人教版七年级上册数学第三章《一元一次方程》测试题含答案解析
人教版七年级数学上第三章 一元一次方程 检测试试题(含答案)
第三章《一元一次方程》检测试题一、选择题(每小题3分,共36分)1.要使关于x 的方程3(x -2)+b=a(x -1)是一元一次方程,必须满足( ).A .a ≠0B .b ≠0C .a ≠3D .a ,b 为任意有理数2.如果在方程5(x -3)=8(x -3)的两边同除以x -3,则会得到5=8,我们知道5≠8. 由此可以猜测x 的值为( ).A .0B .1C .-3D .33.当x =4时,式子5(x +b )-10与bx +4的值相等,则b 的值为( ).A .-6B .6C .-7D .74.一个长方形的周长为40cm ,若将长减少8cm ,宽增加2cm ,长方形就变成了正方形,则正方形的边长为( ).A .5cmB .6cmC .7cmD .8cm5.在日历中,圈出一个数列上的相邻的3个数,并求出它们的和为:27,33,40,60,其中符合实际的数值有( ).A .1个B .2个C .3个D .4个6.建军回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同. 当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.则初期购得的原材料( ).A .40吨B .45吨C .50吨D .55吨7.若单项式2352m a b +-与523m n a b -的差仍是单项式,则2016()m n +的值是( ).A .1B .-1C .2D .48.某种牙膏出口处直径为5mm ,贝贝每次刷牙都挤出1cm 长的牙膏,这样一只牙膏可用36次,该品牌牙膏推出新包装,只是将出口处直径改为6mm ,贝贝还是按习惯每次挤出1cm 的牙膏,这样一只牙膏能用( ).A .22次B .23次C .24次D .25次9.已知关于x 的方程m x +2=2(m —x )的解满足|x -12|-1=0,则m 的值是( ). A .10或25 B .10或-25 C .-10或25 D .-10或-2510.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( ).A .54盏B .55盏C .56盏D .57盏二、填空题(每小题3分,共18分)11.已知a=x +3,b=2-x ,当x=__________时,a 比2b 大11.12.已知 A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时. t 小时后两车相距50千米,则 t 的值是_________.13.某书中一道方程题为213x x +⊗=+,⊗处印刷时被墨盖住了,查看后面答案,这道题的解为 2.5x =-,那么⊗处的数字为_____________.14.“☆”表示一种新的运算符号,已知2☆3=2+3+4;7☆2=7+8;6☆4=6+7+8+9;……按照该运算法则,若n ☆8=68,则n 的值为__________.15.若代数式13(2)42x -的值比1(2)34x -的值大1,则x 的值为__________. 16.元代朱世杰所著的《算学启蒙》里有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”请你回答:良马_________天可以追上驽马.17.王会计在记帐时发现现金少了153.9元,查帐后得知是一笔支出款的小数点看错了一位,王会计查出这笔看错了的支出款实际是__________元.18.在课外活动期间,小英、小丽和小华在操场上画出A 、B 两个区域,一起玩投沙包游戏.沙包落在A 区域所得分值与落在B 区域所得分值不同.当每人各投沙包四次时,其落点和四次总分如图所示.则小华的四次总分为___________.三、解答题(共66分)19.(7分)已知y =1是一元一次方程12()23m y y --=的解,求关于x 的方程m(x +4)=2(mx +3)的解.20.(7分)已知a 、b 、c 、d 为有理数,现规定一种新的运算:a b c d=ad bc -, 那么当()53132x x -⎛⎫- ⎪⎝⎭2371124=时,问x 的值是多少?21.(8分)张婶去布店买了28米的红布和黑布,其中红布每米3元,黑布每米5元,结账时售货员错把红布算作每米5元,黑布每米3元,结果收了张婶108元钱,是布店受了损失,还是张婶多付了钱?请说明你的理由.图1 图2 22.(8分)已知P=3xy -8x+1,Q=x -2xy -2,当x ≠0时,3P -2Q=7总成立,求y 的值.23.(8分)甲、乙两人共加工180个零件,甲每小时加工10个零件,乙每小时加工15个零件,请你按下列条件编一道应用题:①甲乙两人不能同时加工零件;②所列的方程为一元一次方程;③语言通顺、无误;④解答所编问题.24.(9分)小华写信给老家的叔叔,问候“八一”建军节. 折叠长方形信纸,装入标准信封时发现:若将信纸按如图1连续两次对折后,沿着信封口边线装入时,宽绰有3.8cm ;若将信纸按如图2三等分折叠后,同样方法装入时,宽绰有1.4cm. 试求信纸的纸长与信封的口宽.25.(9分)为了迎接学校检查,要求限时40分钟整理好实验室,已知张老师独立整理实验室需要50分钟,而李老师独立整理实验室只需要30分钟. 为了完成任务,张老师独自整理了30分钟后,请求李老师帮助整理,问他们能在规定的时间内完成吗?试用方程的知识说明理由.26某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人. 如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?参考答案一选择题1.C .提示:原方程可转化为(3-a)x=6-a -b ,故当3-a ≠0时符合题意.2.D .提示:根据等式的性质2,当x -3=0时,则会得到5=8的错误.3.A .提示:根据题意,可列方程得5(4+b )-10= 4b +4,解得b =-6.4.C .提示:设正方形的边长为xcm ,则长方形的长为(x +8)cm ,宽为(x -2)cm. 根据题意,得2[(x +8)+(x -2)]=40.5.C .提示:在日历中,圈出一个数列上的相邻的3个数的和必是3的倍数,所以40不是.6.B .提示:设初期每天所耗费的原材料为x 吨,则初期购得的原材料为(6x +36)吨. 根据题意,得(6x +36)-10x=30,解得x=1.5. 所以6x +36=45(吨).7.A .提示:由题意得2m +3=5,m -2n=5,解得m=1,n=-2. 所以2016()m n +=2016(1)-=1.8.D .提示:设一只牙膏能用x 次. 根据题意得2256()1036()1022x ππ⨯⨯=⨯.解得x=25. 9.A .提示:由|x -12|-1=0,可得x -12=1或x -12=-1,所以x =32或x =-12. 然后再分别代入m x +2=2(m —x )中,即可求出m.10.B .提示:设更换的新型节能灯有x 台,由题意得(106-1)×36=70×(x -1),则x=55. 二填空题11.4.提示:根据题意得(x +3)-2(2-x)=11,解得x=4.12.2或2.5.提示:相向而行时有两种可能:(120+80)t=450-50或(120+80)t=450+50.13.135x =.提示:设⊗处的数字为m ,根据题意,得2 2.51 2.53m -=-. 14.5.提示:根据题意得n ☆8=n +(n +1)+(n +2)+……+(n +7)=8n +28,故8n +28=68.15.-4.提示:根据题意,得13(2)42x -=1(2)34x -+1,解得x=-4. 16.20.提示:设良马需要x 日才能追上驽马,由题意得240x=150(x +12),解得x=20. 17.17.1.提示:本题中“小数点看错了一位”是指将该数扩大了10倍. 设这笔看错了的支出款实际是x 元,则记帐时支出款记成了10x 元. 则有10x -x=153.9,解得x=17.1. 18.30分.提示:设沙包落在A 区域得x 分,落在B 区域得(34-3x )分. 根据题意,得2x +2(34-3x )=32. 解得x =9,则34-3x =7. 所以小华的四次总分为9+3×7=30(分). 三解答题19.解:将y=1代入方程中,可得12(1)23m --=,解得m=1. 将m=1代入m(x +4)=2(mx +3),得x +4=2(x +3),解得x=-2. 20.解:根据题意,得()113753243212x x ⎛⎫---= ⎪⎝⎭,解得2x =. 21.解:布店受了损失. 理由如下:设红布买了x 米,则黑布买了(28-x)米.根据题意,得5x +3(28-x)=108,解得x=12,则28-x=16.即红布买了12米,黑布买了16米,实际应付款12×3+16×5=116(元).由于116-108=8(元). 所以布店受了损失,少收了8元钱.22.解:由于P=3xy-8x+1,Q=x-2xy-2,所以3P-2Q=3(3xy-8x+1)-2(x-2xy-2)=13xy-26x+7.又因为3P-2Q=7,所以13xy-26x+7=7,即13xy-26x=0.因为x≠0,在等式两边同时除以13x,得y-2=0,解得y=2.23.解:(答案不唯一).甲、乙两人共加工180个零件,甲每小时加工10个零件,乙每小时加工15个零件. 甲先加工4小时,乙也加入一起加工,问两人合作几小时后可以完成任务?解:设甲、乙两人合作x小时后可以完成任务.根据题意,得10×4+(10+15)x=180,解得x=5.6答:两人合作5.6小时后可以完成任务.24.解:设信封的口宽为xcm. 根据题意,得4(x-3.8)=3(x-1.4),解得x=11.所以信封的纸长为4×(11-3.8)=28.8cm.答:信纸的纸长为28.8cm,信封的口宽为11cm.25.解:能在规定的时间内完成. 理由如下:设李老师加入后需要x分钟完成任务,则张老师共用了(30+x)分钟.根据题意,得3013050x x++=,解得x=7.5. 所以30+x=37.5.因为37.5分钟<40分钟,所以他们能在规定的时间内完成任务.26.解:由题意可知,七年级(1)班、(2)班的总人数多于50人,因为816不能整除10,所以两班的总人数为816÷8=102(人).设七年级(1)班有x人,七年级(2)班有(102-x)人,根据题意,得12x+10×(102-x)=1118,解得x=49,则102-x =53(人).答:七年级(1)班有49人,七年级(2)班有53人.(2)七年级(1)班节省的费用为(12-8)×49=196(元);七年级(2)班节省的费用为(10-8)×53=106(元).。
最新人教版初中数学七年级数学上册第三单元《一元一次方程》测试(包含答案解析)
一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±82.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )A .(x ﹣8%)(x+10%)B .(x ﹣8%+10%)C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x 3.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x ) 4.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ 5.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .116.下列各式中,符合代数书写规则的是( )A .273xB .14a ⨯C .126p -D .2y z ÷ 7.下列去括号运算正确的是( )A .()x y z x y z --+=---B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ 8.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6 9.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x+ 10.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31 11.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B = C .A B < D .无法确定 12.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a二、填空题13.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______. 14.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.15.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___. 16.a -b ,b -c ,c -a 三个多项式的和是____________17.合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列) (2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b ab a b =_____________________;(按字母b 降幂排列) 18.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.19.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.20.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________三、解答题21.计算:(1)()()312⨯-+-(2)2235223x x x x -+-+-22.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>, 求112210101010a b a b a b -+-++-的所有可能值.23.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?24.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?25.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.26.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由.(3)若18a =,15b = ,求正确结果的代数式的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据单项式的定义可得8mx y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数. 2.D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D .【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.3.B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.4.D解析:D【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 5.A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.6.A解析:A【分析】根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.7.D解析:D【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确.故选:D【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.8.C解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.9.A解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误;D.1xx是分式,故错误.故选A.【点睛】本题主要考查了整式,关键是掌握整式的概念.10.C解析:C【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n(n+1)和12(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【详解】∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.11.A解析:A【分析】作差进行比较即可.【详解】解:因为A-B=(x2-5x+2)-( x2-5x -6)=x2-5x+2- x2+5x +6=8>0,所以A>B.故选A.【点睛】本题考查了整式的加减和作差比较法,若A-B>0,则A>B,若A-B<0,则A<B,若A-B=0,则A=B.12.C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A.﹣ab与4abc所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键. 二、填空题13.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0 解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值.【详解】 解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =, 故答案为19. 【点睛】 本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0.14.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---, ∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则. 15.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可.【详解】∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环,所以2020÷3=673…1,则a 2020=a 1=2.故答案为:2.【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.16.0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0 解析:0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0,故答案为0.17.【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排 解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】 (1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.18.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算.19.2【分析】根据四次三项式的定义可知该多项式的最高次数为4项数是3所以可确定m的值【详解】解:∵多项式3x|m|y2+(m+2)x2y-1是四次三项式∴+2=4∴m=2故答案为2【点睛】本题考查了与多解析:2【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.【详解】解:∵多项式3x|m|y2+(m+2)x2y-1是四次三项式,m+≠∴m+2=4,20∴m=2.故答案为2.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.20.-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.三、解答题21.(1)5-;(2)241x x --【分析】(1)直接根据有理数的混合运算法则即可求解.(2)直接根据整式的加减混合运算法则即可求解.【详解】解:(1)原式(3)(2)=-+-5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 22.1020100【分析】由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a 1-b 1|,……,|a 1010-b 1010|中一个数大于1010,一个数不大于1010,∴|a 1-b 1|+|a 2-b 2|+…+|a 1010-b 1010|=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.23.-21【分析】首先化简代数式,通过去括号、合并同类项,得出结论即含有b 的代数式相加为0,即可说明.【详解】解()()222221324223212a b ab a a b a ab a b ⎛⎫-+--++- ⎪⎝⎭ =222223244621a b ab a a b a ab a b -+-+++-=101a -当2a =-时原式=()1021⨯--=-21.【点睛】考查整式的化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键. 24.1099989;1199988;1299987;1399986;(1)如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.25.(1)2a b c -+;(2)-9(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:0c b a <<<,∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题.26.(1)2222a b ab abc -++;(2)小强的说法对,正确结果的取值与c 无关,理由见解析;(3)0.【分析】(1)由2A+B=C 得B=C-2A ,将C 、A 代入根据整式的乘法计算可得B ;(2)将A 、B 代入2A-B ,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c 可知其值与c 无关;(3)将a 、b 的值代入计算即可.【详解】解:(1)∵2A B C +=,∴2B C A =-.B 22224342(32)a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc =-+-+-2222a b ab abc =-++;(2)222222(32)(22)A B a b ab abc a b ab abc -=-+--++222264222a b ab abc a b ab abc =-++--2285a b ab =-.因正确结果中不含c ,所以小强的说法对,正确结果的取值与c 无关;(3)将18a =, 15b =代入(2)中的代数式,得: 22221111858()5()8585a b ab -=⨯⨯-⨯⨯0= . 【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键.。
【人教版】七年级上册数学:第三章《一元一次方程》练习题(含答案)
第3章一元一次方程练习题(一)一、选择题1. 对于非零的两个实数a 、b ,规定ab b a 11-=⊗,若1)1(1=+⊗x ,则x 的值为( ) A .23 B .31 C . 21 D . 21- 2.下列变形错误的是( )A.由x + 7= 5得x+7-7 = 5-7 ;B.由3x -2 =2x + 1得x= 3C.由4-3x = 4x -3得4+3 = 4x+3xD.由-2x= 3得x= -32 3. 解方程3x +1=5-x 时,下列移项正确的是( )A.3x +x =5+1B.3x-x=-5-1C.1-5=-3x+xD.3x+x=5-14. 将(3x +2)-2(2x -1)去括号正确的是( )A 3x +2-2x +1B 3x +2-4x +1C 3x +2-4x -2D 3x +2-4x +25.下列解方程去分母正确的是( )A .由1132x x --=,得2x -1=3-3x . B .由44153x y +-=,得12x -15=5y +4. C .由232124x x ---=-,得2(x -2)-3x -2=-4. D .由131236y y y y +-=--,得3y +3=2y -3y +1-6y . 6.当x=2时,代数式ax -2x 的值为4,当x=-2时,这个代数式的值为( )A.-8B.-4C.-2D.87.在下列方程中,解是x=2的方程是( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
8.如果错误!未找到引用源。
是方程错误!未找到引用源。
的解,那么错误!未找到引用源。
的值是( )A.-8B.0C.2D.89.若x =a 是方程4x +3a =-7的解,则a 的值为( )A.7B.-7C.1D.-110.已知x =-2是方程2x -3a =2的根,那么a 的值是( )A.a =2B.a =-2C.a =23D.a =23- 11.如果错误!未找到引用源。
人教版七年级数学上册第三章《一元一次方程》单元测试(含答案)
人教版七年级数学上册第三章《一元一次方程》单元测试一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知x=1是方程x−2k3=12−32x的解,则k的值是()A.−2B.2C.0D.−12. 某商品打七折后价格为a元,则原价为( )A.a元B.107a元 C.30%a元 D.710a元3. 在①2x+1;②1+7=15−8+1;③1−12x=x−1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个4. 若关于x的方程3x+(2a+1)=x−(3a+2)的解为x=0,则a的值等于( )A.15B.35C.−15D.−355. 将一根长为acm的铁丝首尾相接围成一个正方形,若要将它按如图所示的方式向外等距扩大1cm得到新的正方形,则这根铁丝需增加()A.4cmB.8cmC.(a+4)cmD.(a+8)cm6. 七年级(1)班有30人会下象棋或围棋,已知会下象棋的人数比会下围棋的人数多5人,两种棋都会下的有17人,问只会下围棋的有多少人?设只会下围棋的有x人,可得方程()A.x+(x−5)+17=30B.x+(x+5)+17=30C.x+(x−5)−17=30D.x+(x+5)−17=307. 如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39B.43C.57D.668. 解方程x3−x−12=1时,去分母后,正确的是( )A.3x−2(x−1)=1B.2x−3(x−1)=1C.3x−2(x−1)=6D.2x−3(x−1)=69. 运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b−cB.如果ac =bc,那么a=bC.如果a=b,那么ac =bcD.如果a2=3a,那么a=310. 已知x=2是方程5Xm+10=30的解,则m的值为( )A.2B.4C.6D.10二、填空题(本题共计 4 小题,每题 4 分,共计16分,)11. 当代数式2x−2与3+x的值相等时,x=________.12. 已知:(m−2)x−1=0是关于x的一元一次方程,则m________.13. 在等式5x−8=7−9x的两边同时________,得14x=15,这是根据________.14. 李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔的承包地去年甲种蔬菜有________亩.三、解答题(本题共计 5 小题,共计74分,)15.(20分) 解下列方程:(1)8(a+1)−2(3a−4)=13;(2)2x−13=2x+16−1;(3)y−y−12=2−y+25;(4)2x0.3+223=1.4−3x0.2.16.(12分) 列方程.(1)甲班有学生58人,乙班有学生46人,要使甲、乙两班的人数相等,应如何调动?(2)某推销员,卖出全部商品的2后,得到400元,卖出全部商品共得到多少元?517. (14分) “五一”期间,某电器城按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,该电器的成本价为多少元?(只列方程)18. (14分)一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?19.(14分) 某公园门票价格规定如下表:某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经计算,如果两个班都以班为单位购票,则一共应付1320元.问:(1)如果两班联合起来,作为一个团体购票,可省多少钱?(2)两班各有多少名学生?参考答案与试题解析一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】一元一次方程的解【解析】把x=1代入方程,即可得出一个关于k的一元一次方程,求出方程的解即可.【解答】把x=1代入方程x−2k3=12−32x得:1−2k3=12−32×1,解得:k=2,2.【答案】B【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:设该商品原价为:x元,∵ 某商品打七折后价格为a元,∵ 0.7x=a,则x=107a(元),故选B.3.【答案】B方程的定义【解析】方程是含有未知数的等式,是等式但不含未知数不是方程,含未知数不是等式也不是方程.【解答】(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15−8+1,是等式但不含未知数,所以不是方程.x=x−1,是含有未知数的等式,所以是方程.(3)1−12(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.4.【答案】D【考点】方程的解【解析】此题暂无解析【解答】解:∵ x=0是方程3x+(2a+1)=x−(3a+2)的解,∵ 2a+1=−(3a+2),,解得:a=−35故选D.5.【答案】B【考点】一元一次方程的应用——其他问题列代数式根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵ 原正方形的周长为acm,cm,∵ 原正方形的边长为a4∵ 将它按图的方式向外等距扩1cm,+2)cm,∵ 新正方形的边长为(a4+2)=(a+8)(cm),则新正方形的周长为4(a4因此需要增加的长度为a+8−a=8(cm).故选B.6.【答案】B【考点】由实际问题抽象出一元一次方程【解析】设只会下围棋的有x人,则只会下象棋的有(x+5)人,根据该班有30人会下象棋或围棋且两种棋都会下的有17人,即可得出关于x的一元一次方程,此题得解.【解答】设只会下围棋的有x人,则只会下象棋的有(x+5)人,依题意,得:x+(x+5)+17=30.7.【答案】B【考点】一元一次方程的应用——其他问题解一元一次方程【解析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于各选项中数字求解即可.【解答】解:A、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=39,解得:x=13,故此选项错误;B、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=43,解得:x=433,故此选项符合题意;C、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=57,解得:x=19,故此选项错误;D、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=66,解得:x=22,故此选项错误;故选B.8.【答案】D【考点】解一元一次方程【解析】方程两边乘以6去分母得到结果,即可做出判断.【解答】解:方程x3−x−12=1,等式两边同时乘6得:2x−3(x−1)=6.故选D.9.【答案】B【考点】等式的性质【解析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立,故A选项错误;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立,故B选项正确;C、成立的条件c≠0,故C选项错误;D、成立的条件a≠0,故D选项错误.故选B.10.【答案】A【考点】解一元一次方程【解析】把X=2代入方程得到一个关于m的方程,求出方程的解即可【解答】解得:m=2,故选A.二、填空题(本题共计 4 小题,每题 4 分,共计16分)11.【答案】5【考点】解一元一次方程【解析】此题暂无解析【解答】解:由已知得:2x−2=3+x,移项合并得:x=5,故答案为:5.12.【答案】m≠2【考点】一元一次方程的定义【解析】依据一元一次方程的定义可知m−2≠0,从而可求得m的取值范围.【解答】解:∵ (m−2)x−1=0是关于x的一元一次方程,∵ m−2=0.∵ m≠2.故答案为:m≠2.13.【答案】9x+8,等式的性质1【考点】等式的性质【解析】根据等式的基本性质即可解答.【解答】解:两边同时加上9x得:5x+9x−8=7,两边再同时加上8得:14x=5,故5x−8=7−9x两边同时加上9x+8,得到14x=15,根据是:等式的性质1.故答案是:9x+8,等式的性质1.14.【答案】6【考点】一元一次方程的应用——工程进度问题【解析】可设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,等量关系为:甲种蔬菜总获利+乙种蔬菜总获利=18000.【解答】解:设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,依题意得2000x+1500(10−x)=18000,解得x=6,答:甲种蔬菜种植了6亩.故答案为6.三、解答题(本题共计 5 小题,共计74分)15.【答案】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.【考点】解一元一次方程【解析】(1)方程去括号,移项合并,把a系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.16.【答案】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:25x=400.【考点】由实际问题抽象出一元一次方程【解析】(1)根据要使甲、乙两班的人数相等,表示出两班的人数即可得出等式;后,得到400元”,得出等式即可.(2)根据“卖出全部商品的25【解答】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:2x=400.517.【答案】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.【考点】由实际问题抽象出一元一次方程【解析】设该电器的成本价为x元,根据成本价×(1+30%)×80%=售价为2080元可列出方程.【解答】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.18.【答案】长方形的长为10cm,宽为4cm.【考点】一元一次方程的应用——工程进度问题【解析】设长方形的长是xcm,根据正方形的边长相等即可列出方程求解.【解答】解:设长方形的长是xcm,则宽为(14−x)cm,根据题意得:x−2=(14−x)+4,解得:x=10,14−x=14−10=4.19.【解析】(1)根据题意得出两个班联合购票比分别购票的差值即可;(2)设(1)班有xx人,根据题意列出方程解答即可.【解答】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.【答案】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.。
人教版七年级数学第三章《一元一次方程》单元测试带答案解析
故选:A.
【点睛】本题考查了一元一次方程的应用,找准等量关系是解题的关键.
10.C
【分析】要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过100,即是80元,第二次就有两种情况,一种是超过100元但不超过300元一律9折;一种是购物超过300元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.
7.D
【分析】根据等式的基本性质可判断出选项正确与否;等式的基本性质:①等式两边同时加上(或减去)同一个整式,等式仍然成立;②等式两边同时乘或除以同一个不为0的整式,等式仍然成立.
【详解】解:A.根据等式性质,a=b两边都加c,即可得到a+c=b+c,故选项错误,不符合题意;
B.如果 ,那么a+c−c=b−c-c,即a=b-2c,故选项错误,不符合题意;
C.如果 ,那么 成立的条件是c≠0,原变形错误,故选项错误,不符合题意;
D.如果 ,那么a=b,故选项正确,符合题意;
故选:D.
【点睛】此题考查了等式的基本性质,解题的关键是熟练运用等式的基本性质.
8.C
【分析】设十字框最中间的数为x,表示出其余数字,根据之和为选项中的数字求出x的值,x的值符合题意即可.
人教版七年级数学第三章《一元一次方程》单元测试
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若关于x的方程 的解是 ,则a的值为()
A. B.9C. D.1
2.如图为某披萨店的公告.某会员购买一个榴莲披萨付款83.6元,则一个榴莲披萨调价前的原价为()
(常考题)人教版初中数学七年级数学上册第三单元《一元一次方程》检测题(含答案解析)
一、选择题1.下列代数式的书写,正确的是( ) A .5nB .n5C .1500÷tD .114x 2y 2.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( ) A .2 B .3C .4D .6 3.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣94.下列去括号正确的是( ) A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+5.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a6.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -17.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b +8.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .09.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .2022 10.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣111.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( ) A .16a ﹣8bB .7a ﹣5bC .4a ﹣4bD .7a ﹣7b12.多项式33x y xy +-是( ) A .三次三项式B .四次二项式C .三次二项式D .四次三项式二、填空题13.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m 的值应是_______.14.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子.15.单项式2335x yz -的系数是___________,次数是___________.16.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____. 17.用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____; (2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h . 18.观察下列式子: 1×3+1=22; 7×9+1=82;25×27+1=262; 79×81+1=802; …可猜想第2 019个式子为__________.19.在迎新春活动中,三位同学玩抢2018游戏,甲、乙、丙围成一圈依序报数,规定:甲、乙、丙首次报的数依次为1、2、3,接着甲报4、乙报5…按此规律,后一位同学报的数比前一位同学报的数大1,当报的数是2018时,报数结束;按此规则,最后能抢到2018的同学是______.20.在整式:32x y -,98b -,336b y-,0.2,57mn n --,26a b +-中,有_____个单项式,_____个多项式,多项式分别是_______.三、解答题21.定义:若2m n +=,则称m 与n 是关于1的平衡数.(1)3与______是关于1的平衡数,5x -与______(用含x 的整式表示)是关于1的平衡数;(2)若()22234a x x x =-++,()22342b x x x x⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1的平衡数,并说明理由. 22.已知230x y ++-=,求152423x y xy --+的值. 23.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)24.如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,中间是边长为(a+b )米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a 、b 的式子表示) (2)求出当a =20,b =12时的绿化面积.25.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1)图②有个三角形;图③有个三角形;(2)按上面的方法继续下去,第n个图形中有多少个三角形(用n的代数式表示结论).26.给定一列分式:3xy,52xy-,73xy,94xy-,…(其中0x≠).(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A、5n,书写正确,符合题意;B、n5,书写错误,不合题意;C、1500÷t,应为1500t,故书写错误,不合题意;D、114x2y=54x2y,故书写错误,不合题意;故选:A.【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.2.C解析:C【分析】本题根据同类项的性质求解出m和n的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩,故224m n +=+=; 故选:C . 【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细.3.D解析:D 【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答. 【详解】解:A .﹣1﹣1=﹣2,故本选项错误; B .2(a ﹣3b )=2a ﹣6b ,故本选项错误; C .a 3÷a =a 2,故本选项错误; D .﹣32=﹣9,正确; 故选:D . 【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键.4.D解析:D 【分析】根据整式混合运算法则和去括号的法则计算各项即可. 【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D . 【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键.5.A解析:A 【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果. 【详解】解:根据题意得:b <a <0,且|a |<|b |, ∴a -b >0,a +b <0, ∴原式=a -b -a -b =-2b . 故选:A . 【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键.6.D解析:D 【分析】根据已知和与一个加数,则另一个加数=和-一个加数,然后计算即可. 【详解】解:∵5y 3-4y -6-(3y 2-2y -5)= 5y 3-4y -6-3y 2+2y+5= 5y 3-3y 2-2y -1. 故答案为D . 【点睛】本题考查了整式的加减运算,掌握去括号、合并同类项是解答本题的关键.7.D解析:D 【分析】利用大正方形的周长减去4个小正方形的周长即可求解. 【详解】解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b-,∴大正方形的周长与小正方形的周长的差是: 2a b +×4-4a b-×4=a+3b. 故选;D. 【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.8.B解析:B 【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题. 【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项, ∴6﹣7m =0,解得m =67.故选:B.【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0.9.A解析:A【分析】设第二个为x,则第一个,第三个,第四个分别为:x-1,x+1,x+2,总和为:4x+2,分别令代数式为:2010,2014,2018,2022,算出x再判断.【详解】解: 设第二个为x,则第一个,第三个,第四个分别为:x-1,x+1,x+2,总和为:4x+2.当4x+2=2010时,x=502,则x-1=501;当4x+2=2014时,x=503,则x-1=502;当4x+2=2018时,x=504,则x-1=503;当4x+2=2022时,x=505,则x-1=504;由图可知每行有9个数,∵504÷9=56,可以除尽故504为某行的最后一位.表格如下:故选A.【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程. 10.A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d)-(b+c)=(a-b)-(c+d)=-3-2=-5,故选:A.【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案.11.B解析:B【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数.【详解】由题意可得:(10a﹣6b)﹣[(6a﹣2b)﹣(3a﹣b)]=10a﹣6b﹣6a+2b+3a﹣b=7a﹣5b.故选B.【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.12.D解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D.【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关二、填空题13.184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m的值.14.(4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n个上字需用(4n+2)枚棋子故答解析:(4n+2). 【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答. 【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子, ∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子. 故答案为:(4n+2). 【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.15.六【分析】根据单项式系数次数的定义来求解单项式中数字因数叫做单项式的系数所有字母的指数和叫做这个单项式的次数【详解】的系数是次数是6故答案为六【点睛】本题考查了单项式的次数和系数确定单项式的系数和次解析:35六 【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数. 【详解】2335x yz -的系数是35-,次数是6, 故答案为35-,六. 【点睛】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3. 【分析】找出a 的次数的高低后,由低到高排列即可得出答案. 【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3. 【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.17.(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b+ (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答; (2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答; (4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答,(5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -; (2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b+cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100aa b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b+ ;(4) 100a a b +; (5) 52y -.【点睛】本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.18.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2 【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解. 【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2, 当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.19.乙【分析】由题意可得甲乙丙报的数字顺序规律为从1起三个数字为一个循环即丙报的数字规律为3的倍数将2018除以3余数为2即2018为一个循环的第2个数字即可判断为乙报的数字【详解】解:∵2018÷3=解析:乙【分析】由题意可得甲、乙、丙报的数字顺序规律为,从1起三个数字为一个循环,即丙报的数字规律为3的倍数,将2018除以3余数为2,即2018为一个循环的第2个数字,即可判断为乙报的数字.【详解】解:∵2018÷3=672 (2)∴最后能抢到2018的同学是乙.故答案为:乙【点睛】本题考查数字规律,读懂题意,找到数字循环规律是解答此题的关键.20.4【分析】根据单项式与多项式的概念即可求出答案【详解】解:单项式有2个:02多项式有4个:【点睛】本题考查单项式与多项式的概念解题的关键是正确理解单项式与多项式之间的联系本题属于基础题型解析:4 32x y -、336b y -、57mn n --、26a b +- 【分析】根据单项式与多项式的概念即可求出答案.【详解】解:单项式有2个:98b -,0.2,,多项式有4个:32x y -,336b y -,57mn n --26a b +- 【点睛】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型. 三、解答题21.(1)1-,3x -;(2)不是,理由见解析【分析】(1)由平衡数的定义求解即可达到答案;(2)计算a+b 是否等于1即可;【详解】解:(1)1-,3x -;(2)a 与b 不是关于1的平衡数.理由如下:因为()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,所以()()2222342342a b x x x x x x x ⎡⎤+=-+++--+-⎣⎦, 22223342342x x x x x x x =--++-+++,62=≠,所以a 与b 不是关于1的平衡数.【点睛】本题主要考查了整式的加减,准确分析计算是解题的关键.22.-24.【分析】首先根据绝对值的非负性求出x ,y ,然后代入代数式求值.【详解】解:∵230x y ++-=,∴x+2=0,y-3=0,∴x=-2,y=3, ∴152423x y xy --+ ()()552342323=-⨯--⨯+⨯-⨯ ()5524=-+-24=-.【点睛】本题考查了代数式求值,利用非负数的和为零得出x 、y 的值是解题关键.23.乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.24.(1)(5a 2+3ab )平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b 的式子表示出整个长方形的面积,然后用含有a,b 的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a =20,b =12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b )(2a+b )﹣(a+b )2=6a 2+3ab+2ab+b 2﹣(a 2+2ab+b 2)=6a 2+3ab+2ab+b 2﹣a 2﹣2ab ﹣b 2=5a 2+3ab ,答:绿化的面积是(5a 2+3ab )平方米;(2)当a =20,b =12时5a 2+3ab =5×202+3×20×12=2000+720=2720,答:当a =20,b =12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤. 25.(1)5,9 ;(2)43n -【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形.【详解】解:(1)根据图形可得:5,9;(2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形.【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型.26.(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y,第8个分式为178x y-. 【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子.【详解】解:(1)5352223x x x y x y y y x y,757223235x x x y x y y y x y , 979324347x x x y x y y y x y , …… ∴任意一个分式除以前面一个分式,都得2x y-. (2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x 15,第8个分子上是x 17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157x y,第8个分式为178x y -. 【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键.。
人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)
人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)一、单选题1.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元2.下列方程中,一元一次方程一共有( )①9x+2;②12x =;③(1-x)(1+x)=3;④()1113352x x x -=- A .1个 B .2个 C .3个 D .4个3.(古代数学问题)今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?设有x 人,则根据题意列出方程正确的是( ) A .8x+3=7x ﹣4B .8x ﹣3=7x+4C .8x ﹣3=7x ﹣4D .8x+3=7x+44.下图是某超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请帮忙第一算,该洗发水的原价是:( )A .22元B .23元C .24元D .25元5.若关于x 的方程321(32)x a x a ++=-+的解是0,则a 的值为( )A .15B .35C .15- D .356.下列方程:21126740.343492x x x x x x x +=-=+=-=①;②;③;④;0x =⑤;328x y -=⑥;112x =⑦;12x=⑧中是一元一次方程的个数是( ) A .6个 B .5个 C .4个 D .3个7.下列运用等式的性质,变形正确的是( )A .若x ﹣m =y +m ,则x =yB .若a =b ,则ac =bcC .若x =y ,则x ﹣m =y +mD .若ac =bc ,则a =b8. 下列方程中,属于一元一次方程的是( ).A .021=+xB .2y 432=+x C .22x 3x =+x D .x 31232=++x x9.某书店把一本新书按标价的八折出售,仍获利20%,若该书进价为20元,则标价( ) A .24元 B .26元 C .28元 D .30元10.方程3x ﹣6=0的解是( )A .x =3B .x =﹣3C .x =2D .x =﹣2第II 卷(非选择题)二、填空题11.关于x 的方程a 2x+x=1的解是__.12.某学校组织八年级6个班参加足球比赛,如果采用单循环制,一共安排______场比赛 13.某商品进价为40元,若按标价的8折出售仍可获利20%,则按标价出售可获利______元.14.当x=4时,式子5(x+b )﹣10与bx+4x 的值相等,则b=_____.15.我国古代数学著作《孙子算经》中记载了这样一个有趣的数学问题“今有五等诸侯,共分橘子60颗,人别加三颗,问五人各得几何?”题目大意是:诸侯5人,共同分60个橘子,若后面的人总比前一个人多分3个,问每个人各分得多少个橘子?若设中间的那个人分得x 个,依题意可列方程得_____.16.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数是____.17.若293x +=2,且x y =94,则x =______,y =_______. 18.当a =____时,关于x 的方程314x -=-与方程562a x -=-的解相同.三、解答题19.解方程:x ﹣3=﹣12x ﹣4. 20.解方程:(1)5(x-1)+2=3-x(2)2121 1=63x x-+ -21.某纺织厂收购某种特色棉花,若直接转卖这种特色棉花,则每吨可获得的利润为500元.若经过B级加工再转卖,则每吨可获得的利润为1000元;若经过A级加工再转卖,则每吨可获得的利润为2000元.已知该纺织厂对棉花进行B级加工,每天可加工16吨;进行A级加工,每天可加工6吨,且这两种等级的加工不能同时进行.若该纺织厂收购了140吨这种特色棉花,决定15天内加工完,且有如下三种可行方案:方案一:将所收购的特色棉花直接转卖.方案二:将尽可能多的特色棉花进行A级加工,余下的部分直接转卖.方案三:一部分进行A级加工,另一部分进行B级加工,恰好15天完成.若你是该纺织厂负责人,想要获利最多,你决定使用哪套方案?请说明理由.22.一列客车和一列货车同时从甲、乙两个城市相对开出,已知客车每小时行55千米,客车速度与货车速度的比是11:9,两车开出后5小时相遇,甲、乙两城市间的铁路长多少千米?23.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点.例如,如图1,点A表示的数为-1,点B表示的数为2,表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.知识运用:(1)如图2,M,N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.①在点M和点N中间,数_______所表示的点是(M,N)的好点:②在数轴上,数________和数_________所表示的点都是(N,M)的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40,现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止,当t为何值时,P,A和B中恰有一个点为其余两点的好点?24.某电影院某日某场电影的票价是:成人票30元,学生票15元,满40人可以购买团体票(不足40人可按40人计算,票价打9折).某班在4位老师带领下去电影院看电影,学生人数为x人.(1)若学生人数为31人,该班买票至少应付多少元?(2)若学生人数为32人,该班买票至少应付多少元?(3)请用含x的代数式表示该班买票至少应付多少元.25.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.26.一队学生去校外进行军事野营训练,他们以6千米/时的速度行进,在他们走了一段时间后,学校要将一个紧急通知传给队长,通讯员从学校出发,以10千米/时的速度按原路追上去,用了15分钟追上了学生队伍,问通讯员出发前,学生走了多少时间?27.如图,已知A、B、C是数轴上的三点,点C表示的数为6,BC=4,AB=14,动点P、Q分别从A、C同时出发,点P以每秒3个单位的速度沿数轴向右匀速运动,点Q以每秒1个单位的速度沿数轴向左匀速运动,M为AP的中点,点N在线段CQ上,且CQ=3CN.设运动的时间为t(t>0)秒.(1)写出点A表示的数,点B表示的数;(2)求MN的长(用含t的式子表示);(3)t为何值时,原点O恰为线段PQ的中点.参考答案1.C2.A3.B4.C5.D6.C7.B8.C9.D10.C11.211a.12.1513.2014.615.(x﹣6)+(x﹣3)+x+(x+3)+(x+6)=60.16.45.17.-32218.-319.x=-2320.(1)x=1;(2)x=5621.选方案二.理由见解析22.500.23.①2,②0或-8;(2)10秒、15秒或20秒24.(1)585;(2)594;(3)若0<x≤31时,该班买票至少应付(120+15x)元;若32≤x≤36时,该班买票至少应付594元;若x>36时,该班买票至少应付(108+13.5x)元.25.(1)8;(2)答案见解析:(3)200000立方厘米26.1627.(1)A:-12,B:2;(2) 18−116t;。
人教版七年级数学上册第三章《一元一次方程》测试卷及答案解析【含详细知识点梳理】
人教版七年级数学上册第三章《一元一次方程》测试卷及答案解析【含详细知识点梳理】第三章测试卷一、选择题(项)1.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若x =y ,则x a =yaC .若a =b ,则ac =bcD .若b a =dc ,则b =d2.把方程3x +2x -13=3-x +12去分母正确的是( )A .18x +2(2x -1)=18-3(x +1)B .3x +(2x -1)=3-(x +1)C .18x +(2x -1)=18-(x +1)D .3x +2(2x -1)=3-3(x +1)3.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( ) A .x =-5 B .x =-3 C .x =-1 D .x =54.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,那么可列方程( )A .3(x -2)=2x +9B .3(x +2)=2x +9C.x 2+2=x -92D.x3-2=x +925.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-■=x +1,怎么办呢?他想了想便翻看书后的答案,方程的解是x =9,请问这个被污染的常数是( )A .1B .2C .3D .46.某校为了丰富“阳光体育”活动,现购进篮球和足球共16个,共花了2820元.已知篮球的单价为185元,篮球个数是足球个数的3倍,则足球的单价为( )A .120元B .130元C .150元D .140元 二、填空题(本大题共6小题,每小题3分,共18分)7.若-x n +1与2x 2n -1是同类项,则n =________.8.当x =________时,代数式4x -5与3x -9的值互为相反数.9.若方程x +2m =8与方程2x -13=x +16的解相同,则m =________. 10.一份试卷共25道选择题,规定答对一道题得4分,答错或不答一题扣1分.若某学生得了80分,则该学生答对了________道题.11.某书店把一本新书按标价的八折出售,仍获利30%.若该书的进价为40元,则标价为________元.12.现定义某种运算“☆”,对给定的两个有理数a ,b ,有a ☆b =2a -b .若⎪⎪⎪⎪1-x 2☆2=4,则x 的值为________.三、(本大题共5小题,每小题6分,共30分) 13.解下列方程: (1)4x +1=2(3-x );(2)2x -13-2x -34=1.14.已知关于x 的方程2(x -1)=3m -1与3x +2=-4的解互为相反数,求m 的值.15.小聪做作业时解方程x +12-2-3x3=1的步骤如下:解:①去分母,得3(x +1)-2(2-3x )=1;②去括号,得3x +3-4-6x =1; ③移项,得3x -6x =1-3+4; ④合并同类项,得-3x =2; ⑤系数化为1,得x =-23.(1)聪明的你知道小聪的解答过程正确吗?答:________.若不正确,请指出他解答过程中的错误________.(填序号)(2)请写出正确的解答过程.16.保护和管理好湿地,对于维护一个城市的生态平衡具有十分重要的意义.2018年北京计划恢复湿地和计划新增湿地的面积共2200公顷,其中计划恢复湿地的面积比计划新增湿地面积的2倍多400公顷.求计划恢复湿地和计划新增湿地的面积.17.一辆客车和一辆卡车同时从A 地出发沿同一公路同方向行驶,客车的行驶速度是70km/h ,卡车的行驶速度是60km/h ,客车比卡车早1h 经过B 地,A 、B 两地间的路程是多少?四、(本大题共3小题,每小题8分,共24分)18.一个两位数的十位数字和个位数字之和是7,如果这个两位数加上45,恰好成为个位数字与十位数字对调之后组成的两位数.求这个两位数.19.小李在解方程3x +52-2x -m3=1去分母时方程右边的1没有乘以6,因而得到方程的解为x =-4,求出m 的值并正确解出方程.20.某服装厂要生产某种型号的学生校服,已知3m 长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存有这种布料600m ,应如何分配布料做上衣和做裤子才能恰好配套?共能做多少套?五、(本大题共2小题,每小题9分,共18分)21.快放寒假了,小宇来到书店准备购买一些课外读物在假期里阅读,在选完书结账时,收银员告诉小宇,如果花20元办理一张会员卡,用会员卡结账买书,可以享受8折优惠.小宇心算了一下,觉得这样可以节省13元,很合算,于是采纳了收银员的意见.请根据以上信息解答下列问题:(1)你认为小宇购买________元以上的书,办卡合算;(2)小宇购买这些书的原价是多少元?22.为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?六、(本大题共12分)23.在某市第四次党代会上,提出了“建设美丽城市,决胜全面小康”的奋斗目标,为响应市委号召,学校决定改造校园内的一小广场.如图是该广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A的边长是1米.(1)若设图中最大正方形B的边长是x米,请用含x的代数式分别表示出正方形F、E和C的边长;(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MQ和PN).请根据这个等量关系,求出x的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.两队合作施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?参考答案与解析1.C2.A3.A4.A5.B6.C7.28. 29. 7 210. 21 1.6512. -5或713.解:(1)x=56.(3分)(2)x=72.(6分)14.解:方程3x+2=-4,解得x=-2.(2分)所以关于x的方程2(x-1)=3m-1的解为x=2.把x=2代入得2=3m-1,解得m=1.(6分)15.解:(1)不正确①②(2分)(2)去分母,得3(x+1)-2(2-3x)=6,去括号,得3x+3-4+6x=6,移项,得3x+6x=6-3+4,合并同类项,得9x=7,解得x=79.(6分)16.解:设计划新增湿地x公顷,则计划恢复湿地(2x+400)公顷.(2分)根据题意,得x+2x+400=2200,解得x=600,∴2x+400=1600.(5分)答:计划恢复湿地1600公顷,计划新增湿地600公顷.(6分)17.解:设A、B两地间的路程为x km,(1分)根据题意得x60-x70=1,(3分)解得x=420.(5分)答:A、B两地间的路程为420km.(6分)18.解:设这个两位数的十位数字为x,则个位数字为7-x,(2分)由题意列方程为10x +7-x+45=10(7-x)+x,解得x=1,(6分)∴7-x=7-1=6,∴这个两位数为16.(8分)19.解:由题意x =-4是方程3(3x +5)-2(2x -m )=1的解,∴3(-12+5)-2(-8-m )=1,∴m =3,(4分)∴原方程为3x +52-2x -33=1,∴3(3x +5)-2(2x -3)=6,5x =-15,∴x =-3.(8分)20.解:设做上衣的布料用x m ,则做裤子的布料用(600-x )m ,(2分)由题意得x3×2=600-x 3×3,解得x =360,600-x =240.3603×2=240(套).(7分) 答:做上衣的布料用360m ,做裤子的布料用240m ,才能恰好配套,共能做240套.(8分)21.解:(1)100(3分) 解析:设买x 元的书办卡与不办卡的花费一样多,根据题意,得x =20+80%x ,解得x =100.故买100元以上的书,办卡比较合算.(2)设这些书的原价是y 元,(4分)根据题意,得20+80%y =y -13,解得y =165.(8分) 答:小宇购买这些书的原价是165元.(9分)22.解:(1)由题意,得5020-92×40=1340(元).(3分)答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(4分)(2)设甲班有x 名同学准备参加演出(依题意46<x <90),则乙班有(92-x )名.依题意得50x +60(92-x )=5020,解得x =50,92-x =42.(8分)答:甲班有50名同学,乙班有42名同学.(9分)23.解:(1)∵最小的正方形A 的边长是1米,最大的正方形B 的边长是x 米,∴正方形F 的边长为(x -1)米,正方形E 的边长为(x -2)米,正方形C 的边长为(x -3)米或x +12米.(3分)(2)∵MQ =PN ,∴x -1+x -2=x +x +12,解得x =7.(7分) (3)设余下的工程由乙队单独施工,还要y 天完成.(8分)根据题意得⎝⎛⎭⎫110+115×2+115y =1,解得y =10.(11分)答:余下的工程由乙队单独施工,还要10天完成.(12分)第三章 一元一次方程 详细知识点梳理1等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”! 2等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式. 3方程:含未知数的等式,叫方程.4一元一次方程的概念:只含有一个未知数(元)(含未知数项的系数不是零)且未知数的指数是1(次)的整式方程叫做一元一次方程。
最新人教版初中数学七年级数学上册第三单元《一元一次方程》测试题(答案解析)
一、选择题1.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4 2.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a3.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( )A .1B .2C .3D .44.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018 B .2018- C .1009- D .1009 5.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数 6.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1 B .-1 C .2020 D .2020- 7.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x+ 8.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2 9.已知多项式()210m xm x +--是二次三项式,m 为常数,则m 的值为( ) A .2- B .2 C .2± D .3±10.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c11.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个12.下列说法错误的是( )A .23-2x y 的系数是32-B .数字0也是单项式C .-x π是二次单项式D .23xy π的系数是23π 二、填空题13.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空) 14.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.15.关于x 的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x 的次数逐渐减小排列,这个二次三项式为____.16.22223124,4135-=-225146-=,……221012m m -=+m =_____________ 17.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________. 18.在括号内填上恰当的项:22222x xy y -+-=-(_____________________). 19.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.20.观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.三、解答题21.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值.22.已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值23.用代数式表示:(1)比x 的平方的5倍少2的数;(2)x 的相反数与y 的倒数的和;(3)x 与y 的差的平方;(4)某商品的原价是a 元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x 表示十位上的数字,用代数式表示这个三位数.24.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少?25.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,通过观察,用你所发现的规律确定22017的个位数字.26.已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项. 2.A解析:A【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:根据题意得:b <a <0,且|a |<|b |,∴a -b >0,a +b <0,∴原式=a -b -a -b =-2b .故选:A .【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键.3.D解析:D【分析】根据题意求得a ,b ,c ,d 的值,代入求值即可.【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4,∴a ,b ,c ,d 四个数的和是4,故选:D .【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数. 4.C解析:C【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解.【详解】解:123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-,故选择C【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.5.D解析:D【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可.【详解】A 、根据“单价×数量=总价”可知3a 表示买a kg 葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意.故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.6.A解析:A【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 7.A解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误; D.1x x+是分式,故错误. 故选A.【点睛】 本题主要考查了整式,关键是掌握整式的概念.8.A解析:A【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解.【详解】解:∵BC=2,C 点所表示的数为x ,∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数,∴A 点所表示的数是-(x-2),即-x+2.故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.9.A解析:A【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可.【详解】 解:因为多项式()210m x m x +--是二次三项式,∴m-2≠0,|m|=2,解得m=-2,故选:A.【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 10.B解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.11.A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误;235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.12.C解析:C【分析】根据单项式的有关定义逐个进行判断即可.【详解】 A. 23-2x y 的系数是32-,故不符合题意; B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D. 23xy π的系数是23π,故不符合题意. 故选C .【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键.二、填空题13.【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n -个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.14.08a【解析】试题分析:根据题意得:a•(1+20)×90=108a;故答案为108a考点:列代数式解析:08a【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a;故答案为1.08a.考点:列代数式.15.-3x2+5x-4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x2+5x-4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x的二次三项式,二次项系数是-3,∴二次项是-3x2,∵一次项系数是,∴一次项是5x,∵常数项是-4,∴这个二次三项式为:-3x2+5x-4.故答案为:-3x2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.16.9【分析】根据观察可知:将代入即可得出答案【详解】解:……故答案为:【点睛】主要考查了学生的分析总结归纳能力规律型的习题一般是从所给的数据和运算方法进行分析从特殊值的规律上总结出一般性的规律 解析:9【分析】3n +,将210n +=代入即可得出答案. 【详解】解:==……,13n +210n +=8n ∴=19m n ∴=+=故答案为:9.【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.17.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠, ∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 18.【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去 解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验. 19.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算. 20.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考 解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯… ∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=-故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键.三、解答题21.见解析,7.【解析】试题分析:注意观察等号两边的变化,等号右边添加了括号,然后观察符号的变化即可;根据已知条件将要求的式子通过添括号进行变形,然后再代入求值即可.试题添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.∵a 2+b 2=5,1-b =-2,∴-1+a 2+b +b 2=(a 2+b 2)-(1-b)=5-(-2)=7.【点睛】本题是阅读理解题,主要是通过阅读发现添括号时符号的变化规律,解题的关键是要注意符号的变化问题.22.(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy=3xy+3y .∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.23.(1)5x 2-2;(2)-x +1y;(3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4).【分析】(1)明确是x 的平方的5倍与2的差;(2)先求出x 的相反数与y 的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数.【详解】(1)5x 2-2;(2)-x +1y; (3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4) .【点睛】本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握.24.15a【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%.【详解】解:根据题意,得设第一年的产量为a ,以15%的速度增长,∴第二年的产量为a (1+15%)=1.15a .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系. 25.22017的个位数字是2.【分析】根据已知的等式观察得到规律:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环,由此得到答案.【详解】观察可知:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环,∵22017=450412⨯+,∴22017的个位数字是2.【点睛】此题考查数字的规律,有理数乘方计算的实际应用,观察已知中等式的特点总结规律,并运用规律解答问题是解题的关键.26.(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.。
人教版七年级数学上册《第三章一元一次方程》测试题-带参考答案
人教版七年级数学上册《第三章一元一次方程》测试题-带参考答案一、单选题1.如果,那么下列关系式中成立的是()A.B.C.D.2.小石家的脐橙成熟了!今年甲脐橙园有脐橙7000千克,乙脐橙园有脐橙5000千克,因客户订单要求,需要从乙脐橙园运部分脐橙到甲脐橙园,使甲脐橙园脐橙数量刚好是乙脐橙园的2倍.设从甲脐橙园运脐橙x千克到乙脐橙园,则可列方程为().A.B.C.D.3.一张方桌由一个桌面和四条桌腿组成,如果立方米木料可制作方桌的桌面个或制作桌腿条,现有立方米木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张?设用立方米木料做桌面,那么桌腿用木料立方米,根据题意,得()A.B.C.D.4.若是关于的一元一次方程,则()A.1 B.-1 C.±1 D.05.关于x的一元一次方程的解为,则m的值为()A.3 B.C.7 D.6.小李在解方程(x为未知数)时,误将看作,得方程的解为,则原方程的解为()A.B.C.D.7.宁宁同学拿了一个天平,测量饼干与糖果的质量(每块饼干的质量都相同,每颗糖果的质量都相同).第一次:左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10克砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次:左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再度平衡()A.在糖果的称盘上加2克砝码B.在饼干的称盘上加2克砝码C.在糖果的称盘上加5克砝码D.在饼干的称盘上加5克砝8.一件商品的标价为元,比进价高出,为吸引顾客,现降价处理,要使售后利润率不低于,则最多可以降到()A.元B.元C.元D.元二、填空题9.若是关于的方程的解,则的值等于.10.小明在一次比赛中做错了3道题,做对的占,他做对了道题.11.在中国共青团建团100周年时,小明同学为留守儿童捐赠了一个书包.已知一个书包标价58元,现在打折出售,支付时还可以再减免3元,小明实际支付了43.4元,若设打了x折,则根据题意可列方程为.12.为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折(标价的80%)出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是.13.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名的算术题;“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”其意思就是:100个和尚分100个馒头,正好分完,其中,大和尚一人分3个,小和尚三人分1个.那么大和尚有人.三、解答题14.解方程:(1) ;(2) .15.小明在对关于的方程去分母时,得到了方程,因而求得的解是,你认为他的答案正确吗?如果不正确,请求出原方程的正确解.16.某车间每天能制作甲种零件200只,或者制作乙种零件150只,2只甲种零件与3只乙种零件配成一套产品,现要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?17.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元和40元,已知每台A型号的计算器的售价比每台B型号的计算器售价少14元,商场销售6台A型号和3台B型号计算器,可获利润120元;(1)求商场销售A种型号计算器的销售价格是多少元?(2)商场准备购进A、B两种型号计算器共70台,且所用资金为2500元,则需要购进B型号的计算器多少台?18.为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.参考答案:1.D2.D3.A4.B5.A6.C7.A8.B9.-210.4211.12.171013.2514.(1)解:移项得:合并同类项得:系数化为1得:(2)解:方程两边同时乘以6得:去括号得:移项得:合并同类项得:系数化为1得:15.解:不正确;把代入∴解得:∴原方程为去分母,得解得:;16.解:设甲种零件制作x天,乙种零件制作(30-x)天根据题意得: 200x× 3=2×150(30-x)x=1030-x=30-10=20 天答:甲种零件制作10天,乙种零件制作20天.17.(1)解:设商场销售种型号计算器的销售价格是元,则销售种型号计算器的销售价格是元由题意得:解得答:商场销售种型号计算器的销售价格是42元.(2)解:设需要购进型号的计算器台,则购进型号的计算器台由题意得:解得答:需要购进型号的计算器40台.18.(1)解:设甲校x人,则乙校(92﹣x)人,依题意得50x+60(92﹣x)=5000x=52∴92﹣x=40答:甲校有52人参加演出,乙校有40人参加演出.(2)解:乙:92﹣52=40人甲:52﹣10=42人两校联合:50×(40+42)=4100元而此时比各自购买节约了:(42×60+40×60)﹣4100=820元若两校联合购买了91套只需:40×91=3640元此时又比联合购买每套节约:4100﹣3640=460元因此,最省钱的购买方案是两校联合购买91套服装即比实际人数多买91﹣(40+42)=9套。
人教版七年级数学上册第三章《一元一次方程》章节测试题(含答案)
人教版七年级数学上册第三章《一元一次方程》章节测试题一、单选题1.下列方程中为一元一次方程的是( )A .234x y +=-B .232x x -=C .12x x +=D .123y y -=+2.已知关于x 的方程()143k x x k -=-的根是-4,则28k k -的值是( )A .0B .96C .-48D .643.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x +3(x ﹣1)=1 C .若5x ﹣6=2x +8,则5x +2x =8+6D .若3(x +1)﹣2x =1,则3x +3﹣2x =1 4.若代数式2x ﹣3与32x +的值相等,则x 的值为( ) A .3B .1C .﹣3D .4 5.解一元一次方程3(2)3212x x --=-去分母后,正确的是( ) A .3(2﹣x )﹣3=2(2x ﹣1) B .3(2﹣x )﹣6=2x ﹣1C .3(2﹣x )﹣6=2(2x ﹣1)D .3(2﹣x )+6=2(2x ﹣1) 6.下列方程变形中,正确的是( )A .方程3x ﹣2=2x +1,移项得,3x ﹣2x =﹣1+2B .方程3﹣x =2﹣5( x ﹣1),去括号得,3﹣x =2﹣5x ﹣1C .方程2332t =,系数化为1得,t =1D .方程110.20.5x x --=,去分母得,5( x ﹣1)﹣2x =1 7.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元8.甲、乙两人从同一地点出发,如果甲先出发2小时后,乙从后面追赶,那么当乙追上甲时,下面说法正确的是( )A .乙比甲多走了2小时B .乙走的路程比甲多C .甲、乙所用的时间相等D .甲、乙所走的路程相等9.明代数学家程大位的《算法统宗》中有一个“以碗知僧”的问题,“巍巍古寺在山中,不知寺内几多僧.三百六十四只碗,恰合用尽不差争.三人共食一碗饭,四人共尝一碗羹.请问先生能算者,都来寺内几多僧?”其大意为:山上有一座古寺叫都来寺,在这座寺庙里,3个和尚合吃一碗饭,4个和尚合分一碗汤,一共用了364只碗.请问都来寺里有多少个和尚?此问题中和尚的人数为( )A .31B .52 C .371 D .624 10.方程 (13153520192021)x x x x ++++=⨯的解是x =( ) A .20212020 B .20211010 C .20212019 D .10102021二、填空题11.如果方程120n x n -+=是关于x 的一元一次方程,那么n =________.12.已知关于x 的方程20x m +=的解比方程30x m -=的解大10,则m =________.13.若2x =时,()22310x c x c +-+=,则当3x =-时,()223x c x c +-+=____________.14.十个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个整数,并把自己想好的数如实告诉他两旁的两个人,然后每人将他两旁的人告诉他的数计算出平均数并报出来.已知每个人报的结果如图所示,那么报“3”的人自己心里想的数是_______.三、解答题15.根据下列条件,列出方程.(1)x 的倒数减去-5的差为9;(2)5与x 的差的绝对值等于4的平方;(3)长方形的长与宽分别为16、x ,周长为40;(4)y 减去13的差的一半为x 的35. 16.解方程: (1)36156x x -=--;(2)45173x x +=-;(3) 2.57.5516y y y --=-;(4)11481.5533z z +=-.17.某连队从驻地出发前往某地执行任务,行军速度是6千米/时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟(15分钟)内把命令传达给该连队.小王骑自行车以14千米/时的速度沿同一路线追赶连队.问小王能否在规定的时间内完成任务?18.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?参考答案11.212.-1213.2514.-215.(1)()159x --=;(2)254x -=;(3)()21640x +=;(4)()131325y x -= 16.(1)1x =-;(2)66x =-;(3)56y =;(4)407z =- 17.能够在规定时间内完成任务18.(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱。
人教版初中七年级数学上册第三单元《一元一次方程》经典复习题(含答案解析)
一、选择题1.若│x -2│+(3y+2)2=0,则x+6y 的值是( ) A .-1B .-2C .-3D .322.已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x 元,下列方程正确的是( ) A .6(x+2)+4x =18 B .6(x ﹣2)+4x =18 C .6x+4(x+2)=18 D .6x+4(x ﹣2)=183.如图,相同形状的物体的重量是相等的,其中最左边天平是平衡的,则右边三个天平中仍然平衡的是( )A .①②③B .①③C .①②D .②③4.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0 B .2 C .﹣2 D .﹣6 5.方程2424x x -=-+的解是 ( )A .x =2B .x =−2C .x =1D .x =06.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为( ) A .2小时B .3小时C .125小时D .52小时7.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元 B .100元C .80元D .60元8.若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( ) A .8B .﹣8C .6D .﹣69.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x 人,则下列方程正确的是( ) A .3x ﹣20=24x +25 B .3x +20=4x ﹣25 C .3x ﹣20=4x ﹣25D .3x +20=4x +2510.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( ) A .(9﹣7)x=1B .(9+7)x=1C .11()179x -=D .11()179x +=11.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( ) A .m>n>kB .n>k>mC .k>m>nD .m> k> n12.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( ) A .2B .12C .-2D .1-213.甲、乙两个工程队,甲队32人,乙队28人,现在从乙队抽调x 人到甲队,使甲队人数为乙队人数的2倍.则根据题意列出的方程是( ) A .32+x =2(28−x) B .32−x =2(28−x) C .32+x =2(28+x) D .2(32+x)=28−x 14.下列方程中,以x =-1为解的方程是( )A . 3x +12=x2−2 B .7(x -1)=0C .4x -7=5x +7D .13x =-315.四位同学解方程x−13−x+26=4−x 2,去分母分别得到下面四个方程:①2x −2−x +2=12−3x ;②2x −2−x −2=12−3x ;③2(x −1)−(x +2)=3(4−x);④2(x −1)−2(x +2)=3(4−x).其中错误的是( ) A .②B .③C .②③D .①④二、填空题16.已知三个数的比是2:4:7,这三个数的和是169,这三个数分别是____,____,____ 17.请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵. 18.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.19.某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y 的值等于______.20.自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按2元收费;用水超过10吨,超过10吨的部分按每吨3元收费.王老师家三月份水费为50元,则王老师家三月份用水________吨. 21.5个人用5天完成了某项工程的14,如果再增加工作效率相同的10个人,那么完成这项工作前后共用_____天.22.小明说小红的年龄比他大两岁,他们的年龄和为18岁,两人年龄各是多少岁?若设小明x 岁,则小红的年龄为__________岁.根据题意,列出的方程是______________________. 23.在某张月历表上,若前三个星期日的数字之和是42,则第一个星期_______号.24.已知21535a x y -和2547a x y +是同类项,则可得关于a 的方程为________. 25.要使代数式154t +与15()4t -的值互为相反数,则t 的值是_________. 26.有一位工人师傅要锻造底面直径为40cm 的“矮胖”形圆柱,可他手上只有底面直径是10cm 、高为80cm 的“瘦长”形圆柱,若不计损耗,则锻造出的“矮胖”形圆柱的高为________.三、解答题27.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?28.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元. (2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由. 29.解方程:(1)5(8)6(27)22m m m +--=-+(2)2(3)7636x x x --+=- 30.解下列方程:(1)51784a -=; (2)22146y y +--=1; (3)2131683x x x-+-= -1。
人教版七年级数学上册第三章一元一次方程单元测试(解析版)
人教版七年级数学上册第三章一元一次方程单元测试(解析版)一、选择题1.下列等式中,正确的是()A. B. C. D.2.下列利用等式的性质,错误的是()A. 由a=b,得到1-2a=1-2bB. 由ac=bc,得到a=bC. 由,得到a=bD. 由a=b,得到3.下列变形正确的是()A. 从5x=4x+8,得到5x﹣4x=8B. 从7+x=13,得到x=13+7C. 从9x=﹣3,得到x=-3D. 从-2x=0,得x=-24.关于y的方程2m+y=m与3y-3=2y-1的解相同,则m的值为()A. 0B. -2C. -D. 25.下列方程是一元一次方程的是………………………………()A. B. C. D.6.方程-3(•-9)=5x-1,•处被墨水盖住了,已知方程的解x=2,那么•处的数字是()A. 2B. 3C. 4D. 67.某商品进价为800元,售价为1200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率(利润率=)不低于5%,则至多能打( )A. 六折B. 七折C. 八折D. 九折8.下列方程中的解是的方程是()A. 6x+1=1B. 7x-1=x-1C. 2x=D. 5x=x+29.若关于x的方程mx m-2-m+3=0是一元一次方程,则这个方程的解是()A. x=0B. x=3C. x=-3D. x=210.在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问人数是多少?若设人数为x,则下列关于x的方程符合题意的是()A. 8x-3=7x+4B. 8(x-3)=7(x+4)C. 8x+4=7x-3D. x+4二、填空题11.关于x方程(m+1)x|m+2|+3=0是一元一次方程,那么m=______..12.某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是______.13.已知方程的解是,那么______.14.已知a=b,根据等式的基本性质填空.(1)a+c=b+________;(2)a-c=________;(3)c-a=________;(4).15.对于方程,用含x的代数式表示y为_____________.16.若关于x的方程x+2=a和2x-4=4有相同的解,则a=______.17.请自编一个解为x=2的方程______.18.轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了______小时.19.A、B两地相距108千米,甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度为14千米/小时,乙的速度为22千米/小时,经过______小时后两人相距36千米.三、解答题20.解方程:(1)4x-3(20-x)=-4(2)-1=.21.解下列方程(1)x-4=2-5x(2)4x-3(20-x)=5x-7(20-x)(3)6+=(4)=+.22.某商场推出新年大促销活动,其中标价为1800元的某种商品打9折销售,该种商品的利润率为8%.(1)求该商品的成本价是多少;(2)该商品在降价前一周的销售额达到了97200元,要使该商品降价后一周内的销售额也达到97200元,降价后一周内的销售数量应该比降价前一周内的销售数量增加多少?23.某商场出售的甲种商品每件售价80元,利润为30元;乙种商品每件进价40元,售价60元.(1)甲种商品每件进价为______元,每件乙种商品利润率为______.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小明第一天只购买甲种商品,实际付款360元,第二题只购买乙种商品实际付款432元,求小明这两天在该商场购买甲、乙两种商品一共多少件?24.甲班有35人,乙班有26人.现在需要从甲、乙两班各抽调一些同学去养老院参加敬老活动.如果从甲班抽调的人数比乙班多3人,那么甲班剩余的人数恰好是乙班剩余人数的2倍.问从乙班抽调了多少人参加了这次敬老活动?答案和解析1.【答案】B【解析】【分析】本题考查了等式和绝对值的相关知识,根据绝对值的法则逐项分析即可解答. 【解答】解:A.当x≥0时,|x|-x=0;当x<0时,|x|-x=-2x,故A错误;B.无论x取何值,|-x|-|x|=0,故B正确;C.无论x取何值,-x-x=-2x,故C错误;D.当x≥0时,|-x|+|x|=2x;当x<0时,|-x|+|x|=-2x,故D错误.故选B.2.【答案】B【解析】【分析】本题考查了等式的性质.等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.利用等式的性质对每个式子进行变形即可找出答案.【解答】解:A. 根据等式性质1和2,a=b两边都乘-2再加1,即可得到1-2a=1-2b,变形正确,故选项不符合题意;B.根据等式性质2,ac=bc两边都除以c不能得到a=b,只有当(c≠0),等式才成立,变形错误,故符合题意;C. 根据等式性质2,两边都乘以c,即可得到a=b,变形正确,故选项不符合题意;D. 因为c2+1≠0,所以根据等式性质2,a=b两边都除以c2+1能得到,变形正确,故选项不符合题意.故选B.3.【答案】A【解析】【分析】本题主要考查等式的基本性质,解题的关键是熟练掌握等式的性质:等式两边加同一个数(或式子)结果仍得等式、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.根据等式的基本性质逐一计算可得.【解答】解:A.从5x=4x+8,得到5x-4x=8,此选项正确;B.从7+x=13,得到x=13-7,此选项错误;C.从9x=-3,得到x=-,此选项错误;D.从-2x=0,得x=0,此选项错误;故选A.4.【答案】B【解析】解:由3y-3=2y-1,得y=2.由关于y的方程2m+y=m与3y-3=2y-1的解相同,得2m+2=m,解得m=-2.故选:B.分别解出两方程的解,两解相等,就得到关于m的方程,从而可以求出m的值.本题考查了同解方程,解决的关键是能够求解关于x的方程,根据同解的定义建立方程.5.【答案】D【解析】【分析】本题主要考查一元一次方程,根据一元一次方程的概念可求解.【解答】解:A.,不是整式方程,故该选项错误;B.,由两个未知数,故该选项错误;C.,未知数的最高次数为2,故该选项错误;D.,是一元一次方程,故该选项错误.故选D.6.【答案】D【解析】解:设•处的数字是a,则-3(a-9)=5x-1,将x=2代入,得:-3(a-9)=9,解得a=6,故选:D.设•处的数字是a,把x=2代入已知方程,可以列出关于a的方程,通过解该方程可以求得•处的数字.此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.7.【答案】B【解析】【解析】主要考查一元一次方程的应用,根据题意列方程,解出结果即可.【解答】解:设至多能打x折,根据题意:,解得:.所以至多可以打7折.故答案为B.8.【答案】C【解析】【分析】本题主要考查一元一次方程的解法.依次求出各个方程的解,即可得出答案. 【解答】解:.A.6x+1=1x=0;B.7x-1=x-1x=0 ;C.;D.5x=x+2.故选C.9.【答案】A【解析】【分析】此题主要考查了一元一次方程定义,一元一次方程的解法,关键是掌握只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.根据一元一次方程定义可得m-2=1,解出m的值,进而可得方程,然后再解一元一次方程即可.【解答】解:由题意得:m-2=1,解得:m=3,则方程为3x-3+3=0,解得:x=0.故选A.10.【答案】A【解析】解:设人数为x,则可列方程为:8x-3=7x+4,故选:A.根据“总钱数不变”可列方程.本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并依据此列出方程.11.【答案】-3【解析】【分析】根据一元一次方程的定义求解即可.本题考查了一元一次方程的定义,利用一元一次方程的定义求解是解题关键.【解答】由题意,得|m+2|=1且m+1≠0,解得m=-3,故答案为:-3.12.【答案】1350元【解析】解:设每台彩电成本价是x元,依题意得:(50%•x+x)×0.8-x=270,解得:x=1350.故答案是:1350元.根据利润=售价-成本价,设每台彩电成本价是x元,列方程求解即可.本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.13.【答案】-1【解析】【分析】本题考查了一元一次方程的解,解决本题的关键是解一元一次方程;把x=-6代入方程2a-5=x+a,即可解答.【解答】解:x=-6代入方程2a-5=x+a得:2a-5=-6+a,解得:a=-1,故答案为-1.14.【答案】(1)c(2)b-c(3)c-b(4)【解析】【分析】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.根据等式的基本性质填空即可.【解答】解:∵a=b,∴(1)a+c=b+c;(2)a-c=b-c;(3)c-a=c-b;(4).故答案为(1)c;(2)b-c;(3)c-b;(4).15.【答案】【解析】【分析】此题考查了解二元一次方程,解题的关键是将一个未知数看做已知数,求出另一个未知数,把x看做已知数求出y即可.【解答】解:由x-3y=4,得到3y=x-4,∴,故答案为.16.【答案】6【解析】解:方程2x-4=4,移项合并得:2x=8,解得:x=4,把x=4代入x+2=a中,得:a=6.故答案为:6.求出第二个方程的解,代入第一个方程求出a的值即可.此题考查了同解方程,同解方程即为两个方程的解相同的方程.17.【答案】2x=4【解析】解:自编一个解为x=2的方程为2x=4,故答案为:2x=4.根据使方程左右两边的值相等的未知数的值是该方程的解,可得答案.本题考查了方程的解,解题的关键是根据方程的解的定义,使方程左右两边的值相等的未知数的值是该方程的解.18.【答案】10【解析】解:设轮船在静水中的速度为x千米/时,根据题意得2x=28+24,解得x=26.即:轮船在静水中的速度为26千米/时.所以漂浮时间为:=10(小时)故答案是:10.设轮船在静水中的速度为x千米/时,根据静水速度+水流速度=顺水速度,静水速度-水流速度=逆水速度,可得静水速度×2=顺水速度+逆水速度,依此列方程即可求解.然后根据漂流路程求得漂流时间.本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.19.【答案】2或4【解析】解:设经过x小时后两人相距36千米,根据题意得:(14+22)x=108-36或(14+22)x=108+36,解得:x=2或x=4.答:经过2或4小时后两人相距36千米.故答案为:2或4.设经过x小时后两人相距36千米,根据路程=速度×时间,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.【答案】解:(1)去括号得:4x-60+3x=-4,整理得:7x=56,解得:x=8;(2)去分母得:3(3x-1)-12=2(5x-7),去括号得:9x-3-12=10x-14,移项得:9x-10x=-14+3+12,合并同类项得:-x=1,方程两边除以-1得:x=-1.【解析】(1)方程去括号后,移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.21.【答案】解:(1)移项得:x+5x=2+4,合并得:6x=6,解得:x=1;(2)去括号得:4x-60+3x=5x-140+7x,移项得:4x+3x-5x-7x=-140+60,合并得:-5x=-80,解得:x=16;(3)去分母得:36+2x=24-6x,移项得:2x+6x=24-36,合并得:8x=-12,解得:x=-1.5;(4)方程整理得:=+,去分母得:48x+54=15x+75+30x-20,移项得:48x-15x-30x=75-20-54,合并得:3x=1,解得:x=.【解析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.22.【答案】解:(1)设该商品的成本价为x元,根据题意,得8%x=1800×90%-x解得x=1500,答:该商品的成本价为1500元.(2)1500×8%=120(元),97200÷(1500+120)-97200÷1800=60-54=6.答:要使该商品销售额达到97200,降价后的销售数量应该比降价前多6.【解析】本题主要考查一元一次方程的应用.根据题意找到合适的等量关系,列出方程即可求解.(1)该商品的成本价为x元,根据售价-成本价=利润列出方程,解方程即可;(2)先根据成本价×利润率=利润,即可求出降价后的价格,根据总价÷单价=数量进行计算即可.23.【答案】50;50%【解析】解:(1)(80-30)=50(元)(60-40)÷40=50%.故答案为:50,50%;(2)设该商场购进甲种商品x件,根据题意可得:50x+40(50-x)=2100,解得:x=10;乙种商品:50-10=40(件).答:该商场购进甲种商品10件,乙种商品40件.(3)根据题意得,第一天只购买甲种商品,享受了9折优惠条件,∴360÷0.9÷80=5件第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,432÷90%÷60=8件;情况二:购买乙种商品打八折,432÷80%÷60=9件.一共可购买甲、乙两种商品5+8=13件或5+9=14件.答:小聪这两天在该商场购买甲、乙两种商品一共13或14件.(1)根据商品利润率=,可求每件甲种商品利润率,乙种商品每件进价;(2)首先设出购进甲商品的件数,然后根据“同时购进甲、乙两种商品共50件”表示出购进乙商品的件数;然后根据“恰好用去2100元”列方程求出未知数的值,即可得解;(3)第一天的总价为360元,享受了9折,先算出原价,然后除以单价,得出甲种商品的数量;第二天的也可能享受了9折,也可能享受了8折.应先算出原价,然后除以单价,得出乙种商品的数量.考查了一元一次方程的应用,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型.24.【答案】解:设从乙班抽调了x人参加了敬老活动.根据题意列方程,得35-(x-3)=2(26-x).解方程得:x=20.答:从乙班抽调了20人参加了这次敬老活动.【解析】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.设从乙班抽调了x人,那么从甲班抽调了(x-3)人,根据抽调之后甲班剩余人数恰好是乙班剩余人数的2倍,列方程求解.人教版七年级数学上册第三章《一元一次方程》单元检测试题(有答案)一、选择题1.下列四个式子中,是一元一次方程的是( )A .1+2+3+4=10B .2x -3 C.x -13=x 2+1 D .x +3=y 2.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( )A.-5B.-3C.-1D.53. 下列方程属于一元一次方程的是( )A. 1x-1=0 B. 6x +1=3y C. 3m =2 D. 2y 2-4y +1=0 4.关于x 的方程2(x -2)-3(4x -1)=9,下面解答正确的是( )A . 2x -4-12x +3=9,-10x =9+4-3=10,x =1B . 2x -4-12x +3=9,-10x =10,x =-1C . 2x -4-12x -3=9,-10x =2,x =−D . 2x -2-12x +1=9,-10x =10,x =15.设有x 个人共种m 棵树苗,如果每人种8棵,则剩下2棵树苗未种,如果每人种10棵,则缺6棵树苗.根据题意,列方程正确的是( )A .-2=+6B .+2=-6C .D .6.下列等式变形正确的是( )A.若a =b ,则a -3=3-bB.若x =y ,则x a =y aC.若a =b ,则ac =bcD.若b a =d c,则b =d 7. 已知||3x -y =0,||x =1,则y 的值等于( )A. 3或-3B. 1或-1C. -3D. 38.关于x 的方程5x 3m =2的解是x =m ,则m 的值是( )A .1B . 1C .2D . 29.两地相距600千米,甲、乙两车分别从两地同时出发相向而行,甲比乙每小时多行10千米,4小时后两车相遇,则乙的速度是( )A.70千米/时B.75千米/时C.80千米/时D.85千米/时10.元旦节日期间,百货商场为了促销,对某种商品按标价的8折出售,仍获利160元,若商品的标价为2200元,那么它的成本为( )A . 1600元B . 1800元C . 2000元D . 2100元11.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( )A.2314B.3638C.42D.4412. 某同学在解关于x 的方程3a -x =13时,误将“-x ”看成“x ”,从而得到方程的解为x =-2,则原方程正确的解为( )A.x =-2B.x =-12C.x =12D.x =2 二、填空题13.若-x n +1与2x 2n -1是同类项,则n = .14.. 三个连续偶数的和是60,那么这三个数分别是 - .15.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,则原来的两位数是 .16.对于两个非零的有理数a ,b ,规定a ☆b =12b -13a ,若x ☆3=1,则x 的值为________. 17.图①是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.18.某汽车以20米/秒的速度在公路上行驶,开向寂静的山谷,驾驶员按一下喇叭,5秒后听到回声,这时汽车离山谷多远?已知在空气中声音的传播速度约为340米/秒.设按喇叭时,汽车离山谷y 米,根据题意,可列方程为______________.19.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有 名学生.20.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,解是x=7的方程是三、解答题21.解下列方程:(1)4x -3(12-x )=6x -2(8-x ); (2)2x -13-2x -34=1;(3)7x -13-5x +12=2-3x +24; (4)2x 0.3-1.6-3x 0.6=31x +83.22. (1)如果方程2x +a =x -1的解是x =4,求2a +3的值;(2)已知等式(a -2)x 2+(a +1)x -5=0是关于x 的一元一次方程,求这个方程的解.23.在校运动会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或者脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?24.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,与一块正方形纸板以及另两块长方形纸板,恰好拼成一个大正方形.问大正方形的面积是多少?25.某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?26.一项筑路工程,甲队单独完成需要80天,乙队单独完成需要120天.(1)求甲,乙两队每天的工作量之比;(2)若甲队每天比乙队多筑路50 m,求这项工程共需筑路多少米?27.某商店5月1日当天举行优惠促销活动,当天到该商店购买商品有两种优惠方案:方案1:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的八折优惠;方案2:若不购买会员卡,则购买商店内任何商品,一律按商品价格的九五折优惠.已知小红5月1日前不是该商店的会员.(1)若小红不购买会员卡,所购买商品的总价格为120元,则实际应支付多少元?(2)请问购买商品的总价格是多少时,两种方案的优惠情况相同?(3)你认为哪种方案更合算?(直接写出答案)参考答案一、1. C 2. A. 3. C 4. B 5 C. 6. C 7. D 8. B 9. A 10. A 11. C 12. D二、13.214. 18,20,22 .15.4816. 3 217.100018.2y-100=1 700 19.3020.=1三、21.解:(1)x=-20. (2)x=7 2.(3)去分母,得4(7x-1)-6(5x+1)=2×12-3(3x+2),去括号,得28x -4-30x -6=24-9x -6,移项,得28x -30x +9x =24+6+4-6,合并同类项,得7x =28,系数化为1,得x =4.(4)原方程可化为20x 3-16-30x 6=31x +83.去分母,得40x -(16-30x )=2(31x +8).去括号,得40x -16+30x =62x +16.移项,得40x +30x -62x =16+16.合并同类项,得8x =32. 系数化为1,得x =4.22.解:(1)把x =4代入方程,得8+a =4-1.解得a =-5.所以2a +3=2×(-5)+3=-7.(2)由题意,得a -2=0且a +1≠0.解得a =2,即方程为3x -5=0.解得x =53. 23. 解:设应分配x 名工人生产脖子上的丝巾,则(70-x )名工人生产手上的丝巾.根据题意,得1800(70-x )=2×1200x , 解得x=30,70-x=70-30=40.答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.24.解:设大正方形的边长为x 厘米,由题图可得x -2-1=4+5-x ,解得x =6,则6×6=36(平方厘米).所以大正方形的面积为36平方厘米.25.解:设甲种票买了x 张,则乙种票买了(35-x )张,(2分)依题意有24x +18(35-x )=750,解得x =20.则35-x =15.(8分) 甲种票买了20张,乙种票买了15张.26.解:(1)甲,乙两队的筑路时间之比为80∶120=2∶3,所以甲,乙两队每天筑路工作量之比为3∶2.(2)设乙队每天筑路x m ,则甲每天筑路(x +50)m.依题意,得80(x +50)=120x .解得x =100.故120x =12 000(m).这项工程共需筑路12 000 m.27.解:(1)120×0.95=114(元).故实际应支付114元.(2)设小红所购买商品的总价格为x 元,依据题意,得0.8x +168=0.95x ,解得x =1 120.故当购买商品的总价格是1 120元时,两种方案的优惠情况相同.(3)当购买商品的总价格低于1 120元时,方案2更合算;当购买商品的总价格等于1 120元时,两种方案的花费相同;当购买商品的总价格大于1 120元时,方案1更合算.人教版七年级上册第三章一元一次方程单元测试卷(3)一、选择题(每小题3分,共30分)1把方程3x +2x -13=3-x +12去分母正确的是( ) A.18x +2(2x -1)=18-3(x +1) B.3x +(2x -1)=3-(x +1)C.18x +(2x -1)=18-(x +1)D.3x +2(2x -1)=3-3(x +1)2.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( ) A.-5 B.-3 C.-1 D.53.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A.518=2(106+x )B.518-x =2×106C.518-x =2(106+x )D.518+x =2(106-x )4.下列方程是一元一次方程的是( )A.x -2=3B.1+5=6C.x 2+x =1D.x -3y =05.方程2x +3=7的解是( )A.x =5B.x =4C.x =3.5D.x =26.下列等式变形正确的是( )A.若a =b ,则a -3=3-bB.若x =y ,则x a =y aC.若a =b ,则ac =bcD.若b a =d c,则b =d 7.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-■=x +1,怎么办呢?他想了想便翻看书后的答案,方程的解是x =9,请问这个被污染的常数是( )A.1B.2C.3D.48.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )A.562.5元B.875元C.550元D.750元9.两地相距600千米,甲、乙两车分别从两地同时出发相向而行,甲比乙每小时多行10千米,4小时后两车相遇,则乙的速度是( )A.70千米/时B.75千米/时C.80千米/时D.85千米/时10.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( )A.2314B.3638C.42D.44二、填空题(每小题3分,共24分)11.方程3x -3=0的解是 .12.若-x n +1与2x 2n -1是同类项,则n = .13.已知多项式9a +20与4a -10的差等于5,则a 的值为 .14.若方程x +2m =8与方程2x -13=x +16的解相同,则m = . 15.在有理数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =-2a +3b ,如:1⊕5=-2×1+3×5=13,则方程x ⊕4=0的解为 .16.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有 名学生.17.某商场有一款春季大衣,如果打八折出售,每件可盈利200元,如果打七折出售,每件还可以盈利50元,那么这款大衣每件的标价是 元.18.图①是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.三、解答题(共66分)19.(15分)解下列方程:(1)4x -3(12-x )=6x -2(8-x ); (2)2x -13-2x -34=1;(3)12x +2⎝⎛⎭⎫54x +1=8+x .20.(8分)已知3+a 2与-13(2a -1)-1互为相反数,求a 的值.21.(9分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?22.(10分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图①所示).使用时,可将鱼竿的每一节套管都完全拉伸(如图②所示).图③是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm ,第2节套管长46cm ,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.23.(12分)为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?24.(12分)把正整数1,2,3,4,…,2017排列成如图所示的一个数表.(1)用一正方形在表中随意框住4个数,把其中最小的数记为x,另三个数用含x的式子表示出来,从大到小依次是,,;(2)当被框住的4个数之和等于416时,x的值是多少?(3)被框住的4个数之和能否等于622?如果能,请求出此时x的值;如果不能,请说明理由.参考答案与解析1.A 2.A 3.C 4.A 5.D 6.C 7.B 8.B 9.A10.C 解析:设图②中白色区域的面积为8x ,灰色区域的面积为3x ,由题意,得8x +3x =33,解得x =3.∴灰色部分面积为3×3=9,图①的面积为33+9=42.故选C.11.x =1 12.2 13.-5 14.7215.x =6 16.30 17.1500 18.100019.解:(1)x =-20.(5分)(2)x =72.(10分) (3)x =3.(15分)20.解:由题意,得3+a 2+⎣⎡⎦⎤-13(2a -1)-1=0,(4分)解得a =5.(8分) 21.解:设甲种票买了x 张,则乙种票买了(35-x )张,(2分)依题意有24x +18(35-x )=750,(6分)解得x =20.则35-x =15.(8分)答:甲种票买了20张,乙种票买了15张.(9分)22.解:(1)第5节套管的长度为50-4×(5-1)=34(cm).(2分)(2)第10节套管的长度为50-4×(10-1)=14(cm),(4分)因为每相邻两节套管间重叠的长度为x cm ,根据题意得(50+46+42+…+14)-9x =311,(7分)即320-9x =311,解得x =1.(9分)答:每相邻两节套管间重叠的长度为1cm.(10分)23.解:(1)由题意,得5020-92×40=1340(元).(4分)答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(5分)(2)设甲班有x 名同学准备参加演出(依题意46<x <90),则乙班有(92-x )名.依题意得50x +60(92-x )=5020,解得x =50,92-x =42(名).(11分)答:甲班有50名同学,乙班有42名同学.(12分)24.解:(1)x +8 x +7 x +1(3分)(2)由题意,得x +x +1+x +7+x +8=416,解得x =100.(7分)(3)不能,(8分)因为当4x +16=622,解得x =15112,不为整数.(12分)。
人教版数学七年级上册第三章《一元一次方程》检测题(含答案)
人教版数学七年级上册第三章《一元一次方程》检测题一、选择题(每题3分,共30分)1.下列等式变形正确的是( )(A )如果s=12ab,那么b=2s a; (B )如果12x=6,那么x=3; (C )如果x-3=y-3,那么x-y=0; (D )如果mx=my,那么x=y2.下列各式中,不属于方程的是 ( )(A ))2(32+-+x x (B )0)24(13=--+x x (C ) 2413+=-x x(D ) 7=x3.下列解方程去分母正确的是( )(A )由1132x x --=,得2x-1=3-3x ; (B )由232124x x ---=-,得2(x-2)-3x-2=-4 (C )由131236y y y y +-=--,得3y+3=2y-3y+1-6y ;(D )由44153x y +-=,得12x-1=5y+20 4.要使代数式5t+41与5(t-41)的值互为相反数,t 是( ) (A )0 (B )203 (C )201 (D )101 5.下列变形符合等式性质的是 ( )(A )如果732=-x ,那么372-=x (B ) 如果123+=-x x ,那么213-=-x x(C )如果52=-x ,那么25+=x(D ) 如果131=-x ,那么3-=x 6.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( )(A )106元;(B )105元;(C )118元;(D )108元.7.小丽在解关于x 的方程-x+5a=13时,误将-x 看作x ,得到方程的解为x=-2,则原方程的解为( )(A ) x=-3 (B )x=0 (C )x=1 (D )x=28.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,第一台盈利20%,另一台亏本20%,则本次出售中,商场( )(A )不赚不赔 (B )赚160元 (C )赚80元 (D )赔80元9.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是 ( )A .20x ·13%=2340B .20x=2340×13%C .20x(1-13%)=2340D .13%·x=234010.小赵去商店买练习本,回来后问同学们:“店主动告诉我,如果多买一些就给我们八折优惠,我就买了20本,结果便宜了1.6元,你猜原来每本的价格是多少?”(A )0.4 元 (B )0.5元 (C )0.6元 (D )0.7元二、耐心填一填(每题3分,共30分)11.x=3和x=-6中,________是方程x-3(x+2)=6的解.12.若x=-3是方程3(x-a)=7的解,则a=________.13.若代数式213k --的值是1,则k=_________. 14. 以x=2为根的一元一次方程是____________________(写出满足条件的一个方程即可).15.在一次猜迷抢答赛上,每人有30道的答题,答对1小题加20分,答错1题扣10分,小明共得了120分,则小明答对 道题?答错 道题? 16.若关于x 的一元一次方程23132x k x k ---=的解是1x =-,则k 的值是 .17.小新问妈妈的生日是几号?妈妈指着某月日历回答:我生日这一天的上、下、左、右四个日期数之和恰好是80,则小新妈妈的生日是 号18.在等式“2×( )-3×( )=15”的括号中分别填入一个数,使这两个数是互为相反数19.五一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了 折优惠.20.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.试问这个月的石油价格相对上个月的增长率是 .三、用心解一解(共60分)21. (本题8分)解下列方程:(1)70%x+(30-x)×55%=30×65%; (2)511241263x x x +--=+;22.(本题6分)小明在解方程时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:11222x x x +=-⊗,怎么办呢?这时小李走过来看了一下说,这个方程的解与方程3x+5=0的解是一样的,你能帮小明补出这个常数吗?请写出你的思考过程.23.(本题8分)为开展“喜迎建党90华诞”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的锦江牌钢笔每支8元,红梅牌钢笔每支4.8元,他们要购买这两种笔共40支.如果他们两人一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支?24.(本题8分)2019年某市高档住房的房产税起征价格税率表: 征收价格(1)小明家在市主城九区购买了一套建筑面积为148平方米的新建商品住房,已知成交建筑面积均价分别为16500元/平方米,求这套高档住房应缴房产税多少元;(2)小芳家在市主城九区购买了一套建筑面积为188平方米的新建商品住房,已知小芳家向税务部门缴了37600元的房产税,问这套新建商品住房成交建筑面积均价为多少?25.(本题10分)在“家电下乡”活动中,对彩电、冰箱(含冰柜)、洗衣机三大类家电给予产品销售价格13%的财政资金直补。
人教版七年级数学上册 第三章 一元一次方程(含答案)
人教版 七年级数学上册 第三章 一元一次方程一、选择题(本大题共8道小题)1. 方程2x +3=7的解是( )A. x =5B. x =4C. x =3.5D. x =22. 方程2x -1=3x +2的解为( )A. x =1B. x =-1C. x =3D. x =-33. 某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母, 1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,设安排x 名工人生产螺钉,则下面所列方程正确的是( )A. 2×1000(26-x )=800xB. 1000(13-x )=800xC. 1000(26-x )=2×800xD. 1000(26-x )=800x4. 下列说法不正确的是( )A .等式两边都加上一个数或一个等式,所得结果仍是等式.B .等式两边都乘以一个数,所得结果仍是等式.C .等式两边都除以一个数,所得结果仍是等式.D .一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式.5. 下列各式不是方程的是( )A .24y y -=B .2m n =C .222p pq q -+D .0x =6. 在解方程x -13+x =3x +12时,方程两边同时乘以6,去分母后,正确的是( ) A. 2x -1+6x =3(3x +1) B. 2(x -1)+6x =3(3x +1)C. 2(x -1)+x =3(3x +1)D. (x -1)+6x =3(x +1)7. 铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(x +21-1)=6(x -1)B .5(x +21)=6(x -1)C .5(x +21-1)=6xD .5(x +21)=6x8. 下列说法不正确的是( )A .解方程指的是求方程解的过程.B .解方程指的是方程变形的过程.C .解方程指的是求方程中未知数的值,使方程两边相等的过程.D .解方程指的是使方程中未知数变成已知数的过程.二、填空题(本大题共5道小题)9. 一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是________元.10. 湖南省2019年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20 000元.设每人向旅行社缴纳x 元费用后,共剩 5 000元用于购物和品尝台湾美食.根据题意,列出方程为__________________.11. 根据等式的性质填空.(1)4a b =-,则 a b =+; (2)359x -=,则39x =+ ;(3)683x y =+,则x = ; (4)122x y =+,则x = .12. 已知关于x 的方程3x -2m =4的解是x =m ,则m 的值是________.13. 已知2(23)(23)1m x m x ---=是关于x 的一元一次方程,则m =.三、解答题(本大题共4道小题)14. 解方程:42 1.730%50%x x -+-=15. 解方程:111[(1)6]20343x --+=16. 解方程:4x a b c x b c d x a c d x a b d d a b c ------------+++=(11110a b c d +++≠)17. 解方程:20101309720092007x x x ---++=人教版 七年级数学上册 第三章 一元一次方程-答案一、选择题(本大题共8道小题)1. 【答案】D 【解析】2x +3=7,2x =4,x =2,∴选项D 正确.2. 【答案】D【解析】将原式移项,得2x -3x =2+1,合并同类项,得-x=3,系数化为1,得x =-3.3. 【答案】C【解析】本题要求螺钉和螺母配套,且1个螺钉需要配2个螺母,所以螺母的数量是螺钉的2倍. 不难得出,x 名工人生产螺钉的个数为800x 个,则(26-x )名工人生产螺母的个数是1000×(26-x )个,根据其等量关系得:1000×(26-x )=2×800x ,故选C.4. 【答案】C5. 【答案】C6. 【答案】B 【解析】去分母得2(x -1)+6x =3(3x +1),故选B.7. 【答案】A8. 【答案】B二、填空题(本大题共5道小题)9. 【答案】180 【解析】设成本为x 元,由题意得:300×0.8-x =60,解得x =180.10. 【答案】20 000-3x =5 00011. 【答案】(1)4;(2)5;(3)836y +;(4)24y +. 【解析】(1)4a b =+,在等式两端同时加上b ;(2)395x =+,在等式两端同时加上5;(3)836y +,在等式的两端同时乘以16; (4)24y +,在等式的两端同时乘以2.12. 【答案】413. 【答案】32三、解答题(本大题共4道小题)14. 【答案】14.275 【解析】42 1.70.30.5x x -+-=,10401020 1.735x x -+-=,14.275x =.15. 【答案】316. 【答案】a b c d +++ 【解析】原方程可化为:()()()()0x a b c d x a b c d x a b c d x a b c d d a b c-+++-+++-+++-++++++=, 即:1111()[()]0x a b c d a b c d+++-+++=, 又11110a b c d+++≠,故x a b c d =+++.17. 【答案】2010 【解析】原方程可化为201013(1)(1)0972*******x x x ---+-++=, 20102010201009720092007x x x ---+-=, 111(2010)()0972*******x -+-=,显然11109720092007+-≠,故20100x -=,2010x =.。
(常考题)人教版初中数学七年级数学上册第三单元《一元一次方程》测试卷(有答案解析)
一、选择题1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x --2.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7B .﹣1C .5D .113.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1 4.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100B .﹣100x 100C .101x 100D .﹣101x 1005.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6nB .8+6nC .4+4nD .8n6.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上7.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67 D .08.下列同类项合并正确的是( ) A .x 3+x 2=x 5 B .2x ﹣3x =﹣1 C .﹣a 2﹣2a 2=﹣a 2 D .﹣y 3x 2+2x 2y 3=x 2y 3 9.下列各式中,去括号正确的是( ) A .2(1)21x y x y +-=+- B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=--10.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n 不是整式;(3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个11.若23,33M N x M x +=-=-,则N =( ) A .236x x +- B .23x x -+C .236x x -- D .23x x -12.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个 B .8个C .4个D .5个二、填空题13.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项. 14.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子.15.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.16.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学; 第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.17.礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________.18.在如图所示的运算流程中,若输出的数3y =,则输入的数x =________________.19.仅当b =______,c =______时,325x y 与23b c x y 是同类项。
(压轴题)人教版初中七年级数学上册第三章《一元一次方程》模拟测试卷(含答案解析)
一、选择题1.(0分)[ID :68205]某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .20001200(22)x x =-B .212002000(22)x x ⨯=-C .220001200(22)x x ⨯=-D .12002000(22)x x =- 2.(0分)[ID :68200]如图33⨯网格中,每一横行、每一竖列以及两条斜对角线上的三个数的和都相等,则b a -的值是( )A .3-B .2-C .2D .33.(0分)[ID :68190]从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x 千米,可列方程( ) A .408 3.6x x -=B .4083.6x =-C . 3.6840x x -= D . 3.6408x x -= 4.(0分)[ID :68187]如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0 B .2 C .﹣2 D .﹣65.(0分)[ID :68185]如图所示,两人沿着边长为90 m 的正方形,按A →B →C →D →A …的方向行走,甲从A 点以65 m/min 的速度、乙从B 点以75 m/min 的速度行走,当乙第一次追上甲时,将在正方形的( )边上.A .BCB .DC C .AD D .AB6.(0分)[ID :68183]某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元 7.(0分)[ID :68182]甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x 辆汽车到甲队,由此可列方程为( )A .100﹣x =2(68+x)B .2(100﹣x)=68+xC .100+x =2(68﹣x)D .2(100+x)=68﹣x 8.(0分)[ID :68168]下列变形中,正确的是( ) A .变形为 B .变形为 C .变形为 D .变形为9.(0分)[ID :68165]在三峡大坝截流时,用载重卡车将一堆石料运到围堰龙口,第一次运了这堆石料的少万方,第二次运了剩下的多万方,此时还剩下万方未运,若这堆石料共有万方,于是可列方程为( )A .B .C .D .10.(0分)[ID :68254]下列方程中,是一元一次方程的是( )A .243x x -=B .0x =C .21x y +=D .11x x -= 11.(0分)[ID :68221]某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x 天,则所列方程为( )A .1146x x ++=B .1146x x ++=C .1146x x -+=D .111446x x +++= 12.(0分)[ID :68214]某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,则该电器的标价为( )A .3750元B .4000元C .4250元D .3500元 13.(0分)[ID :68209]某个体商贩在一次买卖中同时卖出两件上衣,每件售价均为135元,若按成本计算,其中一件盈利25%,一件亏本25%,则在这次买卖中他( )A .不赚不赔B .赚9元C .赔18元D .赚18元14.(0分)[ID :68172]某工厂一、二月份共完成生产任务吨,其中二月份比一月份的多吨,设一月份完成吨,则下列所列方程正确的是( )A .B .C .D .15.(0分)[ID :68170]下列方程中,以x =-1为解的方程是( )A .B .7(x -1)=0C .4x -7=5x +7D .x =-3二、填空题16.(0分)[ID :68344]方程 2243x -=的解是__________ 17.(0分)[ID :68338]某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y 的值等于______.18.(0分)[ID :68337]一条河的水流速度为3km/h ,船在静水中的速度为xkm/h ,则船在这条河中顺水行驶的速度是____km/h ;19.(0分)[ID :68334]桐桐的爸爸三年前在银行办理了一份3000元的定期存款,今年到期时的本息和为3243元,请你帮桐桐的爸爸算一算这种储蓄的年利率,若设年利率为x%,则可列方程为________________.(前一年的利息不计入下一年本金) 20.(0分)[ID :68313]某校组织七年级学生参加研学活动,如果单独租用45座车若干辆,则刚好坐满;如果单独租用60座客车,则可少租2辆,并且剩余15座.该校参加研学活动的有_______人.21.(0分)[ID :68307]已知222a b c k b c a c a b===+++,则k =______. 22.(0分)[ID :68305]若关于x 的方程23360m x m --+=是一元一次方程,则这个方程的解是__________.23.(0分)[ID :68299]有一旅客携带了30公斤行李从重庆江北国际机场乘飞机去武汉,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格是______.24.(0分)[ID :68287]在公式5(32)9c f =-中,已知20c =,则f =_____________. 25.(0分)[ID :68267](1)由等式325x x =+的两边都________,得到等式5x =,这是根据____________;(2)由等式1338x -=的两边都______,得到等式x=_____,这是根据__________________. 26.(0分)[ID :68274]某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.27.(0分)[ID :68261]某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).三、解答题28.(0分)[ID:68417]解方程:111(3)(3)1236x x x x⎡⎤---=-+⎢⎥⎣⎦.29.(0分)[ID:68403]小明问小白:“你知道为什么任何无限循环小数都可以写成分数形式吗?”,看着小白一脸的茫然,小明热心地为小白讲解:(小明提出问题)利用一元一次方程将0.7⋅化成分数.(小明的解答)解:设0.7⋅=x.方程两边都乘以10,可得100.7⋅⨯=10x.由0.7⋅=0.777…,可知100.7⋅⨯=7.777…=7+0.7⋅,即7+x=10x.(请你体会将方程两边都乘以10起到的作用)可解得x79=,即0.779⋅=.(小明的问题)将0.4⋅写成分数形式.(小白的答案)49.(正确的!)请你仿照小明的方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.73⋅⋅;②0.432⋅.30.(0分)[ID:68377]一种商品每件成本a元,按成本增加22%标价.(1)每件标价多少元?(2)由于库存积压,实际按标价的九折出售,每件是盈利还是亏损?盈利或亏损多少元?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.D3.C4.C5.C6.C7.C8.B9.A10.B11.C12.A13.C14.B15.A二、填空题16.x=9【分析】根据解一元一次方程的步骤先去分母再移项合并同类项系数化为1即可求解;【详解】解:2x-6=122x=12+62x=18x=9故答案为x=9【点睛】本题考查解一元一次方程的步骤解题关键是17.11【分析】把9的后面2的前面的数字用字母表示出来根据任何相邻的三个数字之和都等于20确定出x与y的值即可求出x+y的值【详解】解:如下图标注表格中的数:由题意得:则有9+x+2=20即x=9所以表18.x+3【分析】根据顺水速度=静水中的速度+水速即可列出代数式【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题解决问题的关键是读懂题意找到所求的量之19.【分析】本利和=本金+利息=本金+本金×年利率×年数把相关数值代入即可【详解】本题相等关系为本金+利息=本息和其中利息=本金×年数×年利率故可列方程为故答案为:【点睛】本题考查了列一元一次方程得到本20.405【分析】设租用45座车x辆则租用60座客车为(x-2)辆根据等量关系列出方程即可求解【详解】设租用45座车x辆则租用60座客车为(x-2)辆根据题意得:45x=60(x-2)-15解得:x=921.1或-2【分析】分类讨论:①当时将等式变形即可求出k的值;②当时则代入原等式即可求出k的值【详解】解:①当时∵∴∴∴∴∴;②当时则∴故答案为:1或-2【点睛】此题考查的是等式的基本性质根据等式的基本22.x=1【分析】利用一元一次方程的定义求解即可【详解】∵关于x的方程3xm-2-3m+6=0是一元一次方程∴m-2=1解得:m=3此时方程为3x-9+6=0解得:x=1故答案为x=1【点睛】此题考查一23.800元【分析】该题目中的等量关系:该旅客购买的行李票=飞机票价格×15×超重公斤数根据题意列方程求解【详解】设他的飞机票价格是x元可列方程x⋅15×(30−20)=120解得:x=800则他的飞机24.68【解析】【分析】把C=20代入C与f之间的关系式解方程就可以求出f的值【详解】由题意得当C=20时20=180=5f−160−5f=−340f=68故答案为:68【点睛】本题考查解一元一次方程熟25.减去2x等式的性质1;除以等式的性质2【解析】【分析】根据等式的性质即可作答等式的性质1等式两边加同一个数(或式子)结果仍得等式;性质2等式两边乘同一个数或除以一个不为零的数结果仍得等式【详解】(126.12【解析】【分析】找到关键描述语进而找到所求的量的等量关系得到不等式6x-2(15-x)>60求解即可【详解】设答对x道故6x-2(15-x)>60解得:x>所以至少要答对12道题成绩才能在60分27.【解析】【分析】首先设标价x元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x的值【详解】设标价x元由题意得:80x﹣b=a解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B首先根据题目中已经设出每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,由1个螺钉需要配2个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程【详解】设每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,利用一个螺钉配两个螺母. 由题意得:2×1200x=2000(22-x ),故选:B .【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于根据题意列出方程.2.D解析:D【分析】根据题意,可以找到很多数量关系,那么选取合适的关系列出等式是关键,仔细观察网格图,可以发现第一纵行与第二橫行互相交叉,有相同的空格,同时包含了参数a 与b ,根据该等量关系可以列出等式解答.【详解】解:设第二橫行第一个空格为字母c ,如下图,据题意得, 85a c c b ++=++,移项可得, 3b a -=.故选:D.【点睛】本题以幻方形式考查等式与方程的应用,理解题意,观察图形,找到合适的等量关系列出等式是解答关键.3.C解析:C【分析】本题中的相等关系是:步行从甲地到乙地所用时间-乘车从甲地到乙地的时间=3.6小时,据此列方程即可.【详解】解:设甲乙两地相距x 千米,根据等量关系列方程得:3.6840x x -= 故选:C.列方程解应用题的关键是找出题目中的相等关系.4.C解析:C【分析】将x=2代入方程12x+a=-1可求得.【详解】解:将x=2代入方程12x+a=﹣1得1+a=﹣1,解得:a=﹣2.故选C.【点睛】本题是一道求方程待定字母值的试题,把方程的解代入原方程是求待定字母的值的常用方法,平时应多注意领会和掌握.5.C解析:C【分析】设乙x分钟后追上甲,根据乙追上甲时,比甲多走了270米,可得出方程,求出时间后,计算乙所走的路程,继而可判断在哪一条边上相遇.【详解】设乙x分钟后追上甲,由题意得,75x−65x=270,解得:x=27,而75×27=5×360+212×90,即乙第一次追上甲是在AD边上.故选C.【点睛】本题考查了一元一次方程的应用,完成本题要注意通过所行路程及正方形的周长正确判断追上时在正方形的那条边上.6.C解析:C【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得.【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%x解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.7.C解析:C【分析】由题意得到题中存在的等量关系为:2(乙队原来的车辆-调出的车辆)=甲队原来的车辆+调入的车辆,根据此等式列方程即可.【详解】设需要从乙队调x辆汽车到甲队,由题意得100+x=2(68﹣x),故选C.【点睛】本题考查了由实际问题抽象出一元一次方程,表示出抽调后两车队的汽车辆数是解题的关键.8.B解析:B【解析】【分析】利用等式的性质对每个等式进行变形即可找出答案.【详解】A. 根据等式性质1,2x+6=0两边同时减去6,即可得到2x=−6;故选项错误.B. 根据等式性质2, 两边同时乘以2,即可得到x+3=4+2x;故选项正确.C. 根据等式性质2, 两边都除以−2,应得到x−4=−1,故选项错误;D. 根据等式性质2, 两边同时乘以2,即可得到−x−1=1;故选项错误.故选B.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.9.A解析:A【解析】【分析】找到等量关系为:总共石料数-第一次运的-第二次运的=剩下的.根据题中的条件,代入关系式即可得出所求的方程.【详解】由题意这堆石料共有x万方,且第一次运了这堆石料的少2万方,即可得出第一次运了(x−2)万方;∵第二次员了剩下的多3万,10.B解析:B【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【详解】解:A、最高项的次数是2,故不是一元一次方程,选项不符合题意;B、正确,符合题意;C、含有2个未知数,故不是一元一次方程,选项不符合题意;D、不是整式方程,故不是一元一次方程,选项不符合题意;故选:B.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.11.C解析:C【分析】首先要理解题意找出题中存在的等量关系:甲完成的工作量+乙完成的工作量=总的工作量,根据题意我们可以设总的工作量为单位“1“,根据效率×时间=工作量的等式,分别用式子表示甲乙的工作量即可列出方程.【详解】设甲一共做了x天,则乙一共做了(x−1)天.可设工程总量为1,则甲的工作效率为14,乙的工作效率为16.那么根据题意可得出方程11 46x x-+=,故选C.【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程. 12.A解析:A【分析】先根据利润=20%×成本,设未知数解方程求出成本,再用售价÷8折=标价解答即可.【详解】解:设该电器的成本为x 元.依题意,得50020%x =,解得2500x =.所以该电器的标价为(2500500)0.83750+÷=(元).故选:A .【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.13.C解析:C【分析】要知道赔赚,就要先算出两件衣服的原价,要算出原价就要先设出未知数,然后根据题中的等量关系列方程求解.【详解】解:设在这次买卖中原价都是x ,则可列方程:(1+25%)x =135,解得:x =108,比较可知,第一件赚了27元;第二件可列方程:(1﹣25%)x =135,解得:x =180,比较可知亏了45元,两件相比则一共亏了45﹣27=18元.故选:C .【点睛】此题考查了一元一次方程的应用,解题的关键是明白盈利与亏本的含义,准确列出计算式,计算结果,难度一般.14.B解析:B【解析】【分析】 由题意可知:一月份完成吨,二月份完成()吨,一、二月份共完成生产任务吨,列出方程解答即可.【详解】 由题意可知:. 故选:B【点睛】此题考查从实际问题中抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.15.A解析:A【解析】【分析】方程的解的定义,就是能够使方程左右两边相等的未知数的值.所以把x=-1分别代入四个选项进行检验即可.【详解】解:A、把x=-1代入方程的左边= -=右边,左边=右边,所以是方程的解;B、把x=-1代入方程的左边=-14≠右边,所以不是方程的解;C、把x=-1代入方程的左边=-11≠右边,不是方程的解;D、把x=-1代入方程的左边=-≠右边,不是方程的解;故选:A.【点睛】本题关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.二、填空题16.x=9【分析】根据解一元一次方程的步骤先去分母再移项合并同类项系数化为1即可求解;【详解】解:2x-6=122x=12+62x=18x=9故答案为x=9【点睛】本题考查解一元一次方程的步骤解题关键是解析:x=9【分析】根据解一元一次方程的步骤先去分母,再移项,合并同类项,系数化为1即可求解;【详解】解:224 3x-=2x-6=122x=12+62x=18x=9故答案为x=9.【点睛】本题考查解一元一次方程的步骤,解题关键是:移项变号.17.11【分析】把9的后面2的前面的数字用字母表示出来根据任何相邻的三个数字之和都等于20确定出x与y的值即可求出x+y的值【详解】解:如下图标注表格中的数:由题意得:则有9+x+2=20即x=9所以表解析:11【分析】把9的后面,2的前面的数字用字母表示出来,根据任何相邻的三个数字之和都等于20,确定出x 与y 的值,即可求出x+y 的值.【详解】解:如下图标注表格中的数:由题意得:9,2,a b a b c d e f e f ++=++++=++9,2,c d ∴==则有9+x+2=20,即x=9,所以表格中的数字为9,9,2,9,9,2,9,9,2,9,9,2,9,9,2,9,9, 即y=2,则x+y=11.故答案为:11.【点评】本题考查了有理数的加法,简单的一元一次方程的解法,熟练掌握运算法则是解本题的关键.18.x +3【分析】根据顺水速度=静水中的速度+水速即可列出代数式【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题解决问题的关键是读懂题意找到所求的量之解析:x +3【分析】根据顺水速度=静水中的速度+水速,即可列出代数式.【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题,解决问题的关键是读懂题意,找到所求的量之间的关系. 19.【分析】本利和=本金+利息=本金+本金×年利率×年数把相关数值代入即可【详解】本题相等关系为本金+利息=本息和其中利息=本金×年数×年利率故可列方程为故答案为:【点睛】本题考查了列一元一次方程得到本解析:300030003%3243x +⨯⨯=【分析】本利和=本金+利息=本金+本金×年利率×年数,把相关数值代入即可.【详解】本题相等关系为“本金+利息=本息和”,其中利息=本金×年数×年利率,故可列方程为300030003%3243x +⨯⨯=.故答案为:300030003%3243x +⨯⨯=.【点睛】本题考查了列一元一次方程,得到本利和的等量关系是解决本题的关键.注意本题的利息应算三年的利息.20.405【分析】设租用45座车x 辆则租用60座客车为(x-2)辆根据等量关系列出方程即可求解【详解】设租用45座车x 辆则租用60座客车为(x-2)辆根据题意得:45x=60(x-2)-15解得:x=9解析:405【分析】设租用45座车x 辆,则租用60座客车为(x-2)辆,根据等量关系,列出方程,即可求解.【详解】设租用45座车x 辆,则租用60座客车为(x-2)辆,根据题意得:45x=60(x-2)-15,解得:x=9,45×9=405(人),答:该校参加研学活动的有405人.故答案是:405.【点睛】本题主要考查一元一次方程的实际应用,找出等量关系,列出方程,是解题的关键. 21.1或-2【分析】分类讨论:①当时将等式变形即可求出k 的值;②当时则代入原等式即可求出k 的值【详解】解:①当时∵∴∴∴∴∴;②当时则∴故答案为:1或-2【点睛】此题考查的是等式的基本性质根据等式的基本 解析:1或-2【分析】分类讨论:①当0a b c ++≠时,将等式变形,即可求出k 的值;②当0a b c ++=时,则a b c +=-,代入原等式即可求出k 的值.【详解】解:①当0a b c ++≠时, ∵222a b c k b c a c a b===+++, ∴()()()2,2,2a k b c b k a c c k a b =+=+=+,∴()222a b c k b c a c a b ++=+++++,∴()()22a b c k a b c ++=++,∴22k =,∴1k =;②当0a b c ++=时,则a b c +=-. ∴222c c k a b c===-+-故答案为:1或-2【点睛】此题考查的是等式的基本性质,根据等式的基本性质将等式变形是解决此题的关键. 22.x=1【分析】利用一元一次方程的定义求解即可【详解】∵关于x的方程3xm-2-3m+6=0是一元一次方程∴m-2=1解得:m=3此时方程为3x-9+6=0解得:x=1故答案为x=1【点睛】此题考查一解析:x=1【分析】利用一元一次方程的定义求解即可.【详解】∵关于x的方程3x m-2-3m+6=0是一元一次方程,∴m-2=1,解得:m=3,此时方程为3x-9+6=0,解得:x=1,故答案为x=1.【点睛】此题考查一元一次方程的定义以及解一元一次方程,熟练掌握一元一次方程的定义是解题的关键.23.800元【分析】该题目中的等量关系:该旅客购买的行李票=飞机票价格×15×超重公斤数根据题意列方程求解【详解】设他的飞机票价格是x元可列方程x⋅15×(30−20)=120解得:x=800则他的飞机解析:800元【分析】该题目中的等量关系:该旅客购买的行李票=飞机票价格×1.5%×超重公斤数,根据题意列方程求解.【详解】设他的飞机票价格是x元,可列方程x⋅1.5%×(30−20)=120解得:x=800则他的飞机票价格是800元.故答案为:800.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意列出方程.24.68【解析】【分析】把C=20代入C与f之间的关系式解方程就可以求出f 的值【详解】由题意得当C=20时20=180=5f−160−5f=−340f=68故答案为:68【点睛】本题考查解一元一次方程熟解析:68【解析】【分析】把C=20代入C 与f 之间的关系式5(32)9c f =-,解方程就可以求出f 的值. 【详解】由题意,得当C=20时, 20=5(32)9f -, 180=5f−160,−5f=−340,f=68.故答案为:68.【点睛】 本题考查解一元一次方程,熟练掌握运算法则是解题关键.25.减去2x 等式的性质1;除以等式的性质2【解析】【分析】根据等式的性质即可作答等式的性质1等式两边加同一个数(或式子)结果仍得等式;性质2等式两边乘同一个数或除以一个不为零的数结果仍得等式【详解】(1 解析:减去2x ,等式的性质1;除以13-,98-,等式的性质2. 【解析】【分析】根据等式的性质即可作答.等式的性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.【详解】(1)由等式325x x =+的两边都减去2x ,得到等式5x =,这是根据等式的性质1; (2)由等式1338x -=的两边都除以13-,得到等式x=98-,这是根据等式的性质2; 故答案为:减去2x ,等式的性质1;除以13-,98-,等式的性质2. 【点睛】 本题考查了等式的性质.遇到此类题目要先确定等式变形前后用的是性质1还是2,再用相应的方法求解.26.12【解析】【分析】找到关键描述语进而找到所求的量的等量关系得到不等式6x-2(15-x )>60求解即可【详解】设答对x 道故6x-2(15-x )>60解得:x >所以至少要答对12道题成绩才能在60分解析:12【解析】【分析】找到关键描述语,进而找到所求的量的等量关系.得到不等式6x-2(15-x)>60,求解即可.【详解】设答对x道.故6x-2(15-x)>60解得:x>90 8.所以至少要答对12道题,成绩才能在60分以上.【点睛】考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.27.【解析】【分析】首先设标价x元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x的值【详解】设标价x元由题意得:80x﹣b=a解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关解析:5()4a b+【解析】【分析】首先设标价x元,由题意得等量关系:标价×打折﹣利润=进价,代入相应数值,再求出x 的值.【详解】设标价x元,由题意得:80%x﹣b=a,解得:x=5()4a b+,故答案为:5()4a b+.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,标价×打折﹣利润=进价.三、解答题28.2x=【分析】本题首先去括号,继而移项、合并同类项求解即可.【详解】去括号得:111(3)(3)1266x x x x-+-=-+,合并同类项得:112x =, 去分母得:2x =.【点睛】 本题考查一元一次方程的求解,计算时按照运算法则依次去括号、合并同类项,计算注意仔细即可.29. ①0.737399⋅⋅=,过程见解析;②0.433892900⋅=,过程见解析. 【分析】 ①设0. 73⋅⋅=m ,程两边都乘以100,转化为73+m=100m ,求出其解即可.②设0.432⋅=n ,程两边都乘以100,转化为43+0.2⋅=100n ,求出其解即可.【详解】解:①设0.73⋅⋅=m ,方程两边都乘以100,可得100×0.73⋅⋅=100m .由0.73⋅⋅=0.7373…,可知100×0.73⋅⋅=73.7373…=73+0.73⋅⋅;即73+m =100m ,可解得m 7399=,即0.737399⋅⋅=. ②设0.432⋅=n ,方程两边都乘以100,可得100×0.432⋅=100n .∴43.2⋅=100n .∵0.229⋅=,∴4329+=100n n 389900= ∴0.433892900⋅=. 【点睛】 本题考查了无限循环小数转化为分数的运用,运用一元一次方程解实际问题的运用,解答时根据等式的性质变形建立方程是解答的关键.30.(1)1.22a ;(2)盈利0.098a【分析】(1)根据:标价=成本()122%⨯+,列出代数式,再进行整理即可;(2)根据:售价=标价0.9⨯,利润=售价-成本,列出代数式,即可得出答案.【详解】(1)∵每件成本a 元,原来按成本增加22%定出价格,∴每件售价为()122% 1.22a a +=(元);(2)现在售价:1.220.9 1.098a a ⨯=(元);每件还能盈利:1.0980.098a a a -=(元);∴实际按标价的九折出售,盈利0.098a (元)【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到等量关系,注意把列出的式子进行整理.。
人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(包含答案解析)
一、选择题1.(0分)[ID:68201]已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x元,下列方程正确的是()A.6(x+2)+4x=18 B.6(x﹣2)+4x=18C.6x+4(x+2)=18 D.6x+4(x﹣2)=182.(0分)[ID:68200]如图33⨯网格中,每一横行、每一竖列以及两条斜对角线上的三个数的和都相等,则b a-的值是()A.3-B.2-C.2D.33.(0分)[ID:68187]如果x=2是方程12x+a=﹣1的解,那么a的值是()A.0 B.2 C.﹣2 D.﹣64.(0分)[ID:68183]某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元5.(0分)[ID:68164]如图,方格中的格子被填上了数,每一行、每一列以及两条对角线中所填的数字之和均相等,则的值为()A.B.C.D.6.(0分)[ID:68161]某种商品每件的标价是330元,按标价的8折销售时,仍可获利10%,则这种商品每件的进价为()A.300元B.250元C.240元D.200元7.(0分)[ID:68249]方程6x+12x-9x=10-12-16的解为()A.x=2 B.x=1 C.x=3 D.x=-28.(0分)[ID:68245]互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元9.(0分)[ID:68237]若代数式x+2的值为1,则x等于( )A .1B .-1C .3D .-310.(0分)[ID :68232]关于y 的方程331y k +=与350y +=的解相同,则k 的值为( )A .-2B .34C .2D .43-11.(0分)[ID :68231]解方程32282323x x x----=的步骤如下,错误的是( ) ①2(3x ﹣2)﹣3(x ﹣2)=2(8﹣2x ); ②6x ﹣4﹣3x ﹣6=16﹣4x ; ③3x +4x =16+10;④x =267.A .①B .②C .③D .④12.(0分)[ID :68224]“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A 、B 两种长方体形状的无盖纸盒.现 有正方形纸板 120 张,长方形纸板 360 张,刚好全部用完,问能做成多少个 A 型盒子?”则下列结论 正确的个数是( )①甲同学:设 A 型盒子个数为 x 个,根据题意可得: 4x + 3 ⋅1202x- = 360 ②乙同学:设 B 型盒中正方形纸板的个数为 m 个,根据题意可得: 3 ⋅ 2m+ 4(120 - m ) = 360③A 型盒 72 个④B 型盒中正方形纸板 48 个 A .1B .2C .3D .413.(0分)[ID :68217]如图,将长和宽分别是 a ,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a ,b ,x 的代数式表示纸片剩余部分的面积为( )A .ab+2x 2B .ab ﹣2x 2C .ab+4x 2D .ab ﹣4x 214.(0分)[ID :68181]某商场的老板销售一种商品,标价为360元,可以获得80%的利润,则这种商品进价多少( ) A .80元B .200元C .120元D .160元15.(0分)[ID :68173]若代数式的值为,则的值为( )A .B .C .D .二、填空题16.(0分)[ID :68352]学校组织一次数学知识竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得到76分,那么他答对了______道题.17.(0分)[ID :68340]一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.18.(0分)[ID :68331]自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按2元收费;用水超过10吨,超过10吨的部分按每吨3元收费.王老师家三月份水费为50元,则王老师家三月份用水________吨.19.(0分)[ID :68321]小石在解关于x 的方程225a x x -=时,误将等号前的“2x -”看作“3x -”,得出解为1x =-,则a 的值是_________,原方程的解为__________ . 20.(0分)[ID :68306]在等式“2×( )-3×( )= -15”的括号中分别填入一个数,使这两个数满足:互为相反数.则这两个数依次是______,____________.21.(0分)[ID :68300]一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______.22.(0分)[ID :68292]若方程()||110a a x --=是关于x 的一元一次方程,则a =____________.23.(0分)[ID :68291]某长方形足球场的周长为340米,长比宽多20米,问这个足球场的长和宽各是多少米.(1)若设这个足球场的宽为x 米,那么长为_______米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一元一次方程》单元检测题一、单选题1.某商品打七折后价格为a元,则原价为()A. a元B. a元C. 30%a元D. a元2.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?若设有x个人,则可列方程是()A. B. C. D.3.甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A. 5 B. 4 C. 3 D. 24.下列变形中:①由方程去分母,得x﹣12=10;②由方程两边同除以,得x=1;③由方程6x﹣4=x+4移项,得7x=0;④由方程两边同乘以6,得12﹣x﹣5=3(x+3).错误变形的个数是()个.A. 4B. 3C. 2D. 15.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A. 大和尚25人,小和尚75人B. 大和尚75人,小和尚25人C. 大和尚50人,小和尚50人D. 大、小和尚各100人6.一件毛衣先按成本提高 标价,再以8折出售,获利28元,求这件毛衣的成本是多少元,若设成本是x元,可列方程为()A. B. -C. D. -7.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A. 不盈不亏B. 盈利20元C. 亏损10元D. 亏损30元8.方程x-3=-6的解是().A. x=2B. x=-2C. x=3D. x=-39.方程2x-3y=7,用含x的代数式表示y为()A. y=(7-2x)B. y=(2x-7)C. x=(7+3y)D. x=(7-3y)10.方程的解是()A. B. C. D.11.方程的解是()A. B. C. D.二、填空题12.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.13.已知A=5x+2,B=11-x,当x=________时,A比B大3.14.当_____时,代数式与代数式的值相等.15.已知方程,用含的代数式表示为________.16.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是_____元.三、解答题17.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.18.老王的房子准备开始装修,请来师徒二人做泥水.已知师傅单独完成需10天,徒弟单独完成需15天。
(1)若两人先合作2天,剩下的由徒弟单独做,结果超出老王预期的工期3天完成,求老王预期的工期天数;(2)若师傅的工价每天300元,徒弟的工价每天220元,老王房子的泥水工价预算不超过3180元,问师傅至少要做几天?19.现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数;(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当分别购买20盒、40盒乒乓球时,去哪家商店购买更合算?(2)当购买乒乓球多少盒时,两种优惠办法付款一样?21.某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x千米.(1)试用关于x的式子分情况表示该乘客的付费.(2)如果该乘客坐了8千米,应付费多少元?(3)如果该乘客付费26.2元,他坐了多少千米?参考答案1.B【解析】【分析】直接利用打折的意义表示出价格即可得出答案.【详解】设该商品原价为x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=a(元),故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 2.C【解析】分析:根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总车数得出等式即可.详解:由题意可列方程:故选:C.点睛:本题考查了一元一次方程的应用,解题的关键是理解题意找准等量关系,进而列出方程. 3.B【解析】分析:可设两人相遇的次数为x,根据每次相遇的时间,总共时间为100s,列出方程求解即可.详解:设两人相遇的次数为x,依题意有x=100,解得x=4.5,∵x为整数,∴x取4.故选:B.点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.4.B【解析】分析:根据方程的不同特点,从计算过程是否正确、方法应用是否得当等方面加以分析.详解:①方程=2去分母,两边同时乘以5,得x﹣12=10,故①正确.②方程x=,两边同除以,得x=;要注意除以一个数等于乘以这个数的倒数,故②错误.③方程6x﹣4=x+4移项,得5x=8;要注意移项要变号,故③错误.④方程2﹣两边同乘以6,得12﹣(x﹣5)=3(x+3);要注意去分母后,要把是多项式的分子作为一个整体加上括号,故④错误.故②③④变形错误.故选B.点睛:在解方程时,要注意以下问题:(1)去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号;(2)移项时要变号.5.A【解析】【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【详解】设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25,则100﹣x=100﹣25=75(人),所以,大和尚25人,小和尚75人,故选A.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 6.C【解析】分析:根据题意分别表示出两种方式打折后的售价,再根据售价、成本、利润的关系列方程求解.详解:按成本价提高50%后售价为x(1+50%),再以八折出售变为0.8×(1+50%)x,又因为获利28元,此时售价也可表示为x+28,所以可列方程x+28=0.8×(1+50%)x.故选:C.点睛:此题主要考查了一元一次方程的应用,关键在于用两种方式表示出提价打折后的售价,列出方程.7.C【解析】分析:设两件衣服的进价分别为x、y元,根据利润=销售收入-进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240-两件衣服的进价后即可找出结论.详解:设两件衣服的进价分别为x、y元,根据题意得:120-x=20%x,y-120=20%y,解得:x=100,y=150,∴120+120-100-150=-10(元).故选:C.点睛:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.8.D【解析】分析:方程移项合并,即可求出解.详解:x﹣3=﹣6,移项合并得:x=﹣3.故选D.点睛:本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.9.B【解析】分析:先移项,移项时不要忘记变号,再把y的系数化为1即可.详解: ∵2x-3y=7,∴2x-7=3y,∴y=(2x-7)故选B.点睛:本题考查了等式的性质,等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.10.D【解析】分析:按照移项,合并,系数化为1的计算过程计算即可.详解:移项得:2x=3+1,合并得:2x=4,系数化为1得:x=2.故选D.点睛:考查解一元一次方程.掌握解一元一次方程的步骤是解决本题的关键.11.C【解析】分析:根据解一元一次方程的一般步骤解答即可.详解:移项得:,合并同类项得:,系数化为1得:.故选C.点睛:熟记“解一元一次方程的一般步骤”是解答本题的关键.12.15【解析】分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值.详解:∵当y=127时,解得:x=43;当y=43时,解得:x=15;当x=15时,解得不符合条件。
则输入的最小正整数是15.故答案为:15.点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.13.2【解析】分析:根据题意列出一元一次方程:5x+2=(11-x)+3,然后解出该一元一次方程的解即可.详解:由题意可得:A=B+3∴5x+2=(11-x)+3∴x=2故答案为:2.点睛:本题考查的是一元一次方程的应用:根据题意列出一元一次方程:5x+2=(11-x)+3,然后解出该一元一次方程的解即可.是一道基础题,难度不大.14.3【解析】分析:先根据题意列出方程:2x﹣3=6-x,再解答即可.详解:根据题意列方程得:2x﹣3=6-x,移项得:2x+x=6+3,合并同类项得:3x=9,系数化为1得:x=3.故答案为:3.点睛:解答本题的关键在于根据题意列出方程.15.【解析】分析:用含的代数式表示就是把x写在等式的左边,其它项写在右边,并把x的系数化为1.详解:∵,∴,∴.故答案为:.点睛:本题考查了等式的性质,等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.16.140【解析】解:设这件衣服的成本是x元,根据题意得:x(1+50%)×80 ﹣x=28,解得:x=140.答:这件衣服的成本是140元;故答案为:140.17.(1)每套课桌椅的成本为82元.(2)商店获得的利润为1080元.【解析】【分析】(1)设每套课桌椅的成本为x元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单套利润×销售数量,即可求出结论.【详解】(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82,答:每套课桌椅的成本为82元;(2)60×(100﹣82)=1080(元),答:商店获得的利润为1080元.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,列式计算.18.(1)老王的房子做泥水预期天完成;(2)师傅至少要做天.【解析】分析:设老王预期的工期为x天,完成整项工程徒弟做了2天,师傅做了(x+3)天,总工作量为单位1,根据徒弟做2天的工作量+师傅做(x+3)天的工作量=1,列方程求解即可;(2) 设师傅要做y天,则徒弟要做,根据老王房子的泥水工价预算不超过3180元,列出不等式求解即可.详解:(1)设老王预期的工期为天.依题意,得解得经检验,符合题意答:老王的房子做泥水预期天完成.(2)设师傅要做天,依题意,得≤解得:答:师傅至少要做天.点睛:本题考查了一元一次方程的应用,解题的关键是读懂题意,找出等量关系,列出方程即可.19.(1)甲蛋糕店数量为100家,该市蛋糕店总数为600家;(2)甲公司需要增设25家蛋糕店.【解析】分析: (1)用乙公司经营的蛋糕店的数量乘以其所占的百分比即可得出该市蛋糕店的总数;用该市蛋糕店的总数乘以甲蛋糕店所占的百分比即可得出甲公司经营的蛋糕店数量;(2)设甲公司增设x家蛋糕店,则全市共有蛋糕店(x+600)家,甲公司经营的蛋糕店为20%(600+x)家或(100+x)家,从而列出方程,求解即可.详解:(1)解:150× =600(家)600× =100(家)答:甲蛋糕店数量为100家,该市蛋糕店总数为600家.(2)解:设甲公司增设x家蛋糕店,由题意得20%(600+x)=100+x解得x=25(家)答:甲公司需要增设25家蛋糕店.点睛: 本题主要考查扇形统计图与一元一次方程的应用,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数及根据题意确定相等关系,并据此列出方程.20.(1)当购买20盒时,去甲商店购买更合算,当购买40盒时,去乙商店购买更合算;(2)当购买乒乓球30盒时,两种优惠办法付款一样.【解析】分析:(1)根据两店的优惠办法,分别求出购买20盒、40盒乒乓球时两店所需费用,比较后即可得出结论;(2)设当购买乒乓球x盒时,两种优惠办法付款一样,根据两店的优惠办法结合两店所需费用相同,即可得出关于x的一元一次方程,解之即可得出结论.详解:(1)当购买20盒时:甲商店所需费用5×100+(20﹣5)×25=875(元),乙商店所需费用5×100×0.9+20×25×0.9=900(元).∵875<900,∴当购买20盒乒乓球时去甲商店购买合算;当购买40盒时:甲商店所需费用5×100+(40﹣5)×25=1375(元),乙商店所需费用5×100×0.9+40×25×0.9=13500(元).∵1375>1350,∴当购买40盒乒乓球时去乙商店购买合算.(2)设当购买乒乓球x盒时,两种优惠办法付款一样.根据题意得:5×100+(x﹣5)×25=5×100×0.9+x×25×0.9,解得:x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样.点睛:本题考查了一元一次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)找准等量关系,正确列出一元一次方程.21.(1)当行程不超过3千米即x≤3时时,收费10元;当行程超过3千米即x>3时,收费为(8x+4.6)元.(2)乘客坐了8千米,应付费19元;(3)他乘坐了12千米.【解析】分析:(1)需要分类讨论:行程不超过3千米和行程超过3千米,根据两种收费标准进行计算;(2)把x=8代入(1)中相应的代数式进行求值即可;(3)设他坐了x千米,根据该乘客付费26.2元列出方程求解即可.详解:(1)当行程不超过3千米即x≤3时时,收费10元;当行程超过3千米即x>3时,收费为:10+(x﹣3)×1.8=1.8x+4.6(元).(2)当x=8时,1.8x+4.6=1.8×8+4.6=19(元).答:乘客坐了8千米,应付费19元;(3)设他坐了x千米,由题意得:10+(x﹣3)×1.8=26.2,解得x=12.答:他乘坐了12千米.点睛:该题考查了一元一次方程的应用,列代数式及求代数式的值等问题;解决问题的关键是读懂题意,找到所求的量的等量关系,进而列出式子.。