七年级上册杭州观成中学数学期末试卷(提升篇)(Word版 含解析)
杭州观成中学数学七年级上学期期末数学试题
杭州观成中学数学七年级上学期期末数学试题 一、选择题 1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( )A .0.65×108B .6.5×107C .6.5×108D .65×1062.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.3.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( )A .9B .327-C .3-D .(3)--4.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠5.下列说法中正确的有( )A .连接两点的线段叫做两点间的距离B .过一点有且只有一条直线与已知直线垂直C .对顶角相等D .线段AB 的延长线与射线BA 是同一条射线6.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3807.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A.1个B.2个C.3个D.4个8.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm,根据题意,可得方程为()A.2(x+10)=10×4+6×2 B.2(x+10)=10×3+6×2C.2x+10=10×4+6×2 D.2(x+10)=10×2+6×29.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A.(2,1) B.(3,3) C.(2,3) D.(3,2)10.不等式x﹣2>0在数轴上表示正确的是()A.B.C.D.11.下列图形中,哪一个是正方体的展开图()A.B.C.D.12.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.连接两点的线段叫做两点的距离13.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1 14.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( ) A .2019- B .2019 C .1-D .1 15.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上B .BC 上 C .CD 上 D .AD 上二、填空题16.一个角的余角等于这个角的13,这个角的度数为________. 17.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________18.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.19.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________. 20.已知23,9n m n a a -==,则m a =___________.21.15030'的补角是______.22.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______.23.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.24.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为_________.25.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.26.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.27.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.28.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.29.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.30.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.三、压轴题31.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值.32.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题:(1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为,取得最佳值最小值的数列为(写出一个即可);(3)将2,-9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a的值.33.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.34.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?35.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6a +|2b+12|+(c﹣4)2=0.(1)求B、C两点的坐标;(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.36.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数;(3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)37.如图,A 、B 、P 是数轴上的三个点,P 是AB 的中点,A 、B 所对应的数值分别为-20和40.(1)试求P 点对应的数值;若点A 、B 对应的数值分别是a 和b ,试用a 、b 的代数式表示P 点在数轴上所对应的数值;(2)若A 、B 、P 三点同时一起在数轴上做匀速直线运动,A 、B 两点相向而行,P 点在动点A 和B 之间做触点折返运动(即P 点在运动过程中触碰到A 、B 任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A 、B 两点相遇,停止运动.如果A 、B 、P 运动的速度分别是1个单位长度/s ,2个单位长度/s ,3个单位长度/s ,设运动时间为t .①求整个运动过程中,P 点所运动的路程.②若P 点用最短的时间首次碰到A 点,且与B 点未碰到,试写出该过程中,P 点经过t 秒钟后,在数轴上对应的数值(用含t 的式子表示);③在②的条件下,是否存在时间t ,使P 点刚好在A 、B 两点间距离的中点上,如果存在,请求出t 值,如果不存在,请说明理由.38.如图,在数轴上点A 表示数a,点B 表示数b,AB 表示A 点和B 点之间的距离,且a,b 满足|a+2|+(b+3a)2=0.(1)求A,B 两点之间的距离;(2)若在线段AB 上存在一点C,且AC=2BC,求C 点表示的数;(3)若在原点O 处放一个挡板,一小球甲从点A 处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t 秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t 的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.详解:65 000 000=6.5×107.故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.C解析:C【解析】试题解析:A∵0的绝对值是0,故本选项错误.B∵互为相反数的两个数的绝对值相等,故本选项正确.C如果一个数是正数,那么这个数的绝对值是它本身.D∵0的绝对值是0,故本选项错误.故选C.3.B解析:B【解析】【分析】由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案.【详解】解:9,故排除A;327-=3-,选项B正确;C. 3-=3,故排除C;--=3,故排除D.D. (3)故选B.【点睛】本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.4.A解析:A【解析】【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可.【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意,故选:A.【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.5.C解析:C【解析】【分析】分别利用直线的性质以及射线的定义和垂线定义分析得出即可.【详解】A .连接两点的线段的长度叫做两点间的距离,错误;B .在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;C .对顶角相等,正确;D .线段AB 的延长线与射线BA 不是同一条射线,错误.故选C .【点睛】本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.6.B解析:B【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解.详解:∵第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190.故选B.点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.7.C解析:C【解析】【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.【详解】∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD不一定等于90°,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选C.【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.8.A解析:A【解析】【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程.【详解】解:长方形的一边为10厘米,故设另一边为x厘米.根据题意得:2×(10+x)=10×4+6×2.故选:A.【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.解析:C【解析】【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.【详解】∵(1,2)表示教室里第1列第2排的位置,∴教室里第2列第3排的位置表示为(2,3),故选C.【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键. 10.C解析:C【解析】【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x>2,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.11.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B、C、四个面连在了起不能折成正方体,故不是正方体的展开图;D、是“141"型,所以D是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键. 12.A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A .【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.13.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.14.D解析:D【解析】【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案.【详解】解:因为2|2|(1)0a b ++-=,所以a +2=0,b -1=0,所以a =-2,b =1,所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D.【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键. 15.D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题16.【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质.17.-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b 的值即可得出结果.【详解】解:根据题意得:=(a-1)x2+(b-6)x+1,由结果与x取值解析:-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b的值即可得出结果.【详解】解:根据题意得:2261x bx ax x-++-+=(a-1)x2+(b-6)x+1,由结果与x取值无关,得到a-1=0,b-6=0,解得:a=1,b=6.∴a-b=-5.【点睛】此题考查了整式的加减,熟练掌握运算法则以及理解“与x的取值无关”的意义是解本题的关键.18.5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3=8;∵点D是AC的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE=5÷2=2.5,∴ED=AD﹣AE=4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.19.3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把代入方程组得:,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【解析:3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把12xy=⎧⎨=⎩代入方程组得:2722a bb a+=⎧⎨+=⎩,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.20.27【解析】【分析】首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n−m=81÷3=2解析:27【解析】【分析】首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.【详解】解:∵a n=9,∴a2n=92=81,∴a m=a2n÷a2n−m=81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:18015030'2930'-=.故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.22.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键. 23.2+【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–,∴AB=1–(–)=1+,则点C 表示的数为1+1+解析:2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.24.6×【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 010解析:6×9【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.25.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得:2(x﹣1)﹣1﹣1=x+1解得:x=5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.26.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.27.72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 28.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.29.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,。
浙江省杭州市2023-2024学年七年级上学期期末数学试题(含答案)3
23.已知点 A,B,C,D 是同一数轴上的不同四点,且点 M 为线段 AB 的中点,点 N 为线段 CD 的中点.如 图,设数轴上点 O 表示的数为 0,点 D 表示的数为 1.
(1)若数轴上点 A,B 表示的数分别是﹣5,﹣1, ①若点 C 表示的数是 3,求线段 MN 的长. ②若 CD=1,请结合数轴,求线段 MN 的长. (2)若点 A,B,C 均在点 O 的右侧,且始终满足 MN= ܣ
A.x 是有理数
B.2<x<3
C.3<x<4
D.在数轴上找不到表示实数 x 的点
7.请仔细分析下列赋予 4a 实际意义的例子,其中错误的是( )
A.若葡萄的价格是 4 元/千克,则 4a 表示买 a 千克该种葡萄的金额
B.若 a 表示一个正方形的边长,则 4a 表示这个正方形的周长
C.一辆汽车以 a 千米/小时的速度行驶,从 A 城到 B 城需 4 小时,则 4a 表示 A,B 两城之间的路程
22.已知 O 是直线 AB 上的一点,∠COD 是直角,OE 平分∠BOC.
3
(1)如图①,若∠AOC=30°,求∠COE,∠DOB 的度数. (2)如图①,若∠AOC=α,求∠DOE 的度数(用含α的代数式表示). (3)将图①中的∠COD 绕顶点 O 顺时针旋转至图②的位置,探究∠AOC 与∠DOE 的度数之间的数量关 系,并说明理由.
ܤ,求点 M 在数轴上所表示的数.
4
答案解析部分
1.【答案】A 【解析】【解答】解:A、6 和
是互为相反数,故本选项符合题意;
B、 和 不是互为相反数,故本选项不符合题意;
C、 和 不是互为相反数,故本选项不符合题意;
D、 和 6 不是互为相反数,故本选项不符合题意; 故答案为:A
2023-2024学年浙江省杭州市观成教育集团七年级上学期期末数学试卷
杭州观成教育集团2023-2024学年第一学期初一年级期末质量检测数学试题卷一、仔细选一选 (本题有10小题,每小题3分,共30分.) 1.把0.7094精确到千分位是( ▲ ) A .0.709 B .0.710C .0.71D .0.70952.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是( ▲ ) A .24.70千克 B .24.80千克 C .25.30千克 D .25.51千克 3.在实数∙∙31.0、π、2-、722、327-、0.1010010001…中,无理数的个( ▲ ) A .1个 B .2个 C .3个 D .4个4.如图,∠AOB =130°,射线OC 是∠AOB 内部任意一条射线,OD 、OE 分别是∠AOC 、∠BOC 的平分线,下列叙述正确的是( ▲ )A .∠DOE 的度数不能确定B .∠AOD +∠BOE =∠EOC +∠COD =∠DOE =65° C .∠BOE =2∠COD D .∠AOD =∠EOC5.《孙子算经》中记载这样一个问题:“用绳子去量一根木材的长,绳子还余4.5尺;将绳子对折再量木材的长,木材还余1尺,问木材的长为多少尺?”若设木材的长为x 尺,根据题意可列出方程为( ▲ )A.x+4.5=2x-1B.x+4.5= 2(x-1)C.x +4.5 = 2x+1D.2(x-4.5)=x-16.有下列说法:①任何无理数都是无限小数;②数轴上的点与有理数一一对应; ③有平方根的数必有立方根;④到线段两个端点距离相等的点叫线段的中点. 其中正确的个数是( ▲ )A .1B .2C .3D .47.已知有理数b a 、在数轴上表示的点如图所示,则下列式子中正确的是( ▲ )A .0>+b aB .0<-b aC .0)1)(1(>++b aD .01<+b218.如图,在三角形ABC 中,∠ACB=90°,D 是 AB 边上的一个动点(点D 不与A ,B 重合),过点D, C 作射线DE ,与边CB ,CA 形成的夹角分别为∠1, ∠2,则∠l 与∠2满足数量关系( ▲ ).A.∠2=2∠1B.∠2+∠1= 180°C.∠2+2∠1= 180°D.∠2-∠1=90°9.已知如图,观察数表,横排为行,竖排为列,根据前五行所表达的规律,说明711这个分数,位于( ▲ )A .第18行,第7列B .第17行,第7列C .第17行,第11列D .第18行,第11列10.如图,用三个同图①的长方形和两个同图②的长方形以两种方式去覆盖一个大的长方形ABCD ,两种方式未覆盖的部分(阴影部分)的周长相等,那么图①中长方形的面积S1与图②中长方形的面积S2的比为( ▲ )A .2:3B .1:2C .3:4D .1:1二、认真填一填 (本题有6小题,每小题4分,共24分) 11.()=-⨯-20162015)2(5.0 .12.若∠1+∠2=90°,∠3+ ∠2=90°,则∠1和∠3的关系是 ;理由是 .13.关于x 、y 的单项式y ax 2,2bxy ,y x 221,y x 23的和,合并同类项后结果是26xy -,则a = ,b = .14.老王把5000元按一年期定期储蓄存入银行,到期支取时,扣去利息税后实得本利和为5080元.已知利息税的税率为20%,则当时一年期定期储蓄的年利率为 . 15.如图,C 是线段AB 的中点,D 是线段AC 的中点,已知图中所有线段的 长度之和为26,则线段AC 的长度为 .16.操场上有一群人,其中一部分人坐在地上,其余的人站着.如果站着的人中的25%坐下,同时原先坐着的人中的25%站起来,那么站着的人数占总人数的70%.问原先站着的人总人数的 %.A111221123321123443211234554321第一列 第二列 第三列 第四列 第五列第一行: ;第二行: , ;第三行: , , ;第四行: , , , ;第五行: , , , , ;(第10题)三.解答题(本题有7小题,共66分.)17.(本小题12分)计算:(1)()4352-1511.5-⨯⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛-⨯ (2)()232)3(25168641-⨯⎪⎪⎭⎫ ⎝⎛÷+-+- (3)o o 4.56'18105-(结果用度分秒表示) (4)3335---18.(本小题6分)解方程:(1)42131x x --=- (2)xxx =--5.05.01519.(本小题6分)解答下列各题:(1)求()()22222723y xy x y xy x -----的值,其中4=x ,32-=y .(2)已知A -2B =7a 2-7ab ,且B =-4a 2+6ab +7,求A .20.(本小题6分)某车间有技工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?21.(本小题8分)如图,已知∠BOC -∠AOB =14°,∠BOC ∶∠COD ∶∠DOA =2∶3∶4,OF 是∠AOB 的角平分线,过点O 在∠BOC 内部作射线OE ,将∠BOC 分成两个角的度数之比为1∶3,求∠EOF .22. (本小题满分8分=4+4)甲,乙两人从A, B 两地同时出发,沿同一条路线相向匀速行驶,已知出发后经3小时两人相遇,相遇时乙比甲多行驶了60千米,相遇后再经1小时乙到达A 地.(1)甲,乙两人的速度分别是多少?(2)两人从A ,B 两地同时出发后,经过多少时间后两人相距20千米?23. (本小题满分10分=3+3+4)如图,将一幅三角板按照如图1所示的位置放置在直线EF 上,现将含30°角的三角板OCD 绕点0逆时针旋转180°,在这个过程中.(1)如图2,当0D 平分∠AOB 时,试问OC 是否也平分∠AOE ,请说明理由; (2)当OC 所在的直线平分∠AOB 时,求∠AOD 的度数;(3)试探究∠BOC 与∠AOD 之间满足怎样的数量关系,并说明理由.24.(本小题10分=3+3+4)将长方形①,正方形②,正方形③以及长方形④按如图所示放入长方形ABCD 中(相邻的长方形,正方形之间既无重叠,又无空隙),已知AB= m(m 为常数),BE= DN. (1)若DN=1.①求AM ,BC 的长(用含m 的代数式表示); ②若长方形①的周长是正方形③的周长的23倍,求m 的值。
七年级上册杭州数学期末试卷测试卷 (word版,含解析)
七年级上册杭州数学期末试卷测试卷 (word 版,含解析)一、选择题1.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是A .3mnB .23m nC .3m nD .32m n2.下面计算正确的是( )A .2233x x -=B .235325a a a +=C .10.2504ab ab -+=D .33x x +=3.如图,将△ABC 沿BC 方向平移2cm 得到△DEF ,若△ABC 的周长为15cm ,则四边形ABFD 的周长等于( )A .17 cmB .18 cmC .19 cmD .20 cm4.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( )A .B .C .D .5.无论x 取什么值,代数式的值一定是正数的是( ) A .(x +2)2B .|x +2|C .x 2+2D .x 2-26.某商品在进价的基础上提价 70 元后出售,之后打七五折促销,获利 30 元,则商品进价为 ( )元. A .100 B .140 C .90 D .120 7.若a >b ,则下列不等式中成立的是( ) A .a +2<b +2B .a ﹣2<b ﹣2C .2a <2bD .﹣2a <﹣2b8.下列平面图形不能够围成正方体的是( ) A .B .C .D .9.13-的倒数是( ) A .3 B .13C .13-D .3-10.若,,则多项式与的值分别为( ) A .6,26B .-6,26C .-6,-26D .6,-2611.让人欲罢不能的主题曲,让人潸然泪下的小故事,让人惊叹不已的演出阵容《我和我的祖国》首日票房超过285000000元,数字285000000科学记数法可表示为( ) A .2.85×109B .2.85×108C .28.5×108D .2.85×10612.如图是一个正方体的展开图,折好以后与“学”相对面上的字是( )A .祝B .同C .快D .乐13.下列计算正确的是( )A .2334a a a +=B .﹣2(a ﹣b)=﹣2a+bC .5a ﹣4a=1D .2222a b a b a b -=-14.下列图形中1∠和2∠互为余角的是( )A .B .C .D .15.地球上陆地的面积约为1490000002km ,数149000000科学记数法可表示为( ) A .90.14910⨯,B .81.4910⨯C .714.910⨯D .614910⨯二、填空题16.若∠α=40° 15′,则∠α的余角等于________°.17.在直线l 上有四个点A 、B 、C 、D ,已知AB =8,AC =2,点D 是BC 的中点,则线段AD =________.18.一家商店因换季将某种服装打折出售,如果每件服装按标价的5折出售将亏20元, 而按标价的8折出售将赚40元,为保证不亏本,最多打__________折. 19.若∠α=68°,则∠α的余角为_______°.20.已知1x =是方程253ax a -=+的解,则a =__. 21.若一个多边形的内角和是900º,则这个多边形是 边形.22.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2020次输出的结果为___________.23.如图示,一副三角尺有公共顶点O ,若3AOC BOD ∠=∠,则BOD ∠=_________度.24.4215='︒ _________° 25.32-的相反数是_________; 三、解答题26.如图是由6个棱长都为1cm 的小正方体搭成的几何体. (1)请在下面方格纸中分别画出它的左视图和俯视图; (2)该几何体的表面积为___________2cm ;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图 和俯视图不变,那么最多可以添加___________个小正方体.27.解方程:(1)1﹣3(x ﹣2)=4; (2)213x +﹣516x -=1. 28.解方程(1)610129x x -=+; (2)21232x x x +--=-. 29.先化简,再求值:2(3a 2b ﹣2ab 2)﹣3(﹣ab 2+3a 2b ),其中|a ﹣1|+(b+2)2=0. 30.如图,点A 、点B 是数轴上原点O 两侧的两点,其中点A 在原点O 的左侧,且满足6AB =,2OB OA =.(1)点A 、B 在数轴上对应的数分别为______和______.(2)点A 、B 同时分别以每秒1个单位长度和每秒2个单位长度的速度向左运动. ①经过几秒后,3OA OB =;②点A 、B 在运动的同时,点P 以每秒1个单位长度的速度从原点向右运动,经过几秒后,点A 、B 、P 中的某一点成为其余两点所连线段的中点?31.如图,数轴上A ,B 两点表示的数分别为a ,b ,且a ,b 满足|a +5|+(b ﹣10)2=0.(1)则a = ,b = ;(2)点P ,Q 分别从A ,B 两点同时向右运动,点P 的运动速度为每秒5个单位长度,点Q 的运动速度为每秒4个单位长度,运动时间为t (秒). ①当t =2时,求P ,Q 两点之间的距离.②在P ,Q 的运动过程中,共有多长时间P ,Q 两点间的距离不超过3个单位长度? ③当t ≤15时,在点P ,Q 的运动过程中,等式AP +mPQ =75(m 为常数)始终成立,求m 的值. 32.计算:(1)25)(277+-()-(-)-;(2)315(2)()3-⨯÷-.33.已知关于m 的方程()12651m -=-的解也是关于x 的方程()233x n --=的解. (1)求,m n 的值;(2)已知线段AB m =,在直线AB 上取一点P ,恰好使APm PB=,点Q 为PB 的中点,求线段AQ 的长.四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.35.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.36.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由. 37.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折; 已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少? (2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由. 38.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?39.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =40.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.41.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;情况②当点C 在点B 的左侧时, 如图2此时,AC =5.仿照上面的解题思路,完成下列问题:问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.问题(2): 若2x =,3y =求x y +的值.问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).42.已知:∠AOB =140°,OC ,OM ,ON 是∠AOB 内的射线.(1)如图1所示,若OM 平分∠BOC ,ON 平分∠AOC ,求∠MON 的度数: (2)如图2所示,OD 也是∠AOB 内的射线,∠COD =15°,ON 平分∠AOD ,OM 平分∠BOC .当∠COD 绕点O 在∠AOB 内旋转时,∠MON 的位置也会变化但大小保持不变,请求出∠MON 的大小;(3)在(2)的条件下,以∠AOC =20°为起始位置(如图3),当∠COD 在∠AOB 内绕点O 以每秒3°的速度逆时针旋转t 秒,若∠AON :∠BOM =19:12,求t 的值.43.我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例: 例:将0.7•化为分数形式, 由于0.70.777•=,设0.777x =,①得107.777x =,②②−①得97x =,解得79x =,于是得70.79•=.同理可得310.393•==,4131.410.4199••=+=+=.根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) (类比应用) (1)4.6•= ;(2)将0.27••化为分数形式,写出推导过程; (迁移提升)(3)0.225••= ,2.018⋅⋅= ;(注0.2250.225225••=,2.018 2.01818⋅⋅=)(拓展发现) (4)若已知50.7142857=,则2.285714= .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】根据同底数幂的乘法法则可得:14333533 x x x x x m m m n m n m n =⨯⨯⨯=⨯⨯⨯=⨯=,故选C.2.C解析:C 【解析】 【分析】根据合并同类项的方法判断即可. 【详解】A. 22232x x x -=,该选项错误;B. 2332a a 、不是同类项不可合并,该选项错误;C. 10.2504ab ab -+=,该选项正确; D. 3x 、不是同类项不可合并,该选项错误. 故选C. 【点睛】本题考查同类型的判断,关键在于清楚同类型的定义.3.C解析:C【解析】【分析】将四边形的边长分解成一个三角形的周长和AD与BE的长,加起来即可.【详解】由题意得,AB=DE,AD=BE=2;四边形ABFD的周长=EF+DF+AB+AD+BE= EF+DF+DE+AD+BE=△DEF周长+2+2=19cm;故选C.【点睛】本题考查三角形平移、周长算法,关键在于将四边形周长分解成已知条件.4.B解析:B【解析】【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A、设最小的数是x.x+x+7+x+7+1=19∴x=43,故本选项错误;B、设最小的数是x.x+x+6+x+7=19,∴x=2,故本选项正确.C、设最小的数是x.x+x+1+x+7=19,∴x=113,故本选项错误.D、设最小的数是x.x+x+1+x+8=19,∴x=103,故本选项错误.故选:B.【点睛】本题考查一元一次方程的应用,需要学生具备理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.5.C解析:C【解析】【分析】分别求出每个选项中数的范围即可求解.【详解】A.(x+2)2≥0;B.|x+2|≥0;C.x2+2≥2;D.x2﹣2≥﹣2.故选:C.【点睛】本题考查了正数与负数、绝对值和平方数的取值范围;掌握平方数和绝对值的意义是解题的关键.6.C解析:C【解析】【分析】设该商品进价为x元,则售价为(x+70)×75%,进一步利用售价-进价=利润列出方程解答即可.【详解】设该商品进价为x元,由题意得(x+70)×75%-x=30,解得:x=90,答:该商品进价为90元.故选:C.【点睛】此题考查一元一次方程的实际运用,掌握销售问题中基本数量关系是解决问题的关键.7.D解析:D【解析】A. ∵a>b,a+2>b+2 ,故不正确;B. ∵a>b,a﹣2>b﹣2 ,故不正确;C. ∵a>b, 2a>2b,故不正确;D. ∵a>b,﹣2a<﹣2b,故正确;故选D.点睛:本题考查了不等式的基本性质,①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.8.B解析:B【解析】【分析】直接利用正方体的表面展开图特点判断即可.【详解】根据正方体展开图的特点可判断A 属于“1、3、2”的格式,能围成正方体,D 属于“1,4,1”格式,能围成正方体,C 、属于“2,2,2”的格式也能围成正方体,B 、不能围成正方体. 故选B . 【点睛】本题主要考查展开图折叠成几何体的知识点.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.注意只要有“田”字格的展开图都不是正方体的表面展开图.9.D解析:D【解析】【分析】根据倒数的性质求解即可.【详解】1133⎛⎫÷-=- ⎪⎝⎭故13-的倒数是3-故答案为:D .【点睛】本题考查了倒数的问题,掌握倒数的性质是解题的关键. 10.D解析:D【解析】【分析】分别把与转化成(a 2+2ab )+(b 2+2ab)和(a 2+2ab )-(b 2+2ab)的形式,代入-10和16即可得答案. 【详解】∵,, ∴=(a 2+2ab )+(b 2+2ab)=-10+16=6, a 2-b 2=(a 2+2ab )-(b 2+2ab)=-10-16=-26,故选D.【点睛】本题考查整式的加减,熟练掌握运算法则是解题关键. 11.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】285 000 000=2.85×108.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.D解析:D【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“快”是相对面,“们”与“同”是相对面,“乐”与“学”是相对面.故选:D .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.13.D解析:D【解析】【分析】利用多项式合并同类项的原则,对选项依次进行同类型合并即可判断.【详解】解:A 、a 与 3a 2 不是同类项,不能合并,故此选项错误;B 、﹣2(a ﹣b)=﹣2a+2b ,故此选项错误;C 、5a ﹣4a=a ,故此选项错误;D 、a 2b ﹣2a 2b=﹣a 2b ,故此选项正确;故选:D.【点睛】本题考查多项式的合并同类项,熟练掌握多项式合并同类项的方法是解题关键.14.D解析:D【解析】【分析】根据余角、补角的定义计算.【详解】根据余角的定义,两角之和为90°,这两个角互余.D 中∠1和∠2之和为90°,互为余角.故选D .【点睛】本题考查了余角和补角的定义,根据余角的定义来判断,记住两角之和为90°,与两角位置无关.15.B解析:B【解析】【分析】用科学记数法表示较大的数时,注意a ×10n 中a 的范围是1≤a <10,n 是正整数,n 与原数的整数部分的位数-1.【详解】解:8149000000 1.4910=⨯故选:B .【点睛】本题考查用科学记数法表示绝对值大于1的数. 科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,能正确确定a 和n 是解决此题的关键.二、填空题16.75【解析】【分析】根据互为余角的两角之和为90°,即可得出答案.【详解】∵∠α=40° 15′,∴∠a 的余角=90°-40° 15′=49° 45′=49.75°.故答案为:4解析:75【解析】【分析】根据互为余角的两角之和为90°,即可得出答案.【详解】∵∠α=40° 15′,∴∠a的余角=90°-40° 15′=49° 45′=49.75°.故答案为:49.75.【点睛】本题考查了余角的知识,属于基础题,解答本题的关键是熟记互为余角的两角之和为90°.17.3或5【解析】【分析】分类讨论:C在线段AB的反向延长向上;C在线段AB上;根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【详解】当C在线段AB的反向延长向上时,由线段的和差解析:3或5【解析】【分析】分类讨论:C在线段AB的反向延长向上;C在线段AB上;根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【详解】当C在线段AB的反向延长向上时,由线段的和差,得BC=AB+AC=8+2=10,由线段中点的性质,得BD=CD=12BC=12×10=5,AD=CD-AC=5-2=3;当C在线段AB上时,由线段的和差,得BC=AB-AC=8-2=6,由线段中点的性质,得BD=CD=12BC=12×6=3,所以AD=AC+CD=2+3=5.综上所述,AD=3或5.故答案为:3或5.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质,分类讨论是解题关键,以防遗漏.18.六【解析】【分析】设每件服装的成本为x元,则标价为2(x-20)元,根据销售价格-成本=利润,即可得出关于x的一元一次方程,解之即可得出结论,再利用成本÷标价即可求出结论.【详解】解:设每解析:六【解析】【分析】设每件服装的成本为x元,则标价为2(x-20)元,根据销售价格-成本=利润,即可得出关于x的一元一次方程,解之即可得出结论,再利用成本÷标价即可求出结论.【详解】解:设每件服装的成本为x元,则标价为2(x-20)元,根据题意得:0.8×2(x-20)-x=40,解得:x=120,∴2(x-20)=200.即每件服装的标价为200元,成本为120元.120÷200=0.6.即为保证不亏本,最多能打六折.故答案为:六.【点睛】本题考查一元一次方程的应用,解题关键是找准等量关系,正确列出一元一次方程.19.22°【解析】【分析】根据余角的定义,如果两个角的和是直角,那么称这两个角“互为余角”,已知一个锐角A,求另一个与其互余的锐角B,用“90°-∠A”即可.【详解】∵∠α=68°,∴∠α的解析:22°【解析】【分析】根据余角的定义,如果两个角的和是直角,那么称这两个角“互为余角”,已知一个锐角A,求另一个与其互余的锐角B,用“90°-∠A”即可.【详解】∵∠α=68°,∴∠α的余角=90°-68°=22°.故答案是22°.【点睛】本题考查了余角的定义,解决本题的关键是熟练掌握余角的定义和计算关系式.20.8【解析】【分析】根据题意将x=1代入方程即可求出a的值.【详解】将x=1代入方程得:2a-5=a+3,解得:a=8.故答案为:8.【点睛】此题考查了一元一次方程的解,方程的解即为解析:8【解析】【分析】根据题意将x=1代入方程即可求出a的值.【详解】将x=1代入方程得:2a-5=a+3,解得:a=8.故答案为:8.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.21.七【解析】【分析】根据多边形的内角和公式,列式求解即可.【详解】设这个多边形是边形,根据题意得,,解得.故答案为.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.解析:七【解析】【分析】n-⋅︒,列式求解即可.根据多边形的内角和公式()2180【详解】设这个多边形是n边形,根据题意得,()2180900n-⋅︒=︒,n=.解得7故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.22.3【解析】【分析】将x=48代入运算程序中计算得到输出结果,以此类推总结出规律即可得到第202 0次输出的结果.【详解】将x=48代入运算程序中,得到输出结果为24,将x=24代入运算程序解析:3【解析】【分析】将x=48代入运算程序中计算得到输出结果,以此类推总结出规律即可得到第2020次输出的结果.【详解】将x=48代入运算程序中,得到输出结果为24,将x=24代入运算程序中,得到输出结果为12,将x=12代入运算程序中,得到输出结果为6,将x=6代入运算程序中,得到输出结果为3,将x=3代入运算程序中,得到输出结果为6.∵(2020-2)÷2=1009,∴第2020次输出结果为3.故答案为:3.【点睛】本题考查了代数式求值,弄清题中的运算程序是解答本题的关键.23.【解析】【分析】设∠BOD为x,则∠AOC=3x,利用直角建立等式解出x即可.【详解】设∠BOD为x,则∠AOC=3x,由题意得:∠AOC=∠AOB+∠BOC.x=45°.故答案解析:【解析】【分析】设∠BOD 为x,则∠AOC=3x,利用直角建立等式解出x 即可.【详解】设∠BOD 为x,则∠AOC=3x,由题意得:90,BOC x ∠=︒-∠AOC=∠AOB+∠BOC.39090x x =︒+︒-x =45°.故答案为:45.【点睛】本题考查角度的计算,关键在于利用方程的思想将题目简单化.24.【解析】【分析】根据1'=,将15'化为然后与42°相加即可.【详解】解:.故答案为:.【点睛】考查了度分秒的换算,分秒化为度时用除法,而度化为分秒时用乘法. 解析:42.25︒【解析】【分析】根据1'=1()60︒,将15'化为15()60︒然后与42°相加即可. 【详解】 解:154215=42+()42.2560'︒︒︒=︒. 故答案为:42.25︒.【点睛】 考查了度分秒的换算,分秒化为度时用除法,而度化为分秒时用乘法.25..【解析】【分析】利用相反数的概念,可得的相反数等于. 【详解】 的相反数是.故答案为:.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负解析:32. 【解析】【分析】 利用相反数的概念,可得32-的相反数等于32. 【详解】 32-的相反数是32. 故答案为:32. 【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 三、解答题26.(1)详见解析;(2)26;(3)2【解析】【分析】(1)左视图有三列,小正方形的个数分别是1,,2,1;俯视图有3列,小正方形的个数分别是3,1,1;(2)分别数出前后左右上下6个方向的正方形的个数,再乘以1个面的面积即可求解; (3)保持俯视图和左视图不变,可以在第2排的左边和中间这两个上面空余位置各放一个,即共添加2个小正方体.【详解】解:(1)如图所示:(2)(5×2+ 4×2+ 4×2)×(1×1)=26;(3)若保持这个几何体的左视图和俯视图不变,那么最多可以添加2个小正方体.【点睛】本题考查画三视图,解题关键是掌握在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.27.(1)x=1,(2)x=﹣3【解析】试题分析:(1)按照去括号,移项,合并同类项,系数化为1求解;(2)按照去分母,去括号,移项,合并同类项,实数化为1的步骤解答.解:(1)1﹣3(x ﹣2)=4,1-3x +6=4,-3x =4-6-1,-3x =-3,x =1.(2)213x +﹣516x -=1, 2(2x +1)-(5x -1)=6,4x +2-5x +1=6,4x -5x =6-1-2,-x =3,x =-3 点睛:去括号时一是不要漏乘括号内的项,二是括号前是“-”,去掉括号后括号内各项的符号都要改变;两边都乘个分母的最小公倍数去分母时一是不要漏乘没有分母的项,二是去掉分母后把分子加上括号.28.(1)196x =-;(2)1x =. 【解析】【分析】(1)方程移项合并,将x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x 系数化为1,即可求出解.【详解】(1)612910x x -=+ 619x -=196x =- (2)解:去分母,得122(2)63(1)x x x -+=--.去括号,得1224633x x x --=-+.移项、合并同类项,得55x -=-.系数化为1,得1x =.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.29.2【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入原式计算即可求出值.【详解】原式=6a 2b ﹣4ab 2+3ab 2﹣9a 2b=﹣ab 2﹣3a 2b ,由题意得:a=1,b=﹣2,则原式=﹣4+6=2.【点睛】本题考查了整式的加减﹣化简求值及非负数的性质,熟练掌握整式加减的运算法则是解本题的关键30.(1)-2和4;(2)①经过107秒或145秒,3OA OB =;②经过25秒或52秒后,点A 、B 、P 中的某一点成为其余两点所连线段的中点.【解析】【分析】(1)设点A 在数轴上对应的数为a,点B 在数轴上对应的数为b.根据题意确定a 、b 的正负,得到关于a 、b 的方程,求解即可;(2)①设t 秒后OA=3OB.根据OA=3OB ,列出关于t 的一元一次方程,求解即可;②根据中点的意义,得到关于t 的方程,分三种情况讨论并求解:点P 是AB 的中点;点A 是BP 的中点;点B 是AP 的中点.【详解】(1)设点A 在数轴上对应的数为a,点B 在数轴上对应的数为b,则OA=-a ,OB=b ∵6AB =,∴OA+OB=6∴-a+b=6∵2OB OA =.∴b=-2a∴-a+b=6b=-2a ⎧⎨⎩∴a=-2b=4⎧⎨⎩∴点A 在数轴上对应的数为-2,点B 在数轴上对应的数为4故答案为:-2和4;(2)①设t 秒后,3OA OB =,则点A 在数轴上对应的数为-2-t,点B 在数轴上对应的数为4-2t ,故OA=2+t情况一:当点B 在点O 右侧时,故OB=4-2t∵3OA OB =则()2342t t +=-, 解得:107t =. 情况二:当点B 在点O 左侧时,,故OB=2t-4∵3OA OB =则()2324t t +=-, 解得:145t =. 答:经过107秒或145秒,3OA OB =. ②设经过t 秒后,点A 、B 、P 中的某一点成为其余两点所连线段的中点,此时点P 在数轴上对应的数为t, 点A 在数轴上对应的数为-2-t,点B 在数轴上对应的数为4-2t当点P 是AB 的中点时,则()()2422t t t --+-=, 解得:25t =. 当点B 是AP 的中点时,则()2422t t t --+=-. 解得:52t =. 当A 点是BP 的中点时,则()4222t t t -+=-- 解得:8t =-(不合题意,舍去) 答:经过25秒或52秒后,点A 、B 、P 中的某一点成为其余两点所连线段的中点. 【点睛】本题考查了数轴、一元一次方程、 线段的中点及分类讨论的思想.题目综合性较强.掌握数轴上两点间的距离公式是解决本题的关键.数轴上两点间的距离=右边点表示的数-左边点表示的数.31.(1)﹣5,10;(2)①P ,Q 两点之间的距离为13;②43≤t ≤2;③当m =5时,等式AP +mPQ =75(m 为常数)始终成立.【解析】【分析】(1)由非负性可求解;(2)①由两点距离可求解;②由P ,Q 两点间的距离不超过3个单位长度,列出不等式即可求解;③等式75AP mPQ +=(m 为常数)始终成立,由列出方程,即可求解.【详解】(1)∵a 、b 满足:|a +5|+(b ﹣10)2=0,∵|a +5|≥0,(b ﹣10)2≥0,∴:|a +5|=0,(b ﹣10)2=0,∴a =﹣5,b =10,故答案为:﹣5,10;(2)①∵t =2时,点P 运动到﹣5+2×5=5,点Q 运动到10+2×4=18,∴P ,Q 两点之间的距离=18﹣5=13;②由题意可得:|﹣5+5t ﹣(10﹣4t )|≤3, ∴43≤t ≤2; ③由题意可得:5t +m (10+4t ﹣5t +5)=75,∴5t ﹣mt +15m =75,∴当m =5时,等式AP +mPQ =75(m 为常数)始终成立.【点睛】本题考查一元一次方程的应用,非负数的性质、数轴、两点间距离等知识,解题的关键是熟练应用这些知识解决问题,属于中考常考题型.32.(1)1;(2)120.【解析】【分析】(1)根据有理数加减法混合运算法则计算即可;(2)根据有理数四则混合运算法则计算即可.【详解】(1)原式=25(+277+()-)- =-1+2=1;(2)原式=5(8)(3)⨯-⨯-=40(3)-⨯-=120.【点睛】本题考查了有理数的混合运算.熟练掌握运算法则和运算顺序是解答本题的关键.33.(1)6,3m n ==;(2) 214AQ =或152【解析】【分析】(1)解出关于m 的方程的解,即m 的值,再将m 值代入关于x 的方程求n 值;(2)分两种情况讨论,即P 点在B 点的左边和右边,根据线段之间的关系求线段长即可.【详解】解: ()1()12651m -=-, 1610m -=-,关于m 的方程()12651m -=-的解也是关于x 的方程()233x n --=的解, 6x m ∴==,将6x =,代入方程()233x n --=得;()2633n --=,解得:3n =,故6,3m n ==;()2由()1知:6AB =,3AP PB=, ①点P 在线段AB 上时,如图所示:6,3AP AB PB==, 93,22AP BP ∴==, 点Q 为PB 的中点,1324PQ BQ BP ∴=== 9321244AQ AP PQ ∴=+=+= ②点P 在线段AB 的延长线上时,如图所示:6,3AP AB PB==, 3PB ∴=,点Q 为PB 的中点,32PQ BQ ∴==, 315622AQ AB BQ ∴=+=+=,故214AQ 或152.【点睛】本题考查了同解方程的概念,一元一次方程的解法以及线段的度量,数形结合思想和分类讨论思想是解答此题的关键.四、压轴题34.(1)8;(2)4或10;(3)t的值为167和329【解析】【分析】(1)由数轴上点B在点A的右侧,故用点B的坐标减去点A的坐标即可得到AB的值;(2)设点C表示的数为x,再根据AC=3BC,列绝对值方程并求解即可;(3)点C位于A,B两点之间,分两种情况来讨论:点C到达B之前,即2<t<3时;点C 到达B之后,即t>3时,然后列方程并解方程再结合进行取舍即可.【详解】解:(1)∵数轴上两点A,B表示的数分别为﹣2,6∴AB=6﹣(﹣2)=8答:AB的值为8.(2)设点C表示的数为x,由题意得|x﹣(﹣2)|=3|x﹣6|∴|x+2|=3|x﹣6|∴x+2=3x﹣18或x+2=18﹣3x∴x=10或x=4答:点C表示的数为4或10.(3)∵点C位于A,B两点之间,∴点C表示的数为4,点A运动t秒后所表示的数为﹣2+t,①点C到达B之前,即2<t<3时,点C表示的数为4+2(t﹣2)=2t∴AC=t+2,BC=6﹣2t∴t+2=3(2t﹣6)解得t=16 7②点C到达B之后,即t>3时,点C表示的数为6﹣2(t﹣3)=12﹣2t ∴AC=|﹣2+t﹣(12﹣2t)|=|3t﹣14|,BC=6﹣(12﹣2t)=2t﹣6∴|3t﹣14|=3(2t﹣6)解得t=329或t=43,其中43<3不符合题意舍去答:t的值为167和329。
2022-2023学年浙江省杭州市七年级上册数学期末专项提升模拟题(卷一卷二)含解析
2022-2023学年浙江省杭州市七年级上册数学期末专项提升模拟题(卷一)一、选一选(本大题8小题,每小题3分,满分24分)1. -5的值是( )A. 5B.C. -5D. 0.5152.下列运算正确的是( )A.B. C. D.3. 下列各组两项中,是同类项的是( )A. 与B. 与C. 与D. 与xy xy -15ac 15abc 3ab -2xy -23xy 23x y4. 下列等式正确的是( ).A. B. ()a b c a b c -+=-+()a b c a b c -+=--C . D. 2()2a b c a b c --=--()()a b c a b c -+=----5. 下列各代数式中,单项式有( )个-3ab +2c , , , , π, , -3.5, 2m -223x y-1x 223()a b --2(32)x y -A . 3 B. 4 C. 5D. 76.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是()A.B. C. D.7. 如图,从A 到B 有①,②,③三条路线,最短的路线是①,其理由是( )A. 因为它最直B. 两点确定一条直线C. 两点间的距离的概念D. 两点之间,线段最短8. 如图,下列条件中没有能使a ∥b 的是( ).A. ∠1=∠3B. ∠2=∠3C. ∠4=∠5D. ∠2+∠4=180°二、填 空 题(本大题10小题,每小题3分,满分30分)9. 写出1个比小的有理数_________;2-10.的系数是________,次数是_______次;225ab π-11. 已知地球的表面积约为510000000km 2.数510000000用科学记数法可以表示为______.12. 三位数,百位上的数字为a ,十位上的数字是a 的2倍,个位上的数字比十位上的数字小1,用代数式表示这个三位数_______________.13. 已知:,则_________.2(2)10y x -++=2x y +=14. 如图,点C 是线段AB 上的点,点D 是线段BC 的中点,若AB =10,AC =6,则CD=______;15. 如图,O 为直线AB 上一点,∠COB=26°30′,则∠1=______°16. 如图,将直尺与三角尺叠放在一起,在图中标记的角中,写出所有与∠2互余的角是_______.17. 如图,是一组有规律的图案,第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,……,第(是正整数)个图案中由______个基础图形组成.(用含的代数式表示)n nn 18. 如图,m ∥n ,AB ⊥m ,∠1=,则∠2=_______43︒三、解 答 题(本大题共9题,满分66分)19. 计算:(1);(2).523()(12)1234-+-⨯-4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦20. 已知:,求的值.21(2)02x y ++-=22222()23(1)2xy x y xy x y ⎡⎤+----⎣⎦21. 如图,已知∠1=∠2,∠D =60˚,求∠B 的度数.22. 如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°.请完善说明过程,并在括号内填上相应依据;解:∵AD∥BC ( )∴∠1=∠3 ()∵∠1=∠2( 已知)∴∠2=∠3 ()∴∥( )∴∠3+∠4=180°( ) .23. 如图是由5个相同的小正方体搭成的几何体,已知小正方体的棱长为1.(1)画出它的三视图;(2)求出它的表面积(含底面积).24. 如图,A、O、B是同一直线上的三点,OC、OD、OE是从O点引出的三条射线,且∠1∶∠2∶∠3∶∠4=1∶2∶3∶4,求∠5的度数.25. 已知直线AB和CD相交于O点,CO⊥OE,OF平分∠AOE,∠COF=34°,求∠BOD的度数.26. 如图,相距5km的A、B两地间有一条笔直的马路,C地位于AB两地之间且距A地2km,小明同学骑自行车从A地出发沿马路以每小时5km的速度向B地匀速运动,当到达B 地后立即以原来的速度返回.到达A地停止运动,设运动时间为t(小时).小明的位置为点P、若以点C为坐标原点,以从A到B为正方向,用1个单位长度表示1km,解答下列各问:(1)指出点A所表示的有理数;(2)求t =0.5时,点P表示的有理数;(3)当小明距离C地1km时,直接写出所有满足条件的t值;(4)在整个运动过程中,求点P与点A的距离(用含t的代数式表示);(5)用含t的代数式表示点P表示的有理数.2022-2023学年浙江省杭州市七年级上册数学期末专项提升模拟题(卷一)一、选一选(本大题8小题,每小题3分,满分24分)1. -5的值是( )A. 5B.C. -5D. 0.515【正确答案】A 【分析】根据值的性质:一个正数的值是它本身;一个负数的值是它的相反数;0的值是0.【详解】解:根据负数的值是它的相反数,得|-5|=5.故选:A .此题主要考查了值的求法,解题的关键是掌握值的性质.2. 下列运算正确的是( ) A.B. C.D.【正确答案】D 【详解】试题分析:A 、与没有能合并,所以A 选项错误;B 、原式=6×2=12,所以B选项错误;C 、原式=,所以C 选项准确;D 、原式=2,所以D 选项错误.故选C .考点:二次根式的混合运算3. 下列各组两项中,是同类项的是()A. 与 B. 与C. 与D. 与xy xy -15ac 15abc 3ab -2xy -23xy 23x y【正确答案】A【详解】A 、是同类项,故本选项符合题意;B 、所含字母没有相同,没有是同类项,故本选项没有符合题意;C 、所含字母没有相同,没有是同类项,故本选项没有符合题意;D 、相同字母的指数没有相同,没有是同类项,故本选项没有符合题意;故选:A .本题考查同类项,所含字母相同,并且相同字母的指数也相同的项,叫同类项.4. 下列等式正确的是().A. B. ()a b c a b c-+=-+()a b c a b c -+=--C. D. 2()2a b c a b c--=--()()a b c a b c -+=----【正确答案】B 【详解】试题解析:A 、a-(b+c )=a-b-c ,故原题错误;B 、a-b+c=a-(b-c ),故原题正确;C 、a-2(b-c )=a-2b+2c ,故原题错误;D 、a-b+c=a-(+b )-(-c ),故原题错误;故选B .点睛:去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都没有变号,如果括号前面是负号,括号括号里的各项都改变符号.5. 下列各代数式中,单项式有( )个-3ab +2c , , , , π, , -3.5,2m -223x y -1x 223()a b --2(32)x y -A. 3B. 4C. 5D. 7【正确答案】B 【详解】试题解析:-3ab+2c ,-3(a 2-b 2),(3x-2y )2是多项式;-m 2,−x 2y ,π,-3.5是单项式.23故选B .6. 骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A. B. C. D.【正确答案】C【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【详解】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A 、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以没有可以折成符合规则的骰子,故本选项错误;B 、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以没有可以折成符合规则的骰子,故本选项错误;C 、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;D 、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以没有可以折成符合规则的骰子,故本选项错误.故选C .本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7. 如图,从A 到B 有①,②,③三条路线,最短的路线是①,其理由是( )A. 因为它最直B. 两点确定一条直线C. 两点间的距离的概念D. 两点之间,线段最短【正确答案】D【分析】根据线段的性质:两点之间,线段最短进行分析.【详解】解:最短的路线是①,根据两点之间,线段最短,故选:D.此题主要考查了线段的性质,关键是掌握两点之间,线段最短.8. 如图,下列条件中没有能使a∥b的是().A. ∠1=∠3B. ∠2=∠3C. ∠4=∠5D. ∠2+∠4=180°【正确答案】C【分析】根据平行线的判定方法即可判断.【详解】A. ∠1=∠3,同位角相等,可判定a∥b;B. ∠2=∠3,内错角相等,可判定a∥b;C. ∠4=∠5,互为邻补角,没有能判定a∥b;D. ∠2+∠4=180°,同旁内角互补,可判定a∥b.故选C.此题主要考查平行线的判定方法,解题的关键是熟知平行线的判定定理.二、填 空 题(本大题10小题,每小题3分,满分30分)9. 写出1个比小的有理数_________;2-【正确答案】-3(答案没有)【详解】|-3|>|-2|,-3<-2,故-3(答案没有)10.的系数是________,次数是_______次;225ab π-【正确答案】 ①. ②. 325π-【详解】单项式的系数是-π,次数是3.225ab π-25点睛:单项式的定义:没有含加减号的代数式(数与字母的积的代数式),一个单独的数或字母也叫单项式.单项式中的数字因数叫做这个单项式的系数.所有字母的指数和叫做这个单项式的次数.11. 已知地球的表面积约为510000000km 2.数510000000用科学记数法可以表示为______.【正确答案】5.1×108.【详解】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它个有效数字前0的个数(含小数点前的1个0).因此,∵510000000一共9位,∴510000000=5.1×108.考点:科学记数法.12. 三位数,百位上的数字为a ,十位上的数字是a 的2倍,个位上的数字比十位上的数字小1,用代数式表示这个三位数_______________.【正确答案】122a-1【详解】试题解析:∵百位上的数字为a ,∴十位上的数字是2a ,个位上的数字是2a-1,∴这个三位数是100a+10×2a+2a-1=122a-1.故答案为122a-1.13. 已知:,则_________.2(2)10y x -++=2x y +=【正确答案】0【详解】试题解析:根据题意得,x+1=0,y-2=0,解得x=-1,y=2,所以2x+y=2×(-1)+2=-2+2=0.故答案为0.点睛:非负数的性质:几个非负数的和为0时,这几个非负数都为0.14. 如图,点C 是线段AB 上的点,点D 是线段BC 的中点,若AB =10,AC =6,则CD=______;【正确答案】2【详解】解:由题意可得,,4CB AB AC =-=因为D 是BC 上的中点,所以.2CD CB ==故2.15. 如图,O 为直线AB 上一点,∠COB=26°30′,则∠1=______°【正确答案】153.5【详解】试题解析:180°-26°30′=180°-26.5°=153.5°.16. 如图,将直尺与三角尺叠放在一起,在图中标记的角中,写出所有与∠2互余的角是_______.【正确答案】∠4,∠5,∠6【详解】试题解析:与∠2互余的角有∠4,∠5,∠6;一共3个.17. 如图,是一组有规律的图案,第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,……,第(是正整数)个图案中由______个基础图形组成.(用含的代数式表示)n n n【正确答案】##51+n 15n+【分析】观察图形没有难发现,后一个图形比前一个图形多5个基础图形,根据此规律写出第个图案的基础图形个数即可.n 【详解】解:第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,,11521=⨯+第3个图案由16个基础图形组成,,16531=⨯+,⋯第个图案由个基础图形组成.n 51+n 故.51+n 本题是对图形变化规律的考查,观察图形得到后一个图形比前一个图形多5个基础图形是解题的关键.18. 如图,m ∥n ,AB ⊥m ,∠1=,则∠2=_______43︒【正确答案】133°【详解】试题解析:过B 作直线BD ∥n ,则BD ∥m ∥n,∵AB ⊥m ,∠1=43˚,∴∠ABD=90°,∠DBC=∠1=43°∴∠2=∠ADB+∠1=90°+43°=133°.故填133.三、解 答 题(本大题共9题,满分66分)19. 计算:(1);(2).523()(12)1234-+-⨯-4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦【正确答案】(1)6 ;(2)16【详解】试题分析:(1)利用乘法分配律进行计算即可;(2)先算乘方和括号里面的,再算乘法,算减法.试题解析:(1)()523121234⎛⎫-+-⨯- ⎪⎝⎭=523()(12)(12)(12)1234-⨯-+⨯--⨯-=5-8+9=6;(2)()()241110.5233⎡⎤---⨯⨯--⎣⎦=111(29)23--⨯⨯-=-1+76=.1620. 已知:,求的值.21(2)02x y ++-=22222()23(1)2xy x y xy x y ⎡⎤+----⎣⎦【正确答案】原式==-1.21x y -+【详解】试题分析:原式去括号合并得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.试题解析:原式=2xy 2+2x 2y-2xy 2+3-3x 2y-2=-x 2y+1,∵(x+2)2+|y-|=0,12∴x=-2,y=,12则原式=-2+1=-1.21. 如图,已知∠1=∠2,∠D =60˚,求∠B 的度数.【正确答案】;120B ∠=︒【分析】首先证出∠1=∠3,从而得出AB ∥CD ,然后推出∠D +∠B=180°,代入求出即可.【详解】解:如图:∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴AB∥CD,∴∠D+∠B=180°,∵∠D=60°,∴∠B=120°.本题考查平行线的判定与性质,难度没有大,掌握平行线的判定定理和性质定理是解题关键.22. 如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°.请完善说明过程,并在括号内填上相应依据;解:∵AD∥BC ( )∴∠1=∠3 ()∵∠1=∠2( 已知)∴∠2=∠3 ()∴∥( )∴∠3+∠4=180°( ) .【正确答案】答案见解析【详解】试题分析:根据平行线的性质推出∠1=∠3=∠2,根据平行线的判定推出BE∥DF,根据平行线的性质推出即可.试题解析:∵AD∥BC(已知),∴∠1=∠3(两直线平行,内错角相等),∵∠1=∠2,∴∠2=∠3(等量代换),∴BE∥DF(同位角相等,两直线平行),∴∠3+∠4=180°(两直线平行,同旁内角互补).23. 如图是由5个相同的小正方体搭成的几何体,已知小正方体的棱长为1.(1)画出它的三视图;(2)求出它的表面积(含底面积).【正确答案】(1)见解析;(2)22 S=表【详解】试题分析:(1)利用小正方体堆成的几何体形状得出个数即可;(2)利用三视图求出六个方向的表面积即可.试题解析:(1)如图,(2)表面积为:4+4+3+3+4+4=22.24. 如图,A、O、B是同一直线上的三点,OC、OD、OE是从O点引出的三条射线,且∠1∶∠2∶∠3∶∠4=1∶2∶3∶4,求∠5的度数.【正确答案】560∠=︒【详解】试题分析:设∠1=x,则∠2=2x,∠3=3x,∠4=4x,再根据平角的定义得出x的值,进而可求出∠5的值.试题解析:∵∠1:∠2:∠3:∠4=1:2:3:4,∴设∠1=x,则∠2=2x,∠3=3x,∠4=4x,∵∠1+∠2+∠3=180°,即x+2x+3x=180°,解得x=30°,∴4x=120°,∵∠4+∠5=180°,∴∠5=180°-∠4=180°-120°=60°.25. 已知直线AB和CD相交于O点,CO⊥OE,OF平分∠AOE,∠COF=34°,求∠BOD的度数.【正确答案】22°【分析】根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF-∠COF求出∠AOC,再根据对顶角相等解答.【详解】∵∠COE=90°,∠COF=34°,∴∠EOF=90°-34°=56°.∵OF平分∠AOE,∴∠AOE=∠EOF=56°.∴∠AOC=∠AOF-∠COF=56°-34°=22°.∵∠AOC=∠BOD(对顶角相等),∴∠BOD=22°.26. 如图,相距5km的A、B两地间有一条笔直的马路,C地位于AB两地之间且距A地2km,小明同学骑自行车从A地出发沿马路以每小时5km的速度向B地匀速运动,当到达B 地后立即以原来的速度返回.到达A地停止运动,设运动时间为t(小时).小明的位置为点P、若以点C为坐标原点,以从A到B为正方向,用1个单位长度表示1km,解答下列各问:(1)指出点A所表示的有理数;(2)求t =0.5时,点P表示的有理数;(3)当小明距离C地1km时,直接写出所有满足条件的t值;(4)在整个运动过程中,求点P与点A的距离(用含t的代数式表示);(5)用含t的代数式表示点P表示的有理数.【正确答案】(1)点A所表示的有理数是−2;(2)t=0.5时点P表示的有理数是0.5.(3)当小明距离C地1km时,t的值是0.2或0.6或1.4或1.8;(4)在整个运动过程中,求点P与点A的距离是5t千米或10−5t千米;(5)点P表示的有理数是5t−2或8−5t.【详解】试题分析:(1)根据以点C为坐标原点,以从A到B为正方向,而且AC=2km,可得点A所表示的有理数是-2.(2)首先根据速度×时间=路程,用小明骑自行车的速度乘以0.5,求出小明0.5小时骑的路程是多少;然后用它减去2,求出t=0.5时点P表示的有理数是多少即可.(3)根据题意,分两种情况:①当小明在C点的左边时;②当小明在C点的右边时;然后根据路程÷速度=时间,求出小明距离C地1km时,所有满足条件的t值是多少即可.(4)根据题意,分两种情况:①小明从A地到B地时;②小明从B地到A地时;然后分类讨论,求出点P与点A的距离是多少即可.(5)根据题意,用点P与点A的距离减去2,用含t的代数式表示点P表示的有理数即可.试题解析:(1)因为AC=2km,且1个单位长度表示1km,所以点A所表示的有理数是−2.(2)5×0.5−2=2.5−2=0.5所以t=0.5时点P表示的有理数是0.5.(3)①当小明去时在C点的左边时,(2−1)÷5=1÷5=0.2②当小明去时在C点的右边时,(2+1)÷5=3÷5=0.6③当小明返回在C点的右边时,(10−3)÷5=7÷5=1.4④当小明返回在C点的左边时,(10−1)÷5=9÷5=1.8答:当小明距离C地1km时,t的值是0.2或0.6或1.4或1.8(4)①小明从A地到B地时,点P与点A的距离是5t千米.②(5−1)÷2=4÷2=2所以小明从B地到A地时,点P与点A的距离是:5−5(t−1)=10−5t(千米)所以在整个运动过程中,求点P 与点A 的距离是5t 千米或10−5t 千米.(5)因为点P 与点A 的距离是5t 千米或10−5t 千米,所以点P 表示的有理数是5t−2或8−5t.2022-2023学年浙江省杭州市七年级上册数学期末专项提升模拟题(卷二)一、选一选(每小题3分共36分)1. 下列说法中正确的是( ).A. a 是单项式B. 的系数是222r πC. 的次数是1D. 多项式的次数是423abc-29517m mn --2. 将(3x+2)﹣2(2x﹣1)去括号正确的是( )A. 3x+2﹣2x+1B. 3x+2﹣4x+1C. 3x+2﹣4x﹣2D. 3x+2﹣4x+23. 若是方程的解,则的值是()3x =-2()6x m -=m A. 6 B. -6 C. 12 D. -124. 单项式x m ﹣1y 3与4xy n 的和是单项式,则n m 的值是( )A. 3B. 6C. 8D. 95. 一个数加上﹣12得﹣5,那么这个数为( )A . 17 B. 7 C. ﹣17 D. ﹣76. 立方是它本身的数是( )A. 1B. 0C. -1D. 1,-1,07. 我国研制的“曙光3000服务器”,它的峰值计算速度达到403 200 000 000次/秒,用科学记数法可表示为( )A. 4032×108B. 403.2×109C. 4.032×1011D. 0.4032×10128. 用四舍五入法按要求对0.05019分别取近似值,其中错误的是( )A. 0.1(到0.1)B. 0.051(到千分位)C. 0.05(到百分位)D. 0.0502(到0.0001)9. 某种商品每件的标价是330元,按标价的八折时,仍可获利10%,则这种商品每件的进价为A. 240元B. 250元C. 280元D. 300元10. 某商贩在买卖中,同时卖出两件上衣,每件都以80元出售,若按成本计算,其中一件赢利60%,另一件20%,在这次买卖中,该商贩( )A. 没有盈没有亏B. 盈利10元C. 亏损10元D. 盈利50元11. 下面的四个图形中,每个图形均由六个相同的小正方形组成,折叠后能围成正方体的是( )A. B.C. D.12. 如图是由5 个大小相同的正方体组成的几何体,从正面看到的形状图是()A. (A)B. (B)C. (C)D. (D)二、填空题:(每小题3分共18分)4 713. 温度由℃上升℃,达到的温度是______℃.14. 值大于1而小于5的所有整数的和是________.15. 若a、b 互为相反数,c、d 互为倒数,则代数式(a+b)2 +cd-2的值为________16.已知A=2x2-1,B=3-2x2,则B-2A=_________________17. 如果单项式x2y n+2与单项式ab7的次数相等,则n的值为_________;18. 若4x﹣1与7﹣2x的值互为相反数,则x=_____.三 解 答 题:19. 计算题:(1)(–)–(–)–(–)–(+2.75);(2)–32+5×(–)-(–4)2÷(﹣8)2333242738520. 化简题:(1)(5a 2+2a﹣1)-4(3﹣8a+2a 2);(2)3x 2﹣〔7x -(4x -3)-2x 2〕21. (1)解方程:44(3)2(9)x x --=-(2)解方程.2151136x x +--=22. 先化简再求值:(1)3(x 2-2x -1)-4(3x -2)+2(x -1),其中x=﹣3;(2)2a 2﹣[(ab﹣4a 2)+8ab]﹣ab ,其中a=1,b=.12121323. 某管道由甲、乙两工程队单独施工分别需30天、20天.(1)如果两队从两端同时相向施工,需要多少天铺好?(2)又知甲队单独施工每天需付200元的施工费,乙队单独施工每天需付280元的施工费,那么是由甲队单独施工,还是由乙队单独施工,还是由两队同时施工,请你按照少花钱多办事的原则,设计一个,并说明理由.2022-2023学年浙江省杭州市七年级上册数学期末专项提升模拟题(卷二)一、选一选(每小题3分共36分)1. 下列说法中正确的是( ).A. a 是单项式B. 的系数是222r πC. 的次数是1D. 多项式的次数是423abc -29517m mn --【正确答案】A【详解】选项A. a 是单项式,正确.选项 B. 的系数是,错误.22r π2π选项C. 的次数是,错误.23abc-3选项 D. 多项式的次数是2,错误.29517m mn --所以选A.2. 将(3x+2)﹣2(2x﹣1)去括号正确的是( )A. 3x+2﹣2x+1B. 3x+2﹣4x+1C. 3x+2﹣4x﹣2D. 3x+2﹣4x+2【正确答案】D【详解】(3x+2)﹣2(2x﹣1)=3x+2-4x+2,故选D.3. 若是方程的解,则的值是()3x =-2()6x m -=m A. 6B. -6C. 12D. -12【正确答案】B 【分析】把,代入方程得到一个关于m 的方程,即可求解.3x =-【详解】解:把代入方程得:,3x =-2(3)6m --=解得:.6m =-故选:B .本题考查了方程的解的定义,理解定义是关键.4. 单项式x m ﹣1y 3与4xy n 的和是单项式,则n m 的值是( )A. 3B. 6C. 8D. 9【正确答案】D【详解】已知得出两单项式是同类项,可得m ﹣1=1,n=3,解得m=2,n=3,所以n m =32=9,故答案选D .5. 一个数加上﹣12得﹣5,那么这个数为( )A. 17B. 7C. ﹣17D. ﹣7【正确答案】B 【分析】根据题意列出算式,计算即可得到结果.【详解】根据题意得:-5-(-12)=-5+12=7.故选B.本题考查了有理数的减法,熟练掌握运算法则是解本题的关键.6. 立方是它本身的数是( )A. 1B. 0C. -1D. 1,-1,0【正确答案】D 【详解】立方是它本身的数是1,-1,0,故选D.7. 我国研制的“曙光3000服务器”,它的峰值计算速度达到403 200 000 000次/秒,用科学记数法可表示为( )A. 4032×108B. 403.2×109C. 4.032×1011D. 0.4032×1012【正确答案】C 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的值与小数点移动的位数相同.当原数值>1时,n 是正数;当原数的值<1时,n 是负数.【详解】403200000000的小数点向左移动11位得到4.032,所以403200000000用科学记数法可表示为4.032×1011,故选C .本题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8. 用四舍五入法按要求对0.05019分别取近似值,其中错误的是( )A. 0.1(到0.1)B. 0.051(到千分位)C. 0.05(到百分位)D. 0.0502(到0.0001)【正确答案】B 【分析】根据近似数的度对各选项进行判断.【详解】解:A 、(到,此选项说确,没有符合题意;0.050190.1(≈0.1)B 、(到千分位),此选项说法错误,符合题意;0.050190.050(≈C 、(到百分位),此选项说确,没有符合题意;0.050190.05(≈D 、(到,此选项说确,没有符合题意.0.050190.0502(≈0.0001)故选:B .本题考查了近似数:“到第几位”和“有几个有效数字”是度的两种常用的表示形式,它们实际意义是没有一样的,前者可以体现出误差值数的大小,而后者往往可以比较几个近似数中哪个相对更一些.9. 某种商品每件的标价是330元,按标价的八折时,仍可获利10%,则这种商品每件的进价为A. 240元B. 250元C. 280元D. 300元【正确答案】A 【分析】由标价的八折得330×0.8,设进价为x 元,则利润为()元,根据利润3300.8x ⨯-率=利润÷进价,即可求解.【详解】解:设进价为x 元,则利润为,根据题意得:3300.8x ⨯-,3300.810%x x ⨯-=解得:x =240,经检验:x =240是原方程的解且符合题意,∴这种商品每件的进价为240元.故选A10. 某商贩在买卖中,同时卖出两件上衣,每件都以80元出售,若按成本计算,其中一件赢利60%,另一件20%,在这次买卖中,该商贩( )A. 没有盈没有亏B. 盈利10元C. 亏损10元D. 盈利50元【正确答案】B 【详解】设盈利那件的成本为x 元,亏损那件的成本为y 元,则有,(1+60%)x=80 ,(1-20%)y=80,x=50 , y=100,成本总和=100+50=150,售价总和=80+80=160,所以盈利=160-150=10元,故选B.11. 下面的四个图形中,每个图形均由六个相同的小正方形组成,折叠后能围成正方体的是( )A.B.C.D.【正确答案】C【详解】A 、折叠后有个侧面重叠,而且上边没有面,没有能折成正方体;B 、折叠后有个侧面重叠,缺少上底面,故没有能折叠成一个正方体;C 、可以折叠成一个正方体;D 、折叠后有两个面重合,缺少一个下面,所以也没有能折叠成一个正方体,故选C .12. 如图是由5 个大小相同的正方体组成的几何体,从正面看到的形状图是( )A. (A )B. (B )C. (C )D. (D )【正确答案】C 【详解】从正面看,主视图有2列,正方形的数量分别是2、1,故选C .本题考查了简单组合体的三视图,比较简单,关键是要有空间观念.二、填 空 题:(每小题3分共18分)13. 温度由℃上升℃,达到的温度是______℃.4-7【正确答案】3【分析】温度上升,用原来的温度加上升的度数即可.【详解】,所以3.47=3-+本题考查有理数加法的实际应用,掌握运算法则是关键.14. 值大于1而小于5的所有整数的和是________.【正确答案】0【分析】由于大于1且小于5的整数有2、3、4,根据值的意义,要求值大于1且小于5的所有整数,即求值等于2、3、4的整数,是-2、-3、-4、2、3、4,再将它们相加即可.【详解】解:值大于1且小于5的整数有-2、-3、-4、2、3、4,则,4322340---+++=故答案为0本题主要考查了值的意义和性质,需熟练掌握.15. 若a 、b 互为相反数,c 、d 互为倒数,则代数式(a +b)2 +cd -2的值为________【正确答案】-1【详解】∵a 、b 互为相反数,c 、d 互为倒数,∴a+b=0,cd=1,∴(a +b)2 +cd -2=02+1-2=-1,故答案为-1.16. 已知A=2x 2-1,B=3-2x 2,则B-2A=_________________【正确答案】-6x 2+5【详解】由题意得:B-2A=3-2x 2 -2(2x 2 -1),=3-2x 2 -4x 2 +2=-6x 2 +5.故答案为: -6x 2+5.17. 如果单项式x 2y n +2与单项式ab 7的次数相等,则n 的值为_________;【正确答案】4【详解】由题意可得:2+n+2=1+7,解得:n=4,故答案为4.18. 若4x ﹣1与7﹣2x 的值互为相反数,则x =_____.【正确答案】-3【详解】由题意得:(4x -1)+(7-2x )=0,解得:x =-3,故-3.本题考查了一元方程的解法,解题的关键是根据互为相反数的两个数相加得0列出关于x 的方程.三 解 答 题:19. 计算题:(1)(–)–(–)–(–)–(+2.75);(2)–32+5×(–)-(–4)2÷(﹣8)23332427385【正确答案】(1)4;(2)-15.【详解】试题分析:(1)按有理数加减法法则按运算顺序进行计算即可;(2)先进行乘方运算,然后再按顺序进行计算即可.试题解析:(1)原式=–3+2+7–2.75 =–3+7+2–2.75=4+0 =4;233423232334(2)原式=-9-8-16÷(-8)=-9-8+2=-17+2=-15 .20. 化简题:(1)(5a 2+2a﹣1)-4(3﹣8a+2a 2);(2)3x 2﹣〔7x -(4x -3)-2x 2〕【正确答案】(1)-3a 2+34a-13;(2)5x 2-3x-3【详解】试题分析:(1)、(2)都是先去括号,然后再进行合并同类项即可.试题解析:(1)原式=5a 2+2a﹣1-12+32a-8a 2 =(5a 2-8a 2)+( 2a+32a)-(1+12) =-3a 2+34a-13;(2)原式=3x 2﹣(7x-4x+3-2x 2)=3x 2﹣7x+4x-3+2x 2 =(3x 2+2x 2)-(7x-4x)-3 =5x 2-3x-3.21. (1)解方程:44(3)2(9)x x --=-(2)解方程.2151136x x +--=【正确答案】(1);(2).1-3-【分析】(1)依据去括号、移项、合并同类项、系数化为1等步骤求解即可;(2)依据去分母、去括号、移项、合并同类项、系数化为1等步骤求解即可.【详解】解:(1)4−4x +12=18−2x ,−4x +2x =18−4−12,−2x =2,x =−1.(2)2(2x +1)−6=5x−1,4x +2−6=5x−1,4x−5x =6−2−1−x =3,x =−3.本题主要考查的是解一元方程,熟练掌握解一元方程的步骤和方法是解题的关键.22. 先化简再求值:(1)3(x 2-2x -1)-4(3x -2)+2(x -1),其中x=﹣3;(2)2a 2﹣[(ab﹣4a 2)+8ab]﹣ab ,其中a=1,b=.121213【正确答案】(1)原式=3x 2-16x+3=78;(2)原式=4a 2-9ab=1【详解】试题分析:(1)、(2)都 是先去括号,然后合并同类项,把数值代入进行求值即可.试题解析:(1)原式=3x 2-6x-3-12x+8+2x-2 =3x 2-(6x+12x-2x)+(-3+8-2) =3x 2-16x+3,当x=﹣3时,原式=3×(-3)2-16×(-3)+3=78;(2)原式=2a 2﹣(ab-2a 2+8ab )﹣ab1212=2a 2﹣ab+2a 2-8ab﹣ab1212=(2a 2+2a 2)-( ab+8ab+ab) =4a 2-9ab ,1212当a=1,b=时, 原式=4×12-9×1×=1.131323. 某管道由甲、乙两工程队单独施工分别需30天、20天.(1)如果两队从两端同时相向施工,需要多少天铺好?(2)又知甲队单独施工每天需付200元的施工费,乙队单独施工每天需付280元的施工费,那么是由甲队单独施工,还是由乙队单独施工,还是由两队同时施工,请你按照少花钱多办事的原则,设计一个,并说明理由.【正确答案】(1)需要12天完工;(2)由乙队单独施工花钱少,理由见解析.【详解】试题分析:(1)设需要x 天完工,根据等量关系:施工效率×时间=工作总量,列方程进行求解即可;(2)分三种情况:甲单独、乙单独、甲乙合作,分别求出每种情况的费用,进行比较即可得出施工费用至少的那个.试题解析:(1)设需要x 天完工,由题意得x+x=1 ,130120解得:x=12 ,答:需要12天完工;(2)由乙队单独施工花钱少,理由:甲单独施工需:200×30=6000(元),乙单独施工需:280×20=5600(元),两队同时施工需:(200+280)×12=5760(元),因为5600<5760<6000,所以由乙队单独施工花钱少.本题考查了一元方程的应用,解题的关键是弄清题意,找出等量关系,根据等量关系列出方程求解.。
杭州观成中学数学七年级上学期期末数学试题
杭州观成中学数学七年级上学期期末数学试题一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线 2.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( )A .49B .59C .77D .1393.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .5924.在223,2,7-四个数中,属于无理数的是( ) A .0.23B 3C .2-D .2275.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π6.下列调查中,适宜采用全面调查的是() A .对现代大学生零用钱使用情况的调查 B .对某班学生制作校服前身高的调查 C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查7.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 8.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .19.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为( ) A .3.31×105B .33.1×105C .3.31×106D .3.31×10710.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A .不赔不赚 B .赚了9元 C .赚了18元 D .赔了18元 11.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒12.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟二、填空题13.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.14.已知方程22x a ax +=+的解为3x =,则a 的值为__________. 15.已知单项式245225n m xy x y ++与是同类项,则m n =______.16.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.17.﹣213的倒数为_____,﹣213的相反数是_____. 18.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.19.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.20.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.21.A 学校有m 个学生,其中女生占45%,则男生人数为________.22.﹣225ab π是_____次单项式,系数是_____.23.当12点20分时,钟表上时针和分针所成的角度是___________.24.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)三、压轴题25.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.26.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB平分EOD∠时,求旋转角度α;②是否存在2BOC AOD∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 27.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24+ BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值28.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x++-时,可令10x+=和20x-=,分别求得1x=-,2x=(称1-、2分别为|1|x+与|2|x-的零点值).在有理数范围内,零点值1x=-和2x=可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x<-;(2)1-≤2x<;(3)x≥2.从而化简代数式|1||2|x x++-可分为以下3种情况:(1)当1x<-时,原式()()1221x x x=-+--=-+;(2)当1-≤2x<时,原式()()123x x=+--=;(3)当x≥2时,原式()()1221x x x=++-=-综上所述:原式21(1)3(12)21(2)x xxx x-+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x+与|4|x-的零点值分别为;(2)化简式子324x x -++.29.已知:∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE . (1)如图①,当∠BOC=70°时,求∠DOE 的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数. (3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.30.问题一:如图1,已知A ,C 两点之间的距离为16 cm ,甲,乙两点分别从相距3cm 的A ,B 两点同时出发到C 点,若甲的速度为8 cm/s ,乙的速度为6 cm/s ,设乙运动时间为x (s ), 甲乙两点之间距离为y (cm ). (1)当甲追上乙时,x = . (2)请用含x 的代数式表示y . 当甲追上乙前,y = ;当甲追上乙后,甲到达C 之前,y = ; 当甲到达C 之后,乙到达C 之前,y = .问题二:如图2,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB=30°.(1)分针OD 指向圆周上的点的速度为每分钟转动 cm ;时针OE 指向圆周上的点的速度为每分钟转动 cm .(2)若从4:00起计时,求几分钟后分针与时针第一次重合.31.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?32.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB 的长小于点A 绕点C 到B 的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短, 故选C . 【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB 的长小于点A 绕点C 到B 的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.B解析:B 【解析】 【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b )与ab 表示的形式,然后把已知代入即可求解. 【详解】解:∵(5ab+4a+7b )+(3a-4ab ) =5ab+4a+7b+3a-4ab =ab+7a+7b =ab+7(a+b ) ∴当a+b=7,ab=10时 原式=10+7×7=59. 故选B .3.C解析:C 【解析】 【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项. 【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++, 第二行四个数分别为7,8,9,10x x x x ++++, 第三行四个数分别为14,15,16,17x x x x ++++, 第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C. 【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.4.B解析:B【解析】【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可.【详解】0.23是有限小数,是有理数,不符合题意,是开方开不尽的数,是无理数,符合题意,-2是整数,是有理数,不符合题意,227是分数,是有理数,不符合题意,故选:B.【点睛】本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.5.D解析:D【解析】【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94a,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.6.B解析:B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误;B、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.7.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x个零件,根据题意得:1004006 x2x+=故选:D.【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.8.B解析:B【解析】【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x=1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.9.C解析:C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:3310000=3.31×106.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.D解析:D【解析】试题分析:设盈利的这件成本为x元,则135-x=25%x,解得:x=108元;亏本的这件成本为y元,则y-135=25%y,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.11.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A的补角=180°-105°=75°.故选:B.【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.12.C解析:C【解析】试题解析:设开始做作业时的时间是6点x分,∴6x﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y分,∴6y﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C.二、填空题13.14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x, 因为M,N分别是AC,DB的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=12AC x=,DN=1722BD x=,因为mn=17cm,所以x+4x+72x=17,解得x=2,所以BD=14,故答案为:14.14.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a 的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 15.9【解析】【分析】根据同类项的定义进行解题,则,解出m 、n 的值代入求值即可.【详解】解:和是同类项且,【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9【解析】【分析】根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.【详解】解:242n x y +和525m x y +是同类项∴25n +=且24m +=∴3n =,2m =∴239m n ==【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可. 16.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 17.﹣ 2【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37 213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】 ﹣213的倒数为﹣37,﹣213的相反数是213. 【点睛】 本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键.18.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,, ,平分,.故答案为60.【点睛】解析:60 【解析】【分析】 本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.19.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图, “横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.【点睛】本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.20.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.21.【解析】【分析】将男生占的比例:,乘以总人数就是男生的人数.【详解】男生占的比例是,则男生人数为55%,故答案是55%.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其解析:55%m【解析】【分析】将男生占的比例:145%-,乘以总人数就是男生的人数.【详解】男生占的比例是145%55%-=,则男生人数为55%m ,故答案是55%m .【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.22.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π- .本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键.23.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.24.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.x解析:416【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.由题意,得()()()1771416x x x x x +++++++=+故答案为416x +.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.三、压轴题25.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12,412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.26.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-. 解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.27.(1)存在满足条件的点P ,对应的数为﹣92和72;(2)正确的结论是:PM ﹣34BN 的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB 的长,然后求得方程的解,得到C 表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),=(不变).②12PM+34BN=+34××(n﹣2)=34n﹣(随P点的变化而变化).∴正确的结论是:PM ﹣BN 的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.28.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x -=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--,②当4-≤3x <时,原式()()32411x x x =--++=+,③当x ≥3时,原式()()32435x x x =-++=+,综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩, 【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.29.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠COB 的一半,而∠DOE=∠COD+∠COE ,即可求出∠DOE 度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE 为45°;如图4,则∠DOE 为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,。
杭州观成中学数学七年级上学期期末数学试题
杭州观成中学数学七年级上学期期末数学试题一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -3.将图中的叶子平移后,可以得到的图案是()A .B .C .D .4.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -=C.1601601542x x-=D.1601603045x x+=5.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是()A.2 B.8 C.6 D.06.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A.①④B.②③C.③D.④7.方程3x﹣1=0的解是()A.x=﹣3 B.x=3 C.x=﹣13D.x=138.下列各数中,绝对值最大的是()A.2 B.﹣1 C.0 D.﹣39.下列调查中,最适合采用全面调查(普查)的是( )A.对广州市某校七(1)班同学的视力情况的调查B.对广州市市民知晓“礼让行人”交通新规情况的调查C.对广州市中学生观看电影《厉害了,我的国》情况的调查D.对广州市中学生每周课外阅读时间情况的调查10.单项式﹣6ab的系数与次数分别为()A.6,1 B.﹣6,1 C.6,2 D.﹣6,211.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )A.不赔不赚B.赚了9元C.赚了18元D.赔了18元12.下列图形中,哪一个是正方体的展开图()A.B.C.D.二、填空题13.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____.14.若x=2是关于x的方程5x+a=3(x+3)的解,则a的值是_____.15.已知|x|=3,y2=4,且x<y,那么x+y的值是_____.16.若关于x的多项式2261x bx ax x-++-+的值与x的取值无关,则-a b的值是________17.如图甲所示,格边长为cma的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.18.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.19.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).20.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.21.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.22.﹣225ab π是_____次单项式,系数是_____.23.4是_____的算术平方根.24.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、解答题25.解下列一元一次方程()1()23x x +=- ()2()113124x x --+= 26.先化简,再求值:()()22326m n mn mn m n +--,其中3m =,2n =-. 27.(1)先化简,再求值:当(x ﹣2)2+|y+1|=0时,求代数式4(12x 2﹣3xy ﹣y 2)﹣3(x 2﹣7xy ﹣2y 2)的值;(2)关于x 的代数式(x 2+2x )﹣[kx 2﹣(3x 2﹣2x+1)]的值与x 无关,求k 的值. 28.如图,在四边形ABCD 中,BE 平分ABC ∠交线段AD 于点E, 12∠=∠.(1)判断AD 与BC 是否平行,并说明理由. (2)当,140A C ︒∠=∠∠=时,求D ∠的度数.29.解方程(组):(1)2512432x y x y -=⎧⎨+=-⎩(2)12233x x x --=--. 30.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克) 售价(元/千克) 甲种 5 8 乙种913(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?四、压轴题31.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值. 32.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.33.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 利用max{}2,,x x x 的定义分情况讨论即可求解.【详解】 解:当max {}21,,2x x x =时,x ≥0 x 12,解得:x =14x >x >x 2,符合题意; ②x 2=12,解得:x =22x x >x 2,不合题意; ③x =12x x >x 2,不合题意; 故只有x =14时,max {}21,,2x x x =. 故选:C .此题主要考查了新定义,正确理解题意分类讨论是解题关键.2.B解析:B 【解析】 【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.3.A解析:A 【解析】 【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案. 【详解】解:根据平移不改变图形的形状、大小和方向, 将所示的图案通过平移后可以得到的图案是A , 其它三项皆改变了方向,故错误. 故选:A . 【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.4.B解析:B 【解析】 【分析】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟,列出方程即可得. 【详解】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,由题意得1604x -1605x =12, 故选B.本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.5.B解析:B【解析】【分析】由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可.【详解】∵2018÷4=504…2,∴32018﹣1的个位数字是8,故选B.【点睛】本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.6.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.7.D解析:D【解析】【分析】方程移项,把x系数化为1,即可求出解.【详解】解:方程3x﹣1=0,移项得:3x=1,解得:x=13,故选:D.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.D解析:D【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D.考点:D.9.A解析:A【解析】【分析】根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,故选A.【点睛】本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.10.D解析:D【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】解:单项式﹣6ab的系数与次数分别为﹣6,2.故选:D.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.11.D解析:D【解析】试题分析:设盈利的这件成本为x元,则135-x=25%x,解得:x=108元;亏本的这件成本为y元,则y-135=25%y,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.12.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B、C、四个面连在了起不能折成正方体,故不是正方体的展开图;D、是“141"型,所以D是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键.二、填空题13.-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、解析:-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,所以最小的整数是﹣3.故答案为:﹣3.【点睛】本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.14.5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.15.﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣解析:﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣3,y=2时,x+y=﹣1,当x=﹣3,y=﹣2时,x+y=﹣5,所以,x+y的值是﹣1或﹣5.故答案为:﹣1或﹣5.【点睛】本题主要考查了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定x、y的值.16.-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a 与b的值即可得出结果.【详解】解:根据题意得:=(a-1)x2+(b-6)x+1,由结果与x取值解析:-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b的值即可得出结果.【详解】解:根据题意得:2261-++-+=(a-1)x2+(b-6)x+1,x bx ax x由结果与x取值无关,得到a-1=0,b-6=0,解得:a=1,b=6.∴a-b=-5.【点睛】此题考查了整式的加减,熟练掌握运算法则以及理解“与x的取值无关”的意义是解本题的关键.17.【解析】【分析】根据题意列出含a的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦ 故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键. 18.5【解析】【分析】首先求出AC 的长度是多少,根据点D 是AC 的中点,求出AD 的长度是多少;然后求出AE 的长度,即可求出线段ED 的长度为多少.【详解】解:∵AB =5,BC =3,∴AC =5+3解析:5【解析】【分析】首先求出AC 的长度是多少,根据点D 是AC 的中点,求出AD 的长度是多少;然后求出AE 的长度,即可求出线段ED 的长度为多少.【详解】解:∵AB =5,BC =3,∴AC =5+3=8;∵点D 是AC 的中点,∴AD =8÷2=4;∵点E 是AB 的中点,∴AE =5÷2=2.5,∴ED =AD ﹣AE =4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.19.36684或36468或68364或68436或43668或46836等(写出一个即可) 【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】32-=x(x+2y)(x-2y).x xy4当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入20.4或36【解析】【分析】分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.【详解】解:,设,,若点C在线段AB上,则,点O为AB的中点,解析:4或36【解析】【分析】分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.【详解】=,解:AC2BC∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 21.11cm .【解析】【分析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .【点睛】本题考查了两点间的距离,解决本题的关键是掌握线段的中点.22.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 23.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.24.6【解析】如图,∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=6cm.故答案为:6.三、解答题25.(1)2x =-;(2)32x =-【解析】【分析】(1)根据去括号、移项、合并同类项、x 系数化为1求解即可;(2)根据去分母、去括号、移项、合并同类项、x 系数化为1求解即可.【详解】解:(1)去括号得,26x x +=-,移项得,26x x +=-,合并同类项得,36x =-,系数化为1得,2x =-;(2)去分母得,2(1)12(1)1x x --+=,去括号得,2212121x x ---=,移项、合并同类项得,-1015x =,系数化为1得,32x =-. 【点睛】本题考查了一元一次方程的解法,关键是掌握正确的步骤.26.24m n ;-72【解析】【分析】由题意先利用整式加减运算法则对式子进行化简,再将3m =,2n =-代入求解即可.【详解】解:()()22326m n mn mn m n +--=22366m n mn mn m n +-+=24m n ;将3m =,2n =-代入得到243(2)72.⨯⨯-=-【点睛】本题考查整式加减运算中的化简求值,利用合并同类项原则对式子先化简再代入计算求值.27.(1)﹣x 2+9xy+2y 2,﹣20;(2)k =4.【解析】【分析】(1)根据|x ﹣2|+(y+1)2=0可以求得x 、y 的值,然后将题目中所求式子化简,再将x 、y 的值代入化简后的式子即可解答本题.(2)利用多项式的值与x 无关,得出x 的系数和为0,即可得出k 的值,进而求出答案.【详解】解:(1)∵(x ﹣2)2+|y+1|=0,∴x =2、y =﹣1,则原式=2x 2﹣12xy ﹣4y 2﹣3x 2+21xy+6y 2=﹣x 2+9xy+2y 2=﹣22+9×2×(﹣1)+2×(﹣1)2=﹣4﹣18+2=﹣20;(2)原式=x 2+2x ﹣kx 2+3x 2﹣2x+1=(4﹣k )x 2+1∵代数式的值与x 无关,∴k =4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.28.(1)AD//BC ,理由见解析;(2)80︒【解析】【分析】(1)根据BE 平分∠ABC 可得∠2=∠CBE ,再根据∠1=∠2,可得∠1=∠CBE ,可判断AD 与BC 平行;(2)根据∠1=40°,可得∠EBC =∠2=∠1=40°,由此可以求出∠C =∠A =100°,再根据四边形的内角和求得∠D =80°.【详解】解:(1)AD//BC ,理由:∵BE 平分∠ABC∴∠2=∠CBE∵∠1=∠2∴∠1=∠CBE∴AD//BC (内错角相等,两直线平行) ;(2)∵∠1=40°,∴∠EBC =∠2=40°,∴∠A =180°−∠1−∠2=100°,∵∠A =∠C ,∴∠C =∠A =100°,∴∠D =360°−∠A−∠2−∠EBC−∠C =360°−100°−40°−40°−100°=80°.【点睛】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.29.(1)12x y =⎧⎨=-⎩;(2)原方程无解. 【解析】【分析】(1)利用加减消元法即可解答(2)先去分母,再移项合并同类项即可【详解】(1)2512432x y x y -=⎧⎨+=-⎩①② 由2①×,得41024x y -=③由-③②,并化简,得2y =-把2y =-代入①,并化简,得1x =∴12x y =⎧⎨=-⎩ (2)解:原式两边同时乘以3x -,得12(3)2x x --=-∴3x =经检验:3x =是增根,舍去∴原方程无解.【点睛】此题考查解二元一次方程组和解分式方程,解题关键在于掌握运算法则30.(1)、甲种65千克,乙种75千克;(2)、495元.【解析】试题分析:首先设甲种水果x 千克,则乙种水果(140-x )千克,根据进价总数列出方程,求出x 的值;然后根据利润得出总利润.试题解析:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得: 5x+9(140﹣x )=1000, 解得:x=65, ∴140﹣x=75(千克),答:购进甲种水果65千克,乙种水果75千克.(2)3×65+4×75=495,答:利润为495元.考点:一元一次方程的应用.四、压轴题31.(1)107秒或10秒;(2)1413或11413.【解析】【分析】(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC = 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.【详解】(1)∵|a-20|+|c+10|=0,∴a-20=0,c+10=0,∴a=20,c=﹣10.设点B对应的数为b.∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).解得:b=10.当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.∵Q到B的距离与P到B的距离相等,∴|﹣10+5t﹣10|=|20+2t﹣10|,即5t﹣20=10+2t或20﹣5t=10+2t,解得:t=10或t=107.答:运动了107秒或10秒时,Q到B的距离与P到B的距离相等.(2)当点R运动了x秒时,点P对应的数为20+2(x+2)=2x+24,点Q对应的数为﹣10+5(x+2)=5x,点R对应的数为20﹣x,∴AQ=|5x﹣20|.∵点M为线段PR的中点,点N为线段RQ的中点,∴点M对应的数为224202x x++-=442x+,点N对应的数为2052x x-+=2x+10,∴MN=|442x+﹣(2x+10)|=|12﹣1.5x|.∵MN+AQ=25,∴|12﹣1.5x|+|5x﹣20|=25.分三种情况讨论:①当0<x<4时,12﹣1.5x+20﹣5x=25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.32.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM= 12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127;当48t<≤时,由题可知QM=2PM=BP,故点Q位于点B右侧,则PB=2QB,则可得,()()123422.512t t--=-,整理得8t=48,解得6t=.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.33.(1)x=1;(2) x=-3或x=5;(3) 30.【解析】【分析】(1)根据题意可得4-x=x-(-2),解出x的值;(2)此题分为两种情况,当点P在B的右边时,当点P在B的左边时,分别列出方程求解即可;(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x进而求出即可.【详解】(1)4-x=x-(-2),解得:x=1,(2)①当点P在B的右边时得:x-(-2)+x-4=8,解得:x=5,②当点P在B的左边时得:-2-x+4-x=8,解得:x=-3,则x=-3或x=5.(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x,解得:x=6,则5x=30,故答案为30个单位长度.【点睛】本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置.。
七年级上册数学 期末试卷(提升篇)(Word版 含解析)
七年级上册数学期末试卷(提升篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠G MF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.2.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.3.如图,在平面直角坐标系中,已知点A(0,4),B(3,0),线段AB平移后对应的线段为CD,点C在x轴的负半轴上,B、C两点之间的距离为8.(1)求点D的坐标;(2)如图(1),求△ACD的面积;(3)如图(2),∠OAB与∠OCD的角平分线相交于点M,探求∠AMC的度数并证明你的结论.【答案】(1)解:∵B(3,0),∴OB=3,∵BC=8,∴OC=5,∴C(﹣5,0),∵AB∥CD,AB=CD,∴D(﹣2,﹣4)(2)解:如图(1),连接OD,∴S△ACD=S△ACO+S△DCO﹣S△AOD=﹣=16(3)解:∠M=45°,理由是:如图(2),连接AC,∵AB∥CD,∴∠DCB=∠ABO,∵∠AOB=90°,∴∠OAB+∠ABO=90°,∴∠OAB+∠DCB=90°,∵∠OAB与∠OCD的角平分线相交于点M,∴∠MCB=,∠OAM=,∴∠MCB+∠OAM==45°,△ACO中,∠AOC=∠ACO+∠OAC=90°,△ACM中,∠M+∠ACM+∠CAM=180°,∴∠M+∠MCB+∠ACO+∠OAC+∠OAM=180°,∴∠M=180°﹣90°﹣45°=45°.【解析】【分析】(1)利用B的坐标,可得OB=3,从而求出OC=5,利用平移的性质了求出点D的坐标.(2)如图(1),连接OD,由S△ACD=S△ACO+S△DCO+S△AOD,利用三角形的面积公式计算即得.(3)连接AC,利用平行线的性质及直角三角形两锐角互余可得∠OAB+∠DCB=90°,利用角平分线的定义可得∠MCB+∠OAM==45°,根据三角形的内角和等于180°,即可求出∠M的度数.4.如图,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m+n=90°.(1)①若m=50,则射线OC的方向是________,②图中与∠BOE互余的角有________,与∠BOE互补的角有________.(2)若射线OA是∠BON的角平分线,则∠SOB与∠AOC是否存在确定的数量关系?如果存在,请写出你的结论以及计算过程;如果不存在,请说明理由.【答案】(1)北偏东40°;∠BOS,∠EOC;∠BOW(2)解:∠AOC= ∠SOB.理由如下:∵OA平分∠BON,∴∠NOA= ∠NOB,又∵∠BON=180°-∠SOB,∴∠NOA= ∠BON=90°- ∠SOB,∵∠NOC=90°-∠EOC,由(1)知∠BOS=∠EOC,∴∠NOC=90°-∠SOB,∠AOC=∠NOA-∠NOC=90°- ∠SOB-(90°-∠SOB),即∠AOC= ∠SOB.【解析】【解答】解:(1)①∵m+n=90°,m=50°,∴n=40°,∴射线OC的方向是北偏东40°;②∵∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,∴图中与∠BOE互余的角有∠BOS,∠EOC;∠BOE+∠BOW=180°,∴图中与∠BOE互补的角有∠BOW,故答案为:①北偏东40°;②∠BOS,∠EOC;∠BOW.【分析】(1)①由m+n=90°,m=50°可求得n值,从而可得射线OC的方向.②根据余角定义可知∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,从而可得图中与∠BOE互余的角;由补角定义可得∠BOE+∠BOW=180°,从而可得图中与∠BOE互补的角.(2)∠AOC=∠SOB.理由如下:由角平分线定义和领补角定义可得∠NOA= ∠BON=90°-∠SOB,结合(1)中条件可得∠NOC=90°-∠SOB;由∠AOC=∠NOA-∠NOC即可求得它们之间的数量关系.5.如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=________°;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.【答案】(1)20(2)解:如图②,∵OC平分∠EOB,∠BOC=70°,∴∠EOB=2∠BOC=140°,∵∠DOE=90°,∴∠BOD=∠BOE-∠DOE=50°,∵∠BOC=70°,∴∠COD=∠BOC-∠BOD=20°(3)解:∠COE-∠BOD=20°,理由是:如图③,∵∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,∴(∠COE+∠COD)-(∠BOD+∠COD)=∠COE+∠COD-∠BOD-∠COD=∠COE-∠BOD=90°-70°=20°,即∠COE-∠BOD=20°【解析】【解答】⑴如图①,∠COE=∠DOE-∠BOC=90°-70°=20°;【分析】(1)根据角度的换算可知∠COE和∠BOC互余,那么根据∠COB=70°可得∠COE=20°;(2)根据角平分线和∠BOC可得∠BOE=140°,∠COE=∠BOC=90°,所以它的余角∠COD=20°;(3)一个是直角∠EOD,,一个是70°∠BOC,这两个角里都包含了同一个角∠COD,那么大家都减去这个∠COD的度数,剩下的两角差与原两角差是一致的,所以可得出结论∠COE-∠BOD=20°。
七年级数学上册期末试卷(提升篇)(Word版 含解析)
七年级数学上册期末试卷(提升篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【答案】(1)∠PFD+∠AEM=90°(2)过点P作PG∥AB∵AB∥CD,∴PG∥AB∥CD,∴∠AEM=∠MPG,∠PFD=∠NPG∵∠MPN=90°∴∠NPG-∠MPG=90°∴∠PFD-∠AEM=90°;(3)设AB与PN交于点H∵∠P=90°,∠PEB=15°∴∠PHE=180°-∠P-∠PEB=75°∵AB∥CD,∴∠PFO=∠PHE=75°∴∠N=∠PFO-∠DON=45°.【解析】【解答】(1)过点P作PH∥AB∵AB∥CD,∴PH∥AB∥CD,∴∠AEM=∠MPH,∠PFD=∠NPH∵∠MPN=90°∴∠MPH+∠NPH=90°∴∠PFD+∠AEM=90°故答案为:∠PFD+∠AEM=90°;【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.2.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.【答案】(1)25°(2)解:∠BOC=65°,OC平分∠MOB∠MOB=2∠BOC=130°∠BON=∠MOB-∠MON=130°-90°=40°∠CON=∠COB-∠BON=65°-40°=25°(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°∠AOC=∠AOB-∠BOC=180°-65°=115°∠MON=90°∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°4∠NOC+∠NOC=25°∠NOC=5°∠NOB=∠NOC+∠BOC=70°【解析】【解答】解:(1)∠MON=90,∠BOC=65°∠MOC=∠MON-∠BOC=90°-65°=25°【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.3.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)解:如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°;(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.4.如图在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|2a+4|+|b-6|=0(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为(秒).①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间【答案】(1)解:因为,所以2a+4=0,b-6=0,所以a=−2,b=6;所以AB的距离=|b−a|=8;(2)解:设数轴上点C表示的数为c.因为AC=2BC,所以|c−a|=2|c−b|,即|c+2|=2|c−6|.因为AC=2BC>BC,所以点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.①当C点在线段AB上时,则有−2<c<6,得c+2=2(6−c),解得c= ;②当C点在线段AB的延长线上时,则有c>6,得c+2=2(c−6),解得c=14.故当AC=2BC时,c= 或c=14;(3)解:①因为甲球运动的路程为:1×t=t,OA=2,所以甲球与原点的距离为:t+2;乙球到原点的距离分两种情况:(Ⅰ)当0⩽t⩽3时,乙球从点B处开始向左运动,一直到原点O,因为OB=6,乙球运动的路程为:2×t=2t,所以乙球到原点的距离为:6−2t;(Ⅱ)当t>3时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:2t−6;②当0<t⩽3时,得t+2=6−2t,解得t= ;当t>3时,得t+2=2t−6,解得t=8.故当t= 秒或t=8秒时,甲乙两小球到原点的距离相等.【解析】【分析】(1)先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B两点之间的距离;(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0≤t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.5.如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积为________,边长为________.(2)如图2,以数轴的单位长度的线段为边作一个直角三角形,以数轴上表示的﹣1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是________ .(3)如图3,网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是 ________.【答案】(1)5;;(2)(3)【解析】【解答】解:(1)5个小正方形拼成一个大正方形后,面积不变,所以拼成的正方形的面积是:5×1×1=5,边长= ,(2)根据勾股定理可求出图中直角三角形的斜边长= ,然后根据线段和差关系求出A点表示的数是,(3)根据图可知:阴影部分的面积是6个小正方形的面积,即为6,所以拼成的新正方形的面积是6,则新正方形的边长= .【分析】(1)剪拼前后两个图形的形状发生了变化,但总面积不会变化,从而得出拼成的正方形的面积,再根据正方形的面积等于边长的平方即可算出其边长;(2)直角三角形的最大的边就是斜边,根据勾股定理可以算出其斜边的长度是,根据同圆的半径相等得出表示-1的点到A点的距离是,利用线段的和差得OA=-1,从而得出A点所表示的数;(3)利用三角形的面积计算方法可以算出图中阴影部分的面积是6个小正方形的面积,剪拼前后两个图形的形状发生了变化,但总面积不会变化,从而得出拼成的正方形的面积,再根据正方形的面积等于边长的平方即可算出其边长。
杭州观成中学数学七年级上学期 压轴题 期末复习数学试题
杭州观成中学数学七年级上学期 压轴题 期末复习数学试题一、压轴题1.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?2.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.3.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.4.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6 a b x -1 -2 ... (1)可求得 x =______,第 2021 个格子中的数为______;(2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.5.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?6.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
七年级上册杭州数学期末试卷测试卷 (word版,含解析)
七年级上册杭州数学期末试卷测试卷 (word 版,含解析)一、选择题1.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x ﹣y 的值为( )A .-2B .6C .23-D .22.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因( )A .两点之间,线段最短B .过一点有无数条直线C .两点确定一条直线D .两点之间线段的长度,叫做这两点之间的距离3.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是( )A .AD +BD =AB B .BD ﹣CD =CBC .AB =2ACD .AD =12AC 4.据江苏省统计局统计:2018年三季度南通市GDP 总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为( )A .36.1728910⨯亿元B .261.728910⨯亿元C .56.1728910⨯亿元D .46.1728910⨯亿元 5.下列各式中与a b c --的值不相等的是( )A .()a b c -+B .()a b c --C .()()a b c -+-D .()()c b a --- 6.倒数是-2的数是( )A .-2B .12-C .12D .27.图中几何体的主视图是( )A .B .C .D . 8.已知点A 、B 、C 、D 在同一条直线上,线段8AB =,C 是AB 的中点, 1.5DB =.则线段CD 的长为( )A .2.5B .3.5C .2.5或5.5D .3.5或5.59.下列平面图形不能够围成正方体的是( )A .B .C .D .10.某网店销售一件商品,已知这件商品的进价为每件400元,按标价的7折销售,仍可获利20%,设这件商品的标价为x 元,根据题意可列出方程( )A .0.740020%400x -=⨯B .0.740020%0.7x x -=⨯C .()120%0.7400x -⨯=D .()0.7120%400x =-⨯ 11.下列运算正确的是( )A .332(2)-=-B .22(3)3-=-C .323233-⨯=-⨯D .2332-=-12.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作. ①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是( )A .13B .12C .23D .113.若关于x 的一元一次方程mx =6的解为x =-2,则m 的值为( )A .-3B .3C .13D .1614.如图,已知正方形2134A A A A 的边长为1,若从某一点开始沿逆时针方向走点的下标数字的路程,则把这种走法成为一次“逆移”,如:在点3A 开始经过3412A A A A →→→为第一次“逆移”, 在点2A 开始经过2341A A A A →→→为第二次“逆移”.若从点1A 开始,经过2020次“逆移”,最终到达的位置是( )A .1AB .2AC .3AD .4A 15.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x -1)-2(2x +3)=6B .3(x -1)-2(2x +3)=1C .2(x -1)-3(2x +3)=6D .3(x -1)-2(2x +3)=3二、填空题16.如图是一个正方体的展开图,把展开图折叠成正方体后,与数字3所在的面相对的面上的数字是________.17.单项式235a b -的次数为____________. 18.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是__元.19.已知关于x 的方程4231x m x +=+与方程3265x m x +=+的解相同,则方程的解为_________.20.下列三个日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某名同学的跳远成绩.其中,可以用“两点之间线段最短”来解释的是________ .(填序号)21.比较大小:0.4--_________(0.4)--(填“>”“<”或“=”).22.如果向北走20米记作+20米,那么向南走120米记为______米.23.计算t 3t t --=________.24.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是.25.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值_____.三、解答题26.在平面内,将一副直角三角板按如图所示的方式摆放,其中三角形ABC为含60°角的直角三角板,三角形BDE为含45°角的直角三角板.(1)如图1,若点D在AB上,则∠EBC的度数为;(2)如图2,若∠EBC=170°,则∠α的度数为;(3)如图3,若∠EBC=118°,求∠α的度数;(4)如图3,若0°<∠α<60°,求∠ABE-∠DBC的度数.27.甲、乙两车都从A地出发,在路程为360千米的同一道路上驶向B地.甲车先出发匀速驶向B地.10分钟后乙车出发,乙车匀速行驶3小时后在途中的配货站装货耗时20分钟.由于满载货物,乙车速度较之前减少了40千米/时.乙车在整个途中共耗时133小时,结果与甲车同时到达B地.(1)甲车的速度为千米/时;(2)求乙车装货后行驶的速度;(3)乙车出发小时与甲车相距10千米?28.(建立概念)如下图,A、B为数轴上不重合的两定点,点P也在该数轴上,我们比较线段PA和PB的长度,将较短线段的长度定义为点P到线段AB的“靠近距离”.特别地,若线段PA和PB的长度相等,则将线段PA或PB的长度定义为点P到线段AB的“靠近距离”.(概念理解)如下图,数轴的原点为O,点A表示的数为2,点B表示的数为4.(1)点O到线段AB的“靠近距离”为________;(2)点P表示的数为m,若点P到线段AB的“靠近距离”为3,则m的值为_________;(拓展应用)(3)如下图,在数轴上,点P 表示的数为8-,点A 表示的数为3-,点B 表示的数为6. 点P 以每秒2个单位长度的速度向正半轴方向移动时,点B 同时以每秒1个单位长度的速度向负半轴方向移动.设移动的时间为(0)t t >秒,当点P 到线段AB 的“靠近距离”为3时,求t 的值.29.如图,点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC =135°,将一个含45°角的直角三角板的一个顶点放在点O 处,斜边OM 与直线AB 重合,另外两条直角边都在直线AB 的下方.(1)将图1中的三角板绕着点O 逆时针旋转90°,如图2所示,此时∠BOM = ;在图2中,OM 是否平分∠CON ?请说明理由;(2)接着将图2中的三角板绕点O 逆时针继续旋转到图3的位置所示,使得ON 在∠AOC 的内部,请探究:∠AOM 与∠CON 之间的数量关系,并说明理由;(3)将图1中的三角板绕点O 按每秒4.5°的速度沿逆时针方向旋转一周,在旋转的过程中,当旋转到第 秒时,∠COM 与∠CON 互补.30.先化简,后求值:(23)2(2+2ab a a b ab )-+--,其中a=3,b=1. 31.解方程:(1)5(x ﹣1)+2=3﹣x(2)2121136x x -+=- 32.先化简,再求值:已知a 2+2(a 2﹣4b )﹣(a 2﹣5b ),其中a =﹣3,b =13. 33.如图,A 、B 、C 是正方形网格中的三个格点.(1)①画射线AC ;②画线段BC ;③过点B 画AC 的平行线BD ;④在射线AC 上取一点E ,画线段BE ,使其长度表示点B 到AC 的距离;(2)在(1)所画图中,①BD 与BE 的位置关系为 ;②线段BE 与BC 的大小关系为BE BC (填“>”、“<”或“=”),理由是 .四、压轴题34.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”); ()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.35.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.36.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB .(1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.37.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______; (2)用合理的方法进行简便计算:1111924233202033⎛⎫-++---+ ⎪⎝⎭ (3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|. 38.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.39.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 40.如图1,在数轴上A 、B 两点对应的数分别是6,-6,∠DCE=90°(C 与O 重合,D 点在数轴的正半轴上)(1)如图1,若CF 平分∠ACE ,则∠AOF=_______;(2)如图2,将∠DCE 沿数轴的正半轴向右平移t (0<t<3)个单位后,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α.①当t=1时,α=_________;②猜想∠BCE 和α的数量关系,并证明;(3)如图3,开始∠D 1C 1E 1与∠DCE 重合,将∠DCE 沿数轴正半轴向右平移t (0<t<3)个单位,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α,与此同时,将∠D 1C 1E 1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕顶点C 1顺时针旋转30t 度,作C 1F 1平分∠AC 1E 1,记∠D 1C 1F 1=β,若α,β满足|α-β|=45°,请用t 的式子表示α、β并直接写出t 的值.41.如图,两条直线AB,CD 相交于点O ,且90AOC ∠=,射线OM 从OB 开始绕O 点逆时针方向旋转,速度为15/s ,射线ON 同时从OD 开始绕O 点顺时针方向旋转,速度为12/s .两条射线OM 、ON 同时运动,运动时间为t 秒.(本题出现的角均小于平角)(1)当012t <<时,若369AOM AON ∠=∠-.试求出的值;(2)当06t <<时,探究BON COM AOC MON∠-∠+∠∠的值,问:t 满足怎样的条件是定值;满足怎样的条件不是定值? 42.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC .①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).43.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x 、y 、z 的值,然后代入代数式计算即可得解.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“y”是相对面,“5”与“-5”是相对面,“-4”与“3x -2”是相对面,∵相对面上所标的两个数互为相反数,∴3x-2+(-4)=0,x+y=0,解得x=2,y=-2.∴2x ﹣y =6.故选B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.A解析:A【解析】【分析】根据两点之间,线段最短解答即可.【详解】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,其原因是两点之间,线段最短,故选:A .【点睛】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.3.C解析:C【解析】【分析】根据图形和题意可以分别判断各个选项是否正确.【详解】解:由图可得,AD +BD =AB ,故选项A 中的结论成立,BD ﹣CD =CB ,故选项B 中的结论成立,∵点C 是线段AB 上一点,∴AB 不一定时AC 的二倍,故选项C 中的结论不成立, ∵D 是线段AC 的中点,∴12AD AC =,故选项D 中的结论成立, 故选:C .【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用数形结合的思想解答. 4.A解析:A【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】6172.89亿=6.17289×103亿.故选A .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.B解析:B【解析】【分析】根据去括号法逐一计算即可.【详解】A. a b +c a b c -=--(),正确;B. ()a b c a b c --=-+,错误;C. ()()a b c a b c -+-=--,正确;D. ()()c b a a b c ---=--,正确;故答案为:B .【点睛】本题考查了去括号法的应用,掌握去括号法逐一计算是解题的关键.6.B解析:B【解析】【分析】根据倒数的定义:两个数的乘积是1,则这两个数互为倒数可求解.【详解】解: 12()12-⨯-= ∴倒数是-2的数是12-故选:B【点睛】 本题考查了倒数,熟练掌握倒数的定义是解题的关键.7.B解析:B【解析】【分析】根据主视图是从物体的正面去观察所得到的,根据看到的图形进行选择即可.【详解】因为球在长方体的中间,从正面看上去看到的是一个长方形和圆形,且圆在正方形的中间部位,故答案选B.【点睛】本题考查的是物体的三视图,知道主视图是从正面去观察物体是解题的关键.8.C解析:C【解析】【分析】当点D 在线段AB 的延长线上时,当点D 在线段AB 上时,由线段的和差和线段中点的定义即可得到结论.【详解】如图1,∵C 是线段AB 的中点,若AB =8,∴BC =12AB =4, ∵BD =1.5,∴CD=5.5;如图2,∵C是线段AB的中点,若AB=8,∴BC=12AB=4,∵BD=1.5,∴CD=2.5,综上所述,线段CD的长为2.5或5.5.故选C.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质,分类讨论是解题关键.9.B解析:B【解析】【分析】直接利用正方体的表面展开图特点判断即可.【详解】根据正方体展开图的特点可判断A属于“1、3、2”的格式,能围成正方体,D属于“1,4,1”格式,能围成正方体,C、属于“2,2,2”的格式也能围成正方体,B、不能围成正方体.故选B.【点睛】本题主要考查展开图折叠成几何体的知识点.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.注意只要有“田”字格的展开图都不是正方体的表面展开图.10.A解析:A【解析】【分析】设这件商品的标价为x元,根据题意即可列出方程.【详解】设这件商品的标价为x元,根据题意可列出方程0.740020%400x-=⨯故选A.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系进行列方程.11.A解析:A【解析】【分析】根据幂的乘法运算法则判断即可.【详解】A. 332(2)-=-=-8,选项正确;B. 22(3)9,39-=-=-,选项错误;C. 323224,3327,-⨯=--⨯=-选项错误;D. 2339,28,-=--=-选项错误;故选A.【点睛】本题考查幂的乘方运算法则,关键在于熟练掌握运算方法.12.A解析:A【解析】【分析】设大三角形的面积为1,先求原算式3倍的值,将其值转化为三角形的面积和,利用面积求解.【详解】解:设大三角形的面积为1,则第一次操作后每个小三角形的面积为14,第二次操作后每个小三角形的面积为214,第三次操作后每个小三角形面积为314⎛⎫ ⎪⎝⎭,第四次操作后每个小三角形面积为414,……第2020次操作后每个小三角形面积为202014,算式23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭相当于图1中的阴影部分面积和.将这个算式扩大3倍,得232020111133334444⎛⎫⎛⎫⎛⎫⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,此时该算式相当于图2中阴影部分面积和,这个和等于大三角形面积减去1个剩余空白小三角形面积,即2020114,则原算式的值为202011113343.所以23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近13.故选:A.【点睛】本题考查借助图形来计算的方法就是数形结合的运用,观察算式特征和图形的关系,将算式值转化为面积值是解答此题的关键.13.A解析:A【解析】【分析】将x =-2代入方程mx =6,得到关于m 的一元一次方程,解方程即可求出m 的值.【详解】∵关于x 的一元一次方程mx =6的解为x =-2,∴﹣2m =6,解得:m =-3.故选:A.【点睛】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.14.A解析:A【解析】【分析】利用“逆移”的定义,找到循环规律,进行比较即可.【详解】解:∵在点1A 开始经过1234A A A A →→→为第一次“逆移”在点4A 开始经过4123A A A A →→→为第二次“逆移”在点3A 开始经过3412A A A A →→→为第三次“逆移”在点2A 开始经过2341A A A A →→→为第四次“逆移”∴每四次“逆移”为一次循环∵20204=505÷∴第2020次“逆移”为:2341A A A A →→→∴经过2020次“逆移”,最终到达的位置是1A故选:A【点睛】本题考查了规律的寻找,正确找出循环规律是解题的关键.15.A解析:A【解析】【分析】去分母的方法是:方程左右两边同时乘以各分母的最小公倍数,这一过程的依据是等式的基本性质,注意去分母时分数线起到括号的作用,容易出现的错误是:漏乘没有分母的项,以及去分母后忘记分数线的括号的作用,符号出现错误.【详解】方程左右两边同时乘以6得:3(x −1)−2(2x +3)=6.故选:A【点睛】考查一元一次方程的解法,熟练掌握分式的基本性质是解题的关键.二、填空题16.4【解析】【分析】根据正方体中相对的两个面在展开图中隔一相对解答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“5”是相对面,“6”与“2”是相对面,解析:4【解析】【分析】根据正方体中相对的两个面在展开图中隔一相对解答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“5”是相对面,“6”与“2”是相对面,“3”与“4”是相对面,∴与数字3所在的面相对的面上的数字是4.故答案为:4.【点睛】本题考查了正方体平面展开图的性质,熟练掌握正方体平面展开图的性质是解题的关键,正方体中相对的两个面在展开图中隔一相对,考查了学生熟练运用知识解决问题的能力. 17.3【解析】【分析】根据单项式次数的定义来求解.【详解】解:单项式的次数为3.【点睛】本题考查了单项式、多项式的有关定义,是基础知识,需牢固掌握.解析:3【解析】【分析】根据单项式次数的定义来求解.【详解】解:单项式235a b的次数为3.【点睛】本题考查了单项式、多项式的有关定义,是基础知识,需牢固掌握.18.100【解析】【分析】设这件衬衫的成本是x元,根据利润=售价-进价,列出方程,求出方程的解即可得到结果.【详解】设这件衬衫的成本是x元,根据题意得:(1+50%)x×80%﹣x=20解解析:100【解析】【分析】设这件衬衫的成本是x元,根据利润=售价-进价,列出方程,求出方程的解即可得到结果.【详解】设这件衬衫的成本是x 元,根据题意得:(1+50%)x ×80%﹣x =20解得:x =100,这件衬衫的成本是100元.故答案为:100.【点睛】本题考查了一元一次方程的应用,找出题中的等量关系是解答本题的关键.19.【解析】【分析】表示出两方程的解,由两方程为同解方程,求出m 的值,进而确定出方程的解.【详解】解:方程,解得:x=1-2m ,方程,解得:x=,由题意得:1-2m=,去分母得:3-6m解析:1x =-【解析】【分析】表示出两方程的解,由两方程为同解方程,求出m 的值,进而确定出方程的解.【详解】解:方程4231x m x +=+,解得:x=1-2m ,方程3265x m x +=+,解得:x=253m -, 由题意得:1-2m=253m -, 去分母得:3-6m=2m-5,移项合并得:8m=8,解得:m=1,代入得:4x+2=3x+1,解得:x=-1.故答案为:x=-1【点睛】此题考查了同解方程,同解方程即为两方程解相同的方程,正确计算是本题的解题关键.20.②【解析】分析:根据线段的性质、垂线的性质、直线的性质分别进行分析.详解:①用两根钉子就可以把一根木条固定在墙上,根据两点确定一条直线; ②把弯曲的公路改直,就能够缩短路程,根据两点之间线段最解析:②【解析】分析:根据线段的性质、垂线的性质、直线的性质分别进行分析.详解:①用两根钉子就可以把一根木条固定在墙上,根据两点确定一条直线;②把弯曲的公路改直,就能够缩短路程,根据两点之间线段最短;③体育课上,老师测量某个同学的跳远成绩,根据垂线段最短;故答案为②.点睛:本题考查了线段的性质,利用直线的性质、线段的性质是解题关键.21.<.【解析】【分析】先化简各值然后再比较大小.【详解】,,∵-0.4<0.4,∴<.故答案为:<.【点睛】本题比较有理数的大小,关键在于掌握绝对值和去括号的计算.解析:<.【解析】【分析】先化简各值然后再比较大小.【详解】0.40.4--=-,(0.4)0.4--=,∵-0.4<0.4, ∴0.4--<(0.4)--.故答案为:<.【点睛】本题比较有理数的大小,关键在于掌握绝对值和去括号的计算.22.-120【解析】【分析】根据正负数的意义即可求解.【详解】向北走20米记作+20米,那么向南走120米记为-120米故答案为:-120.【点睛】此题主要考查有理数,解题的关键是熟知正解析:-120【解析】【分析】根据正负数的意义即可求解.【详解】向北走20米记作+20米,那么向南走120米记为-120米故答案为:-120.【点睛】此题主要考查有理数,解题的关键是熟知正负数的意义.23.-3t【解析】【分析】根据合并同类项法则合并同类项即可.【详解】解:故答案为:-3t .【点睛】此题考查的是合并同类项,掌握合并同类项法则是解决此题的关键. 解析:-3t【解析】【分析】根据合并同类项法则合并同类项即可.【详解】解:()t 31313t t t t --=--=-故答案为:-3t .【点睛】此题考查的是合并同类项,掌握合并同类项法则是解决此题的关键.24.两点之间线段最短【解析】试题分析:根据两点之间线段最短解答.解:道理是:两点之间线段最短.故答案为两点之间线段最短.考点:线段的性质:两点之间线段最短.解析:两点之间线段最短【解析】试题分析:根据两点之间线段最短解答.解:道理是:两点之间线段最短.故答案为两点之间线段最短.考点:线段的性质:两点之间线段最短.25.14【解析】【分析】先将代数式(5x+2)﹣(3xy﹣5y)化简为:5(x+y)﹣3xy+2,然后把x+y=3,xy=1代入求解即可.【详解】解:∵x+y=3,xy=1,∴(5x+2)﹣解析:14【解析】【分析】先将代数式(5x+2)﹣(3xy﹣5y)化简为:5(x+y)﹣3xy+2,然后把x+y=3,xy=1代入求解即可.【详解】解:∵x+y=3,xy=1,∴(5x+2)﹣(3xy﹣5y)=5x+2﹣3xy+5y=5(x+y)﹣3xy+2=5×3﹣3×1+2=14【点睛】本题考查了整式的加减,解答本题的关键在于将代数式(5x+2)-(3xy-5y)化简为:5(x+y)-3xy+2,然后把x+y=3,xy=1代入求解.三、解答题26.(1)150°;(2)20°;(3)32°;(4)30°.【解析】【分析】(1)根据角的和差即可得出结论;(2)根据角的和差即可得出结论;(3)根据角的和差即可得出结论.【详解】(1)∵∠EBC =∠EBD +∠ABC ,∴∠EBC =90°+60°=150°.(2)∵∠EBC =∠EBD +∠DBA +∠ABC ,∴∠α=∠EBC -∠EBD -∠ABC =170°-90°-60°=20°;(3)∵∠EBC =∠EBD +∠DBC =∠EBD +∠ABC -∠α,∴∠α=∠EBD +∠ABC -∠EBC =90°+60°-118°=32°;(4)∵∠ABE =∠DBE -∠α=90°-∠α,∠DBC =∠ABC -∠α=60°-∠α,∴∠ABE -∠DBC =(90°-∠α)-(60°-∠α)=90°-∠α-60°+∠α=30°.【点睛】本题考查了角的和差的计算.结合图形得出角的和差关系是解答本题的关键.27.(1)80;(2)60千米/时;(3)16或76或236. 【解析】【分析】(1)设甲车的速度为x 千米/时,根据甲车时间比乙车时间多用10分钟,路程为360千米,列方程求解即可;(2)设乙车装货后的速度为x 千米/时,根据“满载货物后,乙车速度较之前减少了40千米/时.乙车在整个途中共耗时133小时”列方程,求解即可; (3)分两种情况讨论:①装货前,设乙车出发x 小时两车相距10千米,列方程求解即可;②乙车装货后,设乙车又行驶了x 小时与甲车相距10千米.列方程求出x 的值,再加上3小时20分钟即可.【详解】(1)设甲车的速度为x 千米/时,根据题意得: (1310360+)x =360 解得:x =80. 答:甲车的速度为80千米/时.(2)设乙车装货后的速度为x 千米/时,根据题意得:13203(40)(3)360360x x ++--= 解得:x =60.答:乙车装货后行驶的速度为60千米/时.(3)分两种情况讨论:①装货前,设乙车出发x 小时两车相距10千米,根据题意得:1010080()1060x x -+= 解得:x =16或x =76. ②乙车装货后,设乙车又行驶了x 小时与甲车相距10千米.此时乙车在前,甲车在后. 乙车装货结束时,甲车行驶的路程=80×(3+3060)=280(千米),乙车行驶的路程=100×3=300(千米).根据题意得:280+80x +10=300+60x解得:x =0.5 乙车一共用了202330.5606++=(小时). 答:乙车出发16小时或76小时或236小时与甲车相距10千米. 【点睛】本题考查了一元一次方程的应用.分类讨论是解答本题的关键.28.(1)2;(2)−5或1或7;(3)1t =或173t = 【解析】【分析】 (1)根据题意OA 的长度即为所求;(2)分三种情况进行讨论,①当点P 位于A 点左侧;②点P 位于线段AB 上;③点P 位于B 点右侧,分别求解;(3)分情况讨论,当PA=3或PB=3时,分别求解.【详解】解:(1)由题意OA=2;OB=4∴点O 到线段AB 的“靠近距离”为2故答案为:2;(2)①当点P 位于A 点左侧时,点P 表示-2-3=-5;②点P 位于线段AB 上时,点P 表示-2+3=1,此时PA=PB=1③点P 位于B 点右侧时,点P 表示4+3=7∴m=−5或1或7故答案为:−5或1或7;(3)①当PA=3时, 可得523t -=,或253t -=,解得14t t ==或.而当4t =时,PB=14-4×3=2,PB <PA ,点P 到线段AB 的“靠近距离”为2,不符合题意. 所以1t =.②当PB=3时, 可得14(12)3t -+=,或(12)143t +-=,解得111733t t ==或. 而当113t =时,PA=1172533⨯-=,PA<PB ,点P 到线段AB 的“靠近距离”为73,不符合题意. 所以173t =. 综上所述,所以1t =或173t =. 【点睛】本题考查了新定义,一元一次方程的应用,数轴上两点间的距离,理解点到线段的“靠近距离”的定义,进行分类讨论是解题的关键.29.(1)90°,OM 平分∠CON ;(2)∠AOM=∠CON ,详见解析;(3)15或60.【解析】【分析】(1)由旋转得∠BOM=90°,求出∠COM=45°=∠MON 即可得到OM 平分∠CON.(2)先求出∠AOC=45°,得到∠CON+∠AON=45°,再由∠MON=45°得到∠AOM+∠AON=45°,即可证得∠AOM=∠CON ;(3)分三种情况讨论:①当OM 在∠BOC 内部时,②当OM 在∠BOC 外部,ON 在∠BOC 内部时,③当ON 在∠BOC 外部时,分别求出时间t 的值.【详解】(1)由题意得,∠BOM=90°,∠MON=45°,OM 平分∠CON,理由如下:∵∠BOC=135°,∴∠COM=∠BOC-∠BOM=45°,∴∠COM=∠MON∴OM 平分∠CON ;(2)∠AOM=∠CON ,理由如下:∵∠AOC=180°-∠BOC=45°,∴∠CON+∠AON=45°,∵∠MON=45°,∴∠AOM+∠AON=45°,∴∠AOM=∠CON ;(3)设运动t 秒(0t 80≤≤),①当OM 在∠BOC 内部时,∠COM=5 4.15t 3(),∴25413.5t ()+45=180, 得t=15;②当OM 在∠BOC 外部,ON 在∠BOC 内部时,∠COM+∠CON=45°,不合题意,舍去;。
杭州观成中学小升初数学期末试卷(提升篇)(Word版 含解析)
杭州观成中学小升初数学期末试卷(提升篇)(Word版含解析)一、选择题1.上午8时整,钟面上分针和时针成()。
A.锐角B.直角C.钝角D.平角2.王师傅和李师傅合做完成一批零件,王师傅单独完成需要4小时,李师傅单独完成需要5小时,如果两人合做,需要几小时完成这批零件?正确的算式是().A.(4+5)÷2 B.1÷(4+5) C.1÷(+)3.一个三角形,三个内角度数分别是45°、45°、90°,这个三角形()。
A.没有对称轴B.有一条对称轴C.有两条对称轴D.有三条对称轴4.某地区烛光晚餐中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位,则下列方程正确的是()A.30x-8=31x+26 B.30x-8=31x-26C.30x+8=31x+26 D.30x+8=31x-265.一块正方体木块,6个面分别写着a、b、c、d、e、f,6个字母(如下图),根据图中字母的排列,和字母f相对的字母是()。
A.a B.b C.c D.d6.统计学校人数发现,女生人数比男生人数少10%,已知男生共680人。
下列算式中计算全校人数错误的是()。
A.2×680-(680×10%)B.680×(1+1-10%)C.680×(1-10%)+680 D.680×(1+10%)+6807.把9张卡片(如图)反扣在桌面,打乱顺序后,任意摸出1张,摸到()的可能性大。
A.质数B.合数C.奇数8.一件商品提价10%以后又降价10%,现在这件商品的价格是原来价格的百分之几?正确的解答是()A.110%B.90%C.100%D.99%9.一个铁丝恰好围成一个圆,展开后将这个铁丝又折成一个正方形,那么这个圆与正方形关系的正确说法是()。
A.周长相等,面积变大B.周长相等,面积变小C.周长变大,面积相等D.周长变小,面积相等二、填空题10.5.078dm³=(________)dm³(________) cm³ 3时45分=(________)时11.()()()()4516:%15÷====。
杭州观成中学小升初数学期末试卷(提升篇)(Word版 含解析)
杭州观成中学小升初数学期末试卷(提升篇)(Word版含解析)一、选择题1.如图,将两张硬纸板沿线折叠后制成两个无盖长方体纸盒(②号纸盒的底面为正方形),比较两个纸盒的容积,正确的选项是()。
A.①号大B.②号大C.一样大D.无法比较2.水果店运来150千克梨,苹果比梨多运来13,苹果比梨多多少千克?正确的算式是()。
A.11503⨯B.115013⎛⎫⨯+⎪⎝⎭C.115013⎛⎫÷+⎪⎝⎭3.一个三角形,其中两条边的长度分别是7厘米和11厘米。
这个三角形第三条边的长度可能是()厘米。
A.4 B.12 C.18 D.224.把一根木头截成两段,第一段长米,第二段占全长的,那么这两段木头长度的比较结果是()A.第一段长B.第二段长C.无法确定5.涛涛用棱长是1厘米的正方体摆成一个物体,下图分别是他从前面、右面和上面看到的图形。
涛涛摆成的这个物体的体积是()。
A.4立方厘米B.5立方厘米C.6立方厘米6.甲、乙、丙三个仓库各存粮食若干吨,已知甲仓库存粮是乙仓库的23,乙仓库存粮比丙仓库多25%,丙仓库存粮比甲仓库多40吨,下列说法中错误的是()。
A.丙仓库存粮是乙仓库的4 5B.甲仓库存粮是丙仓库的5 6C.甲、乙、丙三个仓库存粮的最简单的整数比是10∶15∶12D.甲仓库存粮240吨7.一个骰子,六个面上分别写着数字1、2、3、4、5、6。
掷出这个骰子,朝上的数字是()的可能性最小。
A .质数B .合数C .奇数D .偶数 8.一种手机原来的售价是820元,降价10%后,再提价10%.现在的价格和原来相比( ). A .没变B .提高了C .降低了D .无法确定9.观察下面的点阵图规律,第(10)个点阵图中点的个数是( )A .30个B .33 个C .36个D .39 个二、填空题10.124小时=_________分钟 3040立方厘米 =_________立方分米11.()()()()1290375:40.%==÷==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册杭州观成中学数学期末试卷(提升篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知 (本题中的角均大于且小于 )(1)如图1,在内部作,若,求的度数;(2)如图2,在内部作,在内,在内,且,,,求的度数;(3)射线从的位置出发绕点顺时针以每秒的速度旋转,时间为秒( 且 ).射线平分,射线平分,射线平分 .若,则 ________秒.【答案】(1)解:∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴(2)解:,设,则,则,(3) s或15s或30s或45s【解析】【解答】(2)解:当OI在直线OA的上方时,有∠MON=∠MOI+∠NOI= (∠AOI+∠BOI))= ∠AOB= ×120°=60°,∠PON= ×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t= 或15;当OI在直线AO的下方时,∠MON═(360°-∠AOB)═ ×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°- )或180°-3t=3( -60°),解得t=30或45,综上所述,满足条件的t的值为 s或15s或30s或45s【分析】(1)利用角的和差进行计算便可;(2)设,则,,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON在不同情况下的定值,再根据角的和差确定t的不同方程进行解答便可.2.把一副三角板放成如图所示.(1)当OD平分∠AOB时,求∠COB;(2)若摆成如图2,OB、OD重合,OM平分∠AOD,ON平分∠AOC,求∠MON;(3)将三角板OCD绕O点旋转,把OD旋转到∠AOB的内部或外部,(2)中的条件不变,试问∠MON的角度是否变化?若不变,求出它的值,并说理由.【答案】(1)解:∵OD平分∠AOB,∠AOB=90°∴∠DOB=∠AOB=45°∵∠DOC=30°∴∠COB=∠DOB-∠DOC=45°-30°=15°(2)解:如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=45°∠AON=∠AOC=(90°+30°)=60°∴∠MON=∠AON-∠AOM=60°-45°=15°(3)解:把OD旋转到∠AOB的内部时,如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(90°-∠BOD)=45°-∠BOD∠AON=∠AOC=(∠AOB+∠COD-∠BOD)=60°-∠BOD ∴∠MON=∠AON-∠MOA=15°把OD旋转到∠AOB的外部时,如图,设∠AOC=α,则∠AOD=360°-30°-α=330°-α∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(330°-α)=165°-α∠AON=∠AOC=α∠MON=∠MOA+∠AON=165°-α+α=165°∴∠MON=15°或∠MON=165°【解析】【分析】(1)利用角平分线的定义求出∠DOB的度数,再根据∠COB=∠DOB-∠DOC,就可求出结果。
(2)利用角平分线的定义分别求出∠MOA和∠AON的度数,再求出∠MON的度数。
(3)把OD旋转到∠AOB的内部时,利用角平分线的定义,可推出∠MOA=45°-∠BOD,∠AON=60°-∠BOD,从而可求出∠MON的度数;把OD旋转到∠AOB的外部时,设∠AOC=α,利用角平分线的定义,可表示出∠MOA=165°-α,∠AON=α,再根据∠MON=∠MOA+∠AON,就可得出答案。
3.一副三角板OAC、OBD如图(1)放置,(∠BDO=30°、∠CAO=45°)(1)若OM、ON分别平分∠BOA、∠DOC,求∠MON的度数;(2)将三角板OBD从图(1)绕O点顺时针旋转如图(2),若OM、ON分别平分∠BOA、∠DOC,则在旋转过程中∠MON如何变化?(3)若三角板OBD从图(1)绕O点逆时针旋转如图(3),若其它条件不变,则(2)的结论是否成立?(4)若三角板OBD从图(1)绕O点逆时针旋转,其它条件不变,在旋转过程中,∠MON是否一直不变,在备用图中画图说明.【答案】(1)解:∵OM、ON分别平分∠BOA、∠DOC∴∠AOM=∠BOA,∠AON=∠AOC∵∠MON=∠AOM+∠AON=(∠BOA+∠AOC)∵∠BDO=30°、∠CAO=45°∴∠AOB=90°,∠AOC=45°∴∠MON= (90°+45°)=67.5°答:∠MON的度数为67.5°.(2)解:设∠AOM=∠BOM=x,∠CON=∠DON=y,∠AOD=α则:2x+α=90°,2y+α=45°,∴2x+2y+2α=135°,∴∠MON=x+y+α=67.5°(3)解:(2)的结论成立理由:设∠AOM=∠BOM=x,∠CON=∠DON=y,∠AOD=α则:2x-α=90°,2y-α=45°,∴2x+2y-2α=135°,∴∠MON=x+y-α=67.5°∠MON=x+y-α=67.5°(4)解:在变化,有时∠MON=112.5°。
如图,将三角板OBD从图(1)绕O点逆时针旋转如图所示,设∠AOD=x∵∠BOD=90°,∠AOC=45°∴∠AOB=90°+x,∠DOC=360°-45°-x=315°-x∵OM、ON分别平分∠BOA、∠DOC,∴∠BOM=∠AOB=,∠DON=∠DOC=∴∠MON=∠BOM+∠DON-∠DOB=+-90°=202.5°-90°=112.5°答:在变化,有时∠MON=112.5°.【解析】【分析】(1)利用角平分线的定义,可得出∠AOM=∠BOA,∠AON=∠AOC,再根据∠MON=∠AOM+∠AON,代入计算可解答。
(2)设∠AOM=∠BOM=x,∠CON=∠DON=y,∠AOD=α,根据已知角的度数,可建立方程2x+α=90°,2y+α=45°,解方程即可得出∠MON的度数。
(3)设∠AOM=∠BOM=x,∠CON=∠DON=y,∠AOD=α,结合已知,可得出2x-α=90°,2y-α=45°,就可求出x+y-α的值即∠MON的度数。
(4)根据题意画出图形,∠AOD=x,分别用含x的代数式表示出∠AOB、∠DOC,再根据角平分线的定义,可用含x的代数式表示出∠BOM,∠DON,然后利用∠MON=∠BOM+∠DON-∠DOB,可解答。
4.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.【答案】(1)25°(2)解:∠BOC=65°,OC平分∠MOB∠MOB=2∠BOC=130°∠BON=∠MOB-∠MON=130°-90°=40°∠CON=∠COB-∠BON=65°-40°=25°(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°∠AOC=∠AOB-∠BOC=180°-65°=115°∠MON=90°∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°4∠NOC+∠NOC=25°∠NOC=5°∠NOB=∠NOC+∠BOC=70°【解析】【解答】(1)∠MON=90,∠BOC=65°∠MOC=∠MON-∠BOC=90°-65°=25°【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.5.定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.例如:如图1所示,若∠BOC=2∠AOC,则OC是∠AOB的一条三分线.(1)如图1所示,OC是∠AOB的一条三分线,且∠BOC>∠AOC,若∠AOB=60°,求∠AOC 的度数:(2)已知∠AOB=90°,如图2所示,若OC,OD是∠AOB的两条三分线.①求∠COD的度数;②现以点O为中心,将∠COD顺时针旋转n度得到∠C’DD’,当OA恰好是∠C’OD’的三分线时,求n的值.【答案】(1)解:如图1,∵ OC是∠AOB的一条三分线,且∠BOC>∠AOC,∴∠AOC= ∠AOB,又∵∠AOB=60°,∴∠AOC=20°(2)解:① 如图2,∵∠AOB=90°,OC,OD是∠AOB的两条三分线,∴∠COD = ∠AOB =30°;② 分两种情况:当OA是∠C′OD'的三分线,且∠AOD'>∠AOC'时,∠AOC'=10°,∴∠DOC'=30°-10°=20°,∴∠DOD'=20°+30°=50°;当OA是∠C'OD'的三分线,且∠AOD'<∠AOC'时,∠AOC'=20°,∴∠DOC'=30°-20°=10°,∴∠DOD'=10°+30°=40°;综上所述,n=40°或50°【解析】【分析】(1)根据题中给出的角的三分线的定义结合已知条件可得∠AOC=∠AOB ,计算即可得出答案.(2)①根据题中给出的角的三分线的定义结合已知条件∠COD =∠AOB,计算即可得出答案;②根据题意分情况讨论:当OA是∠C′OD'的三分线,且∠AOD'>∠AOC'时;当OA是∠C'OD'的三分线,且∠AOD'<∠AOC'时;分别结合角的三分线的定义计算即可得出答案.6.(探究)如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,求∠EOF与∠FOH的度数.(2)若∠AFH+∠CHF=100°,求∠FOH的度数.(3)如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示) 【答案】(1)解:∵∠AFH=60°,OF平分∠AFH,∴∠OFH=30°,又∵EG∥FH,∴∠EOF=∠OFH=30°(两直线平行内错角相等);∵∠CHF=50°,OH平分∠CHF,∴∠FHO=25°,∴△FOH中,∠FOH=180°﹣∠OFH﹣∠OHF=125°(三角形的内角和定理);故答案为:30,125;(2)解:∵FO平分∠AFH,HO平分∠CHF,∴∠OFH=∠AFH,∠OHF=∠CHF.∵∠AFH+∠CHF=100°,∴∠OFH+∠OHF=(∠AFH+∠CHF)= ×100°=50°.∵EG∥FH,∴∠EOF=∠OFH,∠GOH=∠OHF(两直线平行内错角相等).∴∠EOF+∠GOH=∠OFH+∠OHF=50°.∵∠EOF+∠GOH+∠FOH=180°(三角形的内角和定理),∴∠FOH=180°﹣(∠EOF+∠GOH)=180°﹣50°=130°.(3)解:∵∠AFH和∠CHI的平分线交于点O,∴∠OFH=∠AFH,∠OHI=∠CHI,∴∠FOH=∠OHI﹣∠OFH=(∠CHI﹣∠AFH)=(180°﹣∠CHF﹣∠AFH)=(180°﹣α)=90°﹣α.【解析】【分析】(1)先根据角平分线的定义求出∠OFH ,∠FHO的度数,再根据三角形的内角和定理求出∠FOH的度数;(2)先根据角平分线的定义求出∠OFH+∠FHO的度数,再根据三角形的内角和定理求出∠FOH的度数;(3)先根据角平分线的定义求出∠OFH=∠AFH,∠OHI=∠CHI=(180°-∠CHF),再根据两直线平行内错角相等得∠FOH=∠OHI﹣∠OFH即可。