少卖出20千克.(1)若该水果店每天销售这种水果所获得的利润是420元,则单价应定为多少?(2)在利润不变的情况下,为了让利于顾客,单价应定为多少?24. (10分) (2016九上·宁江期中) 数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°,得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度.25. (16分)如图,在平面直角坐标系中,点M的坐标是(5,4),⊙M与y轴相切于点C,与x轴相交于A,B两点.(1)则点A,B,C的坐标分别是A(________ ,________ ),B(________ ,________ ),C (________ ,________ );(2)设经过A,B两点的抛物线解析式为y=(x﹣5)2+k,它的顶点为E,求证:直线EA与⊙M相切;(3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使△PBC是等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共78分)19-1、19-2、答案:略20-1、答案:略20-2、答案:略21-1、21-2、答案:略22-1、答案:略22-2、答案:略22-3、答案:略23-1、23-2、24-1、24-2、答案:略25-1、25-2、答案:略25-3、答案:略。

河北省沧州市九年级上学期期末数学试卷

河北省沧州市九年级上学期期末数学试卷

河北省沧州市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)已知☉O的半径为6,A为线段PO的中点,当OP=10时,点A与☉O的位置关系为()A . 在圆上B . 在圆外C . 在圆内D . 不确定2. (2分)下列事件中,必然发生的事件是()A . 泰州地区明天会下雪B . 2012年12月21日是世界末日C . 2013年一月份有31天D . 明年有369天3. (2分)一个圆锥的底面半径为3,母线长为5,则圆锥的侧面积是()A . 9πB . 18πC . 15πD . 27π4. (2分)把二次函数y=3x2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是()A . y=3(x-2)2+1B . y=3(x+2)2-1C . y=3(x-2)2-1D . y=3(x+2)2+15. (2分)(2016·黔西南) 如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是()A .B .C .D .6. (2分) (2016九上·西湖期末) 如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB 的值是()A .B .C .D .7. (2分)(2016·南宁) 如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A . 140°B . 70°C . 60°D . 40°8. (2分) (2019八上·鄞州期中) 如图,在中,为钝角.用直尺和圆规在边上确定一点.使,则符合要求的作图痕迹是()A .B .C .D .9. (2分)关于二次函数y=x2-4x+3,下列说法错误的是()A . 当x<1时,y随x的增大而减小B . 它的图象与x轴有交点C . 当1<x<3时,y>0D . 顶点坐标为(2,-1 )10. (2分)(2012·无锡) 已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是()A . 相切B . 相离C . 相离或相切D . 相切或相交二、填空题 (共6题;共7分)11. (2分) (2019九上·万州期末) 抛物线y=﹣x2+2x﹣3顶点坐标是________;对称轴是________.12. (1分)(2017·天门模拟) 某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是________.13. (1分)(2017·临泽模拟) 如图,在⊙O中,弦AB,CD相交于点P.若∠A=40°,∠APD=75°,则∠B=________.14. (1分)点A(3,m)在抛物线y=x2﹣1上,则点A关于x轴的对称点的坐标为________.15. (1分)如图,▱ABCD中,E是边BC上一点,AE交BD于F,若BE=2,EC=3,则的值为________.16. (1分) (2015九上·莱阳期末) 已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…﹣101234…y…1052125…若A(m,y1),B(m﹣2,y2)两点都在该函数的图象上,当m=________时,y1=y2 .三、解答题 (共8题;共93分)17. (10分) (2017九上·台州月考) “中秋节”,小明和同学一起到游乐场游玩大型摩天轮.摩天轮的半径为20m,匀速转动一周需要12min,小明乘坐最底部的车厢(离地面0.5m).(1)经过2min后小明到达点Q(如图所示),此时他离地面的高度是多少?(2)在摩天轮转动过程中,小明将有多长时间连续保持在离地面不低于30.5m的空中?18. (7分) (2017八下·宜兴期中) 在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m631241783024815991803摸到白球的频率0.630.620.5930.6040.6010.5990.601(1)请估计:当实验次数为10000次时,摸到白球的频率将会接近________;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(摸到白球)=________;(3)如何通过增加或减少这个不透明盒子内球的具体数量,使得在这个盒子里每次摸到白球的概率为0.5?19. (15分) (2019九上·余杭期中) 二次函数 y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0(a≠0)的实数解;(2)若方程ax2+bx+c=k有两个不相等的实数根,写出 k的取值范围;(3)当0<x<3 时,写出函数值y的取值范围.20. (10分)(2017·长沙) 为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?21. (6分) (2019九上·海曙期末) 定义:对角线互相垂直的圆内接四边形叫做圆的奇妙四边形.(1)如图①,已知四边形是⊙ 的奇妙四边形,若,则 ________;(2)如图②,已知四边形内接于⊙ ,对角线交于点,若,①求证:四边形是⊙ 的奇妙四边形;②作于,请猜想与之间的数量关系,并推理说明.22. (20分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题.(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.23. (10分) (2019八下·邓州期中) 如图①▱ABCD的对角线AC和BD相交于点O,EF过点O且与边AB,CD 分别相交于点E和点F.(1)求证:OE=OF(2)如图②,已知AD=1,BD=2,AC=2 ,∠DOF=∠α,①当∠α为多少度时,EF⊥AC?②连结AF,求△ADF的周长.24. (15分)(2018·道外模拟) 如图,在平面直角坐标中,抛物线y=ax2-2ax-3a(a≠0)与x轴交于A、B(A 在B的左侧),与y轴交于点C,且OC=3OA.(1)如图(1)求抛物线的解析式;(2)如图(2)动点P从点O出发,沿y轴正方向以每秒1个单位的速度移动,点D是抛物线顶点,连接PB、PD、BD,设点P运动时间为t(单位:秒),△PBD的面积为S,求S与t的函数关系式;(3)如图(3)在(2)的条件下,延长BP交抛物线于点Q,过点O作OE⊥BQ,垂足为E,连接CE、CB,若CE=CB,求t值,并求出此时的Q点坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共93分)17-1、17-2、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、21-1、22-1、22-2、22-3、22-4、23-1、23-2、24-1、24-2、24-3、。

河北省沧州市九年级上学期数学期末考试试卷

河北省沧州市九年级上学期数学期末考试试卷

河北省沧州市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017九上·沙河口期中) 下列方程中,一元二次方程是()A . 2x2﹣3xy+4=0B . 2x2﹣(x+1)2=2+x2C . 3x2+x=20D . ax2+bx+c=02. (2分) (2019九上·白云期末) 在抛物线y=x2﹣4x﹣4上的一个点是()A . (4,4)B . (3,﹣1)C . (﹣2,﹣8)D . (, )3. (2分)将半径为4cm的圆折叠后圆弧正好经过圆心,问折痕长()A . cmB . cmC . cmD . cm4. (2分) (2018九上·肇庆期中) 关于x的一元二次方程9x2-6x+k=0有两个不相等的实根,则k的范围是()A .B .C .D .5. (2分) (2018九上·清江浦期中) 如图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=()A . 50°B . 25°C . 40°D . 65°6. (2分)(2017·永嘉模拟) 如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=6,DB=3,则的值为()A .B .C .D . 27. (2分)有四张不透明的卡片为2,,π,,除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率()A .B .C .D .8. (2分)(2017·白银) 如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2 .若设道路的宽为xm,则下面所列方程正确的是()A . (32﹣2x)(20﹣x)=570B . 32x+2×20x=32×20﹣570C . (32﹣x)(20﹣x)=32×20﹣570D . 32x+2×20x﹣2x2=5709. (2分)下列四个函数图象中,y随x的增大而增大的是()A . ①B . ①③C . ①④D . ①③④10. (2分) (2017九上·黑龙江月考) 如图,将△ABC绕点A逆时针旋转80°后得到△A′B′C′(点B的对应点是点B′,点C的对应点是点C′,连接BB′,若∠B′BC=20°,则∠BB′C′的大小是()A . 82°B . 80°C . 78°D . 76°二、填空题 (共6题;共7分)11. (1分) (2019九上·温岭月考) 平面直角坐标系内一点P(3,-1)关于原点对称的坐标为________12. (2分)(2013·常州) 已知扇形的半径为6cm,圆心角为150°,则此扇形的弧长是________ cm,扇形的面积是________ cm2(结果保留π).13. (1分)把抛物线向左平移一个单位,所得抛物线的表达式为:________14. (1分) (2016八上·鞍山期末) 已知2是关于的一元二次方程的一个根,则该方程的另一个根是________.15. (1分)(2019·天门模拟) 如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为________米.16. (1分)(2017·黄浦模拟) 如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA=________.三、解答题 (共10题;共77分)17. (5分) (2019九上·盐城月考) 解下列方程组:(1)(2) 3x2−5x+1=018. (6分)(2017·滨江模拟) 设抛物线y=mx2﹣2mx+3(m≠0)与x轴交于点A(a,0)和B(b,0).(1)若a=﹣1,求m,b的值;(2)若2m+n=3,求证:抛物线的顶点在直线y=mx+n上;(3)抛物线上有两点P(x1,p)和Q(x2,q),若x1<1<x2,且x1+x2>2,试比较p与q的大小.19. (5分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.(1)试说明AE是⊙O的切线;(2)如果AB= 4,AE=2,求⊙O的半径.20. (6分)(2011·海南) 在正方形网格中建立如图所示的平面直角坐标系xoy.△ABC的三个顶点都在格点上,点A的坐标是(4,4 ),请解答下列问题:(1)将△ABC向下平移5个单位长度,画出平移后的A1B1C1,并写出点A的对应点A1的坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2;(3)将△ABC绕点C逆时针旋转90°,画出旋转后的△A3B3C.21. (2分)已知关于的方程x2+ax+b=0()与x2+cx+d=0都有实数根,若这两个方程有且只有一个公共根,且ab=cd,则称它们互为“同根轮换方程”.如x2-x-6=0与x2-2x-3=0互为“同根轮换方程”.(1)若关于(x的方程x2+4x+m=0与x2-6x+n=0互为“同根轮换方程”,求m的值;(2)若p是关于x的方程x2+ax+b=0()的实数根,q是关于x的方程x2+2ax+b=0的实数根,当p,q 分别取何值时,方程x2+ax+b=0()与x2+2ax+b=0互为“同根轮换方程”,请说明理由.22. (10分)(2018·合肥模拟) 已知,抛物线y=ax2+bx-2与x轴的两个交点分别为A(1,0),B(4,0),与y轴的交点为C.(1)求出抛物线的解析式及点C的坐标;(2)点P是在直线x=4右侧的抛物线上的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OCB相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.23. (11分)(2017·新野模拟) 如图,AB为⊙O的直径,C为半圆上一动点,过点C作⊙O的切线l的垂线BD,垂足为D,BD与⊙O交于点E,连接OC,CE,AE,AE交OC于点F.(1)求证:△CDE≌△EFC;(2)若AB=4,连接AC.①当AC=________时,四边形OBEC为菱形;②当AC=________时,四边形EDCF为正方形.24. (11分)(2017·泰安模拟) △ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,∠EDF=∠B.(1)如图1,求证:DE•CD=DF•BE(2)D为BC中点如图2,连接EF.①求证:ED平分∠BEF;②若四边形AEDF为菱形,求∠BAC的度数及的值.25. (10分)(2017·罗平模拟) 如图,在平面直角坐标系xoy中,直线y= x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c的对称轴是x=﹣,且经过A,C两点,与x轴的另一个交点为点B.(1)求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求四边形PAOC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△AOC相似?若存在,求出点M的坐标;若不存在,请说明理由.26. (11分)(2017·徐州模拟) 二次函数y=ax2+bx+4的图像与x轴交于两点A、B,与y轴交于点C,且A (﹣1,0)、B(4,0)(1)求此二次函数的表达式(2)如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN相似,求点N的坐标(3)如图2,点M在抛物线上,且点M的横坐标是1,点P为抛物线上一动点,若∠PMA=45°,求点P的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共77分)17-1、17-2、18-1、18-2、18-3、19-1、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。

九年级上册沧州数学期末试卷测试卷(含答案解析)

九年级上册沧州数学期末试卷测试卷(含答案解析)

九年级上册沧州数学期末试卷测试卷(含答案解析) 一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( )A .平均数B .方差C .中位数D .极差2.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( )A .13B .512C .12D .13.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=0 4.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A .方差B .平均数C .众数D .中位数 5.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内B .P 在圆上C .P 在圆外D .无法确定 6.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位B .向左平移1个单位,再向上平移1个单位C .向右平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位 7.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 8.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( )A .y =(x +3)2+2B .y =(x ﹣3)2+2C .y =(x +2)2+3D .y =(x ﹣2)2+39.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A.2cm B.4cm C.6cm D.8cm10.下列对于二次函数y=﹣x2+x图象的描述中,正确的是()A.开口向上B.对称轴是y轴C.有最低点D.在对称轴右侧的部分从左往右是下降的11.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB的大小为()A.30°B.45°C.60°D.75°12.下列方程中,是一元二次方程的是()A.2x+y=1 B.x2+3xy=6 C.x+1x=4 D.x2=3x﹣2二、填空题13.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.14.已知矩形ABCD,AB=3,AD=5,以点A为圆心,4为半径作圆,则点C与圆A的位置关系为 __________.15.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为____.16.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .17.抛物线y=(x ﹣2)2﹣3的顶点坐标是____.18.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.19.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .20.若m 是方程5x 2﹣3x ﹣1=0的一个根,则15m ﹣3m+2010的值为_____. 21.抛物线2(-1)3y x =+的顶点坐标是______. 22.如图,抛物线2143115y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.23.已知点P (x 1,y 1)和Q (2,y 2)在二次函数y =(x +k )(x ﹣k ﹣2)的图象上,其中k ≠0,若y 1>y 2,则x 1的取值范围为_____.24.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是__________________.三、解答题25.如图,AB 是⊙O 的直径,AE 平分∠BAF ,交⊙O 于点E ,过点E 作直线ED ⊥AF ,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线;(2)∠C =45°,⊙O 的半径为2,求阴影部分面积.26.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A 、B 和点C 、D ,先用卷尺量得AB=160m ,CD=40m ,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).27.A 箱中装有3张相同的卡片,它们分别写有数字1,2,4;B 箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A 箱、B 箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率.(2)如果取出A 箱中卡片上的数字作为十位上的数字,取出B 箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.28.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF=3m ,沿BD 方向到达点F 处再测得自己得影长FG=4m ,如果小明的身高为1.6m ,求路灯杆AB 的高度.29.解下列方程:(1)()2239x +=(2)2430x x--=30.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.31.如图,在平面直角坐标系中,⊙O的半径为1,点A在x轴的正半轴上,B为⊙O上一点,过点A、B的直线与y轴交于点C,且OA2=AB•AC.(1)求证:直线AB是⊙O的切线;(2)若AB=3,求直线AB对应的函数表达式.32.如图,AB是⊙O的弦,OP OA⊥交AB于点P,过点B的直线交OP的延长线于点C,且BC是⊙O的切线.(1)判断CBP∆的形状,并说明理由;(2)若6,2OA OP==,求CB的长;(3)设AOP∆的面积是1,S BCP∆的面积是2S,且1225SS=.若⊙O的半径为6,45BP=tan APO∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.C解析:C【解析】【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴红灯的概率是:301 302552=++.故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键. 3.C解析:C【解析】【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可.【详解】A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意;故选:C.【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.4.A解析:A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差5.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P到圆心O的距离为4.5,⊙O的半径为4,∴点P在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d的距离与半径r的大小确定点与圆的位置关系.6.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.7.B解析:B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A 、不是轴对称图形,也不是中心对称图形.故错误;B 、是轴对称图形,也是中心对称图形.故正确;C 、是轴对称图形,不是中心对称图形.故错误;D 、不是轴对称图形,也不是中心对称图形.故错误.故选B .点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.A解析:A【解析】【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,得到:y =x 2+2,再沿x 轴向左平移3个单位长度得到:y =(x+3)2+2.故选:A .【点睛】解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.9.B解析:B【解析】【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.【详解】解:∵从半径为6cm 的圆形纸片剪去13圆周的一个扇形, ∴剩下的扇形的角度=360°×23=240°, ∴留下的扇形的弧长=24061880ππ⨯=, ∴圆锥的底面半径248r ππ==cm ; 故选:B.【点睛】此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长. 10.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣x 2+x =﹣(x 12-)2+14, ∴a =﹣1,该函数的图象开口向下,故选项A 错误;对称轴是直线x =12,故选项B 错误; 当x =12时取得最大值14,该函数有最高点,故选项C 错误; 在对称轴右侧的部分从左往右是下降的,故选项D 正确;故选:D .【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.11.A解析:A【解析】【详解】解:∵四边形ABCO 是平行四边形,且OA=OC ,∴四边形ABCO 是菱形,∴AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∵BD是⊙O的直径,∴点B、D、O在同一直线上,∴∠ADB=12∠AOB=30°故选A.12.D解析:D【解析】【分析】利用一元二次方程的定义判断即可.【详解】解:A、原方程为二元一次方程,不符合题意;B、原式方程为二元二次方程,不符合题意;C、原式为分式方程,不符合题意;D、原式为一元二次方程,符合题意,故选:D.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.二、填空题13.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2 =6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.14.点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半径为4厘米,∴点C在圆A外【点解析:点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=22+=厘米,3534∵半径为4厘米,∴点C在圆A外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.15.、、【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=解析:83、103、54【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=3,∴AB=2234+=5设AD=x,BD=5-x,∵DE平分△ABC周长,∴周长的一半为(3+4+5)÷2=6,分四种情况讨论:①△BED∽△BCA,如图1,BE=1+x∴BE BDBC AB=,即:5153x x-+=,解得x=54,②△BDE∽△BCA,如图2,BE=1+x∴BD BEBC AB=,即:5135x x-+=,解得:x=11 4,BE=154>BC,不符合题意.③△ADE∽△ABC,如图3,AE=6-x∴AD AEAB AC=,即654x x-=,解得:x=103,④△BDE∽△BCA,如图4,AE=6-x∴AD AEAC AB=,即:645x x-=,解得:x=83,综上:AD的长为83、103、54.【点睛】本题考查的相似三角形的判定和性质,根据不同的相似模型分情况讨论,根据不同的线段比例关系求解.16.【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,∴圆锥的底面半径为cm,∴底面周长为2π×6=12解析:12π【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,=cm,6∴底面周长为2π×6=12πcm,即这张扇形纸板的弧长是12πcm,故答案为:12π.【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.17.(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题解析:(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式. 18.【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:解析:817【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=12BE=12,∵BF∥AD,∴△BOF∽△AOD,∴11248 BO BFAO AD===,∴89AO AB=,∵221417 AB=+=,∴817 AO=.故答案为:817【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.19.5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.解析:5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键. 20.2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5 m2﹣1=3m,两边同时除以m得:5m﹣=3,然后整体代入即可求得答案.【详解】解解析:2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,然后整体代入即可求得答案.【详解】解:∵m是方程5x2﹣3x﹣1=0的一个根,∴5m 2﹣3m ﹣1=0,∴5m 2﹣1=3m ,两边同时除以m 得:5m ﹣1m =3, ∴15m ﹣3m +2010=3(5m ﹣1m)+2010=9+2010=2019, 故答案为:2019.【点睛】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键.21.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.22.【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令中y=0,得x1=【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令21115y x =-中y=0,得x 1x 2∴直线AC的解析式为1y =-, 设P (x ,313x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1∴PQ 2=PB 2-BQ 2,2+(313x )2-1, =24283753x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443,∴PQ【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.23.x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P 、Q 的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y =(x+k )(x ﹣k ﹣2解析:x 1>2或x 1<0.【解析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2)=(x﹣1)2﹣1﹣2k﹣k2,∵点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,∴y1=(x1﹣1)2﹣1﹣2k﹣k2,y2=﹣2k﹣k2,∵y1>y2,∴(x1﹣1)2﹣1﹣2k﹣k2>﹣2k﹣k2,∴(x1﹣1)2>1,∴x1>2或x1<0.故答案为:x1>2或x1<0.【点睛】此题考查的是比较二次函数上两点之间的坐标大小关系,掌握二次函数的顶点式和根据函数值的取值范围求自变量的取值范围是解决此题的关键.24.【解析】【分析】作OH⊥AB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD是平行解析:163【解析】【分析】作OH⊥AB,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH⊥AB,垂足为H,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG= HB=GD∴AB=CD又∵AB∥CD∴四边形ABCD是平行四边形,在Rt△OHA中,由勾股定理得:AH=22224223OA OH-=-=∴AB=43∴四边形ABCD的面积=AB×GH=434=163⨯.故答案为:163.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD是矩形.三、解答题25.(1)见解析;(2)2-2π【解析】【分析】(1)若要证明CD是⊙O的切线,只需证明CD与半径垂直,故连接OE,证明OE∥AD即可;(2)根据等腰直角三角形的性质和扇形的面积公式即可得到结论.【详解】解:(1)连接OE.∵OA=OE,∴∠OAE=∠OEA,又∵∠DAE=∠OAE,∴∠OEA=∠DAE,∴OE ∥AD ,∴∠ADC =∠OEC ,∵AD ⊥CD ,∴∠ADC =90°,故∠OEC =90°.∴OE ⊥CD ,∴CD 是⊙O 的切线;(2)∵∠C =45°,∴△OCE 是等腰直角三角形,∴CE =OE =2,∠COE =45°,∴阴影部分面积=S △OCE ﹣S 扇形OBE =12⨯2×2﹣2452360π⨯=2﹣2π. 【点睛】本题综合考查了圆与三角形,涉及了切线的判定、等腰三角形的性质、扇形的面积,灵活的将图形与已知条件相结合是解题的关键.26.该段运河的河宽为.【解析】【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果.【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形,40HE CD m ∴==,设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,3BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,AH ∴=,由160AH HE EB AB m ++==40160++=,解得:x =CH =,则该段运河的河宽为.【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.27.(1)29;(2)59.【解析】【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于放回实验.列举出符合题意:“两张卡片上的数字恰好相同”的各种情况的个数,再根据概率公式解答即可.(2)列举出符合题意:“两张卡片组成的两位数能被3整除”的各种情况的个数,再根据概率公式解答即可【详解】(1)由题意可列表:∴一共有9种情况,两张卡片上的数字恰好相同的有2种情况,∴两张卡片上的数字恰好相同的概率是29;(2)由题意可列表:∴一共有9种情况,两张卡片组成的两位数能被3整除的有5种情况,∴两张卡片组成的两位数能被3整除的概率是59.考点:列表法与树状图法.28.4m【解析】【分析】由CD ∥EF ∥AB 得可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,故CD DF AB BF =,EF FG AB BG =,证DF FG BF BG =,进一步得3437BD BD =++,求出BD ,再得1.6312AB =; 【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG , ∴CD DF AB BF =,EF FG AB BG=, 又∵CD=EF , ∴DF FG BF BG =, ∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7, ∴3437BD BD =++ ∴BD=9,BF=9+3=12 ∴ 1.6312AB = 解得,AB=6.4m因此,路灯杆AB 的高度6.4m .【点睛】考核知识点:相似三角形的判定和性质.理解相似三角形判定是关键.29.(1)13x =-,20x =;(2)12x =,22x =【解析】【分析】(1)直接用开平方求解即可.(2)用配方法解方程即可.【详解】(1)解:由()2239x +=得233x +=±即233x +=-或233+=x ∴26x =-,或20x =解得13x =-,20x =(2)解:243x x -=∴24434x x -+=+∴2(2)7x -=∴27 x-=±∴127x=+,227x=-.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.30.(1)相切,证明见解析;(2)62.【解析】【分析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E=OB CDEB DE=,推出348CD=,可得CD=BC=6,再利用勾股定理即可解决问题.【详解】解:(1)相切,理由如下,如图,连接OC,∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)设⊙O的半径为r,在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,AB=2r=6,∵tan∠E=OB CD EB DE=,∴348CD =,∴CD=BC=6,在Rt△ABC中,22226662AB BC++=【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,正确添加辅助线,熟练掌握和灵活应用相关知识解决问题是关键. 31.(1)见解析;(2)32333y x =-+ 【解析】【分析】,(1)连接OB ,根据题意可证明△OAB ∽△CAO ,继而可推出OB ⊥AB ,根据切线定理即可求证结论;(2)根据勾股定理可求得OA =2及A 点坐标,根据相似三角形的性质可得OB AB CO AO =,进而可求CO 的长及C 点坐标,利用待定系数法,设直线AB 对应的函数表达式为y =kx +b ,再把点A 、C 的坐标代入求得k 、b 的值即可.【详解】(1)证明:连接OB .∵OA 2=AB •AC∴OA AB AC OA=, 又∵∠OAB =∠CAO ,∴△OAB ∽△CAO ,∴∠ABO =∠AOC ,又∵∠AOC =90°,∴∠ABO =90°,∴AB ⊥OB ;∴直线AB 是⊙O 的切线;(2)解:∵∠ABO =90°,3AB =OB =1,∴()2222312OA AB OB =+=+=,∴点A 坐标为(2,0),∵△OAB ∽△CAO ,∴OB AB CO AO =,即1CO =,∴3CO =, ∴点C坐标为0,3⎛ ⎝⎭;设直线AB 对应的函数表达式为y =kx +b ,则02k b b =+⎧=,∴k b ⎧=⎪⎪⎨⎪=⎪⎩∴33y x =-+. 即直线AB对应的函数表达式为33y x =-+. 【点睛】本题考查相似三角形的判定及性质、圆的切线定理、勾股定理、一次函数解析式等知识,解题的关键是正确理解题意,求出线段的长及各点的坐标.32.(1)CBP ∆是等腰三角形,理由见解析;(2)BC 的长为8;(3)3tan 2APO ∠=. 【解析】【分析】(1)首先连接OB ,根据等腰三角形的性质由OA =OB 得A OBA ∠=∠,由点C 在过点B 的切线上,且OP OA ⊥,根据等角的余角相等,易证得∠PBC =∠CPB ,即可证得△CBP 是等腰三角形;(2)设BC =x ,则PC =x ,在Rt △OBC 中,根据勾股定理得到2226(2)x x +=+,然后解方程即可;(3)作CD ⊥BP 于D,由等腰三角形三线合一的性质得12PD BD PB ===,由1225S S =,通过证得~AOP CDP ∆∆,得出2245AOP PCD S OA S CD∆∆== 即可求得CD ,然后解直角三角形即可求得.【详解】(1)CBP ∆是等腰三角形,理由:连接OB ,OA OB =A OBA ∴∠=∠⊙O 与BC 相切与点B ,OB BC ∴⊥,即90OBC ∠=,90OBA PBC ∠+∠=OP OA ⊥ 90APO A ∴∠+∠=,APO CPB ∠=∠90CPB A ∴∠+∠=CPB PBC ∴∠=∠CB CP ∴=CBP ∴∆是等腰三角形(2)设BC x =,则PC x =,在Rt OBC ∆中,6OB OA ==,2OC CP OP x =+=+,222OB BC OC +=,2226(2)x x ∴+=+,解得8x =,即BC 的长为8; (3)解:作CD BP ⊥于D ,PC CB =1252PD BD PB ∴=== 90PDC AOP ∠=∠=,AOP CPD ∠=∠,~AOP CDP ∴∆∆,1225S S =, 2245AOP PCD S OA S CD ∆∆∴==, 6OA=, CD ∴=3tan tan 2APO CPB ∴∠=∠=. 【点睛】 本题考查了切线的性质、勾股定理、等腰三角形的判定与性质以及三角形相似的判定和性质.此题难度适中,注意掌握辅助线的作法及数形结合思想的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省沧州市2013-2014学年第一学期期末考试九年级数学试卷一、选择题(共10小题,每小题3分,满分30分.各题均为单选)1.方程(x+1)(x﹣2)=x+1的解是()A.2 B.3C.﹣1,2 D.﹣1,32.∠A是锐角,且sinA=cosA,则∠A的度数是()A.30°B.45°C.60°D.75°3.若两个相似三角形的面积之比为1:4,则它们的周长之比为()A.1:2 B.1:4 C.1:5 D.1:164.一个矩形的面积是6,则这个矩形的一组邻边长x与y的函数关系的图象大致是()5.如图,AB为⊙O的直径,点C在⊙O上.若∠C=16°,则∠BOC的度数是()A.74°B.48°C.32°D.16°6.如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是()A.1 B.C.D.7.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P 在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定8.一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB.4πC.3πD.2π9.某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175亿元,二月、三月平均每月的增长率是多少若设平均每月的增长率为x,根据题意,可列方程为()A.50(1+x)2=175 B.50+50(1+x)+50(1+x)2=175C.50(1+x)+50(1+x)2=175 D.50+50(1+x)2=17510.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC 的余弦值为()A.B.C.D.二、填空题(共10小题,每小题3分,满分30分)11.已知反比例函数y=的图象经过点(1,2),则k的值是_________.12.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是_________.13.如图是引拉线固定电线杆的示意图.已知:CD⊥AB,CD=m,∠CAD=∠CBD=60°,则拉线AC的长是_________m.14.如图,扇子(阴影部分)的圆心角为x°,余下扇形的圆心角为y°,x与y的比通常按黄金比来设计,这样的扇子外形较美观,若黄金比为0.6,则x为_________.15.△ABC的顶点都在方格纸的格点上,则sinA=_________.16.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为_________mm.17.(3分)如图,桌面上有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆三个图形,则一点随机落在_________内的概率较大.18.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A的坐标为(1,0),则E点的坐标为_________.19.如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为_________.20.(3分)(2012•深圳)如图,双曲线y=(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线.已知点P坐标为(1,3),则图中阴影部分的面积为________.三、解答题(共7小题,满分60分)21.(8分)(2012•江西)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B (6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.22.(8分)(2012•遵义)如图,4张背面完全相同的纸牌(用①、②、③、④表示),在纸牌的正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌出现的所有可能结果;(2)以两次摸出牌上的结果为条件,求能判断四边形ABCD是平行四边形的概率.23.(8分)(2012•泰安)如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为G,BG交AE于点H.(1)求证:△ABE∽△ECF;(2)找出与△ABH相似的三角形,并证明;(3)若E是BC中点,BC=2AB,AB=2,求EM的长.24.(8分)(2011•广安)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?25.(9分)(2012•荆州)如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD 为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)26.(9分)(2011•淄博)已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?27.(10分)(2012•盐城)如图所示,AC⊥AB,AB=2,AC=2,点D是以AB为直径的半圆O 上一动点,DE⊥CD交直线AB于点E,设∠DAB=α(0°<α<90°).(1)当α=18°时,求的长;(2)当α=30°时,求线段BE的长;(3)若要使点E在线段BA的延长线上,则α的取值范围是_________.(直接写出答案)22.解:(1)画树状图得:则共有12种等可能的结果;(2)∵能判断四边形ABCD是平行四边形的有:①②,①③,②①,②④,③①,③④,④②,④③共8种情况,∴能判断四边形ABCD是平行四边形的概率为:=.23.(1)证明:∵四边形ABCD是矩形,∴∠ABE=∠ECF=90°.∵AE⊥EF,∠AEB+∠FEC=90°.∴∠AEB+∠BAE=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF;(2)△ABH∽△ECM.证明:∵BG⊥AC,∴∠ABG+∠BAG=90°,∴∠ABH=∠ECM,由(1)知,∠BAH=∠CEM,∴△ABH∽△ECM;(3)解:作MR⊥BC,垂足为R,∵AB=BE=EC=2,∴AB:BC=MR:RC=,∠AEB=45°,∴∠MER=45°,CR=2MR,∴MR=ER=EC=×2=,∴EM==.24.解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.25.解:如图,连接AO、BO.过点A作AE⊥DC于点E,过点O作ON⊥DC于点N,ON交⊙O于点M,交AB于点F.则OF⊥AB.∵OA=OB=5m,AB=8m,OM是半径,OM⊥AB,∴AF=BF=AB=4(m),∠AOB=2∠AOF,在Rt△AOF中,sin∠AOF==0.8=sin53°,∴∠AOF=53°,则∠AOB=106°,∵OF==3(m),由题意得:MN=1m,∴FN=OM﹣OF+MN=3(m),∵四边形ABCD是等腰梯形,AE⊥DC,FN⊥AB,∴AE=FN=3m,DC=AB+2DE.在Rt△ADE中,tan56°==,∴DE=2m,DC=12m.∴S阴=S梯形ABCD﹣(S扇OAB﹣S△OAB)=(8+12)×3﹣(π×52﹣×8×3)≈20(m2).答:U型槽的横截面积约为20m2.26.解:(1)∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(﹣)=0,整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5,故当m=1时,四边形ABCD是菱形,菱形的边长是0.5;(2)把AB=2代入原方程得,m=2.5,把m=2.5代入原方程得x2﹣2.5x+1=0,解得x1=2,x2=0.5,∴C▱ABCD=2×(2+0.5)=5.27.解:(1)连接OD,∵α=18°,∴∠DOB=2α=36°,∵AB=2,∴⊙O的半径为:,∴的长为:=π;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵α=30°,∴∠B=60°,∵AC⊥AB,DE⊥CD,∴∠CAB=∠CDE=90°,∴∠CAD=90°﹣α=60°,∴∠CAD=∠B,∵∠CDA+∠ADE=∠ADE+∠BDE=90°,∴∠CDA=∠BDE,∴△ACD∽△BED,∴,∵AB=2,α=30°,∴BD=AB=,∴AD==3,∴,∴BE=;经检验,BE=是原分式方程的解.(3)如图,当E与A重合时,∵AB是直径,AD⊥CD,∴∠ADB=∠ADC=90°,∴C,D,B共线,∵AC⊥AB,∴在Rt△ABC中,AB=2,AC=2,∴tan∠ABC==,∴∠ABC=30°,∴α=∠DAB=90°﹣∠ABC=60°,当E′在BA的延长线上时,如图,可得∠D′AB>∠DAB>60°,∵0°<α<90°,∴α的取值范围是:60°<α<90°.故答案为:60°<α<90°.。

相关文档
最新文档