3月2日作业解答(第一章,2.1.1,版5,13计)
高中数学必修3第一章课后习题解答
新课程标准数学必修3第一章课后习题解答第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数.第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a 的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b am =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S.第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:INPUT “a ,b=”;a ,bsum=a+b diff=a -b pro=a*b quo=a/bPRINT sum ,diff ,pro ,quoEND2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;若r<6.8,则输出r ,并执行下一步.第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24)1、程序:、程序:3、程序: 练习(P29)1、程序:INPUT “a ,b ,c=”;a ,b ,cIF a+b>c AND a+c>b AND b+c>a THEN PRINT “Yes.” ELSEPRINT “No.” END IF ENDINPUT “a ,b ,c=”;a ,b ,cp=(a+b+c)/2 s=SQR(p*(p -a) *(p -b) *(p -c))PRINT “s=”;sENDINPUT “F=”;F C=(F -32)*5/9 PRINT “C=”;C END4、程序: INPUT “a ,b ,c=”;a ,b ,c sum=10.4*a+15.6*b+25.2*cPRINT “sum =”;sumEND2、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52.34练习(P321习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩2、程序:习题1.2 B 组(P33)1、程序:31.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17.2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.第七步,输出成绩分别在区间[0,60),[60,80),[80,100]的人数,,a b c .2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等.1、(1)程序框图:程序:1、(2)程序框图:程序:2、见习题1.2 B组第1题解答.INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y ENDINPUT “x=”;x IF x<0 THENy=(x+2)^2 ELSEIF x=0 THENy=4ELSEy=(x-2)^2 END IFEND IFPRINT “y=”;y END34、程序框图:程序:INPUT “t=0”;t IF t<0 THENPRINT “Please input again.” ELSEIF t>0 AND t<=180 THEN y=0.2 ELSEIF (t -180) MOD 60=0 THEN y=0.2+0.1*(t-180)/60 ELSEy=0.2+0.1*((t-180)\60+1) END IF END IFPRINT “y=”;y END IF ENDINPUT “n=”;n i=1 S=0WHILE i<=n S=S+1/i i=i+1 WENDPRINT “S=”;S END5、 (1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m 第二章 复习参考题B 组(P35)1、 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n .第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步. i=100 sum=0 k=1 WHILE k<=10 sum=sum+i i=i /2 k=k+1 WEND PRINT “(1)”;sum PRINT “(2)”;i PRINT “(3)”;2*sum -100 ENDINPUT “n=”;n IF n MOD 7=0 THEN PRINT “Sunday ” END IF IF n MOD 7=1 THEN PRINT “Monday ” END IF IF n MOD 7=2 THEN PRINT “Tuesday ” END IF IF n MOD 7=3 THEN PRINT “Wednesday ” END IF IF n MOD 7=4 THEN PRINT “Thursday ” END IF IF n MOD 7=5 THEN PRINT “Friday ” END IF IF n MOD 7=6 THEN PRINT “Saturday ” END IF END。
第一章课后习题答案
第一章课后习题答案1、5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生A和B之间正好有3个女生的排列是多少?解:(a) 若女生在一起,可将5个女生看作一个整体参与排列,有8!种方式,然后5个女生再进行排列,有5!种方式,根据乘法法则,共有8!5!种方式。
(b) 若女生两两不相邻,可将7个男生进行排列,有7!种方式,考虑到两个男生之间的6个位置和两头的2个位置,每个位置安排一个女生均符合题意,故从中选出5个位置,然后5个女生再进行排列,按顺序安排到这5个位置,有C(8, 5)5!种方式,根据乘法法则,共有7!C(8, 5)5!=7!P(8, 5)种方式。
(c) 若两男生A和B之间正好有3个女生,可以按照顺序操作如下:首先将女生分为两组,一组3人,一组2人,有C(5, 3)种方式;将男生A和B看作一个整体,加上其他5个男生,2人一组的女生进行排列,有8!种方式;将3人一组的女生安排到男生A和B之间进行排列,有3!种方式;男生A和B进行排列,有2!种方式。
根据乘法法则,所求的排列方式为8!C(5, 3)3!2!=8!P(5, 3)2!2、求3000到8000之间的奇整数的数目,而且没有相同的数字。
解:设介于3000到8000之间的奇整数表示为abcd,则a∈{3, 4, 5, 6, 7}, d∈{1, 3, 5, 7, 9},对a进行分类如下:(1) 若a∈{3, 5, 7},则d有4种选取方式,bc有P(8, 2)种方式,根据乘法法则,此类数字有3⨯4⨯P(8, 2)=672个(2) 若a∈{4, 6},则d有5种选取方式,bc仍有P(8, 2)种方式,根据乘法法则,此类数字有2⨯5⨯P(8, 2)=560个根据加法法则,3000到8000之间数字不同的奇整数的数目为672+560=1232个3、证明nC(n-1, r)=(r+1)C(n, r+1),并给出组合解释。
4月15日作业解答(3.4,3.5,版5,13计)
(3.4,3.5)作业1.某计算机主存容量为64KB,其中ROM区为4KB,其余为RAM区,按字节编址。
现要用2K×8位的ROM芯片和4K×4位的RAM芯片来设计该存储器,则需要上述规格的ROM芯片和 RAM芯片数分别是 d 。
a)1、15 b) 2、15 c) 1、30 d) 2、302.双端口存储器能高速进行读写,是因为采用ba)高速芯片b)两套相互独立的读写电路c)流水技术d)新型器件3.双端口存储器在b的情况下会发生读/写冲突。
a)左端口与右端口的地址码不同b)左端口与右端口的地址码相同c)左端口与右端口的数据码不同d)左端口与右端口的数据码相同4.交叉存储器实际上是一种a存储器,它能执行独立的读写操作。
a)模块式,并行,多个b)模块式,串行,多个c)整体式,并行,一个d)整体式,并行,一个5.P1116[解:]①16位②17位③128K×16/(32K×8)=8(片)主要问题:缺少标注,画图乱(三种总线没化清楚,应付了事)6.P1117 要求:给出设计过程,作出主存地址空间分配表(详细),画出存储器组成框图。
[解:]①分析ROM区:(3FFFF)H=0011 1111 1111 1111容量为16K×16位,需14条地址线选片:2片8K×16,或1片16K×16②计算RAM区所需芯片数:d=(40K×8)/ (8K×8)=10(片)2片一组,共5组,每片需13条地址线②地址线的分配:地址空间分配表③数据线的连接:④控制信号:ROM 区片选:第一组SRAM 区片选:第二组SRAM 区片选:第三组SRAM 区片选:第四组SRAM 区片选:第五组SRAM 区片选:注意:片选信号低电平有效逻辑图作图要求:地址、数据总线、片选逻辑要标注完整1010101314151314151313141514150)(Y Y m m m m A A A A A A A A A A A A CS ⋅=⋅=+=+=+==331314151Y m A A A CS ===441314152Y m A A A CS ===551314153Y m A A A CS ===661314154Y m A A A CS ===771314155Y m A A A CS ===主要问题:1)无详细地址空间表(等于没有设计过程),图从何处来?2)标注不完整(或无标注):a)地址线:ROM缺A13,或标注混乱b)数据线:没有分开标注高低位c)控制信号:无MREQ3)应付了事7.某CPU地址总线为16位(A15~A0),数据总线8位(D7~D0),访存控制信号为MREQ(低电平有效),WR/为读写控制信号(高电平为读,低电平为写)。
七年级数学上册《第一章 有理数的加法》同步练习及答案-人教版
七年级数学上册《第一章有理数的加法》同步练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________基础巩固练习一、选择题1.计算-2+1的结果是( )A.1B.-1C.3D.-32.下列计算正确的是( )A.(+6)+(+13)=+7B.(-6)+(+13)=-19C.(+6)+(-13)=-7D.(-5)+(-3)=83.佳佳家冰箱冷冻室的温度为-15 ℃,求调高3 ℃后的温度,这个过程可以用下列算式表示的是( )A.-15+(-3)=-18B.15+(-3)=12C.-15+3=-12D.15+(+3)=184.有理数a、b在数轴上对应的位置如图所示,则a+b的值( )A.大于0B.小于0C.小于aD.大于b5.某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损)星期一二三四五盈亏+220 -30 +215 -25 +225则这个周共盈利( )A.715元B.630元C.635元D.605元6.两个有理数的和等于零,则这两个有理数( )A.都是零B.一正一负C.有一个加数是零D.互为相反数7.下列各式的结果,符号为正的是( )A.(-3)+(-2)B.(-2)+0C.(-5)+6D.(-5)+58.在一竞赛中,老师将90分规定为标准成绩,记作0分,高出此分的分数记为正,不足此分的分数记为负,五名参赛者的成绩为+1,-2,+10,-7,0.那么( )A.最高成绩为90分B.最低成绩为88分C.平均成绩为90分D.平均成绩为90.4分二、填空题9.比﹣3大2的数是.10.已知飞机的飞行高度为10 000 m,上升3 000 m后,又上升了-5 000 m,此时飞机的高度是 m.11.在下面的计算过程后面填上运用的运算律.计算:(-2)+(+3)+(-5)+(+4).解:原式=(-2)+(-5)+(+3)+(+4)( )=[(-2)+(-5)]+[(+3)+(+4)] ( )=(-7)+(+7)=0.12.-113的相反数与-34的和是____________.13.小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为______℃.14.计算(-0.5)+314+2.75+(-512)的结果为 .三、解答题15.计算:(-23)+(+58)+(-17);16.计算:|(-7)+(-2)|+(-3);17.计算:﹣27+(﹣32)+(﹣8)+27;18.计算:(+26)+(-14)+(-16)+(+18);19.若|a|=4,|b|=2,且a<b,求a+b的值.20.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?21.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合.能力提升练习一、选择题:1.如图,数轴上点A ,B 表示的有理数分别是a ,b ,则( ) A.a +b >0 B.a +b <a C.a +b <0 D.a +b >b2.若两个有理数的和为负数,则这两个有理数( )A.一定都是负数B.一正一负,且负数的绝对值大C.一个为零,另一个为负数D.至少有一个是负数3.如果a ,b 是有理数,那么下列式子成立的是( )A.如果a <0,b <0,那么a +b >0B.如果a >0,b <0,那么a +b >0C.如果a >0,b <0,那么a +b <0D.如果a <0,b >0且|a|>|b|,那么a +b <04.计算0.75+(- 114)+0.125+(-57)+(-418)的结果是( ) A.657 B.-657 C.527 D.-5275.已知|a|=5,|b|=2,且|a ﹣b|=b ﹣a ,则a +b =( )A.3或7B.﹣3或﹣7C.﹣3D.﹣76.如图,数轴上P 、Q 、S 、T 四点对应的整数分别是p 、q 、s 、t ,且有p +q +s +t =﹣2,那么,原点应是点( )A.PB.QC.SD.T二、填空题7.设a 为最小的正整数,b 是最大的负整数,c 是绝对值最小的数,则a +b +c= .8.上周五某股民小王买进某公司股票1 000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元):则在星期五收盘时,每股的价格是 .9.若|x﹣2|=5,|y|=4,且x>y,则x+y的值为.10.设a<0,b>0,且a+b>0,用“<”号把a、﹣a、b、﹣b连接起来为.三、解答题:11.计算:(-1.75)+1.5+(+7.3)+(-4.25)+(-6.5).12.计算:137+(-213)+247+(-123).13.计算:(-2.125)+(+315)+(+518)+(-3.2).14.计算:(-2.125)+(+315)+(+518)+(-3.2).15.某产粮专业户出售余粮10袋,每袋重量如下(单位:千克):199、201、197、203、200、195、197、199、202、196.(1)如果每袋余粮以200千克为标准,求这10袋余粮总计超过多少千克或者不足多少千克?(2)这10袋余粮一共多少千克?16.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)按此规律计算:①2+4+6+…+200值;②162+164+166+…+400值.答案基础巩固练习1.B2.C3.C4.A.5.D6.D7.C.8.D9.答案为:﹣1.10.答案为:8000.11.答案为:加法交换律,加法结合律.12.答案为:7 1213.答案为:-114.答案为:0.15.解:原式=[(-23)+(-17)]+(+58)=-40+58=18.16.解:原式=|-9|+(-3)=9+(-3)=6.17.解:原式=﹣27+(﹣32)+(﹣8)+27=﹣27﹣32﹣8+27=﹣40;18.解:原式=[(-14)+(-16)]+(26+18)=-30+44=14.19.解:∵|a|=4,|b|=2∴a=4或﹣4,b=2或﹣2∵a<b∴a=﹣4,b=2或﹣2当a=﹣4,b=2时,a+b=﹣4+2=﹣2;当a=﹣4,b=﹣2时,a+b=﹣4﹣2=﹣6.20.解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.21.解:(1)由数轴上AB两点的位置可知,A点表示1,B点表示﹣2.5. 故答案为:1,﹣2.5;(2)∵A点表示1∴与点A的距离为4的点表示的数是5或﹣3.故答案为:5或﹣3;(3)∵A点与﹣3表示的点重合∴其中点==﹣1∵点B表示﹣2.5∴与B点重合的数=﹣2+2.5=0.5.故答案为:0.5.能力提升练习1.C2.D3.D;4.B.5.B.6.C.7.答案为:0.8.答案为:34元;9.答案为:11,3,﹣7.10.答案为:﹣b<a<﹣a<b.11.解:原式=[(-1.75)+(-4.25)]+[(-6.5)+1.5]+(+7.3)=-6+(-5)+7.3=-11+7.3=-3.7.12.解:原式=(137+247)+[(-213)+(-123)]=4+(-4)=0.13.原式=[(-2.125)+(+518)]+[(+315)+(-3.2)]=3.14.解:原式=[(-2.125)+(+518)]+[(+315)+(-3.2)]=3.15.解:(1)以200千克为基准,超过200千克的数记作正数,不足200千克的数记作负数则这10袋余粮对应的数分别为:-1、+1、-3、+3、0、-5、-3、-1、+2、-4. (-1)+(+1)+(-3)+(+3)+0+(-5)+(-3)+(-1)+(+2)+(-4)=-11.答:这10袋余粮总计不足11千克.(2)200×10+(-11)=2 000-11=1 989.答:这10袋余粮一共1 989千克.16.解:(1))∵1个最小的连续偶数相加时,S=1×(1+1)2个最小的连续偶数相加时,S=2×(2+1)3个最小的连续偶数相加时,S=3×(3+1)…∴n个最小的连续偶数相加时,S=n(n+1);(2)①根据(1)得:2+4+6+…+200=100×(100+1)=10100;②162+164+166+…+400=(2+4+6+...+400)﹣(2+4+6+ (160)=200×201﹣80×81=40200﹣6480=33720.。
华东师大版七年级数学上册第2章第13节《有理数的混合运算》课后同步练习题(附答案)
2.13 有理数的混合运算第1课时 有理数混合运算的顺序1. 熟练掌握有理数混合运算的法则.2. 能熟练地进行有理数加、减、乘、除、乘方的混合运算.1. 加法和减法叫做第________级运算;乘法和除法叫做第________级运算;乘方和开方(今后将会学到)叫做第________级运算.2. 有理数混合运算的运算顺序规定如下:(1)先算________,再算________,最后算________; (2)同级运算,按照________的顺序进行;(3)如果有括号,就先算________里的,再算________里的,最后算________里的. 3. 进行分数的乘除运算,一般要把带分数化为________,把除法转化为________. 4. 计算:(-4×2.5)3的结果为( ). A. 1000 B. -1000 C. 30 D. -305. 计算:-2×52-(-2×52)的结果为( ). A. 0 B. -100 C. 100 D. -406. 计算:15×(-5)÷(-15)×5的结果为( ).A. 1B. 25C. -5D. 35 7. 计算:(1)(-21)-(-13)-|+5|+|-9|; (2)(-7)×(-6)-54÷(-6).8.计算:-24÷(-2)2的结果是( ).A. 4B. -4C. 2D. -2 9. 如果||a -1=0,2008(b+3)=1,那么ba-1的值是( ).A. -4B. -5C. -6D. 2 10. 计算:-102+(-10)2-103÷(-10)3=________. 11. 计算:(1)-2-23×⎝⎛⎭⎫123;(2)-22÷⎝⎛⎭⎫-152×||-5×(-0.1)3; (3)32-(-5)2×⎝⎛⎭⎫-252-23; (4)15-2×42+(-2×4)2.12. (1)在玩“24点”游戏时,“3、3、7、7”列式并计算为:7×(3+37)=7×3+3=24 是依据运算律 . (2)小明抽到以下4张牌:请你帮他写出运算结果为24的一个算式: . (3)如果、表示正,、表示负,请你用(2)中的4张牌表示的数写出运算结果为24的一个算式: .13. 如图,在宽为30m ,长为40m 的矩形地面上修建两条都是1m 的道路,余下部分种植花草,那么,种植花草的面积为 m 2.14. (2011•绍兴县)欢欢发烧了,妈妈带她去看医生,结果测量出体温是39.2℃,用了退烧药后,以每15分钟下降0.2℃的速度退烧,则两小时后,欢欢的体温是 ℃.A 、-1.1B 、-1.8C 、-3.2D 、-3.9第2课时 有理数的混合运算1. 进一步掌握有理数的混合运算.2. 在运算过程中,能合理使用运算律简化运算.1. 计算-23-()-23+()+32-()-32-()32的结果是( ). A. 27 B. 9C. -27D. -92. 以下四个有理数运算的式子中:①(2+3)+4=2+(3+4);②(2-3)-4=2-(3-4);③(2×3)×4=2×(3×4);④2÷3÷4=2÷(3÷4).正确的运算式子有( ) A 、1个 B 、2个 C 、3个 D 、4个3. 已知四个式子:(1)|7453|--;(2)|74||53|---;(3)|74|53---;(4))74(53---,它们的值从小到大的顺序是( )A.(4)<(3)<(2)<(1)B.(3)<(4)<(2)<(1) B.(2)<(4)<(3)<(1) D.(3)<(2)<(4)<(1)4. 计算:-32÷(-3)2+3×(-6)=_____________.5. 已知|a +1|+(b -2)2=0,则(a +b )2 008+a 57=________.6. 计算:(1)(-1.5)+414+2.75+⎝⎛⎭⎫-512; (2)4-5×⎝⎛⎭⎫-123; (3)(-10)2÷5×⎝⎛⎭⎫-25; (4)5×(-6)-(-4)2÷(-8).7. 计算:(注意使用简便方法)(1)⎣⎡⎦⎤(+49)-⎝⎛⎭⎫-136÷⎝⎛⎭⎫-172; (2)13×23+0.34×27+13×13+57×0.34;(3)⎝⎛⎭⎫-2467÷6; (4)⎝⎛⎭⎫79-56+736×36-5.45×6+1.45×6.8. 自然数中有许多奇妙而有趣的现象,很多秘密等着我们取探索!比如:对任意一个3的倍数的正整数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数上的数字再立方,求和,多次重复这种操作运算,运算结果最终会得到一个固定不变的数Q ,它会掉入一个数字“陷阱”.永远也别想逃出来,没有一个自然数能逃出它的“魔掌”.那么最终掉入“陷阱”的这个固定不变的数Q 等于 .9. 小丽家要买节能灯,于是到家电商场做调查,得到如下数据:这三种节能灯的照明效果相当.如果仅考虑费用(节能灯费用与耗电费用之和,用电度数=功率(W )×时间(h )÷1000,假设电费为0.60元/度)支出,小丽应选( ) A 、节能灯3 B 、节能灯2 C 、节能灯1 D 、任一种10.如图是一个流程图,图中“结束”处的计算结果是 .11.从集合-3,-2,-1,4,5中取出三个不同的数,可能得到的最大乘积填在□中,可-能得到的最小乘积填在〇中并将下式计算的结果写在等号右边的横线上.-(□)÷〇= .12.如图,是一个数值转换机.若输入数3,则输出数是 .13.14.某企业向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率高于 .2.13 有理数的混合运算第1课时1. 一 二 三2. (1)乘方 乘除 加减 (2)从左至右 (3)小括号 中括号 大括号3. 假分数 乘法4. B5. A6. B7. (1)-4 (2)51 (3)19 (4)-80 8. B 9. A 10. 111. (1)-3 (2)0.5 (3)-3 (4)47 12. 解:(1)分配律;(2)⎪⎭⎫ ⎝⎛-⨯7447;(3)⎪⎭⎫⎝⎛---⨯-4747. 13. 解析:由题意知:种植花草的面积为30×40-1×30-1×40+1×1=1131m 2.14. 解:由题意可得,39.2-2×60÷15×0.2=39.2-120÷15×0.2=39.2-8×0.2=39.2-1.6=37.6. 故答案为:37.6℃. 15.C第2课时1. B2. B3. D4. D5. -196. 07. (1)-18 (2)-15 (3)0 (4)-23 (5)458(6)3115 (7)-8 (8)-288.153 9. B. 解析:节能灯1的总费用为:100×1000÷1000×0.6+1.5=61.5元;节能灯2的总费用为:30×1000÷1000×0.6+14=32元;节能灯3的总费用为:20×5000÷1000×0.6+25=85元.故选B . 10. -32 11. 21-12. 65. 13.314. 解析:因为向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率是(1065.6-1000)÷1000×100%=6.56%,则年利率高于6.56%.。
数学必修三作业本第一单元答案
第一章算法初步1.1算法与程序框图1.1.1算法的概念1.C2.C3.C4.①②④5.方程的两边同乘以1a6.①②③7.第一步,计算方程的判别式并判断其符号:Δ=4+4×3=16>0.第二步,将a=1,b=-2,c=-3代入求根公式x=-b±b2-4ac2a.第三步,得方程的解为x=3,或x=-18.第一步,输入自变量x的值.第二步,进行判断,如果x≥0,则f(x)=x+2;否则,f(x)=x2. 第三步,输出f(x)的值9.第一步,取x1=-2,y1=-1,x2=2,y2=3.第二步,得直线方程y-y1y2-y1=x-x1x2-x1.第三步,在第二步的方程中,令x=0,得y的值m.第四步,在第二步的方程中,令y=0,得x的值n.第五步:根据三角形的面积公式求得S=12|m|·|n|10.第一步,输入a,l.第二步,计算R=2·a2.第三步,计算h=l2-R2.第四步,计算S=a2.第五步,计算V=13Sh.第六步,输出V11.第一步,把9枚银元平均分成3堆,每堆3个银元.第二步,任取两堆银元分别放在天平的两边.如果天平平衡,则假银元就在第三堆中;如果天平不平衡,那么假银元就在轻的那一堆中.第三步,取出含假银元的那一堆,从中任取2个银元放在天平的两边.如果天平平衡,那么假银元就是未称的那一个;如果天平不平衡,那么轻的那个就是假银元1 1 2程序框图与算法的基本逻辑结构1.C2.A3.B4.1205.S=S+n,n=n+26.求满足1×3×5×…×(i-2)≥10000的最小奇数i的值7.算法略,程序框图如图:(第7题)8.算法略,程序框图如图:(第8题)9.(第9题)10.(1)若输入的四个数为5,3,7,2,输出的结果是2(2)该程序框图是为了解决如下问题而设计的:求a,b,c,d四个数中的最小值并输出11.算法略,程序框图如图:(第11题)1.2基本算法语句1.2.1输入语句、输出语句和赋值语句1.A2.D3.C4.12;3+4+55.①②④6.(1)4,4(2)3,37.INPUT“输入横坐标:”;a,cx=(a+c)/2INPUT“输入纵坐标:”;b,dy=(b+d)/2PRINT“中点坐标:”;x,yEND8.INPUT“L=”;La=L/4S1=a*aR=L/(2*3.14)S2=3 14*R 2PRINT“正方形的面积为:”;S1PRINT“圆的面积为:”;S2END9.INPUTA,B,CM=-C/AN=-C/BK=-A/BPRINT“直线的斜率:”;KPRINT“x轴上的截距:”;MPRINT“y轴上的截距:”;NEND10.第一个输出为2,9,第二个输出为-7,8.程序如下:INPUT“x,y=”;x,yx=x/2y=3*yPRINTx,yx=x-yy=y-1PRINTx,yEND11.R=6 37154×106INPUT“卫星高度:”;hv=7900*SQR(R)/SQR(R+h)m=v*SQR(2)C=2*3 14*(R+h)t=C/vPRINT“卫星速度:”;vPRINT“脱离速度:”;mPRINT“绕地球一周时间:”;tEND1 2 2条件语句1.B2.A3.C4.0 75.96.y=2x(x<3),2(x=3),x2-1(x>3)7.INPUT“两个不同的数”;A,BIFA>BTHENPRINTBELSEPRINTAEND IFEND8.INPUT“x=”; xIFx<=1.1THENPRINT“免票”ELSEIFx<=1 4THENPRINT“半票”ELSEPRINT“全票”END IFEND IFEND9.INPUT“x=”;xIFx<-1THENy=x 2-1ELSEIFx>1THENy=SQR(3*x)+3ELSEy=ABS(x)+1END IFEND IFPRINT“y=”; yEND10.INPUTa,b,cIFa>0ANDb>0ANDc>0THENIFa+b>cANDa+c>bANDb+c>aTHENp=(a+b+c)/2S=SQR(p*(p-a)*(p-b)*(p-c))PRINTSELSEPRINT“不能构成三角形”END IFELSEPRINT“不能构成三角形”END IFEND11.(1)超过500元至2000元的部分,15(2)3551 2 3循环语句1.B2.B3.D4.5150 5.36.07.S=0k=1DOS=S+1/(k*(k+1)) k=k+1 LOOPUNTILk>99 PRINTSEND8.r=0.01P=12.9533y=2000WHILEP<=14P=P*(1+r)y=y+1WENDPRINTyEND9.s=0t=1i=1WHILEi<=20t=t*is=s+ti=i+1WENDPRINTsEND10.A=0B=0C=1D=A+B+C PRINTA,B,C,D WHILED<=1000A=BB=CC=DD=A+B+CPRINTDWENDEND11.(1)2550(2)k=1S=0WHILEk<=50S=S+2kk=k+1WENDPRINTSEND1.3算法案例案例1辗转相除法与更相减损术1.B2.C3.B4.135.66.67.(1)84(2)48.3869与6497的最大公约数为73;最小公倍数为3869×649773=3443419.1210.(1)INPUTa,bWHILEa<>bIFa>bTHENa=a-bELSEb=b-aEND IFWENDPRINTbEND(2)INPUTa,br=a MOD bWHILEr<>0a=bb=rr=a MOD bWENDPRINTbEND11.416=15036,334=13536,229=8036,则等价于求150,135,80的最大公约数,即得每瓶最多装536kg案例2秦九韶算法1.A2.C3.C4.①④5.216.-577.f(x)=((((3x+7)x-4)x+0.5)x+1)x+18.299.考察多项式f(x)=x5+x3+x2-1=x5+0·x4+x3+x2+0·x-1,则f(0 6)=-0 34624,f(0 7)=0 00107,得f(0 6)·f(0 7)<0,所以x5+x3+x2-1=0在[0 6,0 7]之间有根10.a=-37611.(1)加法运算次数为n,乘法运算次数为1+2+3+…+n=n(n+1)2,所以共需n+n(n+1)2=n(n+3)2(次)(2)加法运算次数为n次,乘法也为n次,共需2n次案例3进位制1.C2.C3.D4.575.1002(3)<11110(2)<111(5)<45(7)6.1247.(1)379(2)10211(6)(3)342(5)8.E+D=1B,A×B=6E9.在十六进位制里,十进位制数71可以化为4710.13,7,21,2611.(1)①3266(8)②11101001100101(2)(2)结论:把二进制数转化为八进制数时,只要从右到左,把3位二进制数字划成一组,然后每组用一个八进制数字代替即可;把二进制数转化为十六进制数时,只要从右到左,把4位二进制数字划成一组,然后每组用一个十六进制数字代替即可;把八进制数、十六进制数转化为二进制数时,只需将一位数字用3位或4位二进制数字代替即可.3021(4)=11001001(2),514(8)=101001100(2)单元练习1.A2.B3.D4.D5.C6.B7.B8.D9.D10.B11.i>2012.S=6413.55,5314.85315.红,蓝,黄16.302(8)17.3418.INPUT“x=”;xIFx<=0THENPRINT“输入错误”ELSEIFx<=2THENy=3ELSEy=3+(x-2)*1.6END IFEND IFPRINT“x=”;x,“y=”;yEND19.程序甲运行的结果为147,程序乙运行的结果为9720.S=0i=0WHILEi<=9S=S+1/2 ii=i+1WENDPRINTSEND21.(1)①处应填i≤30?;②处应填p=p+i(2)i=1p=1s=0WHILEi<=30s=s+pp=p+ii=i+1WENDPRINTsEND22.212.提示:abc(6)=36a+6b+c,cba(9)=81c+9b+a,故得35a=3b+80c.又因为35a是5的倍数,80c也是5的倍数,所以3b也必须是5的倍数,故b=0或5.①当b=0时,7a=16c,因为7,16互质,并且a,c≠0,∴c=7,a=16(舍去);②当b=5时,7a=3+16c,即c=7a-316,又因为a,c为六进制中的数,将a分别用1,2,3,4,5代入,当且仅当a=5时,c=2成立.∴abc(6)=552(6)=212。
七年级数学上册《第一章-有理数乘除混合运算》练习题附答案-人教版
七年级数学上册《第一章有理数乘除混合运算》练习题附答案-人教版一、选择题1.与﹣2的乘积为1的数是( )A.2B.﹣2C.12D.﹣122.下列说法错误的是( )A.一个数同0相乘,仍得0B.一个数同1相乘,仍得原数C.一个数同﹣1相乘得原数的相反数D.互为相反数的两个数的积是13.如果mn>0,且m+n<0,则下列选项正确的是()A.m<0,n<0B.m>0,n<0C.m,n异号,且负数的绝对值大D.m,n异号,且正数的绝对值大4.两个有理数的和为正数,积为负数,则这两个有理数是( )A.两个正数B.两个负数C.一正一负且正数的绝对值较大D.一正一负且负数的绝对值较大5.﹣4÷49×(﹣94)的值为( )A.4B.﹣4C.814D.﹣8146.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是( )[A.a+b<0B.a>|﹣2|C.b>πD.7.计算﹣6÷12×2﹣18÷(﹣6)的结果是( )A.﹣ 21B.﹣ 3C.4D.78.计算﹣4÷49×94的结果是( )A.4B.﹣ 4C.2014 D.﹣ 20149.如图,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是( )A.ab>0B.a+b<0C.(b﹣a)(a+1)>0D.(b﹣1)(a﹣1)>010.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了。
右面两个图框是用法国“小九九”计算78和89的两个示例。
若用法国“小九九”计算79,左右手依次伸出手指的个数是( )A.2,3B.3,3C.2,4D.3,411.给出下列说法:①1乘任何有理数都等于这个数本身;②0与任何有理数的积均为0;③﹣1乘任何有理数都等于这个有理数的相反数;④一个数的倒数与其本身相等的数是±1.其中正确的有( )A.1个B.2个C.3个D.4个12.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如下表:十六进制0 1 2 3 4 5 6 7十进制0 1 2 3 4 5 6 7十六进制8 9 A B C D E F十进制8 9 10 11 12 13 14 15例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A ×B=( )A.6EB.72C.5FD.B0二、填空题13.计算:﹣2×3= .14.绝对值不大于4.5的所有整数的和为__________,积为__________;15.﹣54的绝对值是,倒数是.16.一个数与﹣34的积为12,则这个数是____________17.某学生将某数乘以﹣1.25时漏了一个负号,所得结果比正确结果小0.25则正确结果应是 .18.甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.三、解答题19.计算:(114﹣56+12)×(﹣12);20.计算:15÷(﹣32+56);21.计算:|﹣2|÷(﹣12)+(﹣5)×(﹣2);22.计算:﹣112÷34×(﹣0.2)×134÷1.4×(﹣35).23.一辆出租车在一条东西走向的大街上行驶,这辆出租车连续送客20次,其中8次向东行驶,12次向西行驶,向东行驶每次的行程为10 km,向西行驶每次的行程为7 km.(1)该出租车连续20次送客后,停在何处?(2)该出租车一共行驶了多少路程?24.如图,小明有4张写着不同数的卡片,请你按照题目要求抽出卡片,完成下列问题.(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?25.用加、减、乘、除号和括号将3,6,﹣8,5这四个数(每个数都要用且只用一次)进行加减乘除四则运算使结果为24,请你写出两个算式.26.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如14524÷=,14342÷=所以14是“差一数”; 19534÷=,但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.27.请观察下列算式,找出规律并填空211⨯=1﹣21, 321⨯=21﹣31, 431⨯=31﹣41,541⨯=41﹣51则: (1)第10个算式是 = . (2)第n 个算式为 = . (3)根据以上规律解答下题:211⨯+321⨯+431⨯+… +202420231⨯的值.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】C6.【答案】D7.【答案】A8.【答案】C9.【答案】C.10.【答案】C11.【答案】D12.【答案】A13.【答案】﹣6.14.【答案】0,015.【答案】54﹣4516.【答案】﹣2 317.【答案】1 818.【答案】4.19.【答案】原式=114×(﹣12)+(﹣56)×(﹣12)+12×(﹣12)=﹣15+10+(﹣6)=﹣1120.【答案】原式=﹣22.5;21.【答案】原式=6;22【答案】原式=﹣3 1023.【答案】解:(1)该出租车停在出发地西面4km处;(2)该出租车一共行驶了164 km.24.【答案】解:(1)抽﹣3和﹣5,最大值为:﹣3×(﹣5)=15; (2)抽1和﹣5,最小值为:(﹣5)÷1=﹣5;25.【答案】解:答案不唯一,如(﹣8)÷(3﹣5)×6=24,6÷(3﹣5)×(﹣8)=24等. 26.【答案】解:(1)∵49594÷= 493161÷=∴49不是“差一数” ∵745144÷= 743242÷=∴74是“差一数”;(2)解法一:∵“差一数”这个数除以5余数为4 ∴“差一数”这个数的个位数字为4或9∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399 ∵“差一数”这个数除以3余数为2∴“差一数”这个数的各位数字之和被3除余2∴大于300且小于400的所有“差一数”为314、329、344、359、374、389. 解法二:∵“差一数”这个数除以5余数为4,且除以3余数为2 ∴这个数加1能被15整除∵大于300且小于400的能被15整除的数为315、330、345、360、375、390 ∴大于300且小于400的所有“差一数”为314、329、344、359、374、389. 27.【答案】解:(1)第10个算式是11110111101-=⨯; (2)第n 个算式为()11111+-=+n n n n ; (3)原式=2024120231202312022141313121211-+-++-+-+- =202411-=20242023.。
电信协议执行流程说明(2024版)版A版
20XX 专业合同封面COUNTRACT COVER甲方:XXX乙方:XXX电信协议执行流程说明(2024版)版A版本合同目录一览1. 电信服务内容概述1.1 服务内容1.2 服务范围1.3 服务期限2. 双方责任与义务2.1 电信公司责任2.2 用户责任2.3 服务维护与支持3. 费用与支付方式3.1 服务费用3.2 支付方式3.3 费用调整4. 违约责任与赔偿4.1 违约行为4.2 赔偿责任4.3 争议解决5. 变更与终止5.1 合同变更5.2 合同终止5.3 合同解除6. 保密条款6.1 保密内容6.2 保密期限6.3 泄露后果7. 适用法律与争议解决7.1 适用法律7.2 争议解决方式8. 其他条款8.1 通知与送达8.2 合同的生效与修改8.3 附件9. 用户信息保护9.1 用户信息收集9.2 用户信息使用9.3 用户信息保护措施10. 服务等级协议(SLA)10.1 服务指标10.2 服务承诺10.3 服务监控与评估11. 技术支持与维护11.1 技术支持服务11.2 维护与升级11.3 技术支持联系方式12. 网络使用与安全12.1 网络使用规定12.2 网络安全措施12.3 违规行为处理13. 附加服务与可选功能13.1 附加服务说明13.2 可选功能费用13.3 附加服务与可选功能的开通与终止14. 附则14.1 合同附件14.2 合同修订历史14.3 合同签订日期第一部分:合同如下:1. 电信服务内容概述1.1 服务内容1.1.1 本合同项下的电信服务包括互联网接入服务、网络托管服务、服务器租赁服务等。
1.1.2 电信公司应根据用户的需求,提供稳定、高速的互联网接入服务,并保证网络的稳定性和安全性。
1.1.3 电信公司应提供7x24小时的客户服务支持,解答用户的疑问和技术问题。
1.2 服务范围1.2.1 电信公司提供的服务范围覆盖中国大陆地区,用户可以在合同有效期内享受服务。
北师大七年级上《3.2代数式》课时练习含答案解析
北师大版数学七年级上册第3章 3.2代数式课时作业一、选择题1.某厂1月份产量为a吨,以后每个月比上一个月增产x%,则该厂3月份的产量(单位:吨)为()A.a(1+x)2B.a(1+x%)2C.a+a•x% D.a+a•(x%)2答案:B解析:解答:解:∵1月份产量为a吨,以后每个月比上一个月增产x%,∴2月份的产量是a(1+x%),则3月份产量是a(1+x%)2故选:B.分析:元月到三月发生了两次变化,其增长率相同,故由1月份的产量表示出2月份的产量,进而表示出3月份的产量.2.已知x=1,y=2,则代数式x-y的值为()A.1B.-1C.2D.-3答案:B.解析:解答:当x=1,y=2时,x-y=1-2=-1,即代数式x-y的值为-1.故选:B.分析:根据代数式的求值方法,把x=1,y=2代入x-y,求出代数式x-y的值为多少即可.3.a-1的相反数是()A.-a+1 B.-(a+1)C.a-1 D.11 a+答案:A解析:解答:A.-a+1的相反数是a-1;B.-(a+1)的相反数是a+1;C.a-1的相反数是-(a-1)=1-a;D.11a+的相反数是-11a+;故选A.分析:本题是借着相反数的意义列代数式.表示一个数的相反数只需在这个数前面加一个“-”号即可,由此可得对于一个代数式表示它的相反数也是在这个式子前面加“-”号.4.用代数式表示“a与-b的差”,正确的是()A.b-a B.a-b C.-b-a D.a-(-b)答案:D解析:解答:被减数-减数=a-(-b ).故选D分析:列代数式的关键是正确理解文字语言中的关键词,比如该题中的“差”等,从而明确其中的运算关系,正确地列出代数式5.设某代数式为A ,若存在实数x 0使得代数式A 的值为负数,则代数式A 可以是( ) A.3x -B. 2x x +C.(4-x )2D.221x x -+ 答案:B解析:解答:对于任意的x ,都有|3-x |≥0,(4-x )2≥0,x 2-2x +1=(x -1)2≥0, 因为x 2+x =(x +0.5)2-0.25,所以对于任意的x 的取值,代数式A 的值可以为正数、负数或0,即存在实数x 0使得代数式A 的值为负数.故选:B .分析:首先根据对于任意的x ,都有|3-x |≥04x -≥0,x 2-2x +1=(x -1)2≥0,所以对于任意的实数x 0,代数式A 的值都为非负数;然后判断出x 2+x =(x +0.5)2-0.25,对于任意的x 的取值,代数式A 的值可以为正数、负数或0,即存在实数x 0使得代数式A 的值为负数,据此解答即可.6.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需( )A .(a+b )元B .(3a+2b )元C .(2a+3b )元D .5(a+b )元答案:C解析:解答:买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a +3b )元.故选:C分析:用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.7.已知多项式x 2+3x =3,可求得另一个多项式3x 2+9x -4的值为( )A.3B.4C.4D.6答案:C解析:解答:∵x 2+3x =3,∴3x 2+9x -4=3(x 2+3x )-4=3×3-4=9-4=5.故选:C .分析:先把3x 2+9x -4变形为3(x 2+3x )-4,然后把x 2+3x =3整体代入计算即可.8.若代数式5x 2-4x +6的值为26,则x 2−45x +6的值为( ) A.6 B.10 C.14 D.30答案:B解析:解答:∵5x 2-4x +6=26,∴5x2-4x=26-6=20,∴x2−45x+6=15×(5x2-4x)+6=15×20+6=4+6=10故选:B.分析:首先根据代数式5x2-4x+6的值为26,求出5x2-4x的值是多少;然后把它代入x2−4 5x+6,求出算式的值是多少即可.9.已知x-2y=3,则代数式6-2x+4y的值为()A.0B.-1C.-3D.3答案:A解析:解答:∵x-2y=3,∴6-2x+4y=6-2(x-2y)=6-2×3=6-6=0故选:A.分析:先把6-2x+4y变形为6-2(x-2y),然后把x-2y=3整体代入计算即可.10.若2x-1=3y-2,则6y-4x的值是()A.1B.-1C.2D.-2答案:C解析:解答:∵2x-1=3y-2,∴3y-2x=-1+2=1∴6y-4x=2(3y-2x)=2×1=2.故选C.分析:将2x-1=3y-2化为3y-2x=-1+2=1后整体代入求解即可.11.下列式子中代数式的个数有()2a-5,-3,2a+1=4,3x3+2x2y4,1-b.A.2个B.3个C.4个D.5个答案:C解析:解答:由分析可知是代数式的有2a-5;-3;3x3+2x2y4;1-b,而2a+1=4因为有等号,是一元一次方程.代数式有4个,故选C分析:代数式是指用+、-、×、÷把数或表示数的字母连接起来的式子12.对下列代数式作出解释,其中不正确的是()A.a-b:今年小明b岁,小明的爸爸a岁,小明比他爸爸小(a-b)岁B.a-b:今年小明b岁,小明的爸爸a岁,则小明出生时,他爸爸为(a-b)岁C.ab:长方形的长为acm,宽为bcm,长方形的面积为abcm2D.ab:三角形的一边长为acm,这边上的高为bcm,此三角形的面积为abcm2答案:D解析:解答:A.爸爸比小明大(a-b)岁,A项正确;B.此项实际意义与A项相同,B项正确;C、长方形的面积公式为:面积=长*宽,故C项正确;D.根据实际意义分析可得D不正确,三角形面积公式为:面积=12边长 高,此三角形面积应为12ab,故D错;故选D分析:本题主要考查根据题意列代数式的能力,由实际问题的意义进行分析.13.小明的存款是a元,小华的存款是小明存款的一半还多2元,则小华存款()A.12a-2元B.12a+2元C.12(a+2)元D.12(a-2)元答案:C解析:解答:依题意得,小华存款:12a+2.故选C.分析:关键描述语是:小华的存款是小明存款的一半还多2元.则小华存款=12×小明存款+2.14.已知a-3b=5,则2(a-3b)2+3b-a-15的值是()A.25B.30C.35D.40答案:B解析:解答:∵a-3b=5∴2(a-3b)2+3b-a-15=2(a-3b)2-(a-3b)-15=2×52-5-15=30.故答案为B.分析:已知a-3b=5,首先把代数式2(a-3b)2+3b-a-15化为含a-3b的代数式,然后整体代入求值.15.若a,b互为相反数,c,d互为倒数,m的绝对值是1,n是有理数且既不是正数也不是负数,则a+b+1+m2-(cd)+n(a+b+c+d)的值为()A.1B.-1C.0D.答案:D解析:解答:∵a,b互为相反数,c,d互为倒数,m的绝对值是1,n是有理数且既不是正数也不是负数,∴a+b=0,cd=1,|m|=1,n=0,∴a+b+1+m2-(cd)+n(a+b+c+d)=0+1+12-1+0(0+c+d)=+1-1+0=,故选D.分析:根据已知得出a+b=0,cd=1,|m|=1,n=0,代入后求出即可.二、填空题16.某市出租车收费标准是:起步价7元,当路程超过4km时,每千米收费1.5元,如果某出租车行驶x(x>4km),则司机应收费(单位:元)答案:7+1.5(x-4)解析:解答:司机应收费为:7+1.5(x-4).分析:司机应收费=起步价+超过起步路程的价钱.17.若代数式x2+2x的值是4,则4x2+8x-9的值是答案:7解析:解答:∵代数式x2+2x的值是4,∴x2+2x=4,∴4x2+8x-9=4(x2+2x)-9=4×4-9=7.分析:根据题意得出x2+2x=4,把所求的代数式化成含有x2+2x的形式,代入求出即可.18.不改变代数式a2-(a-b+c)的值,把它括号前面的符号变为相反的符号,应为答案:a2+(-a+b-c)解析:解答:根据题意a2-(a-b+c)=a2+(-a+b-c).分析:把它括号前面的符号变为相反的符号,相当于把-号变成+号,即让括号前的-号看作-1,然后与括号里的字母相乘,仍放在括号里即可.19.体育小金带了500元钱去买体育用品,已知一个足球x元,一个篮球y元.则代数式500-2x-3y表示的实际意义为答案:体育买了2个足球、3个篮球,剩余的经费解析:解答:∵买一个足球x元,一个篮球y元.∴2x表示买了2个足球3y表示买了3个篮球∴代数式500-2x-3y:表示买了2个足球、3个篮球,剩余的经费.故答案为:体育买了2个足球、3个篮球,剩余的经费.分析:本题需先根据买一个足球x元,一个篮球y元的条件,表示出2x和3y的意义,最后得出正确答案即可.20.若2x2+3x+5=10,则代数式4x2+6x-9=答案:1解析:解答:根据题意得:2x2+3x+5=10,即2x2+3x=5,则原式=2(2x2+3x)-9=10-9=1,故答案为:1.分析:根据题意求出2x2+3x的值,原式前两项提取2变形后,将2x2+3x的值代入计算即可求出值.三、解答题21.已知a、b互为相反数,c、d互为倒数,m的绝对值是5,n是最大的负整数,求代数式(a+b)-4cd+2mn的值.答案:-14或6.解答:∵a、b互为相反数,c、d互为倒数,m的绝对值是5,n是最大的负整数,∴a+b=0,cd=1,|m|=5,n=-1,∴m=±5,当m=5时,原式=×0-4×1+2×5×(-1)=-14;当m=-5时,原式=×0-4×1+2×(-5)×(-1)=6.∴代数式(a+b)-4cd+2mn的值是-14或6.解析:分析:根据相反数、倒数、绝对值、最大的负整数求出a+b、cd、m、n的值,代入代数式求出即可.22.已知a与b互为相反数,c与d互为倒数,e为绝对值最小的数,求式子(a+b)+cd+e 的值.答案:1解答:∵a与b互为相反数,c与d互为倒数,e为绝对值最小的数,∴a+b=0,cd=1,e=0,∴(a+b)+cd+e=×0+1+0=1.解析:分析:根据已知求出a+b、cd、e的值,代入代数式即可求出答案.23.已知x=1,求代数式3x+2的值.答案: 5.解答:当x=1时,3x+2,=3×1+2,=5,当x=1时,代数式3x+2的值是5.解析:分析:要求代数式的值,知字母x的值是1,代入已知代数式3x+2即可求出所求代数式的值.24.国庆长假里,小华和爸爸、妈妈一家三口去旅游,甲旅行社说:“大人买全票,小孩半价优惠”.乙旅行社说:“大人、小孩全部按票价的八折优惠”.若原票价为α元,问小华家选择哪个旅行社合算,请说出理由.答案:选择乙旅行社比较划算;由题意得:甲旅行社的费用是:2α+0.5α=2.5α(元)乙旅行社的费用是:3α×0.8=2.4α(元)∵2.5α>2.4α∴选择乙旅行社比较划算.解析:分析:由“大人买全票,小孩半价优惠”可得甲旅行社需花费2α+0.5α,由“大人、小孩全部按票价的八折优惠”可得乙旅行社需花费3α×0.8,然后进行比较得出结果.25.已知某船顺水航行2小时,逆水航行3小时,(1)已知轮船在静水中前进的速度是m千米/时,水流的速度是a千米/时,则轮船共航行多少千米?答案:(5m-a)千米解答:轮船共航行路程为:(m+a)×2+(m-a)×3=(5m-a)千米,(2)轮船在静水中前进的速度是70千米/时,水流的速度是2千米/时,则轮船共航行多少千米?答案:348千米解答:把m=70,a=2代入(1)得到的式子得:5×70-2=348千米.答:轮船共航行348千米.解析:解答:(1)轮船共航行路程为:(m+a)×2+(m-a)×3=(5m-a)千米,(2)把m=70,a=2代入(1)得到的式子得:5×70-2=348千米.答:轮船共航行348千米.分析:(1)共航行路程=顺水路程+逆水路程=(静水速度+水流速度)×顺水时间+(静水速度-水流速度)×逆流时间,把相关数值代入,化简即可;(2)把70,2代入(1)得到的式子,求值即可.。
(2024版)医疗服务合同协议模板
20XX 专业合同封面COUNTRACT COVER甲方:XXX乙方:XXX(2024版)医疗服务合同协议模板本合同目录一览1. 定义与术语1.1 合同双方1.1.1 甲方(患者)1.1.2 乙方(医疗服务提供方)1.2 医疗服务内容1.2.1 服务范围1.2.2 服务地点与时间1.2.3 服务项目2. 合同的有效期2.1 开始日期2.2 结束日期3. 服务费用3.1 费用标准3.2 支付方式3.3 费用调整4. 双方的权利与义务4.1 甲方的权利与义务4.2 乙方的权利与义务5. 保密条款5.1 保密内容5.2 保密期限5.3 例外情况6. 违约责任6.1 甲方违约6.2 乙方违约7. 争议解决7.1 协商解决7.2 调解解决7.3 法律途径8. 适用法律9. 合同的变更与终止9.1 变更条件9.2 终止条件9.3 终止后的处理10. 通知与送达11. 其他条款11.1 不可抗力11.2 合同的完整性与独立性11.3 附件12. 合同签署日期13. 合同签署地点14. 双方签字盖章第一部分:合同如下:1. 定义与术语1.1 合同双方1.1.1 甲方(患者):【甲方姓名】性别:【性别】年龄:【年龄】身份证号码:【身份证号码】联系电话:【联系电话】地址:【地址】1.1.2 乙方(医疗服务提供方):【乙方名称】地址:【地址】联系电话:【联系电话】联系人:【联系人姓名】1.2 医疗服务内容1.2.2 服务地点与时间:医疗服务在【乙方医疗机构名称】进行,具体服务时间根据甲方的病情和乙方的安排决定。
1.2.3 服务项目:包括【具体服务项目】等,具体服务内容以乙方提供的医疗服务为准。
2. 合同的有效期2.1 开始日期:本合同自双方签字盖章之日起生效。
2.2 结束日期:本合同有效期为【年数】年,自【开始日期】起至【结束日期】止。
除非双方达成书面续约协议,否则合同到期后自动终止。
3. 服务费用3.1 费用标准:甲方应支付乙方的医疗服务费用为【金额】元整。
123章作业解答(最新整理)
k 0
(2k 1)!
积分得:
sin 2 z 1k
(2z)2k2
1 k
(2z)2k2
k1n
k 0
2(2k 2)(2k 1)! k0
2(2k 2)!
1 (1)n1 (2z)2n
2 n1 (2n)!
第 60 页 在挖去奇点 z0 的环域上把下列函数展开为洛 朗级数
(3)
1 z(z 1)
ln(z a) ln 1 i1
当保持 1 不变 1 1 2 (绕 z a 一周)时,有
ln(z a) ln 1 i(1 2 ) ln 1 i1 i2 ln 1 i1
当保持 1 不变 1 2 1 4 (再绕 z a 一周)时,有
ln(z a) ln 1 i(1 2 2 ) ln 1 i1 i4 ln 1 i1
(2) 3 i
1
解: , i 2k
i e2
3
i
e
i
2
2 k
3
i 2k / 3
e 2
(3) ii
解: ii
i
e
2
2 k
i
2k
e 2
第 9 页 2. 计算下列数值。(a 和 b 为实常数,x 为实变数)
另:
u
ux,
y
,
v
vx,
y,
x y
cos, sin
(1) (z a)
解:根式的可能支点是 点和根式内多项式的零点,现在来逐个
考察这些点的性质。
① z a :在此点的邻域内任取一点 z1 a 1ei1 ( 1 1),则有
(z a) 1ei 1 ei 2
当保持 1 不变 1 1 2 (绕 z a 一周)时,有
第一二三章课后练习答案
第一二三章课后练习答案第一章总论复习思考题一、单项选择题1.会计所使用的主要计量尺度是( C )。
A 实物量度B 劳动量度C 货币量度D 实物量度和货币量度 2.会计的基本职能是( C )。
A 核算和管理B 控制和监督C 核算和监督 D核算和分析 3.会计的反映与监督的内容可以概括为( B )。
A 销售活动B 再生产过程中的资金运动C 生产活动D 管理活动 4.下列业务不属于会计核算范围的事项是( D )。
A 用银行存款购买材料B 生产产品领用材料C 企业自制材料入库D 与外企业签定购料合同 5.会计主体假设规定了会计核算的( B )。
A时间范围 B空间范围 C期间费用范围D成本开支范围 6.下列原则中不属于信息质量要求的原则是( C )。
A可理解性原则 B可比性原则 C 历史成本原则 D相关性原则7.200X年9月20日采用赊销方式销售产品50 000元,12月25日收到货款存入银行。
按收付实现制核算时,该项收入应属于( D )。
A 200X年9月B 200X年10月C 200X年11月D 200X年12月 8.2002年3月20日采用赊销方式销售产品60 000元,6月20日收到货款存入银行。
按权责发生制核算时,该项收入应属于( A )。
A 2002年3月B 2002年4月C 2002年5月D 2002年6月 9.建立货币计量假设的基础是( D )。
A币值变动 B人民币 C记账本位币D币值不变二、多项选择题1.企业在组织会计核算时,应作为会计核算基本前提的是( ABCE )。
A会计主体B持续经营 C货币计量 D会计原则 E会计分期2.根据权责发生制原则,下列各项中应计入本期的收入和费用的是(AD )。
A 本期销售货款收存银行 B上期销售货款本期收存银行 C本期预收下期货款存入银行 D计提本期固定资产折旧费 E以银行存款支付下期的报刊杂志费3.下列业务不属于会计核算范围的事项是( BD ) A用银行存款购买材料B编制财务计划C企业自制材料入库 D与外企业签定购料合同 E产品完工验收入库4.会计方法包括(ADE )A会计核算 B 会计决策 C 会计信息D 会计分析E 会计检查F 会计预测5.下列各种方法属于会计核算专门方法的有(ABCF )A 登记账簿B 成本计算C 复式记账D 监督检查 E预测决策 F 财产清查三、判断题1.会计分期不同,对利润总额会产生影响。
高中数学(人教版A版必修三)配套课时作业:第一章 算法初步 1.2.1 Word版含答案
1.2基本算法语句1.2.1 输入语句、输出语句和赋值语句课时目标 掌握三种语句的定义,了解它们的一般格式和作用,借助三种语句完成算法到程序语句的转化.1.输入语句(1)格式:INPUT “提示内容”;变量(2)功能:输入提示内容要求的相应信息或值.2.输出语句(1)格式:PRINT “提示内容”;表达式.(2)功能:⎩⎪⎨⎪⎧ ①输出常量、变量的值和系统信息;②进行数值计算并输出结果.3.赋值语句(1)格式:变量=表达式.(2)功能:将表达式所代表的值赋给变量.一、选择题1.在INPUT 语句中,如果同时输入多个变量,变量之间的分隔符是() A .逗号 B .分号C .空格D .引号答案 A2.下列关于赋值语句的说法错误的是( )A .赋值语句先计算出赋值号右边的表达式的值B .赋值语句是把左边变量的值赋给赋值号右边的表达式C .赋值语句是把右边表达式的值赋给赋值号左边的变量D .赋值语句中的“=”和数学中的“=”不完全一样答案 B解析 赋值语句的作用是把右边表达式的值赋给赋值号左边的变量.3( )A .1B .-3C .-1D .1或-3答案 D解析 由题意得:x 2+2x =3.解方程得:x =1或-3.4.下列给出的赋值语句中正确的是()A.4=M B.M=-MC.B=B=3 D.x+y=0答案B解析赋值语句的格式为:变量=表达式,是将右边表达式的值赋给左边的变量,赋值时左右两端不能对换,也不能进行字符运算.故选B.5.下列程序段执行后,变量a,b的值分别为()a=15b=20a=a+bb=a-ba=a-bPRINT a,bA.20,15 B.35,35C.5,5 D.-5,-5答案A解析∵a=15,b=20,把a+b赋给a,因此得出a=35,再把a-b赋给b,即b=35-20=15.再把a-b赋给a,此时a=35-15=20,因此最后输出的a,b的值分别为20,15.()6A.2 B.“x=”;xC.“x=”;2 D.x=2答案D二、填空题7.下面一段程序执行后的结果是________.A=2A=A 2A=A+6PRINT AEND答案10解析先把2赋给A,然后把A*2=4赋给A,即B的值为4,再把4+6=10赋给A,所以输出的为10.8.A=11B=22A=A+BPRINT“A=”;APRINT “B=”;BEND该程序的输出结果为______________.答案 A =33,B =229.下面所示的程序执行后,若输入2,5,输出结果为________. INPUT a ,bm =aa =b b =mPRINT a ,bEND答案 5,2三、解答题10.编写一个程序,要求输入两个正数a ,b 的值,输出a b 和b a 的值.解 INPUT “a ,b =”;a ,bPRINT “a b =”;a ^b PRINT “b a =”;b ^aEND11.试设计一个程序,已知底面半径和高,求圆柱体表面积.(π取3.14)解INPUT “R=,H=”;R ,HA=2*3.14*R *HB=3.14*R *RS=A+2*BPRINT “S=”;SEND能力提升12.编写一个程序,求用长度为L 的细铁丝分别围成一个正方形和一个圆时所围成的正方形和圆的面积.要求输入L 的值,输出正方形和圆的面积,并画出程序框图.(π取3.14)解 由题意知,正方形的边长为L 4,面积S 1=L 216; 圆的半径为r =L 2π,面积S 2=π(L 2π)2=L 24π. 因此程序如下:INPUT “L =”;LS1=(L*L)/16S2=(L*L)/(4*3.14)PRINT “正方形面积为”;S1PRINT “圆面积为”;S2程序框图:13.给出如图所示程序框图,写出相应的程序.解程序如下:INPUT“x,y=”;x,yx=x/2y=3*yPRINT x,yx= x – yy = y –1PRINT x,yEND1.输入语句要求输入的值只能是具体的常数,不能是变量或表达式(输入语句无计算功能),若输入多个数,各数之间应用逗号“,”隔开.2.输出语句可以输出常量,变量或表达式的值(输出语句有计算功能)或字符,程序中引号内的部分将原始呈现.3.赋值语句的作用是先算出赋值号右边表达式的值,然后把该值赋给赋值号左边的变量,使该变量的值等于表达式的值.4.赋值号两边的内容不能对调,如a=b与b=a表示的意义完全不同.赋值号与“等于”的意义也不同,若把“=”看作等于,则N=N+1不成立,若看作赋值号,则成立.5.赋值语句只能给一个变量赋值,不能接连出现两个或多个“=”.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3月2日作业(第一章,2.1.1)
1.冯·诺依曼型计算机工作方式的基本特点是b。
a)多指令流单数据流
b)按地址访问并顺序执行指令
c)自动执行指令
d)自动取出操作数进行加工处理
2.在图1.1中填入计算机硬件系统基本组成部件的名称:
运算器、控制器、存储器、输入设备、输出设备
3.P15 4
基本思想:将编好的程序和原始数据事先存入存储器中,然后再启动机器工作,计算机自动从存储器中依次取出指令加以执行,直至程序执行完毕。
主要组成部分:运算器、控制器、存储器、输入设备、输出设备
4.什么是数据字?什么是指令字?
5.(选做)如何理解软硬件之间的等效性?
计算机大部分功能即可以由软件来实现,也可以由硬件来实现,从逻辑上讲二者是等效的。
二者没有固定的界限。
6.(选作)数字计算机可分为通用计算机和专用计算机两类,其分类依据是什么?六类不
同规模的计算机,其间的主要区别体现在哪些方面?
通用和专用是根据计算机的效率、速度、价格、运行的经济性和适应性来分的。
其主要区别在于体积、简易性、功耗、性能指标、数据存储容量指令系统规模和机器价格等。
7.某机字长16位,采用定点小数表示,符号位为1位,尾数为15位,则可表示的最大正
小数和最小负小数分别为多少?
1-2-15,-(1-2-15)
8.某机字长32位,采用定点整数表示,符号位为1位,尾数为31位,则可表示的最大正
整数和最小负整数分别为多少?
231-1,-(231-1)。