2019北师大版高考第一轮复习——导数的应用(理)(讲义)

合集下载

高考数学一轮专项复习讲义-导数与函数的单调性(北师大版)

高考数学一轮专项复习讲义-导数与函数的单调性(北师大版)

§3.2导数与函数的单调性课标要求1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).3.会利用函数的单调性判断大小,求参数的取值范围等简单应用.知识梳理1.函数的单调性与导数的关系条件恒有结论函数y =f (x )在区间(a ,b )上可导f ′(x )>0f (x )在区间(a ,b )上单调递增f ′(x )<0f (x )在区间(a ,b )上单调递减f ′(x )=0f (x )在区间(a ,b )上是常数函数2.利用导数判断函数单调性的步骤第1步,确定函数f (x )的定义域;第2步,求出导数f ′(x )的零点;第3步,用f ′(x )的零点将f (x )的定义域划分为若干个区间,列表给出f ′(x )在各区间上的正负,由此得出函数y =f (x )在定义域内的单调性.常用结论1.若函数f (x )在(a ,b )上单调递增,则当x ∈(a ,b )时,f ′(x )≥0恒成立;若函数f (x )在(a ,b )上单调递减,则当x ∈(a ,b )时,f ′(x )≤0恒成立.2.若函数f (x )在(a ,b )上存在单调递增区间,则当x ∈(a ,b )时,f ′(x )>0有解;若函数f (x )在(a ,b )上存在单调递减区间,则当x ∈(a ,b )时,f ′(x )<0有解.自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.(√)(2)在(a ,b )内f ′(x )≤0且f ′(x )=0的根有有限个,则f (x )在(a ,b )内单调递减.(√)(3)若函数f (x )在定义域上都有f ′(x )>0,则f (x )在定义域上一定单调递增.(×)(4)函数f (x )=x -sin x 在R 上是增函数.(√)2.(多选)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下列判断正确的是()A .在区间(-2,1)上f (x )单调递增B .在区间(2,3)上f (x )单调递减C .在区间(4,5)上f (x )单调递增D .在区间(3,5)上f (x )单调递减答案BC解析在区间(-2,1)上,当x ∈-2,-32f ′(x )<0,当x ∈-32,1f ′(x )>0,故f (x )在区间-2,-32在区间-32,1A 错误;在区间(3,5)上,当x ∈(3,4)时,f ′(x )<0,当x ∈(4,5)时,f ′(x )>0,故f (x )在区间(3,4)上单调递减,在区间(4,5)上单调递增,C 正确,D 错误;在区间(2,3)上,f ′(x )<0,所以f (x )单调递减,B 正确.3.已知f (x )=x 3+x 2-x 的单调递增区间为________.答案(-∞,-1),13,+∞解析令f ′(x )=3x 2+2x -1>0,解得x >13或x <-1,所以f (x )=x 3+x 2-x 的单调递增区间为(-∞,-1)13,+∞4.已知f (x )=2x 2-ax +ln x 在区间(1,+∞)上单调递增,则实数a 的取值范围是________.答案(-∞,5]解析f ′(x )=4x -a +1x =4x 2-ax +1x,x ∈(1,+∞),故只需4x 2-ax +1≥0在x ∈(1,+∞)上恒成立,则a ≤4x +1x 在x ∈(1,+∞)上恒成立,令y =4x +1x,因为y ′=4-1x 2=4x 2-1x 2>0在x ∈(1,+∞)上恒成立,所以y =4x +1x 在(1,+∞)上单调递增,故4x +1x>5,所以a ≤5.题型一不含参函数的单调性例1(1)函数f(x)=x ln x-3x+2的单调递减区间为________.答案(0,e2)解析f(x)的定义域为(0,+∞),f′(x)=ln x-2,当x∈(0,e2)时,f′(x)<0,当x∈(e2,+∞)时,f′(x)>0,∴f(x)的单调递减区间为(0,e2).(2)若函数f(x)=ln x+1e x,则函数f(x)的单调递增区间为________.答案(0,1)解析f(x)的定义域为(0,+∞),f′(x)=1x-ln x-1e x,令φ(x)=1x-ln x-1(x>0),φ′(x)=-1x2-1x<0,φ(x)在(0,+∞)上单调递减,且φ(1)=0,∴当x∈(0,1)时,φ(x)>0,即f′(x)>0,当x∈(1,+∞)时,φ(x)<0,即f′(x)<0,∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.∴函数f(x)的单调递增区间为(0,1).思维升华确定不含参数的函数的单调性,按照判断函数单调性的步骤即可,但应注意两点,一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.跟踪训练1已知函数f(x)=x sin x+cos x,x∈[0,2π],则f(x)的单调递减区间为()A.0,π2 B.π2,3π2C.(π,2π) D.3π2,2π答案B解析由题意f(x)=x sin x+cos x,x∈[0,2π],则f ′(x )=x cos x ,当x f ′(x )>0,当x f ′(x )<0,故f (x )题型二含参数的函数的单调性例2已知函数g (x )=(x -a -1)e x -(x -a )2,讨论函数g (x )的单调性.解g (x )的定义域为R ,g ′(x )=(x -a )e x -2(x -a )=(x -a )(e x -2),令g ′(x )=0,得x =a 或x =ln 2,①若a >ln 2,则当x ∈(-∞,ln 2)∪(a ,+∞)时,g ′(x )>0,当x ∈(ln 2,a )时,g ′(x )<0,∴g (x )在(-∞,ln 2),(a ,+∞)上单调递增,在(ln 2,a )上单调递减;②若a =ln 2,则g ′(x )≥0恒成立,∴g (x )在R 上单调递增;③若a <ln 2,则当x ∈(-∞,a )∪(ln 2,+∞)时,g ′(x )>0,当x ∈(a ,ln 2)时,g ′(x )<0,∴g (x )在(-∞,a ),(ln 2,+∞)上单调递增,在(a ,ln 2)上单调递减.综上,当a >ln 2时,g (x )在(-∞,ln 2),(a ,+∞)上单调递增,在(ln 2,a )上单调递减;当a =ln 2时,g (x )在R 上单调递增;当a <ln 2时,g (x )在(-∞,a ),(ln 2,+∞)上单调递增,在(a ,ln 2)上单调递减.思维升华(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点.跟踪训练2(2023·北京模拟)已知函数f (x )=2x -a(x +1)2.(1)当a =0时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )的单调区间.解(1)当a =0时,f (x )=2x(x +1)2(x ≠-1),则f (0)=0,因为f ′(x )=-2x +2(x +1)3,所以f ′(0)=2.所以曲线y =f (x )在(0,0)处的切线方程为y =2x .(2)函数的定义域为(-∞,-1)∪(-1,+∞).f ′(x )=(-2x +2a +2)(x +1)(x +1)4=-2(x -a -1)(x +1)3,令f ′(x )=0,解得x =a +1.①当a +1=-1,即a =-2时,f ′(x )=-2x -2(x +1)3=-2(x +1)(x +1)3=-2(x +1)2<0,所以函数f (x )的单调递减区间为(-∞,-1)和(-1,+∞),无单调递增区间;②当a +1<-1,即a <-2时,令f ′(x )<0,则x ∈(-∞,a +1)∪(-1,+∞),令f ′(x )>0,则x ∈(a +1,-1),函数f (x )的单调递减区间为(-∞,a +1)和(-1,+∞),单调递增区间为(a +1,-1);③当a +1>-1,即a >-2时,令f ′(x )<0,则x ∈(-∞,-1)∪(a +1,+∞),令f ′(x )>0,则x ∈(-1,a +1),函数f (x )的单调递减区间为(-∞,-1)和(a +1,+∞),单调递增区间为(-1,a +1).综上所述,当a =-2时,函数f (x )的单调递减区间为(-∞,-1)和(-1,+∞),无单调递增区间;当a <-2时,函数f (x )的单调递减区间为(-∞,a +1)和(-1,+∞),单调递增区间为(a +1,-1);当a >-2时,函数f (x )的单调递减区间为(-∞,-1)和(a +1,+∞),单调递增区间为(-1,a +1).题型三函数单调性的应用命题点1比较大小或解不等式例3(1)(多选)(2024·深圳模拟)若0<x 1<x 2<1,则()A .21e e xx->ln x 2+1x 1+1B .21e e xx-<ln x 2+1x 1+1C .1221e e x x x x >D .1221e e x x x x <答案AC解析令f (x )=e x -ln(x +1)且x ∈(0,1),则f ′(x )=e x -1x +1>0,故f (x )在区间(0,1)上单调递增,因为0<x 1<x 2<1,所以f (x 1)<f (x 2),即1e x-ln(x 1+1)<2e x-ln(x 2+1),故21e e x x ->lnx 2+1x 1+1,所以A 正确,B 错误;令f (x )=e xx 且x ∈(0,1),则f ′(x )=e x (x -1)x 2<0,故f (x )在区间(0,1)上单调递减,因为0<x 1<x 2<1,所以f (x 1)>f (x 2),即1212e e >x x x x ,故1221e e x x x x >,所以C 正确,D错误.常见组合函数的图象在导数的应用中常用到以下函数,记住以下的函数图象对解题有事半功倍的效果.典例(多选)如果函数f (x )对定义域内的任意两实数x 1,x 2(x 1≠x 2)都有x 1f (x 1)-x 2f (x 2)x 1-x 2>0,则称函数y =f (x )为“F 函数”.下列函数不是“F 函数”的是()A .f (x )=e xB .f (x )=x 2C .f (x )=ln xD .f (x )=sin x答案ACD解析依题意,函数g (x )=xf (x )为定义域上的增函数.对于A ,g (x )=x e x ,g ′(x )=(x +1)e x ,当x ∈(-∞,-1)时,g ′(x )<0,∴g (x )在(-∞,-1)上单调递减,故A 中函数不是“F 函数”;对于B ,g (x )=x 3在R 上为增函数,故B 中函数为“F 函数”;对于C ,g (x )=x ln x ,g ′(x )=1+ln x ,x >0,当x g ′(x )<0,∴g (x )故C 中函数不是“F 函数”;对于D ,g (x )=x sin x ,g ′(x )=sin x +x cos x ,当x -π2,g ′(x )<0,∴g (x )-π2,故D 中函数不是“F 函数”.(2)(2023·成都模拟)已知函数f (x )=e x -e -x-2x +1,则不等式f (2x -3)+f (x )>2的解集为________.答案(1,+∞)解析令g (x )=f (x )-1=e x -e -x -2x ,定义域为R ,且g (-x )=e -x -e x +2x =-g (x ),所以g (x )=f (x )-1=e x -e -x -2x 为奇函数,f (2x -3)+f (x )>2变形为f (2x -3)-1>1-f (x ),即g (2x -3)>-g (x )=g (-x ),g ′(x )=e x +e -x -2≥2e x ·e -x -2=0,当且仅当e x =e -x ,即x =0时,等号成立,所以g (x )=f (x )-1=e x -e -x -2x 在R 上单调递增,所以2x -3>-x ,解得x >1,所以所求不等式的解集为(1,+∞).命题点2根据函数的单调性求参数例4已知函数f (x )=ln x -12ax 2-2x (a ≠0).(1)若f (x )在[1,4]上单调递减,求实数a 的取值范围;(2)若f (x )在[1,4]上存在单调递减区间,求实数a 的取值范围.解(1)因为f (x )在[1,4]上单调递减,所以当x ∈[1,4]时,f ′(x )=1x -ax -2≤0恒成立,即a ≥1x2-2x 恒成立.设G (x )=1x 2-2x ,x ∈[1,4],所以a ≥G (x )max ,而G (x )-1,因为x ∈[1,4],所以1x ∈14,1,所以G (x )max =-716(此时x =4),所以a ≥-716,又因为a ≠0,所以实数a 的取值范围是-716,(0,+∞).(2)因为f (x )在[1,4]上存在单调递减区间,则f ′(x )<0在[1,4]上有解,所以当x ∈[1,4]时,a >1x 2-2x 有解,又当x ∈[1,4]=-1(此时x =1),所以a >-1,又因为a ≠0,所以实数a 的取值范围是(-1,0)∪(0,+∞).思维升华由函数的单调性求参数的取值范围的方法(1)函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立.(2)函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集.跟踪训练3(1)(2024·郑州模拟)函数f (x )的图象如图所示,设f (x )的导函数为f ′(x ),则f (x )·f ′(x )>0的解集为()A .(1,6)B .(1,4)C .(-∞,1)∪(6,+∞)D .(1,4)∪(6,+∞)答案D解析由图象可得,当x <4时,f ′(x )>0,当x >4时,f ′(x )<0.结合图象可得,当1<x <4时,f ′(x )>0,f (x )>0,即f (x )·f ′(x )>0;当x >6时,f ′(x )<0,f (x )<0,即f (x )·f ′(x )>0,所以f (x )·f ′(x )>0的解集为(1,4)∪(6,+∞).(2)已知函数f (x )=(1-x )ln x +ax 在(1,+∞)上不单调,则a 的取值范围是()A .(0,+∞)B .(1,+∞)C .[0,+∞)D .[1,+∞)答案A解析依题意f ′(x )=-ln x +1x+a -1,故f ′(x )在(1,+∞)上有零点,令g (x )=-ln x +1x +a -1,令g (x )=0,得a =ln x -1x +1,令z (x )=ln x -1x +1,则z ′(x )=1x +1x2,由x >1,得z ′(x )>0,z (x )在(1,+∞)上单调递增,又由z(1)=0,得z(x)>0,故a=z(x)>0,所以a的取值范围是(0,+∞).课时精练一、单项选择题1.函数f(x)=(x-3)e x的单调递减区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)答案A解析由已知得,f′(x)=e x+(x-3)e x=(x-2)e x,当x<2时,f′(x)<0,当x>2时,f′(x)>0,所以f(x)的单调递减区间是(-∞,2),单调递增区间是(2,+∞).2.已知f′(x)是函数y=f(x)的导函数,且y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()答案D解析根据导函数的图象可得,当x<0时,f′(x)<0,f(x)在(-∞,0)上单调递减;当0<x<2时,f′(x)>0,f(x)在(0,2)上单调递增;当x>2时,f′(x)<0,f(x)在(2,+∞)上单调递减,所以只有D选项符合.3.(2023·重庆模拟)已知函数f(x)=13ax3+x2+x+4,则“a≥0”是“f(x)在R上单调递增”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案C解析由题意知,f′(x)=ax2+2x+1,若f(x)在R上单调递增,则f′(x)≥0恒成立,>0,=4-4a≤0,解得a≥1,故“a≥0”是“f(x)在R上单调递增”的必要不充分条件.4.(2023·新高考全国Ⅱ)已知函数f(x)=a e x-ln x在区间(1,2)上单调递增,则a的最小值为()A.e2B.e C.e-1D.e-2答案C解析依题可知,f′(x)=a e x-1x≥0在(1,2)上恒成立,显然a>0,所以x e x≥1a在(1,2)上恒成立,设g(x)=x e x,x∈(1,2),所以g′(x)=(x+1)e x>0,所以g(x)在(1,2)上单调递增,g(x)>g(1)=e,故e≥1a,即a≥1e=e-1,即a的最小值为e-1.5.(2024·苏州模拟)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=e x+sin x,则不等式f(2x-1)<eπ的解集是()答案D解析当x≥0时,f′(x)=e x+cos x,因为e x≥1,cos x∈[-1,1],所以f′(x)=e x+cos x≥0在[0,+∞)上恒成立,所以f(x)在[0,+∞)上单调递增,又因为f(x)是定义在R上的偶函数,所以f(x)在(-∞,0]上单调递减,所以f(-π)=f(π)=eπ,所以由f(2x-1)<eπ可得-π<2x-1<π,解得x6.(2023·信阳模拟)已知a=1100,b=99100e-,c=ln101100,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a 答案B解析设函数f(x)=e x-x-1,x∈R,则f′(x)=e x-1,当x<0时,f′(x)<0,f(x)在(-∞,0)上单调递减;当x>0时,f′(x)>0,f(x)在(0,+∞)上单调递增,故f(x)≥f(0)=0,即e x≥1+x,当且仅当x=0时取等号,∵e x≥1+x,∴99100e->1-99100=1100,∴b>a,由以上分析可知当x>0时,有e x-1≥x成立,当x=1时取等号,即ln x≤x-1,当且仅当x=1时取等号,∴ln 101100<101100-1=1100,∴a>c,故b>a>c.二、多项选择题7.(2023·临汾模拟)若函数f (x )=12x 2-9ln x 在区间[m -1,m +1]上单调,则实数m 的值可以是()A .1B .2C .3D .4答案BD解析f ′(x )=x -9x =x 2-9x (x >0),令f ′(x )>0,得x >3,令f ′(x )<0,得0<x <3,所以函数f (x )的单调递增区间为(3,+∞),单调递减区间为(0,3),因为函数f (x )在区间[m -1,m +1]上单调,-1>0,+1≤3或m -1≥3,解得1<m ≤2或m ≥4.8.(2024·邯郸模拟)已知函数f (x )x ,且a =f b =f c =12(e )f ,则()A .a >bB .b >aC .c >bD .c >a答案ACD解析由f (x )x ,得f ′(x )x 当x ∈(0,1)时,f ′(x )<0,f (x )单调递减,因为c =f 0<1e <23<45<1,所以f f f c >a >b .三、填空题9.函数f (x )=e -x cos x (x ∈(0,π))的单调递增区间为________.答案解析f ′(x )=-e -x cos x -e -x sin x =-e -x (cos x +sin x )=-2e -x当x e -x >0,,则f ′(x )<0;当x e -x >0,,则f ′(x )>0,∴f (x )在(0,π)10.若函数f (x )=x 3+bx 2+x 恰有三个单调区间,则实数b 的取值范围为________.答案(-∞,-3)∪(3,+∞)解析由题意得f ′(x )=3x 2+2bx +1,函数f (x )=x 3+bx 2+x 恰有三个单调区间,则函数f (x )=x 3+bx 2+x 有两个极值点,即f ′(x )=3x 2+2bx +1的图象与x 轴有两个交点,则判别式Δ=4b 2-12>0,解得b >3或b <- 3.所以实数b 的取值范围为(-∞,-3)∪(3,+∞).11.(2024·上海模拟)已知定义在(-3,3)上的奇函数y =f (x )的导函数是f ′(x ),当x ≥0时,y =f (x )的图象如图所示,则关于x 的不等式f ′(x )x>0的解集为________.答案(-3,-1)∪(0,1)解析依题意f (x )是奇函数,图象关于原点对称,由图象可知,f (x )在区间(-3,-1),(1,3)上单调递减,f ′(x )<0;f (x )在区间(-1,1)上单调递增,f ′(x )>0.所以f ′(x )x>0的解集为(-3,-1)∪(0,1).12.已知函数f (x )=3x a-2x 2+ln x (a >0),若函数f (x )在[1,2]上不单调,则实数a 的取值范围是________.答案解析f ′(x )=3a -4x +1x,若函数f (x )在[1,2]上单调,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x≤0在[1,2]上恒成立,即3a ≥4x -1x 或3a ≤4x -1x在[1,2]上恒成立.令h (x )=4x -1x,则h (x )在[1,2]上单调递增,所以3a ≥h (2)或3a≤h (1),即3a ≥152或3a≤3,又a >0,所以0<a ≤25或a ≥1.因为f (x )在[1,2]上不单调,所以25<a <1.四、解答题13.(2024·毕节模拟)已知函数f (x )=(a -x )ln x .(1)求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )在(0,+∞)上单调递减,求实数a 的取值范围.解(1)根据题意,函数f (x )的定义域为(0,+∞),f (1)=0,f ′(x )=-ln x +a -x x,∴f ′(1)=a -1,∴曲线f (x )在点(1,f (1))处的切线方程为y =(a -1)(x -1).(2)f (x )的定义域为(0,+∞),f ′(x )=-ln x +a -x x =-x ln x -x +a x,令g (x )=-x ln x -x +a ,则g ′(x )=-ln x -2,令g ′(x )=0,则x =1e2,令g ′(x )>0,则0<x <1e2,令g ′(x )<0,则x >1e2,∴g (x )g (x )max ==1e 2+a ,∵f (x )在(0,+∞)上单调递减,∴f ′(x )≤0在(0,+∞)上恒成立,即1e2+a ≤0,∴a ≤-1e2.14.(2023·郑州模拟)已知函数f (x )=ln x +1.(1)若f (x )≤x +c ,求c 的取值范围;(2)设a >0,讨论函数g (x )=f (x )-f (a )x -a的单调性.解(1)f (x )≤x +c 等价于ln x -x ≤c -1.令h (x )=ln x -x ,x >0,则h ′(x )=1x -1=1-x x.当0<x <1时,h ′(x )>0,所以h (x )在(0,1)上单调递增;当x >1时,h ′(x )<0,所以h (x )在(1,+∞)上单调递减.故h (x )max =h (1)=-1,所以c -1≥-1,即c ≥0,所以c 的取值范围是[0,+∞).(2)g (x )=ln x +1-(ln a +1)x -a =ln x -ln a x -a(x >0且x ≠a ),因此g ′(x )=x -a -x ln x +x ln a x (x -a )2,令m (x )=x -a -x ln x +x ln a ,则m ′(x )=ln a -ln x ,当x >a 时,ln x >ln a ,所以m ′(x )<0,m (x )在(a ,+∞)上单调递减,当0<x <a 时,ln x <ln a ,所以m ′(x )>0,m (x )在(0,a )上单调递增,因此有m (x )<m (a )=0,即g ′(x )<0在x >0且x ≠a 上恒成立,所以函数g (x )在区间(0,a )和(a ,+∞)上单调递减.15.已知函数f (x )=e x x -ax ,当0<x 1<x 2时,不等式f (x 1)x 2-f (x 2)x 1<0恒成立,则实数a 的取值范围为()A .(-∞,e)B .(-∞,e]-∞,e 2答案D解析因为当0<x 1<x 2时,不等式f (x 1)x 2-f (x 2)x 1<0恒成立,所以f (x 1)x 2<f (x 2)x 1,即x 1f (x 1)<x 2f (x 2),令g (x )=xf (x )=e x -ax 2,则g (x 1)<g (x 2),又因为0<x 1<x 2,所以g (x )在(0,+∞)上单调递增,所以g ′(x )=e x -2ax ≥0在(0,+∞)上恒成立,分离参数得2a ≤e x x恒成立,令h (x )=e x x(x >0),则只需2a ≤h (x )min ,而h ′(x )=e x ·x -1x2,令h ′(x )>0,得x >1,令h ′(x )<0,得0<x <1,所以h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以h (x )≥h (1)=e ,故2a ≤e ,即a ≤e 2.16.已知偶函数f (x )在R 上存在导函数f ′(x ),当x >0时,f (x )x>-f ′(x ),且f (2)=1,则不等式(x 2-x )f (x 2-x )>2的解集为()A .(-∞,-2)∪(1,+∞)B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .(-1,2)答案C 解析令g (x )=xf (x ),由于f (x )为偶函数,则g (x )为奇函数,所以g ′(x )=f (x )+xf ′(x ).因为当x >0时,f (x )x >-f ′(x ),即f (x )+xf ′(x )x>0,所以f(x)+xf′(x)>0,即g′(x)>0.所以当x>0时,g(x)在(0,+∞)上单调递增.因为g(x)在R上为奇函数且在R上存在导函数,所以g(x)在R上为增函数.因为f(2)=1,所以g(2)=2f(2)=2,又(x2-x)f(x2-x)>2等价于g(x2-x)>g(2),所以x2-x>2,解得x<-1或x>2.综上所述,x的取值范围为(-∞,-1)∪(2,+∞).。

(北师大版理)2019届高考数学复习课件:导数的概念及运算

(北师大版理)2019届高考数学复习课件:导数的概念及运算

1
2
3
4
5
6
7
解析
答案
题型分类
深度剖析
题型一
导数的计算
自主演练
1.f(x)=x(2 018+ln x),若f′(x0)=2 019,则x0等于 A.e2

B.1
C.ln 2
D.e
1 =2 019+ln x, x 故由f′(x0)=2 019,得2 019+ln x0=2 019,
解析 f′(x)=2 018+ln x+x× 则ln x0=0,解得x0=1.
基础自测
题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.( × ) (2)f′(x0)与[f(x0)]′表示的意义相同.( × ) (3)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (4)函数f(x)=sin(-x)的导数是f′(x)=cos x.( × )
1
2
3
4
5
6
7
解析
答案
题组三 易错自纠
4.如图所示为函数y=f(x),y=g(x)的导函数的图像,
那么y=f(x),y=g(x)的图像可能是

1 2 3 4 5 6 7
解析
答案
3 5.有一机器人的运动方程为 s=t + (t 是时间,s 是位移),则该机器人在 t
2
时刻 t=2 时的瞬时速度为 19 A. 4 17 B. 4 15 C. 4 13 D. √4
fx (3)[ ]′= gx
f′xgx-fxg′x g2x (g(x)≠0).
5.复合函数的导数 一般地,对于两个函数y=f(u)和u=φ(x)=ax+b,给定x的一个值,就得 到了u的值,进而确定了y的值,这样y可以表示成x的函数,我们称这个 函数为函数y=f(u)和u=φ(x)的复合函数,记作y=f(φ(x)).其中u为中间变 量.复合函数y=f(φ(x))的导数为 yx′=[f(φ(x))]′=f′(u)φ′(x) .

高三数学一轮总复习 32导数的应用课件 北师大版

高三数学一轮总复习 32导数的应用课件 北师大版

函数f(x)为R上的奇函数,当x>0时,f(x)=xlnx.
(1)求函数f(x)的解析式; (2)当x≠0时,求函数f(x)的极值. [分析] (1)令x<0知-x>0,代入可求.
(2)求x>0的极值,由奇函数性质便可求得x<0的极值.
[解析]
(1)设x<0,则-x>0,
则f(-x)=-xln(-x),又因为f(x)为奇函数, 所以得到f(x)=xln(-x), 又当x=0时,f(x)=0, xlnx,x>0 则f(x)=0,x=0 xln-x,x<0
2.函数的极值 (1)判断f(x0)是极值的方法 一般地,当函数f(x)在点x0处连续时, ①如果在x0附近的左侧 f′(x)>0 ,右侧 f′(x)<0 f(x0)是极大值; ②如果在x0附近的左侧 f′(x)<0 ,右侧 f′(x)>0 f(x0)是极小值. ,那么 ,那么
(2)求可导函数极值的步骤 ①求f′(x); ②求方程 f′(x)=0 的根; 的根左右两侧值的符号.如
f′(x)=ex-1+xex-x=(ex-1)(x+1). 当x∈(-∞,-1)时,f′(x)>0; 当x∈(-1,0)时,f′(x)<0; 当x∈(0,+∞)时,f′(x)>0. 所以f(x)在(-∞,-1)和(0,+∞)上单调递增,在(-1, 0)上单调递减. 故f(x)的单调递增区间为(-∞,-1),(0,+∞),单调 递减区间为(-1,0).
又f(1)=-1, ∴a+b+c=-1③ 1 3 由①②③解得a=2,b=0,c=-2. 1 3 3 (2)由(1)知f(x)= x - x, 2 2 3 2 3 3 ∴f′(x)=2x -2=2(x-1)(x+1), 当x>1或x<-1时,f′(x)>0,

【北师大版】高三数学一轮复习:3-3导数的综合应用

【北师大版】高三数学一轮复习:3-3导数的综合应用

第三章 第三节
系列丛书
解析:f′(x)=e-x-x·e-x=e-x(1-x), 令f′(x)=0,∴x=1. 又f(0)=0,f(4)=e44,f(1)=e-1=1e, ∴f(1)为最大值.
答案:B
高三总复习 ·北师大版 ·数学(理)
进入导航
第三章 第三节
系列丛书
4.已知某生产厂家的年利润y(单位:万元)与年产量
x(单位:万件)的函数关系式为y=-
1 3
x3+81x-234,则使
该生产厂家获取最大年利润的年产量为( )
A.13万件
B.11万件
C.9万件
D.7万件
高三总复习 ·北师大版 ·数学(理)
进入导航
第三章 第三节
系列丛书
解析:y′=-x2+81,令y′=0解得x=9(-9舍去). 当0<x<9时,y′>0; 当x>9时,y′<0,则当x=9时,y取得最大值.
进入导航
第三章 第三节
系列丛书
自主回顾·打基础 突破考点·速通关
解题技巧·提素能 课时作业
高三总复习 ·北师大版 ·数学(理)
进入导航
第三章 第三节
系列丛书
自主回顾·打基础01
夯实基础·厚积薄发
高三总复习 ·北师大版 ·数学(理)
进入导航
第三章 第三节
系列丛书
1.生活中的优化问题 生活中常遇到求利润最大,用料最省、效率最高等一 些实际问题,这些问题通常称为优化问题.
高三总复习 ·北师大版 ·数学(理)
进入导航
第三章 第三节
系列丛书
2.利用导数解决生活中的优化问题的一般步骤
高三总复习 ·北师大版 ·数学(理)

北师大版高中数学导数及其应用高三总复习课件

北师大版高中数学导数及其应用高三总复习课件
答案:B
12x-1,x≥0,
5. (教材改编题)设函数 f(x)=
1x,x<0
值范围是________.
若 f(a)>a,则实数 a 的取
解析: 当 a≥0 时,由 f(a)=12a-1>a,得 a<-2,矛盾; 当 a<0 时,由 f(a)=1a>a,得 a<-1,满足题意.
答案:(-∞,-1)
lg
x,求
f(x);
(3)已 知 f(x)是 一 次 函 数 ,且 满 足 3f(x+ 1)- 2f(x- 1)= 2x+ 17,求 f(x);
(4)已 知
f(x)满 足
2f
(x
)

f
1 x

3x


f(x).

(
1
)

f
x

1 x

x
3

1 x3

x

1 x
3 案:D
考点升华
构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义 域和对应关系确定的,所以,如果两个函数的定义域和对应关系完全 一致,即称这两个函数为同一函数.
考点二 求函数的解析式
【例 2】
(1)已 知
f
x

1 x

x
3

1 x3


f(x);
(2)已 知
f
2 x

1

∴a=2,b=7,∴ f(x)=2x+7.
(
4
)
2
f(
x
)

f
1 x

高考数学一轮复习 第二章 函数、导数及其应用 2.4 指数函数课件(理)

高考数学一轮复习 第二章 函数、导数及其应用 2.4 指数函数课件(理)
第四节 指数函数
【知识梳理】 1.根式 (1)根式的概念 ①若____,则x叫做a的n次方根,其中n>1且n∈N*.式子
叫x做n=a根式,这里n叫做根指数,a叫做被开方数.
na
②a的n次方根的表示:
xn=a⇒x=
(当n为奇数且n∈N*时), na ____(当n为偶数且n∈N*时). na
(2)根式的性质
【小题快练】
链接教材 练一练 1.(必修1P56例6改编)若函数f(x)=ax(a>0,且a≠1)的 图象经过点A( ),则f(-1)=________.
2 ,1 3
【解析】依题意可知a2=1 ,解得a= 3 ,
3
3
所以f(x)=( 3)x,所以f(-1)=( )-1=3
答案:
3
3
3.
3
2.(必修1P60B组T1改编)若函数y=(a2-1)x在R上为增函 数,则实数a的取值范围是________. 【解析】由y=(a2-1)x在(-∞,+∞)上为增函数,得a21>1,解得a> 或a<- . 答案:a> 或2a<- 2
2
2
感悟考题 试一试
3.(2016·泉州模拟)函数f(x)=ax-1(a>0,a≠1)的图象
恒过点A,下列函数中图象不经过点A的是 ( )
A.y=
B.y=|x-2|
C.y=2x1-1x
D.y=log2(2x)
【解析】选A.由f(x)=ax-1(a>0,a≠1)的图象恒过点
(1,1),又0= ,知(1,1)不在y= 的图象上.
1
【规范解答】(1)
4 16x8y4 2x2y
(16x8y4)4 2x2y

高考数学总复习§导数的应用精品课件理北师大版

高考数学总复习§导数的应用精品课件理北师大版

例4
(1)试写出y关于x的函数关系式; (2)当m=640米时,需新建多少个桥墩才能使y 最小? 【思路点拨】 对(1),先设辅助未知数,再确 定函数关系;对(2),利用导数求出最优解.
【误区警示】 本题作为一道中档题,在求解中容 易出现如下问题:(1)没有理解问题中各个量之间的 正确关系,而导致函数关系式出错;(2)由于本题导 函数较为复杂,求解函数的导函数时容易出错;(3) 求解应用题没有总结.
①当a>0时,f(x),f′(x)随x的变化情况如下 表:
由此表可知f(x)在点x1,x2处分别取得极大值 和极小值.
②当a<0时,f(x),f′(x)随x的变化情况如下 表:
由此表可知f(x)在点x1,x2处分别取得极大值 和极小值. 综上所述,当a,b满足b2>a时,f(x)能取得 极值.
利用导数求函数的最值
求f(x)在[a,b]上的最大值和最小值的步骤: (1)求函数y=f(x)在(a,b)内的极值. (2)将函数y=f(x)的各极值与端点处的函数值 f(a)、f(b)比较,其中最大的一个是最大值,最 小的一个是最小值.
例2 (2010年高考重庆卷)已知函数f(x)=ax3+x2 +bx(其中常数a,b∈R),g(x)=f(x)+f′(x)是 奇函数.
2.函数的极值
(1)设函数f(x)在点x0及其附近有定义,如果对 x0附近的所有点,都有f(x)<f(x0),我们说f(x0) 是 函 数 f(x) 的 一 个 __极__大__值___ , 记 作 _y_极_大_值__=_f_(_x_0)____;如果对x0附近的所有点, 都 有 f(x)>f(x0) , 就 说 f(x0) 是 f(x)极的小一值个 _________y,极小记值作=_f(_x_0)_._____________ 极 大 值与极小极值统.称为__________

北师版高考总复习一轮文科数学精品课件 第3章 导数及其应用 指点迷津(三) 在导数应用中如何构造函数

北师版高考总复习一轮文科数学精品课件 第3章 导数及其应用 指点迷津(三) 在导数应用中如何构造函数
构造
()
g(x)= ;
e
(4)对于f(x)满足x2f'(x)>1,构造函数F(x)=f(x)+
1
.

对点训练1(1)已知函数f(x)的导函数为f'(x),且f'(x)<f(x)对任意的x∈R恒成
立,则(
)
A.f(1)<ef(0),f(2 020)>e2 020f(0)
B.f(1)>ef(0),f(2 020)>e2 020f(0)
f(x)=x-2ex 上和直线 g(x)=2-x 平行的切线方程,由 f'(x)=1-2ex=-1,得 x=0,所以
切点坐标为(0,-2),所以(a-c)2+(b-d)2 的最小值为
|0-2-2|
1+1
2
=8.
规律方法 解题中若遇到比较大小及有关不等式、方程及最值之类的问题,
设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最
3
1
2
,即
x=
,y=
时,等号成立,因为不等式
+
≥m
对任意的正实数

4
2


x,y 恒成立,所以
8
m≤ ,所以实数
3
m
8
的最大值为 .
3
b

,e e 这三个数先取自然对数再除以
a
(2)对 a ,b
ln

=

ln ln e e

,

1
e
= =
=
ln

=
ln ln
,


=

高考数学一轮复习讲义 第20课时 导数的应用 理

高考数学一轮复习讲义 第20课时 导数的应用 理

课题:导数的应用考纲要求:1.理解可导函数的单调性与其导数的关系;2.了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);3.会求一些实际问题(一般指单峰函数)的最大值和最小值. 教材复习1.利用导数研究多项式函数单调性的一般步骤:()1求()f x ';()2确定()f x '在(),a b 内符号;()3若()0f x '>在(),a b 上恒成立,则()f x 在(),a b 上是增函数;若()0f x '<在(),a b 上恒成立,则()f x 在(),a b 上是减函数①()0f x '>⇒()f x 为增函数(()0f x '<⇒()f x 为减函数). ②()f x 在区间(),a b 上是增函数⇒()f x '≥0在(),a b 上恒成立; ()f x 在区间(),a b 上为减函数⇒()f x '≤0在(),a b 上恒成立.2.极大值: 一般地,设函数()f x 在点0x 附近有定义,如果对0x 附近的所有的点,都有0()()f x f x <,就说0()f x 是函数()f x 的一个极大值,记作y 极大值0()f x =,0x 是极大值点.3.极小值:一般地,设函数()f x 在0x 附近有定义,如果对0x 附近的所有的点,都有0()()f x f x >就说0()f x 是函数()f x 的一个极小值,记作y 极小值0()f x =,0x 是极小值点.4.极大值与极小值统称为极值在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点: (1)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (2)函数的极值不是唯一的即一个函数在某区间上或定义域内极xs 大值或极小值可以不止一个.(3即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f .(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点得最大值、最小值的点可能在区间的内部,也可能在区间的端点. 5.求可导函数()f x 的极值的步骤:()1确定函数的定义区间,求导数)(x f ';()2求方程()0f x '=的根;()3用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查)(x f '在方程根左右的值的符号,如果“左正右负”,那么()f x 在这个根处取得极大值;如果“左负右正”,那么()f x 在这个根处取得极小值;如果“左右不改变符号”,那么()f x 在这个根处无极值.6.函数的最大值和最小值: 一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值.说明:()1在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值.如函数xx f 1)(=在),0(+∞内连续,但没有最大值与最小值; ()2函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.()3函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个.7.利用导数求函数的最值步骤:由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下:()1求)(x f 在(,)a b 内的极值;()2将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值题型一 利用导数研究函数的单调性 典例分析:问题1.()1(08届云南平远一中五模)函数)(x f y =在定义域)3,23(-内可导,其图象如图所示,记)(x f y =的导函数为)(x f y '=,则不等式()f x '≤0的解集为.A [)3,2]1,31[ -.B ]38,34[]21,1[ -.C [)2,1]21,23[ -.D ⎪⎭⎫⎢⎣⎡⎥⎦⎤ ⎝⎛--3,38]34,21[1,23 ()2(06江西)对于R 上可导的任意函数()f x ,若满足()1()x f x -'≥0,则必有.A (0)(2)f f +()21f < .B (0)(2)f f +≤()21f .C (0)(2)f f +≥()21f .D (0)(2)f f +()21f >()3(2012重庆)设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图像如图所示,则下列结论中一定成立的是.A 函数()f x 有极大值(2)f 和极小值(1)f .B 函数()f x 有极大值(2)f -和极小值(1)f.C 函数()f x 有极大值(2)f 和极小值(2)f - .D 函数()f x 有极大值(2)f -和极小值(2)f()4设函数()f x ,()g x 在[],a b 上均可导,且()()f x g x '>',则当a x b <<时,有.A ()()f x g x > .B ()()f x g x <.C ()()()()f x g a g x f a +>+ .D ()()()()f x g b g x f b +>+()5(05大连一模)设(),()f x g x 均是定义在R 上的奇函数,当0x <时,()()f x g x '+()()0f x g x '>,且(2)0f -=,则不等式()()0f x g x ⋅<的解集是 .A ()()2,02,-+∞ .B ()2,2- .C ()(),22,-∞-+∞ .D ()(),20,2-∞-()6(2013大纲)若函数()21=f x x ax x ++在1,+2⎛⎫∞⎪⎝⎭是增函数,则a 的取值范围是 .A [-1,0] .B [1,)-+∞ .C [0,3] .D [3,)+∞()7(09浙江文)已知函数()()32()12f x x a x a a x b =+--++ (),a b R ∈. ()1若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值;()2若函数()f x 在区间()1,1-上不单调...,求a 的取值范围.题型二 利用导数研究函数的极值和最值问题2.()1(2013湖北文)已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是 .A (),0-∞ .B 10,2⎛⎫ ⎪⎝⎭.C ()0,1 .D ()0,+∞()2(2013浙江)已知e 为自然对数的底数,设函数)2,1()1)(1()(=--=k x e x f k x ,则.A 当1=k 时,)(x f 在1=x 处取得极小值 .B 当1=k 时,)(x f 在1=x 处取得极大值 .C 当2=k 时,)(x f 在1=x 处取得极小值 .D 当2=k 时,)(x f 在1=x 处取得极大值()3 (07天津)已知函数2221()1ax a f x x -+=+()x R ∈,其中a R ∈. (Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值.问题3.求函数()21()ln 14f x x x =+-在区间[]0,2 上的最大值和最小值.题型三 导数的综合应用 利用导数证明不等式问题4.已知m R ∈,函数()2()xf x x mx m e =++.()1若函数没有零点,求实数m 的取值范围; ()2当0m =时,求证:()f x ≥23x x +.问题5.(2013北京)设L 为曲线C :ln xy x=在点()1,0处的切线. ()1 求L 的方程;()2 证明:除切点()1,0之外,曲线C 在直线L 的下方.利用导数研究方程的解或函数的零点或图像的交点问题问题6.已知()2()f x axx R =∈,()2ln g x x =在区间e ⎤⎦上有两个不同的交点,求a 的范围.课后练习作业:1.已知函数432()410f x x x x=-+,则方程()0f x=在区间[]1,2上的根有.A3个.B2个.C1个.D0个2.(2013长安一中二模)设直线x t=与函数2()f x x=,()lng x x=的图像分别交于点,M N,则当MN达到最小值时的值为.A1.B12.C2.D2 3.已知函数()y xf x'=的图象如右图所示(其中'()f x是函数()f x的导函数),下面四个图象中()y f x=的图象大致是4.(06天津)函数()f x 的定义域是开区间(),a b导函数()f x '在(),a b 内的图象如图所示,则函数 ()f x 在开区间内有极小值点.A 1个 .B 2个 .C 3个 .D 4个5.(07()f x '顶点坐标为(1,, 那么曲线()y f x =上任一点的切线的倾斜角α的取值范围是.A 2(0,]3π .B 2[0,)[,)23πππ .C 2[0,][,)23πππ .D 2[,]23ππ6.(08届厦门双十中学高三月考)如图,是函数d cx bx x x f +++=23)(的大致图像,则2221x x +等于 .A 98 .B 910 .C 916 .D 9287. 已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围.8.求证:方程1sin 2x x =有且只有一个根.9.已知:1x >,证明不等式:()ln 1x x >+10.(08届高三福建质检)已知函数()2()ln f x x a x x =+--在0x =处取得极值.()1求实数a 的值;()2若关于x 的方程5()2f x x b =-+ 在区间[]0,2上恰有两个不同的实数根,求实数b 的取值范围;()3证明:对任意的正整数n ,不等式211ln n n n n++<都成立.走向高考:1.(2013安徽)函数cos sin y x x x =+的图象大致为2.(2013辽宁)设函数()f x 满足()()22x e x f x xf x x '+=,()228e f =,则0x >时,()f x .A 有极大值,无极小值 .B 有极小值,无极大值.C 既有极大值又有极小值 .D 既无极大值也无极小值3. (05湖北)若02x π<<,则2x 与3sin x 的大小关系.A x x sin 32> .B x x sin 32< .C x x sin 32= .D 与x 的取值有关4.(07陕西)()f x 是定义在(0)+∞,上的非负可导函数,且满足()()xf x f x '+≤0. 对任意正数a b ,,若a b <,则必有.A ()af b ≤()bf a .B ()bf a ≤()af b .C ()af a ≤()f b .D ()bf b ≤()f a145 5. (07江苏)已知二次函数2()f x ax bx c =++的导数为()f x ',(0)0f '>,对于任意实数x ,有()f x ≥0,则(1)(0)f f '的最小值为 .A 3 .B 52 .C 2 .D 326.(2013天津)已知函数2()ln f x x x =.()1 求函数()f x 的单调区间;()2 证明: 对任意的0t > , 存在唯一的s , 使(s)t f =. ()3设()2中所确定的s 关于t 的函数为()s g t =, 证明: 当2t e >时,有2ln ()15ln 2g t t <<.。

高考数学第一轮知识点总复习 第二节 导数的应用(Ⅰ)

高考数学第一轮知识点总复习 第二节  导数的应用(Ⅰ)
分析 函数的增区间是f′(x)≥0恒成立的区间,函数的减区间是 f′(x)≤0恒成立的区间(导数值为零的点为有限个).
解 (1)由已知f′(x)=3 -a,x2 ∵f(x)在(-∞,+∞)上是单调增函数, ∴f′(x)=3 -ax≥2 0在(-∞,+∞)上恒成立, 即a≤3 x在2 x∈R上恒成立. ∵3 x≥2 0,∴只需a≤0. 又a=0时,f′(x)=3 ≥x20,f(x)= -1在x3R上是增函数, ∴a≤0. (2)由f′(x)=3 -ax≤2 0在(-1,1)上恒成立,得a≥3 在x∈x2(-1,1)上恒成立. ∵-1<x<1,∴3 <3,∴只需a≥3. 当a≥3时,f′(x)=x32 -a在x∈(-1,1)上恒有f′(x)<0, 即f(x)在(-1,1)上为x减2 函数,∴a≥3. 故存在实数a≥3,使f(x)在(-1,1)上单调递减.
学后反思 利用导数研究函数的单调性比用函数单调性的定义要方便, 但应注意f′(x)>0 [或f′(x)<0]仅是f(x)在某个区间上为增函数(或减函数)的充分条 件,在(a,b)内可导的函数f(x)在(a,b)上递增(或递减)的充要条件应 是f′(x)≥0[或f′(x)≤0],x∈(a,b)恒成立,且f′(x)在(a,b)的任意子区 间内都不恒等于0.这就是说, 函数f(x)在区间上的增减性并不排斥在区间内个别点处有f′(x0)=0. 因此,在已知函数f(x)是增函数(或减函数)来求参数的取值范围时, 应令f′(x)≥0[或f′(x)≤0]恒成立,解出参数的取值范围(一般可用 不等式恒成立理论求解),然后检验参数的取值能否使f′(x)恒等于0, 若能恒等于0,则参数的这个值应舍去,若f′(x)不恒为0,则由f′(x)≥0 [或f′(x)≤0]恒成立解出的参数的取值范围.

2019高三数学(北师大版理科)一轮:3.1 导数的概念及运算

2019高三数学(北师大版理科)一轮:3.1 导数的概念及运算

则 y'x=y'u·u'x=���1���·2=2���1���-5·2=2���2���-5,即 y'=2���2���-5.
-15-
关闭
答案
考点1 考点2
考点 2 导数几何意义的应用(多考向)
-16-
考向1 过函数图像上一点求切线方程 关闭
(1)∵例f2'(已x)=知3函x2-数8xf+(x5),=∴xf3'-(42x)=2+15.又x-4f.(2)=-2, ∴曲(1线)求在曲点线(2f(,fx()2在))处点的(2,切f(2线))方处程的为切线y+方2=程x-;2,即 x-y-4=0. (2)设(2)曲求线经与过经点过A点(2,-A2()2的,-2曲)的线切f(x线)的相切切线于方点程P.(x0,������03-4������02+5x0-4), ∵f'思(x0考)=求3���曲���02-线8x的0+切5, 线方程要注意什么? ∴切线方程为 y-(-2)=(3������02-8x0+5)(x-2).
(1,1).
关闭
(1,1)
解析 答案
-18-
考点1 考点2
考向3 已知切线方程(或斜率)求参数的值
例 4(2017 河南洛阳模拟)已知曲线 f(x)=������������2++1������在点(1,f(1))处切线的 倾斜角为34π,则实数 a=( )
A.1 B.-1 C.7 D.-7
思考已知切线方程(或斜率)求参数值的关键一步是什么?
曲线y=f(x)在点(0,f(0))处的切线方程是
.
关闭
(∴故曲1)曲答∵(线2线案)f(已yx为=)y知 =f=(eyfx(x=a)·x的 s∈x)i在.n一Rx点,,条f函'((0x切数),0=线)e处f (x的(x的s)i=斜n切exx率++线ec是 ���������o方��� 的s32程,x导则),为f函切'(0y数点)-=0是的1=,1f横(f×0'()(坐x=x)-0,标0且,),为即f'(xy)=是x.奇函.数.若

高考数学北师大理一轮复习 第章 导数及其应用 导数的概念及运算 文档

高考数学北师大理一轮复习 第章 导数及其应用  导数的概念及运算 文档

1.导数与导函数的概念(1)当x 1趋于x 0,即Δx 趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数y =f (x )在x 0点的瞬时变化率.在数学中,称瞬时变化率为函数y =f (x )在x 0点的导数,通常用符号f ′(x 0)表示,记作f ′(x 0)=lim x 1→x 0f (x 1)-f (x 0)x 1-x 0=lim Δx →0f (x 0+Δx )-f (x 0)Δx. (2)如果一个函数f (x )在区间(a ,b )上的每一点x 处都有导数,导数值记为f ′(x ):f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx ,则f ′(x )是关于x 的函数,称f ′(x )为f (x )的导函数,通常也简称为导数.2.导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α为实数)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=e x f ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln_a f (x )=ln xf ′(x )=1xf (x )=log a x (a >0,a ≠1)f ′(x )=1x ln a4.导数的运算法则若f ′(x ),g ′(x )存在,则有 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)[f (x )g (x )]′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.( × ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( × ) (3)曲线的切线不一定与曲线只有一个公共点.( √ ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( × )1.(教材改编)f ′(x )是函数f (x )=13x 3+2x +1的导函数,则f ′(-1)的值为( )A.0B.3C.4D.-73答案 B解析 ∵f (x )=13x 3+2x +1,∴f ′(x )=x 2+2.∴f ′(-1)=3.2.如图所示为函数y =f (x ),y =g (x )的导函数的图像,那么y =f (x ),y =g (x )的图像可能是( )答案 D解析 由y =f ′(x )的图像知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图像知y =f ′(x )与y =g ′(x )的图像在x =x 0处相交,说明y =f (x )与y =g (x )的图像在x =x 0处的切线的斜率相同,故可排除B.故选D.3.设函数f (x )的导数为f ′(x ),且f (x )=f ′(π2)sin x +cos x ,则f ′(π4)=________.答案 - 2解析 因为f (x )=f ′(π2)sin x +cos x ,所以f ′(x )=f ′(π2)cos x -sin x ,所以f ′(π2)=f ′(π2)cos π2-sin π2,即f ′(π2)=-1,所以f (x )=-sin x +cos x .f ′(x )=-cos x -sin x .故f ′(π4)=-cos π4-sin π4=- 2.4.已知函数f (x )=x (x -1)·(x -2)(x -3)(x -4)(x -5),则f ′(0)=________. 答案 -120解析 f ′(x )=(x -1)(x -2)(x -3)(x -4)(x -5)+ x [(x -1)(x -2)(x -3)(x -4)(x -5)]′, ∴f ′(0)=(-1)×(-2)×(-3)×(-4)×(-5) =-120.5.(2015·陕西)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________. 答案 (1,1)解析 y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x(x >0)的导数为y ′=-1x 2 (x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2 (m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).题型一 导数的运算例1 求下列函数的导数: (1)y =(3x 2-4x )(2x +1); (2)y =x 2sin x ; (3)y =3x e x -2x +e ; (4)y =ln xx 2+1;(5)y =ln(2x -5).解 (1)∵y =(3x 2-4x )(2x +1) =6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x , ∴y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (3)y ′=(3x e x )′-(2x )′+e ′ =(3x )′e x +3x (e x )′-(2x )′ =3x e x ln3+3x e x -2x ln2 =(ln3+1)·(3e)x -2x ln2. (4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2.(5)令u =2x -5,y =ln u ,则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.思维升华 (1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.(1)f (x )=x (2016+ln x ),若f ′(x 0)=2017,则x 0等于( )A.e 2B.1C.ln2D.e(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A.-1 B.-2 C.2D.0答案 (1)B (2)B解析 (1)f ′(x )=2016+ln x +x ×1x =2017+ln x ,故由f ′(x 0)=2017得2017+ln x 0=2017,则ln x 0=0,解得x 0=1. (2)f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数,且f ′(1)=2, ∴f ′(-1)=-2.题型二 导数的几何意义命题点1 已知切点的切线方程问题例2 (1)函数f (x )=ln x -2xx 的图像在点(1,-2)处的切线方程为( )A.2x -y -4=0B.2x +y =0C.x -y -3=0D.x +y +1=0(2)曲线y =e-2x+1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为________.答案 (1)C (2)13解析 (1)f ′(x )=1-ln xx2,则f ′(1)=1,故该切线方程为y -(-2)=x -1,即x -y -3=0. (2)∵y ′=-2e -2x ,曲线在点(0,2)处的切线斜率k =-2,∴切线方程为y =-2x +2,该直线与直线y =0和y =x 围成的三角形如图所示,其中直线y =-2x +2与y =x 的交点为A (23,23),∴三角形的面积S =12×1×23=13.命题点2 未知切点的切线方程问题例3 (1)与直线2x -y +4=0平行的抛物线y =x 2的切线方程是( ) A.2x -y +3=0 B.2x -y -3=0 C.2x -y +1=0D.2x -y -1=0(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0答案 (1)D (2)B解析 (1)对y =x 2求导得y ′=2x .设切点坐标为(x 0,x 20),则切线斜率为k =2x 0. 由2x 0=2得x 0=1,故切线方程为y -1=2(x -1), 即2x -y -1=0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln1=1.∴直线l 的方程为y =x -1,即x -y -1=0.故选B.命题点3 和切线有关的参数问题例4 已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为(1,f (1)),则m 等于( ) A.-1B.-3C.-4D.-2答案 D解析 ∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1. 又f (1)=0,∴切线l 的方程为y =x -1. g ′(x )=x +m ,设直线l 与g (x )的图像的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, 于是解得m =-2.故选D.命题点4 导数与函数图像的关系例5 如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图像为下图中的( )答案 D解析 函数的定义域为[0,+∞),当x ∈[0,2]时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越大,即斜率f ′(x )在[0,2]内大于0且越来越大,因此,函数S =f (x )的图像是上升的,且图像是下凸的;当x ∈(2,3)时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越小,即斜率f ′(x )在(2,3)内大于0且越来越小,因此,函数S =f (x )的图像是上升的,且图像是上凸的;当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图像为平行于x 轴的射线.思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可.(4)函数图像在每一点处的切线斜率的变化情况反映函数图像在相应点处的变化情况,由切线的倾斜程度可以判断出函数图像升降的快慢.(1)已知函数f (x )=3x +cos2x +sin2x ,a =f ′(π4),f ′(x )是f (x )的导函数,则过曲线y =x 3上一点P (a ,b )的切线方程为( ) A.3x -y -2=0 B.4x -3y +1=0C.3x -y -2=0或3x -4y +1=0D.3x -y -2=0或4x -3y +1=0(2)若直线y =2x +m 是曲线y =x ln x 的切线,则实数m 的值为________. 答案 (1)C (2)-e解析 (1)由f (x )=3x +cos2x +sin2x 得f ′(x )=3-2sin2x +2cos2x ,则a =f ′(π4)=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,当P 点为切点时,切线的斜率k =3a 2=3×12=3. 又b =a 3,则b =1,∴切点P 的坐标为(1,1).故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1), 即3x -y -2=0.当P 点不是切点时,设切点为(x 0,x 30),∴切线方程为y -x 30=3x 20(x -x 0),∵P (a ,b )在曲线y =x 3上,且a =1,∴b =1.∴1-x 30=3x 20(1-x 0), ∴2x 30-3x 20+1=0, ∴2x 30-2x 20-x 20+1=0,∴(x 0-1)2(2x 0+1)=0, ∴切点为⎝⎛⎭⎫-12,-18, ∴此时的切线方程为y +18=34⎝⎛⎭⎫x +12, 即3x -4y +1=0.综上,满足题意的切线方程为3x -y -2=0或3x -4y +1=0,故选C. (2)设切点为(x 0,x 0ln x 0), 由y ′=(x ln x )′=ln x +x ·1x =ln x +1,得切线的斜率k =ln x 0+1,故切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0), 整理得y =(ln x 0+1)x -x 0,与y =2x +m 比较得⎩⎪⎨⎪⎧ln x 0+1=2,-x 0=m ,解得x 0=e ,故m =-e.4.求曲线的切线方程条件审视不准致误典例 (12分)若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值. 易错分析 由于题目中没有指明点O (0,0)的位置情况,容易忽略点O 在曲线y =x 3-3x 2+2x 上这个隐含条件,进而不考虑O 点为切点的情况. 规范解答解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0, 依题意Δ=4-4a =0,得a =1.[4分](2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =|0x x y' ==3x 20-6x 0+2,① 又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .[7分]由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.[10分]综上,a =1或a =164.[12分]温馨提醒 对于求曲线的切线方程没有明确切点的情况,要先判断切线所过点是否在曲线上;若所过点在曲线上,要对该点是否为切点进行讨论.[方法与技巧]1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.未知切点的曲线切线问题,一定要先设切点,利用导数的几何意义表示切线的斜率建立方程.[失误与防范]1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.复合函数的导数要正确分解函数的结构,由外向内逐层求导.2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.A 组 专项基础训练 (时间:40分钟)1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e答案 B解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x .∴f ′(1)=2f ′(1)+1, 则f ′(1)=-1.2.已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A.eB.-eC.1eD.-1e答案 C解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则0|x x y' =1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e.3.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N +,则f 2016(x )等于( ) A.-sin x -cos x B.sin x -cos x C.-sin x +cos x D.sin x +cos x答案 B解析 ∵f 1(x )=sin x +cos x , ∴f 2(x )=f 1′(x )=cos x -sin x , ∴f 3(x )=f 2′(x )=-sin x -cos x , ∴f 4(x )=f 3′(x )=-cos x +sin x , ∴f 5(x )=f 4′(x )=sin x +cos x =f 1(x ), ∴f n (x )是以4为周期的函数, ∴f 2016(x )=f 4(x )=sin x -cos x ,故选B.4.(2014·课标全国Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a 等于( ) A.0 B.1 C.2 D.3 答案 D解析 令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1.由导数的几何意义可得在点(0,0)处的切线的斜率为f ′(0)=a -1.又切线方程为y =2x ,则有a -1=2,∴a =3.5.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A.-1B.0C.2D.4答案 B解析 由题图可知曲线y =f (x )在x =3处的切线斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×(-13)=0.6.已知曲线y =1e x +1,则曲线的切线斜率取得最小值时的直线方程为( )A.x +4y -2=0B.x -4y +2=0C.4x +2y -1=0D.4x -2y -1=0答案 A解析 y ′=-e x(e x +1)2=-1e x +1e x +2,因为e x >0,所以e x +1e x ≥2e x ×1e x =2(当且仅当e x =1ex ,即x =0时取等号),则e x +1ex +2≥4,故y ′=-1e x +1e x +2≥-14当(x =0时取等号).当x =0时,曲线的切线斜率取得最小值, 此时切点的坐标为(0,12),切线的方程为y -12=-14(x -0),即x +4y -2=0.故选A.7.若存在实常数k 和b ,使得函数f (x )和g (x )对其定义域上的任意实数x 分别满足:f (x )≥kx +b和g (x )≤kx +b ,则称直线l :y =kx +b 为f (x )和g (x )的“隔离直线”.已知函数f (x )=x 2-1和函数g (x )=2ln x ,那么函数f (x )和函数g (x )的隔离直线方程为____________. 答案 y =2x -2解析 由题意得函数f (x )和函数g (x )的隔离直线为它们在交点(1,0)处的公切线.因为f ′(1)=2=g ′(1)=k ,所以切线方程为y =2(x -1).8.已知函数f (x )=x 3-3x ,若过点A (0,16)且与曲线y =f (x )相切的直线方程为y =ax +16,则实数a 的值是________. 答案 9解析 先设切点为M (x 0,y 0), 则切点在曲线上有y 0=x 30-3x 0,① 求导数得到切线的斜率k =f ′(x 0)=3x 20-3, 又切线l 过A 、M 两点,所以k =y 0-16x 0,则3x 20-3=y 0-16x 0,② 联立①②可解得x 0=-2,y 0=-2, 从而实数a 的值为a =k =-2-16-2=9.9.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限. (1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解 (1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解之得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4). (2)∵直线l ⊥l 1,l 1的斜率为4, ∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4), ∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.10.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x.(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为 y -y 0=203(1)x +(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=203(1)x +(x -x 0). 令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6.B 组 专项能力提升 (时间:15分钟)11.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图像的切线平行,则实数a 的值为( ) A.14B.12C.1D.4答案 A解析 由题意可知f ′(x )=1212x -,g ′(x )=ax ,由f ′(14)=g ′(14),得1211()1244a -⨯=,可得a =14,经检验,a =14满足题意.12.曲边梯形由曲线y =x 2+1,y =0,x =1,x =2所围成,过曲线y =x 2+1 (x ∈[1,2])上一点P 作切线,使得此切线从曲边梯形上切出一个面积最大的普通梯形,则这一点的坐标为( ) A.⎝⎛⎭⎫32,2 B.⎝⎛⎭⎫32,134 C.⎝⎛⎭⎫52,134 D.⎝⎛⎭⎫52,2答案 B解析 设P (x 0,x 20+1),x 0∈[1,2],则易知曲线y =x 2+1在点P 处的切线方程为y -(x 20+1)=2x 0(x -x 0),∴y =2x 0(x -x 0)+x 20+1,设g (x )=2x 0(x -x 0)+x 20+1,则g (1)+g (2)=2(x 20+1)+2x 0(1-x 0+2-x 0),∴S 普通梯形=g (1)+g (2)2×1=-x 20+3x 0+1=-⎝⎛⎭⎫x 0-322+134, ∴P 点坐标为⎝⎛⎭⎫32,134时,S 普通梯形最大.13.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.答案 [2,+∞)解析 ∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点, 即x +1x -a =0有解,∴a =x +1x≥2.14.已知曲线f (x )=x n +1(n ∈N +)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2016x 1+log 2016x 2+…+log 2016x 2015的值为________. 答案 -1解析 f ′(x )=(n +1)x n ,k =f ′(1)=n +1, 点P (1,1)处的切线方程为y -1=(n +1)(x -1), 令y =0,得x =1-1n +1=n n +1,即x n =nn +1,∴x 1·x 2·…·x 2015=12×23×34×…×20142015×20152016=12016,则log 2016x 1+log 2016x 2+…+log 2016x 2015=log 2016(x 1x 2…x 2015)=-1.15.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由. 解 (1)由已知得f ′(x )=3ax 2+6x -6a , ∵f ′(-1)=0,∴3a -6-6a =0,∴a =-2. (2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).∵g ′(x 0)=6x 0+6,∴切线方程为y -(3x 20+6x 0+12) =(6x 0+6)(x -x 0),将(0,9)代入切线方程,解得x 0=±1. 当x 0=-1时,切线方程为y =9; 当x 0=1时,切线方程为y =12x +9. 由(1)知f (x )=-2x 3+3x 2+12x -11, ①由f ′(x )=0得-6x 2+6x +12=0, 解得x =-1或x =2.在x =-1处,y =f (x )的切线方程为y =-18; 在x =2处,y =f (x )的切线方程为y =9, ∴y =f (x )与y =g (x )的公切线是y =9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10;∴y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。

高考数学(理,北师大版)一轮复习课件第14讲 导数在研究函数中的应用(46张PPT)

高考数学(理,北师大版)一轮复习课件第14讲 导数在研究函数中的应用(46张PPT)

第14讲 导数在研究函数中的应用



3.[教材改编] 在区间(0,π)上,sin x 与 x 的大小关系是
基 础
________.
[答案] sin x<x
[解析] 构造函数 f(x)=sin x-x,则 f′(x)=cos x-1≤0 且不恒等于 0,故函数 f(x)在(0,π)上单调递减,所以 f(x)<f(0)=0,故 sin x<x.
(2)试讨论函数 g(x)的单调性.
返回目录
第14讲 导数在研究函数中的应用
[思考流程](1)条件:切线斜率.目标:确定 a,b
关系.方法:利用 g′(1)=0.

(2)条件:含有字母参数的函数解析式.目标:函数的
面 讲
单调性.方法:根据字母参数范围,讨论导数的符号.


返回目录
第14讲 导数在研究函数中的应用
极大值 都有__f(_x_)_<__f_(x__0)__,则 f(x)在 x0 处取得极大值 f(x0),称
极值的
x0 为函数 f(x)的一个极大值点
概念
x0 为函数 y=f(x)定义域内一点,如果对 x0 附近所有的 x
极小值 都有__f_(_x_)_>_f_(_x_0_)_,则 f(x)在 x0 处取得极小值 f(x0),称
是 a<4.( )
返回目录
第14讲 导数在研究函数中的应用


固 基
[答案] (1)√ (2)√ (3)×

[解析] (1)由 f′(x)=ex-e>0,得 x>1,所以其单调递增
区间是(1,+∞).
(2)f′(x)=3ax2+2bx+c,函数 f(x)=ax3+bx2+cx+

北师大版版高考数学一轮复习函数导数及其应用函数及其表示教学案理解析版

北师大版版高考数学一轮复习函数导数及其应用函数及其表示教学案理解析版

[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.1.函数与映射的概念函数映射两集合A,B设A,B是两个非空的数集设A,B是两个非空的集合对应关系f:A→B 如果按照某个对应关系f,对于集合A中的任何一个数x,在集合B中都存在唯一确定的数f(x)和它对应集合A与B存在着对应关系f,对于集合A中的每一个元素x,集合B中总有唯一的元素y与之对应名称把对应关系f叫作定义在集合A上的函数称这种对应为从集合A到集合B的映射记法函数y=f(x),x∈A映射:f:A→B(1)函数的定义域、值域:数集A叫作函数的定义域;函数值的集合{f(x)|x∈A}叫作函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.(4)函数的表示法:表示函数的常用方法有解析法、图像法和列表法.3.分段函数若函数在其定义域内,对于定义域的不同取值区间,有着不同的对应关系,这样的函数通常叫作分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.[常用结论]简单函数定义域的类型(1)f(x)为分式型函数时,分式分母不为零;(2)f(x)为偶次根式型函数时,被开方式非负;(3)f(x)为对数型函数时,真数为正数、底数为正且不为1;(4)若f(x)=x0,则定义域为{x|x≠0};(5)指数函数的底数大于0且不等于1;(6)正切函数y=tan x的定义域为xx≠kπ+错误!,k∈Z.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数是特殊的映射.()(2)函数y=1与y=x0是同一个函数()(3)f(x)=错误!+错误!是一个函数.()[答案] (1)√(2)×(3)×2.(教材改编)函数y=错误!+错误!的定义域为()A.错误!B.(—∞,3)∪(3,+∞)C.错误!∪(3,+∞)D.(3,+∞)C[由题意知错误!解得x≥错误!且x≠3.]3.(教材改编)若函数y=f(x)的定义域为M={x|—2≤x≤2},值域为N={y|0≤y≤2},则函数y=f (x)的图像可能是()A B C DB[∵M={x|—2≤x≤2},N={y|0≤y≤2},∴y=f(x)图像只可能是B.]4.下列各组函数中,表示同一函数的是()A.f(x)=错误!与g(x)=错误!B.f(x)=|x|与g(x)=(错误!)2C.f(x)=错误!与g(x)=x+1D.f(x)=x0与g(x)=错误!D[在选项A中,由f(x)=错误!=x与g(x)=错误!=|x|的对应法则不同;对于选项B,f(x)=|x|的定义域为R,g(x)=(错误!)2的定义域为{x|x≥0},故定义域不同;在选项C中,f(x)=错误!的定义域为{x∈R|x≠1},而g(x)=x+1的定义域为R,故两函数的定义域不同;对于选项D,f(x)=x0=1(x≠0),g(x)=错误!=1(x≠0),定义域和对应法则都相同,故选D.]5.(教材改编)已知函数f(x)=错误!则f(1)=________;若f(a)=5,则a=________.5±1[f(1)=5.当a≥0时,由f(a)=a2+4a=5可知a=1;当a<0时,由f(a)=a2—4a=5得a=—1.综上可知a=±1.]函数的定义域【例1】(1)在下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是()A.y=xB.y=lg xC.y=2xD.y=错误!(2)若函数y=f(x)的定义域是[0,2018],则函数g(x)=错误!的定义域是()A.[—1,2017] B.[—1,1)∪(1,2017]C.[0,2018] D.[—1,1)∪(1,2018](1)D(2)B[(1)y=10lg x=x,定义域与值域均为(0,+∞).y=x的定义域和值域均为R;y=lg x的定义域为(0,+∞),值域为R;y=2x的定义域为R,值域为(0,+∞);y=错误!的定义域与值域均为(0,+∞).故选D.(2)令t=x+1,则由已知函数y=f(x)的定义域为[0,2018]可知f(t)中0≤t≤2018,故要使函数f(x+1)有意义,则0≤x+1≤2018,解得—1≤x≤2017,故函数f(x+1)的定义域为[—1,2017].所以函数g(x)有意义的条件是错误!解得—1≤x<1或1<x≤2017.故函数g(x )的定义域为[—1,1)∪(1,2 017].] [规律方法]1求给定函数的定义域往往转化为解不等式组的问题,可借助于数轴,注意端点值的取舍.2求抽象函数的定义域:1若y =f x 的定义域为a ,b ,则解不等式a <g x <b 即可求出y =f g x 的定义域;2若y =f g x 的定义域为a ,b ,则求出g x 在a ,b 上的值域即得f x 的定义域.3已知函数定义域求参数范围,可将问题转化成含参数的不等式,然后求解.A.错误!B.错误! C.错误! D.错误!(2)已知函数f (2x )的定义域为[—1,1],则f (x )的定义域为________.(1)A (2)错误! [(1)由题意可知错误!解得错误!∴—错误!<x <1,故选A.(2)∵f (2x )的定义域为[—1,1],∴错误!≤2x ≤2,即f (x )的定义域为错误!.]求函数的解析式【例2】 (1)已知f 错误!=x 2+错误!,求f (x )的解析式;(2)已知f 错误!=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数且f (0)=2,f (x +1)—f (x )=x —1,求f (x )的解析式; (4)已知f (x )+2f 错误!=x (x ≠0),求f (x )的解析式.[解] (1)由于f 错误!=x 2+错误!=错误!2—2,令t =x +错误!,当x >0时,t ≥2错误!=2,当且仅当x =1时取等号;当x <0时,t =—错误!≤—2,当且仅当x =—1时取等号,∴f (t )=t 2—2,t ∈(—∞,—2]∪[2,+∞).综上所述,f (x )的解析式是f (x )=x 2—2,x ∈(—∞,—2]∪[2,+∞).(2)令错误!+1=t ,由于x >0,∴t >1且x =错误!,∴f(t)=lg错误!,即f(x)=lg错误!(x>1).(3)设f(x)=ax2+bx+c(a≠0),由f(0)=2,得c=2,f(x+1)—f(x)=a(x+1)2+b(x+1)—ax2—bx=x—1,即2ax+a+b=x—1,∴错误!即错误!∴f(x)=错误!x2—错误!x+2.(4)∵f(x)+2f错误!=x,∴f错误!+2f(x)=错误!.联立方程组错误!解得f(x)=错误!—错误!(x≠0).[规律方法] 求函数解析式的常用方法1待定系数法:若已知函数的类型,可用待定系数法.2配凑法:由已知条件f g x=F x,可将F x改写成关于g x的表达式,然后以x 替代g x,便得f x的解析式.3换元法:已知复合函数f g x的解析式,可用换元法,此时要注意新元的取值范围4消元法:已知关于f x与f错误!或f—x的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f x.A.x+1B.2x—1C.—x+1D.x+1或—x—1(2)定义在(—1,1)内的函数f(x)满足2f(x)—f(—x)=lg(x+1),则f(x)=________.(1)A(2)错误!lg(x+1)+错误!lg(1—x),x∈(—1,1)[(1)设f(x)=kx+b(k≠0),又f[f(x)]=x+2,得k(kx+b)+b=x+2,即k2x+kb+b=x+2.∴k2=1,且kb+b=2,解得k=b=1,则f(x)=x+1.(2)当x∈(—1,1)时,有2f(x)—f(—x)=lg(x+1).1将x换成—x,则—x换成x,得2f(—x)—f(x)=lg(—x+1).2由12消去f(—x)得,f(x)=错误!lg(x+1)+错误!lg(1—x),x∈(—1,1).]分段函数►考法1求分段函数的函数值【例3】已知函数f(x)=错误!则f错误!+f错误!=________.8 [由题可得f错误!=log错误!错误!=2,因为log2错误!<0,所以f错误!=错误!错误!=2log26=6,故f错误!+f错误!=8.]►考法2已知分段函数的函数值求参数【例4】(2017·山东高考)设f(x)=错误!若f(a)=f(a+1),则f错误!=()A.2B.4C.6 D.8C[∵f(a)=f(a+1),∴错误!或错误!即错误!或错误!∴a=错误!,∴f错误!=f(4)=6.]►考法3解与分段函数有关的方程或不等式【例5】(2019·福州模拟)设函数f(x)=错误!若f(x0)>1,则x0的取值范围是________.(0,2)∪(3,+∞)[∵f(x)=错误!且f(x0)>1,此不等式转化为错误!或错误!即错误!或错误!解之得0<x0<2或x0>3.∴x0的取值范围是(0,2)∪(3,+∞).][规律方法] 1求分段函数的函数值,要先确定要求值的自变量属于定义域的哪一个子集,然后代入该段的解析式求值,当出现f f a的形式时,应从内到外依次求值.2已知函数值或函数值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.易错警示:当分段函数自变量的范围不确定时,应分类讨论.(2)函数f(x)=错误!若f(a)≤a,则实数a的取值范围是________.(1)log32(2)[—1,+∞)[(1)f错误!=log3错误!=—2,∴f错误!=f(—2)=f(—2+2)=f(0)=f(0+2)=f(2),∴f(2)=log32,∴f错误!=f(—2)=log32.(2)当a≥0时,由f(a)=错误!a—1≤a,解得a≥—2,即a≥0;当a<0时,由f(a)=错误!≤a,解得—1≤a≤1,即—1≤a<0.综上所述,实数a的取值范围是[—1,+∞).]1.(2015·全国卷Ⅱ)设函数f(x)=错误!则f(—2)+f(log212)=()A.3B.6C.9 D.12C[∵—2<1,∴f(—2)=1+log2(2+2)=1+log24=1+2=3.∵log212>1,∴f(log212)=2log212—1=错误!=6.∴f(—2)+f(log212)=3+6=9.故选C.]2.(2017·全国卷Ⅲ)设函数f(x)=错误!则满足f(x)+f错误!>1的x的取值范围是________.错误![当x≤0时,原不等式为x+1+x+错误!>1,解得x>—错误!,∴—错误!<x≤0.当0<x≤错误!时,原不等式为2x+x+错误!>1,显然成立.当x>错误!时,原不等式为2x+2x—错误!>1,显然成立.综上可知,x的取值范围是错误!.]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、学习目标:1. 了解函数单调性与导数的关系,能利用导数研究函数单调性,会利用导数求函数的单调区间(其中多项式函数一般不超过三次)。

2. 了解函数在某一点取得极值的必要条件和充分条件,会用导数求函数的极值及闭区间上的最值(其中多项式函数一般不超过三次)。

3. 能用导数解决实际问题。

二、重点难点:重点:1. 利用导数求函数的单调区间、判断函数在某一区间上的单调性。

2. 利用导数求函数的极值与最值及解决实际问题。

难点:对函数在某一点取得极值的必要条件和充分条件的理解。

三、考点分析:导数的应用是高考命题的重要知识点,它与函数紧密联系在一起以考查学生运用知识解决问题的数学思想、数学方法和综合应用的能力,考查题型一般都是综合性的问题。

导数的应用⎪⎪⎩⎪⎪⎨⎧解决实际问题求函数的极值与最值的单调性判断函数在某一区间上求函数的单调区间知识要点解析:一、利用导数判断函数的单调性1. 函数单调性与其导数的正、负关系,在区间(a ,b )内, 若0)x (f >',则函数y =f (x )在区间(a ,b )内单调递增。

若0)x (f <',则函数y =f (x )在区间(a ,b )内单调递减。

若()0xf =',则函数y =f (x )是常函数,在区间(a ,b )内不具有单调性。

2. 导数与函数图象的关系若函数在某一区间(a ,b )内导数的绝对值较大,则函数在这个范围内变化得快,函数图象比较“陡峭”(向上或向下),反之,函数图象就“平缓”一些。

注:函数)(x f 在区间(a ,b )内单调递增,则0)(.0)(''>≥x f x f 是函数f (x )在区间(a ,b )内单调递增的充分非必要条件二、求可导函数单调区间的一般步骤与方法 1. 确定函数y =f (x )的定义域;2. 求0)(),(''=x f x f 令,解此方程,求其在定义域内的一切实根;3. 把函数y =f (x )在间断点的横坐标及上面的各实根按由小到大的顺序排列,然后用这些点把函数f (x )的定义区间分成若干个小区间;4. 确定)x (f '在各个小区间内的符号,从而判定函数y =f (x )在每个相应小开区间内的单调性。

三、利用导数求函数的极值 1. 函数极值的概念 已知函数y =f (x ),设0x 是定义域内任意一点,若对0x 附近所有的点x ,都有)()(0x f x f <,则称函数y =f (x )在0x 处取得极大值,即)(0x f y =极大,0x 称为函数的一个极大值点。

反之,若)()(0x f x f >,则称函数)x (f y =在0x 处取得极小值,即)(0x f y =极小,0x 称为函数的一个极小值点。

注意:(1)函数极值是局部性概念,极值点是定义域内的点,而定义域的端点绝不是极值点。

(2)若函数y =f (x )在区间[a ,b]内有极值,则函数在区间[a ,b]内一定不是单调函数,即给定区间上的单调函数无极值。

(3)当函数在区间[a ,b]内连续且有有限个极值点时,则函数在区间[a ,b]内的极大值点与极小值点是交替出现的。

2. 求函数y =f (x )的极值的方法 (1)求导数)x (f '。

(2)求方程)x (f '=0的所有实数根。

(3)考察在每个根(如0x )的附近从左到右导函数)x (f '的符号变化情况: 若)('x f 的符号由正变负,则)(0x f 是极大值, 若)('x f 的符号由负变正,则)(0x f 是极小值。

注:①可导点不一定是极值点,如3)(x x f =,0)0('=f ,则x =0不是极值点。

故导数为零的点是该点为极值点的必要条件。

②不可导点可能是极值点,如||)(x x f =,在x =0处不可导,但x =0是函数的极小值点。

四、求函数的最值1. 函数最值的有关概念若函数f (x )在闭区间[a ,b]上的图象是一条连续不断的曲线,则该函数在闭区间[a ,b]上一定能够取得最大值(或最小值),若函数f (x )在区间(a ,b )内是可导的,则该函数的最值必在极值点或端点取得。

注:函数最值是一个整体概念,最大值或最小值一定是整个区间上所有的函数值中最大的或最小的。

2. 求函数y =f (x )在区间[a ,b]上最值的步骤:(1)求f (x )在区间[a ,b ]内的所有0)('=x f 的点(即方程0)('=x f 的实根)。

(2)求f (x )在区间[a ,b ]内的使0)('=x f 的所有的点(如0x )的函数值及)(),(b f a f 的值。

(3)(2)中所求得的函数值中最大的值是函数的最大值,最小的值就是函数的最小值。

注:①若函数在闭区间[a ,b]上是单调函数,则函数的最值可由单调性求得。

②函数的最值点必是下列点之一:一是导数为零的点,二是导数不存在的点,三是区间端点。

3. 导数的实际应用。

(利用导数解决实际问题的思路与方法)(1)审题:阅读理解文字含义,分清条件与结论,找出问题的主要关系;(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型; (3)解模:利用导数知识解模;(4)对结果分析验证,作出正确的判断,确定其答案。

注:①当函数图象是连续曲线且定义域内只有一个极值时,这个极值就是函数的最值。

②要注意问题中的实际意义。

知识点一:利用导数研究函数单调性(求函数的单调区间,判断函数在某一区间上的单调性) 例1. 基础题解答下列各小题,把正确答案填在横线上 1. 函数63315)(23+--=x x x x f 的单调递减区间是_______。

2. 在R 上的可导函数f (x )的图象(如图),则不等式0)()32('2>--x f x x 的解集是________。

【思路分析】1. 利用0)('<x f 求出x 的取值集合。

2. 利用导函数的图象判断0)x (f ,0)x (f ''<>时x 的取值范围。

通过)3x 2x (2--)x (f '0>建立不等式组,再求其解集。

【解题过程】1. 由11x 10)1x )(11x (3033x 30x 3)x (f 2'<<-⇒<+-⇒<--=故函数的单调递减区间是(-1,11)2. 由函数图象知:当x <-1或x >1时函数单调递增0)x f 1x 1x >'>-<⇒(时,或, 当-1<x <1时,函数单调递减0)(11'<<<-⇒x f x 时, 故由0)()32('2>--x f x x 得:⎩⎨⎧>-->⎩⎨⎧<--<<⎩⎨⎧>---<03x 2x 1x 03x 2x 1x 103x 2x 1x 222或-或 解得:x <-1或-1<x <1或x >3,即不等式的解集是),3()1,1()1,(+∞---∞【解题后的思考】对于利用导数求函数的单调区间问题,可由0)(0)(''<>x f x f 或求出x 的取值区间。

当已知函数在某一区间内单调递增或递减时,运用0)('≥x f 或0)('≤x f 时应注意其区别。

1. 已知函数,)2()1()(23b x a a x a x x f ++--+=(1)若函数的图象过原点且在原点(0,0)处的切线斜率是-3,求a ,b 的值。

(2)若函数f (x )在区间(-1,1)上不单调,求a 的取值范围。

2. 已知函数1)(--=ax e x f x(1)求函数f (x )的单调递增区间。

(2)若f (x )在定义域R 上递增,求a 的取值范围。

(3)是否存在a ,使f (x )在(-]0,∞上单调递减,在(0,+∞)上单调递增,若存在,求出a 的值,若不存在,请说明理由。

【思路分析】1. (1)根据函数图象过原点及过原点的切线的斜率为-3,建立关于a ,b 的方程组,再求a ,b 的值。

(2)由0)('=x f 求出21x x x x =或=,又函数f (x )在区间(-1,1)上不单调。

⎩⎨⎧≠-∈⎩⎨⎧≠-∈⇔212211)1,1()1,1(x x x x x x 或由此求a 的取值范围。

2. (1)由0)('>x f ,及对a 的符号进行讨论从而确定函数的单调递增区间。

(2)由0)('≥x f 在R 上恒成立,确定a 的取值范围。

(3)假设存在a ,其值满足已知条件:则由已知得:,0)0('=f 从而确定a 的值。

【解题过程】1. (1)由函数图象过原点得b =0 由)2()1(23)(2'+--+=a a x a x x f ,因为在原点处的切线斜率3)2()0('-=+-==a a f k ,所以a =1或a =-3 (2)由320)('+-==⇒=a x a x x f 或,又函数f (x )在区间(-1,1)上不单调⎪⎪⎩⎪⎪⎨⎧+-≠<+-<⎪⎩⎪⎨⎧+-≠<<-⇔3213213211a a a a a a -或 解得:),(-),-的取值范围是(--或12121521152111 a a a a a ⇒⎪⎩⎪⎨⎧-≠<<⎪⎩⎪⎨⎧-≠<<- 2.(1)函数定义域是R ,a e a e x f xx>⇒>-=0)(',当a 0≤时,a e x>在R 上恒成立,此时函数f (x )在(-∞,+∞)上递增 当a >0时,a x a e xln >⇒>,此时函数的递增区间是(lna ,+∞)(2)由已知得:0)('≥x f 在R 上恒成立xe a ≤⇔在R 上恒成立,0>∈x e R x 时, 故a 0≤(3)假设存在a ,其值满足已知条件,则由已知得:0=x 是函数的极小值点100)0(0'=⇒=-⇒=∴a a e f故存在a =1满足条件。

【解题后的思考】利用导数研究函数单调性的中等难度试题的第一问往往比较简单,即题目入口宽,同时在解决第二问时会用到第一问的结论,不可忽视。

设函数kxxe x f =)((k )0≠(1)求函数的单调区间。

(2)若函数f (x )在区间(-1,1)内单调递增,求k 的取值范围。

【思路分析】(1)观察函数的定义域,求kxe kx xf )1()('+=,由0)(0)(''<>x f x f 或,讨论k 的符号以求得x 的取值集合从而使问题得解。

相关文档
最新文档