七年级数学相交线与平行线2.3平行线的性质2.3.1平行线的性质教案

合集下载

第2章 相交线和平行线 单元整理分析教案

第2章  相交线和平行线   单元整理分析教案

的极好机会,只要求按步骤作图并保留作图的痕迹,暂时只要求用自己的语言表述出作
法。平行线的条件和平行线的特征是本章的重点,也是难点.
2.本章教学建议:
在生动的不属于产丰富的教学活动中,探索相交线、平行线的有关事实;以直观认
识为基础进行简单的说理,将几何直观与简单推理相结合,发展空间观察和推理能力;
借助平等的有关结论解决一些简单的实际问题.
两条直线被第三条直线所截,即谓的“三线八角”问题和对平行线的讨论是平面几 何中重要的议题,也是基础性的内容,有很大的教育价值。让学生通过探索和简单的推

理熟悉相关的性质与判定等几何事实,并确信它们成立,成为这册教材“公理化”的经
验背景。在这章的最后设置了“用尺规作线段和角”一节,是理解和运用相关几何知识
义. 活动二:掌握对顶 角、补角、余角的性 质,并能运用它们的 性质进行角的运算 及解决一些实际问
题.
2.1.1 两条直线
1.理解两直线位置关系 中垂直的含义,会用符 号表示两直线垂直; 2.能借助三角板、直尺 和方格纸画垂线;通过 折纸、动手操作等活动 探究归纳垂直的有关 性质;
的位置关系(2) 3.会利用两直线垂直的
实际问题.
2. 灵 活 地 综 合 利 用
平行线的判定和性
活动一:让学生 观察图片,然后引导 学生如何用数学知 识来解释其中的原 理.
质解决实际问题. 活 动 二 : 巩 固 例
题.掌握平行线的判
定与平行线的性质
2.4 用尺规作图
的区别.
1.能按照作图语言来 完成作图动作,能用尺 规作一个角等于已知 角,并了解它在尺规作 图中的简单应用。 2.能利用尺规作角的 和、差、倍。
符号语言、几何语言间的转化.

相交线与平行线教案

相交线与平行线教案

5.3.1 平行线的性质(第1课时)平行线的性质(一)一.教学目标1.知识与技能:经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.2.过程与方法:经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。

3.情感态度与价值观:培养学生合作交流意识和探索精神。

二.重点、难点重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.三.教学过程(一)、引导学生逆向思维现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补, 判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来: 如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?(二)、实践探究1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3-1).2.3.学生根据测量所得数据作出猜想.图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?在详尽分析后,让学生写出猜想.4.学生验证猜测.学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?c b a4321平行线具有性质:性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错相等.性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁内角互补.教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定. 平行线的性质平行线的判定因为a∥b, 因为∠1=∠2,所以∠1=∠2 所以a∥b.因为a∥b, 因为∠2=∠3,所以∠2=∠3, 所以a∥b.因为a ∥b, 因为∠2+∠4=180°, 所以∠2+∠4=180°, 所以a ∥b.6.教师引导学生理清平行线的性质与平行线判定的区别. 学生交流后,师生归纳:两者的条件和结论正好相反:由角的数量关系(指同位角相等,内错角相等,同旁内角互补), 得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等, 同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论. 7.进一步研究平行线三条性质之间的关系.教师:大家能根据性质1,推出性质2成立的道理吗?结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化? 学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程. 因为a ∥b,所以∠1=∠2(两直线平行,同位角相等); 又∠3=∠1(对顶角相等),所以∠2=∠3.教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由. 学生仿照以下说理,说出如何根据性质1得到性质3的道理. 8.平行线性质应用.例 (课本P23)如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?教师把学生情况,可启发提问:①梯形这条件如何使用?②∠A 与∠D 、∠B 与∠C 的位置关系如何,数量关系呢?为什么? 讲解按课本.(三)、巩固练习 1.课本练习(P22). (四)课堂小结: 经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算 (五)课堂作业:练习卷 (六)课堂反馈 一、判断题.1.两条直线被第三条直线所截,则同旁内角互补.( )2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.( )3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.( ) 二、填空题.1.如图(1),若AD ∥BC,则∠______=∠_______,∠_______=∠_______, ∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.87654321DCBAFEDC B A(1) (2) (3) 2.如图(2),在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.D C BA3.因为AB∥CD,EF∥CD,所以______∥______,理由是________.4.如图(3),AB∥EF,∠ECD=∠E,则CD∥AB.说理如下:因为∠ECD=∠E,所以CD∥EF( )又AB∥EF,所以CD∥AB( ).平行线的性质(第2课时)平行线的性质(二) 教学目标知识与技能:能够综合运用平行线性质和判定解题过程与方法.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论. 情感态度与价值观:推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用.教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么? 二、进行新课已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗? 让学生写出说理过程,师生共同评价三种不同的说理.(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F 的度数并填入表格.通过上述实践,FECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导: ①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD. ③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.E D CB AFEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行). 所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离. 教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式.师生共同分析上述四个命题的题设和结论,重点分析第②、③语句.第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设,“结果仍是等式”是结论。

七年级下册《相交线与平行线》教案优秀范文五篇

七年级下册《相交线与平行线》教案优秀范文五篇

七年级下册《相交线与平行线》教案优秀范文五篇令公桃李满天下,何用堂前更种花。

今天小编为大家带来的是七年级下册《相交线与平行线》教案优秀范文,供大家阅读参考。

七年级下册《相交线与平行线》教案优秀范文一1两条直线的位置关系(第1课时)课时安排说明:《两条直线的位置关系》共分两课时,第一课时,主要内容是探索两条直线的位置关系,了解对顶角、余角、补角的定义及其性质;第二课时,主要内容是垂直的定义、表示方法、性质及其简单应用.一、学生起点分析学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。

这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。

学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。

二、教学任务分析针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程” ,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。

因此,本节课的目标是:1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。

七年级数学上册《平行线的性质》教案、教学设计

七年级数学上册《平行线的性质》教案、教学设计
4.教师引导学生总结平行线性质的应用规律,提高学生的几何推理能力。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,每组选择一个具有挑战性的问题进行讨论,如:如何利用平行线性质求解角度或线段长度。
2.学生在小组内展开讨论,互相交流想法,共同解决问题。
3.教师巡回指导,参与学生讨论,引导学生深入思考,拓展思维。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结平行线的定义、性质和应用规律。
2.学生分享学习心得,交流学习方法,提高学习效率。
3.教师强调平行线在几何学习中的重要性,激发学生学习几何的兴趣。
4.布置课后作业,要求学生在课后对所学知识进行巩固和拓展,为下一节课的学习做好准备。
五、作业布置
3.结合平行线的性质,让学生尝试证明以下几何问题:在三角形中,若两边平行,则这两边所对的角相等。
4.完成一份关于平行线性质的思维导图,要求涵盖平行线的定义、判定方法、性质及应用等方面,培养学生系统梳理知识的能力。
5.针对本节课的学习内容,写一篇学习心得体会,要求学生从知识掌握、能力提升、情感态度等方面进行反思,以提高学生的学习自我监控能力。
为了巩固本节课所学的平行线性质,提升学生的几何素养,特布置以下作业:
1.完成课本第chapter页的练习题,包括选择题、填空题和解答题,要求学生在理解平行线性质的基础上,熟练运用相关知识解决问题。
2.设计一道实际生活中的问题,让学生运用平行线的性质进行求解。例如:在学校的操场上,有一条跑道和两条平行的跳远沙坑,如果已知跑道的宽度为w米,求跳远沙坑的宽度。
6.预习下一节课内容,了解平行线与相交线之间的关系,为后续学习奠定基础。
请同学们认真完成作业,及时发现问题,通过自主学习、合作交流等方式解决疑惑,不断提升自己的几何素养。教师将根据作业完成情况,给予针对性的指导和评价,助力学生成长。

平行线的性质教学设计]

平行线的性质教学设计]

七年级数学(下)第二章平行线与相交线2.3《平行线的性质》教案临渭区三马路中学张伟莉一、教学目标:知识与能力:1、经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理地表达的能力;2、经历探索平行线特征的过程,掌握平行线的特征,并能解决一些实际问题。

过程与方法:通过测量、剪纸、推理等方法来探索平行线的特征,并能解决实际问题。

体会平行线的特征广泛性、应用性,培养学生感受生活——认知规律——运用规律的思维方法,促进分析、归纳、概括等一般能力。

情感、态度、价值观:使学生在观察、操作、推理、交流的基础上,培养学生积极探索和合作交流意识,体会学数学的快乐和用数学的意识;体会平行线的特征在现实生活中广泛的应用性和丰富的文化价值,产生对数学的亲切感,激发学生学好数学的欲望。

二、教学重点:经历探索平行线特征的过程,由两直线平行得到同位角相等、内错角相等、同旁内角互补。

三、教学难点:平行线特征与直线平行的条件的综合应用。

四、教法:引导探究、合作学习法。

五、学法:根据本节的教学内容,教学目标及学生已有的知识实际,在教学时,我主要采用观察、操作、推理,归纳,合作交流等方法进行教学,指导学生学会观察,善于思考,积极探索,学会与他人合作。

为了突出重点,分散难点,在教学过程中,我借助多媒体进行直观形象的演示,通过不断的提出问题,分析问题,解决问题的过程,使学生的思维沿着“问题情景——数学模型——方法归纳”的模式,从具体的问题情景中抽象出数学问题,概括平行线的特征,使学生循序渐进的获得知识和提高能力。

六、教具准备:学生准备:画好的一组平行线、剪刀、量角器等。

教师准备:制作多媒体教学课件投影片20张。

七、教学过程设计:本节课设计了五个教学环节:(一)、目标预习、自主探究(二)、合作交流、课堂展示(三)、目标检测、拓展升华(四)、颗粒归仓、感悟收获(五)、分层作业、巩固新知。

第一环节:目标预习、自主探究1、 活动内容:通过有趣的实际问题,设置悬念,激发学生的求知欲和好奇心,如图,是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=110°。

人教版七年级数学下册第5章相交线与平行线(教案)

人教版七年级数学下册第5章相交线与平行线(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示平行线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的定义、性质和判定方法,以及它们在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
实践活动环节,分组的讨论和实验操作让同学们有了实际操作的机会,这有助于他们更好地消化吸收理论知识。但我观察到,有些小组在讨论时可能会偏离主题,需要在今后的教学中加强对讨论主题的引导。
至于学生小组讨论,我认为这是一个很好的互动和学习的机会。学生们能够在这个过程中相互启发,共同解决问题。不过,我也注意到,一些学生在讨论中较为沉默,可能需要我在以后的教学中更加关注这部分学生,鼓励他们积极参与。
-突破方法:通过动态几何软件或实物模型演示,让学生直观感受两条直线从不平行到平行的过程。
-判定方法的灵活运用:学生可能会在具体应用判定方法时感到困惑,尤其是在复杂的几何图形中。

相交线与平行线全章教案

相交线与平行线全章教案

相交线与平行线全章教案第一章:相交线与平行线的概念介绍教学目标:1. 了解相交线与平行线的定义及特点。

2. 能够识别和判断直线之间的相交与平行关系。

3. 掌握平行线的性质及推论。

教学内容:1. 相交线的定义及特点。

2. 平行线的定义及特点。

3. 平行线的性质及推论。

教学活动:1. 通过图片和生活实例引导学生认识相交线与平行线。

2. 利用几何工具(直尺、三角板)进行实际操作,让学生观察和体验相交线与平行线的关系。

3. 引导学生通过观察和思考,总结出平行线的性质及推论。

作业布置:1. 请学生运用几何工具,画出两条相交线和两条平行线。

2. 请学生总结平行线的性质及推论,并加以证明。

第二章:相交线的性质与判定教学目标:1. 掌握相交线的性质及判定方法。

2. 能够运用相交线的性质解决实际问题。

教学内容:1. 相交线的性质。

2. 相交线的判定方法。

教学活动:1. 通过几何图形的观察和分析,引导学生掌握相交线的性质。

2. 利用几何工具进行实际操作,让学生体验相交线的判定方法。

作业布置:1. 请学生运用相交线的性质,解决一些实际问题。

2. 请学生总结相交线的判定方法,并加以证明。

第三章:平行线的性质与判定教学目标:1. 掌握平行线的性质及判定方法。

2. 能够运用平行线的性质解决实际问题。

教学内容:1. 平行线的性质。

2. 平行线的判定方法。

教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的性质。

2. 利用几何工具进行实际操作,让学生体验平行线的判定方法。

作业布置:1. 请学生运用平行线的性质,解决一些实际问题。

2. 请学生总结平行线的判定方法,并加以证明。

第四章:平行线的应用教学目标:1. 掌握平行线的应用方法。

2. 能够运用平行线的性质解决实际问题。

教学内容:1. 平行线的应用方法。

2. 实际问题解决。

教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的应用方法。

2. 提供一些实际问题,让学生运用平行线的性质解决。

人教版七年级数学下册相交线与平行线《平行线的性质(第2课时)》示范教学设计

人教版七年级数学下册相交线与平行线《平行线的性质(第2课时)》示范教学设计

平行线的性质(第2课时)教学目标1.能够灵活应用平行线的性质解决问题.2.加深对平行线的三条性质的理解,提高分析问题、解决问题的能力.教学重点掌握平行线的性质.教学难点应用平行线的性质解决问题.教学过程知识回顾平行线的性质1:两直线平行,同位角相等.平行线的性质2:两直线平行,内错角相等.平行线的性质3:两直线平行,同旁内角互补.本节课,我们针对平行线的性质的应用,展开学习.【设计意图】对上节课所学习的平行线的性质进行复习回顾,为本节课题目的讲解提供理论依据.新知探究一、探究学习【问题】1.如图,直线AB∥CD,OG是∠EOB的平分线,∠EFD=70°,则∠BOG 的度数是().A.70°B.20°C.35°D.40°【师生活动】学生独立分析题目,得到过程如下:∵AB∥CD,∴∠EOB=∠EFD=70°.又∵OG平分∠EOB,∴∠BOG=12∠EOB=12×70°=35°.【答案】C【归纳】(1)在确定两角之间数量关系或求角度的问题中,如果有平行线,那么先考虑平行线的性质;(2)利用平行线的性质求角的度数时,一定要弄清楚所求角与已知角的关系.【问题】2.如图,CD⊥AB于点D,点F是BC上任意一点,FE⊥AB于点E,∠1=∠2,∠3=62°,求∠BCA的度数.【师生活动】教师引导学生对图形进行分析,找到角与角之间的对应关系,进行等量替换,通过平行线的性质与判定综合应用来解答本题.【答案】解:∵CD⊥AB,FE⊥AB,∴∠BEF=∠BDC=90°.∴FE∥CD.∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD.∴DG∥BC.∴∠BCA=∠3=62°.【归纳】遇到平行线的条件时就要联想到角的相等或互补;遇到角的相等或互补时就要联想到两直线平行;遇到垂直的条件时就要联想到垂直的性质.【问题】3.如图,AD是∠BAC的平分线,∠2=∠3,试说明∠3=∠G.【答案】解:∵AD平分∠BAC,∴∠1=∠2.又∵∠2=∠3,∴∠1=∠3.∴GE∥AD(内错角相等,两直线平行).∴∠2=∠G(两直线平行,同位角相等).∴∠3=∠G.【归纳】平行线的性质与判定的选择:(1)由角的关系得到平行,用的是平行线的判定.(2)由两直线平行得到角的关系,用的是平行线的性质.【问题】4.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,则∠1与∠2之间有什么数量关系?说明理由.【答案】解:∠1+∠2=90°.理由如下:∵BE平分∠ABC,CE平分∠BCD,∴∠1=12∠ABC,∠2=12∠BCD.∵AB∥CD,∴∠ABC+∠BCD=180°.∴∠1+∠2=12∠ABC+12∠BCD=12(∠ABC+∠BCD)=12×180°=90°.【归纳】要确定两个角之间的数量关系,关键是看这两个角属于哪一类角,当角不是由两平行线被第三条直线所截而形成的同位角、内错角或同旁内角时,一般要考虑这两个角与这三类角之间有无倍、分关系.【设计意图】前面几道题目涉及到应用平行线的性质进行相关角度的计算,在解决该类问题时,一般要综合应用平行线的判定和性质,灵活求解.【问题】5.如图,已知BE∥CF,∠1=∠2,请判断直线AB与CD是否平行,并说明理由.【师生活动】学生以组为单位,对图形进行分析,写出解题过程并组内纠错.【答案】解:∵BE∥CF,根据“两直线平行,内错角相等”,得∠EBC=∠BCF.又∵∠1=∠2,∴∠1+∠EBC=∠2+∠BCF.即∠ABC=∠BCD.根据“内错角相等,两直线平行”,得AB∥CD.【问题】6.如图,已知AD∥BC,∠A=∠C,试说明AB和CD的位置关系.【答案】解:AB∥CD.理由如下:∵AD∥BC,∴∠C=∠CDE.∵∠A=∠C,∴∠A=∠CDE.∴AB∥CD(同位角相等,两直线平行).【归纳】在利用平行线的性质或判定时,一定要看清楚直线与角的位置关系,分清同位角、内错角、同旁内角是由哪两条直线被哪条直线所截而成的.【设计意图】问题5和问题6主要应用平行线的性质判断边的位置关系,在解决该类问题时,要分清截线和被截线.【问题】7.如图,是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角分别是多少度?【师生活动】教师引导学生从梯形的特征去分析,知道两边平行就可以应用平行线的相关知识解决问题.【答案】解:因为梯形上、下两底AB与DC互相平行,根据“两直线平行,同旁内角互补”,可得∠A与∠D互补,∠B与∠C互补.于是∠D=180°-∠A=180°-100°=80°,∠C=180°-∠B=180°-115°=65°.所以梯形的另外两个角分别是80°,65°.【问题】8.如图,MN,EF表示两面互相平行的镜子,一束光线AB照射到镜面MN 上,反射光线为BC,此时∠1=∠2;光线BC经过镜面EF反射后的光线为CD,此时∠3=∠4.试判断AB与CD的位置关系,并说明理由.【答案】解:AB∥CD.理由如下:∵MN∥EF,∴∠2=∠3(两直线平行,内错角相等).∵∠1=∠2,∠2=∠3,∠3=∠4,∴∠1+∠2=∠3+∠4.∵∠1+∠ABC+∠2=180°,∠3+∠BCD+∠4=180°,∴∠ABC=∠BCD.∴AB∥CD(内错角相等,两直线平行).【归纳】实际问题一般要转化为数学问题解决,解决此类问题的关键是利用平行线的性质求有关角的度数.【设计意图】问题7和问题8两题涉及到平行线的性质在实际生活中的应用,解决这类问题的关键是找出平行线,利用平行线的性质求出角的度数.课堂小结板书设计一、应用平行线的性质计算角的度数二、应用平行线的性质判断边的位置关系三、平行线的性质在实际生活中的应用课后任务完成教材第20页练习第2题.。

相交线与平行线(复习课)教案

相交线与平行线(复习课)教案

相交线与平行线(复习课)教案一、教学目标1. 知识与技能:(1)能够识别和画出相交线与平行线;(2)理解平行线的性质,能够运用平行线的性质解决问题;(3)掌握相交线的性质,能够运用相交线的性质解决问题。

2. 过程与方法:(1)通过观察、操作、交流等活动,提高学生的空间想象能力;(2)培养学生运用数学知识解决实际问题的能力。

3. 情感态度价值观:(1)培养学生对数学的兴趣,激发学生学习数学的积极性;(2)培养学生合作交流的意识,提高学生的团队协作能力。

二、教学内容1. 相交线与平行线的定义;2. 平行线的性质;3. 相交线的性质;4. 运用相交线与平行线的性质解决问题。

三、教学重点与难点1. 教学重点:(1)相交线与平行线的定义;(2)平行线的性质;(3)相交线的性质;(4)运用相交线与平行线的性质解决问题。

2. 教学难点:(1)平行线的性质;(2)相交线的性质。

四、教学准备1. 教具:黑板、粉笔、直尺、三角板;2. 学具:学生用书、练习本、铅笔、橡皮。

五、教学过程1. 导入新课(1)复习相关知识:直线、射线、线段的概念及特点;(2)引导学生回顾上节课所学内容:相交线与平行线的定义及性质;(3)提问:相交线与平行线在实际生活中有哪些应用?2. 探究与交流(1)分组讨论:让学生分组探讨相交线与平行线的性质,并总结出规律;(2)各组汇报:让学生代表汇报本组的讨论成果;(3)教师点评:对学生的讨论成果进行评价,并给予表扬。

3. 知识拓展(1)引导学生思考:在实际生活中,我们为什么需要学习和应用相交线与平行线;(2)举例说明:如建筑设计、道路规划等领域的应用。

4. 巩固练习(1)让学生独立完成练习题,检测对本节课知识的理解和掌握程度;(2)教师批改:及时批改学生的练习题,给予反馈和指导。

5. 总结与反思(1)让学生回顾本节课所学内容,总结相交线与平行线的性质及应用;(2)教师点评:对学生的学习情况进行评价,并提出改进意见。

相交线与平行线(复习课)教案

相交线与平行线(复习课)教案

相交线与平行线(复习课)教案教学目标1 .梳理本章的知识结构.复习巩固相交线与平行线的有关概念和性质,使学生会用这些概念和 性质进行简单的推理或计算;能用直尺、三角板、量角器画垂线和平行线:经历对本章所学 知识回顾与思考的过程,将本章内容条理化,系统化,2 .通过对知识的疏理,进一步加深对所学概念的理解,经历把文字语言、符号语言和图形语言的相互转化过程.进一步熟悉和掌握几何语言,能用语言说明几何图形.3 .感受数学来源于生活又服务于生活,激发学习数学的乐趣.体验用运动变换的观点来揭示知识间内在联系.提高学生分析问题、解决问题的能力。

重点、难点重点:两条直线的相交和平行的位置关系,以及相交线、平行线的综合应用. 难点:垂直、平行线的性质和判定的综合应用.教学过程一、展示设计作品课前布置要求以小组为单位每组设计知识结构图作成手抄报形式,要求有创意体现本组特 色和风格教师给出评价二、回顾与思考出示幻灯片按知识网展开复习.L 对顶角、邻补角。

动动手 任意画两条相交直线,在形成的四个角(如图)中,两两相配共组成几对角?各对角 存在怎样的位置关系?(1)出示幻灯片 两条直线相交、构成哪两种特殊位置关系的角? 学生回答.练习一1 .如图1,直线AB 、CD 、EF 相交于0, NA0E 的对顶角是,邻补角是, NCOF 的对顶角是, 邻补角是2如图,直线a 、b 相交,Nl=40° ,求N2、N3、Z 4的度数。

结合练习教师强调:对顶角、邻补角是由两条相交面而成的具有特殊位置关系的角,要抓住对 顶角的特征,有公共顶角,角的两边互为反向延长线;邻补角的特征:有公共顶有一条公共 边,另一边互为反向延长线。

线相交 两条直邻补角,对顶角 垂线及其性质对顶角相等| 点到直线的距离线的位置关系 平面内两条直三条直 两条直线所截 线被第 同位角,内错角,同旁内角平行公理性质 平移判定(3)对顶角有什么性质?(对顶角相等)如果两个对顶角互补或邻补角相等,你得到什么结论?2.垂线及其性质.(1)垂线的定义及推理格式定义可以作垂线的制定方法用,也可以作垂线性质用.(2)如图所示,0为直线AB上一点,ZAOC=1 ZBOC, 0C是NAOD的平分线.3(1)求Z COD的度数;(2)判断0D与AB的位置关系,并说明理由.鼓励学生用不同方法求解变式训练渗透设未知数列方程的方法(3)垂线性质1和性质2.①请回忆一下后体育课测跳远成绩时,教师是怎样测量的?②垂线段最短。

2024年人教版初中数学七年级下册教案全册

2024年人教版初中数学七年级下册教案全册

2024年人教版初中数学七年级下册教案全册一、教学内容1. 第五章:相交线与平行线1.1 探索直线交点1.2 平行线的判定与性质1.3 平行线的应用2. 第六章:平面几何初步2.1 角的概念与性质2.2 三角形的分类与性质2.3 四边形的性质与判定3. 第七章:一元一次不等式与不等式组3.1 不等式的概念与性质3.2 一元一次不等式的解法3.3 不等式组的解法与应用4. 第八章:实数4.1 实数的概念与分类4.2 实数的运算4.3 实数与数轴二、教学目标1. 理解并掌握相交线、平行线的性质与判定方法,能够解决实际问题。

2. 掌握平面几何图形(角、三角形、四边形)的性质、分类与判定,培养空间想象能力。

3. 学会一元一次不等式与不等式组的解法,能够解决实际问题,提高逻辑思维能力。

4. 理解实数的概念,掌握实数的运算方法,培养运算能力。

三、教学难点与重点1. 教学难点:平行线的判定与性质、三角形与四边形的性质与判定、一元一次不等式与不等式组的解法、实数的概念与运算。

2. 教学重点:相交线与平行线的性质、平面几何图形的性质与判定、不等式的解法、实数的运算。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、几何模型。

2. 学具:直尺、圆规、量角器、练习本、笔。

五、教学过程1. 导入:通过实践情景引入,激发学生学习兴趣。

1.1 以生活中的实例(如斑马线、操场跑道等)引入相交线与平行线的概念。

1.2 通过观察几何模型,引导学生发现三角形、四边形的性质。

1.3 以实际问题的形式,让学生感受不等式与实数的应用。

2. 新课导入:讲解新课内容,阐述重点与难点。

2.1 利用多媒体教学设备,展示相交线、平行线的性质与判定方法。

2.2 通过例题讲解,让学生掌握平面几何图形的性质与判定。

2.3 结合实际例题,引导学生学会一元一次不等式与不等式组的解法。

2.4 通过实数的运算练习,让学生掌握实数的概念与运算方法。

3. 随堂练习:巩固所学知识,检验学习效果。

人教版 七年级下册数学第五章:相交线与平行线 平行线教案设计

人教版 七年级下册数学第五章:相交线与平行线 平行线教案设计

平行线一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论;●掌握平行线的判定方法与平行线的性质,运用所学的知识,判定两条直线是否平行。

用作图工具画平行线,从而学习如何进行简单的推理论证;●理解两条平行线的距离的概念;●什么是命题,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论。

重点难点:●重点:平行线的判定及性质,平移变换。

●难点:平行线的判定和性质的联系与区别;推理能力的培养;平移变换的理解及应用。

学习策略:●通过观察、思考、探究等活动归纳出平行线的概念和性质,借助练习熟悉“说理”和“简单推理”的过程,从而加深理解并熟练掌握本节内容。

二、学习与应用“凡事预则立,不预则废”。

科学地预习才能使我们上课听讲更有目的性和针对性。

知识回顾---复习学习新知识之前,看看你的知识贮备过关了吗?(一)两条直线被第三条直线截成的八个角中共有对同位角,对内错角,对同旁内角。

(二)同位角特征:截线旁,被截两线的方向。

内错角特征:截线旁,被截两线之间。

同旁内角特征:截线旁,被截两线之间。

知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习,请在虚线部分填写预习内容,在实线部分填写课堂学习内容。

课堂笔记或者其知识点一:平行线的概念及表示方法在同一平面内,不相交的两条直线叫做。

通常用“”表示平行,如图1中,直线AB与CD平行,记作,如果用l,m表示这两条直线,那么直线l与直线m平行,记作。

要点诠释:(1)平行线必须满足两个条件:①,②,但要注意直线的特点是可以向__方无限延长,在平面内只能画出有限长,如下图2中直线a,b看上去不相交,但当把它们看作无限长之后会发现它们其实是相交的,因此直线a,b不平行,从平行线的定义中,我们还可以学习到这样的知识:在同一平面内,不重合的两条直线的位置关系有两种:①,②。

初一数学相交线与平行线教案

初一数学相交线与平行线教案

学生教师吴老师日期2013/12/22 年级初一学科数学时段学情分析1、对本周相关知识点进行梳理,强化训练2、对之前的作业进行评讲课题相交线与平行线提高学习目标与考点分析结合错题集,找到易错点,对症下药。

学习重点难点让学生熟练掌握解题的方法,会运用知识灵活计算,并能正确地进行相关题目的运算教学方法讲练结合、互动启发教学过程1.平行线题中的常见类型(1)平行线性质的应用例1:如图3所示,直线AB、CD被直线EF所截,交点分别为M、N,则∠EMB的同位角是()。

A. ∠AMFB. ∠BMFC.∠ENCD.∠END例2:如图所示,AD//BC,点E在BD的延长线上,若∠ADE=155°,则∠DBC等于()A. 155°B. 50°C. 45°D. 25°濠知教育学科导学案3412例3已知:如图所示,直线AB//CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DFE的平分线相交于点P。

试说明∠P为什么等于90°。

例4:如果两个角的两边分别平行,而其中一个角比另一个角的3倍少40°,求这两个角的度数。

[分析]如图所示,本题主要考查的是平行线的性质,要清楚两个角的两边分别平行,那么这两个角或者相等或者互补。

(2)平行线判定的应用例1.已知:如图,直线EF与AB、CD分别相交于点G、H,∠1=∠2。

求证:AB∥CD。

例2.已知:如图,BE∥DF,∠B=∠D。

求证:AD∥BC。

例3.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.b a1D E2CFA B NMFE DCBA例4.如图,已知018021=∠+∠,C A ∠=∠,AD 平分BDF ∠。

求证:BC 平分DBE ∠ 2.相交线题中的常见类型: (1)垂线例1.如图(18),ABA⊥BD,CD⊥MN,垂足分别是B 、D 点,∠FDC=∠EBA. (1)判断CD 与AB 的位置关系; (2)BE 与DE 平行吗?为什么?例2. 已知:如图,AO BO ⊥∠=∠,12。

相交线与平行线教案

相交线与平行线教案

相交线与平行线教案一、教学目标1. 知识与技能:了解相交线、平行线的定义与性质,并能应用相关定理解决实际问题。

2. 过程与方法:通过观察、实验等多种方式培养学生的观察、分析和解决问题的能力。

3. 情感态度价值观:培养学生的数学思维和创造力,培养合作学习和探究精神。

二、教学重点了解相交线、平行线的定义和性质,并能应用相关定理解决实际问题。

三、教学难点应用相关定理解决实际问题。

四、教学过程1. 导入通过讨论生活中的实例,引导学生了解相交线与平行线,例如:高速公路的车道、学校的操场等。

2. 引入通过介绍相交线与平行线的定义,让学生了解两者的区别:相交线:两条线交于一点。

平行线:在同一个平面内,永不相交的两条直线。

3. 概念解释让学生观察两条相交线,然后给出相交线的性质:性质1:相交线的交点只有一个。

性质2:相交线的相邻两个角互补,即它们的和为180°。

通过实验,让学生观察两条平行线,然后给出平行线的性质:性质1:平行线在同一平面上,永不相交。

性质2:平行线的对应角相等,即它们的度数相等。

性质3:平行线与一条横截线的任一条对应角互补,即它们的和为180°。

5. 探究活动让学生通过实际操作,观察并总结相交线和平行线的性质。

6. 归纳总结通过讨论和总结,让学生归纳出相交线与平行线的定义和性质。

7. 练习让学生通过练习,巩固所学的内容。

8. 拓展通过拓展的问题,培养学生的数学思维和创造力。

例如:如何证明两条直线平行?给出两条直线的方程,如何判断它们是否平行?9. 小结通过小结,帮助学生对本节课所学的内容进行总结和回顾。

五、课堂作业完成教材上的相关练习。

六、板书设计1. 相交线与平行线的定义2. 相交线的性质3. 平行线的性质七、教学反思通过引入和概念解释,将相交线和平行线的定义和性质引入学生的视野,通过实际操作和练习,培养学生观察、分析和解决问题的能力。

同时,通过拓展问题培养学生的数学思维和创造力,提高他们的探究精神。

七年级下册《相交线与平行线》教案

七年级下册《相交线与平行线》教案

七年级下册《相交线与平行线》教案七年级下册《相交线与平行线》教案1在本次活动中,教师应重点关注:(1)学生从简单的具体实物抽象出相交线、平行线的能力.(2)学生认识到相交线、平行线在日常生活中有着广泛的应用.(3)学生学习数学的兴趣.教师出示剪刀图片,提出问题.学生独立思考,画出相应的几何图形,并用几何语言描述.教师深入学生中,指导得出几何图形,并在黑板上画出标准图形.教师提出问题.学生分组讨论,在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征.学生可结合概念特征找到图中的两对邻补角与两对对顶角.在本次活动中,教师应关注:(1)学生画出两条相交线的几何图形,用语言准确描述.(2)学生能否从角的位置关系上对角进行分类.(3)学生是否能够正确区分邻补角、对顶角.(4)学生参与数学学习活动的主动性,敢于发表个人观点.《相交线与平行线》单元测试题25.如图,直线EF∥GH,点B、A分别在直线EF、GH上,连接AB,在AB左侧作三角形ABC,其中∠ACB=90°,且∠DAB=∠BAC,直线BD平分∠FBC交直线GH于D(1)假设点C恰在EF上,如图1,那么∠DBA=_________(2)将A点向左移动,其它条件不变,如图2,那么(1)中的结论还成立吗?假设成立,证明你的结论;假设不成立,说明你的理由(3)假设将题目条件“∠ACB=90°〞,改为:“∠ACB=120°〞,其它条件不变,那么∠DBA=_________(直接写出结果,不必证明)《第五章相交线与平行线》单元测试题一、选择题(每题3分,共30分)1、如图1,直线a,b相交于点O,假设∠1等于40°,那么∠2等于()A.50°B.60°C.140°D.160°七年级下册《相交线与平行线》教案2教学目标1、理解相交线、邻补角、对顶角的概念;2、理解对顶角相等的性质.3、通过对顶角性质的推理过程,提高推理和逻辑思维能力;4、通过变式图形的识图训练,提高识图能力。

人教版七年级数学下册相交线与平行线《平行线的性质(第1课时)》示范教学设计

人教版七年级数学下册相交线与平行线《平行线的性质(第1课时)》示范教学设计

平行线的性质(第1课时)教学目标1.理解平行线的性质.2.经历平行线性质的探究过程,从中体会研究几何图形的一般方法.教学重点掌握平行线的性质.教学难点平行线的性质的探究过程.教学过程新课导入利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果两条直线平行,同位角、内错角、同旁内角又各有什么关系呢?这就是我们要学习的平行线的性质.类似于研究平行线的判定,我们先来研究两条直线平行时,它们被第三条直线截得的同位角的关系.【设计意图】复习上节课所学的平行线的三种判定方法,引入探究课题,有意识地让学生回顾上节课内容,为后面类比研究平行线判定的过程来构建平行线性质的研究过程作好铺垫.新知探究一、探究学习【问题】画两条平行线a∥b,然后,画一条截线c与这两条平行线相交,度量所形成的八个角的度数,把结果填入下表:【师生活动】学生独立画出图形,并对角度进行度量,完成表格.【答案】画出图形如下:完成表格:【问题】∠1,∠2,…,∠8中,哪些是同位角?它们的度数之间有什么关系?由此猜想两条平行线被第三条直线截得的同位角有什么关系.【师生活动】在学生探究过程中,教师关注学生对同位角的标记是否准确,能否正确对角度进行度量,并鼓励学生独立完成猜想.【答案】同位角有:∠1和∠5,∠2和∠6,∠4和∠8,∠3和∠7.每对同位角的度数都相等.猜想:两条平行线被第三条直线所截,同位角相等.【追问】再任意画一条截线d,同样度量并比较各对同位角的度数,你的猜想还成立吗?【师生活动】教师引导学生随意画出另一条截线,对前面的猜想进行验证.【答案】画出图形,并标记出各角:任意画一条截线d,得到各对同位角为:∠1′和∠5′,∠2′和∠6′,∠3′和∠7′,∠4′和∠8′.经度量,∠1′=∠5′=∠3′=∠7′=70°,∠2′=∠6′=∠4′=∠8′=110°.所以猜想成立.【新知】用文字语言和符号语言分别概括发现的结论:一般地,平行线具有如下性质.性质1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.符号语言:∵AB∥CD,∴∠1=∠2.【动图】仔细观察下面的动图,巩固对平行线的性质1的掌握.【设计意图】让学生充分经历动手操作,独立思考,合作交流,验证猜想的探究过程,并且在这一过程中,锻炼学生由图形语言转化为文字语言、文字语言转化为符号语言的归纳能力和表达能力,为后面学习平行线的其他性质打下基础.【问题】上一节,我们利用“同位角相等,两直线平行”推出了“内错角相等,两直线平行”.类似地,你能由性质1,根据下图,推出两条平行线被第三条直线截得的内错角之间的关系吗?【师生活动】教师引导学生结合平行线的判定,作出猜想:∠1=∠2.【追问】怎样验证猜想?【师生活动】教师给出要验证的问题:已知直线a∥b,c是截线.试说明∠1=∠2.引导学生写出推理过程,并分析是否正确.【答案】解:∵a∥b,∴∠3=∠2(两直线平行,同位角相等).又∵∠1=∠3(对顶角相等),∴∠1=∠2.【追问】类比性质1,能用文字语言和符号语言分别对得出的结论进行表述吗?【答案】性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.符号语言:∵AB∥CD,∴∠1=∠2.【动图】仔细观察下面的动图,巩固对平行线的性质2的掌握.【设计意图】在教师的引导下逐步构建研究思路,循序渐进地引导学生思考,从“说理”向“简单推理”过渡.【问题】由“两直线平行,同位角相等”,我们可以推出平行线关于同旁内角的什么性质?【师生活动】教师引导学生结合图形及前面学习的性质1进行探究,并鼓励学生独立得到猜想:∠2+∠4=180°,并让学生把要说明的问题转化为数学语言:如图,已知直线a ∥b,c是截线.试说明∠4+∠2=180°,然后完成解答.【答案】解:∵a∥b,∴∠3=∠2(两直线平行,同位角相等).∵∠3+∠4=180°,∴∠4+∠2=180°.【追问】类比性质1,2,能用文字语言和符号语言分别对得出的结论进行表述吗?【答案】性质3:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.符号语言:∵AB∥CD,∴∠1+∠2=180°.【动图】仔细观察下面的动图,巩固对平行线的性质3的掌握.【总结】同位角相等、内错角相等、同旁内角互补都是平行线特有的性质,切不可忽略“两直线平行”这一前提条件.当两条直线不平行时,同位角、内错角就不相等,同旁内角也不互补.【设计意图】逐步培养学生的推理能力,使学生初步养成言之有据的习惯,从而能进行简单的推理.二、典例精讲【例1】如图,直线l与直线a,b相交,若a∥b,∠1=70°,则∠2的度数是多少?【师生活动】教师引导学生用前面学过的平行线的三个性质解答本题.【答案】解法一:∵∠1与∠3互为邻补角,∴∠3=180°-∠1=110°.又∵a∥b,∴∠2=∠3=110°(两直线平行,内错角相等).解法二:∵∠1与∠4互为邻补角,∴∠4=180°-∠1=110°.又∵a∥b,∴∠2=∠4=110°(两直线平行,同位角相等).解法三:∵∠1与∠5互为对顶角,∴∠5=∠1=70°.又∵a∥b,∴∠2=180°-∠5=110°(两直线平行,同旁内角互补).【归纳】当题目的已知条件中出现两直线平行时,要考虑到平行线的性质,从而将直线的位置关系转化为角的数量关系.应用平行线的性质解题时要辨析清楚“三线八角”,并将它们的关系记准确.【设计意图】帮助学生巩固平行线的性质、及文字语言、符号语言、图形语言之间的相互转化,为今后进一步学习推理打下基础.【例2】如图,已知∠1=108°,∠2=72°,∠3=60°,试求∠4的度数.【师生活动】学生独立解决,教师巡视纠错.【答案】解:∵∠1+∠2=108°+72°=180°,∴a∥b(同旁内角互补,两直线平行).∴∠4=∠3=60°(两直线平行,同位角相等).【归纳】几何中,图形之间的“位置关系”一般都与某些“数量关系”有着内在联系.由角的相等或互补关系,得到两条直线平行的结论是判定方法;而由两条直线平行,得到角相等或互补关系的结论是平行线性质的应用.【设计意图】考查学生是否掌握平行线的判定与性质之间的区别和联系,知道在涉及到相关角度或平行时如何入手解决.课堂小结板书设计一、平行线的性质1二、平行线的性质2三、平行线的性质3课后任务完成教材第20页练习第1题.。

初中数学认识平行线教案

初中数学认识平行线教案

初中数学认识平行线教案一、教学目标:1. 知识与技能:使学生掌握平行线的定义、性质和判定,能运用平行线的知识解决一些实际问题。

2. 过程与方法:通过观察、操作、推理等活动,培养学生的空间观念和逻辑思维能力。

3. 情感、态度、价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生逐步养成言之有理的习惯。

二、教学内容:1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。

2. 平行线的性质:(1)平行线上的对应角相等。

(2)平行线之间的夹角相等。

(3)平行线与截线所成的角相等。

3. 平行线的判定:(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

三、教学重点与难点:1. 教学重点:平行线的定义、性质和判定。

2. 教学难点:平行线的性质和判定。

四、教学过程:1. 导入:利用实物展示,如黑板、书桌等,引导学生观察并发现其中的平行线,激发学生的兴趣。

2. 新课导入:介绍平行线的定义,通过图示和实例使学生理解平行线的概念。

3. 性质讲解:(1)利用教具演示,引导学生发现平行线上的对应角相等。

(2)通过实际操作,使学生理解平行线之间的夹角相等。

(3)利用几何画板或实物,展示平行线与截线所成的角相等。

4. 判定讲解:(1)利用图示和实例,引导学生理解同位角相等,两直线平行。

(2)通过实际操作,使学生明白内错角相等,两直线平行。

(3)利用几何画板或实物,展示同旁内角互补,两直线平行。

5. 练习与巩固:布置一些相关的练习题,让学生独立完成,检验学生对平行线知识的掌握程度。

6. 总结与拓展:对本节课的内容进行总结,强调平行线的性质和判定,并引导学生思考如何运用平行线的知识解决实际问题。

五、教学反思:通过本节课的教学,学生应掌握平行线的定义、性质和判定。

在教学过程中,要注意引导学生观察、操作、推理,培养学生的空间观念和逻辑思维能力。

同时,要关注学生的学习兴趣,激发学生对数学的热爱,使学生在轻松愉快的氛围中学习。

湘教版七年级数学下《第四章相交线与平行线》教案

湘教版七年级数学下《第四章相交线与平行线》教案
(2)电梯和靶子在运动的过程中,它们的形状和大小发生变化了吗?
2.平移的概 念
从上述问题中归纳:把图形上 所有的点都按同一方向移动相同的距离叫作平移.
3.上例中的平 移中的对应点A与A′,B与B′等等,原来的图形叫作原像,在新位置的图形叫作该图形在平移下的像.
4.平移的特点:平移不改变图形的形状和大小.平移还不改变直线的方向.
(3)两条直线被第三条直线所截,如果有一对同旁内角互补,那么另一对同旁内角也互补,并且同位角相等,内错角也相等.
三、实效训练:
1.练习P77练习第3题
2.如图:下列各对角是什么角,它们是由ቤተ መጻሕፍቲ ባይዱ
哪两条直线被哪条直线所截形成的?
①∠2和∠3②∠1和∠4③∠1和∠3
2、如图,填写理由
已知:∠1=∠2
∵∠2=∠4( )
教学过程:
一、问题情境
1.两条直线相交后产生了几个角?每两个角之间的关系是什么?
2.三条直线之间也可以有什么样的位置关系?
上节课是对相交的两条直线所形成的四个角进行研究,今天我们就对三条直线相交后形成的八个角进行研究,简称为:三线八角
二、新课学习
1.讲解同位角、内错角、同旁内角的概念
同位角:我们把具有∠1和∠5这种位置关系的一对角叫做同位角.(∠1和∠5分别在直线AB和CD的同一方向,并且都在直线EF的同侧)
2.如右图,三条直线AB,CD,EF相交于一点O,∠AOD的对顶角是_____,
∠AOC的邻补角是_______,若∠AOC=50°,则∠BOD=______,
∠COB=_______,∠AOE+∠DOB+∠COF=_____.
3.如图,直线AB,CD相交于O,OE平分∠AOC,若∠AOD-∠DOB=50°, 求∠EOB的度数.

相交线与平行线教案人教版(教案)

相交线与平行线教案人教版(教案)

相交线与平行线教案人教版(优秀教案)第一章:相交线与平行线的概念介绍1.1 相交线的定义:讲解两条直线在平面内相交的概念。

展示实例,让学生理解相交线的特征。

1.2 平行线的定义:讲解两条直线在平面内不相交的概念。

展示实例,让学生理解平行线的特征。

第二章:相交线与平行线的性质2.1 相交线的性质:讲解相交线的交点特征,即交点将相交线分为两对对应角。

展示实例,让学生理解相交线的性质。

2.2 平行线的性质:讲解平行线的对应角特征,即同位角相等、内错角相等、同旁内角互补。

展示实例,让学生理解平行线的性质。

第三章:相交线与平行线的判定3.1 相交线的判定:讲解如何判断两条直线是否相交。

展示实例,让学生学会判断相交线。

3.2 平行线的判定:讲解如何判断两条直线是否平行。

展示实例,让学生学会判断平行线。

第四章:相交线与平行线在实际问题中的应用4.1 相交线的应用:通过实例讲解相交线在实际问题中的应用,如测量角度、确定位置等。

4.2 平行线的应用:通过实例讲解平行线在实际问题中的应用,如建筑设计、道路规划等。

第五章:相交线与平行线的练习题5.1 相交线的练习题:提供一些关于相交线的练习题,让学生巩固相交线的概念和性质。

5.2 平行线的练习题:提供一些关于平行线的练习题,让学生巩固平行线的概念和性质。

第六章:同位角与内错角的性质6.1 同位角的性质:讲解同位角的定义及特点,即两条直线被第三条直线所截,位于两条直线同一侧且相对位置相同的两对角。

展示实例,让学生理解同位角的性质。

6.2 内错角的性质:讲解内错角的定义及特点,即两条直线被第三条直线所截,位于两条直线之间且相对位置相同的两对角。

展示实例,让学生理解内错角的性质。

第七章:同位角与内错角的判定7.1 同位角的判定:讲解如何判断两对角是否为同位角。

展示实例,让学生学会判断同位角。

7.2 内错角的判定:讲解如何判断两对角是否为内错角。

展示实例,让学生学会判断内错角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.从所起作用上看
性质:根据两条直线平行,去证两角相等或互补:
判定:根据两角相等或互补,去证两条直线平行.
板书设计
2.3.1平行线的性质
(一)知识回顾(三)例题解析(五)课堂小结
(二)探索新知例1、例2
(四)课堂练习练习设计
本课作业
教材P51随堂练习
本课教育评注(实际教学效果及改进设想)
3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.
检验学生学习效果,学生独立完成相应的练习,教师批阅部分学生,让优秀生帮助批阅并为学困生讲解.
总结提升
小结:平行线的性质与判定的区别:
1.从因果关系上看
性质:因为两条直线平行,所以……;
判定:因为……,所以两条直线平行.
例题解析:
例已知某零件形如梯形ABCD,现已残破,只能量得∠A=115°,∠D=100°,你能知道下底的两个角∠B、∠C的度数吗?根据是什么?(如图).
解:∠B=180°-∠A=65°,∠C=180°-∠D=80°.(根据平行线的性质三)
引出研究本节课要学习知识的必要性,清楚新知识的引出是由于实际生活的需要
A.95°B.85°C.70°D.55°
解析:根据“对顶角相等”得到∠5=∠1=85°,再由“同旁内角互补,两直线平行”得到a∥b,最后根据“两直线平行,同旁内角互补”即可得到结论.如图,∵∠5=∠1=85°,∴∠5+∠2=85°+95°=180°,∴a∥b,∴∠3+∠4=180°.∵∠4=125°,∴∠3=55°.故选D.
学生积极参与学习活动,为学生动脑思考提供机会,发挥学生的想象力和创造性
体现教师的主导作用
学以致用,
举一反三
教师给出准确概念,同时给学生消化、吸收时间,当堂掌握
例2由学生口答,教师板书,
课堂检测
1.如图,AB∥CD,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?
2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C各是多少度,为什么?
【类型二】两直线平行,内错角相等
如图,∠A=∠D,如果∠B=20°,那么∠C为()
A.40°B.20°C.60°D.70°
解析:∵∠A=∠D,∴AB∥CD.∵AB∥CD,∠B=20°,∴∠C=∠B=20,已知∠1=85°,∠2=95°,∠4=125°,则∠3的度数为()
A.35°B.70°C.90°D.110°
解析:由∠1=∠2,可根据“同位角相等,两直线平行”判断出a∥b,可得∠3=∠5.再根据邻补角互补可以计算出∠4的度数.∵∠1=∠2,∴a∥b,∴∠3=∠5.∵∠3=70°,∴∠5=70°,∴∠4=180°-70°=110°.故选D.
方法总结:此题主要考查了平行线的判定方法与性质1,关键是掌握平行线的判定定理与性质定理,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.
设计意图
回顾旧知,
引出新课
窗户的内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?
从学生已有的知识入手,引入课题
新知探索
例题
精讲
探究点:平行线的性质
【类型一】两直线平行,同位角相等
如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是()
2.3.1平行线的性质
年级
七年级
学科
数学
主题
平行线
主备教师
课型
新授课
课时
1
时间
教学目标
1.使学生掌握平行线的三个性质,并能运用它们作简单的推理.
2.使学生了解平行线的性质和判定的区别.
教学
重、难点
重点:掌握平行线的三个性质,
难点:掌握平行线的三个性质,
导学方法
启发式教学、小组合作学习
导学步骤
导学行为(师生活动)
相关文档
最新文档