高考物理解题技巧集锦

合集下载

高中物理68个解题技巧

高中物理68个解题技巧

高中物理68个解题技巧1.熟悉公式:掌握物理公式是解题的基础,要多复习公式,熟记公式。

2. 看清题目要求:在做题之前,先仔细阅读题目要求,明确题目所要求的目标。

3. 理清思路:在解题之前,要先理清思路,分析题目,确定解题的方向。

4. 关注单位:在计算过程中,要特别注意单位,确保单位的一致性。

5. 划重点:在解题过程中,要注意把重点内容划出来,以便更好地理解和记忆。

6. 善于分析图片:物理题目中常常涉及到图片,要善于分析图片,理清物理关系。

7. 运用数学技巧:物理题目中常涉及到数学计算,要善于运用数学技巧,简化计算。

8. 熟练运用计算器:在计算过程中,要熟练使用计算器,提高精度和效率。

9. 多问问题:在解题中,要多问问题,理解问题的本质和关键点。

10. 重视实验数据:物理实验是物理学的基础,要重视实验数据的分析和应用。

11. 掌握矢量运算:矢量运算是物理学的基础,要掌握矢量运算的方法和规律。

12. 熟悉机械运动:机械运动是物理学的重要内容,要熟悉机械运动的规律和公式。

13. 理解电路原理:电路是物理学的重要内容,要理解电路原理和电路的分析方法。

14. 熟悉光学知识:光学是物理学的重要内容,要熟悉光学知识和光学原理。

15. 掌握热学知识:热学是物理学的重要内容,要掌握热学知识和热学公式。

16. 理解原子结构:原子结构是物理学的基础,要理解原子结构和原子核的组成。

17. 熟悉波动现象:波动是物理学的重要内容,要熟悉波动的规律和公式。

18. 理解相对论:相对论是物理学的重要分支,要理解相对论的基本原理和应用。

19. 熟悉量子力学:量子力学是物理学的重要分支,要熟悉量子力学的基本原理和应用。

20. 熟练使用手册:在解题过程中,要熟练使用手册,查找问题的解决方法和答案。

21. 注意单位换算:在解题过程中,要注意单位换算,将不同单位之间的数值进行转换。

22. 熟练使用公式表:在解题过程中,要熟练使用公式表,查找需要的公式和定理。

高考物理答题攻略(集锦10篇)

高考物理答题攻略(集锦10篇)

高考物理答题攻略〔集锦10篇〕篇1:高考物理答题攻略高考物理答题攻略1.整体把握预备铃响,考生应在指定的座位上坐好,摆好文具和证件。

试卷下发后,不要抢着答题,先在试卷的相应位置填写姓名、准考证号、座位号等。

然后注意清点试卷张数和页码号,检查自己的试卷有无漏页、漏印、损破、字迹不清等。

假如试卷有问题及时向监考教师反映。

用三五分钟把试卷从头到尾阅读一遍,有多少个题,各题分数、分布如何,对试卷题目容量、难易程度有个全面、初步的理解,防止下笔时出现前松后紧,虎头蛇尾的现象。

2.先易后难刚进入考场,心情一般比拟紧张,记忆、思维未到达最正确状态。

这时先做容易的题目,不仅有利于顺利地拿到根本分,而且因为“顺利”还会使自己增添信心,稳定情绪。

即使看到暂时不会做的题目也不要慌,因为高考是选拔性考试,试题肯定有一定的区分度。

假如先从难题入手,往往会出现思维“卡壳”现象,使自己有“开局不利”之惑,从而加剧自己的情绪冲动,还会白白挤掉做容易题的时间。

3.冷静稳健保持平和、稳重、冷静的考场心态至关重要。

努力做到战略上重视,行动上沉着冷静。

题目难时,不焦虑,要想到“我难人亦难,我做不出来时,别人也不见得就比我顺利”。

题目容易时不狂喜,要想到“我易人也易,我做得顺手,别人肯定也做得顺手。

要想拉开间隔,那就靠非智力因素起决定作用了”。

保证会做的题不丢分是一种本领。

题目实在太困难了,绞尽脑汁,挖空心思也做不出来时,可暂时放一放。

但在交卷前一定注意,试卷上的题目不要空着不做,实在不会做的,可大胆地蒙,没准能蒙到一两分。

做了或许得不到分,但你空着,绝对一分也得不到。

4.胆大心细能否审清题意,是解题成功的关键,审题是整个解题过程的'“根底重心工程”,审题要慢,解答要快。

(1)细选择题要看清是要求选对的,还是错的;是选全对的,还是选对的最多的;是选只有一个错的,还是选错的最多的。

尤其是选考部分的判断类选择题,似是而非、容易设陷阱,切忌思维定势或麻木大意,否那么就容易出错。

高中物理解题技巧5篇

高中物理解题技巧5篇

高中物理解题技巧5篇高中物理解题技巧11、简洁文字说明与方程式相结合2、尽量用常规方法,使用通用符号3、分步列式,不要用综合或连等式4、对复杂的数值计算题,最后结果要先解出符号表达,再代入数值进行计算。

还要提醒考生的是,由于网上阅卷需要进行扫描,要求考生字迹大小适中清晰。

合理安排好答题的版面,不要因超出方框而不能得分。

切记:所有物理量要用题目中给的。

没有的要设出,并详细说明。

切记:物理要写原始公式,而不是导出公式;既然是计算题就不要期待一步成功。

分布写,慢慢写,别着急带数据;要建立模型,高中物理计算无非就是:运动学、牛顿定律、能量守恒、机械能守恒、动能定理、带电粒子在复合场中的运动、法拉第电磁感应定律而已;将几个过程拆分。

各个击破;实在不会做,那么将题中可能用到得公式都写出来吧,不会倒扣分的;注意单位换算,都是国际单位吧。

不过,用字母表示的答案千万不要写单位;要特别留意题中()的文字。

高中物理解题技巧2(一)三个基本。

基本概念要清楚,基本规律要熟悉,基本方法要熟练。

关于基本概念,举一个例子。

比如说速率。

它有两个意思:一是表示速度的大小;二是表示路程与时间的比值(如在匀速圆周运动中),而速度是位移与时间的比值(指在匀速直线运动中)。

关于基本规律,比如说平均速度的计算公式有两个经常用到V=s/t、V=(vo+vt)/2。

前者是定义式,适用于任何情况,后者是导出式,只适用于做匀变速直线运动的情况。

再说一下基本方法,比如说研究中学问题是常采用的整体法和隔离法,就是一个典型的相辅形成的方法。

最后再谈一个问题,属于三个基本之外的问题。

就是我们在学习物理的过程中,总结出一些简练易记实用的推论或论断,对帮助解题和学好物理是非常有用的。

如,沿着电场线的方向电势降低;同一根绳上张力相等;加速度为零时速度;洛仑兹力不做功等等。

(二)独立做题。

要独立地(指不依赖他人),保质保量地做一些题。

题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。

高中物理总复习 15种快速解题技巧

高中物理总复习 15种快速解题技巧

技巧一、巧用合成法解题【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木块下滑的加速度.解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2所示.由几何关系可知F 合=mgsin θ根据牛顿第二定律有mgsin θ=ma 1所以a 1=gsin θ(2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ根据牛顿第二定律有mg /sin θ=ma 2所以a 2=g /sin θ.【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单.技巧二、巧用超、失重解题【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F 的大小满足A.F=MgB.Mg <F <(M+m )gC .F=(M+m )g D.F >(M+m )g解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的加速度(其它部分都无加速度),所以系统有竖直向上的加速度,系统处于超重状态,所以轻绳对系统的拉力F 与系统的重力(M+m )g 满足关系式:F >(M+m )g ,正确答案为D.【方法链接】对于超、失重现象大致可分为以下几种情况:θ 图2-2-1 θ mg TF 合 图2-2-2 θ mgF 合 T 图2-2-3 图2-2-4(1)如单个物体或系统中的某个物体具有竖直向上(下)的加速度时,物体或系统处于超(失)重状态.(2)如单个物体或系统中的某个物体的加速度不是竖直向上(下),但有竖直向上(下)的加速度分量,则物体或系统也处于超(失)重状态,与物体水平方向上的加速度无关.在选择题当中,尤其是在定性判断系统重力与支持面的压力或系统重力与绳子拉力大小关系时,用超、失重规律可方便快速的求解.技巧三、巧用碰撞规律解题【典例3】 在电场强度为E 的匀强电场中,有一条与电场线平行的几何线,如图2-2-5虚线所示.几何线上有两个可视为质点的静止小球A 和B.两小球的质量均为m ,A 球带电量+Q ,B 球不带电.开始时两球相距L ,释放A 球,A 球在电场力的作用下沿直线运动,并与B 发生正碰,碰撞中A 、B 两球的总动能无损失.设在每次碰撞中,A 、B 两球间无电量转换,且不考虑重力及两球间的万有引力.求(1)A 球经多长时间与B 球发生第一次碰撞. (2)第二次碰撞前,A 、B 两球的速率各为多少? (3)从开始到第三次相碰,电场力对A 球所做的功. 解析:(1)设A 经时间t 与B 球第一次碰撞,根据运动学规律有L=at 2/2A 球只受电场力,根据牛顿第二定律有QE=ma∴(2)设第一次碰前A 球的速度为V A ,根据运动学规律有V A 2=2aL碰后B 球以速度V A 作匀速运动,而A 球做初速度为零的匀加速运动,设两者再次相碰前A 球速度为V A1,B 球速度为V B .则满足关系式V B = V A1/2= V A∴V B = V A =V A1=2 V A =2(3)第二次碰后,A 球以初速度V B 作匀加速运动,B 球以速度V A1作匀速运动,直到两者第三次相碰.设两者第三次相碰前A 球速度为V A2,B 球速度为V B1.则满足关系式V B1= V A1=(V B + V A2)/2∴V B1=2 V A ;V A2=3 V A第一次碰前A 球走过的距离为L ,根据运动学公式V A 2=2aL设第二次碰前A 球走过的距离为S 1,根据运动学公式V A12=2aS 1∴S 1=4L设第三次碰前A 球走过的距离为S 2,有关系式V A22-V A12=2aS 2∴S 2=8L即从开始到第三次相碰,A 球走过的路程为S=13L此过程中电场力对A 球所做的功为W=QES=13 QEL .【技巧点拨】 利用质量相等的两物体碰撞的规律考生可很容易判断出各球发生相互作用前后的运动规律,开始时B 球静止,A 球在电场力作用下向右作匀加速直线运动,当运m m L B A 图2-2-5图2-2-6 动距离L 时与B 球发生相碰.两者相碰过程是弹性碰撞,碰后两球速度互换,B 球以某一初速度向右作匀速直线运动,A 球向右作初速度为零的匀加速运动.当A 追上B 时两者第二次发生碰撞,碰后两者仍交换速度,依此类推.技巧四、巧用阻碍规律解题【典例4】 如图2-2-6所示,小灯泡正常发光,现将一与螺线管等长的软铁棒沿管的轴线迅速插入螺线管内,小灯泡的亮度如何变化A 、不变B 、变亮C 、变暗D 、不能确定解析:将软铁棒插入过程中,线圈中的磁通量增大,感应电流的效果要阻碍磁通量的增大,所以感应电流的方向与线圈中原电流方向相反,以阻碍 磁通量的增大,所以小灯泡变暗,C 答案正确.【方法链接】 楞次定律“效果阻碍原因”的几种常见形式.(1)就磁通量而言:感应电流的磁场总是阻碍引起感应电流的磁通量(原磁通量)的变化.即当原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,简称口诀“增反减同”.(2)就相对运动而言:感应电流的效果阻碍所有的相对运动,简称口诀“来拒去留”,从运动效果上看,也可形象的表述为“敌进我退,敌逃我追”.(3)就闭合电路的面积而言:致使电路的面积有收缩或扩张的趋势.收缩或扩张是为了阻碍电路磁通量的变化.若穿过闭合电路的磁感线都为同一方向,则磁通量增大时,面积有收缩趋势;磁通量减少时,面积有扩张趋势.简称口诀“增缩减扩”.若穿过回路的磁感线有两个相反的方向,则以上结论不一定成立,应根据实际情况灵活应用,总之要阻碍磁通量的变化.(4)就电流而言:感应电流阻碍原电流的变化,即原电流增大时,感应电流与原电流反向;原电流减小时,感应电流与原电流同向,简称口诀“增反减同”.技巧五、巧用整体法解题【典例5】 如图2-2-7所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg .现用水平拉力F 拉其中一个质量为2 m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为A 、5mg 3μB 、4mg 3μC 、2mg 3μ D 、mg 3μ解析:以上面2个木块和左边的质量为2m 的木块整体为研究对象,根据牛顿第二定律有μmg=4ma再以左边两木块整体为研究对象,根据牛顿第二定律有T=3ma∴T=4mg 3μ B 答案正确. 【技巧点拨】 当系统内各物体有相同加速度时(一起处于静止状态或一起加速)或题意要求计算系统的外力时,巧妙选取整体(或部分整体)为研究对象可使解题更为简单快捷.技巧六、巧用几何关系解题图2-2-7图2-2-9 图2-2-10 图2-2-11 【典例6】 如图2-2-8所示,在真空区域内,有宽度为L 的匀强磁场,磁感应强度为B ,磁场方向垂直纸面向里,MN 、PQ 是磁场的边界.质量为m ,带电量为-q 的粒子,先后两次沿着与MN 夹角为θ(0<θ<90º)的方向垂直磁感线射入匀强磁场B 中,第一次,粒子是经电压U 1加速后射入磁场,粒子刚好没能从PQ 边界射出磁场.第二次粒子是经电压U 2加速后射入磁场,粒子则刚好垂直PQ 射出磁场.不计重力的影响,粒子加速前速度认为是零,求:(1)为使粒子经电压U 2加速射入磁场后沿直线运动,直至射出PQ 边界,可在磁场区域加一匀强电场,求该电场的场强大小和方向.(2)加速电压12U U 的值. 解析:(1)如图答2-2-9所示,经电压2U 加速后以速度2v 射入磁场,粒子刚好垂直PQ 射出磁场,根据几何关系可确定粒子在磁场中做匀速圆周运动的圆心在PQ 边界线的O 点,半径2R 与磁场宽L 的关系式为2cos L R θ=又因为22mv R Bq =所以2cos BqL v m θ= 加匀强电场后,粒子在磁场中沿直线运动射出PQ 边界的条件为Eq =Bq 2v ,电场力的方向与磁场力的方向相反. 所以2cos B qL E m θ=,方向垂直磁场方向斜向右下,与磁场边界夹角为2παθ=-,如图答2-2-10所示.(2)经电压1U 加速后粒子射入磁场后刚好不能从PQ 边界射出磁场,表明在磁场中做匀速圆周运动的轨迹与PQ 边界相切,要确定粒子做匀速圆周运动的圆心O 的位置,如图答2-2-11所示,圆半径1R 与L 的关系式为:111cos ,1cos L L R R R θθ=+=+ 又11mv R Bq= 所以1(1cos )BqL v m θ=+ 根据动能定理有21112U q mv =,22212U q mv =, 所以22112222cos (1cos )U v U v θθ=+. 【方法链接】 解决带电粒子在匀强磁场中匀速圆周运动问题,关键是确定圆心的位置,正确画出粒子运动的草图,利用几何关系结合运动规律求解.技巧七:巧用可逆原理解题【典例7】 某同学在测定玻璃折射率时得到了多组入射角i 与折射角r ,并作出了sini 与sinr 的图象如图2-2-12所示.则下列说法正确的是 A . 实验时,光线是由空气射入玻璃 B . 实验时,光线是由玻璃射入空气C . 利用sini /sinr 可求得玻璃的折射率D . 该玻璃的折射率为1.5解析:由图象可知入射角的正弦值小于折射角的正弦值.根据折射定律可知光线是从光密介质射向光疏介质,即由玻璃射向空气,B 答案正确;根据折射定律n=sini /sinr 可求得介质的折射率,但一定要注意此公式一定要满足光线从空气射向介质,而本题中光线是由玻璃射入空气,所以不能直接利用sini /sinr 求介质的折射率,根据光路可逆原理,当光线反转时,其传播路径不变,即光从空气中以入射角r 射到该玻璃界面上时,折射后的折射角一定为i ,根据折射定律可得玻璃的折射率n= sinr / sini=1.5(这里要注意很容易错选C ),C 错误,D 正确.正确答案为B 、D.【方法链接】 在光的反射或折射现象中,光路具有可逆性.即当光线的传播方向反转时,它的传播路径不变.在机械运动中,若没有摩擦阻力、流体的粘滞阻力等耗散力做功时,机械运动具有可逆性.如物体的匀减速直线运动可看作反向的加速度不变的匀加速运动.方法八:巧用等效法解题【典例8】 如图2-2-13所示,已知回旋加速器中,D 形盒内匀强磁场的磁感应强度B =1.5T ,盒的半径R =60 cm ,两盒间隙d =1.0 cm ,盒间电压U =2.0×104 V ,今将α粒子从近于间隙中心某点向D 形盒内以近似于零的初速度垂直B 的方向射入,求粒子在加速器内运行的总时间.解析:带电粒子在回旋加速器转第一周,经两次加速,速度为v 1,则根据动能定理得:0.1 0.2 sinrsini0.3 0.4 0.5 0.2 0.1 0.40.3 0.5 图2-2-122qU =21mv 12 设运转n 周后,速度为v ,则:n 2qU =21 mv 2 由牛顿第二定律有qvB =m Rv 2粒子在磁场中的总时间:t B =nT =n ·qB m π2=qmU R q B 4222·qB m π2 =UB R 22π 粒子在电场中运动就可视作初速度为零的匀加速直线运动,由公式:t E =a v v t 0-,且v 0=0,v t = ,a =dmqU 得:t E =UBRd 故:t =t B +t E =U BR (2R π+d )=4.5×10-5×(0.94+0.01) s =4.3×10-5s.【技巧点拨】 粒子在间隙处电场中每次运动时间不相等,且粒子多次经过间隙处电场,如果分段计算,每一次粒子经过间隙处电场的时间,很显然将十分繁琐.我们注意到粒子离开间隙处电场进入匀强磁场区域到再次进入电场的速率不变,且粒子每在电场中加速度大小相等,所以可将各段间隙等效“衔接”起来,把粒子断断续续在电场中的加速运动等效成初速度为零的匀加速直线运动.技巧九:巧用对称法解题【典例9】 一根自由长度为10 cm 的轻弹簧,下端固定,上端连一个质量为m 的物块P ,在P 上放一个质量也是m 的物块Q.系统静止后,弹簧长度为6 cm ,如图2-2-14所示.如果迅速向上移去Q ,物块P 将在竖直方向做简谐运动,此后弹簧的最大长度为A .8 cmB .9 cmC .10 cmD .11 cm 解析:移去Q 后,P 做简谐运动的平衡位置处弹簧长度8 cm ,由题意可知刚移去Q 时P 物体所处的位置为P 做简谐运动的最大位移处.即P 做简谐运动的振幅为2 cm.当物体P 向上再次运动到速度为零时弹簧有最大长度,此时P 所处的位置为另一最大位移处,根据简谐运动的对称性可知此时弹簧的长度 为10 cm ,C 正确.【方法链接】在高中物理模型中,有很多运动模型有对称性,如(类)竖直上抛运动的对称性,简谐运动中的对称性,电路中的对称性,带电粒子在匀强磁场中匀速圆周运动中几何关系的对称性.方法十:巧用假设法解题假设法是解决物理问题的一种常见方法,其基本思路为假设结论正确,经过正确的逻辑推理,看最终的推理结果是否与已知条件相矛盾或是否与物理实际情境相矛盾来判断假设是否成立.【典例10】如图2-2-15,abc 是光滑的轨道,其中图2-2-14 P Q 6cmdd 21 ab 是水平的,bc 为与ab 相切的位于竖直平面内的半圆,半径R =0.3m.质量m =0.2kg 的小球A 静止在轨道上,另一质量M=0.6kg ,速度V 0=5.5m/s 的小球B 与小球A 正碰.已知相碰后小球A 经过半圆的最高点C ,落到轨道上距b 为L = 处,重力加速度g =10m/s 2,试通过分析计算判断小球B 是否能沿着半圆轨道到达C 点.解析 :A 、B 组成的系统在碰撞前后动量守恒,碰后A 、B 运动的过程中只有重力做功,机械能守恒,设碰后A 、B 的速度分别为V 1、V 2,由动量守恒定律得M V 0=M V 2+m V 1A 上升到圆周最高点C 做平抛运动,设A 在C 点的速度为V C ,则A 的运动满足关系式2R=gt 2/2 V C t=LA 从b 上升到c 的过程中,由机械能守恒定律得(以ab 所在的水平面为零势面,以下同)m V 12/2= m V C 2/2+2mgR∴V 1=6 m/s ,V 2=3.5 m/s方法1:假设B 球刚好能上升到C 点,则B 球在C 点的速度V C '应满足关系式Mg=M V C '2/R所以V C '=1.73 m/s则B 球在水平轨道b 点应该有的速度为(设为V b )由机械能守恒定律得M V b 2/2=M V C '2/2+2MgR则由V b 与V 2的大小关系可确定B 能否上升到C 点若V 2≥V b ,B 能上升到C 点若V 2<V b ,B 不能上升到C 点代入数据得V b =3.9 m/s >V 2 =3.5 m/s ,所以B 不能上升到C 点.【方法链接】 假设法在物理中有着很广泛的应用,凡是利用直接分析法很难得到结论的问题,用假设法来判断不失为一种较好的方法,如判断摩擦力时经常用到假设法,确定物体的运动性质时经常用到假设法.技巧十一、巧用图像法解题【典例11】 部队集合后开发沿直线前进,已知部队前进的速度与到出发点的距离成反比,当部队行进到距出发点距离为d 1的A位置时速度为V 1,求(1)部队行进到距出发点距离为d 2的B 位置时速度为V 2是多大? (2)部队从A 位置到B 位置所用的时间t 为多大.解析:(1)已知部队前进的速度与到出发点的距离成反比,即有公式V =k/d (d 为部队距出发点的距离,V 为部队在此位置的瞬时速度),根据题意有V 1=k / d 1 V 2=k / d 2 ∴ V 2=d 1 V 1 / d 2. (2)部队行进的速度V 与到出发点的距离d 满足关系式d =k/V ,即d -图象是一条过原点的倾斜直线,如图2-2-16所示,由题意已知,部队从A 位置到B 位置所用的时间t 即为图中斜线图形(直角梯形)的面积.由数学知识可知t =(d 1 + d 2)(1/V 2-1/V 1)/2∴t =(d 22-d 12)/2 d 1 V 1【方法链接】1.此题中部队行进时速度的变化即不是匀速运动,也不是匀变速运动,很图2-2-16V 图2-2-18难直接用运动学规律进行求解,而应用图象求解则使问题得到简化.2.考生可用类比的方法来确定图象与横轴所围面积的物理意义.v-t图象中,图线与横轴围成图形的面积表示物体在该段时间内发生的位移(有公式S =v t ,S 与v t 的单位均为m );F -S 图象中,图线与横轴围成图形的面积表示F 在该段位移S 对物体所做的功(有公式W =FS ,W 与FS 的单位均为J ).而上述图象中t =d ×1/V (t 与d ×1/V 的单位均为s ),所以可判断出该图线与横轴围成图形的面积表示部队从出发点到此位置所用的时间.技巧十二、巧用极限法解题【典例12】 如图2-2-17所示,轻绳的一端系在质量为m的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆MN上,现用水平力F 拉绳上一点,使物体处于图中实线位置,然后改变F 的大小使其缓慢下降到图中虚线位置,圆环仍在原来的位置不动,则在这一过程中,水平拉力F 、环与杆的摩擦力F 摩和环对杆的压力F N 的变化情况是A.F 逐渐增大,F 摩保持不变,F N 逐渐增大B.F 逐渐增大,F 摩逐渐增大,F N 保持不变C.F 逐渐减小,F 摩逐渐增大,F N 逐渐减小D.F 逐渐减小,F 摩逐渐减小,F N 保持不变解析:在物体缓慢下降过程中,细绳与竖直方向的夹角θ不断减小,可把这种减小状态推到无限小,即细绳与竖直方向的夹角θ=0;此时系统仍处于平衡状态,由平衡条件可知,当θ=0时,F=0,F 摩 =0.所以可得出结论:在物体缓慢下降过程中,F 逐渐减小,F 摩也随之减小,D 答案正确. 【方法链接】 极限法就是运用极限思维,把所涉及的变量在不超出变量取值范围的条件下,使某些量的变化抽象成无限大或无限小去思考解决实际问题的一种解题方法,在一些特殊问题当中如能巧妙的应用此方法,可使解题过程变得简捷.方法十三、巧用转换思想解题【典例13】 如图2-2-18所示,电池的内阻可以忽略不计,电压表和可变电阻器R 串联接成通路,如果可变电阻器R 的值减为原来的1/3时,电压表的读数由U 0增加到2U 0,则下列说法中正确的是A .流过可变电阻器R 的电流增大为原来的2倍B .可变电阻器R 消耗的电功率增加为原来的4倍C .可变电阻器两端的电压减小为原来的2/3D .若可变电阻器R 的阻值减小到零,那么电压表的示数变为4U 0确 解析: 在做该题时,大多数学生认为研究对象应选可变电阻器,因为四个选项中都问的是有关R的问题;但R 的电阻、电压、电流均变,判断不出各量的定量变化,从而走入思维的误区.若灵活地转换研究对象,会出现“柳暗花明”的意境;分析电压表,其电阻为定值,当它的读数由U 0增加到2U 0时,通过它的电流一定变为原来的2倍,而R 与电压表串联,故选项A 正确.再利用P =I 2R 和U =IR ,R 消耗的功率P ′=(2I )2R/3=4P/3;R 后来两端的电压U =2IR/3,不难看出C 对B 错.又因电池内阻不计,R 与电压表的电压之和为U 总,当R 减小到零时,电压表的示数也为总电压U总;很轻松地列出U 总=IR +U 0=2 IR/3+2U 0,解得U 总=4U 0,故D 也对.图2-2—17图2-2-22 2-2-19【方法链接】 常见的转换方法有研究对象的转换、时间角度的转换、空间角度的转换、物理模型的转换,本例题就是应用研究对象的转换思想巧妙改变问题的思考角度,从而达到使问题简化的目的.技巧十四、巧用结论解题【典例14】如图2-2-19所示,如图所示,质量为3m 的木板静止放在光滑的水平面上,木板左端固定着一根轻弹簧.质量为m 的木块(可视为质点),它从木板右端以未知速度V 0开始沿木板向左滑行,最终回到木板右端刚好未从木板上滑出.若在小木块压缩弹簧的过程中,弹簧具有的最大弹性势能为E P ,小木块与木板间的动摩擦因数大小保持不变,求: (1)木块的未知速度V 0(2)以木块与木板为系统,上述过程中系统损失的机械能解析:系统在运动过程中受到的合外力为零,所以系统动量定恒,当弹簧压缩量最大时,系统有相同的速度,设为V ,根据动量守恒定律有m V 0=(m+3m )V木块向左运动的过程中除了压缩弹簧之外,系统中相互作用的滑动摩擦力对系统做负功导致系统的内能增大,根据能的转化和守恒定律有m V 02/2-(m+3m )V 2/2=E P +μmgL (μ为木块与木板间的动摩擦因数,L 为木块相对木板走过的长度)由题意知木块最终回到木板右端时刚好未从木板上滑出,即木块与木板最终有相同的速度由动量守恒定律可知最终速度也是V.整个过程中只有系统内相互作用的滑动摩擦力做功(弹簧总功为零),根据能量守恒定律有m V 02/2-(m+3m )V 2/2=2μmgL∴有 , E P =μmgL故系统损失的机械能为2 E P .【误点警示】根据能的转化和守恒定律,系统克服滑动摩擦力所做的总功等于系统机械能损失,损失的机械能转化为系统的内能,所以有f 滑L 相对路程=△E (△E 为系统损失的机械能).在应用公式解题时,一定要注意公式成立所满足的条件.当系统中只有相互作用的滑动摩擦力对系统做功引起系统机械能损失(其它力不做功或做功不改变系统机械能)时,公式f 滑L 相对路程=△E 才成立.如果系统中除了相互作用的滑动摩擦力做功还有其它力对系统做功而改变系统机械能,则公式f 滑L 相对路程=△E 不再成立,即系统因克服系统内相互作用的滑动摩擦力所产生的内能不一定等于系统机械能的损失.所以同学们在应用结论解题时一定要注意公式成立的条件是否满足,否则很容易造成错误.方法十五、巧用排除法解题【典例15】 如图2-2-22所示,由粗细均匀的电阻丝制成的边长为L 的正方形线框abcd ,其总电阻为R .现使线框以水平向右的速度v匀速穿过一宽度为2L 、磁感应强度为B 的匀强磁场区域,整个过程中ab 、cd 两边始终保持与磁场边界平行.令线框的cd 边刚好与磁场左边界重合时开始计时(t =0),电流沿abcda 流动的方向为正,U o =BLv .在下图中线框中a 、b 两点间电势差U ab 随线框cd 边的位移x 变化的图像正确的是下图中的x x解析:当线框向右穿过磁场的过程中,由右手定则可判断出总是a点的电势高于b点电势,即U ab>0,所以A、C、D错误,只有B项正确.【方法链接】考生可以比较题设选项的不同之外,而略去相同之处,便可得到正确答案,或者考生能判断出某三个选项是错误的,就没必要对另外一个选项做出判断而应直接把其作为正确答案.对本例题,考生只需判断出三个过程中(进磁场过程、全部进入磁场过程、出磁场过程)中a、b两点电势的高低便可选择出正确答案,而没有必要对各种情况下a、b 两点电势大小规律做出判断.。

高考物理常用解题方法汇总

高考物理常用解题方法汇总

高考物理常用解题方法汇总一、观察的几种方法1.顺序观察法:按一定的顺序进行观察。

2.特征观察法:根据现象的特征进行观察。

3.对比观察法:对前后几次实验现象或实验数据的观察进行比较。

4.全面观察法:对现象进行全面的观察,了解观察对象的全貌。

二、过程的分析方法1.化解过程层次:一般说来,复杂的物理过程都是由若干个简单的“子过程”构成的。

因此,分析物理过程的最基本方法,就是把复杂的问题层次化,把它化解为多个相互关联的“子过程”来研究。

2.探明中间状态:有时阶段的划分并非易事,还必需探明决定物理现象从量变到质变的中间状态或过程正确分析物理过程的关键环节。

3.理顺制约关系:有些综合题所述物理现象的发生、发展和变化过程,是诸多因素互相依存,互相制约的“综合效应”。

要正确分析,就要全方位、多角度的进行观察和分析,从内在联系上把握规律、理顺关系,寻求解决方法。

4.区分变化条件:物理现象都是在一定条件下发生发展的。

条件变化了,物理过程也会随之而发生变化。

在分析问题时,要特别注意区分由于条件变化而引起的物理过程的变化,避免把形同质异的问题混为一谈。

三、因果分析法1.分清因果地位:物理学中有许多物理量是通过比值来定义的。

如R=U/R、E=F/q等。

在这种定义方法中,物理量之间并非都互为比例关系的。

但学生在运用物理公式处理物理习题和问题时,常常不理解公式中物理量本身意义,分不清哪些量之间有因果联系,哪些量之间没有因果联系。

2.注意因果对应:任何结果由一定的原因引起,一定的原因产生一定的结果。

因果常是一一对应的,不能混淆。

3.循因导果,执果索因:在物理习题的训练中,从不同的方向用不同的思维方式去进行因果分析,有利于发展多向性思维。

四、原型启发法原型启发就是通过与假设的事物具有相似性的东西,来启发人们解决新问题的途径。

能够起到启发作用的事物叫做原型。

原型可来源于生活、生产和实验。

如鱼的体型是创造船体的原型。

原型启发能否实现取决于头脑中是否存在原型,原型又与头脑中的表象储备有关,增加原型主要有以下三种途径:1.注意观察生活中的各种现象,并争取用学到的知识予以初步解释;2.通过课外书、电视、科教电影的观看来得到;3.要重视实验。

高中物理51个解题技巧

高中物理51个解题技巧

高中物理51个解题技巧高中物理是一门理论性和实践性都很强的学科,对于学生来说,掌握解题技巧是非常重要的。

下面将为大家介绍51个高中物理解题技巧,帮助大家在学习物理的过程中更加高效地掌握知识。

1.完善基础知识。

高中物理是建立在中学物理基础之上的,所以首先要完善基础知识,包括力学、光学、热学等方面的知识。

2.多做思维导图。

可以通过制作思维导图来整理和梳理知识结构,让自己更容易理解和记忆知识点。

3.学会画图。

物理问题通常需要图示来辅助解题,因此掌握画图的技巧非常重要。

4.掌握标准符号。

在物理学习中,标准符号是非常重要的,所以要牢记各种符号的含义。

5.熟练掌握计算方法。

物理问题通常需要进行计算,所以要熟练掌握常见的计算方法。

6.注意公式推导。

有些问题需要通过公式推导来解决,所以要熟练掌握各种物理公式的推导方法。

7.注意单位换算。

物理问题中单位换算是一个常见的问题,因此要注意单位之间的换算。

8.多读物理题。

通过多读物理题,可以加深对问题的理解并提高解题能力。

9.多画示意图。

画示意图有助于问题的理解和分析,提高解题效率。

10.练习分类解题。

将物理问题进行分类解题有助于整理知识点,提高解题效率。

11.注意文字说明。

在解题过程中要注意文字说明,将问题的解题过程写清楚。

12.多与同学讨论。

结对学习是一种很好的学习方法,通过与同学讨论可以更加深入地理解和掌握知识点。

13.注重实验操作。

实验是物理学习的重要组成部分,通过实验操作可以增加对物理现象的理解,提高解题能力。

14.学会利用数据和图表。

物理问题通常需要利用数据和图表来解答,所以要学会分析和利用数据和图表。

15.多模拟题。

通过模拟题可以锻炼解题能力,提高应对各种物理问题的能力。

16.多理解题目。

在解析物理问题的时候要多理解问题的意思,而不是死记硬背。

17.提高计算速度。

物理问题往往要进行大量的计算,所以熟练的计算速度是很重要的。

18.注意物理现象的解释。

在解题中要注意对物理现象的解释,理解现象背后的原理。

高中物理解题方法技巧汇总(非常实用)

高中物理解题方法技巧汇总(非常实用)

高中物理解题方法技巧汇总(非常实用)高中物理解题方法技巧汇总(非常实用)
一、问题分析
1. 阅读题目:认真阅读题目,理解题目所要求解决的问题。

2. 辨析问题类型:确定题目属于哪种类型的物理问题,如力学、热学、光学等。

3. 提取信息:从题目中提取相关信息,建立问题的数学模型。

二、知识应用
1. 规定符号:在解决问题前,明确各物理量的符号表示。

2. 应用公式:根据问题要求和所学物理知识,选取适当的公式
进行计算。

3. 计算精度:注意计算精度,确保结果的准确性。

三、概念理解
1. 弄清物理概念:对于涉及物理概念的问题,先弄清楚相关概
念的含义和特点。

2. 探究概念关系:分析不同概念之间的关系,帮助理解和解答
问题。

3. 熟悉常用公式:掌握常用的物理公式,能够熟练地根据问题
进行转化和运用。

四、问题求解
1. 充分利用已知条件:利用已知条件填入公式,进行问题求解。

2. 分步推理:对于较复杂的问题,采用分步推理的方法逐步求解。

3. 反思并修正:在解答过程中,对结果进行反思和验证,及时
纠正错误。

五、拓展思考
1. 做好总结:对解题过程进行总结,整理归纳掌握的物理解题
方法和技巧。

2. 拓展思考:从已知条件和解题过程中提取物理规律,拓展解
题思路,进一步探索问题。

六、实践应用
1. 多做题:通过做更多的练题,加深理解并熟练掌握解题方法。

2. 实践应用:将所学的物理知识应用于日常问题和实际场景中,提高解决实际问题的能力。

以上是高中物理解题方法技巧的汇总,希望对你的学习有所帮助!。

高考物理解答题技巧

高考物理解答题技巧

高考物理解答题技巧一、阅读题目在回答物理解答题时,首先要仔细阅读题目。

理解题意是解题的第一步,只有清楚题目的要求,才能有针对性地进行解答。

二、分析问题在阅读完题目后,需要对问题进行分析。

首先,确定问题所涉及的物理知识点,明确需要运用的公式和概念。

其次,梳理问题的思路和逻辑。

通过对问题的分析,可以把握解答的方向和关键点,为解题提供指导。

三、合理利用已知条件解答物理问题时,需要充分利用已知条件。

将题目中提供的信息进行归类整理,确定问题所给的初始条件。

有时,需要根据已知条件进行计算,得到更多的信息,以便解决问题。

四、确定解题方法根据问题的特点,选择合适的解题方法。

常见的物理解答题方法有:代入公式法、图解法、变量替换法、极限分析法等。

在选择解题方法时,需要考虑问题的特点和已有的物理知识,以及解题的效率和准确性。

五、进行计算或推理根据已知条件和解题方法,进行计算或推理。

在计算过程中,要精确计算,注意运算的单位和精度。

在推理过程中,要合理论证,严谨思考。

可以采用反证法、比较法、推广法等推理方法解决问题。

六、检查答案完成计算或推理后,要再次阅读题目,检查所得答案是否符合问题的要求。

要检查计算过程中是否有错误,是否存在概念理解上的偏差。

特别要注意单位的统一和精度的控制。

七、写出解答在解答问题时,要注意层次清晰,表述准确。

题目的解答应该从问题的要求出发,引出解题步骤,列出所使用的公式和数据,进行计算和推理,最后给出结果,并对结果进行必要的解释和分析。

八、进行综合训练提高解答物理题的能力需要进行大量的练习。

可以通过做试题、题目讨论、小组合作等方式,进行综合训练。

通过大量的实践,不断提高解答问题的技巧和能力。

九、培养逻辑思维能力解答物理题需要具备良好的逻辑思维能力。

要善于运用物理知识和逻辑关系分析问题,推理和判断问题的解决思路。

培养逻辑思维能力可以通过多读物理题和解题思路,多进行思维训练和思维导图的练习。

十、总结经验在解答物理题的过程中,要总结经验和方法,善于归纳总结。

高中物理15种快速解题方法

高中物理15种快速解题方法

高中物理15种快速解题方法
一、直接解法:
1. 根据题目的条件或结论条件,在知识点或解答技巧上直接得出结论;
2. 利用类比、数学归纳法、守恒原理等解题;
3. 利用位移定理解决静力学中摩擦、外力等问题;
4. 通过定理、公式求解正方形时,利用特殊条件重新推导公式;
5. 利用代数、极限、导数、积分等解寻解;
6. 利用坐标变换、向量矢量分析等方法进行求解;
7. 利用量纲统一法解决透视、弹性、统计等问题;
8. 常数参数求解思路可做到快速求解;
9. 分变量求解,保持未知量恒定、常数简化问题;
10. 原地移动,多次试验,利用观察结果进行解答;
11. 坐标变换可用于消元去除模糊不确定性;
12. 利用反证法得出结论;
13. 利用假设证明法--“贝叶斯——假设证明[贝叶斯模式]”等方法求解;
14. 利用统计、概率等解决统计、随机变量的计算问题;
15. 利用几何、拓扑的相关知识解决相关问题。

高考物理应试技巧如何应对各种考题

高考物理应试技巧如何应对各种考题

高考物理应试技巧如何应对各种考题高考物理是许多考生认为比较困难的一门科目。

它需要考生熟练掌握物理的基本概念和公式,并能运用这些知识解决各种实际问题。

本文将介绍一些应对高考物理考题的技巧,帮助考生在考试中取得好成绩。

一、理解题意在开始解答物理题目之前,首先要彻底理解题目的意思。

这包括理解问题背景、已知条件和待求物理量。

通读题目一遍是必要的,不要急于下笔,以免误解题意。

可以标记问题的关键字,以获得更清晰的理解。

同时,可以利用画图、列出已知条件等方式帮助理解题目。

二、掌握重要概念和公式高考物理考试涉及的知识点较多,考生需要熟练掌握各个概念和公式。

这需要考生在平时的学习中进行积累和消化。

可以制作一份复习纲要,将各个概念和公式整理成表格或者思维导图,便于查阅和回顾。

此外,要注意理解公式的物理意义和适用范围,这有助于在解题过程中进行正确的选择和运用。

三、分析解题思路解决物理问题的方法有很多,但通常可以归结为一些基本的解题思路。

对于复杂的问题,考生可以先分析题目,找出问题的关键点和难点,然后将问题分解为一系列较简单的子问题。

对于已经掌握的概念和公式,可以首先考虑它们的运用。

此外,还可以尝试利用物理图像、数值计算、代数求解等方法来解决问题。

不同的题目需要不同的思路,考生需要在平时的练习中积累和总结。

四、注重实际应用高考物理考试注重考察学生对物理知识的实际应用能力。

因此,考生在解答问题时要注重与实际问题的联系,尽量将问题与具体场景联系起来。

在解答中可以给出合理的解释和解决方案,这有助于提高答案的说服力和完整性。

此外,还可以借助实验现象和实际生活中的案例来解答问题,这样可以更好地理解和记忆物理知识。

五、做好题目分类和练习高考物理试卷通常按照知识点和题型进行分类。

考生可以根据这些分类特点,进行有针对性的练习。

在练习中要注重对不同类型的题目进行分析和总结,找出解题的规律和技巧。

通过做题来强化对知识点的理解和记忆,并提高解题的速度和准确率。

12个高考物理解题方法与妙招

12个高考物理解题方法与妙招

12个高考物理解题方法与妙招
以下是12个高考物理解题方法与妙招:
1.观察实验,有助于对物理知识的理解,更深刻的认识物理规律的
本质。

2.正确受力分析,注意受力分析和运动轨迹的分析相结合。

3.选择合适的解题方法,解题方法选择恰当,就容易解决问题。

4.利用整体法与隔离法,分析物体受力情况,选择恰当的解题方法。

5.画草图,画好过程草图是正确解决物理问题的关键。

6.掌握解题程序,物理解题要按照一定的程序进行。

7.建立正确的物理模型,将物理知识、概念、规律等模型化。

8.正确分析物理过程,物理过程包括物理现象、事实、概念、规律
等。

9.正确分析物体的运动轨迹,运动轨迹是物体在运动过程中所经过
的路线。

10.熟悉基本公式,基本公式是解题的重要依据。

11.掌握解题技巧,解题技巧可以帮助你更快的解决问题。

12.反复练习,通过大量的练习,可以增强对物理知识的理解和应用
能力。

希望这些方法与妙招能帮助你在高考中取得好成绩!。

高考物理解题技巧

高考物理解题技巧

高考物理解题技巧高考物理是对学生物理知识的综合考察,同时也对学生的解题能力和思维逻辑要求较高。

下面将介绍一些解题技巧,希望对同学们备考高考物理有所帮助。

1. 充分理解题意在解题之前,要先充分理解题目所给的条件和要求。

仔细阅读题目,提取关键信息,确定所给数据的单位和含义,明确题目要求的答案形式。

2. 善于画图在解决物理问题时,画图是非常重要的。

可以根据题目中的已知条件,画出示意图或者示意图中的关键部分。

通过画图可以更直观地理解和分析问题,从而找到问题的解决方向。

3. 利用物理公式物理解题过程中,要善于运用已知的物理公式。

根据题目所给条件,选择适当的物理公式,并将已知量代入公式中,解方程求解未知量。

4. 强化思维训练物理解题需要一定的思维逻辑能力。

平时可以多进行思维训练,例如通过解决一些物理难题来提升解题思维和逻辑推理能力。

同时,还应该多做一些相关的题,加强对物理概念和解题方法的理解和掌握。

5. 增加实践经验物理是一门实践性很强的科学,因此,增加实践经验对解题有很大帮助。

可以通过实验、观察和实际应用来加深对物理现象的理解,提高解题的能力。

6. 注意选项分析在选择题中,要注意分析选项。

对于多项选择题,可以通过排除法来确定最终答案。

仔细比较选项之间的差异和相似之处,结合已知条件进行推理。

7. 练做题技巧在备考阶段,要多做一些高考真题和模拟题,尽量模拟考试环境,提高做题效率和应试能力。

同时,要关注错题,及时纠正错误,强化知识记忆和解题技巧。

以上是高考物理解题的一些技巧,通过充分理解题意、善于画图、利用物理公式、强化思维训练、增加实践经验、注意选项分析以及练习做题技巧等方法,可以提高解题能力,为高考物理取得好成绩奠定基础。

希望同学们能够充分利用这些技巧,积极备考,取得好的成绩!。

高中物理68个解题技巧

高中物理68个解题技巧

高中物理68个解题技巧1.熟悉物理公式,掌握基本计算方法。

2. 想象物理现象,画出示意图,有助于理解和解决问题。

3. 善于利用物理学原理,尤其是能量守恒定律和动量守恒定律。

4. 注意物理量的单位,在计算中进行单位换算。

5. 对于复杂的计算问题,可以采用近似计算的方法,简化计算过程。

6. 计算时注意保留有效数字,避免四舍五入带来的误差。

7. 注意物理实验的误差,进行误差分析和处理。

8. 对于物理实验中的测量数据,可以进行平均值计算和标准差计算。

9. 针对物理实验的不同要求,选择合适的实验方法和装置。

10. 学习并掌握物理中的基本概念和定律,如洛伦兹力、浮力、牛顿定律等。

11. 对于一些比较难理解的概念,可以通过举例或比喻来帮助理解。

12. 学习并熟悉物理实验中的常见仪器和设备,如电子秤、光学仪器、电器元件等。

13. 学习并掌握物理实验中的实验方法和实验技巧,如精密调节、测量数据处理等。

14. 了解物理学的发展历程和最新研究进展,有助于更好地理解物理学知识。

15. 总结、归纳和应用物理知识,可以提高解题能力和应用能力。

16. 注意物理学习的连续性,及时复习和总结学过的知识。

17. 利用各种资源和工具,如物理学习网站、视频资料、模拟实验软件等,增加学习效果。

18. 学习时要尊重老师、尊重知识,认真听课、认真思考、认真完成作业。

19. 保持兴趣和好奇心,探索物理学的奥秘,不断提高自己的物理学水平。

20. 在解决问题时,要注意分析问题的本质,理清思路,找出解题方法。

21. 遇到困难时,不要气馁,要勇于尝试、积极解决。

22. 在解题过程中,要注意题目中的关键词、条件和限制。

23. 要注重物理学习的实践性,多进行物理实验和实践操作。

24. 在物理实验和操作中,要注意安全和规范操作,避免意外伤害。

25. 要注重物理学习的实用性,学会将物理知识应用到实际问题中。

26. 学习时要注意多角度、多层次地理解和应用物理学知识。

高考物理答题方法技巧

高考物理答题方法技巧

高考物理答题方法技巧高考物理答题一般分为两种题型:选择题和解答题。

选择题主要考察学生对知识点的掌握程度,而解答题则考察学生的解决问题的能力。

下面介绍一些常用的高考物理答题方法及技巧。

一、选择题1.仔细阅读题目选择题通常有一个或多个选项,正确答案可能藏在其中,要仔细阅读每个选项。

如果只看一个选项,就可能漏掉正确答案。

2.先筛选错选如果在多个选项中找不到正确答案,可以先排除那些显然错误或者与题目无关的选项,以缩小答案范围。

3.对照量纲某些物理量可以通过量纲判断正确答案。

例如,速度与长度和时间有关,如果某个选项的单位与速度的单位不同,那么它就是错误的。

4.利用公式对于需要计算的选择题,可以利用公式计算出正确答案。

但需要注意,公式的应用一定要符合题目要求,例如单位要统一。

二、解答题1.认真分析题目解答题通常会有一些情境和问题,需要认真分析题目中的情境和问题。

分析时应注重理解,不要只是简单套用公式和知识点。

2.清晰明了的解题步骤在解答问题过程中,需要按照一定的解题步骤,这样做可以让我们更好的理解问题,并且能让复杂的问题变得更加简单,也可以避免疏漏。

3.合理利用图表在解答问题过程中,图表是一个非常重要的工具,它可以帮助我们更好的理解问题,同时还可以提高解题的速度。

通过手绘,绘图软件等可以让解答问题更加精确和明了。

4.应用物理法则物理问题通常可以通过应用物理法则来解决。

我们应熟知一些基本的物理知识,并且能够熟练地运用这些知识解决问题。

以上是高考物理答题方法及技巧的介绍,希望对大家有所帮助。

总之,做好高考物理必须要掌握知识点和应用能力,同时应该在做题方法和技巧方面进行较多的练习和提高。

只有全面掌握这些要领,才能在高考中取得好成绩。

高中物理答题公式及技巧(完整清晰版)

高中物理答题公式及技巧(完整清晰版)

高中物理答题公式及技巧(完整清晰版)公式和技巧对于高中物理的答题至关重要。

本文档将为你提供高中物理答题所需的公式和技巧,帮助你更好地应对考试。

公式在高中物理考试中,以下公式是必不可少的。

熟练掌握这些公式并能灵活运用,将有助于提高你的答题能力。

1. 速度公式: $$v = \frac{s}{t}$$2. 加速度公式: $$a = \frac{v_f - v_i}{t}$$3. 力的公式: $$F = m \cdot a$$4. 功的公式: $$W = F \cdot d \cdot \cos(\theta)$$5. 电流公式: $$I = \frac{Q}{t}$$6. 电压公式: $$V = I \cdot R$$7. 光速公式: $$c = \lambda \cdot f$$8. 抛体运动公式: $$h = \frac{1}{2} \cdot g \cdot t^2$$技巧除了掌握以上公式,以下技巧也能帮助你在高中物理考试中取得更好的成绩。

1. 理解题意:在回答物理题时,首先要仔细阅读题目并理解题意。

确定题目所给出的已知信息以及需要求解的未知量。

理解题意:在回答物理题时,首先要仔细阅读题目并理解题意。

确定题目所给出的已知信息以及需要求解的未知量。

2. 画图辅助:对于一些复杂的物理问题,可以通过画图来帮助理解题目,并确定合适的物理量和坐标轴。

画图辅助:对于一些复杂的物理问题,可以通过画图来帮助理解题目,并确定合适的物理量和坐标轴。

3. 单位转换:在计算中,务必要注意单位的转换。

如果题目给出的单位与所需计算的单位不一致,需要进行相应的转换,以确保计算结果的准确性。

单位转换:在计算中,务必要注意单位的转换。

如果题目给出的单位与所需计算的单位不一致,需要进行相应的转换,以确保计算结果的准确性。

4. 列出已知和未知量:在解答物理题时,将已知和未知量列出来,有助于清晰地理解问题和分析解题思路。

列出已知和未知量:在解答物理题时,将已知和未知量列出来,有助于清晰地理解问题和分析解题思路。

高中物理解题49种方法

高中物理解题49种方法

高中物理解题49种方法1. 利用公式计算2. 利用图像分析3. 利用物理实验数据4. 利用基本物理原理5. 利用万有引力定律6. 利用牛顿第二定律7. 利用牛顿第三定律8. 利用动量守恒定律9. 利用能量守恒定律10. 利用气体状态方程11. 利用光的折射和反射定律12. 利用光的干涉和衍射定律13. 利用电场和电势能14. 利用电势差和电位差15. 利用电场线和电荷密度16. 利用静电力和电容17. 利用磁感应强度和磁通量18. 利用洛伦兹力和电磁感应定律19. 利用电路中的欧姆定律20. 利用交流电路中的功率和频率21. 利用透镜的成像公式22. 利用热力学定律23. 利用热传导和热辐射24. 利用声波和共振25. 利用核反应和辐射26. 利用半导体和电子器件27. 利用电磁波的传播和反射28. 利用相对论和时空29. 利用量子力学和微观世界30. 利用黑洞和宇宙学31. 利用光电效应和波粒二象性32. 利用原子结构和化学反应33. 利用光合作用和生物光学34. 利用人体力学和生物电学35. 利用地球物理和大气物理36. 利用机械波和弹性体37. 利用材料力学和强度学38. 利用流体力学和气体动力学39. 利用光学仪器和测量技术40. 利用电子学和通信技术41. 利用能源转换和储存技术42. 利用环境保护和可持续发展43. 利用科技创新和应用发展44. 利用历史和哲学思考45. 利用文化和社会影响46. 利用文学和艺术表达47. 利用个人经验和感悟48. 利用跨学科综合思考49. 利用创造性思维和解决问题能力。

高考物理答题技巧

高考物理答题技巧

高考物理答题技巧
高考物理不仅是知识的检验,更是能力的体现。

掌握一些答题技巧,可以帮助考生更加有效地应对物理考试。

以下是一些高考物理答题的关键技巧。

1.理解题意,定位考点:在解答物理题目时,首先要认真审题,明确题目的要求和考察的知识点。

这有助于快速定位解题思路。

2.简化问题,提取关键:将复杂问题简化是解题的重要步骤。

提取题目中的关键信息,忽略无关紧要的细节,有助于快速找到解题的关键。

3.画图示意,辅助理解:物理题目中往往涉及到空间、运动等抽象概念。

通过画图示意,可以更加直观地理解题目,有助于找到解题思路。

4.分步解答,条理清晰:对于复杂的物理问题,分步骤解答可以确保思路的清晰和条理。

每个步骤都要有明确的目标和逻辑。

5.公式使用,准确无误:在解题过程中,公式的正确应用至关重要。

要确保使用的公式与题目要求相符,并且计算过程准确无误。

6.时间分配,合理分配:在考试中,时间的管理至关重要。

要根据题目的难易程度和分值,合理分配答题时间,确保每道题目都能得到充分的考虑。

7.检查答案,确保无误:完成答题后,一定要留出时间检查答案。

检查过程中要特别注意单位、符号和计算过程,确保答案的准确性。

8.答题规范,字迹清晰:卷面整洁、字迹清晰是给阅卷老师留下好印象的关键。

同时,按照题目要求的格式和规范答题,也能减少不必要的失分。

总的来说,高考物理答题不仅是对知识的考察,更是对思维能力和解题技巧的检验。

通过掌握和应用这些答题技巧,考生可以在高考物理考试中取得更好的成绩。

高考物理考试做题的技巧有哪些范文三份

高考物理考试做题的技巧有哪些范文三份

高考物理考试做题的技巧有哪些范文三份高考物理考试做题的技巧有哪些 1一、比较排除法通过分析、推理和计算,将不符合题意的选项一一排除,最终留下的就是符合题意的选项。

如果选项是完全肯定或否定的判断,可通过举反例的方式排除;如果选项中有相互矛盾或者是相互排斥的选项,则两个选项中可能有一种说法是正确的,当然,也可能两者都错,但绝不可能两者都正确。

二、假设推理法所谓假设推理法,就是假设题目中具有某一条件,推得一个结论,将这个结论与实际情况对比,进行合理性判断,从而确定正确选项。

假设条件的设置与合理性判断是解题的关键,因此要选择容易突破的点来设置假设条件,根据结论是否合理判断假设是否成立。

三、逆向思维法如果问题涉及可逆物理过程,当按正常思路判断遇到困难时,则可考虑运用逆向思维法来分析、判断。

有些可逆物理过程还具有对称性,则利用对称规律是逆向思维解题的另一条捷径。

四、极限推理法所谓极限推理法是把某些起决定性作用的物理量推向极端,通过简单计算、推理或合理性判断,并与一些显而易见的结果或熟悉的物理现象进行对比,从而做出正确的选择。

高考物理考试做题的技巧有哪些 2(1)实验题一般采用填空题或作图题的形式出现。

作为填空题,数值、单位、方向或__号都应填全面;作为作图题:①对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。

②对电学实物图,则电表量程、__极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。

③对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。

切记:游标卡尺、螺旋测微器、多用电表的读数历来都是考察的重点。

切记:选择题有8-10分是送你的,但你可能拿不到(单位、有效数字、小数点后保留几位、坐标原点等)。

(2)常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常规实验题时,这种题目考得比较细,要在细、实、全上下足功夫。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理解题方法之隔离法和整体法江苏省特级教师戴儒京隔离法和整体法是解决物理问题特别是力学问题的基本而又重要的方法。

隔离法是把一个物体从物体系中隔离出来,只研究他的受力情况和运动情况,不研究他的施力情况。

整体法是把物体系看做一个整体,分析物体系的受力情况和运动情况,而不分析物体系内的物体的相互作用力。

整体法一般是在物体系内各物体的加速度相同的情况下应用。

并且不求物体系内各物体的相互作用力。

下面的例题中的物体系只包含2个物体,3个以上的物体,方法与此类似。

一、一个外力例1.光滑水平面上的两个物体在光滑水平面上有两个彼此接触的物体A和B,它们的质量分别为m1、m2。

若用水平推力F作用于A物体,使A、B一起向前运动,如图1所示,则两物体间的相互作用力为多大?若将F作用于B物体,则A、B间的相互作用力为多大?图1【解析】对A 、B 两个物体组成的系统用整体法,根据牛顿第二定律,有a m m F )(21+=,所以21m m Fa +=①对B 物体用隔离法,根据牛顿第二定律,有a m F AB 2= ②将①代入②得 212m m m F F AB +⋅= ③若将F 作用于B 物体,则对A 物体用隔离法,根据牛顿第二定律,有a m F BA 1= ④所以A 、B 间的相互作用力为211m m m F F BA +⋅= ⑤实际上,在同一个时刻,根据牛顿第三定律,A 、B 之间的作用力和反作用力大小是相等的。

此处,③式和⑤式所表示的AB F 和BA F 不是作用力和反作用力,而是两种情况下的A 、B 之间的作用力,这样表示,以示区别,不要误会。

③式和⑤式,可以看做“力的分配规律”,正如串联电路中电压的分配规律一样。

因为大家知道,电阻R 1、R 2串联,总电压为U ,则R 1和R 2上的电压分别为2111R R R UU +=,2122R R R U U +=。

这两个式子与③式和⑤式何其相似乃尔。

例2.粗糙水平面上的两个物体在水平面上有两个彼此接触的物体A 和B ,它们的质量分别为m 1、m 2,与水平面间的动摩擦因数皆为为μ。

若用水平推力F 作用于A 物体,使A 、B 一起向前运动,如图1所示,则两物体间的相互作用力为多大?若将F 作用于B 物体,则A 、B 间的相互作用力为多大?【解析】对A 、B 两个物体组成的系统用整体法,根据牛顿第二定律,有a m m g m m F )(-2121+=+)(μ,所以g m m Fa μ-+=21对B 物体用隔离法,根据牛顿第二定律,有a m g m F AB 22=-μ将④代入⑤得 212m m m F F AB +⋅=同样的方法可得,若将F 作用于B 物体,则A 、B 间的相互作用力为211m m m F F BA +⋅=【结论】力的分配规律212m m m F F AB +⋅=,211m m m F F BA +⋅=,与有没有摩擦力无关。

例3光滑斜面上的两个物体A 、B 两个滑块用短细线(长度可以忽略)相连放在倾角为θ的光滑斜面上,它们的质量分别为m 1、m 2,用力F 拉B ,使A 、B 一起沿斜面向上运动,如图2所示,则细线对B 物体的作用力为多大?若将F 作用于B 物体,则细线对A 物体的作用力为多大?【解析】对A 、B 两个物体组成的系统用整体法,根据牛顿第二定律,有a m m g m m F )(sin -2121+=+θ)(,所以θsin 21g m m Fa -+=①设细线对B 物体的作用力为T ,对B 物体用隔离法,根据牛顿第二定律,有a m g m T 22sin =-θ ② 将①代入②得 212m m m F T +⋅= ③【结论】力的分配规律公式,与平面、斜面无关。

例4.粗糙斜面上的两个物体A 、B 两个滑块用短细线(长度可以忽略)相连放在倾角为θ的斜面上,它们的质量分别为m 1、m 2,与斜面间的动摩擦因数皆为为μ。

用力F 拉B ,使A 、B 一起沿斜面向上运动,如图2所示,则细线对B 物体的作用力为多大?图2【解析】对A 、B 两个物体组成的系统用整体法,根据牛顿第二定律,有a m m g m m g m m F )(cos -sin -212121+=++θμθ)()(,所以θμθcos sin 21g g m m Fa --+=设细线对B 物体的作用力为T ,对B 物体用隔离法,根据牛顿第二定律,有a m g m g m T 222cos sin =--θμθ将④代入⑤得 212m m m F T +⋅=【结论】力的分配规律2111m m m F F +⋅=,2122m m m F F +⋅=,不仅与有没有摩擦力无关,也与平面斜面无关。

特殊的,当21m m =时,221F F F ==二、两个外力例5.光滑水平面上的两个物体【例】如图3所示,两个质量相同的物体1和2紧靠在一起,放在光滑的水平桌面上,如果它们分别受到水平推力F 1和F 2作用,而且F 1>F 2,则1施于2的作用力大小为( )A .F 1B .F 2C .12(F 1+F 2) D .12(F 1-F )。

图3【解析】因两个物体同一方向以相同加速度运动,因此可把两个物体当作一个整体,这个整体受力如图所示,设每个物体质量为m ,则整体质量为2m 。

对整体:F 1-F 2=2ma , ∴a =(F 1-F 2)/2m 。

隔离2,对2受力分析,设1施于2的作用力大小为N ,对2:N -F 2=ma , ∴N =ma +F 2=m (F 1-F 2)/2m +F 2=(F 1+F 2)/2。

【答案】C【结论】两个物体之间的作用力不是21221)(m m m F F N +-=,而是21221)(m m m F F N ++=,这是始料未及的。

例6.粗糙水平面上的两个物体如图3所示,两个质量相同的物体1和2紧靠在一起,放在水平桌面上,两个物体与水平面的动摩擦因数均为μ,如果它们分别受到水平推力F 1和F 2作用,而且F 1>F 2,则1施于2的作用力大小为( )A .F 1B .F 2C .12(F 1+F 2) D .12(F 1-F )。

【解析】因两个物体同一方向以相同加速度运动,因此可把两个物体当作一个整体,这个整体受力如图所示,设每个物体质量为m ,则整体质量为2m 。

对整体:F 1-F 2=2ma , ∴a =(F 1-F 2-2mg μ)/2m=g mFF μ--2。

隔离2,对2受力分析,设1施于2的作用力大小为N ,对2:N -F 2-mg μ=ma , ∴N =ma +F 2+mg μ=m (2mF -F 21-g μ)+F 2+mg μ=(F 1+F 2)/2。

【答案】C【结论】如果两个物体质量不等,则两个物体之间的作用力21221)(m m m F F N ++=,与是否有摩擦力无关,即平面是否光滑无关,此规律也叫做“力的分配规律”。

【例题1】如图2所示,A 、B 两个滑块用短细线相连放在斜面上,滑块A 的质量为3kg ,滑块B 的质量为2kg ,他们与斜面间的动摩擦因数皆是0.25;当用F=50N 的力沿平行斜面方向拉滑块A ,使两个滑块以共同的加速度沿斜面向上加速运动时,则细线的拉力T 为 (sin37°=0.6,cos37°=0.8。

斜面倾角θ=37°,计算过程中取g =10m/s 2)A.40NB.30NC.20ND.10N【解法1通常解法】设A 、B 的质量分别为m 1、m 2,与斜面间动摩擦因数均为μ。

以A 、B 整体为研究对象,设其加速度为a ,根据牛顿第二定律有F-(m 1+m 2)g sin θ-μ(m 1+m 2)g cos θ=(m 1+m 2)a a =-+21m m Fg (sin θ+θμcos )=2m/s 2。

隔离B ,有T-m 2g sin θ-μm 2g cos θ=m 2a 将已知条件及a 值代入得:a m g m T 22)cos (sin ++=θμθ=20N答案为C【解法2,用力的分配规律解法】 根据上述规律,细线对A 的拉力为N m m m F T 2023250=+⨯=+=,答案为C.你们看,省去了多少公式和计算。

【例题2】如图4所示,质量分别为m A 、m B 的滑块A 、B 用轻质弹簧(劲度系数为k )相连,两物体置于动摩擦因数为μ的粗糙水平面上,在A 上施加一个水平向右的恒力F 1,两滑块一起以加速度a 向右做匀加速运动,此时弹簧伸长量为x 。

图4 图5如图5所示,在倾角为θ的斜面上有两个用与图4相同的轻质弹簧相连接的物块A 、B .它们的质量也分别为m A 、m B ,它们与斜面间的动摩擦因数也为μ。

当用大小为F 2的恒力F 沿斜面方向拉物块B 使滑块A 、B 共同沿斜面向上加速运动时,弹簧伸长量也为x ,则F 1与F 2之比为A.1:1B.1:2C.1:3D.1:4【解法1通常解法】对于图4,以A 、B 整体为研究对象,设其加速度为a ,根据牛顿第二定律有F 1--μ(m 1+m 2)g =(m 1+m 2)a a =-+21m m Fg μ。

隔离B ,有kx -μm 2g =m 2a 将已知条件及a 值代入得:2121m m m kxF +=对于图5,以A 、B 整体为研究对象,设其加速度为a ,根据牛顿第二定律有F 2-(m 1+m 2)g sin θ-μ(m 1+m 2)g cos θ=(m 1+m 2)a a =-+211m m F g (sin θ+θμcos )隔离B ,有kx-m 2g sin θ-μm 2g cos θ=m 2a 将已知条件及a 值代入得:2122m m m kxF +=所以121=F F ,答案为A. 【解法2,用力的分配规律解法】根据上述规律,对于图4,细线对A 的拉力为2121m m m F kx +=,对于图5,细线对A 的拉力为2122m m m F kx +=,所以121=F F,答案为A 。

你们看,是不是快了许多。

为什么有的学生做题快,有的学生做题慢,原因就在于此吧。

高中物理解题方法之分析法与综合法江苏省特级教师 戴儒京物理(力学)解题方法很多,首推分析法与综合法。

所谓分析法,就是从要求问题出发,分析如果要求这个问题,需要知道什么条件,再从需要知道什么条件,推到已知条件。

它的分析程序是:要求→需求→已知。

所谓综合法,就是从已知条件出发,求出可以求出的问题,直到能求出的问题是题目要求的问题。

它的解题程序是:已知→可求→要求。

分析法与综合法的程序是互逆的。

在《力与运动》这一章,分两类基本问题研究,分析法与综合法的具体应用程序是:1.已知受力情况求运动情况(1)根据受力情况,画受力图,求合力F ; (2)根据牛顿运动定律求加速度mFa =; (3)根据运动的初始条件和加速度,求运动情况。

相关文档
最新文档