八下数学复习题(1)

合集下载

(必考题)初中数学八年级下期中复习题(提高培优)(1)

(必考题)初中数学八年级下期中复习题(提高培优)(1)

一、选择题1.(0分)[ID :9931]下列命题中,真命题是( )A .四个角相等的菱形是正方形B .对角线垂直的四边形是菱形C .有两边相等的平行四边形是菱形D .两条对角线相等的四边形是矩形2.(0分)[ID :9914]下列函数中,是一次函数的是( )A .11y x =+B .y=﹣2xC .y=x 2+2D .y=kx+b (k 、b 是常数) 3.(0分)[ID :9904]某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95 90 85 80 人数 4 6 8 2那么20名学生决赛成绩的众数和中位数分别是( )A .85,90B .85,87.5C .90,85D .95,904.(0分)[ID :9902]估计26的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.(0分)[ID :9893]如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2m,则树高为( )米A .5B .3C .5+1D .36.(0分)[ID :9886]如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为,CE 且D 点落在对角线'D 处.若3,4,AB AD ==则ED 的长为( )A .32B .3C .1D .437.(0分)[ID :9880]如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60︒,得到线段BM .连接AM 并延长交CD 于点N ,连接MC ,则MNC ∆的面积为( )A .2312a -B .2212a -C .2314a -D .2214a - 8.(0分)[ID :9871]如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140° 9.(0分)[ID :9868]若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k <3B .k <0C .k >3D .0<k <310.(0分)[ID :9849]若x < 0,则2x x x-的结果是( ) A .0 B .-2 C .0或-2 D .211.(0分)[ID :9921]已知直角三角形中30°角所对的直角边长是23cm ,则另一条直角边的长是( )A .4cmB .43 cmC .6cmD .63 cm12.(0分)[ID :9916]如图,点E F G H 、、、分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC BD =,则四边形EFGH 为矩形;②若AC BD ⊥,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .413.(0分)[ID :9834]下列运算正确的是( )A .532-=B .822-=C .114293=D .()22525-=-14.(0分)[ID :9910]小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A .2.7 米B .2.5 米C .2.1 米D .1.5 米15.(0分)[ID :9885]如图,ABC 中,CD AB ⊥于,D E 是AC 的中点.若6,5,AD DE ==则CD 的长等于( )A .5B .6C .8D .10二、填空题16.(0分)[ID :10020]若一元二次方程x 2﹣2x ﹣m=0无实数根,则一次函数y=(m+1)x+m ﹣1的图象不经过第_____象限.17.(0分)[ID :10019]当直线y=kx+b 与直线y=2x-2平行,且经过点(3,2)时,则直线y=kx+b 为______.18.(0分)[ID :9989]若函数()12m y m x-=+是正比例函数,则m=__________. 19.(0分)[ID :9980]如图,已知正方形ABCD ,以BC 为边作等边△BCE ,则∠DAE 的度数是_____.20.(0分)[ID :9972]211a a a a--=,则a 的取值范围是________ 21.(0分)[ID :9969]已知实数m 、n 满足22112n n m -+-+=m +n =__. 22.(0分)[ID :9961]如图,连接四边形ABCD 各边中点,得到四边形EFGH ,对角线AC ,BD 满足________,才能使四边形EFGH 是矩形.23.(0分)[ID :9952]在△ABC 中,∠C=90°,AC=1,BC=2,则AB 边上的中线CD=______.24.(0分)[ID :9951]矩形两条对角线的夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____.25.(0分)[ID :9941]已知矩形ABCD 如图,AB =4,BC =43,点P 是矩形内一点,则ABP CDP S S ∆∆+=______________.三、解答题26.(0分)[ID :10106]如图,△ABC 中,D 、E 、F 分别在边BC 、AB 、AC 上,且 DE ∥AC ,DE=AF ,延长FD 到G ,使DG=DF ,求证:AG 和DE 互相平分.27.(0分)[ID :10065]下图是某汽车行驶的路程S ()km 与时间t (分钟)的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是 .(2)汽车在中途停了多长时间?(3)当1630t ≤≤时,求S 与t 的函数关系式28.(0分)[ID :10058]邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n 次操作余下的四边形是菱形,则称原平行四边形为n 阶准菱形,如图1,平行四边形ABCD 中,若1,2AB BC ==,则平行四边形ABCD 为1阶准菱形.(1)判断与推理:① 邻边长分别为2和3的平行四边形是__________阶准菱形;② 小明为了剪去一个菱形,进行如下操作:如图2,把平行四边形ABCD 沿着BE 折叠(点E 在AD 上)使点A 落在BC 边上的点F ,得到四边形ABFE ,请证明四边形ABFE 是菱形.(2)操作、探究与计算:① 已知平行四边形ABCD 的邻边分别为1,(1)a a >裁剪线的示意图,并在图形下方写出a 的值;② 已知平行四边形ABCD 的邻边长分别为,()a b a b >,满足6,5a b r b r =+=,请写出平行四边形ABCD 是几阶准菱形.29.(0分)[ID :10045]某学校为改善办学条件,计划采购A 、B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39000元;4台A 型空调比5台B 型空调的费用多6000元.(1)求A 型空调和B 型空调每台各需多少元;(2)若学校计划采购A 、B 两种型号空调共30台,且A 型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案? (3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?30.(0分)[ID :10043]一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,如图描述了他上班途中的情景,回答下列问题:(1)李师傅修车用了多时间;(2)修车后李师傅骑车速度是修车前的几倍.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.B3.B4.D5.C6.A7.C8.A9.D10.D11.C12.A13.B14.C15.C二、填空题16.一【解析】∵一元二次方程x2-2x-m=0无实数根∴△=4+4m<0解得m<-1∴m+1<0m-1<0∴一次函数y=(m+1)x+m-1的图象经过二三四象限不经过第一象限故答案是:一17.y=2x﹣4【解析】【分析】根据两直线平行可得出k=2再根据直线y=kx+b过点(32)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程解方程即可求出b值即可求y=kx+b【详解】解:∵直18.2【解析】【分析】根据正比例函数的定义可得|m|-1=1m+2≠0【详解】因为函数是正比例函数所以|m|-1=1m+2≠0所以m=2故答案为2【点睛】考核知识点:正比例函数的定义理解定义是关键19.15°【解析】【分析】由正方形的性质和等边三角形的性质可得∠DAB=∠ABC=90°AB=BC=BE∠EBC=60°可求∠BAE=75°即可得∠DAE的度数【详解】∵四边形ABCD是正方形∴∠DAB20.【解析】【分析】根据二次根式得非负性求解即可【详解】解:∵成立则有:并且即:∴故答案为:【点睛】本题考查的是二次根式的取值范围在二次根式里被开方数必须是非负数21.2【解析】【分析】直接利用二次根式有意义的条件得出n的值进而求出m的值然后代入求解即可得【详解】∵∴解得将代入得:则故答案为:2【点睛】本题考查了二次根式有意义的条件利用二次根式有意义的条件求出参数22.AC⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形然后根据矩形的性质得出AC⊥BD【详解】解:∵GHE分别是BCCDAD的中点∴HG∥BDEH∥AC∴∠EHG=∠1∠1=23.【解析】【分析】先运用勾股定理求出斜边AB然后再利用直角三角形斜边上的中线等于斜边的一半解答即可【详解】解:由勾股定理得AB∵∠C=90°CD为AB边上的中线∴CD=AB=故答案为【点睛】本题考查的24.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD是矩形∴OA=ACOB=BDAC=BD∴OA=OB25.【解析】【分析】根据三角形的面积公式求出△APD和△BPC的面积相加即可得出答案【详解】过点P作MN∥AD交AB于点N交CD于点M如图∴AB∥CDAD∥BCAD=BC=AB=CD=4∴S△APB+S三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】分析:根据菱形的判断方法、正方形的判断方法和矩形的判断方法逐项分析即可.详解:A选项:∵四个角相等的菱形,∴四个角为直角的菱形,即为正方形,故是真命题;B选项:对角线垂直的四边形可能是梯形,故对角线垂直的四边形是菱形是假命题;C选项:当相等的边是对边时,它不是菱形,故有两边相等的平行四边形是菱形是假命题;D选项:两条对角线相等的四边形可能是等腰梯形,故两条对角线相等的四边形是矩形是假命题;故选A.点睛:考查的是命题与定理,熟知正方形、菱形、矩形的判定定理与性质是解答此题的关键,用举反例来证明命题是假命题是判断命题真假的常用方法.2.B解析:B【解析】A、y=1x+1不是一次函数,故错误;B、y=-2x是一次函数,故正确;C、y=x2+2是二次函数,故错误;D、y=kx+b(k、b是常数),当k=0时不是一次函数,故本选项错误,故选B.3.B解析:B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B .考点:1.众数;2.中位数4.D解析:D【解析】【分析】寻找小于26的最大平方数和大于26的最小平方数即可.【详解】解:小于26的最大平方数为25,大于26的最小平方数为3656,故选择D.【点睛】本题考查了二次根式的相关定义.5.C解析:C【解析】由题意可知,AC=1,AB=2,∠CAB=90°据勾股定理则=;∴AC+BC=(m.答:树高为(故选C.6.A解析:A【解析】【分析】首先利用勾股定理计算出AC 的长,再根据折叠可得DEC ≌'D EC ,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-,再根据勾股定理可得方程2222(4)x x +=-,解方程即可求得结果.【详解】解:∵四边形ABCD 是长方形,3,4AB AD ==,∴3,4====AB CD AD BC ,90ABC ADC ∠=∠=︒,∴ABC 为直角三角形,∴5AC ===,根据折叠可得:DEC ≌'D EC ,∴'3==CD CD ,'DE D E =,'90∠=∠=︒CD E ADC ,∴'90∠=︒AD E ,则AD'E △为直角三角形,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-,在'Rt AD E 中,由勾股定理得:222''+=AD D E AE ,即2222(4)x x +=-, 解得:32x =, 故选:A .【点睛】此题主要考查了轴对称的折叠问题,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.C解析:C【解析】【详解】如图,作MG ⊥BC 于G ,MH ⊥CD 于H ,则BG=GC ,AB ∥MG ∥CD ,∴AM=MN ,∵MH ⊥CD ,∠D=90°,∴MH ∥AD ,∴NH=HD ,由旋转变换的性质可知,△MBC 是等边三角形,∴MC=BC=a ,∠MCD=30°,∴MH=12MC=12a ,CH=32a , ∴DH=a 3, ∴CN=CH ﹣3﹣(a 3)=3﹣1)a , ∴△MNC 的面积=12×2a ×3﹣1)31-a 2. 故选C. 8.A解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.9.D解析:D【解析】【分析】由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于k的一元一次不等式组,解之即可得出结论.【详解】∵一次函数y=(k-3)x-k的图象经过第二、三、四象限,∴{k−3<0−k<0,解得:0<k<3,故选:D.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.10.D解析:D【解析】∵x < 0,则2x=x x=-,∴2x xx-=()22x x x x xx x x---===.故选D.11.C解析:C【解析】如图,∵∠C=90°,∠B=30°,3,∴3cm,由勾股定理得:,故选C.12.A解析:A【解析】【分析】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.【详解】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确,故选A.【点睛】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.13.B解析:B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A.≠A错误;B.=,故B正确;C.=,故C错误;D.2=,故D错误.故选:B.【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.14.C解析:C【解析】【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【详解】=2.1(米).故选C.【点睛】本题考查了勾股定理的应用.善于提取题目的信息是解题以及学好数学的关键.15.C解析:C【解析】【分析】先根据直角三角形的性质求出AC的长,再根据勾股定理即可得出结论.【详解】⊥于D,解:∵ABC中,CD AB∴∠ADC=90°,则ADC为直角三角形,∵E是AC的中点,DE=5,∴AC=2DE=10,在Rt ADC中,AD=6,AC=10,∴8CD=,故选:C.【点睛】本题考查的是直角三角形斜边上的中线,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.二、填空题16.一【解析】∵一元二次方程x2-2x-m=0无实数根∴△=4+4m<0解得m<-1∴m+1<0m-1<0∴一次函数y=(m+1)x+m-1的图象经过二三四象限不经过第一象限故答案是:一解析:一【解析】∵一元二次方程x2-2x-m=0无实数根,∴△=4+4m<0,解得m<-1,∴m+1<0,m-1<0,∴一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限.故答案是:一.17.y=2x﹣4【解析】【分析】根据两直线平行可得出k=2再根据直线y=kx+b 过点(32)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程解方程即可求出b值即可求y=kx+b【详解】解:∵直解析:y=2x ﹣4【解析】【分析】根据两直线平行可得出k=2,再根据直线y=kx+b 过点(3,2)利用一次函数图像上点的坐标特征即可得出关于b 的一元一次方程,解方程即可求出b 值,即可求y=kx+b .【详解】解:∵直线y=kx+b 与直线y=2x-2平行,∴k=2.又∵直线y=kx+b 过点(3,2),∴2=2×3+b ,解得:b=-4. ∴y=kx+b=2x-4.故答案为y=2x-4.【点睛】本题考查的知识点是两直线相交或平行问题已经一次函数图像上点的坐标特征,解题关键是求出k 和b 的值.18.2【解析】【分析】根据正比例函数的定义可得|m|-1=1m+2≠0【详解】因为函数是正比例函数所以|m|-1=1m+2≠0所以m=2故答案为2【点睛】考核知识点:正比例函数的定义理解定义是关键解析:2【解析】【分析】根据正比例函数的定义可得|m|-1=1,m+2≠0.【详解】因为函数()12m y m x-=+是正比例函数,所以|m|-1=1,m+2≠0所以m=2故答案为2【点睛】考核知识点:正比例函数的定义.理解定义是关键. 19.15°【解析】【分析】由正方形的性质和等边三角形的性质可得∠DAB=∠A BC=90°AB=BC=BE ∠EBC=60°可求∠BAE=75°即可得∠DAE 的度数【详解】∵四边形ABCD 是正方形∴∠DAB解析:15°【解析】【分析】由正方形的性质和等边三角形的性质可得,∠DAB=∠ABC=90°,AB=BC=BE ,∠EBC=60°,可求∠BAE=75°,即可得∠DAE 的度数.【详解】∵四边形ABCD 是正方形∴∠DAB =∠ABC =90°,AB =BC ,∵△BEC 是等边三角形∴BC =BE ,∠EBC =60°∴AB =BE =BC ,∠ABE =∠ABC ﹣∠EBC =30°∴∠BAE =75°∴∠DAE =∠BAD ﹣∠BAE =15°故答案为15°. 【点睛】本题考查了正方形的性质,等边三角形的性质,熟记各性质并准确识图是解题的关键.20.【解析】【分析】根据二次根式得非负性求解即可【详解】解:∵成立则有:并且即:∴故答案为:【点睛】本题考查的是二次根式的取值范围在二次根式里被开方数必须是非负数解析:01a <≤【解析】【分析】根据二次根式得非负性求解即可.【详解】=成立, 则有:10a ->,0a ≠ , 10aa ,即:0a >,∴01a <≤,故答案为:01a <≤.【点睛】本题考查的是二次根式的取值范围,在二次根式里被开方数,必须是非负数.21.2【解析】【分析】直接利用二次根式有意义的条件得出n 的值进而求出m 的值然后代入求解即可得【详解】∵∴解得将代入得:则故答案为:2【点睛】本题考查了二次根式有意义的条件利用二次根式有意义的条件求出参数 解析:2【解析】【分析】直接利用二次根式有意义的条件得出n 的值,进而求出m 的值,然后代入求解即可得.【详解】∵m =∴22101010n n n ⎧-≥⎪-≥⎨⎪+≠⎩解得1n =将1n =代入得:2211111121m -+-+==+ 则112m n +=+=故答案为:2.【点睛】本题考查了二次根式有意义的条件,利用二次根式有意义的条件求出参数的值是常考知识点,需重点掌握.22.AC⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形然后根据矩形的性质得出AC⊥BD【详解】解:∵GHE 分别是BCCDAD 的中点∴HG∥BDEH∥AC∴∠EHG=∠1∠1=解析:AC ⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形,然后根据矩形的性质得出AC ⊥BD .【详解】解:∵G 、H 、E 分别是BC 、CD 、AD 的中点, ∴HG ∥BD ,EH ∥AC ,∴∠EHG=∠1,∠1=∠2, ∴∠2=∠EHG ,∵四边形EFGH 是矩形, ∴∠EHG=90°, ∴∠2=90°, ∴AC ⊥BD .故还要添加AC ⊥BD ,才能保证四边形EFGH 是矩形.【点睛】本题主要综合考查了三角形中位线定理及矩形的判定定理,属于中等难度题型.解答这个问题的关键就是要明确矩形的性质以及中位线的性质.23.【解析】【分析】先运用勾股定理求出斜边AB 然后再利用直角三角形斜边上的中线等于斜边的一半解答即可【详解】解:由勾股定理得AB∵∠C=90°CD 为AB 边上的中线∴CD=AB=故答案为【点睛】本题考查的5 【解析】【分析】先运用勾股定理求出斜边AB,然后再利用直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:由勾股定理得,AB22125+=∵∠C=90°,CD为AB边上的中线,∴CD=12AB=52,故答案为52.【点睛】本题考查的是勾股定理和直角三角形的性质,掌握直角三角形斜边上的中线是斜边的一半是解答本题的关键.24.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD是矩形∴OA=ACOB=BDAC=BD∴OA=OB解析:10【解析】【分析】首先根据题意画出图形,然后再根据矩形两条对角线的夹角为60°,证得△AOB是等边三角形,即可解答本题.【详解】解:如图:∵四边形ABCD是矩形,∴OA=12AC,OB=12BD,AC=BD∴OA=OB,∵∠A0B=60°,∴△AOB是等边三角形,∴OA=OB=AB=5,∴AC=2OA=10,即矩形对角线的长为10.故答案为:10.【点睛】本题考查了矩形的性质以及等边三角形的判定与性质,弄清题意、画出图形是解答本题的关键.25.【解析】【分析】根据三角形的面积公式求出△APD和△BPC的面积相加即可得出答案【详解】过点P作MN∥AD交AB于点N交CD于点M如图∴AB∥CDAD∥BCAD=BC=AB=CD=4∴S△APB+S解析:83【解析】【分析】根据三角形的面积公式求出△APD和△BPC的面积,相加即可得出答案.【详解】过点P作MN∥AD,交AB于点N,交CD于点M.如图,∴AB∥CD,AD∥BC,AD=BC=3AB=CD=4,∴S△APB+S△DPC=12×AB×PN+12CD×PM=12×4×PN +12×4×PM =12×4×(PM+PN)=12×4×4383.故答案为:3【点睛】本题考查了矩形的性质和三角形的面积公式,主要考查学生的计算能力和观察图象的能力.三、解答题26.证明过程见解析.【解析】【分析】由一组对边平行且相等求解四边形AEGD是平行四边形,即可得出结论.【详解】证明:∵DE∥AC,DE=AF∴四边形AEDF是平行四边形∴AE=DF,AE∥DF∵DG=DF∴AE=DG∴四边形AEGD是平行四边形∴AG和DE互相平分【点睛】本题主要考查了平行四边形的判定. 应熟练掌握平行四边形的判定定理.27.(1) 80/km h ;(2)7分钟;(3)220=-S t .【解析】【分析】(1)根据函数图象中的数据可以求得汽车在前9分钟内的平均速度;(2)根据函数图象中的数据可以求得汽车在中途停了多长时间;(3)根据函数图象中的数据可以求得当16≤t ≤30时,S 与t 的函数关系式.【详解】解:(1)由图可得,汽车在前9分钟内的平均速度是:12÷9=43km/min ; (2)由图可得,汽车在中途停了:16-9=7min ,即汽车在中途停了7min ;(3)设当16≤t ≤30时,S 与t 的函数关系式是S=at+b ,把(16,12)和(30,40)代入得 16123040a b a b +=⎧⎨+=⎩, 解得220a b =⎧⎨=-⎩, 即当16≤t ≤30时,S 与t 的函数关系式是S=2t-20.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.28.(1)① 2,②证明见解析;(2)①见解析,②▱ABCD 是10阶准菱形.【解析】【分析】(1)①根据邻边长分别为2和3的平行四边形经过两次操作,即可得出所剩四边形是菱形,即可得出答案;②根据平行四边形的性质得出AE ∥BF ,进而得出AE=BF ,即可得出答案;(2)①利用3阶准菱形的定义,即可得出答案;②根据a=6b+r ,b=5r ,用r 表示出各边长,进而利用图形得出▱ABCD 是几阶准菱形.【详解】解:(1)①利用邻边长分别为2和3的平行四边形经过两次操作,所剩四边形是边长为1的菱形,故邻边长分别为2和3的平行四边形是2阶准菱形;故答案为:2;②由折叠知:∠ABE=∠FBE,AB=BF,∵四边形ABCD是平行四边形,∴AE∥BF,∴∠AEB=∠FBE,∴∠AEB=∠ABE,∴AE=AB,∴AE=BF,∴四边形ABFE是平行四边形,∴四边形ABFE是菱形;(2)①如图所示:,②答:10阶菱形,∵a=6b+r,b=5r,∴a=6×5r+r=31r;如图所示:故▱ABCD是10阶准菱形.【点睛】此题主要考查了图形的剪拼以及菱形的判定,根据已知n阶准菱形定义正确将平行四边形分割是解题关键.29.(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.【解析】分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A 型空调和B 型空调每台各需x 元、y 元,3239000456000x y x y +⎧⎨-⎩==,解得,90006000x y ⎧⎨⎩==, 答:A 型空调和B 型空调每台各需9000元、6000元;(2)设购买A 型空调a 台,则购买B 型空调(30-a )台,()()13029000600030217000a a a a ⎧≥-⎪⎨⎪+-≤⎩, 解得,10≤a≤1213, ∴a=10、11、12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;(3)设总费用为w 元,w=9000a+6000(30-a )=3000a+180000,∴当a=10时,w 取得最小值,此时w=210000,即采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答. 30.(1)5分钟;(2)2倍【解析】【分析】(1)观察图象可得李师傅离家10分钟时开始修车、离家15分钟修完车,两数相减即可得解;(2)观察图象可得李师傅修车前后行驶的路程和时间,即可求得相应的行驶速度,两速度相除即可得解.【详解】解:(1)由图可得,李师傅修车用了15105-=(分钟);(2)∵修车后李师傅骑车速度是200010002002015-=-(米/分钟),修车前速度为100010010=(米/分钟) ∴2001002÷=∴修车后李师傅骑车速度是修车前的2倍.【点睛】本题考查了从图象中读取信息的数形结合的能力,需要注意分析其中的“关键点”,还要善于分析各部分图象的变化趋势.。

2019年人教版八下数学《18.2 菱形》同步复习资料(1)

2019年人教版八下数学《18.2 菱形》同步复习资料(1)

2019年人教版八下数学《18.2 菱形》同步复习资料【1】一.选择题(共10小题)1.如图△ABC中,AD是角平分线,DE∥AC交AB于E,DF∥AB交AC于F,若AE=4cm,四边形AEDF周长为()A.12cm B.16cm C.20cm D.22cm2.如图,剪两张对边平行的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC C.AB=CD,AD=BC D.∠DAB+∠BCD=180°3.如图,两条宽度都为3cm的纸条,交叉重叠放在一起,它们的交角α为60°,则它们重叠部分(阴影部分)的面积为()A.2cm2B.cm2 C.cm2D.cm24.如图,△ABC是边长为2的等边三角形,将△ABC沿射线BC向右平移到△DCE,连接AD、BD,下列结论错误的是()A.AD=BC B.BD⊥DE C.四边形ACED是菱形D.四边形ABCD的面积为4【1】【2】【3】【4】5.如图,在矩形ABCD中有两个一条边长为1的平行四边形.则它们的公共部分(即阴影部分)的面积是()A.大于1 B.等于1 C.小于1 D.小于或等于16.如图,在菱形ABCD中,对角线AC与BD相交于点O,∠ABC=60°,点E,F分别是BC,CD的中点,BD分别与AE,AF相交于点M,N,连接OE,OF,下列结论:(1)△AEF是等边三角形;(2)四边形CEOF是菱形;(3)OF⊥AE;(4)BM=MN=ND.其中正确的结论有()A.1个B.2个C.3个D.4个【5】【6】7.将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AB=3,则菱形AECF的面积为()A.1 B.2C.2D.48.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合)且PE∥BC 交AB于E,PF∥CD交AD于F,则阴影部分的面积是()A.2 B.C.3 D.【7】【8】9.如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.其中正确的是()A.①④B.①③④C.①②③D.②③④10.如图,已知四边形ABCD的四边都相等,等边△AEF的顶点E、F分别在BC、CD上,且AE=AB,则∠C=()A.100°B.105°C.110°D.120°【9】【10】二.填空题(共10小题)11.一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为.12.下列说法:①平行四边形的一组对边平行且另一组对边相等;②一组对边平行且另一组对边相等的四边形是平行四边形;③菱形的对角线互相垂直;④对角线互相垂直的四边形是菱形,其中正确的说法是(填正确的序号)13.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为cm.14.如图,有甲乙两张纸条,甲纸条对折后与乙纸条宽度相等,将这两张纸条随意交叉重叠放在一起,重合的部分构成一个四边形ABCD,那么AB与BC的数量关系是.15.如图,在菱形ABCD中,过对角线BD上任一点P,作EF∥BC,GH∥AB,下列结论正确的是.(填序号)①图中共有3个菱形;②△BEP≌△BGP;③四边形AEPH的面积等于△ABD的面积的一半;④四边形AEPH的周长等于四边形GPFC的周长.【13】【14】【15】16.如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,则线段AC、BF、CD之间的关系式是.17.如图,已知平行四边形ABCD中,AB=BC,BC=10,∠BCD=60°,两顶点B、D分别在平面直角坐标系的y轴、x轴的正半轴上滑动,连接OA,则OA的长的最小值是.18.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE 的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若FG=5,CF=6,则四边形BDFG的面积为.【16】【17】【18】19.如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D,已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是.20.如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2=.【19】【20】三.解答题(共7小题)21.如图,在▱ABCD中,EF垂直平分AC交BC于E,交AD于F.(1)求证:四边形AECF为菱形;(2)若AC⊥CD,AB=6,BC=10,求四边形AECF的面积.22.Rt△ABC中,CD是斜边AB上的高,BE平分∠CBA交AC于E,交CD于F,CG⊥BE交AB于G.(1)求证:四边形CFGE是菱形;23.如图,已知▱ABCD的对角线AC、BD交于O,且∠1=∠2.(1)求证:▱ABCD是菱形;(2)F为AD上一点,连结BF交AC于E,且AE=AF,求证:AO=(AF+AB).24.如图,∠ABC=90°,M为AC的中点,CD∥MB,AD⊥CD,点N在CD上,DN=MB,试说明BD与MN的位置关系.25.已知:如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC分别与AB、AC交于点G、F,连接CG.(1)求证:四边形BCGD是菱形;(2)若BC=1,求DF的长.26.四边形ABCD中,AB=CD,E、F、G、H为BD、AC、AD、BC的中点,问EF、GH的关系?27.已知如图,四边形ABCD中,∠ABC=∠ADC=90°,M是AC中点,MN⊥BD且与MD的平行线BN相交于N.(1)求证:四边形BMDN是菱形;(2)若∠BAC=30°,∠ACD=45°,求菱形BNDM相邻两角的度数.第18章《菱形》复习资料【1】参考答案与试题解析一.选择题(共10小题)1.(2013秋•宁阳县校级期中)如图△ABC中,AD是角平分线,DE∥AC交AB于E,DF∥AB交AC于F,若AE=4cm,那么四边形AEDF周长为()A.12cm B.16cm C.20cm D.22cm【解答】解:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EDA=∠FAD,∵∠EAD=∠FAD,∴∠EAD=∠EDA,∴EA=ED,∴平行四边形AEDF是菱形.∴四边形AEDF周长为4AE=16.故选B.2.(2014•山东模拟)如图,剪两张对边平行的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°【解答】解∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作BC,CD边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD中,S△ABC=S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故B正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A正确;AB=CD,AD=BC(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.3.(2012•凯里市校级三模)如图,两条宽度都为3cm的纸条,交叉重叠放在一起,它们的交角α为60°,则它们重叠部分(阴影部分)的面积为()A.2cm2B.cm2C.cm2D.cm2【解答】解:如右图所示:过A作AE⊥BC,AF⊥CD于F,垂足为E,F,∴∠AEB=∠AFD=90°,∵AD∥CB,AB∥CD,∴四边形ABCD是平行四边形,∵纸条宽度都为3,∴AE=AF=3,在△ABE和△ADF中,,∴△ABE≌△ADF(AAS),∴AB=AD,∴四边形ABCD是菱形.∴BC=AB,∵=sinα,∠α=60°,∴BC=AB=2,∴重叠部分(图中阴影部分)的面积为:BC×AE=3×2=6(cm2),故选D.4.(2012•山西模拟)如图,△ABC是边长为2的等边三角形,将△ABC沿射线BC向右平移到△DCE,连接AD、BD,下列结论错误的是()A.AD=BC B.BD⊥DEC.四边形ACED是菱形D.四边形ABCD的面积为4【解答】解:∵△ABC沿射线BC向右平移到△DCE,∴AD=BC,AD∥BC,故选项A正确;∴四边形ABCD为平行四边形,又△ABC为等边三角形,∴AB=BC,∴四边形ABCD为菱形,∴AC⊥BD,由平移可知:AC∥DE,则DE⊥BD,故选项B正确;∵△ABC沿射线BC向右平移到△DCE,∴AD=CE,AD∥CE,∴四边形ACED为平行四边形,由平移可得△DCE也为等边三角形,∴DE=CE,∴四边形ACED为菱形,选项C正确;过A作AF⊥BC,如图所示:∵△ABC为边长为2的等边三角形,∴BF=CF=BC=1,在Rt△ABF中,AB=2,BF=1,根据勾股定理得:AF==,则S菱形ABCD=BC•AF=2,选项D错误,则原题结论错误的选项为D.故选D5.已知如图,在矩形ABCD中有两个一条边长为1的平行四边形.则它们的公共部分(即阴影部分)的面积是()A.大于1 B.等于1 C.小于1 D.小于或等于1【解答】解:如图所示:作EN∥AB,FM∥CD,过点E作EG⊥MN于点G,可得阴影部分面等于四边形EFMN的面积,则四边形EFMN是平行四边形,且EN=FM=1,∵EN=1,∴EG<1,∴它们的公共部分(即阴影部分)的面积小于1.故选:C.6.如图,在菱形ABCD中,对角线AC与BD相交于点O,∠ABC=60°,点E,F分别是BC,CD的中点,BD分别与AE,AF相交于点M,N,连接OE,OF,下列结论:(1)△AEF是等边三角形;(2)四边形CEOF是菱形;(3)OF⊥AE;(4)BM=MN=ND.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠ADC=∠ABC=60°,OA=OD=AC,OB=OD=BD,AC⊥BD,∴△ABC、△ADC是等边三角形,∴OB是等边三角形ABC的高,∵点E是BC的中点,∴AE时等边三角形ABC的高,∴AE=OB,同理:AF=OD,∴AE=AF,∵点E,F分别是BC,CD的中点,∴EF是△BCD的中位线,∴EF=BD=OB,EF∥BD,∴AE=AF=EF,即△AEF是等边三角形,∴(1)正确;∵点E,F分别是BC,CD的中点,AC⊥BD,∴OE=BC=CE,OF=CD=CF,∴OE=OF=CE=CF,∴四边形CEOF是菱形,∴(2)正确;∵四边形CEOF是菱形,∴OF∥BC,∵AE⊥BC,∴OF⊥AE,∴(3)正确;∵AE、BO是等边三角形ABC的中线,∴AM=BM,同理:AN=ND,∵△AEF是等边三角形,∴∠AEF=∠AFE=60°,∵EF∥BD,∴∠AMN=∠AEF=60°,∠ANM=∠AFE=60°,∴∠AMN=∠ANM=60°,∴AM=AN,∴BM=MN=ND,∴(4)正确;正确的结论有4个,故选:D.7.(2016•陕西一模)将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AB=3,则菱形AECF的面积为()A.1 B.2C.2D.4【解答】解:∵四边形AECF是菱形,AB=3,∴假设BE=x,则AE=3﹣x,CE=3﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC===,又∵AE=AB﹣BE=3﹣1=2,则菱形的面积是:AE•BC=2.故选:C.8.(2015春•启东市期中)如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合)且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是()A.2 B.C.3 D.【解答】解:设AP,EF交于O点,∵PE∥BC交AB于E,PF∥CD交AD于F,∴四边形AFPE为平行四边形,∴△AEO的面积=△FOP的面积,∴阴影部分的面积等于△ABC的面积.∵△ABC的面积等于菱形ABCD的面积的一半,菱形ABCD的面积=AC•BD=5,∴图中阴影部分的面积为5÷2=2.5.故选:B.9.(2015春•滨江区期末)如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.其中正确的是()A.①④B.①③④C.①②③D.②③④【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,∴①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△BDG≌△DEG,在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,∴②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD,△ABF∽△OGF,∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;③不正确;正确的是①④.故选:A.10.(2014春•大庆期中)如图,已知四边形ABCD的四边都相等,等边△AEF的顶点E、F分别在BC、CD上,且AE=AB,则∠C=()A.100°B.105°C.110°D.120°【解答】解:∵四边形ABCD的四边都相等,∴四边形ABCD是菱形,∴∠B=∠D,∠A=∠C,AD∥BC,∴∠DAB+∠B=180°,∵△AEF是等边三角形,AE=AB,∴∠AEF=∠AFE=60°,AF=AD,∴∠B=∠AEB,∠D=∠AFD,由三角形的内角和定理得:∠BAE=∠FAD,设∠BAE=∠FAD=x,则∠D=∠AFD=180°﹣60°﹣2x,∵∠FAD+∠D+∠AFD=180°,∴x+2(180°﹣60°﹣2x)=180°,解得:x=20°,∴∠C=∠BAD=2×20°+60°=100°,故选A.二.填空题(共10小题)11.(2014•泸州)一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为4.【解答】解:∵平行四边形两条对角线互相平分,∴它们的一半分别为2和,∵22+()2=32,∴两条对角线互相垂直,∴这个四边形是菱形,∴S=4×2=4.故答案为:4.12.(2016春•江汉区期中)下列说法:①平行四边形的一组对边平行且另一组对边相等;②一组对边平行且另一组对边相等的四边形是平行四边形;③菱形的对角线互相垂直;④对角线互相垂直的四边形是菱形,其中正确的说法是①③(填正确的序号)【解答】解:①平行四边形的一组对边平行且另一组对边相等,说法正确;②一组对边平行且另一组对边相等的四边形是平行四边形,说法错误;③菱形的对角线互相垂直,说法正确;④对角线互相垂直的四边形是菱形,说法错误;正确的说法是①③,故答案为:①③.13.(2012•长春一模)如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为4 cm.【解答】解:根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴AB•OC=×2×OC=4,解得OC=4cm.故答案为:4.14.(2012春•浦东新区期末)如图,有甲乙两张纸条,甲纸条对折后与乙纸条宽度相等,将这两张纸条随意交叉重叠放在一起,重合的部分构成一个四边形ABCD,那么AB与BC的数量关系是AB=2BC.【解答】解:过A作AE⊥CD于E、作AF⊥GH于F,根据题意得:甲纸条对折后与乙纸条宽度相等,则AF=AE,∵四边形AGHD是平行四边形,∴∠AGF=∠ADE,在△AGF和△ADE中,,∴△AGF≌△ADE,∴AG=AD,又∵AG=AB=AG,AD=BC,∴AB=BC,∴AB=2BC.故答案为:AB=2BC.15.(2015春•太康县期末)如图,在菱形ABCD中,过对角线BD上任一点P,作EF∥BC,GH∥AB,下列结论正确的是①②④.(填序号)①图中共有3个菱形;②△BEP≌△BGP;③四边形AEPH的面积等于△ABD的面积的一半;④四边形AEPH的周长等于四边形GPFC的周长.【解答】解:∵图中有三个菱形,如菱形ABCD、菱形HOFD、菱形BEPG,∴①正确;∵四边形ABCD是菱形,∴AB∥DC,AD∥BC,∠ABD=∠CBD,∵EF∥BC,GH∥AB,∴四边形BEPG是平行四边形,∴PE=BG,PG=BE,在△BEP和△PGB中,∴△BEP≌△PGB(SSS),∴②正确;∵只有当H为AD中点,E为AB中点时,四边形AEPH的面积等于△ABD的面积的一半,∴③错误;∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EF∥BC,GH∥AB,∴AD∥EF∥BC,AB∥GH∥CD,∴四边形AEPH、四边形HPFD、四边形BEPG、四边形PFCG是平行四边形,∴AH=BG=PE,AE=HP=DF,BE=PG=CF,DH=PF=VG,∵四边形ABCD是菱形,∴∠EBP=∠GBP,∵PE∥BG,∴∠EPB=∠GBP,∴∠EBP=∠EPB,∴BE=PE,∴AH=PE=BG=BE=CF=PG,同理AE=HP=DF=PF=CG,∴四边形AEPH的周长=四边形GPFC的周长,∴④正确;故答案为:①②④.16.(2015春•南长区期中)如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,则线段AC、BF、CD之间的关系式是AC2+BF2=4CD2.【解答】解:∵五边形ABCDE是正五边形,∴AB∥CE,AD∥BC,∴四边形ABCF是平行四边形,又∵AB=BC=CD=DE=EA,∴四边形ABCF是菱形,∴AC⊥BF,∴OB2+OC2=BC2,∵AC=2OC,BF=2OB,∴AC2+BF2=(2OC)2+(2OB)2=4OC2+4OB2=4BC2,又∵BC=CD,∴AC2+BF2=4CD2.故答案为:AC2+BF2=4CD2.17.(2015春•武昌区期中)如图,已知平行四边形ABCD中,AB=BC,BC=10,∠BCD=60°,两顶点B、D分别在平面直角坐标系的y轴、x轴的正半轴上滑动,连接OA,则OA的长的最小值是5﹣5.【解答】解:如图所示:过点A作AE⊥BD于点E,当点A,O,E在一条直线上,此时AO最短,∵平行四边形ABCD中,AB=BC,BC=10,∠BCD=60°,∴AB=AD=CD=BC=10,∠BAD=∠BCD=60°,∴△ABD是等边三角形,∴AE过点O,E为BD中点,则此时EO=5,故AO的最小值为:AO=AE﹣EO=ABsin60°﹣×BD=5﹣5.故答案为:5﹣5.18.(2014春•泗阳县校级期中)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若FG=5,CF=6,则四边形BDFG的面积为15.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CE⊥BD,∴CE⊥AG,又∵BD为AC的中线,∴BD=DF=AC,∴四边形BDFG是菱形,过点B作BH⊥AG于点H,∵四边形BDFG是菱形,∴GF=DF=5,∵∠BEF=∠EFH=∠BHF=90°,∴四边形BHFE是矩形,∴BH=EF=CF=3,∴S菱形BDFG=GF•BH=15.故答案为:15.19.(2012春•莱州市期末)如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D,已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是4千米.【解答】解:连接AC,过点C作CE⊥l2于E,作CF⊥l1于F,∵村庄C到公路l1的距离为4千米,∴CF=4千米,∵AB=BC=CD=DA,∴四边形ABCD是菱形,∴AC平分∠BAD,∴CE=CF=4千米,即C到公路l2的距离是4千米.故答案是:4千米.20.(2012•凉山州)如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2= 36.【解答】解:如右图,连接EF,FG,GH,EH,∵E、H分别是AB、DA的中点,∴EH是△ABD的中位线,∴EH=BD=3,同理可得EF,FG,GH分别是△ABC,△BCD,△ACD的中位线,∴EF=GH=AC=3,FG=BD=3,∴EH=EF=GH=FG=3,∴四边形EFGH为菱形,∴EG⊥HF,且垂足为O,∴EG=2OE,FH=2OH,在Rt△OEH中,根据勾股定理得:OE2+OH2=EH2=9,等式两边同时乘以4得:4OE2+4OH2=9×4=36,∴(2OE)2+(2OH)2=36,即EG2+FH2=36.故答案为:36.三.解答题(共7小题)21.(2013秋•姜堰市期末)如图,在▱ABCD中,EF垂直平分AC交BC于E,交AD于F.(1)求证:四边形AECF为菱形;(2)若AC⊥CD,AB=6,BC=10,求四边形AECF的面积.【解答】解:(1)∵EF垂直平分AC,∴AO=OC,∴∠1=∠2,∠3=∠4,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠1=∠4=∠3,∴AF=AE,∴AE=EC=CF=FA,∴四边形AECF是菱形.(2)∵AC⊥CD,AC⊥EF∴EF∥CD∴EF=AB=6∵BC=10,∴由勾股定理得:AC=8,∴四边形AECF的面积为:AC•EF=×6×8=24;22.Rt△ABC中,CD是斜边AB上的高,BE平分∠CBA交AC于E,交CD于F,CG⊥BE交AB于G.(1)求证:四边形CFGE是菱形;【解答】解:(1)证明:设BE交CG于M.如图所示:∵BE是∠CBA的平分线,∴∠1=∠2,∵CG⊥BE,∴∠3=∠4=90°,在△BMG和△BMC中,,∴△BMG≌△BMC(ASA),∴MC=MG,∴EC=EG,FG=FC,∵CD⊥AB,∴∠DFB+∠1=90°,∵∠CEF+∠2=90°,∠CFE=∠DFB,∴∠CEF=∠CFE,∴EC=FC,∴EC=EG=FG=FC,∴四边形CFGE是菱形;23.(2016秋•江阴市校级月考)如图,已知▱ABCD的对角线AC、BD交于O,且∠1=∠2.(1)求证:▱ABCD是菱形;(2)F为AD上一点,连结BF交AC于E,且AE=AF,求证:AO=(AF+AB).【解答】解:(1)证明:∵▱ABCD中,AD∥BC,∴∠2=∠ACB,又∵∠1=∠2,∴∠1=∠ACB∴AB=BC,∴▱ABCD是菱形;(2)∵▱ABCD中,AD∥BC,∴∠AFE=∠EBC,又∵AF=AE,∴∠AFE=∠AEF=∠BEC,∴∠EBC=∠BEC,∴BC=CE,∴AC=AE+CE=AF+BC=2OA,∴OA=(AF+BC),又∵AB=BC,∴OA=(AF+AB).24.如图,∠ABC=90°,M为AC的中点,CD∥MB,AD⊥CD,点N在CD上,DN=MB,试说明BD与MN的位置关系.【解答】解:如图,连接BN,∵CD∥MB,DN=MB,∴四边形BNDM是平行四边形,∵∠ABC=90°,AD⊥CD,M为AC的中点,∴BM=DM=AC,∴平行四边形BNDM是菱形,∴BD与MN的位置关系BD⊥MN.25.(2012•枣阳市校级模拟)已知:如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC分别与AB、AC交于点G、F,连接CG.(1)求证:四边形BCGD是菱形;(2)若BC=1,求DF的长.【解答】(1)证明:∵∠A=30°,CD⊥AB,∴CE=AC,∵CD=AC,∴CE=AC,∴CE=DE,∵DF∥BC,∴∠EDG=∠ECB,在△EDG和△ECB中,,∴△DEG≌△CEB(ASA),∴EG=BE,∴四边形BCGD是平行四边形,∵CD⊥AB,∴▱BCGD是菱形.(2)解:∵CD⊥AB,∠A=30°,∴CE=AC=CD,∴CE=ED.∴BC=BD=1.又∵∠ECB+∠ACE=90°,∠A+∠ACE=90°,∴∠ECB=∠A=30°,∠CEB=90°,∴BE=BC=BD=,在直角三角形ABC中,∠A=30°,则AB=2BC=2.则AE=AB﹣BE=,∵Rt△AEC≌Rt△DFC,∴DF=AE=.26.(2011秋•鹤山区校级月考)四边形ABCD中,AB=CD,E、F、G、H为BD、AC、AD、BC的中点,问EF、GH 的关系?【解答】解:EF⊥GH.理由如下:连接EG,GF,FH,EH,∵E、F分别是AD、BC的中点,G、H分别是BD、AC的中点∴EG=AB,EH=CD,又∵AB=DC,∴EG=EH,∵EG∥AB,HF∥AB,∴EG∥HF,同理GF∥EH,∴四边形EGFH是菱形,EF,GH分别为对角线,∴EF⊥GH.27.已知如图,四边形ABCD中,∠ABC=∠ADC=90°,M是AC中点,MN⊥BD且与MD的平行线BN相交于N.(1)求证:四边形BMDN是菱形;(2)若∠BAC=30°,∠ACD=45°,求菱形BNDM相邻两角的度数.【解答】(1)证明:∵∠ABC=∠ADC=90°,M是AC中点,∴BM=DM=AC,设BD与MN相交于点O,∵MN⊥BD,∴BO=DO,∵MD∥BN,∴∠MDO=∠NBO,在△MDO和△NBD中,,∴△MDO≌△NBD(ASA),∴OM=ON,∴BD、MN互相垂直平分,∴四边形BMDN是菱形;(2)解:∵∠BAC=30°,∠ACD=45°,∴∠BMC=30°×2=60°,∠CMD=90°,∴∠BMD=60°+90°=150°,∵DM∥BN,∴∠MBN=180°﹣150°=30°,∴菱形BNDM相邻两角的度数是150°,30°.。

八年级下学期数学四边形专题复习试卷一(含答案)

八年级下学期数学四边形专题复习试卷一(含答案)

八年级下学期数学四边形专题复习试卷一班级: 姓名: 学号:一、判断题:(每小题3分,共15分)1、n 边形的n 个外角中最多有三个钝角。

( )2、一组对边相等,另一组对边平行的四边形是平行四边形。

( )3、对角线平分相应的一组对角的平行四边形是菱形。

( )4、对角线垂直且相等的四边形是正方形。

( )5、菱形对角线交点到各边的距离相等。

( )二、填空题:(每小题3分,共18分)6、若n 边形的每个外角都等于200,则边数n = 。

7、平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。

8、若矩形的对角线长为8,两条对角线的一个交角为600,则该矩形的面积为 。

9、若边长为4cm 的菱形的两邻角度数之比为1∶2,则该菱形的面积为 cm 2。

10、若菱形的两对角线之比为3∶4,对角线之差为2cm ,则该菱形的周长为 cm 。

11、梯形ABCD 中,AD ∥BC ,若∠A ∶∠B ∶∠C =2∶7∶3,则∠D = 度。

三、选择题:(每小题3分,共27分)12、n 边形的对角线总条数是( )A 、2n B 、)2(-n n C 、2)3(-n n D 、)3(-n n 13、矩形、菱形、正方形都具有的性质是( )A 、对角线相等B 、对角线互相平分C 、对角线互相垂直D 、对角线平分对角14、四边形ABCD 的对角线相交于点O ,能判定该四边形是正方形的题设是( )A 、AB =CD ,AB ∥CD ,AC =BD B 、AB =CD ,BC =ADC 、OA =OB =OC =OD ,AB =BC D 、AC =BD ,AC ⊥BD15、已知一个四边形ABCD 的边长分别为a 、b 、c 、d ,其中a 、c 为对边,且 满足条件bd ac d c b a 222222+=+++,则该四边形ABCD 的对角线( )A 、相等B 、相互平分C 、相互垂直D 、垂直且相等16、正方形的边长是2cm ,则它的一个顶点和另两边中点所构成三角形的面积为( )A 、21cm 2 B 、1cm 2 C 、23cm 2 D 、2cm 2 17、一个正方形的边长为4cm ,顺次连结它的各边中点所得的四边形的面积是( ) A 、4cm 2 B 、8cm 2 C 、12cm 2 D 、16cm 218、若顺次连结四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必然是( )A 、菱形B 、对角线相互垂直的四边形C 、正方形D 、对角线相等的四边形19、以下图形中,是轴对称图形,但不是中心对称图形的是( )A 、平行四边形B 、矩形C 、菱形D 、等腰梯形20、如果矩形的四个内角的平分线能够围成一个四边形,那么这个四边形是( )A 、平行四边形B 、矩形C 、菱形D 、正方形四、解答题:(每小题10分,共60分)21、如图,E 、F 为平行四边形ABCD 对角线AC 延长线上的点,且AE =CF ,连结BF 、BE 、DF 、DE 。

初中数学八年级下期末知识点复习(含答案解析)(1)

初中数学八年级下期末知识点复习(含答案解析)(1)

一、选择题1.(0分)[ID :10229]如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,√3),则点C 的坐标为( )A .(-√3,1)B .(-1,√3)C .(√3,1)D .(-√3,-1)2.(0分)[ID :10227]若63n 是整数,则正整数n 的最小值是( )A .4B .5C .6D .73.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥4.(0分)[ID :10218]某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm 2323.5 24 24.5 25 销售量/双 1 3 3 6 2 则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )A .24.5,24.5B .24.5,24C .24,24D .23.5,245.(0分)[ID :10211]一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >6.(0分)[ID :10209]估计()-⋅1230246的值应在( ) A .1和2之间 B .2和3之间 C .3和4之间 D .4和5之间7.(0分)[ID :10147]正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .8.(0分)[ID :10191]在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差9.(0分)[ID :10186]如图,在△ABC 中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH ⊥BC 于H ,FD =8,则HE 等于( )A.20B.16C.12D.810.(0分)[ID:10181]若一个直角三角形的两边长为12、13,则第三边长为()A.5B.17C.5或17D.5或√313 11.(0分)[ID:10175]函数y=x√x+3的自变量取值范围是( )A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 12.(0分)[ID:10173]如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )A.23B.1C.32D.213.(0分)[ID:10172]如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.-2B.﹣1+2C.﹣1-2D.1-214.(0分)[ID:10170]如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法不一定成立的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD15.(0分)[ID:10159]将根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,设筷子露在杯子外面的长度hcm,则h的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤二、填空题16.(0分)[ID :10325]将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__.17.(0分)[ID :10321]如图,在▱ABCD 中,∠D =120°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE =AB ,则∠EBC 的度数为_______.18.(0分)[ID :10316]45与最简二次根式321a -是同类二次根式,则a =_____.19.(0分)[ID :10311]若2(3)x -=3-x ,则x 的取值范围是__________.20.(0分)[ID :10299]已知y 关于x 的函数图象如图所示,则当y <0时,自变量x 的取值范围是______.21.(0分)[ID :10286]一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.22.(0分)[ID :10268]在三角形ABC 中,点,,D E F 分别是,,BC AB AC 的中点,AH BC ⊥于点H ,若50DEF ∠=,则CFH ∠=________.23.(0分)[ID :10256]已知一次函数y=kx+b 的图象如图,则关于x 的不等式kx+b >0的解集是______.24.(0分)[ID :10249]如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______25.(0分)[ID :10247]已知数据:﹣1,4,2,﹣2,x 的众数是2,那么这组数据的平均数为_____.三、解答题26.(0分)[ID :10408]如图,在平面直角坐标系中,直线4y x =-+过点(6,m)A 且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与3y x =平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.27.(0分)[ID :10383]已知正方形 ABCD 的对角线 AC ,BD 相交于点 O .(1)如图 1,E ,G 分别是 OB ,OC 上的点,CE 与 DG 的延长线相交于点 F . 若 DF ⊥CE ,求证:OE =OG ;(2)如图 2,H 是 BC 上的点,过点 H 作 EH ⊥BC ,交线段 OB 于点 E ,连结DH 交 CE 于点 F ,交 OC 于点 G .若 OE =OG ,①求证:∠ODG =∠OCE ;②当 AB =1 时,求 HC 的长.28.(0分)[ID:10342]已知:如图,在▱ABCD中,设BA=a,BC=b.(1)填空:CA=(用a、b的式子表示)(2)在图中求作a+b.(不要求写出作法,只需写出结论即可)29.(0分)[ID:10339]如图,四边形ABCD的对角线AC⊥BD,垂足为O,点E,F,G,H 分别是AB,BC,CD,DA的中点.求证:四边形EFGH是矩形.∆中,D是BC边上一点,E是AD的中点,过30.(0分)[ID:10335]如图所示,ABC=,连接BF.点A作BC的平行线交CE的延长线于F,且AF BD(1)求证:D是BC的中点;=,试判断四边形AFBD的形状,并证明你的结论.(2)若AB AC【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.D3.A4.A5.B6.B7.B8.D9.D10.D11.B12.B13.D14.D15.C二、填空题16.y=3x+2【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后可得y=3x﹣1+3=3x+2故答案为y=3x+217.45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°AB∥CD得出∠BAD =180°﹣∠D=60°由等腰三角形的性质和三角形内角和定理求出∠ABE=75°即可得出∠EBC的度数【详解18.3【解析】【分析】先将化成最简二次根式然后根据同类二次根式得到被开方数相同可得出关于的方程解出即可【详解】解:∵与最简二次根式是同类二次根式∴解得:故答案为:【点睛】本题考查了最简二次根式的化简以及19.【解析】试题解析:∵=3﹣x∴x-3≤0解得:x≤320.﹣1<x<1或x>2【解析】【分析】观察图象和数据即可求出答案【详解】y<0时即x轴下方的部分∴自变量x的取值范围分两个部分是−1<x<1或x>2【点睛】本题考查的是函数图像熟练掌握图像是解题的关键21.①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0a<0所以当x>3时相应的x的值y1图象均低于y2的图象【详解】根据图示及数据可知:①k<0正确;②a<0原来的说法错误;③方22.80°【解析】【分析】先由中位线定理推出再由平行线的性质推出然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF最后由三角形内角和定理求出【详解】∵点分别是的中点∴(中位线的性质)又∵∴(两直23.【解析】【分析】直接利用一次函数图象结合式kx+b>0时则y的值>0时对应x的取值范围进而得出答案【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2故答案为:x<2【点睛】此题主要考查了一24.—1【解析】【分析】首先根据勾股定理计算出AC的长进而得到AE的长再根据A点表示-1可得E点表示的数【详解】∵AD长为2AB长为1∴AC=∵A点表示-1∴E点表示的数为:-1故答案为-1【点睛】本题25.【解析】试题分析:数据:﹣142﹣2x的众数是2即的2次数最多;即x=2则其平均数为:(﹣1+4+2﹣2+2)÷5=1故答案为1考点:1众数;2算术平均数三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A 作AD ⊥x 轴于D ,过点C 作CE ⊥x 轴于E ,根据同角的余角相等求出∠OAD=∠COE ,再利用“角角边”证明△AOD 和△OCE 全等,根据全等三角形对应边相等可得OE=AD ,CE=OD ,然后根据点C 在第二象限写出坐标即可.∴点C 的坐标为(-,1)故选A .考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质. 2.D解析:D【解析】【分析】 63n 63n 273n ⨯7n 7n 是完全平方数,满足条件的最小正整数n 为7.【详解】 63n 273n ⨯7n 7n∴7n 7n 是完全平方数;∴n 的最小正整数值为7.故选:D .【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.a b ab =b b a a=.解题关键是分解成一个完全平方数和一个代数式的积的形式. 3.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.4.A解析:A【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5, 故选A .【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.5.B解析:B【解析】【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断【详解】∵将直线1l 向下平移若干个单位后得直线2l ,∴直线1l ∥直线2l ,∴12k k =,∵直线1l 向下平移若干个单位后得直线2l ,∴12b b >,∴当x 5=时,12y y >故选B .【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.6.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】(==2,而,所以2<2<3,所以估计(2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.7.B解析:B【解析】【分析】=的函数值y随x的增大而增大判断出k的符号,再根据一次函数先根据正比例函数y kx的性质进行解答即可.【详解】解:正比例函数y kx=的函数值y随x的增大而增大,>,<,∴-k k00=-的图象经过一、三、四象限.∴一次函数y x k故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k的取值范围.8.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

北师大版八年级数学 下册第一章:三角形的证明 期末复习题

北师大版八年级数学 下册第一章:三角形的证明 期末复习题

北师大版八年级数学下册第一章:三角形的证明期末复习题一、选择题(每小题3分,共30分)1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是(A)A.HL B.ASA C.SAS D.AAS2.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为(A)A.35° B.40°C.45°D.50°3.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.已知△PAB的周长为14,PA=4,则线段AB的长度为(A)A.6 B.5 C.4 D.34.在△ABC中,AB=AC=2,D为BC的中点,∠C=30°,则AD的长为(C)A. 3B. 2 C.1 D.25.如图,在△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为(B)A.12 B.9 C.8 D.66.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为(A)A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对7.若等腰三角形的一个角是80°,则它顶角的度数是(B)A.80° B.80°或20°C.80°或50°D.20°8.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠ACD交AB于点E,则下列结论一定成立的是(C)A.BC=EC B.EC=BE C.BC=BE D.AE=EC9.如图,在△ABC中,∠C=90°,∠1=∠2,CD=1.5,BD=2.5,则AC的长为(C)A.5 B.4 C.3 D.2e10.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于点E ,交AC 于点F ,过点O 作OD ⊥AC 于点D ,下列四个结论:①EF =BE +CF ; ②∠BOC =90°+12∠A ;③点O 到△ABC 各边的距离相等; ④设OD =m ,AE +AF =n ,则S △AEF =mn. 其中正确的结论是(A) A .①②③B .①②④C .②③④D .①③④二、填空题(每小题3分,共21分)11.在△ABC 中,AB =AC ,点D 是BC 的中点.若∠B =50°,则∠DAC 的度数是40°. 12.如果三角形三边长分别为6 cm ,8 cm ,10 cm ,那么它最短边上的高为8cm. 13.如图,在△ABC 中,CD 平分∠ACB ,DE ∥BC 交AC 于点E.若DE =7,AE =5,则AC 的长为12.14.如图,在锐角△ABC 中,直线PL 为BC 的垂直平分线,射线BM 为∠ABC 的平分线,PL 与BM 相交于点P.若∠PBC =30°,∠ACP =20°,则∠A 的度数为70°.15.已知在Rt △ABC 中,∠C =90°,AC =BC ,直线m 经过点C ,分别过点A ,B 作直线m 的垂线,垂足分别为点E ,F.若AE =3,AC =5,则线段EF 的长为1或7.16.已知△ABC ≌△DEF ,BC =EF =6 cm ,△ABC 的面积为18 cm 2,则EF 边上的高的长是6cm.17.腰长为5,高为4的等腰三角形的底边长为三、解答题(共69分)18.已知△ABN 和△ACM 位置如图所示,AB =AC ,AD =AE ,∠1=∠2.求证: (1)BD =CE ;(2)∠M =∠N.【解答】 证明:(1)在△ABD 和△ACE 中, ⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE(SAS). ∴BD =CE. (2)∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE , 即∠BAN =∠CAM. 由(1),得△ABD ≌△ACE , ∴∠B =∠C. 在△ACM 和△ABN 中, ⎩⎪⎨⎪⎧∠C =∠B ,AC =AB ,∠CAM =∠BAN , ∴△ACM ≌△ABN(ASA).19.如图,AB =AD ,BC =DC ,点E 在AC 上.求证: (1)AC 平分∠BAD ;(2)BE =DE.证明:(1)在△ABC 和△ADC 中, ⎩⎪⎨⎪⎧AB =AD ,AC =AC ,BC =DC ,∴△ABC ≌△ADC(SSS).∴∠BAC =∠DAC ,即AC 平分∠BAD. (2)由(1)得,∠BAE =∠DAE.在△BAE 和△DAE 中,⎩⎪⎨⎪⎧BA =DA ,∠BAE =∠DAE ,AE =AE ,∴△BAE ≌△DAE(SAS).∴BE =DE.20.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连接AD ,BE 平分∠ABC 交AC 于点E ,过点E 作EF ∥BC 交AB 于点F.(1)若∠C =36°,求∠BAD 的度数; (2)求证:FB =FE.解:(1)∵AB =AC , ∴∠C =∠ABC. ∵∠C =36°,∵BD =CD ,AB =AC , ∴AD ⊥BC. ∴∠ADB =90°.∴∠BAD =90°-36°=54°. (2)证明:∵BE 平分∠ABC , ∴∠ABE =∠CBE =12∠ABC.∵EF ∥BC , ∴∠FEB =∠CBE. ∴∠FBE =∠FEB. ∴FB =FE.21.如图,在△ABC 中,AB =AC ,D 为CA 延长线上一点,DE ⊥BC ,交线段AB 于点F.请找出一组相等的线段(AB =AC 除外),并加以证明.解:AD =AF. 证明:∵AB =AC , ∴∠B =∠C. ∵DE ⊥BC ,∴∠BEF =∠DEC =90°.∴∠BFE +∠B =90°,∠D +∠C =90°. ∴∠BFE =∠D. ∵∠BFE =∠DFA ,∴AD=AF.22.如图,在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为E,F,且DE=DF.求证:△ABC是等边三角形.证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥BC,∴∠DEA=∠DFC=90°.∵D为AC的中点,∴DA=DC.又∵DE=DF,∴Rt△ADE≌Rt△CDF(HL).∴∠A=∠C.∴∠A=∠B=∠C.∴△ABC是等边三角形.23.按照有关规定:距高铁轨道200米以内的区域内不宜临路新建学校、医院、敬老院和集中住宅区等噪声敏感建筑物.如图是一个小区平面示意图,长方形ABEF为一新建小区,直线MN为高铁轨道,C,D 是直线MN上的两点,点C,A,B在同一直线上,且DA⊥CA,CD=2AD.小王看中了①号楼A 单元的一套住宅,与售楼人员的对话如下:小王心中一算,发现售楼人员的话不可信,请你用所学的数学知识说明理由. 解:过点A 作AG ⊥MN ,垂足为G. ∵CD =2AD =440,DA ⊥CA , ∴AC =4402-2202=220 3. ∵S △ACD =12AC ·AD =12CD ·AG ,∴AG =2203×220440=1103≈191<200.∴A 单元用户会受到影响,售楼人员的话不可信.24.如图,在△ABC 中,AB =AC ,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E. (1)求证:△ABD 是等腰三角形; (2)若∠A =40°,求∠DBC 的度数;(3)若AE =6,△CBD 的周长为20,求△ABC 的周长.解:(1)证明:∵AB 的垂直平分线MN 交AC 于点D , ∴DB =DA.∴△ABD 是等腰三角形.(2)∵△ABD 是等腰三角形,∠A =40°, ∴∠ABD =∠A =40°,∠ABC =∠C =(180°-40°)÷2=70°. ∴∠DBC =∠ABC -∠ABD =70°-40°=30°. (3)∵AB 的垂直平分线MN 交AC 于点D ,AE =6,∴AB=2AE=12,BD=AD.∵△CBD的周长为20,∴BD+CD+BC=20.∴AC+BC=20.∴△ABC的周长为AB+AC+BC=12+20=32.25.已知点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在BC上,求证:AB=AC;(2)如图2,若点O在△ABC内部,求证:AB=AC;(3)猜想,若点O在△ABC的外部,AB=AC成立吗?请说明理由.解:(1)证明:过点O作OD⊥AB于点D,OE⊥AC于点E,则OD=OE,∠ODB=∠OEC=90°. 又∵OB=OC,∴Rt△BOD≌Rt△COE(HL).∴∠B=∠C.∴AB=AC.(2)证明:过点O作OD⊥AB于点D,OE⊥AC于点E,则OD=OE,∠ODB=∠OEC=90°. 又∵OB=OC,∴Rt△BOD≌Rt△COE(HL).∴∠DBO=∠ECO.∵OB=OC,∴∠OBC=∠OCB.∴∠DBO+∠OBC=∠ECO+∠OCB,即∠ABC=∠ACB.∴AB=AC.(3)不一定成立.理由:如图3,过点O作OD⊥AB于点D,OE⊥AC于点E,则OD=OE,∠ODB=∠OEC=90°.又∵OB=OC,∴Rt△BOD≌Rt△COE(HL).∴∠DBO=∠ECO.∵OB=OC,∴∠OBC=∠OCB.∴∠DBC=∠ECB.∴∠ABC=∠ACB.∴AB=AC.如图4,可知AB≠AC.∴若点O在△ABC的外部时,AB=AC不一定成立.。

八年级下学期数学试题及答案

八年级下学期数学试题及答案

八年级下学期数学试题班级:_______姓名:________考号:_________成绩________第I卷(选择题)一、单选题A. C. D.,由下列条件不能判断它是直角三角形的是(A. B. -+15.)6.则等于()A. B. C. D.7.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A. 1B.C. 4-2D. 3-48.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为(?)A. 6B. 10C. 8D. 129.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是(???? )A. 2B.C.D. 210.平行四边形四个内角的角平分线所围成的四边形是()的卷(非选择题)最简二次根式与-+16.如图,正方形ABCD的边长为5,点E在边AB上,且BE=2.若点P在对角线BD上移动,则PA+PE的最小值是__________.17.将五个边长都为2的正方形按如图所示摆放,点A1、A2、A3、A4分别是四个正方形的中心,则图中四块阴影部分的面积的和为______.18.如图,在正方形ABCD中,E是对角线BD上一点,且满足BE=BC.连接CE并延长交AD于点F,连接AE,过B点作BG⊥AE于点G,延长BG交AD于点H.在下列结论中:①AH=DF;②∠AEF=45°;③S四边形EFHG=S△DEF+S△AGH;④△AEF≌△CDE其中正确的结论有?______ (填正确的序号)三、解答题19.计算下列各题(1)(2)20.如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.AB = BC,D、E、F分别是BC23.交于=,求24.CP,求25.满足=0,C上一26.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.参考答案与解析1.C【解析】分析:根据二次根式有意义的条件,被开方数为非负数,可直接列不等式求解.详解:∵式子有意义详解:根据二次根式的加减,可由与不是同类二次根式,因此不能计算,=,故不正确;故选:B.点睛:此题主要考查了二次根式的化简,关键是灵活利用二次根式的性质对式子变形即可,比较简单,是常考题.3.A【解析】分析:根据直角三角形的概念,角的特点和勾股定理的逆定理逐一判断即可.详解:根据直角三角形的两锐角互余,可知180°×=75°<90°,不是直角三角形,故正确;根据三角形的内角和定理,根据∠A+∠B+∠C=180°,且∠A=∠B+∠C,可得c=x5.B【解析】先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB=3,从而求出C=BC-BE=5-3=2.故选:A.点睛:本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB是解决问题的关键.6.C【解析】试题解析:∵四边形MBND是菱形,∴MD=MB.x=yMD=MB=2x-y=y∴.故选C.∵∠BAE=22.5°,∴∠DAE=90°-∠BAE=90°-22.5°=67.5°,在△ADE中,∠AED=180°-45°-67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD-DE=4-4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,BE=4=4-2解之得:x=3,∴AF=AB-FB=8-3=5,∴S△AFC=?AF?BC=10.故选:B.点睛:本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.9.C【解析】试题分析:由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCPCP=1=∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.10.B【解析】分析:作出图形,根据平行四边形的邻角互补以及角平分线的定义求出∠AEB=90°,同理可求∠F、∠FGH、∠H都是90°,再根据四个角都是直角的四边形是矩形解答.详解:∵四边形ABCD是平行四边形,ABE=∠BAD+∠【解析】试题分析:在△ABC和△CDE中,EC=AC∠ECD=∠CAB∠ACB=∠CED∴△ABC≌△CDE,∴AB=CD,BC=DE,∴AB2+DE2=DE2+CD2=CE2=3,222∴三角形(2017)是第673个循环组的第一个三角形,直角顶点的横坐标为:12×672=8064,∴三角形(2017)的直角顶点的坐标是(8064,0).故选:C.点睛:本题考查了坐标与图形变化-旋转,仔细观察图形,发现每3个三角形为一个循环组依次循环是解题的关键,也是本题的难点.13.-1【解析】分析:根据同类二次根式的性质,化为最简二次根式后,被开方数相同,可得关于a的方程即可求解.详解:(2-)(2+)=22-()2=4-5=-1故答案为:-1.点睛:此题主要考查了二次根式的运算,关键是观察式子的特点—利用平方差公式计算即可,比较简单.16.【解析】分析:作出点E关于BD的对称点E′交BC于E′,连接AE′与BDAE′=故答案为:.点睛:此题考查了轴对称-最短线路问题,以及正方形的性质,熟练掌握各自的性质是解本题的关键.17.4【解析】分析:连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF≌△NAE,进而可得四边形AENF的面积等于△NAP的面积,同理可得答案.详解:如图,连接AP,AN,点A是正方形的对角线的交则AP=AN,∠APF=∠ANE=45°,,而正方形的面积为故答案为:4.点睛:本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.18.①②【解析】分析:?先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误.再根据△AEF最长边AE和△CED的最长边CD不相等,可判断不是全等三角形.在△ADE和△CDE中,∴△ADE≌△CDE,∴∠ABH=∠DCF,在Rt△ABH和Rt△DCF中,∵AH=HE,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,点睛:此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.19.(1) 4;(2)+2【解析】分析:(1)根据二次根式的化简、分母有理化、零次幂的性质可求解;(2)根据二次根式的化简、零次幂的性质,绝对值的性质,负整指数幂的性质可求解.详解:(1)=2×+3-1)-1-=+2要熟练掌握,21.-【解析】分析:先算除法,后算减法,分式除以分式,把这个分式的分子分母颠倒,再和这个分式相乘.解析:当时,原式=22.(1)证明见解析;(2)24cm.【解析】试题分析:(1)可根据菱形的定义“一组邻边相等的平行四边形是菱形”,先证明四边形BFED是平行四边形,然后再证明四边形的邻边相等即可.(2)F是AB的中点,有了AB的长也就求出了菱形的边长BF的长,那么菱形BDEFAB【解析】分析:(1)根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;(2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解:(1)证明:在矩形ABCD中,AB∥CD,∴∠BAC=∠FCO,在△AOE和△COF中,,AC=2BC=2点睛:本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.24.135°【解析】试题分析:根据同角的余角相等求出∠ACP=∠BCD,再利用“边角边”证明△ACP和△BCD全等,判断出△PCD是等腰直角三角形,再根据全等三角形对应边相等可得AP=BD,然后利用勾股定理逆定理判断出△BPD是直角三角形,∠BPD=90°,再根据∠BPC=∠BPD+∠CPD代入数据计算即可得解.试题解析:解:连接BD.【解析】分析:(1)根据非负数的性质即可求得a、b的值,从而得到△AOB是等腰直角三角形,据此可求;(2)根据等腰直角三角形的性质以及三角形的外角的性质可以得到∠POC=∠DPE,即可得证△POC≌△DPE,则OC=PE,OC的长度可根据等腰直角三角形的性质可求;(3)利用等腰三角形的性质,以及外角的性质,证得∠POC=∠DPE,即可得到△POC≌△DPE,根据全等三角形的对应边相等,即可求得OD的长,从而求得D的坐标.详解:(1)根据题意得:a=b,a-3=0.解得:a=b=3,∴OA=OBPOC≌△DPE. ∴OC=PEOC=AB=3,PDO=∴∠APD=67.5°-45°=22.5°, ∴∠BPO=180°-∠OPD-∠APD=112.5°∴∠PDA=∠BPO∴在△POB和△DPA中,∴△POB≌△DPA(AAS)PA=OB= 3,,DA=PB= 6-3∴ OD=OA-DA=3-(6-3)=6-6∴ D(6-6,0)点睛:此题属于一次函数的综合题,涉及的知识有:全等三角形的判定与性质,中,∴△BAD ≌ △CA∵BD+CD=BC,∴CF+CD=BC;(3)、①CD-CF =BC.②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,∴∠BAD=∠CAF,则在△BAD和△CAF中,∴△BAD ≌ △CAF(SAS),∴∠ABD=∠ACF,∵∠ABC=45°,∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=90°,∴△FCD是直角三角形.∵正方形ADEF的边长为且对角线AE、DF相交于点O,。

初二数学八下一次函数所有知识点总结和常考题型练习题1

初二数学八下一次函数所有知识点总结和常考题型练习题1

一次函数知识点(一)函数1.变量: 在一个变化过程中可以取不同数值的量。

常量: 在一个变化过程中只能取同一数值的量。

2.函数:一般的, 在一个变化过程中, 如果有两个变量x和y, 并且对于x的每一个确定的值, y都有唯一确定的值与其对应, 那么我们就把x称为自变量, 把y称为因变量, y是x的函数。

判断y是否为x的函数, 只要看x取值确定的时候, y是否有唯一确定的值与之对应。

3.确定函数定义域的方法:(1)关系式为整式时, 函数定义域为全体实数;(2)关系式含有分式时, 分式的分母不等于零;(3)关系式含有二次根式时, 被开放方数大于等于零;(4)关系式中含有指数为零的式子时, 底数不等于零;(5)实际问题中, 函数定义域还要和实际情况相符合, 使之有意义。

4、函数的解析式: 用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式5.函数的图像一般来说, 对于一个函数, 如果把自变量与函数的每对对应值分别作为点的横、纵坐标, 那么坐标平面内由这些点组成的图形, 就是这个函数的图象.6.描点法画函数图形的一般步骤第一步: 列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中, 以自变量的值为横坐标, 相应的函数值为纵坐标, 描出表格中数值对应的各点);第三步: 连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

7、函数的表示方法列表法: 一目了然, 使用起来方便, 但列出的对应值是有限的, 不易看出自变量与函数之间的对应规律。

(二)解析式法: 简单明了, 能够准确地反映整个变化过程中自变量与函数之间的相依关系, 但有些实际问题中的函数关系, 不能用解析式表示。

(三)图象法:形象直观, 但只能近似地表达两个变量之间的函数关系。

(四)一次函数2.一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线, 并且只能画出一条直线, 即两点确定一条直线, 所以画一次函数的图象时, 只要先描出两点, 再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0, b ), (- , 0).即横坐标或纵坐标为0的点.3.(1)两直线平行⇔21k k =且21b b ≠ (2)两直线重合⇔21k k =且21b b =4.用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式并检验.一次函数练习1.下列y 关于x 的函数中, 是正比例函数的为( ) A.y =x2; B.y = ; C.y = ; D.y = .2. 在函数y=中, 函数的自变量x的取值范围是()A.x≥0B.x≠-3C.x>0D.x≥0且x≠-33.已知点P(a+1, 2a﹣3)在第一象限, 则a的取值范围是()A. a<﹣1B. a>C. ﹣<a<1D. ﹣1<a<4.一次函数的图像不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.一条直线y=kx+b, 其中k+b=﹣5.kb=6, 那么该直线经过()A. 第二、四象限B. 第一、二、三象限C. 第一、三象限D. 第二、三、四象限6. 一次函数y=kx+b(k≠0)的图象如右图所示, 当y>0时, x的取值范围是()A.x<0B.x>0C.x<2D.x>27.如图, 在等腰△ABC中, 直线l垂直底边BC, 现将直线l沿线段BC从B点匀速平移至C点, 直线l与△ABC的边相交于E、F两点.设线段EF的长度为y, 平移时间为t, 则下图中能较好反映y与t的函数关系的图象是()A. B. C. D.8.甲、乙两车从A城出发匀速行驶至B城. 在整个行驶过程中, 甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示. 则下列结论: ①A, B两城相距300千米;②乙车比甲车晚出发1小时, 却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时, t = 或. 其中正确的结论有()A. 1个B. 2个C. 3个D. 4个第9题图第11题图9.若函数y=kx﹣b的图象如图所示, 则关于x的不等式k(x﹣3)﹣b>0的解集为()A. x<2B. x>2C. x<5D. x>510. 某油箱容量为60 L的汽车, 加满汽油后行驶了100 Km时, 油箱中的汽油大约消耗了, 如果加满汽油后汽车行驶的路程为xKm, 邮箱中剩油量为yL, 则y与x之间的函数解析式和自变量取值范围分别是()A. y=0.12x, x>0 B. y=60﹣0.12x, x>0C. y=0.12x, 0≤x≤500D. y=60﹣0.12x, 0≤x≤50011.如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD. 若点B的坐标为(2,0),则点C的坐标为()A. (﹣1, )B. (﹣2, )C. (, 1)D. (, 2)12.若关于的一元二次方程有两个不相等的实数根,则一次函数的大致图象可能是()13.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A. B. C. D.二、填空题1.函数的自变量x的取值范围是.2.已知函数是正比例函数, 则a=, b=.3. y+2与x+1成正比例, 且当x=1时, y=4, 则当x=2时, y=__________.4. 已知一次函数y=2x-6与y=-x+3的图象交于点P, 则点P的坐标为.5.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32. 如果某一温度的摄氏度数是25℃, 那么它的华氏度数是________℉.6.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如右图所示,则小明的骑车速度是___________千米/分钟.7.已知直线与轴的交点在A(2,0), B(3,0)之间(包括A.B两点), 则的取值范围是。

北师大版八年级数学下册第五章分式单元复习试题1(附答案).doc

北师大版八年级数学下册第五章分式单元复习试题1(附答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】第五章复习一、填空题 1.当x 时,分式2+x x有意义。

2.在函数y=22-x 中,自变量x 的取值范围是 。

3.当m = 时,关于x 的分式方程213x mx +=--无解4.当x = 时,分式33x x --为0。

5.约分:112--x x = 。

6.化简211xx x -÷的结果是 . 7.方程423532=-+-xx x 的解是 . 8.某市对一段全长1500米的道路进行改造.原计划每天修x 米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了 天。

二.、选择题 9、代数式42,1,3,31nm b a b a ,x -++π中,分式有( ) A 、1个; B 、2个; C 、3个; D 、4个。

10.若分式122--x x 的值为0,则x 的值为( ) A. 1B. -1C. ±1D.211.计算22()ab ab的结果为( ) A.bB .aC.1 D1b12、将分式yx x +2中的x 、y 的值同时扩大3倍,则 扩大后分式的值( )A 、扩大3倍;B 、缩小3倍;C 、保持不变;D 、无法确定。

13.计算()a b a bb a a+-÷的结果为( )A .a b b - B .a b b + C .a b a - D .a ba+ 14、小马虎在下面的计算中只作对了一道题,他做对的题目是( )A 、b a b a 22=⎪⎭⎫ ⎝⎛ B 、23a a a =÷ C 、b a b a +=+211 D 、1-=---y x y x 15.一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时. A.11a b +; B.1ab ; C.1a b +; D.aba b+ 三.简答题 16.(212x x --2144x x -+)÷222x x -17、解方程:22221=-+-xxx18.先化简,再求值:221111121x x x x x +-÷+--+,其中31x =.19.(课堂上,李老师出了这样一道题:已知352008x -=,求代数式)1x 3x 1(1x 1x 2x 22+-+÷-+-,小明觉得直接代入计算太繁了,请你来帮他解决,并写出具体过程。

第11章反比例函数(1)(解析版)苏科版八年级数学下册期末复习提升训练

第11章反比例函数(1)(解析版)苏科版八年级数学下册期末复习提升训练

第11章 反比例函数(1)-2020-2021学年八年级数学下册期末复习提升训练(苏科版)一、选择题1、下列函数:①2y x =-,②3x y =,③1y x -=,④21y x =+,y 是x 的反比例函数的个数有( ) A .0个B .1个C .2个D .3个2、在反比例函数3my x-=的图象在某象限内,y 随着x 的增大而减小,则m 的取值范围是( ) A .3m >-B .3m <-C .3m >D .3m <3、如图,函数y =(x >0),y =(x >0)的图象将第一象限分成了A ,B ,C 三个部分.下列各点中,在B 部分的是( )A .(1,1)B .(3,4)C .(3,1)D .(4,2)4、反比例函数y xky =与y =﹣kx +1(k ≠0)在同一坐标系的图象可能为( ) A .B . C .D .5、若(﹣1,y 1),(2,y 2),(3,y 3)三点均在反比例函数xm y 12+=的图象上,则下列结论中正确的是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 1>y 2D .y 2>y 3>y 16、随着私家车的增加,交通也越来越拥挤,通常情况下,某段公路上车辆的行驶速度(千米/时)与路上每百米拥有车的数量x (辆)的关系如图所示,当x ≥8时,y 与x 成反比例函数关系,当车速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,公路上每百米拥有车的数量x 应该满足的范围是( )A .x <32B .x ≤32C .x >32D .x ≥327、如图,在平面直角坐标系中,点A 是函数(0)ky x x=<图象上的点,过点A 作y 轴的垂线交y 轴于点B ,点C 在x 轴上,若ABC ∆的面积为1,则k 的值为( ) A .1 B .2 C .1-D .2-8、在平面直角坐标系中,矩形ABCD 的顶点A (1,0),D (0,2),点B 在第一象限,BD ∥x 轴,若函数)0,0(>>=x k xky 的图象经过矩形ABCD 的对角线的交点,则k 的值为( )A .4B .5C .8D .109、如图,两个反比例函数y=x 4和y=x2在第一象限内的图象分别是C 1和C 2,设点P 在C 1上,P A ⊥x 轴于点A ,交C 2于点B ,则△POB 的面积为( )A .1B .2C .4D .无法计算10、如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD 为( )A .36B .12C .6D .3二、填空题11、已知函数y =(m +1)22-m x是反比例函数,则m 的值为 .12、反比例函数y =18x的比例系数为_____. 13、已知反比例函数y =2k x-的图象位于第一、第三象限,则k 的取值范围是_____. 14、已知1(A x ,1)y ,2(B x ,2)y 都在反比例函数6y x=的图象上.若124x x =-,则12y y 的值为___.15、已知反比例函数12y x =-,当43y ≤,且0y ≠时,自变量x 的取值范围为_____________.16、如图,等腰直角△ABC 位于第二象限,BC =AC =2,直角顶点C 在直线y =﹣x 上,且点C 的横坐标为﹣3,边BC ,AC 分别平行于x 轴、y 轴.若双曲线y=xk与△ABC 的边AB 有2个公共点,则k 的取值范围为 .17、已知A 、B 两点分别在反比例函数2332m y m x -⎛⎫=≠ ⎪⎝⎭和3223m y m x -⎛⎫=≠ ⎪⎝⎭的图象上,且点A 与点B 关于y 轴对称,则m 的值为____. 18、如图,是反比例函数y=x k 1和y=xk2(k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若S △AOB =2,则k 2﹣k 1的值为 .19、如图,点A 为函数y =9x (x >0)图象上一点,连接OA ,交函数y =1x(x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为______.20、如图,矩形AOCB 的两边OC 、OA 分别位x 轴、y 轴上,点B 的坐标为B (203-,5),D 是AB 边上的一点.将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析式是_____.三、解答题21、已知y 与x ﹣1成反比例,且当x =4时,y =1. (1)求y 与x 的函数关系式;(2)判断点(﹣2,﹣1)是否在该函数图象上.22、如图,一次函数y =kx +b 的图象与反比例函数y=xm的图象交于点A (1,4)、B (4,n ). (1)求这两个函数的表达式; (2)请结合图象直接写出不等式kx +b ≤xm的解集; (3)若点P 为x 轴上一点,△ABP 的面积为6,求点P 的坐标.23、如图,已知A (-4,n ),B (2,-4)是一次函数y 1=kx+b 的图像和反比例函数2ky x=的图像的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线与x 轴的交点C 的坐标及△AOB 的面积; (3)当x 取何值时,y 1=y 2;当x 取何值时,y 1>y 2.24、如图,周长为20的菱形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标是(6,0). (1)求点C 的坐标; (2)若反比例函数xk y 3+=的图象经过点C ,求k 的值.25、菱形ABCD 的顶点C 与原点O 重合,点B 落在y 轴正半轴上,点A 、D 落在第一象限内,且D 点坐标为(4,3). (1)如图1,若反比例函数y =(x >0)的图象经过点A ,求k 的值;(2)菱形ABCD 向右平移t 个单位得到菱形A 1B 1C 1D 1,如图2.①请直接写出点B 1、D 1的坐标(用含t 的代数式表示):B 1 、D 1 ;②是否存在反比例函数y =(x >0),使得点B 1、D 1同时落在y =(x >0)的图象上?若存在,求n 的值;若不存在,请说明理由.26、某小学为每个班级配备了一种可加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10C ︒,待加热到100C ︒,饮水机自动停止加热,水温开始下降,水温(C)y ︒与通电时间x (分)的关系如下图所示,回答下列问题: (1)当0≤x ≤8时,求y 与x 之间的函数关系式;(2)求出图中a 的值;(3)某天早上7:20,李优老师将放满水后的饮水机电源打开,若他想在8:00上课前能喝到不超过40C ︒的温开水,问:他应在什么时间段内接水?第11章 反比例函数(1)(解析)-2020-2021学年八年级数学下册期末复习提升训练(苏科版)一、选择题1、下列函数:①2y x =-,②3x y =,③1y x -=,④21y x =+,y 是x 的反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个【分析】根据题意写出函数表达式再判断它们的关系则可. 【答案】解:①y =x ﹣2,y 是x 的一次函数,故错误; ②y =,y 是x 的正比例函数,故错误; ③y =x ﹣1,y 是x 的反比例函数,故正确;④y =,y 是x +2的反比例函数,故错误.综上所述,正确的结论只有1个. 故选:B .2、在反比例函数3my x-=的图象在某象限内,y 随着x 的增大而减小,则m 的取值范围是( ) B .3m >- B .3m <- C .3m > D .3m <【分析】根据反比例函数的性质可得3﹣m >0,再解不等式即可. 【答案】解:∵反比例函数y =的图象在每个象限内,y 随着x 的增大而减小,∴3﹣m >0, 解得,m <3. 故选:D .3、如图,函数y =(x >0),y =(x >0)的图象将第一象限分成了A ,B ,C 三个部分.下列各点中,在B 部分的是( )A .(1,1)B .(3,4)C .(3,1)D .(4,2)【分析】分别将x =1、x =3、x =4代入两个反比例函数的解析式求得y 的值,即可确定在B 部分的点. 【答案】解:把x =1代入y =(x >0),y =(x >0)中,得:y =2和y =6,把x =3代入y =(x >0),y =(x >0)中,得:y =和y =2,把x =4代入y =(x >0),y =(x >0)中,得:y =和y =,∴点(3,1)在B 部分, 故选:C .4、反比例函数y xky与y =﹣kx +1(k ≠0)在同一坐标系的图象可能为( ) A .B . C .D .【分析】分别根据反比例函数与一次函数的性质对各选项进行逐一分析即可.【解答】解:A 、由反比例函数的图象可知,k >0,一次函数图象呈上升趋势且交与y 轴的正半轴,﹣k >0,即k <0,故本选项错误;B 、由反比例函数的图象可知,k >0,一次函数图象呈下降趋势且交与y 轴的正半轴,﹣k <0,即k >0,故本选项正确;C 、由反比例函数的图象可知,k <0,一次函数图象呈上升趋势且交与y 轴的负半轴(不合题意),故本选项错误;D 、由反比例函数的图象可知,k <0,一次函数图象呈下降趋势且交与y 轴的正半轴,﹣k <0,即k >0,故本选项错误. 故选:B .5、若(﹣1,y 1),(2,y 2),(3,y 3)三点均在反比例函数xm y 12+=的图象上,则下列结论中正确的是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 1>y 2D .y 2>y 3>y 1【分析】先判断出反比例函数xm y 12+=的图象所在的象限,再根据图象在每一象限的增减性及每一象限坐标的特点进行判断即可.【答案】解:∵m 2+1>0,∴反比例函数xm y 12+=的图象在一、三象限,∵点(﹣1,y 1)的横坐标为﹣1<0,∴此点在第三象限,y 1<0;∵(2,y 2),(3,y 3)的横坐标3>2>0,∴两点均在第一象限y 2>0,y 3>0, ∵在第一象限内y 随x 的增大而减小, ∴y 2>y 3>0,∴y 2>y 3>y 1. 故选:D .6、随着私家车的增加,交通也越来越拥挤,通常情况下,某段公路上车辆的行驶速度(千米/时)与路上每百米拥有车的数量x (辆)的关系如图所示,当x ≥8时,y 与x 成反比例函数关系,当车速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,公路上每百米拥有车的数量x 应该满足的范围是( )A .x <32B .x ≤32C .x >32D .x ≥32【分析】利用已知反比例函数图象过(8,80),得出其函数解析式,再利用y =20时,求出x 的最值,进而求出x 的取值范围.【答案】解:设反比例函数的解析式为:y =(x ≥8),则将(8,80),代入得:y =,故当车速度为20千米/时,则20=,解得:x =32,故高架桥上每百米拥有车的数量x 应该满足的范围是:x ≤32. 故选:B .7、如图,在平面直角坐标系中,点A 是函数(0)ky x x=<图象上的点,过点A 作y 轴的垂线交y 轴于点B ,点C 在x 轴上,若ABC ∆的面积为1,则k 的值为( ) A .1B .2C .1-D .2-【答案】D【分析】根据已知条件得到三角形ABO 的面积=12AB•OB ,由于三角形ABC 的面积=12AB•OB=1,得到|k|=2,即可得到结论.【解析】解:连接AO ∵AB ⊥y 轴,∴AB ∥CO ,∴S △AOB =12AB•OB=12k , ∵S △ABC =12AB•OB=1,∵S △AOB = S △ABC ∴112k =∴|k|=2,∵k <0,∴k=-2,故选:D .8、在平面直角坐标系中,矩形ABCD 的顶点A (1,0),D (0,2),点B 在第一象限,BD ∥x 轴,若函数)0,0(>>=x k xk y 的图象经过矩形ABCD 的对角线的交点,则k 的值为( )A .4B .5C .8D .10【分析】根据平行于x 轴的直线上任意两点纵坐标相同,可设B (x ,2).利用矩形的性质得出E 为BD 中点,∠DAB =90°.根据线段中点坐标公式得出E (21x ,2).由勾股定理得出求出x ,得到E 点坐标,代入y=xk ,利用待定系数法求出k . 【答案】解:∵BD ∥x 轴,D (0,2),∴B 、D 两点纵坐标相同,都为2,∴可设B (x ,2),∵矩形ABCD 的对角线的交点为E ,∴E 为BD 中点,∠DAB =90°.∴E (21x ,2), ∵∠DAB =90°,∴AD 2+AB 2=BD 2, ∵A (1,0),D (0,2),B (x ,2),∴12+22+(x ﹣1)2+22=x 2,解得x =5,∴E (25,2).∵反比例函数)0,0(>>=x k xk y 的图象经过点E , ∴k =⨯252=5, 故选:B . 9、如图,两个反比例函数y=x 4和y=x2在第一象限内的图象分别是C 1和C 2,设点P 在C 1上,P A ⊥x 轴于点A ,交C 2于点B ,则△POB 的面积为( )A .1B .2C .4D .无法计算【分析】根据反比例函数y=x k (k ≠0)系数k 的几何意义得到S △POA =⨯214=2,S △BOA =⨯212=1,然后利用S △POB =S △POA ﹣S △BOA 进行计算即可.【答案】解:∵P A ⊥x 轴于点A ,交C 2于点B ,∴S △POA =⨯214=2,S △BOA =⨯212=1, ∴S △POB =2﹣1=1.故选:A .10、如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD 为( )A .36B .12C .6D .3【答案】D 【解析】设△OAC 和△BAD 的直角边长分别为a 、b ,结合等腰直角三角形的性质及图象可得出点B 的坐标, 根据三角形的面积公式结合反比例函数系数k 的几何意义以及点B 的坐标即可得出结论.解:设△OAC 和△BAD 的直角边长分别为a 、b , 则点B 的坐标为(a +b ,a ﹣b ).∵点B 在反比例函数6y x=的第一象限图象上, ∴(a +b )×(a ﹣b )=a 2﹣b 2=6. ∴S △OAC ﹣S △BAD =12a 2﹣12b 2=12(a 2﹣b 2)=12×6=3. 故选D .二、填空题 11、已知函数y =(m +1)22-m x 是反比例函数,则m 的值为 .【分析】根据反比例函数的定义知m 2﹣2=﹣1,且m +1≠0,据此可以求得m 的值.【答案】解:∵y =(m +1)22-m x是反比例函数,∴m 2﹣2=﹣1,且m +1≠0,∴m =±1,且m ≠﹣1,∴m =1;故答案是:1.12、反比例函数y =18x的比例系数为_____. 【答案】18【分析】将函数解析式变形为y =18x,依据反比例函数定义即可得出答案.【详解】解:∵y =18x ﹣18x,∴反比例函数y =18x 的比例系数是18,故答案为:18.13、已知反比例函数y =2k x-的图象位于第一、第三象限,则k 的取值范围是_____. 【答案】2k >. 分析:根据“反比例函数k y x=的图象所处象限与k 的关系”进行解答即可. 【解析】∵反比例函数2k y x-=的图象在第一、三象限内, ∴20k ->,解得:2k >.故答案为2k >.14、已知1(A x ,1)y ,2(B x ,2)y 都在反比例函数6y x=的图象上.若124x x =-,则12y y 的值为___. 【答案】-9.【分析】根据反比例函数上点的特征得到1y 、2y 分别与1x 、2x 的关系,再把它们相乘,最后把12=4x x -代入即可. 【详解】将点A 和B 代入反比例函数得:116y x =,226y x =, 所以12121266363694y y x x x x ====--.故答案为-915、已知反比例函数12y x =-,当43y ≤,且0y ≠时,自变量x 的取值范围为_____________. 【答案】x <-9或x >0 【分析】求出y =43时x 的值,再根据反比例函数的性质求解即可. 【详解】解:在12y x =-中,-12<0,∴反比例函数经过第二、四象限, 令1243x -=,得:x =-9,当x >0时,y <0<43,当x <0时,若43y ≤,则x <-9, ∴x 的取值范围是:x <-9或x >0,故答案为:x <-9或x >0.16、如图,等腰直角△ABC 位于第二象限,BC =AC =2,直角顶点C 在直线y =﹣x 上,且点C 的横坐标为﹣3,边BC ,AC 分别平行于x 轴、y 轴.若双曲线y=xk 与△ABC 的边AB 有2个公共点,则k 的取值范围为 .【分析】由题意C (﹣3,3),A (﹣3,1),B (﹣1,3),直线OC 与AB 的交点坐标为E (﹣2,2),反比例函数图象经过A 或B 时,k =﹣3,反比例函数图象经过点E 时,k =﹣4,观察图象即可解决问题.【答案】解:由题意C (﹣3,3),A (﹣3,1),B (﹣1,3),直线OC 与AB 的交点坐标为E (﹣2,2),反比例函数图象经过A 或B 时,k =﹣3,反比例函数图象经过点E 时,k =﹣4,观察图象可知,双曲线y=x k 与△ABC 的边AB 有2个公共点,则k的取值范围为﹣4<k ≤﹣3. 故答案为﹣4<k ≤﹣3.17、已知A 、B 两点分别在反比例函数2332m y m x -⎛⎫=≠ ⎪⎝⎭和3223m y m x -⎛⎫=≠ ⎪⎝⎭的图象上,且点A 与点B 关于y 轴对称,则m 的值为____.【答案】1【分析】根据题意,设出点A 和点B 的坐标,再根据点A 与点B 关于y 轴对称,即可求得m 的值.【详解】解:设点A 的坐标(a ,23m a -),点B 的坐标为(b ,32m b-), ∵点A 与点B 关于y 轴对称,∴2332a b m m ab =-⎧⎪--⎨=⎪⎩ ,解得,m=1,故答案为:1.18、如图,是反比例函数y=x k 1和y=xk 2(k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若S △AOB =2,则k 2﹣k 1的值为 .【分析】设A (a ,b ),B (c ,d ),代入双曲线得到k 1=ab ,k 2=cd ,根据三角形的面积公式求出cd ﹣ab =4,即可得出答案.【答案】解:设A (a ,b ),B (c ,d ),代入得:k 1=ab ,k 2=cd ,∵S △AOB =2,∴21cd-21ab =2,∴cd ﹣ab =4,∴k 2﹣k 1=4,故答案为:4.19、如图,点A为函数y=9 x (x>0)图象上一点,连接OA,交函数y=1x(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC 的面积为______.【分析】作辅助线,根据反比例函数关系式得:S△AOD=92, S△BOE=12,再证明△BOE∽△AOD,由性质得OB 与OA的比,由同高两三角形面积的比等于对应底边的比可以得出结论.【详解】如图,分别作BE⊥x轴,AD⊥x轴,垂足分别为点E、D,∴BE∥AD,∴△BOE∽△AOD,∴22BOEAODS OBS OA=,∵OA=AC,∴OD=DC,∴S△AOD=S△ADC=12S△AOC,∵点A为函数y=9x(x>0)的图象上一点,∴S△AOD=92,同理得:S△BOE=12,∴112992BOEAODSS==,∴13OBOA=,∴23ABOA=,∴23ABCAOCSS=,∴2963ABCS⨯==,故答案为6.20、如图,矩形AOCB的两边OC、OA分别位x轴、y轴上,点B的坐标为B(203-,5),D是AB边上的一点.将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图象上,那么该函数的解析式是_____.【详解】解:过E 点作EF ⊥OC 于F由条件可知:OE=OA=5,EF OF =tan ∠BOC=BC OC =5203=34 所以EF=3,OF=4,则E 点坐标为(-4,3)设反比例函数的解析式是y= k x,则有k=-4×3=-12 ∴反比例函数的解析式是y=12x -三、解答题 21、已知y 与x ﹣1成反比例,且当x =4时,y =1. (1)求y 与x 的函数关系式;(2)判断点(﹣2,﹣1)是否在该函数图象上.【分析】(1)根据题意可以设出函数关系式,把x 和y 的对应值代入函数解析式,通过方程即可求得k 的值;(2)然后把x =﹣2代入所求得的函数解析式,得到相应的y 的值即可判断.【答案】解:(1)设y =1-x k , 把x =4,y =1代入y =1-x k 得141-=k ,解得k =3,∴y 与x 的函数关系式13-=x y ; (2)把 x =﹣2代入13-=x y 得,y =﹣1, ∴点(﹣2,﹣1)在该函数的图象上.22、如图,一次函数y =kx +b 的图象与反比例函数y=x m 的图象交于点A (1,4)、B (4,n ). (1)求这两个函数的表达式; (2)请结合图象直接写出不等式kx +b ≤xm 的解集; (3)若点P 为x 轴上一点,△ABP 的面积为6,求点P 的坐标.【分析】(1)将点A (1,4)代入y=xm 可得m 的值,求得反比例函数的解析式;根据反比例函数解析式求得点B 坐标,再由A 、B 两点的坐标可得一次函数的解析式;(2)根据图象得出不等式kx +b ≤xm 的解集即可; (3)利用面积的和差关系可求解.【答案】解:(1)把A (1,4)代入y=xm ,得:m =4, ∴反比例函数的解析式为y=x4; 把B (4,n )代入y=x4,得:n =1,∴B (4,1),把A (1,4)、(4,1)代入y =kx +b ,∴一次函数的解析式为y =﹣x +5;(2)根据图象得:当0<x ≤1或x ≥4时,kx +b ≤x m ; ∴不等式kx +b ≤xm 的解集为0<x ≤1或x ≥4; (3)如图,设直线AB 与x 轴交于点C ,∵直线AB 与x 轴交于点C ,∴点C 坐标为(5,0),∵△ABP 的面积为6,∴21×PC ×4-21PC ×1=6, ∴PC =4, ∴点P 的坐标为(1,0)或(9,0).23、如图,已知A (-4,n ),B (2,-4)是一次函数y 1=kx+b 的图像和反比例函数2k y x=的图像的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线与x 轴的交点C 的坐标及△AOB 的面积; (3)当x 取何值时,y 1=y 2;当x 取何值时,y 1>y 2.【答案】(1)y 2=8x-,y 1=-x-2;(2)6;(3)x=-4或x=2;x <-4或0<x <2 【分析】(1)根据题意,点A 、B 在一次函数及反比例函数图象上,则点A 、B 的坐标均符合两个解析式,将点B 、A 分别代入反比例函数求k 、n 的值,再将点A 、B 分别代入一次函数解析式中即可解题; (2)令直线10y =,解得直线与x 轴的交点坐标C ,根据AOB ACO BCO S S S =+及三角形面积公式解题即可;(3)观察图象,图象的公共点即为解析式的公共解,两个交点将图象分成四个区域,找到12y y >的区域,写出其x 的取值范围即可.【解析】(1)(2-4)B ,在反比例函数2k y x =的图象上,2(4)8k ∴=⨯-=-28y x∴=- (4)A -,n 在28y x∴=-上,2n ∴=(42)A ∴-,1y kx b ∴=+经过点A 、B 4224k b k b -+=⎧∴⎨+=-⎩解得:12k b =-⎧⎨=-⎩12y x ∴=-- (2)直线与x 轴的交点:02y x =∴=-,, 即()20C -,2OC ∴= 112422622AOB ACO BCO S S S ∴=+=⨯⨯+⨯⨯= (3)由图象知,(42)A -,,(2-4)B ,是一次函数12y x =--的图像和反比例函数28y x=-的图像的两个交点124x y y ∴=-=,,或122x y y ==,;当图象在点A 的左侧,或图象在点B 的左侧且在y 轴的右侧时,12y y >4x ∴<-,或02x <<时,12y y >.24、如图,周长为20的菱形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标是(6,0).(1)求点C 的坐标;(2)若反比例函数x k y 3+=的图象经过点C ,求k 的值.【分析】(1)利用菱形的性质得出H 点坐标,再利用勾股定理得出C 点坐标;(2)利用反比例函数图象上点的坐标性质得出答案.【答案】解:(1)连接AC 交OB 于H ,∵四边形OABC 为菱形,∴OB 垂直平分AC ,∵B 的坐标是(6,0),∴H (3,0),∵菱形OABC 的周长为20,∴OC =5,∴HC ===4,∴点C 的坐标为:(3,﹣4);(2)∵反比例函数的图象经过点C ,∴﹣4=,解得:k =﹣15.25、菱形ABCD 的顶点C 与原点O 重合,点B 落在y 轴正半轴上,点A 、D 落在第一象限内,且D 点坐标为(4,3).(1)如图1,若反比例函数y=(x>0)的图象经过点A,求k的值;(2)菱形ABCD向右平移t个单位得到菱形A1B1C1D1,如图2.①请直接写出点B1、D1的坐标(用含t的代数式表示):B1、D1;②是否存在反比例函数y=(x>0),使得点B1、D1同时落在y=(x>0)的图象上?若存在,求n的值;若不存在,请说明理由.解:(1)如图,作DF⊥x轴于点F,∵点D的坐标为(4,3),∴FO=4,DF=3,∴DO=5,∴AD=5.∴A点坐标为(4,8),∴xy=4×8=32,∴k=32;(2)①平移后B1、D1的坐标分别为:(t,5),(t+4,3),故答案为:(t,5),(t+4,3);②存在,理由如下:∵点B1、D1同时落在(x>0)的图象上B1(t,5),D1(t+4,3),∴5t=n,3(t+4)=n,解得:t=6,n=30所以,存在,此时n =30.26、某小学为每个班级配备了一种可加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10C ︒,待加热到100C ︒,饮水机自动停止加热,水温开始下降,水温(C)y ︒与通电时间x (分)的关系如下图所示,回答下列问题:(1)当0≤x ≤8时,求y 与x 之间的函数关系式;(2)求出图中a 的值;(3)某天早上7:20,李优老师将放满水后的饮水机电源打开,若他想在8:00上课前能喝到不超过40C ︒的温开水,问:他应在什么时间段内接水?【分析】(1)由函数图象可设函数解析式,再将图中坐标代入解析式,利用待定系数法即可求得y 与x 的关系式;(2)将y =20代入y =,即可得到a 的值;(3)要想喝到不超过40℃的开水,7:30加20分钟即可接水,一直到8:10;【答案】解:(1)当0≤x ≤8时,设y 与x 之间的函数关系式为y =kx +b (k ≠0),将(0,20),(8,100)代入y =kx +b ,得:,解得:,∴当0≤x ≤8时,y 与x 之间的函数关系式为y =10x +20;(2)当8≤x ≤a 时,设y 与x 之间的函数关系式为:y =(k 2≠0),将(8,100)代入y =,得:100=解得:k2=800,∴当8≤x≤a时,y与x之间的函数关系式为:y=;将(a,20)代入y=,得:a=40;(3)依题意,得:≤40,解得:x≥20.∵x≤40,∴20≤x≤40.∴他应在7:40~8:00时间段内接水.。

初中八年级数学下册第十八章平行四边形单元复习试题(含答案) (59)

初中八年级数学下册第十八章平行四边形单元复习试题(含答案) (59)

初中八年级数学下册第十八章平行四边形单元复习试题一(含答案)在平行四边形ABCD 中,过点D 作DE⊥AB 于点E,点F 在CD 上,CF =AE,连接BF,AF.(1)求证:四边形BFDE 是矩形;(2)若AF 平分∠BAD,交DE与H点,且AB=3AE,BF=6,求AH 的长.【答案】(1)证明见解析; (2)4.【解析】【分析】(1)由CF =AE易得BE=DF.根据有一个角是90度的平行四边形是矩形即可判定.(2)由AF 平分∠BAD,结合平行四边形性质可知AD=DF,而AB=3AE,即可知AD=DF=2AE,推出∠ADE=30°,由此可以解题.【详解】(1)证明:∵在□ABCD中,AB∠CD,AB=CD,∵CF=AE,∴AB-AE=CD-CF,即BE=DF,∵BE∠DF,∴四边形DEBF是□DEBF,∵DE∠AB,∴∠DEB=90º,∴四边形BFDE 是矩形. (2)解:∵AF 平分∠BAD,∴∠1=∠2,∵AB∠CD,∴∠1=∠3,∴∠2=∠3,∴AD=DF,∵AB=3AE∴BD=2AE∵BD=DF,AD=DF∴AD=2AE,又∠AED=90º∴∠4=30º,∠DAE=60º在矩形DEBF中DE=BF=6∴在 Rt ΔAEH 中,∵∠AEH=90º,∠1=12∠DAE=30º ∴AH=cos30AE= 4 【点睛】本题考查了平行四边形的判定和性质,矩形的判定和性质、角平分线的定义、解直角三角形等知识,解题的关键是通过线段比转化得出∠HAE=30°.102.如图所示,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于G,AB ⊥BE,垂足为B,DE ⊥BE,垂足为E,且AB=DE,BF=CE.(1)求证:△ABC ≌△DEF;(2)如果GF=4,求GC 的长.【答案】(1)见解析;(2)GC =4【解析】【分析】(1)要证明三角形ABC 和DEF 全等.这两个三角形中已知的条件有一组直角,AB=DE ,那么只需证得BC=EF 即可得出两三角形全等的结论,已知了BF=CE ,等式两边都加上FC 后,就可得出BC=EF ,那么这两三角形也就全等了(SAS );(2)根据全等三角形的性质得到∠ACB=∠DFE ,再根据等腰三角形的性质即可求解.【详解】(1)证明:AB BE DE BE ,,⊥⊥90ABC DEF ∴∠=∠=︒,BF CE =,BC EF ∴=,ABC DEF ∆∆在与中,AB DE ABC DEF BC EF =⎧⎪∠=∠⎨⎪=⎩, ABC DEF SAS ∴∆∆≌()(2)ABC DEF ∆∆≌,ACB DFE ∴∠=∠,4GC GF ∴==.【点睛】本题考查的是全等三角形的判定与性质.利用全等三角形来得出角相等或线段相等是解此类题的关键.103.如图,平行四边形,,ABCD AD AC AD AC =⊥.(1)如图,点E 在AD 延长线上,//CE BD ,求证:点D 为AE 中点.(2)如图,点E 在AB 中点,F 是AC 延长线上一点,且ED EF ⊥,求证:ED EF =.(3)在(2)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE 是否为平行四边形?并证明你的结论(先补全图形再解答).【答案】(1)见详解;(2)见详解;(3)四边形ACPE是平行四边形,补图与证明见详解.【解析】【分析】(1)先由平行四边形ABCD可得AD∠BC,AD=BC,再证四边形BDEC 为平行四边形可得BC=DE,再等量代换即可得证;(2)连接CE,根据三线合一可证得∠AEC=90°,结合∠DEF=90°,可得∠AED=∠CEF,根据∠ACB=90°,E为AB中点可得CE=AE,再结合∠DAE =∠ECF=135°即可证得∠DAE∠∠ECF进而得证;(3)四边形ACPE是平行四边形,理由如下:先证得∠CEB=∠EBP=∠ECP =90°可得矩形BECP,进而得CP=BE等量代换得AE=CP,再结合AE∥CP 即可得证.【详解】证明:(1)∵四边形ABCD为平行四边形,∴AD∠BC,AD=BC,∵AD∠BC,CE∥BD,∴四边形BDEC为平行四边形,∴BC=DE,又∵AD=BC,∴AD=DE,∴点D为AE中点.(2)如图,连接CE,∵AD∠AC,AD∠BC,∴∠ACB=∠DAC=90°,∵AD=BC,AD=AC,∴BC=AC,∵BC=AC,点E为AB中点,∴CE∠AB,∴∠AEC=∠BEC=90°,∴∠AED+∠DEC=90°,∵ED⊥EF,∴∠CEF+∠DEC=∠DEF=90°,∴∠CEF =∠AED ,∵∠ACB =90°,BC =AC ,∴∠CAB =∠CBA =45°,∴∠DAE =∠DAC +∠CAB =135°,∵∠ACB =90°,点E 为AB 中点,∴CE =AE =12AB , ∴∠ACE =∠CAB =45°,∴∠FCE =180°-∠ACE =135°,∴∠FCE =∠DAE ,在△DAE 和△FCE 中,DAE FCE AE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DAE ≌△FCE (ASA ),∴DE =EF .(3)如图,四边形ACPE 是平行四边形,理由如下:∵△DAE ≌△FCE ,∴AD =CF ,∵AD =BC ,∴BC=CF,又∵∠FCB=180°-∠ACB=90°,∴∠CBF=∠CFB=45°,∵∠CBA=45°,∴∠EBF=∠CBF+∠CBA=90°,∵AB∠CD,∠BEC=90°,∴∠ECP=180°-∠BEC=90°,∴∠ECP=∠BEC=∠EBF=90°,∴四边形BECP为矩形,∴BE=CP,又∠AE=BE,∴AE=CP,∠AE=CP,AE∥CP,∴四边形ACPE是平行四边形.【点睛】本题考查了平行四边形、全等三角形、等腰三角形、直角三角形、矩形等图形的判定与性质,是一道四边形的综合题,熟练运用相关图形的性质,作出正确的辅助线构造全等三角形是解决本题的关键.104.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,连接AD,E为AD的中点,过A作AF∥BC交BE延长线于F,连接CF.(1)求证:四边形ADCF 是菱形;(2)在不添加任何辅助线的情况下,请直接写出与△ACD 面积相等的三角形(不包含△ACD ).【答案】(1)见解析;(2)与△ACD 面积相等的三角形有:△ABD ,△ACF ,△AFB【解析】【分析】(1)首先由E 是AD 的中点,AF ∥BC ,易证得△AFE ≌△DBE ,即可得AF =BD ,又由在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,可得AD =BD =CD =AF ,证得四边形ADCF 是平行四边形,继而判定四边形ADCF 是菱形;(2)根据平行线之间的距离处处相等、等高模型和菱形的性质即可解决问题;【详解】(1)证明:如图,∵AF ∥BC ,∴∠AFE =∠DBE ,∵E 是AD 的中点,AD 是BC 边上的中线,∴AE =DE ,BD =CD ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFE ≌△DBE (AAS );∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=12 BC,∴四边形ADCF是菱形;(2)∵BD=CD,而△ABD的边BD上的高即为△ACD的边CD上的高∴S△ACD=S△ABD;∵四边形ADCF是菱形∴S△ACD=S△ACF;∵AF∥CD∴△ACD的边CD上的高等于△BAF的边AF上的高∵AF=CD∴S△ACD=S△AFB综上:与△ACD面积相等的三角形有:△ABD,△ACF,△AFB.【点睛】此题考查的是全等三角形的判定及性质、菱形的判定及性质、直角三角形的性质和三角形的面积,掌握全等三角形的判定及性质、菱形的判定及性质、直角三角形斜边上的中线等于斜边的一半和平行线之间的距离处处相等是解决此题的关键.105.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:(1)四边形OCED是矩形;(2)OE=BC.【答案】见解析【解析】试题分析:()1根据菱形的定义即可证得;()2根据平行四边形的对边相等即可证得.,,试题解析:()1DE AC CE BD∴四边形OCED是平行四边形.∵四边形ABCD是菱形,∴⊥AC BD.DOC∴∠=︒90.∴四边形OCED是矩形.(2)∵四边形ABCD是菱形,∴=BC CD.∵四边形OCED是矩形,∴=,OE CD∴=.OE BC106.如图,ABCD的对角线AC,BD相交于O,点E、F分别是线段AO、BO的中点.若32AC BD+=厘米,OAB∆的周长是24厘米,求EF的长.【答案】4EF=【解析】【分析】根据平行四边形的性质可知OA=12AC,OB=12BD,结合AC+BD=24厘米,△OAB的周长是18厘米,求出AB的长,利用三角形中位线定理求出EF 的长.【详解】解:∵▱ABCD的对角线AC,BD相交于点O,∴OA=OC,OB=OD,∵AC+BD=32厘米,∴OB+0A=16厘米,∵△OAB的周长是24厘米,∴AB=24-16=8厘米,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=12AB=4厘米,故答案为:4cm.【点睛】本题考查了三角形中位线定理以及平行四边形的性质的知识,解题的关键是求出AB的长.107.如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.易证:CE=CF.(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE,BE,GD 三线段之间的数量关系,并证明你的结论.(2)运用(1)中解答所积累的经验和知识,完成下面两题:①如图2,在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α,∠ECG=β,试探索当α和β满足什么关系时,图1中GE,BE,GD三线段之间的关系仍然成立,并说明理由.②在平面直角坐标中,边长为1的正方形OABC的两顶点A,C分别在y 轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图3).设△MBN的周长为p,在旋转正方形OABC 的过程中,p值是否有变化?若不变,请直接写出结论.【答案】(1)GE=GD+DF,证明见解析;(2)β=2α时,GE=GD+DF仍然成立,理由见解析;(3)△BMN的周长没有变化,周长为2.【解析】【分析】(1)由正方形的性质可得∠BCD=∠B=∠ADC=90°,BC=CD,由∠CEG=45°可得∠BCE+∠DCG=45°,利用SAS可证明△BCE≌△DCF,可得∠BCE=∠DCF,CE=CF,即可得出∠FCG=45°,可得∠FCG=∠GCE,利用SAS 可证明△CEG≌△CFG,可得EG=FG,根据BE=DF即可得出GE=GD+BE;(2)①如图,延长AD到F,使DF=BE,连接CF,利用SAS可证明△BCE≌△DCF,可得∠BCE=∠DCF,CE=CF,根据GE=GD+BE可得EG=GF,利用SSS可证明△CEG≌△CFG,可得∠GCF=∠GCE,由∠GCF=∠GCD+∠DCF可得∠GCE=∠GCD+∠BCE,即可得出∠BCD=2∠GCE,可得答案;②如图,延长BA,交y轴于H,由旋转的性质可得∠HOA=∠NOC,利用ASA可证明△HOA≌△NOC,可得AH=CN,OH=ON,由直线OM的解析式可得∠HAM=∠MON=45°,利用SAS可证明△HOM≌△NOM,可得HM=MN,可得MN=AM+CN,即可得出△MBN的周长p=AB+BC=2,即可证明△MBN的周长没有变化.【详解】(1)GE=GD+DF,理由如下:∵ABCD是正方形,∴∠BCD=∠B=∠ADC=90°,BC=CD,在△BCE和△DCF中,BC CDEBC FDC BE=DF=⎧⎪∠=∠⎨⎪⎩,∴△BCE≌△DCF,∴CE=CF,∠BCE=∠DCF,∵∠GCE=45°,∴∠BCE+∠DCG=45°,∴∠DCF+∠DCG=45°,即∠GCF=45°,∴∠GCF=∠GCE,在△CEG和△CFG中,CE CFGCE GCF CG CG=⎧⎪∠=∠⎨⎪=⎩,∴△CEG≌△CFG,∴GE=GF=GD+DF.(2)当β=2α时,GE=GD+DF仍然成立,理由如下:如图,延长AD到F,使DF=BE,连接CF,在△BCE和△DCF中,BC CDEBC FDC=90 BE=DF=⎧⎪∠=∠︒⎨⎪⎩,∴△BCE≌△DCF,∴CE=CF,∠BCE=∠DCF,∵EG=GD+BE,∴EG=GD+DF=GF,在△CEG和△CFG中,CE CF EG GF CG CG=⎧⎪=⎨⎪=⎩,∴△CEG≌△CFG,∴∠ECG=∠FCG,∴∠ECG=∠DCF+∠DCG=∠BCE+∠DCG,∴∠BCD=2∠ECG,即β=2α,∴当β=2α时,图1中GE,BE,GD三线段之间的关系仍然成立.(3)如图,延长BA,交y轴于H,∵将正方形OABC绕O点顺时针旋转,∴∠HOA=∠NOC,在△HOA和△NOC中,HOA NOC OA OCOAH OCN ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△HOA≌△NOC,∴AH=CN,OH=ON,∵直线OM的解析式为y=x,∴∠HOM=∠MON=45°,在△HOM和△NOM中,OH ONHOM MON OM OM=⎧⎪∠=∠⎨⎪=⎩,∴HM=MN,∴MN=AM+AH=AM+CN,∴△BMN的周长p=BM+MN+BN=BM+AM+CN+BN=AB+BC=2,∴△BMN的周长没有变化,周长为2.【点睛】本题考查正方形的性质、全等三角形的判定与性质、旋转的性质及正比例函数的性质,熟练掌握全等三角形的判定定理是解题关键.108.在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.(1)如图①,当点H与点C重合时,可得FG FD.(大小关系)(2)如图②,当点H为边CD上任意一点时,猜想FG与FD的数量关系,并说明理由.(3)在图②中,当AB=8,BE=3时,利用探究的结论,求CF的长.【答案】(1)=;(2)FD=FG,理由见解析;(3)4811【解析】(1)连接AF,根据图形猜想FD=FG,由折叠的性质可得AB=AG=AD,再结合AF为△AGF和△ADF的公共边,从而证明△AGF≌△ADF,从而得出结论.(2)连接AF,根据图形猜想FD=FG,由折叠的性质可得AB=AG=AD,再结合AF为△AGF和△ADF的公共边,从而证明△AGF≌△ADF,从而得出结论.(3)设FG=x,则FC=8-x,FE=3+x,在Rt△ECF中利用勾股定理可求出x的值,进而可得出答案.解:(1)连接AF,由折叠的性质可得AB=AG=AD,在Rt△AGF和Rt△ADF中,,∴△AGF≌△ADF.∴FG=FD.(2)猜想FD=FG.证明:连接AF,由折叠的性质可得AB=AG=AD,在Rt△AGF和Rt△ADF中,,∴△AGF≌△ADF.∴FG=FD.(3)设FG=x,∵AB=8,BE=3,∴BC=CD=8,∴FC=8﹣x,FE=3+x,EC=8﹣3=5,在Rt△ECF中,EF2=FC2+EC2,即(3+x)2=(8﹣x)2+52,解得x=.∴CF=8﹣=,即FG的长为.点睛:本题主要考查折叠、正方形的性质、全等三角形的性质、勾股定理,是一道四边形综合问题.解题的关键在于要利用折叠及正方形的性质找出相等的线段,为全等的证明作好铺垫.109.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连OH接,求证:∠DHO=∠DCO.【答案】证明见解析.【解析】试题分析:根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等证明即可.试题解析:∠四边形ABCD是菱形,∠OD=OB,∠COD=90°,∠DH∠AB,∠OH=12BD=OB,∠∠OHB=∠OBH,又∠AB∠CD,∠∠OBH=∠ODC,在Rt∠COD中,∠ODC+∠DCO=90°,在Rt∠DHB中,∠DHO+∠OHB=90°,∠∠DHO=∠DCO.考点:菱形的性质.110.在△ABC中,AD⊥BC于点D,点E为AC边的中点,过点A作AF∥BC,交DE的延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是矩形;(2)如图2,当AB=AC时,取AB的中点G,连接DG、EG,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF).【答案】(1)见解析;(2)四边形ABDF、四边形AGEF、四边形GBDE、四边形AGDE、四边形GDCE都是平行四边形.【解析】【分析】(1)由△AEF ≌△CED ,推出EF =DE ,又AE =EC ,推出四边形ADCF 是平行四边形,只要证明∠ADC =90°,即可推出四边形ADCF 是矩形.(2)根据三角形的中位线定理和平行四边形的判定即可找出图中的所有平行四边形.【详解】(1)证明:∵AF ∥BC ,∴∠AFE =∠EDC ,∵E 是AC 中点,∴AE =EC ,在△AEF 和△CED 中,AFE CDE AEF CED AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△CED ,∴EF =DE ,∵AE =EC ,∴四边形ADCF 是平行四边形,∵AD ⊥BC ,∴∠ADC =90°,∴四边形ADCF 是矩形.(2)∵线段DG 、线段GE 、线段DE 都是△ABC 的中位线,又AF ∥BC , ∴AB ∥DE ,DG ∥AC ,EG ∥BC ,∴四边形ABDF、四边形AGEF、四边形GBDE、四边形AGDE、四边形GDCE 都是平行四边形.【点睛】本题考查平行四边形的判定、矩形的判定、三角形的中位线定理、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。

数学知识点苏科版初中数学八年级下册全册教案及各章练习题(1)-总结

数学知识点苏科版初中数学八年级下册全册教案及各章练习题(1)-总结

初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学阜宁县陈集中学八年级期末复习(1)第七章第七章 一元一次不等式一元一次不等式复习目标与要求:复习目标与要求:(1)了解不等式的意义,掌握不等式的基本性质。

(2)会解一元一次不等式(组),能正确用轴表示解集。

(3)能够根据具体问题中的数量关系,用一元一次不等式(组),解决简单的问题。

知识梳理:知识梳理:(1)不等式及基本性质;)不等式及基本性质;(2)一元一次不等式(组)及解法与应用;(3)一元一次不等式与一元一次方程与一次函数。

基础知识练习:基础知识练习:1、用适当的符号表示下列关系:(1)X 的2/3与5的差小于1; (2)X 与6的和不大于9 (3)8与Y 的2倍的和是负数倍的和是负数 2. 已知a <b,b,用“<”或“>”号填空:用“<”或“>”号填空:用“<”或“>”号填空:①a-3 b-3 ②6a 6b ③-a -b ④a-b 0 3. 当0<<a x 时,2x 与ax 的大小关系是的大小关系是 4. 如果121<<x ,则()()112--x x _______05. 63->x 的解集是的解集是___________,___________,x 41-≤-8的解集是的解集是_________________________________。

6. 函数xx y 21-=中自变量x 的取值范围是(的取值范围是() A 、x ≤21且x ≠0 B 、x 21->且x ≠0 C 、x ≠0 D 、x 21<且x ≠07. 三个连续自然数的和小于1515,这样的自然数组共有(,这样的自然数组共有(,这样的自然数组共有() A 、6组 B 、5组 C 、4组 D 、3组 8. 当x 取下列数值时,能使不等式01<+x ,02>+x 都成立的是(都成立的是( ) A 、-2.5 B 、-1.5 C 、0 D 、1.51.5 典型例题分析:典型例题分析:例1. 解下列不等式(组),并将结果在数轴上表示出来:(1) 634123+£-+x x (2). ïïîïíì-<--+£--).3(3)3(232,521123x x x x x例2. 已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围。

八下数学经典组卷1.1不等式的性质

八下数学经典组卷1.1不等式的性质

1.1 不等式的性质第一组一.选择题(共16小题)1.(2010•台湾)有数颗等重的糖果和数个大、小砝码,其中大砝码皆为5克、小砝码皆为1克,且图是将糖果与砝码放在等臂天平上的两种情形.判断下列哪一种情形是正确的()A.B.C.D.2.某电脑用户计划使用不超过530元的资金购买单价为70元的单片软件和80元的盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,不相同的选购方式共有()A.4种B.5种C.6种D.7种3.一堆苹果分给若干个小朋友.若每人分3个,则余2个;若每人分4个,则最后一个小朋友得到的苹果数不足3个.则小朋友个数是()A.4 B. 5 C.6 D.4或54.有20道竞赛题,对于每一题,答对得6分,答错或不答扣3分,小明在这次竞赛中的得分不少于80分,但又不多于90分,则小明答对的题数是()题A.14 B.15 C.16 D.175.已知:①x+y=1;②x>y;③x+2y;④x2﹣y≥1;⑤x<0,其中属于不等式的有()个.A.2 B. 3 C.4 D. 56.下列表达式:①﹣m2≤0;②x+y>0;③a2+2ab+b2;④(a﹣b)2≥0;⑤﹣(y+1)2<0.其中不等式有()A.1个B.2个C.3个D.4个7.在下列数学表达式中,不等式的个数是()①﹣3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3.A.5个B.4个C.3个D.1个8.在数学表达式:①﹣2<0;②3x﹣5>0;③x=1;④x2﹣x;⑤x≠﹣2;⑥x+2>x﹣1中,不等式有()A.2个B.3个C.4个D.5个9.高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指()A.每100克内含钙150毫克B.每100克内含钙不低于150毫克C.每100克内含钙高于150毫克D.每100克内含钙不超过150毫克10.下列各项中,蕴含不等关系的是()A.老师的年龄是你的年龄的2倍B.小军和小红一样高C.小明岁数比爸爸小26岁D.x2是非负数11.据温州都市报报道,2010年2月14日温州市最高气温是8℃,最低气温是4℃,则当天温州气温t(℃)的变化范围是()A.t>8 B.t<4 C.4<t<8 D.4≤t≤8.<.<a<1 <17.宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有_________种.18.已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=_________.19.用不等号填空:(1)﹣π_________﹣3;(2)a2_________0;(3)|x|+|y|_________|x+y|;(4)(﹣5)÷(﹣1)_________(﹣6)÷(﹣7);(5)当a_________0时,|a|=﹣a.20.据苏州日报报道,2010年1月11日苏州市的最高气温是5℃.最低气温是﹣2℃,当天苏州市的气温t(℃)的变化范围用不等式表示为_________.21.选择适当的不等号填空:(1)x2____0;(2)若x≠y,则3x___3y.22.(2012•杭州)已知(a﹣)<0,若b=2﹣a,则b的取值范围是_________.23.若x<﹣y,且x<0,y>0,则|x|﹣|y|_________0.24.设>0,>0,有如下四个结论:(1)如果ad >bc ,则必定有>;(2)如果ad >bc ,则必定有<. (3)如果ad <bc ,则必定有<;(4)如果ad <bc ,则必定有>. 其中正确结论的个数是 _________ . 25.设a >b ,用“<”或“>”填空:①2a ﹣5 _________ 2b ﹣5;②﹣3.5b+1 _________ ﹣3.5a+1. 26.设a <0,且有|a|•x ≤a ,试化简:|x+1|﹣|x ﹣3|= _________ .27.若实数a 、b 、c 满足a 2+b 2+c 2=9,那么代数式(a ﹣b )2+(b ﹣c )2+(c ﹣a )2的最大值是 _________ .28.若a >1,则a 2,,a 按从小到大排列为 _________ . 三.解答题(共2小题)29.不等式和方程有什么区别?30.已知有理数m ,n 的位置在数轴上如图所示,用不等号填空.(1)n ﹣m _________ 0;(2)m+n _________ 0;(3)m ﹣n _________ 0;(4)n+1 _________ 0;(5)m •n _________ 0; (6)m+1 _________ 0. 1.1 不等式的性质 第二组一.选择题(共18小题)2.(2007•临沂)若a <b<0,则下列式子:①a+1<b+2;②>1;③a+b <ab ;④<中,正确的有( )4.已知0<m <1,则m 、m 2、( ) >.>m >m 2>m 2>m(英语小词典:following :下面的;inequality :不等式) A .< B .>C .>D.<8.下列四个判断:①若ac 2>bc 2,则a >b ;②若a >b ,则a|c|>b|c|;③若a >b ,则<1;④若a >0,则b ﹣a <b .其中正确的有( ) . 有最小值 有最大值1 .有最大值2有最小值..11.当0<x <1时,x 2,,x 之间的大小关系是( ) .<x <x 2<x 2<x确的解法个数是( )①方法一:∵2>1,a <0,∴2a <a ;②方法二:∵a <0,即2a ﹣a <0,∴2a <a ; ③方法三:∵a <0,∴两边都加a 得2a <a ;13.对于命题“a,b是有理数,若a>b,则a>b”,若结论保持不变,怎样改变条件,命题才是真命题,给出下列以下四种说法:①a,b是有理数,若a>b>0,则a2>b2;②a,b是有理数,若a>b,且a+b>0,则a2>b2;③a,b是有理数,若a<b<0,则a2>b2;④a,b是有理数,若a<b且a+b<0,则a2>b2.其中,14.下列命题中:①若a>b,c≠0,则ac>bc;②若,则a<0,b>0;③若ac2>bc2,则a>b;④若a<b<0,则;⑤若,则a>b.正确的有()千克糖果,售货员将1千克砝码放于左盘,置糖果于右盘使之平衡后给顾客,然后又将1千克砝码放于右盘另置糖果于左盘,平衡后再给顾客,这样称给顾客2千克糖果()A.公平B.顾客吃亏C.长臂大于短臂长2倍时商店吃亏,小于2倍时顾客吃亏D.商店吃亏.19.已知正数a、b、c满足a2+c2=16,b2+c2=25,则k=a2+b2的取值范围为_________.20.若a<b<0,则1,1﹣a,1﹣b这三个数用“<”连接起来:_________.21.若a>b,a<0,则﹣(a+b)>﹣b>﹣a>﹣a+b_________.22.设a<0,且有|a|•x≤a,试化简:|x+1|﹣|x﹣3|=_________.23.若x<﹣y,且x<0,y>0,则|x|﹣|y|_________0.三.解答题(共3小题)24.判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若b﹣3a<0,则b<3a ;_________(2)如果﹣5x >20,那么x>﹣4;_________(3)若a>b,则ac2>bc2;_________(4)若ac2>bc2,则a>b;_________(5)若a>b,则a(c2+1)>b(c2+1)._________(6)若a>b>0,则<._________.25.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于1<<2,所以的整数部分为1,将减去其整数部分1,差就是小数部分﹣1,根据以上的内容,解答下面的问题:(1)的整数部分是_________,小数部分是_________;(2)1+的整数部分是_________,小数部分是_________;(3)若设2+整数部分是x,小数部分是y,求x﹣y的值.26.已知2(x﹣2)﹣3(4x﹣1)=9(1﹣x),且y<x+9,试比较y与y的大小.。

【教师卷】初中数学八年级数学下册第十九章《一次函数》知识点复习(培优)(1)

【教师卷】初中数学八年级数学下册第十九章《一次函数》知识点复习(培优)(1)

一、选择题1.已知点P(m,n)在第二象限,则直线y=nx+m图象大致是下列的()A.B.C.D.C解析:C【分析】根据点P在第二象限,确定m<0,n>0,根据k,b的符号,确定图像的分布即可.【详解】∵点P(m,n)在第二象限,∴m<0,n>0,∴图像分布在第一,第三象限,第四象限,故选C.【点睛】本题考查了根据k,b的符号确定一次函数图像的分布,熟记k,b的符号与图像分布的关系是解题的关键.2.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式0<ax+4<2x 的解集是()A.0<x<32B.32<x<6 C.32<x<4 D.0<x<3B解析:B【分析】先求解A的坐标,再求解一次函数的解析式及B的坐标,结合函数图像解0<ax+4<2x即可得到答案.【详解】解:一次函数y=2x和y=ax+4的图象相交于点A(m,3),23,m ∴=3,2m ∴= 3,3,2A ⎛⎫∴ ⎪⎝⎭3+4=32a ∴, 2,3a ∴=- 24,3y x ∴=-+ 令0,y = 则240,3x -+= 6,x ∴=()6,0,B ∴不等式0<ax +4,4y ax ∴=+的图像上的点在x 轴的上方,所以结合图像可得:x <6,ax +4<2x ,2y x ∴=的图像在4y ax =+的图像的上方, 3,3,2A ⎛⎫ ⎪⎝⎭x >32, 所以:不等式0<ax +4<2x 的解集是32<x <6. 故选:.B【点睛】本题考查的是利用待定系数法求解一次函数的解析式,利用一次函数的图像解不等式组,掌握利用图像解决问题是解题的关键.3.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( )A .21m -<<-B .21m -≤<-C .322m -≤<-D .322m -<≤-D 解析:D【分析】由1l 过(1,0)时区域内由两个整点求出m=-2,由1l 过(2,-1)时区域内有三个整点求出32m =-,综合求出区域内有三个整点可求出322m -<≤-. 【详解】当()1:20l y mx m =+<过(1,0)时区域内由两个整点,此时m+2=0,m=-2,当()1:20l y mx m =+<过(2,-1)时区域内有三个整点,此时122m -=+,32m =-, 两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,322m -<≤-. 故选择:D .【点睛】本题考查数形结合思想求区域整点问题,掌握利用区域三角形边界整点来解决问题是关键.4.如图,一次函数443y x =-的图像与x 轴,y 轴分别交于点A ,点B ,过点A 作直线l 将ABO ∆分成周长相等的两部分,则直线l 的函数表达式为( )A .26y x =-B .23y x =-C .1322y x =-D .3y x =-D解析:D【分析】 设直线l 与y 轴交于点C ,由已知条件求出点C 的坐标后利用待定系数法可以得到直线l 的函数表达式.【详解】解:分别令x=0和y=0可得B 、A 的坐标为(0,-4)、(3,0),∴AB=22345+=,则三角形OAB 的周长为12如图,设直线l 与y 轴交于点C (0,c ),则OA+OC=6,即3-c=6,∴c=-3,即C 的坐标为(0,-3),设l 的函数表达式为y=kx+b ,由l 经过A 、C 可得:033k b b =+⎧⎨-=⎩,解之得: 13k b =⎧⎨=-⎩, ∴l 的函数表达式为:y=x-3,故选D .【点睛】本题考查一次函数的应用,熟练掌握一次函数的图象、勾股定理的应用及待定系数法求解析式的方法是解题关键.5.如图,已知△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E 点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D .A 解析:A【分析】根据△ABC 为等边三角形,得到∠A=∠C=∠ABC=60︒,利用DE //AC ,证得△DEB 是等边三角形,求出DE=BD=2-x ,利用EF ⊥DE ,求出223DF DE =-,再根据面积公式求出函数解析式,依据函数的性质确定函数图象.【详解】∵△ABC 为等边三角形,∴∠A=∠C=∠ABC=60︒,∵DE //AC ,∴∠DEB=∠C=60︒,∠EDB=∠A=60︒,∴∠DEB=∠EDB=∠DBE=60︒,∴△DEB 是等边三角形,∴DE=BD=2-x ,∵EF ⊥DE ,∴∠DEF=90︒,∴∠DFE=30,∴DF=2DE=4-2x,∴223DF DE -,∴△DEF 的面积为y=213(2)3(2)2)22x x x --=-(0<x<2), ∵此函数为二次函数,开口向上,对称轴为直线x=2,且0<x<2,故选:A .【点睛】此题考查等边三角形的判定及性质,平行线的性质,勾股定理,直角三角形30度角所对的直角边等于斜边的一半,函数的性质,函数图象,根据题意分别求出DE 、EF ,由此得到函数解析式是解题的关键.6.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是()A.①②B.②③C.②④D.③④D解析:D【分析】当0≤x≤10时,可求出修船时的进水速度,当10≤x≤26时,可求出修船时的出水速度从而判断①②,当x≥26时,可求出修船后的出水速度,即可判断③,进而可判断④.【详解】有图像可知:第10分钟时,进水速度减小,即第10分钟开始修船,第26分钟时不再进水,即第26分钟停止修船,所以修船共用了16分钟时间,故①错误;当0≤x≤10时,进水速度=40÷10=4(吨/分),当10≤x≤26时,应进水:4×16=64(吨),实际进水:88-40=48(吨),则排水速度=(64-48)÷16=1(吨/分),所以修船过程中进水速度是排水速度的4倍,故②错误;当x≥26时,排水速度=88÷(48-26)=4(吨/分),所以修船完工后的排水速度是抢修过程中排水速度的4倍,故③正确;由当0≤x≤10时,进水速度=40÷10=4(吨/分),x≥26时,排水速度=88÷(48-26)=4(吨/分),可知:最初的仅进水速度和最后的仅排水速度相同,故④正确.故选D【点睛】本题主要考查函数图像,掌握函数图像上点的坐标的实际意义,是解题的关键.→→→匀速运7.如图,边长为2的正方形ABCD中,点P从点A出发沿路线A B C D动至点D停止,已知点P的速度为1,运动时间为t,以P.A.B为项点的三角形面积为S,则S与t之间的函数图象可能是()A .B .C .D .C解析:C【分析】需分0≤t≤2、2<t≤4、4<t≤6三种情况分别分析即可.【详解】解:当0≤t≤2时,P 在AB 上运动,P .A .B 为项点的三角形AB 边上的高为0,即面积s=0;当2<t≤4时,P 在BC 上运动,P .A .B 为项点的三角形AB 边上的高为逐渐增大,即面积s 逐渐增大;当4<t≤6时,P 在DC 上运动,P .A .B 为项点的三角形AB 边上的高恒为2,即面积s 为1222⨯⨯=2; 综上可以发现C 满足题意.故答案为C .【点睛】本题主要考查的是动点图象问题,弄清楚不同时间段、函数图象和图形的对应关系成为解答本题的关键.8.若点P 在一次函数31y x =-+的图象上,则点P 一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限C解析:C【分析】根据一次函数图象与系数的关系解答.【详解】∵一次函数31y x =-+中,k=-3<0,b=1>0,∴一次函数的图象经过第一、二、四象限,∵点P 在一次函数31y x =-+的图象上,∴点P 一定不在第三象限,故选:C .【点睛】此题考查一次函数图象与系数的关系: k>0,b>0时,直线经过第一、二、三象限; k>0,b<0时,直线经过第一、三、四象限; k<0;b>0时,直线经过第一、二、四象限; k<0,b<0时,直线经过第二、三、四象限.9.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-C解析:C【分析】 根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.10.弹簧挂上物体后伸长,已知一弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系如下表: 所挂物体的质量m/kg0 1 2 3 4 5 弹簧的长度y/cm10 12.5 15 17.5 20 22.5A .在没挂物体时,弹簧的长度为10cmB .弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C .弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系可用关系式y =2.5m +10来表示D .在弹簧能承受的范围内,当所挂物体的质量为4kg 时,弹簧的长度为20cm参考答案B解析:B【分析】因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y为弹簧长度;弹簧的长度有一定范围,不能超过.【详解】解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;C、当物体的质量为mkg时,弹簧的长度是y=10+2.5m,故此选项正确,不符合题意;D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;故选:B.【点睛】此题考查了函数的表示方法,列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.二、填空题11.如图,直线y=kx+1经过点A(-2,0)交y轴于点B,以线段AB为一边,向上作等腰Rt ABC,将ABC向右平移,当点C落在直线y=kx+1上的点F处时,则平移的距离是_________.5【分析】先把A坐标代入y=kx+1求得k=则直线AB的解析式为y=x+1再确定B点坐标(01)作CH⊥x轴于H如图根据等腰直角三角形的性质得AC=AB∠BAC=90°接着证明△ABO≌△CAH得到解析:5【分析】先把A坐标代入y=kx+1求得k=12,则直线AB的解析式为y=12x+1,再确定B点坐标(0,1),作CH⊥x轴于H,如图,根据等腰直角三角形的性质得AC=AB,∠BAC=90°,接着证明△ABO≌△CAH,得到OB=AH=1,OA=CH=2,于是可确定C点坐标(-3,2),然后根据平移的性质得点F的纵坐标与C点的纵坐标相等,则可把y=2代入y=12x +1得12x+1=2,解得x=2,所以F点的坐标为(2,2),点F与点C的横坐标之差就是平移的距离.【详解】解:把A(-2,0)代入y=kx+1得-2k+1=0,解得k=12,则直线AB的解析式为y=12x+1,当x=0时,y=12x=1=1,则B点坐标为(0,1),如图,作CH⊥x轴于H∵△ABC为等腰直角三角形,∴AC=AB,∠BAC=90°,∴∠BAO+∠CAH=90°,而∠BAO+∠ABO=90°,∴∠ABO=∠CAH,在△ABO和△CAH中,AOB CHAABO CAHAB CA∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABO≌△CAH,∴OB=AH=1,OA=CH=2,∴OH=OA+AH=3,∴C点坐标为(-3,2),∵△ABC向右平移,∴F的纵坐标与C点的纵坐标相等,把y=2代入y=12x+1得12x+1=2,解得x=2,∴F点的坐标为(2,2),∴点C向右平移了2-(-3)=5个单位.故答案为5.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质和平移的性质.12.如果直线y=2x+3与直线y=3x﹣2b的交点在y轴上,那么b的值为___.【分析】先求出y=2x+3与y轴交点坐标为(03)代入y=3x﹣2b即可求得答案【详解】令y=2x+3中x=0解得y=3∴直线y=2x+3与y轴交点为(03)将(03)代入y=3x﹣2b中得-2b=解析:3 2 -【分析】先求出y=2x+3与y轴交点坐标为(0,3),代入y=3x﹣2b,即可求得答案.【详解】令y=2x+3中x=0,解得y=3,∴直线y=2x+3与y轴交点为(0,3),将(0,3)代入y=3x﹣2b中,得-2b=3,解得b=32 -,故答案为:32 -.【点睛】此题考查一次函数与坐标轴的交点坐标,掌握交点坐标的计算方法是解题的关键.13.如图所示的平面直角坐标系中,点A坐标为(2,2),点B坐标为(﹣1,1),在x 轴上有点P,使得AP+BP最小,则点P的坐标为_____.(00)【分析】先作点B关于x轴的对称点C再连接AC求出AC的函数解析式再把y=0代入即可【详解】解:如图作点B关于x轴的对称点C再连接AC点B坐标为(﹣11)点B关于x轴的对称点C的坐标为(-1-解析:(0,0)【分析】先作点B 关于x 轴的对称点C ,再连接AC ,求出AC 的函数解析式,再把y=0代入即可.【详解】解:如图,作点B 关于x 轴的对称点C ,再连接AC ,点B 坐标为(﹣1,1),∴点B 关于x 轴的对称点C 的坐标为(-1,-1),在x 轴上有点P ,∴线段BP 和CP 关于x 轴对称,∴BP=CP ,∴AP+BP= CP+AP ,当AP+BP 取最小值时,最小值即为线段AC 的长,点A 坐标为(2,2),设直线AC 的方程为:y=kx+b ,∴代入A 、C 的坐标,221k b k b +=⎧⎨-+=-⎩,解得10k b =⎧⎨=⎩, ∴AC l y x =:,点P 的纵坐标为0,代入y=0,∴x=0,∴点P 的坐标为(0,0),故答案为:(0,0).【点睛】此题主要考查最短路线问题,综合运用了一次函数的知识,熟练掌握最短路线问题的求解方法是解题的关键.14.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号)①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤【分析】根据一次函数的定义进行一一判断.【详解】①3x y =是一次函数;②2y x =是一次函数,③1y x =不是一次函数,④23y x =-是一次函数,⑤()222121y x x x x =--+=+是一次函数.故答案为:①②④⑤.【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数.15.为减少代沟,增强父子感情,父子二人决定在100米跑道上,以“相向而跑”的形式来进行交流.儿子从100米跑道的A 端出发,父亲从另一端B 出发,两人同时起跑,结果儿子赢得比赛.设父子间的距离S (米)与父亲奔跑的时间(秒)之间的函数关系如图所示,则儿子奔跑的速度是______米/秒. (或625)【分析】根据图像可知爸爸跑完全程用时20秒可计算爸爸的速度其次儿子比爸爸早到20米的时间计算爸爸跑完20米用时从而得到儿子跑完全程的时间计算速度即可【详解】根据图像可知爸爸跑完全程用时2解析:254(或6.25). 【分析】 根据图像可知,爸爸跑完全程用时20秒,可计算爸爸的速度,其次,儿子比爸爸早到20米的时间,计算爸爸跑完20米用时,从而得到儿子跑完全程的时间,计算速度即可.【详解】根据图像可知,爸爸跑完全程用时20秒,∴爸爸的速度为10020=5米/秒, ∵儿子比爸爸早到20米, ∴父子共用时间20-20÷5=16秒,∴儿子的速度为10016=254米/秒, 故答案为:254. 【点睛】本题考查了函数的图像,根据题意,读懂图像,学会把生活问题数学化是解题的关键. 16.已知直线y =x+b 和y =ax ﹣3交于点P (2,1),则关于x 的方程x+b =ax ﹣3的解为________.x =2【分析】交点坐标同时满足两个函数的解析式而所求的方程组正好是由两个函数的解析式所构成因此两函数的交点坐标即为方程组的解【详解】∵直线y =x+b 和y =ax ﹣3交于点P (21)∴当x =2时x+b =解析:x =2【分析】交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】∵直线y =x+b 和y =ax ﹣3交于点P (2,1),∴当x =2时,x+b =ax ﹣3=1,∴关于x 的方程x+b =ax ﹣3的解为x =2.故答案为:x =2.【点睛】本题考查了一次函数与二元一次方程(组):熟练掌握交点坐标同时满足两个函数的解析式是解题关键.17.已知直线22y x =-与x 轴交于A ,与y 轴交于B ,若点C 是坐标轴上的一点,且AC AB =,则点C 的坐标为________.【分析】利用待定系数法求出两点坐标利用勾股定理求出根据确定点坐标即可【详解】解:令得到令得到以为圆心长为半径作圆交坐标轴即为点或故答案为:【点睛】本题考查一次函数的应用等腰三角形的判定和性质等知识熟解析:()1+()1()0,2 【分析】利用待定系数法求出A 、B 两点坐标,利用勾股定理求出AB ,根据AC AB =,确定点C 坐标即可.【详解】解:令0x =,得到2y =-,(0,2)B ,令0y =,得到1x =,(1,0)A ∴,1OA ∴=,2OB =, 22125AB ,以A 为圆心,AB 长为半径作圆,交坐标轴即为C 点,5ACAB , (15C ,0),(15,0)或(0,2),故答案为:()1+、()1-、()0,2..【点睛】本题考查一次函数的应用,等腰三角形的判定和性质等知识,熟练掌握待定系数法确定交点坐标是解题的关键.18.新冠疫情爆发以来,某工厂响应号召,积极向疫情比较严重的甲地区捐赠口罩、消毒液等医疗物资,在工厂装运完物资准备前往甲地的A车与在甲地卸完货准备返回工厂的B 车同时出发,分别以各自的速度匀速驶向目的地,出发6小时时A车接到工厂的电话,需要掉头到乙处带上部分检验文件(工厂、甲地、乙在同一直线上且乙在工厂与甲地之间),于是,A车掉头以原速前往乙处,拿到文件后,A车加快速度迅速往甲地驶去,此时,A车速度比B车快32千米/小时,A车掉头和拿文件的时间忽略不计,如图是两车之间的距离y(千米)与B车出发的时间x(小时)之间的函数图象,则当A车到达甲地时,B车离工厂还有_____千米.96【分析】根据题意和题目的函数图像先求出A车和B车的速度然后求出A车到乙地拿到文件后前往甲地的时间再得到B车的总时间即可求出A车到达甲地时B车离工厂的距离【详解】解:根据题意设A 车的速度为B车的速解析:96【分析】根据题意和题目的函数图像,先求出A车和B车的速度,然后求出A车到乙地拿到文件后,前往甲地的时间,再得到B车的总时间,即可求出A车到达甲地时B车离工厂的距离.【详解】解:根据题意,设A 车的速度为1V ,B 车的速度为2V ,则12()640080V V +⨯=+①,A 车前往乙地取文件的过程,有12()(76)8016V V -⨯-=-②,结合①②两式,得148V =,232V =,∴A 车的速度为48千米/小时;B 车的速度为32千米/小时;A 车拿到文件后,距离甲地的距离为:32764160⨯-=千米,∴A 车加速后达到甲地的时间为:160(3232) 2.5÷+=小时;∴B 车一共所走的时间有:7 2.59.5+=小时,∴当A 车到达甲地时,B 车离工厂的距离为:400329.596-⨯=千米;故答案为:96.【点睛】本题考查了二元一次方程组的应用——行程问题,以及函数图像的识别,解题的关键是熟练掌握题意,正确求出A 、B 两车的速度,从而进行解题.19.已知一次函数y kx b =+的图象经过点(4,3)A 且与直线2y x =平行,则此函数的表达式为____.【分析】先求出k 再求出b 即可得到解答【详解】解:由题意可得k=2∴有y=2x+b ∵y=2x+b 的图象经过A (43)∴有2×4+b=3解之可得:b=-5∴所求的函数表达式为y=2x-5故答案为y=2x解析:25y x =-【分析】先求出k ,再求出b ,即可得到解答.【详解】解:由题意可得k=2,∴有y=2x+b ,∵y=2x+b 的图象经过A (4,3),∴有2×4+b=3,解之可得:b= -5,∴所求的函数表达式为y=2x-5,故答案为y=2x-5 .【点睛】本题考查一次函数的图象与性质,熟练掌握一次函数图象的平移是解题关键.20.平面直角坐标系中,点A 坐标为(),将点A 沿x 轴向左平移a 个单位后恰好落在正比例函数y =-的图象上,则a 的值为__________.【分析】根据点的平移规律可得平移后点的坐标是(2-a3)代入计算即可【详解】解:∵A 坐标为(23)∴将点A 沿x 轴向左平移a 个单位后得到的点的坐标是(2-a3)∵恰好落在正比例函数的图象上∴解得:a= 解析:532 【分析】 根据点的平移规律可得平移后点的坐标是(23-a ,3),代入23y x =-计算即可.【详解】解:∵A 坐标为(23,3),∴将点A 沿x 轴向左平移a 个单位后得到的点的坐标是(23-a ,3),∵恰好落在正比例函数23y x =-的图象上,∴()23233a --=,解得:a=532. 故答案为532. 【点睛】此题主要考查了正比例函数图象上点的坐标特点,以及点的平移规律,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加..三、解答题21.如图,在平面直角坐标系中,直线y kx b =+交x 轴于点()30A -,,交y 轴于点()0,1B .过点()1,0C -作垂直于x 轴的直线交AB 于点D ,点()1,E m -在直线CD 上且在直线AB 的上方.(1)求k 、b 的值(2)当3m =时,求四边形AOBE 的面积S .(3)当2m =时,以AE 为边在第二象限作等腰直角三角形PAE ,直接写出点P 的坐标.解析:解:(1)k=13,b=1;(2)5;(3)(-5,2)或(-3,4)或(-3,2).【分析】(1)利用待定系数法即可求出k 和b 的值;(2)根据题意得到点A 、B 、E 、C 的坐标,再利用S 四边形AOBE =S △ACE +S 四边形OBEC 即可表示出结果;(3)分点A 为直角顶点,点E 为直角顶点,点P 为直角顶点三种情况分别求出点P 的坐标即可.【详解】解:(1)∵直线y kx b =+过点A (-3,0),B (0,1),则031k b b=-+⎧⎨=⎩, 解得:131k b ⎧=⎪⎨⎪=⎩,∴k=13,b=1; (2)∵A (-3,0),B (0,1),E (-1,m ),C (-1,0),∴S 四边形AOBE =S △ACE +S 四边形OBEC =()1121122m m ⨯⨯+⨯+⨯ =3122m +; 当3m =时,S 四边形AOBE =313=522⨯+ (3)∵m=2,∴E (-1,2),∴CE=AC=2,∴△ACE 为等腰直角三角形,当直角顶点为点A 时,AP=AE ,∠PAE=90°,∴∠AEP=∠CAE=45°,∴PE ∥AC ,过P 作PF ⊥x 轴于F∴∠PAF=180º-∠PAE-∠CAE=180°-90°-45=45°∴△PAF ≌△EAC (AAS )∴PF=FA=AC=CE=2∴OF=AF+AC+OC=2+2+1=5∴点P (-5,2);当直角顶点为点E时,EP=EA,∠AEP=90°,∠EAP=45°,∴∠PAC=90°,过E作EG⊥AP于G,PG=AG=GE=AC=CE=2AO=AC+OC=2+1=3,AP=2AG=4∴P(-3,4);当点P为直角顶点时,PA=PE,∠APE=90°,可得四边形APEC为正方形,∴AP=AC=PE=EC,∴AO=AC+OC=2+1=3,∴P(-3,2),综上:点P的坐标为(-5,2)或(-3,4)或(-3,2).【点睛】本题考查了待定系数法求一次函数的解析式,等腰直角三角形的性质,分类考虑以点A、E、P为直角,正确的作出图形是解题的关键.22.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x (h ),两车之间的距离为y ,图中的折线表示y 与x 之间的函数关系.(1)甲,乙两地之间的距离为 千米;图中点B 的实际意义是 ;(2)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时? 解析:(1)900km ,4小时两车相遇;(2)()22590046y x x =-≤≤; (3)0.75小时【分析】(1)根据观察图象可得甲乙两地间的距离,根据图象中的点的实际意义即可得到答案; (2)根据观察图象先求得B 、C 两点的坐标,然后利用待定系数法求线段BC 的函数解析式即可;(3)求得第二列快车与慢车相遇所用的时间和此时第一列快车行驶的时间,即可求得第二列快车比第一列快车晚出发的时间.【详解】解:(1)由图象可知,甲乙两地间的距离是900km ;图中点B 的实际意义是:4小时两车相遇.(2)∵观察图象可得:慢车速度为9001275/km h ÷=;两车的速度和为9004225/km h ÷=∴快车的速度为22575150/km h -=∴两车相遇后快车到达乙地所用时间为90015042h ÷-=∴相遇后两小时两车行驶的距离和为2252450km ⨯=∴()4,0B ,()6,450C∴设线段BC 的解析式为:y kx b =+∴406450k b k b +=⎧⎨+=⎩∴225900k b =⎧⎨=-⎩∴线段BC 所表示的y 与x 之间的函数关系式为:()22590046y x x =-≤≤. (3)130min h 2= ∵相遇时快车行驶的路程为1504600km ⨯=∴第二列快车与慢车相遇时行驶的路程为160075562.52km -⨯= ∴第二列快车与慢车相遇时所用时间为562.5150 3.75h ÷=,此时快车行驶了14 4.52h += ∴4.5 3.750.75h -= ∴第二列快车比第一列快车晚出发了0.75小时. 【点睛】本题主要考查了用一次函数模型解决实际问题的能力和读图能力,会根据图象得出所需要的信息是解题的关键.23.如图,一次函数y kx b =+的图象与x 轴交于点A ,与y 轴交于点()0,2B ,与正比例函数32y x =的图象交于点()4,C c . (1)求k 和b 的值.(2)如图1,点P 是y 轴上一个动点,当PA PC -最大时,求点P 的坐标.(3)如图2,设动点D ,E 都在x 轴上运动,且2DE =,分别连结BD ,CE ,当四边形BDEC 的周长取最小值时直接写出点D 和E 的坐标.解析:(1)1k =,2b =;(2)()0,6P ;(3)5,02E ⎛⎫ ⎪⎝⎭,1,02D ⎛⎫ ⎪⎝⎭. 【分析】(1)将C 的坐标代入正比例函数中,求出点C 坐标,进而用待定系数法即可得出结论; (2)利用三角形的两边之差小于第三边,判断出点P 是直线PC'和y 轴的交点,即可得出结论;(3)先判断出点D 的位置,先求出点G 的坐标,进而得出点F 的坐标,利用待定系数法求出直线BF 解析式即可得出结论. 【详解】解:(1)把点C (4,c )代入32y x =, 解得:c=6,则点C (4,6), ∵一次函数交y 轴于点B (0,2),∴函数表达式为:y=kx+2, 把点C 坐标代入上式,解得:k=1, 故:k=1,b=2, (2)如图,作A 关于y 轴的对称点A ',连接CA '交y 轴于P 点, 此时PA PC -最大,()2,0A ',PA PA '=,设A C '的解析式为y ax m =+, 将()4,6C ,()2,0A '代入得4620a m a m +=⎧⎨+=⎩,解得36a m =⎧⎨=-⎩, ∴36CA y x '=-PA PC PA PC CA --'==',∴()0,6P -.(3)以下各点的坐标分别为:B (0,2),C (4,6),过点C 作CG ∥DE ,使GC=DE , 则:四边形DECG 为平行四边形,作点G 作关于x 轴的对称点F ,连接BF ,交x 轴于D ,点D 即为所求点, 则点G 坐标为(2,6),点F 坐标为(2,-6),则:DF=DG=EC ,DB+CE=BD+DG=BD+DF=BF ,即:BD+CE 最小,而:DE 、BC 长度为常数,故:在图示位置时,四边形BDEC 的周长取最小值, 把点B 、F 点坐标代入一次函数表达式:y=nx+b′, 解得:BF 所在的直线表达式为:y=-4x+2, 令:y=0,则x=12, 则点D 和E 的坐标分别为(12,0)、(52,0), 【点睛】此题为一次函数综合题,其中(3)的核心是确定点D 的位置,考查了学生综合运用所学知识的能力.24.青甘杨作为杨树的一种是我国东北和西北防护林以及用材林的主要树种之一,具有生长快、适应性强、分布广等特点.青甘杨树苗的高度与其生长年数之间的关系如下表所示:(树苗原高是90cm )(2)请用含n 的代数式表示高度h .(3)根据(2)中的结论,请计算生长了11年后的青甘杨可能达到的高度. 解析:(1)265;(2)3590h n =+;(3)生长满11年的青甘杨可能达到的高度为475cm .【分析】(1)根据题意和表格中的数据,可以得到第5年树苗可能达到的高度; (2)根据题意,可以用含n 的代数式表示高度h ;(3)将n=11代入(2)中的关系式,即可得到生长了11年后的青甘杨可能达到的高度. 【详解】解:(1)由表格中的数据可得, 树苗每年长高160-125=35(cm ),∴第5年树苗可能达到的高度为230+35=265(cm ), 故答案为:265; (2)由题意可得, h=90+35n ,即用含n 的代数式表示高度h 是h=35n+90; (3)当n=11时,h=35×11+90=475(cm ),答:生长了11年后的青甘杨可能达到的高度是475cm . 【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式,求出代数式的值. 25.天府七中科创小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同。

八年级数学复习试卷一

八年级数学复习试卷一

八下期中复习试卷一一、选择题(每题2分,共16分) 班级 姓名 得分 1.下列调查中,适合用全面调查方式的是 ( ) A .了解我市百岁以上老人的健康情况 B .了解某市中学生课外阅读的情况 C .了解一批炮弹的杀伤半径 D .了解一批袋装食品是否含有防腐剂 2.下列图形中,是中心对称图形而不是轴对称图形的是 ( ) A .平行四边形 B .矩形 C .菱形 D .正方形 3.一个扇形统计图中,扇形A 、B 、C 、D 的面积之比为2∶3∶3∶4,则最大扇形的圆心角为( ) A.80° B.100° C.120 D.150° 4. 分式32-+x x 有意义,则x 的取值范围是( )(A )3≠x (B )3-≠x (C )3±≠x (D )3±=x 5.有两个事件,事件A :367人中至少有两人生日相同;事件B :抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是A.事件A 、B 都是随机事件 B.事件A 、B 都是必然事件C.事件A 是随机事件,事件B 是必然事件 D.事件A 是必然事件,事件B 是随机事件 6.如图,平行四边形ABCD 绕点A 逆时针旋转300,得到平行四边形 A 'B ‘C ’D ‘(点B 1与点B 是对应 点,点C ’与点C 是对应点,点D ’与点D 是对应点),点B ’恰好落在BC 边上,则∠C= ( )A .155°B .170°C .105°D .145°7.如图,在ABC △中,点E,D,F 分别在边AB 、BC 、 CA 上,且DE ∥CA ,DF ∥BA 。

下列四个判断中, 不正确...的是 ( ) A 、如果AD 平分∠BAC ,那么四边形AEDF 是菱 B 、如果∠BAC=90°,那么四边形AEDF 是矩形 C 、形四边形AEDF 是平行四边形 D 、如果AD BC ⊥且AB=AC ,那么四边形AEDF 是正方形.8.关于x 的方程211x ax +=-的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-2 二、填空题(每题2分,共16分)9.某超市对今年前两个季度每月销售总量进行统计,为了更清楚地看出销售 总量的总趋势是上升还是下降,应选用 统计图来描述数据.10.已知□ABCD 中,∠A 比∠B 小20°,那么∠C 的度数是________.11.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有 个. 12.某商场为了解本商场的服务质量,随机调查了来本商场购物的100名顾客,调查的结果如图所示,根据图中给出的信息可知,这100•名顾客中对该商场的服务质量表示不满意的有 人. 13.投掷一枚普通的六面体骰子,有下列事件:①掷得的点数是6;②点数是奇数;③点数不大于4;④点数不小于2。

2023-2024学年冀教版八年级数学下册期末复习试题(一)(含答案)

2023-2024学年冀教版八年级数学下册期末复习试题(一)(含答案)

2023-2024学年度下期冀教版数学八年级下册期末复习习题精选(一)(满分120分,限时100分钟)一、选择题(每小题3分,共42分)1.(2023河北保定期末)为了解某市七年级8 000名学生的身高情况,从中抽取了60名学生进行身高检查.下列判断:①这种调查方式是抽样调查;②8 000名学生是总体;③每名学生的身高是个体;④60名学生是总体的一个样本;⑤60名学生是样本容量.其中正确的判断有( )A.5个B.4个C.3个D.2个2.(2023广东深圳南山二模)剪纸艺术是中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是轴对称图形,将其放在平面直角坐标系中,如果图中点E的坐标为(m,3),其关于y轴对称的点F的坐标为(4,n),则m+n的值为( )A.-1B.0C.1D.-93.(2023陕西西安雁塔模拟)一次函数y=(-2m+1)x的图像经过(-1,y1),(2,y2)两点,且y1>y2,则m的值可以是( )A. B.0 C.1 D.-4.(2023浙江温州三模)某校九(1)班50名学生的视力频数分布直方图如图所示(每一组含前一个边界值,不含后一个边界值),若视力达到 4.8以上(含 4.8)为达标,则该班学生视力的达标率为( )A.8%B.18%C.29%D.36%5.(2023山东临沂兰陵期中)下面的三个问题中都有两个变量:①正方形的周长y与边长x;②汽车以30千米/时的速度行驶,它的行驶路程y(千米)与时间x(小时);③水箱以0.8 L/min的流量往外放水,水箱中的剩余水量y(L)与放水时间x(min).其中,变量y与变量x之间的函数关系可以利用如图所示的图像表示的是( )A.①②B.①③C.②③D.①②③6.(2023天津南开期末)已知张强家、体育场、文具店在同一直线上.给出的图像反映的过程是:张强从家跑步去体育场,在体育场锻练了若干分钟后又走到文具店去买笔,然后散步走回家.图中x(min)表示张强离开家的时间,y(km)表示张强离家的距离,则下列说法错误的是( )A.体育场离文具店1 kmB.张强在文具店停留了20 minC.张强从文具店回家的平均速度是 km/minD.当30≤x≤45时,y=7.(2023重庆忠县期末)如图,四边形ABCD是矩形,有一动点P从点B出发,沿B→C→D→A绕矩形的边匀速运动,当点P到达点A时停止运动.在点P的运动过程中,△ABP的面积S随时间t变化的函数图像大致是( )8.【新独家原创】在菱形ABCD中,AC=6,BD=8,点E为BC上一动点,则的最小值为( )A. B. C. D.9.(2023河南新乡长垣期末)随着暑假临近,某游泳馆推出了甲、乙两种消费卡,设消费次数为x,所需费用为y元,且y与x的函数关系的图像如图所示.根据图中信息判断,下列说法错误的是( )A.甲种消费卡为20元/次=10x+100B.y乙C.点B的坐标为(10,200)D.洋洋爸爸准备了240元钱用于洋洋在该游泳馆消费,选择甲种消费卡划算10.(2023上海虹口期末)在平面直角坐标系中,点A(0,6),点B(-6,0),坐标轴上有一点C,使得△ABC为等腰三角形,则这样的点C一共有( )A.5个B.6个C.7个D.8个11.(2023河南濮阳二模)如图,以矩形ABCD的顶点A为圆心,AD长为半径画弧交CB的延长线于点E,过点D作DF∥AE交BC于点F,连接AF.若AB=4,AD=5,则AF的长是( )A.2B.3C.3D.312.(2023福建福州台江模拟)“开开心心”商场2021年1~4月的销售总额如图1,其中A商品的销售额占当月销售总额的百分比如图2.根据图中信息,有以下四个结论,其中推断不合理的是( )A.1~4月该商场的销售总额为290万元B.2月份A商品的销售额为12万元C.1~4月A商品的销售额占当月销售总额的百分比最低的月份是4月D.2~4月A商品的销售额占当月销售总额的百分比与1月份相比都下降了13.【新考法】(2023河南郑州金水期末)现有一四边形ABCD,借助此四边形作平行四边形EFGH,两位同学提供了如图所示的方案,对于方案Ⅰ、Ⅱ,下列说法正确的是( )方案Ⅰ方案Ⅱ作边AB,BC,CD,AD的垂直平分线l1,l2,l3,l4,分别交AB,BC,CD,AD于点E,F,G,H,顺次连接这四点得到的四边形EFGH即为所求连接AC,BD,过四边形ABCD各顶点分别作AC,BD 的平行线EF,GH,EH,FG,这四条平行线围成的四边形EFGH即为所求A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行14.【一题多解】(2022贵州黔东南州中考)如图,在边长为2的等边三角形ABC的外侧作正方形ABED,过点D作DF⊥BC交CB的延长线于点F,则DF的长为( )A.2+2B.5-C.3-D.+1二、填空题(每小题4分,共12分)15.(2023北京房山期末)如图,菱形ABCD的对角线AC,BD相交于点O,点E为BC的中点,连接OE,若OE=,OA=4,则AB= ,菱形ABCD的面积是.16.【河北常考·双填空题】(2023河北石家庄桥西期末)在同一直线上,甲骑自行车,乙步行,分别由A,B两地同时向右匀速出发,当甲追上乙时,两人同时停止.下图是两人之间的距离y(km)与所经过的时间t(h)之间的函数关系图像,观察图像,出发后h甲追上乙.若乙的速度为8 km/h,则经过1.5 h甲行驶的路程为.17.(2023河北沧州献县期末)五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子获胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点.若黑子A的坐标为(7,5),为了不让白方获胜,此时黑方应该下在坐标为的位置.三、解答题(共66分)18.[含评分细则](2023湖北武汉期中)(12分)已知点P(2a-2,a+5),解答下列各题:(1)若点P在x轴上,求出点P的坐标.(2)若点Q的坐标为(4,5),直线PQ∥y轴,求出点P的坐标.(3)若点P在第二象限,且它到x轴的距离与到y轴的距离相等,求a2 023+2 023的值.19.[含评分细则](2023广东深圳期中)(12分)自行车骑行爱好者小轩为备战中国国际自行车公开赛,积极训练.下图是他最近一次在深圳湾体育公园骑车训练时,离家的距离s(km)与所用时间t(h)之间的函数图像.请根据图像回答下列问题:(1)途中小轩共休息了h.(2)小轩第一次休息后,骑行速度恢复到第1小时的速度,请求出目的地离家的距离a是多少.(3)小轩第二次休息后返回家时,速度和到达目的地前的最快车速相同,则全程最快车速是km/h.(4)已知小轩是早上7点离开家的,请通过计算,求出小轩回到家的时间.20.[含评分细则]【新素材】(2023四川绵阳涪城模拟)(14分)青少年“心理健康”问题引起社会的广泛关注,某区为了解学生的心理健康状况,对中学初二学生进行了一次“心理健康”知识测试,随机抽取了部分学生的成绩作为样本,绘制了不完整的频率分布表和频率分布直方图(频率分布表每组含前一个边界值,不含后一个边界值).学生心理健康测试成绩频率分布表分组频数频率50~60 4 0.0860~70 14 0.2870~80 m 0.3280~90 6 0.1290~100 10 0.20合计 1.00请解答下列问题:(1)学生心理健康测试成绩频率分布表中,m= .(2)请补全学生心理健康测试成绩频数分布直方图.(3)若成绩在60分以下(不含60分)心理健康状况为不良,60分~70分(含60分)为一般,70分~90分(含70分)为良好,90分(含90分)以上为优秀,请补全学生心理健康测试成绩扇形统计图.21.[含评分细则](2023江苏无锡梁溪期末)(14分)某学校新建的初中部即将投入使用,为了改善教室空气环境,该校八年级1班班委会计划到朝阳花卉基地购买绿植,已知该基地一盆绿萝与一盆吊兰的费用之和是16元.班委会决定用80元购买绿萝,用120元购买吊兰,所购绿萝数量正好是吊兰数量的两倍.(1)分别求出每盆绿萝和每盆吊兰的价格.(2)该校八年级所有班级准备一起到该基地购买绿萝和吊兰共计120盆,其中绿萝数量不超过吊兰数量的一半,则八年级购买这两种绿植各多少盆时总费用最少?最少费用是多少元?22.[含评分细则](2023四川达州渠县期末)(14分)如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD以每秒1个单位长度的速度运动,同时点Q从点C出发沿射线CB以每秒2个单位长度的速度运动,在线段QC 上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长.(2)是否存在t值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.答案解析1.D 为了解某市七年级8 000名学生的身高情况,从中抽取了60名学生进行身高检查.①这种调查方式是抽样调查,说法正确;②8 000名学生的身高情况是总体,故原说法错误;③每名学生的身高是个体,说法正确;④60名学生身高情况是总体的一个样本,故原说法错误;⑤60是样本容量,故原说法错误.所以正确的判断有2个.故选D.2.A ∵图中点E的坐标为(m,3),其关于y轴对称的点F的坐标为(4,n),∴m=-4,n=3,∴m+n=-4+3=-1,故选A.3.C ∵-1<2,且y1>y2,∴y随x的增大而减小,∴-2m+1<0,解得m>.故选C.4.D 若视力达到4.8以上(含4.8)为达标,则该班学生视力的达标率为×100%=36%.故选D.5.A 正方形的周长y与边长x的关系式为y=4x,故①符合题意;汽车以30千米/时的速度行驶,它的行驶路程y(千米)与时间x(小时)的关系式为y=30x,故②符合题意;水箱以0.8 L/min的流量往外放水,水箱中的剩余水量y(L)与放水时间x(min)的关系式为y=水箱原来的水量-0.8x,故③不符合题意.所以变量y与变量x之间的函数关系可以用题中的图像表示的是①②.故选A.6.D A.体育场到文具店的距离为2.5-1.5=1(km),故A选项正确,不符合题意;B.张强在文具店停留了65-45=20(min),故B选项正确,不符合题意;C.张强从文具店回家的平均速度为 1.5÷(100-65)= km/min,故C选项正确,不符合题意;D.当30≤x≤45时,设y=kx+b(k≠0),则∴当30≤x≤45时,y=-,故D选项错误,符合题意.故选D.7.B 由题意可知,当点P从点B向点C运动时,S=AB·BP,△ABP的面积S与t成正比例函数关系且随时间t的增大而增大;当点P从点C向点D运动时,S=AB·BC,△ABP的面积S不随时间t的变化而变化;当点P从点D向点A运动时,S=AB·AP,△ABP的面积S是t的一次函数且随时间t的增大而减小.所以在点P的运动过程中,△ABP的面积S随时间t变化的函数图像大致是选项B的图像.故选B.8.B ∵四边形ABCD是菱形,AC=6,BD=8,∴OB=AC=3,AC⊥BD.OB是定值,要想的值最小,则OE取最小值.当OE⊥BC时,OE取最小值,由勾股定理可求得BC==5,∵BC·OE=OB·OC,∴OE=,∴.故选B.9.D 设甲对应的函数解析式为y甲=kx(k≠0),∵点(5,100)在该函数图像上,∴5k=100,解得k=20,即甲对应的函数解析式为y甲=20x,即甲种消费卡为20元/次,故选项A不符合题意;设乙对应的函数解析式为y乙=ax+b(a≠0),∵点(0,100),(20,300)在该函数图像上,∴即乙对应的函数解析式为y乙=10x+100,故选项B不符合题意;令20x=10x+100,解得x=10,20×10=200,故点B的坐标为(10,200),故选项C不符合题意;当y=240时,甲种消费卡可消费240÷20=12(次),乙种消费卡可消费的次数为(240-100)÷10=14,因为12<14,所以洋洋爸爸准备240元钱用于洋洋在该游泳馆消费,选择乙种消费卡划算,故选项D符合题意.故选D.10.C 如图,当BC=AB时,以点B为圆心、AB长为半径画圆,与坐标轴分别交于点C1、C2、C3、A.当AC=AB时,以点A为圆心、AB长为半径画圆,与坐标轴分别交于点C4、C5、C6、B.当AC=BC时,点C应该在AB的垂直平分线上,∵OA=OB,∴点O在AB的垂直平分线上.综上,这样的C点共有7个,分别是点C1、C2、C3、C4、C5、C6、O.故选C.11.A ∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠ABE=90°,∵DF∥AE,AD∥EF,∴四边形ADFE是平行四边形,由作图得AE=AD=5,∴四边形ADFE是菱形,∴FE=AE=5,∵BE==3,∴BF=FE-BE=5-3=2,∴AF=.12.C A.1~4月该商场的销售总额为85+80+60+65=290万元,故A不符合题意;B.2月份A商品的销售额为80×15%=12万元,故B不符合题意;C.1~4月A商品的销售额占当月销售总额的百分比最低的月份是2月,故C符合题意;D.2~4月A商品的销售额占当月销售总额的百分比与1月份相比都下降了,故D不符合题意. 故选C.12.C 本题列举两种方案,从中选取可行方案,考查形式比较新颖.方案Ⅰ,如图,连接AC,∵l1,l2,l3,l4分别垂直平分AB,BC,CD,AD,∴E,F,G,H分别是AB,BC,CD,AD的中点,∴EF是△ABC的中位线,GH是△ADC的中位线,∴EF∥AC,EF=AC,GH∥AC,GH=AC,∴EF∥GH,且EF=GH,∴四边形EFGH是平行四边形,∴方案Ⅰ可行.方案Ⅱ,∵EF∥AC,GH∥AC,∴EF∥GH,∵EH∥BD,FG∥BD,∴EH∥FG,∴四边形EFGH是平行四边形,方案Ⅱ可行.故选C.14.D 解法一:如图1,延长DA,BC交于点G,∵四边形ABED是正方形,∴∠BAD=90°,AD=AB,∴∠BAG=180°-90°=90°.∵△ABC是边长为2的等边三角形,∴AB=AC=2,∠ABC=∠BAC=60°,∴∠CAG=∠BAG-∠BAC=30°,∠G=90°-∠ABC=30°,∴∠CAG=∠G,∴AC=CG=2,∴BG=BC+CG=4,∴AG=,∴DG=AD+AG=2+2.在△DFG中,DF⊥BC,∠G=30°,∴DF=×(2+2.故选D.解法二:如图2,过点E作EG⊥DF于点G,作EH⊥BC交CB的延长线于点H,则∠BHE=∠DGE=90°.∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°.∵四边形ABED是正方形,∴BE=DE=AB=2,∠ABE=∠BED=90°,∴∠EBH=180°-∠ABC-∠ABE=180°-60°-90°=30°,∴EH=×2=1,∴BH=.∵EG⊥DF,EH⊥BC,DF⊥BC,∴∠EGF=∠EHB=∠DFH=90°,∴四边形EGFH是矩形,∴FG=EH=1,∠BEH+∠BEG=∠GEH=90°.∵∠DEG+∠BEG=90°,∴∠BEH=∠DEG.在△BEH和△DEG中,∴△BEH≌△DEG(AAS),∴DG=BH=,∴DF=DG+FG=+1.故选D.15.2;16解析∵菱形ABCD的对角线AC与BD相交于点O,∴DO⊥CO,AC=2OA=2OC=8,∵E是BC的中点,∴OE是△CAB的中位线,∴AB=2OE=2,∴OB==2,∴BD=2OB=4,∴菱形ABCD的面积=×8×4=16.16.2;30km解析由图像可知,出发后2 h甲追上乙,A,B两地相距24 km,设甲的速度为x km/h,根据题意得2x=8×2+24,解得x=20,20×1.5=30(km).经过1.5 h甲行驶的路程为30 km.17.(3,7)或(7,3)18.解析(1)∵点P在x轴上,∴a+5=0,∴a=-5,∴2a-2=-12,∴点P的坐标为(-12,0).4分(2)∵点Q的坐标为(4,5),直线PQ∥y轴,∴2a-2=4,∴a=3,∴a+5=8,∴P(4,8).8分(3)∵点P在第二象限,且它到x轴的距离与到y轴的距离相等,∴2a-2=-(a+5),∴a=-1,此时P(-4,4)在第二象限,符合题意,∴a2 023+2 023=(-1)2 023+2 023=2 022,∴a2 023+2 023的值为2 022.12分19.解析(1)途中小轩共休息了2-1.5+4-3=1.5(h).故答案为1.5.3分(2)25+15×(3-2)=40(km).∴a=40.6分(3)全程最快车速是(25-15)÷(1.5-1)=20(km/h).故答案为20.9分(4)4+40÷20=6(h),7+6=13,∴小轩回到家的时间是13点.12分20.解析(1)由表格可得,抽取的学生数为4÷0.08=50,∴m=50×0.32=16.故答案为16.4分(2)补全的学生心理健康测试成绩频数分布直方图如图1所示.8分(3)良好率:(0.32+0.12)×100%=44%,9分优秀率:0.2×100%=20%,10分补全的学生心理健康测试成绩扇形统计图如图2所示.14分21.解析(1)设每盆绿萝x元,则每盆吊兰(16-x)元.根据题意得=2×,解得x=4.4分经检验,x=4是方程的解且符合题意.∴16-x=12.答:每盆绿萝4元,每盆吊兰12元.6分(2)设购买吊兰a盆,总费用为y元.依题意得,购买绿萝(120-a)盆,则y=12a+4(120-a)=8a+480.9分∵绿萝数量不超过吊兰数量的一半,∴120-a≤a,解得a≥80.10分对于y=8a+480,y随a的增大而增大,∴当a=80时,y取得最小值,最小值为8×80+480=1 120,12分此时120-a=40.答:购买吊兰80盆,绿萝40盆时,总费用最少,为1 120元.14分22.解析(1)如图,过A点作AM⊥BC于点M,设AC交PE于点N.∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=BC=5,2分∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,4分∴PN=AP=t,∴CE=NE=PE-PN=5-t,∵CE=CQ-QE=2t-2,∴5-t=2t-2,6分解得t=,∴BQ=BC-CQ=10-2×.7分(2)存在.8分若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,分两种情况:①当点E在点B的右侧时,有解得t=4.②当点E在点B的左侧时,有解得t=12.∴存在t值,使以A,B,E,P为顶点的四边形为平行四边形,此时t的值为4或12.14分。

2020-2021学年八年级数学人教版下册 期末复习:一次函数实际应用(一)

2020-2021学年八年级数学人教版下册  期末复习:一次函数实际应用(一)

2020-2021学年八年级数学人教版下册期末复习:一次函数实际应用(一)1.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与离家距离的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)本次上学途中,小明一共行驶了米.一共用了分钟.(3)在整个上学的途中最快的速度是米/分.(4)小明当出发分钟离家1200米.2.一辆轿车和一辆货车同时从甲地出发驶往乙地,轿车到达乙地后立即以另一速度原路返回甲地,货车到达乙地后停止.如图所示的图象分别表示货车、轿车离甲地的距离y(千米)与轿车行驶时间x(小时)的关系.(1)求轿车在返回甲地过程中的速度;(2)当轿车从乙地返回甲地的途中与货车相遇时,求相遇处离甲地的距离;(3)请求出两车出发多久后相距10千米.3.小明家距离学校8千米.一天早晨,小明骑车上学途中自行车出现故障,他于原地修车,车修好后,立即在确保安全的前提下以更快的速度匀速骑行到达学校.如图反映的是小明上学过程中骑行的路程(千米)与他所用的时间(分钟)之间的关系,请根据图象,解答下列问题:(1)小明骑行了千米时,自行车出现故障;修车用了分钟;(2)自行车出现故障前小明骑行的平均速度为千米/分,修好车后骑行的平均速度为千米/分;(3)若自行车不发生故障,小明一直按故障前的速度匀速骑行,与他实际所用时间相比,将早到或晚到学校多少分钟?4.小明从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,小明的家、体育场、文具店在同一条直线上.如图是小明离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离小明家千米.(2)小明在文具店逗留了分钟.(3)求小明从文具店到家的速度是千米/时.5.如图反映的过程是:小明从家出发去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离,小明家,菜地,玉米地在同一直线上.根据图象回答下列问题:(1)菜地离小明家多远?小明走到菜地用了多长时间?小明给菜地浇水用了多长时间?(2)菜地离玉米地多远?小明草菜地到玉米地用了多长时间?(3)小明给玉米地锄草用了多长时间?(4)玉米地离小明家多远?小明从玉米地走回家的平均速度是多少?6.深圳校服已成为城市的一张名片,也成了在外游子“认亲”的凭证.夏季来临,深圳某校服生产厂为提高生产效益引进了新的设备来生产夏季校服,其中甲表示新设备的产量y (万套)与生产时间x(天)的关系,乙表示旧设备的产量y(万套)与生产时间x(天)的关系.(1)由图象可知,新设备因工人操作不当停止生产了天;(2)旧设备每天生产万套夏季校服,新设备正常生产每天生产万套夏季校服.(3)在生产过程中,x=时,新旧设备所生产的校服数量相同.7.小明和小华是姐弟俩,某日早晨,小明7:40先从家出发去学校,走了一段后,在途中广场看到志愿者们在向过往行人讲解卫生防疫常识,小明想起自己在学校学到的卫生防疫常识,于是停下来加入了志愿者队伍,后来发现上课时间快到了,就开始跑步上学,恰好在8:00赶到学校;小华离家后沿着与小明同一条道路前往学校,速度一直保持不变,也恰好在8:00赶到学校,他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图如图所示,请结合图中信息解答下列问题:(1)小明家和学校的距离是米;小明在广场向行人讲解卫生防疫常识所用的时间是分钟;(2)分别求小华的速度和小明从广场跑去学校的速度;(3)求小华在广场看到小明时是几点几分?(4)如果小明在广场进行卫生防疫常识讲解后,继续以之前的速度去往学校,假设讲解1次卫生防疫常识需要1分钟,在保证不迟到(不超过8:00)的情况下,通过计算求小明最多可以讲解几次?(结果保留整数)8.新冠病毒防疫期间,草莓摊主小钱为避免交叉感染的风险,建议顾客选择微信支付,尽量不使用现金,早上开始营业前,他查看了自己的微信零钱;销售完20kg后,他又一次查看了微信零钱,由于草莓所剩不多,他想早点卖完回家,于是每千克降价10元销售,很快销售一空,小钱弟弟根据小钱的微信零钱(元)与销售草莓数量(kg)之间的关系绘制了下列图象,请你根据以上信息回答下列问题:(1)图象中A点表示的意义是什么?(2)降价前草莓每千克售价多少元?(3)小钱卖完所有草莓微信零钱应有多少元?9.某长途客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需支付相应的行李费.设x表示行李的质量(kg),y表示行李费(元),y与x的函数关系如图所示,请写出x,y变化过程中的实际意义.10.A,B,C三地在同一条公路上,C地在A,B两地之间,且到A,B两地的路程相等.甲、乙两车分别从A,B两地出发,匀速行驶.甲车到达C地并停留1小时后以原速继续前往B地,到达B地后立即调头(调头时间忽略不计),并按原路原速返回C地停止行驶,乙车经C地到达A地停止行驶.在两车行驶的过程中,甲、乙两车距C地的路程y(单位:千米)与所用的时间x(单位:小时)之间的函数图象如图所示,请结合图象信息解答下列问题:(1)直接写出A,B两地的路程和甲车的速度;(2)求乙车从C地到A地的过程中y与x的函数关系式(不用写自变量的取值范围);(3)出发后几小时,两车在途中距C地的路程之和为180千米?请直接写出答案.11.甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B 地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过时间x(小时)之间的函数关系图象.(1)甲从B地返回A地的过程中,直接写出y与x之间的函数关系式及自变量x的取值范围;(2)若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?(3)甲与乙同时出发后,直接写出经过多长时间他们相距20千米?12.某天,甲组工人为灾区加工棉衣,工作中有一次停产检修机器,然后继续加工,由于任务紧急,乙组工人加入与甲组工人一起加工棉衣,甲停产前后各保持匀速生产,乙在工作时间内保持匀速生产,两组各自加工棉衣的数量y(件)与甲组工人加工时间x(小时)的函数图象如图所示.(1)求乙组加工棉衣的数量y与时间x之间的函数关系式;(2)直接写出甲组加工棉衣总量a的值.(3)如果要求x=8时,加工棉衣的总数量为480件,求乙组工人应提前多长时间加工棉衣.13.四名同学两两一队,从学校集合进行徒步活动,目的地是距学校10千米的前海公园.由于乙队一名同学迟到,因此甲队两名同学先出发.24分钟后,乙队两名同学出发.甲队出发后第30分钟,一名同学受伤,处理伤口,稍作休息后,甲队由一名同学骑单车载受伤的同学继续赶往目的地.若两队距学校的距离s(千米)与时间t(小时)之间的函数关系如图所示,请结合图象,解答下列问题:(1)甲队在队员受伤前的速度是千米/时,甲队骑上自行车后的速度为千米/时;(2)当t=时,甲乙两队第一次相遇;(3)当t≥1时,什么时候甲乙两队相距1千米?14.明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y(单位:m)与所用时间x(单位:min)之间的对应关系.请根据相关信息,解决下列问题:(Ⅰ)填表:离开家的时间/min 2 5 8 11离家的距离/m400 600(Ⅱ)填空:①明明家与书店的距离是m;②明明在书店停留的时间是min;③明明与家距离900m时,明明离开家的时间是min.(Ⅲ)当6≤x≤14时,请直接写出y与x的函数关系.15.A,B,C三地在同一条公路上,C地在A,B两地之间,且与A,B两地的路程相等.甲、乙两车分别从A,B两地同时出发,匀速行驶.甲车到达C地停留1小时后以原速度继续前往B地,到达B地后立即调头(调头时间忽略不计),并按原路原速返回A地停止;乙车经C地到达A地停止,且比甲车早1小时到达A地.两车距B地的路程y(km)与所用时间x(h)的函数关系如图所示.请结合图象信息解答下列问题:(1)A,B两地的路程为km,乙车的速度为km/h;(2)求图象中线段GH所表示的y与x的函数解析式(不需要写出自变量x的取值范围);(3)两车出发后经过多长时间相距120km的路程?请直接写出答案.参考答案1.解:(1)由图象可得,小明家到学校的路程是1500米,故答案为:1500;(2)本次上学途中,小明一共行驶了:1500+(1200﹣600)×2=2700(米),一共用了14(分钟),故答案为:2700,14;(3)由图象可知,在整个上学的途中,12分钟至14分钟小明骑车速度最快,最快的速度为:(1500﹣600)÷(14﹣12)=450米/分钟,故答案为:450;(4)设t分钟时,小明离家1200米,则t=6或t﹣12=(1200﹣600)÷450,得t=13,即小明出发6分钟或13分钟离家1200米.故6或13.2.解:(1)根据图象可得当x=1.5小时时,离甲地的距离是90千米,当x=2.5小时时,离甲地的距离是0千米,∴轿车在返回甲地过程中的速度为:90÷(2.5﹣1.5)=90(千米/小时),答:轿车在返回甲地过程中的速度为90千米/小时;(2)设货车离甲地的距离y(千米)与轿车行驶时间x(小时)的的函数解析式是y=kx+b,则2k=90,解得:k=45,则函数解析式是y=45x(0≤x≤2);设轿车在返回甲地过程中离甲地的距离y(千米)与轿车行驶时间x(小时)的的解析式是y=mx+b,则,解得:,则函数解析式是y=﹣90x+225.根据题意得:﹣90x+225=45x,解得:x=,则轿车从乙地返回甲地的途中与货车相遇时,相遇处到甲地的距离是45×=75(千米).答:当轿车从乙地返回甲地的途中与货车相遇时,相遇处离甲地的距离是75千米;(3)设两车出发a小时相距10千米轿车到达乙地前,(90÷1.5﹣45)a=10,解得:a=;轿车到达乙地后与货车相遇前:﹣90a+225﹣45a=10,解得:a=;轿车到达乙地后与货车相遇后:45a﹣(﹣90a+225)=10,解得:a=;答:两车出发小时或小时或小时后相距10千米.3.解:(1)由图可知,小明行了3千米时,自行车出现故障,修车用了15﹣10=5(分钟);故答案为:3;5;(2)修车前速度:3÷10=0.3(千米/分),修车后速度:5÷15=(千米/分);故答案为:0.3;;(3)8÷(分钟),30﹣=(分钟),故他比实际情况早到分钟.4.解:(1)由图象可知,体育场离小明家2.5千米.故答案为:2.5;(2)由图象可知,小明在文具店逗留了:65﹣45=20(分钟).故答案为:20;(3)1.5÷=(km/h),即小明从文具店到家的速度为km/h.故答案为:.5.解:由图象得:(1)菜地离小明家1.1千米,小明从家到菜地用了15分钟,小明给菜地浇水用了25﹣15=10(分钟);(2)菜地离玉米地2﹣1.1=0.9(千米),小明从菜地到地用了37﹣25=12(分钟);(3)小明给玉米地锄草用了55﹣37=18(分钟);(4)玉米地离小明家2千米,小明从玉米地走回家的平均速度=2÷=4.8(千米/小时).6.解:(1)由图象知,新设备因工人操作不当停止生产了2天,故答案为:2.(2)旧设备每天生产:1.4÷7=0.2(万套),新设备每天生产:0.4÷1=0.4(万套),故答案为:0.2,0.4;(3)①0.2x=0.4,解得x=2;②0.2x=0.4(x﹣2),解得x=4;故答案为:2或4.7.解:(1)由图象可知,小明家和学校的距离是1280米;小明在广场向行人讲解卫生防疫常识所用的时间是:14﹣8=6(分钟);故答案为:1280;6;(2)小华的速度为:1280÷(20﹣4)=80(米/分),小明从广场跑去学校的速度为:(1280﹣560)÷(20﹣14)=120(米/分);(3)560÷80=7(分),40+4+7=51(分),答:小华在广场看到小明时是7:51;(4)1280÷(560÷8)=(分),20﹣=(分),,答:在保证不迟到的情况下,小明最多可以讲解1次.8.解:(1)由图象可知,小钱开始营业前微信零钱有50元;(2)由图象可知,销售草莓20kg后,小钱的微信零钱为650元,∴销售草莓20kg,销售收入为650﹣50=600元,∴降价前草莓每千克售价为:600÷20=30(元);(3)降价后草莓每千克售价为:30﹣10=20元,∴小钱卖完所有草莓微信零钱为:650+5×20=750(元),答:小钱卖完所有草莓微信零钱应该有750元.9.解:∵y是x的一次函数,∴设y=kx+b(k≠0)由图可知,函数图象经过点(40,6),(60,10),,∴函数表达式为y=0.2x﹣2,将y=0代入y=0.2x﹣2,得0=0.2x﹣2,∴x=10,所以,旅客最多可免费携带行李的质量为10kg;当x>10,即当行李质量超过10kg时,超出部分的行李每千克需要加收0.2元.10.解:(1)当0h时,甲车和乙车距C地为180km,∴两地的路程为:180+180=360km,设甲车经过180km用了xh,则:x+x+x+1=5.5,∴x=1.5,则甲车速度为:180÷1.5=120(km/h);(2)设乙车从C地到A地的过程中y与x的函数关系式为:y=kx+b(k≠0),将(3,0),(6,180)代入y=kx+b(k≠0),得:,解得:,∴乙车从C地到A地的过程中y与x的函数关系式为:y=60x﹣180;(3)由图可知,分别在3个时间段可能两车在途中距C地路程之和为180km,①甲车从A地到C地,乙车从B到C,﹣120x+180+60x+180=180,解得:x=1;②甲车从C到B,乙车从C到A,﹣120x﹣300+60x﹣180=180,记得:x=;③甲车从B到C,乙车从C到A,﹣120x+660+60x﹣180=180,解得:x=5.总上所述:分别在1h,h,5h这三个时间点,两车在途中距C地的路程之和为180km.11.解:(1)设甲从B地返回A地的过程中,y与x之间的函数关系式为y=kx+b,根据题意得:,解得,所以y=﹣60x+180(1.5≤x≤3);(2)∵当x=时,y=﹣60×1.8+180=72,∴骑电动车的速度为72÷1.8=40(千米/时),∴乙从A地到B地用时为90÷40=2.25(小时)=135分钟.答:乙从A地到B地用了135分钟.(3)根据题意得:90x﹣40x=20或60(x﹣1.5)+40x=90﹣20或60(x﹣1.5)+40x =90+20,解得x=或x=或x=2,答:经过时或时或2时,他们相距20千米.12.解:(1)设y乙=kx+b(k≠0),将(4.5,0),(8,252)代入得:,解得,∴y乙=72x﹣324;(2)把x=7代入y乙=72x﹣324,得y乙=72×7﹣324=180,当4≤x≤8时,设甲组加工棉衣的数量y与时间x之间的函数关系式为y甲=mx+n,将(7,180),(4,90)代入得:,解得,∴y甲=30x﹣30(4≤x≤8),将x=8代入,得y甲=30×8﹣30=210,即a=210;(3)由图象可知,乙组工人加工252件棉衣所用时间为:8﹣4.5=3.5(小时),∴乙的加工速度为:252÷3.5=72(件/小时),∵480﹣210=270(件),270÷72=3.75(小时),∴3.75﹣3.5=0.25(小时),即乙组工人应提前0.25小时加工棉衣.13.解:(1)由图象可得,甲队在队员受伤前的速度是:2÷=4(千米/时),甲队骑上自行车后的速度为:(10﹣2)÷(2﹣1)=8(千米/时),故答案为:4,8;(2)由图象可得,乙队的速度为:10÷(2.4﹣)=5(千米/时),令5×(t﹣)=2,解得t=0.8,即当t=0.8时,甲乙两队第一次相遇,故答案为:0.8;(3)由题意可得,[5×(t﹣)]﹣[2+8(t﹣1)]=1或[2+8(t﹣1)]﹣[5×(t﹣)]=1或[5×(t ﹣)]=10﹣1,解得t=1或t=或t=,即当t≥1时,1小时、小时或小时时,甲乙两队相距1千米.14.解:有图象可知,明明从家到学校分四段,当0≤x≤6时,图象经过(0,0)和(6,1200),∴解析式为:y1=200x;当6<x≤8时,设函数解析式为:y2=kx+b,∵图象经过(6,1200)和(8,600),∴,解得:,∴函数解析式为:y2=﹣300x+3000;当8<x≤12时路程没有变化说明明明在书店停留,∴y3=600;当12<x≤14时,设函数解析式为:y4=ax+m,∵图象经过(12,600)和(14,1500),∴,解得:,∴函数解析式为:y4=450x﹣4800;Ⅰ∵x=5时属于第①钟情况,∴y=1000(m),∵x=11时属于第③种情况,∴y=600(m);Ⅱ①由图象知明明家书店的距离是600m;②明明在书店停留的时间为:12﹣8=4(min);③从图象上可知x在0~6,6~8,12~14时可以距家900m,当0≤x≤6时,当y=900时,即200x=900,∴x=(min),当6<x≤8时,当y=900时,即﹣300x+3000=900,∴x=7(min),当12<x≤14时,当y=900时,即450x﹣4800=900,∴x=(min),∴明明与家距离900m时,明明离开家的时间为min或7min或min;Ⅲ由上面解法知:y=.故答案为:Ⅰ、1000,600;Ⅱ、①600,②4,③或7或.15.解:(1)∵C地在A,B两地之间,且与A,B两地的路程相等,且E、F纵坐标为180,∴A、B两地距离为180×2=360(km),又P横坐标为6,∴乙车速度为360÷6=60(km/h),故答案为:360,60;(2)∵乙车经C地到达A地停止,且比甲车早1小时到达A地,∴H(7,360),∵甲车到达C地停留1小时后以原速度继续前往B地,∴甲车行驶的时间一共6小时,即甲车行驶360km需要3小时,∴甲车速度为120km/h,G(4,0),设GH的解析式为y=kx+b,将H(7,360)、G(4,0)代入得:,解得:,∴GH的解析式为y=120x﹣480;(3)有三个时刻两车距120km,①刚出发t小时两车距120km,则360﹣(120t+60t)=120,解得:t=(h),②甲车停1小时后重新出发,设经过的时间是x小时两车相距120km,则120(x﹣1)+60x﹣120=360,解得:x=(h),③甲4小时达到B地,此时乙所行路程为4×60=240(千米),即两车此时距240千米,设再过y小时二车相距120千米,则120y﹣60y=240﹣120,解得y=2,∴两车第三次相距120千米,经过的时间是4+y=6(h),综上所述,两车出发后相距120km的路程,时间分别是小时、小时、6 小时.。

2022-2023学年浙教新版八年级下册数学期末复习试卷1(含解析)

2022-2023学年浙教新版八年级下册数学期末复习试卷1(含解析)

2022-2023学年浙教新版八年级下册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.下列x的取值中,可以使有意义的是( )A.2021B.8C.9D.02.某次校园歌手比赛,进入最后决赛的三名选手的成绩统计如下表,若唱功、音乐常识、舞台表现按6:3:1的比例计入选手最后得分排出冠军、亚军、季军,则本场比赛的冠军、亚军、季军分别是( )计分项目选手成绩王飞李真林杨唱功989580音乐常识8090100舞台表现8090100 A.李真、王飞、林杨B.王飞、林杨、李真C.王飞、李真、林杨D.李真、林杨、王飞3.科技馆为某机器人编制一段程序,如果机器人在平地上按照图中所示的步骤行走,那么该机器人所走的总路程为( )A.6米B.8米C.12米D.不能确定4.对于反比例函数,当x>0时,y随x的增大而增大,则m的取值范围是( )A.m>1B.m>0C.m<1D.m<05.小希同学有一块长12cm,宽10cm的矩形卡纸,准备制作一个无盖的小礼盒.如图,她将矩形卡纸的四个角各剪掉一个边长为xcm的正方形后,剩余的部分刚好能围成一个底面积为48cm2的无盖长方体小礼盒.根据题意可列方程为( )A.(12﹣x)(10﹣x)=48B.12×10﹣4x2=48C.(12﹣2x)(10﹣2x)=48D.12×10﹣4x2﹣(12+10)x=486.在四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB=OD.若要使四边形ABCD为菱形,则可以添加的条件是( )A.∠AOB=60°B.AC⊥BD C.AC=BD D.AB⊥BC7.如图,在平行四边形ABCD中,AB=6,BC=10,∠ABC的平分线交AD于点E,则DE 的长为( )A.5B.4C.3D.28.已知菱形的对角线长分别为,,若菱形面积为整数cm2,则a的值可以是( )A.4B.6C.8D.109.如图,在同一平面直角坐标系中,正比例函数y=x的图象与反比例函数y=的图象交于点A和点B,则不等式x>的解集为( )A.﹣1<x<0 或0<x<1B.﹣1<x<0或x>1C.x<﹣1或0<x<1D.x<﹣1或x>110.如图,平行四边形ABCD中,对角线AC、BD交于点E,∠CBD=90°,BC=4,AC=10,则这个平行四边形面积为( )A.24B.40C.20D.12二.填空题(共8小题,满分24分,每小题3分)11.已知一组数据:4,5,5,6,5,4,7,8,则这组数据的众数是 .12.比较大小,填“>”或“<”号: .13.若关于x的方程x2+mx﹣n=0有一个根是3,则3m﹣n的值是 .14.反比例函数的图象的两个分支分别位于第二、四象限,则m的取值范围是 .15.如图直角三角形中的空白部分是正方形,正方形的一个顶点将这个直角三角形的斜边分成二部分,阴影部分的面积是6平方厘米,DB长 厘米.16.如图,矩形ABCD中,EF⊥EB,EF=EB,矩形ABCD的周长为22,CE=3,则BF = .17.如图,平行四边形OABC的顶点C在x轴的正半轴上,O为坐标原点,以OA为斜边构造等腰Rt△AOD,反比例函数y=(m>0)的图象经过点A,交BC于点E,连接DE,若tan∠AOC=3,DE∥x轴,DE=3,则m的值为 .18.如图,在▱ABCD中,DE⊥BC,AB=CE,F是DE上一点,且∠BAF=∠CDE.(1)若CE=2,则点B到AF的距离是 ;(2)若DF=2EF,则的值为 .三.解答题(共6小题,满分66分)19.(1)计算:;(2)解方程:x2﹣3x=0.20.某校组织了一次“交通法规”知识竞赛,满分100分,成绩达到60分及以上为合格,达到90分及以上为优秀.这次竞赛中A,B两组学生成绩如下(单位:分)A组:40,60,60,60,60,70,80,90,90,100;B组:40,50,60,70,70,80,80,80,90,90.分析数据:组别平均分中位数方差优秀率A组716530930%B组717524920%应用数据:(1)求A,B两组学生成绩的合格率.(2)小嘉说:“这次知识竞赛我的成绩没有达到优秀,但在我们小组属于中等偏上,且我们组的合格率、优秀率都比另一组高,所以我认为我们组的成绩更好.”①请你判断小嘉此次知识竞赛的成绩.②假设你是另一组的成员,请写出一条你所在小组成绩更好的理由.21.如图,在6×6的正方格中,中心点为点O,图中有4个小正方格被涂黑成“L形”.(1)用2B铅笔在图中再涂黑4格,使新涂黑的图形与原来的“L形”关于点O成中心对称;(2)用2B铅笔在图中再涂黑4格,使新涂黑的图形与原来的“L形”所组成的新图形既是轴对称图形、又是中心对称图形(要求画出三种).22.为了节约用水,不少城市对用水大户作出了两段收费的规定.某市规定:月用水量不超过规定标准a吨时,按每吨1.6元的价格交费,如果超过了标准,超标部分每吨还要加收元的附加费用.据统计,某户7、8两月的用水量和交费情况如下表:月份用水量(吨)交费总数(元)7140264895152(1)求出该市规定标准用水量a的值;(2)写出交费总数y(元)与用水量x(吨)的函数关系式,并利用函数关系计算,当某月份用水量为150吨时,应交水费多少元?23.如图,直线AB:y=x+b与y轴交于点A,与双曲线y=(x>0)交于点B(2,3).(1)求点A的坐标和双曲线y=(x>0)的解析式.(2)点P是直线AB上方的双曲线上的一点,过点P作平行于y轴的直线交直线AB于点C,过点A作平行于x轴的直线,交直线PC于点D,设点P的横坐标为m.①当CP=CD时,求m的值.②若CP<CD,请结合函数图象,直接写出m的取值范围.24.综合与探究:(1)操作发现:如图1,在Rt△ABC中,∠ACB=90°,以点C为中心,把△ABC顺时针旋转90°,得到△A1B1C;再以点A为中心,把△ABC逆时针旋转90°,得到△AB2C1.连接A1C1.则A1C1与AC的位置关系为平行;(2)探究证明:如图2,当△ABC是锐角三角形,∠ACB=a(a≠60°)时,将△ABC 按照(1)中的方式,以点C为中心,把△ABC顺时针旋转a,得到△A1B1C;再以点A 为中心,把△ABC逆时针旋转a,得到△AB2C1.连接A1C1,①探究AC1与BC的位置关系,写出你的探究结论,并加以证明;②探究A1C1与AC的位置关系,写出你的探究结论,并加以证明.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:根据二次根式有意义的条件得:7﹣x≥0,∴x≤7,∴符合题意的是0,故选:D.2.解:王飞的平均成绩为=90.8(分),李真的平均成绩为=93(分),林杨的平均成绩为=85(分),所以冠军是李真,亚军是王飞,季军是林杨,故选:A.3.解:∵机器人从点A出发再回到点A时正好走了一个正多边形,∴多边形的边数为360°÷30=12,∴他第一次回到出发点O时一共走了12×1=12米.故选:C.4.解:∵当x>0时,y随x的增大而增大,∴m<0,故选:D.5.解:∵小希将矩形卡纸的四个角各剪掉一个边长为xcm的正方形,且矩形卡纸的长12cm,宽10cm,∴围成的无盖长方体小礼盒的底面长(12﹣2x)cm,宽(10﹣2x)cm.依题意得:(12﹣2x)(10﹣2x)=48.故选:C.6.解:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,A、∠AOB=60°不能得出四边形ABCD是菱形;选项A不符合题意;B、∵AC⊥BD,∴四边形ABCD是菱形,故选项B符合题意;C、∵AC=BD,∴四边形ABCD是矩形,故选项C不符合题意;D、∵AB⊥BC,∴四边形ABCD是矩形,故选项D不符合题意;故选:B.7.解:∵四边形ABCD为平行四边形,∴AD=BC=10,AD∥BC.∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB=6∴DE=AD﹣AE=10﹣6=4,故选:B.8.解:∵菱形的对角线长分别为,,∴菱形面积为××=(cm2),∵菱形面积为整数cm2,∴a的值为8或32或128,…,故选:C.9.解:由得或,∵正比例函数y=x与反比例函数y=的图象的交点为A(1,1),B(﹣1,﹣1),观察函数图象,发现:当﹣1<x<0或x>1时,正比例函数图象在反比例函数图象的上方,∴不等式x>的解集为是﹣1<x<0或x>1,故选:B.10.解:∵四边形ABCD是平行四边形,AC=10,∴AE=CE=AC=5,BE=DE=BD,∵∠CBD=90°,BC=4,∴BE===3,∴BD=2BE=6,则这个平行四边形面积为BD•BC=6×4=24,故选:A.二.填空题(共8小题,满分24分,每小题3分)11.解:这组数据中5出现3次,次数最多,所以这组数据的众数是5,故答案为:5.12.解:因为4<5<9,所以2<<3,所以1<﹣1<2,所以<.故答案为:<.13.解:依题意得:32+3m﹣n=0,整理,得9+3m﹣n=0.解得3m﹣n=﹣9.故答案是:﹣9.14.解:∵y=,其图象的两个分支分别位于第二、四象限,∴2m﹣1<0,解得:m<,故答案为:m<.15.解:如图,把△ADM绕D逆时针旋转90°得到△EDN,交BC于E,∴ED⊥AD,AD=ED=3,∵阴影部分的面积是6平方厘米,∴S△EDB=6,∴×ED×DB=6,∴DB=4.故答案为:4.16.解:∵四边形ABCD是矩形,∴AD=BC,DC=AB,∠D=∠C=90°,∵EF⊥EB,∴∠FEB=90°,∴∠DEF+∠CEB=90°,∠CEB+∠CBE=90°,∴∠DEF=∠CBE,在△DEF和△CBE中,,∴△DEF≌△CBE(AAS),∴DE=BC,DF=CE=3,∵矩形ABCD的ABCD周长为22,∴2(BC+DE+EC)=22,∴DE+DE+3=11,∴DE=4,∴EF==5,∴BF=EF=5,故答案为:5.17.解:过点A作AH⊥OC于H,过点D作DF⊥AH于F,作DG⊥OC于G,过点E作ET⊥OC于T,如图:∵tan∠AOC=3,∴=3,即AH=3OH,设A(a,3a),∵反比例函数y=(m>0)的图象经过点A,∴m=3a2,∵DF⊥AH,DG⊥OC,AH⊥OC,∴∠AFE=∠DFH=∠OGD=∠AHG=90°,∴四边形DFHG是矩形,∴∠FDG=90°,DF=HG,FH=DG∴∠ODF+∠ODG=90°,∵△AOD是以OA为斜边的等腰直角三角形,∴AD=OD,∠ADO=90°,∴∠ADF+∠ODF=90°,∴∠ADF=∠ODG,∴△ADF≌△ODG(AAS),∴DF=DG,AF=OG,∴DF=DG=FH=GH,设DG=x,则AF=OG=a+x,∴AH=a+2x,∴a+2x=3a,∴x=a,∴DG=a,OG=2a,∵DE∥x轴,ET⊥OC,DG⊥OC,DE=3,∴四边形DETG是矩形,∴GT=DE=3,ET=DG=a,∴OT=2a+3,∴E(2a+3,a),∴m=3a2=(2a+3)a,解得:a=3,∴m=3×32=27.故答案为:27.18.解:如图,过点B作BG⊥AF,交AF于点G,连接BF,(1)∵BG⊥AF,DE⊥BC,∴∠AGB=∠DEC=90°,∵四边形ABCD为平行四边形,∴AB=DC,∵∠BAF=∠CDE,∴∠BAG=∠CDE,在△AGB和△DEC中,,∴△AGB≌△DEC(AAS),∴BG=CE=2,即点B到AF的距离是2,故答案为:2;(2)∵AB=DC,AB=CE,∴DC=CE,设CE=x,AD=y,则DC=x,在Rt△DCE中,由勾股定理得:DE==2x,∵DF=2EF,∴EF=x,DF=x,∵△AGB≌△DEC,∴BG=CE=x,AG=DE=2x,在Rt△ADF中,AF==,∴GF=﹣2x,在Rt△BEF中,BE=BC﹣EC=AD﹣EC=y﹣x,∴BF2=BE2+EF2=(y﹣x)2+x2=y2﹣2xy+x2,在Rt△BGF中,GF==,∴﹣2x=,∴y2+x2+4x2﹣4x=x2﹣2xy+y2,∴x2+xy=2x,∴x+y=2,∴x2+xy+y2=4y2+x2,∴3y2=xy,∴y=x,∴==,故答案为:.三.解答题(共6小题,满分66分)19.解:(1)原式=4﹣5+3=2;(2)x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,所以x1=0,x2=3.20.解:(1)A组:9÷10=0.9=90%,B组:8÷10=0.8=80%,∴A组合格率为90%,B级合格率为80%;(2)①∵A组合格率与优秀率都比B组好,∴小嘉在A组,∵A组中位数为65分,∴比65分高且没有达到优秀的为70分和80分,又70分为第5名,80分为第4名,小嘉中等偏上,∴小嘉此次成绩为80分;②∵B组成绩的方差比A组成绩的方差小,成绩更稳定,∴B组成绩更好.21.解:(1)图形如图所示:(2)图形如图所示:22.解:(1)∵95×1.6=152,140×1.6=224<264,∴1.6a+(140﹣a)×(1.6+)=264,解得a1=100,a2=40(舍去),答:该市规定标准用水量a的值为100;(2)由(1)可得,当0≤x≤100时,y=1.6a,当x>100时,y=100×1.6+(x﹣100)×(1.6+)=2.6x﹣100,即交费总数y(元)与用水量x(吨)的函数关系式是y=;当x=150时,y=2.6×150﹣100=290,答:当某月份用水量为150吨时,应交水费290元.23.解:(1)将点B(2,3)代入直线AB:y=x+b中,得3=2+b,∴b=1,∴直线AB的解析式为y=x+1,令x=0,则y=1,∴A(0,1);将点B(2,3)代入双曲线y=中,得k=2×3=6,∴双曲线的解析式为y=;(2)由(1)知,点A(0,1),直线AB的解析式为y=x+1,双曲线的解析式为y=,∵点P是直线AB上方的双曲线上的一点,∴0<m<2,∵点P的横坐标为m,∴P(m,),∵P作平行于y轴的直线交直线AB于点C,过点A作平行于x轴的直线,∴C(m,m+1),D(m,1),∴CP=﹣m﹣1,CD=m;①∵CP=CD,∴﹣m﹣1=m,∴m=﹣2(舍)或m=,即m的值为;②由图象知,<m<2.另解:∵CP<CD,∴﹣m﹣1<m,∵0<m<2,∴<m<2.24.(2)解:①结论:AC1∥BC.理由如下:由旋转的性质,知∠CAC1=a.又∵∠ACB=a,∴∠CAC1=∠ACB,∴AC1∥BC;②结论:A1C1∥AC,理由如下:过点A1作A1E∥AC1交AC于点E.如图2所示:则∠A1EC=∠CAC1=a,由旋转的性质得:∠A1CA=∠CAC1=a,A1C=AC1,∴∠A1EC=∠A1CA=a,∴A1E=A1C,∴A1E=AC1,∴四边形AEA1C1是平行四边形,∴A1C1∥AC.。

《易错题》初中数学八年级下期中经典复习题(专题培优)(1)

《易错题》初中数学八年级下期中经典复习题(专题培优)(1)

一、选择题1.(0分)[ID :9900]如图,在菱形ABCD 中,AB =6,∠ABC =60°,M 为AD 中点,P 为对角线BD 上一动点,连接PA 和PM ,则PA +PM 的最小值是( )A .3B .2√3C .3√3D .6 2.(0分)[ID :9894]实数a ,b 在数轴上的位置如图所示,则化简()()2212a b +--的结果是( )A .3a b -+B .1a b +-C .1a b --+D .1a b -++3.(0分)[ID :9890]把式子1a a -号外面的因式移到根号内,结果是( ) A .a B .a - C .a - D .a --4.(0分)[ID :9879]如图,一个梯子AB 斜靠在一竖直的墙AO 上,测得4AO =米.若梯子的顶端沿墙下滑1米,这时梯子的底端也恰好外移1米,则梯子AB 的长度为 ( )A .5米B .6米C .3米D .7米5.(0分)[ID :9877]周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A .小丽从家到达公园共用时间20分钟B .公园离小丽家的距离为2000米C .小丽在便利店时间为15分钟D .便利店离小丽家的距离为1000米6.(0分)[ID :9856]如图,四边形ABCD 是轴对称图形,且直线AC 是否对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中结论正确的序号是()A.①②③B.①②③④C.②③④D.①③④7.(0分)[ID:9854]如图,已知圆柱底面的周长为4dm,圆柱的高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.42dm B.22dm C.25dm D.45dm8.(0分)[ID:9848]星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km)与散步所用的时间(min)之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是()A.从家出发,休息一会,就回家B.从家出发,一直散步(没有停留),然后回家C.从家出发,休息一会,返回用时20分钟D.从家出发,休息一会,继续行走一段,然后回家9.(0分)[ID:9845]下列各组数是勾股数的是()A.3,4,5B.1.5,2,2.5C.32,42,52D.3,4,5 10.(0分)[ID:9926]如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是( )A.0点时气温达到最低B.最低气温是零下4℃C .0点到14点之间气温持续上升D .最高气温是8℃11.(0分)[ID :9921]已知直角三角形中30°角所对的直角边长是23cm ,则另一条直角边的长是( ) A .4cm B .43 cm C .6cm D .63 cm12.(0分)[ID :9836]下列各式不成立的是( )A .8718293-=B .222233+= C .8184952+=+= D .13232=-+ 13.(0分)[ID :9909]下列二次根式中,最简二次根式是( )A .10B .12C .12D .814.(0分)[ID :9872]下列计算正确的是( )A .a 2+a 3=a 5B .3221-=C .(x 2)3=x 5D .m 5÷m 3=m 2 15.(0分)[ID :9863]如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC 沿A ﹣D 的方向平移AD 长,得△DEF (B 、C 的对应点分别为E 、F ),则BE 长为( )A .1B .2C .5D .3二、填空题16.(0分)[ID :10023]如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB 的面积为___.17.(0分)[ID :9992]计算:662)=________.18.(0分)[ID :9989]若函数()12m y m x -=+是正比例函数,则m=__________.19.(0分)[ID :9987]在矩形ABCD 中,点E 为AD 的中点,点F 是BC 上的一点,连接EF 和DF ,若AB=4,BC=8,5DF 的长为___________.20.(0分)[ID :9984]如图,△ABC 中,∠ACB =90°,CD 是斜边上的高,AC =4,BC =3,则CD =______.21.(0分)[ID :9974]小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多出1m ,当它把绳子的下端拉开旗杆4m 后,发现下端刚好接触地面,则旗杆的高为________22.(0分)[ID :9968]化简()213-=_____________;23.(0分)[ID :9949]如图所示,图中所有三角形都是直角三角形,所有四边形都是正方形,123916144S ===,S ,S ,则4S =_____.24.(0分)[ID :9940]如图,在∠MON 的两边上分别截取OA 、OB ,使OA =OB ;分别以点A 、B 为圆心,OA 长为半径作弧,两弧交于点C ;连接AC 、BC 、AB 、OC .若AB =2cm ,四边形OACB 的面积为4cm 2.则OC 的长为_____cm .25.(0分)[ID :10026](124= ,20.8 = ,2(3)-= ,223⎛⎫- ⎪⎝⎭= (2)根据计算结果,回答:2a a 吗?你发现其中的规律了吗?并请你把得到的规律描述出来?(32( 3.15)π- 三、解答题26.(0分)[ID :10130]已知长方形的长1322a =1183b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.27.(0分)[ID :10123]如图,∠MON =90°,正方形ABCD 的顶点A 、B 分别在OM 、ON上,AB =13,OB =5,E 为AC 上一点,且∠EBC =∠CBN ,直线DE 与ON 交于点F . (1)求证BE =DE ;(2)判断DF 与ON 的位置关系,并说明理由;(3)△BEF 的周长为 .28.(0分)[ID :10107]如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点O 关于直线CD 的对称点为E ,连接DE ,CE .(1)求证:四边形ODEC 为菱形;(2)连接OE ,若BC =2,求OE 的长.29.(0分)[ID :10050]观察下列各式及验证过程:11122323-=211121223232323-===⨯⨯ 1111323438⎛⎫-= ⎪⎝⎭2111131323423423438⎛⎫-=== ⎪⨯⨯⨯⨯⎝⎭ 11114345415⎛⎫-= ⎪⎝⎭21111414345345345415⎛⎫-=== ⎪⨯⨯⨯⨯⎝⎭ (1111456⎛⎫- ⎪⎝⎭验证.(2)针对上述各式反映的规律,写出用n (n 为自然数,且n ≥2)表示的等式,不需要证明.30.(0分)[ID :10045]某学校为改善办学条件,计划采购A 、B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39000元;4台A 型空调比5台B 型空调的费用多6000元.(1)求A 型空调和B 型空调每台各需多少元;(2)若学校计划采购A 、B 两种型号空调共30台,且A 型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.A3.D4.A5.C6.B7.A8.D9.A10.D11.C12.C13.A14.D15.C二、填空题16.10【解析】【分析】分别令x=0y=0可得AB坐标即可求出OAOB的长利用三角形面积公式即可得答案【详解】∵直线交x轴于点A交y轴于点B∴令则;令则;∴∴∴的面积故答案为10【点睛】本题考查一次函数17.2【解析】试题解析:原式=()2-22=6-4=218.2【解析】【分析】根据正比例函数的定义可得|m|-1=1m+2≠0【详解】因为函数是正比例函数所以|m|-1=1m+2≠0所以m=2故答案为2【点睛】考核知识点:正比例函数的定义理解定义是关键19.或【解析】【分析】分两种情况考虑①当BF>CF时②当BF<CF时然后过F作FG⊥AD 于G根据勾股定理进行求解【详解】①如图所示当BF>CF时过F作FG⊥AD于G则GF=4Rt△EFG中又∵E是AD的20.4【解析】【分析】在Rt中由勾股定理可求得AB的长进而可根据三角形面积的不同表示方法求出CD的长【详解】解:Rt中AC=4mBC=3mAB=m∵∴m=24m故答案为24m【点睛】本题考查勾股定理掌握21.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练22.【解析】23.169【解析】【分析】利用正方形的基本性质和勾股定理的定义进行解答即可【详解】解:S1=9S2=16S3=144∴所对应各边为:3412∴中间未命名的正方形边长为5∴最大的直角三角形的面积52+1224.【解析】【分析】根据作法判定出四边形OACB是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC=BC=OA∵OA=OB∴OA=OB=BC=AC∴四边形OACB是菱形∵AB25.(1)4083;(2)不一定=;(3)315﹣π【解析】【分析】(1)依据被开方数即可计算得到结果;(2)根据计算结果不一定等于a;(3)原式利用得出规律计算即可得到结果【详解】解:(1);故答案为三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM的最小值.【详解】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,PA=PC,∵M为AD中点,AD=3,CM⊥AD,∴DM=12∴CM=√CD2−DM2=3√3,∴PA+PM=PC+PM=CM=3√3.故选:C.【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P 的位置是解此题的关键.2.A解析:A【解析】【分析】先根据数轴上两点的位置确定1a +和2b -.【详解】观察数轴可得,1a >-,2b >,故10a +>,20b ->,∴()12a b =+--12a b =+-+3a b =-+故选:A.【点睛】. 3.D解析:D【解析】【分析】先根据二次根式有意义的条件求出a 的范围,再把根号外的非负数平方后移入根号内即可.【详解】要使 10a∴-≥ 0a ∴<∴==故选D .【点睛】本题考查了二次根式的意义,解题的关键是能正确把根号外的代数式或数字移到根号内部,它是开方的逆运算.从根号外移到根号内要平方,并且移到根号内与原来根号内的式子是乘积的关系.如果根号外的数字或式子是负数时,代表整个式子是负值,要把负号留到根号外再平方后移到根号内.4.A解析:A【解析】【分析】设BO xm =,利用勾股定理依据AB 和CD 的长相等列方程,进而求出x 的值,即可求出AB 的长度.【详解】解:设BO xm =,依题意,得1AC =,1BD =,4AO =.在Rt AOB 中,根据勾股定理得222224AB AO OB x =+=+,在Rt COD 中,根据勾股定理22222(41)(1)CD CO OD x =+=-++,22224(41)(1)x x ∴+=-++,解得3x =,5AB ∴==,答:梯子AB 的长为5m .故选:A .【点睛】本题考查了勾股定理在实际生活中的应用,本题中找到AB CD =利用勾股定理列方程是解题的关键.5.C解析:C【解析】解:A .小丽从家到达公园共用时间20分钟,正确;B .公园离小丽家的距离为2000米,正确;C .小丽在便利店时间为15﹣10=5分钟,错误;D .便利店离小丽家的距离为1000米,正确.故选C .6.B解析:B【解析】【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.【详解】解:如图,因为l 是四边形ABCD 的对称轴,AB ∥CD ,则AD =AB ,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD=DC,同理可得:AB=AD=BC=DC,所以四边形ABCD是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD是菱形,正确;④在△ABD和△CDB中∵AB BC AD DC BD BD=⎧⎪=⎨⎪=⎩,∴△ABD≌△CDB(SSS),正确.故正确的结论是:①②③④.故选B.【点睛】此题考查了轴对称以及菱形的判断与菱形的性质,注意:对称轴垂直平分对应点的连线,对应角相等,对应边相等.7.A解析:A【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度,圆柱底面的周长为4dm,圆柱高为2dm,BC BC dm,AB dm,22222AC,2244822AC dm,∴这圈金属丝的周长最小为242AC dm.故选:A.【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.8.D解析:D【解析】【分析】利用函数图象,得出各段的时间以及离家的距离变化,进而得出答案.【详解】由图象可得出:小丽的爸爸从家里出去散步10分钟,休息20分钟,再向前走10分钟,然后利用20分钟回家.故选:D.【点睛】本题考查了函数的图象,解题的关键是要看懂图象的横纵坐标所表示的意义,然后再进行解答.9.A解析:A【解析】【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证较小两数的平方和是否等于最大数的平方.【详解】A.32+42=52,是勾股数;B.1.5,2,2.5中,1.5,2.5不是正整数,故不是勾股数;C.(32)2+(42)2≠(52)2,不是勾股数;D2+22故选A.【点睛】本题考查了勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.10.D解析:D【分析】根据气温T 如何随时间t 的变化而变化图像直接可解答此题.【详解】A.根据图像4时气温最低,故A 错误;B.最低气温为零下3℃,故B 错误;C. 0点到14点之间气温先下降后上升,故C 错误;D 描述正确.【点睛】本题考查了学生看图像获取信息的能力,掌握看图像得到有用信息是解决此题的关键.11.C解析:C【解析】如图,∵∠C=90°,∠B=30°,3,∴3cm ,由勾股定理得:22AB AC -,故选C . 12.C解析:C【解析】【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.【详解】822721829==A 选项成立,不符合题意; 28222333+==B 选项成立,不符合题意; 81822325222+==,C 选项不成立,符合题意; 323232(32)(32)-==++-D 选项成立,不符合题意; 故选C .【点睛】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解13.A解析:A【解析】【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.【详解】A是最简二次根式,本选项正确.B==C2A=不是最简二次根式,本选项错误.故选A.【点睛】本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.14.D解析:D【解析】分析:直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.详解:A、a2与a3不是同类项,无法计算,故此选项错误;B、,故此选项错误;C、(x2)3=x6,故此选项错误;D、m5÷m3=m2,正确.故选:D.点睛:此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.15.C解析:C【解析】【分析】直接根据题意画出平移后的三角形进而利用勾股定理得出BE的长.【详解】如图所示:22125BE +=故选:C .【点睛】此题主要考查了勾股定理以及坐标与图形的变化,正确得出对应点位置是解题关键.二、填空题16.10【解析】【分析】分别令x=0y=0可得AB 坐标即可求出OAOB 的长利用三角形面积公式即可得答案【详解】∵直线交x 轴于点A 交y 轴于点B∴令则;令则;∴∴∴的面积故答案为10【点睛】本题考查一次函数解析:10【解析】【分析】分别令x=0,y=0,可得A 、B 坐标,即可求出OA 、OB 的长,利用三角形面积公式即可得答案.【详解】∵直线510y x =+交x 轴于点A ,交y 轴于点B ,∴令0y =,则2x =-;令0x =,则10y =;∴()2,0A -,()0,10B ,∴2OA =,10OB =,∴AOB 的面积1210102=⨯⨯=. 故答案为10【点睛】本题考查一次函数与坐标轴的交点问题,分别令x=0,y=0即可求出一次函数与坐标轴的交点坐标;也考查了三角形的面积. 17.2【解析】试题解析:原式=()2-22=6-4=2解析:2【解析】试题解析:原式=6)2-22=6-4=2.18.2【解析】【分析】根据正比例函数的定义可得|m|-1=1m+2≠0【详解】因为函数是正比例函数所以|m|-1=1m+2≠0所以m=2故答案为2【点睛】考核知识点:正比例函数的定义理解定义是关键解析:2【解析】【分析】根据正比例函数的定义可得|m|-1=1,m+2≠0.【详解】因为函数()12m y m x -=+是正比例函数,所以|m|-1=1,m+2≠0所以m=2故答案为2【点睛】考核知识点:正比例函数的定义.理解定义是关键. 19.或【解析】【分析】分两种情况考虑①当BF >CF 时②当BF <CF 时然后过F 作FG ⊥AD 于G 根据勾股定理进行求解【详解】①如图所示当BF >CF 时过F 作FG ⊥AD 于G 则GF =4Rt △EFG 中又∵E 是AD 的解析:25或213【解析】【分析】分两种情况考虑,①当BF >CF 时,②当BF <CF 时,然后过F 作FG ⊥AD 于G ,根据勾股定理进行求解.【详解】①如图所示,当BF >CF 时,过F 作FG ⊥AD 于G ,则GF =4,Rt △EFG 中,()222542EG =-=,又∵E 是AD 的中点,AD =BC =8,∴DE =4,∴DG =4﹣2=2,∴Rt △DFG 中,224225DF =+=;②如图所示,当BF <CF 时,过F 作FG ⊥AD 于G ,则GF =4,Rt △EFG 中,()222542EG =-=,又∵E 是AD 的中点,AD =BC =8,∴DE =4,∴DG=4+2=6,∴Rt△DFG中,2246213DF=+=,故答案为:25或213.【点睛】本题考查矩形的性质,勾股定理,学会运用分类讨论的思想与巧作辅助线构造直角三角形是解题的关键.20.4【解析】【分析】在Rt中由勾股定理可求得AB的长进而可根据三角形面积的不同表示方法求出CD的长【详解】解:Rt中AC=4mBC=3mAB=m∵∴m=24m 故答案为24m【点睛】本题考查勾股定理掌握解析:4【解析】【分析】在Rt ABC中,由勾股定理可求得AB的长,进而可根据三角形面积的不同表示方法求出CD的长.【详解】解:Rt ABC中,AC=4m,BC=3m225AC BC+=m∵1122ABCS AC BC AB CD =⋅=⋅∴125AC BCCDAB⋅==m=2.4m故答案为2.4 m【点睛】本题考查勾股定理,掌握勾股定理的公式结合利用面积法是解题关键.21.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练解析:7.5m【解析】【分析】根据题意画出示意图,利用勾股定理可求出旗杆的高.【详解】解:如图所示:设旗杆AB x =米,则(1)AC x 米,在Rt ABC ∆中,222AC AB BC =+,即222(1)4x x ,解得:7.5x =.∴旗杆的高为7.5米故答案为:7.5.【点睛】本题考查了勾股定理的应用,解答本题的关键是画出示意图,熟练运用勾股定理. 22.【解析】 31【解析】2(13)1331-=-=23.169【解析】【分析】利用正方形的基本性质和勾股定理的定义进行解答即可【详解】解:S1=9S2=16S3=144∴所对应各边为:3412∴中间未命名的正方形边长为5∴最大的直角三角形的面积52+12 解析:169【解析】【分析】利用正方形的基本性质和勾股定理的定义进行解答即可.【详解】解:S 1=9,S 2=16,S 3=144,∴所对应各边为:3,4,12.∴中间未命名的正方形边长为5.∴最大的直角三角形的面积4S =52+122=169.故答案为169.【点睛】本题考查了勾股定理的定义和正方形的基本性质,分析图形得到正方形和勾股定理的联系是解答本题的关键.24.【解析】【分析】根据作法判定出四边形OACB 是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC =BC =OA∵OA=OB∴OA=OB =BC =AC∴四边形OACB 是菱形∵AB解析:【解析】根据作法判定出四边形OACB 是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】根据作图,AC =BC =OA ,∵OA =OB ,∴OA =OB =BC =AC ,∴四边形OACB 是菱形,∵AB =2cm ,四边形OACB 的面积为4cm 2, ∴12AB •OC =12×2×OC =4, 解得OC =4cm .故答案为:4.【点睛】 本题考查菱形的判定与性质,菱形的面积.解决本题的关键是能根据题目中作图的过程得出线段的等量关系.25.(1)4083;(2)不一定=;(3)315﹣π【解析】【分析】(1)依据被开方数即可计算得到结果;(2)根据计算结果不一定等于a ;(3)原式利用得出规律计算即可得到结果【详解】解:(1);故答案为解析:(1)4, 0.8,3,23 ;(2a ;(3)3.15﹣π. 【解析】【分析】(1)依据被开方数即可计算得到结果;(2a ;(3)原式利用得出规律计算即可得到结果.【详解】解:(124,3====; 故答案为:4,0.8,3,23;(2a ,|a|;(3=|π﹣3.15|=3.15﹣π.【点睛】此题考查了二次根式的性质与化简,熟练掌握二次根式的性质是解本题的关键.26.(1)2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)11 4.23=⨯⨯=正方形的面积也为4. 2.=周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.27.(1)见解析;(2)DF ⊥ON ,理由见解析;(3)24【解析】【分析】(1)根据正方形的性质证明△BCE ≌△DCE 即可;(2)由第一题所得条件和已知条件可推出∠EDC =∠CBN ,再利用90°的代换即可证明;(3)过D 点作DG 垂直于OM ,交点为G ,结合已知条件推出DF 和BF 的长,再根据第一题结论得出△BEF 的周长等于DF 加BF 即可得出答案.【详解】解:(1)证明:∵四边形ABCD 正方形,∴CA 平分∠BCD ,BC =DC ,∴∠BCE =∠DCE =45°,∵CE =CE ,∴△BCE ≌△DCE (SAS );∴BE =DE ;(2)DF ⊥ON ,理由如下:∵△BCE≌△DCE,∴∠EBC=∠EDC,∵∠EBC=∠CBN,∴∠EDC=∠CBN,∵∠EDC+∠1=90°,∠1=∠2,∴∠2+∠CBN=90°,∴∠EFB=90°,即DF⊥ON;(3)过D点作DG垂直于OM,交点为G,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAG+∠BAO=90°,∵∠ABO+∠BAO=90°,∴∠DAG=∠ABO,又∵∠MON=90°,DG⊥OM,∴△ADG≌△ABO,∴DM=AO,GA=OB=5,∵AB=13,OB=5,根据勾股定理可得AO=12,由(2)可知DF⊥ON,又∵∠MON=90°,DG⊥OM,∴四边形OFDM是矩形,∴OF=DG=AO=12,DF=OM=17,由(1)可知BE=DE,∴△BEF的周长=DF+BF=17+(12-5)=24.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定,掌握知识点是解题关键.28.(1)详见解析;(2)22【解析】【分析】(1)利用矩形性质可得OD=OC,再借助对称性可得OD=DE=EC=CO,从而证明了四边形ODEC为菱形;(2)证明四边形OBCE为平行四边形,即可得到OE=BC=22.【详解】(1)∵四边形ABCD是矩形,∴AC=BD,OC=12AC,OB=OD=12BD,∴OD=OC.∵点O关于直线CD的对称点为E,∴OD=ED,OC=EC.∴OD=DE=EC=CO.∴四边形ODEC为菱形;(2)连接OE.如图,由(1)知四边形ODEC为菱形,∴CE∥OD且CE=OD.又∵OB=OD,∴CE∥BO且CE=BO.∴四边形OBCE为平行四边形.∴22OE BC==【点睛】本题主要考查了矩形的性质,菱形的判定和性质、平行四边形的判定和性质,熟知特殊四边形的判定和性质是解题的关键.29.(1)见解析;(2)见解析.【解析】【分析】(1)类比题目中所给的运算方法即可解答;(2)观察题目所给的算式,根据算式总结出一般规律即可求解.【详解】(1====; (2=n 为自然数,且n ≥2) . 【点睛】本题是阅读理解题,能够从所给的案例中找出相应的规律是解决该类题型的关键. 30.(1)A 型空调和B 型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,案三:采购A 型空调12台,B 型空调18台;(3)采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.【解析】分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A 型空调和B 型空调每台各需x 元、y 元,3239000456000x y x y +⎧⎨-⎩==,解得,90006000x y ⎧⎨⎩==, 答:A 型空调和B 型空调每台各需9000元、6000元;(2)设购买A 型空调a 台,则购买B 型空调(30-a )台,()()13029000600030217000a a a a ⎧≥-⎪⎨⎪+-≤⎩, 解得,10≤a≤1213, ∴a=10、11、12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;(3)设总费用为w 元,w=9000a+6000(30-a )=3000a+180000,∴当a=10时,w 取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.。

北师八下数学教材习题课件-第一章复习题

北师八下数学教材习题课件-第一章复习题
北师版
八(下)数学教材习题
第一章 复习题
知识技能
1. 请将下面证明中每一步的理由填在括号内.
已知:如图,D,E,F分别是BC,CA,AB上的点,DE∥BA,
DF∥CA.
A
求证:∠FDE=∠A. 证明:∵DE∥BA( 已知 ),
B
∴∠FDE=∠BFD(两直线平行,内错角相等 ),
F E
D
C
∵DF∥CA( 已知 ),
解:此题答案不唯一.可添加条件:
C
D
∠CAB=∠DBA或∠CBA=∠DAB
或AC=BD或BC=AD.
A
B
选择添加条件AC=BD加以证明.
证明:在Rt△ACB和Rt△BDA中,
∵AC=BD,AB=BA,
∴Rt△ACB≌Rt△BDA (HL).
14. 求证:等腰三角形的底角必为锐角. 已知:在△ABC中,AB=AC. 求证:∠B与∠C都是锐角. 证明:∵AB=AC,∴∠B=∠C. 假设∠B与∠C为直角或钝角,于是∠B+∠C≥180°, 这与三角形内角和定理矛盾,因此∠B和∠C必为锐 角.即等腰三角形的底角必为锐角.
AO的延长线交BC于点M,请你从图中找出几对全等
的直角三角形,并给出证明.
A
解:①Rt△AOD≌Rt△AOE .
证明:∵△ABC的高BD与CE相交于点O,
∴∠ADO=∠AEO=90°.
E
OD
∵OD=OE,AO=AO, ∴Rt△AOD≌Rt△AOE (HL).
B
M
C
②Rt△BOE≌Rt△COD.
证明:由①知∠BEO=∠CDO=90°,
1 2
BC

AD=
1×6×4=12.

初中数学八下第10章测试卷(1)

初中数学八下第10章测试卷(1)

第10章测试卷〔1〕一、选择题1.要使分式有意义,那么x的取值范围应满足〔〕A.x≥2B.x<﹣2C.x≠﹣2D.x≠22.小明上学时走上坡路,途中平均速度为m km/t,放学回家时,沿原路返回,通常的速度为n km/t,那么小明上学放学的平均速度为〔〕A.km/t B.km/t C.km/t D.km/t3.不改变分式的值,把分子、分母中各项系数化为整数,结果是〔〕A.B.C.D.4.以下分式是最简分式的是〔〕A.B.C.D.5.以下运算正确的选项是〔〕A.2〔2x﹣3〕=4x﹣3B.2x+3x=5x2C.〔x+1〕2=x2+1D.+=0 6.以下运算中,正确的选项是〔〕A.B.C.D..7.x﹣=3,那么﹣x2+3x的值为〔〕A.1B.﹣1C.﹣3D.38.有以下方程:①;②;③;④.属于分式方程的有〔〕A.①②B.②③C.③④D.②④9.关于x的分式方程=1的解是正数,那么m的取值范围是〔〕A.m>1B.m>1且m≠0C.m≥1D.m≥1且m≠010.分式方程=1的解是〔〕A.x=2B.x=5C.x=﹣1D.x=111.完成某项工程,甲、乙合做要2天,乙、丙合做要4天,丙、甲合做要2.4天,那么甲单独完成此项工程需要的天数是〔〕A.2.8B.3C.6D.1212.某校参加数学竞赛的选手平均分数是75分,其中参赛男选手比女选手人数多80%,而女选手的平均分比男选手的平均分高20%,那么女选手的平均分是〔〕A.81B.82C.83D.8413.某中学方案在生物园栽72棵树,开工后每天比原方案多栽2棵,结果提前3天完成任务,问原方案每天栽几棵?设原方案栽x棵,那么〔〕A.=+3B.=﹣3C.=+3D.=﹣314.某工厂方案每天生产x吨生产资料,采用新技术后每天多生产3吨,实际生产180吨与原方案生产120吨的时间相等,那么适合x的方程是〔〕A.B.C.D.15.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行90km 所用时间,与以最大航速逆流航行60km所用时间相等.设江水的流速为vkm/h,根据题意,以下所列方程正确的选项是〔〕A.B.C.D.二、填空题16.=,那么分式=.17.计算=.18.﹣=.19.计算:〔〕2=.三、解答题20.假设干人乘坐假设干辆汽车,如果每辆汽车坐22人,有1人不能上车;如果有一辆车不坐人,那么所有旅客正好能平分乘到其他各车上,那么旅客共人.21.先化简再求值:•÷,请在以下﹣2,﹣1,0,1四个数中任选一个数求值.22.解以下分式方程(1)+3=(2)﹣=1.23.上海首条中运量公交线路71路已正式开通.该线路西起沪青平公路申昆路,东至延安东路中山东一路,全长17.5千米.71路车行驶于专设的公交车道,又配以专用的公交信号灯.经测试,早晚顶峰时段71路车在专用车道内行驶的平均速度比在非专用车道每小时快6千米,因此单程可节省时间22.5分钟.求早晚顶峰时段71路车在专用车道内行驶的平均车速.24.从邵阳市到长沙的高铁列车里程比普快列车里程缩短了75千米,运行时间减少了4小时,邵阳市到长沙的普快列车里程为306千米,高铁列车平均时速是普快列车平均时速的3.5倍.(1)求高铁列车的平均时速;(2)某日刘老师从邵阳火车南站到长沙市新大新宾馆参加上午11:00召开的会议,如果他买到当日上午9:20从邵阳市火车站到长沙火车南站的高铁票,而且从长沙火车南站到新大新宾馆最多需要20分钟.试问在高铁列车准点到达的情况下他能在开会之前赶到吗?25.某文教店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,用200元购进A种套装的数量是用75元购进B种套装数量的2倍.(1)求A、B两种品牌套装每套进价分别为多少元?(2)假设A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,那么最少购进A品牌工具套装多少套?26.计算:(1)﹣;(2)﹣÷〔﹣〕2.答案1.要使分式有意义,那么x的取值范围应满足〔〕A.x≥2B.x<﹣2C.x≠﹣2D.x≠2【考点】62:分式有意义的条件.【专题】选择题【难度】易【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得,2+x≠0,解得x≠﹣2.应选C.【点评】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.小明上学时走上坡路,途中平均速度为m km/t,放学回家时,沿原路返回,通常的速度为n km/t,那么小明上学放学的平均速度为〔〕A.km/t B.km/t C.km/t D.km/t【考点】6G:列代数式〔分式〕.【专题】选择题【难度】易【分析】根据:平均速度=,列分式并化简即可得出答案.【解答】解:设上学路程为1,那么往返总路程为2,上坡时间为,下坡时间为,∴平均速度==〔km/t〕.应选:C.【点评】此题考查了列代数式以及平均数的求法,根据平均速度=求出是解题关键.3.不改变分式的值,把分子、分母中各项系数化为整数,结果是〔〕A.B.C.D.【考点】65:分式的根本性质.【专题】选择题【难度】易【分析】分式的分子、分母中含有分数系数,不改变分式的值,使分式分子、分母的各项系数化为整数要乘以2与3的最小公倍数6.【解答】解:分式的分子和分母乘以6,原式=.应选D.【点评】易错选A选项,因为在分子和分母都乘以6时,原本系数是整数的项容易漏乘,应特别注意.4.以下分式是最简分式的是〔〕A.B.C.D.【考点】68:最简分式.【专题】选择题【难度】易【分析】先根据分式的根本性质进行约分,再判断即可.【解答】解:A、结果是﹣1,不是最简分式,故本选项错误;B、不能约分,是最简分式,故本选项正确;C、结果是,不是最简分式,故本选项错误;D、结果是﹣,不是最简分式,故本选项错误;应选B.【点评】此题考查了最简分式的应用,关键是看看每个分式能否进行约分.5.以下运算正确的选项是〔〕A.2〔2x﹣3〕=4x﹣3B.2x+3x=5x2C.〔x+1〕2=x2+1D.+=0【考点】6B:分式的加减法;35:合并同类项;36:去括号与添括号;4C:完全平方公式.【专题】选择题【难度】易【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=4x﹣6,错误;B、原式=5x,错误;C、原式=x2+2x+1,错误;D、原式=﹣=0,正确,应选D【点评】此题考查了分式的加减法,合并同类项,去括号与添括号,以及完全平方公式,熟练掌握运算法那么是解此题的关键.6.以下运算中,正确的选项是〔〕A.B.C.D..【考点】6A:分式的乘除法;65:分式的根本性质.【专题】选择题【难度】易【分析】A、本选项为最简分式,错误;B、利用分式的乘方法那么计算得到结果,即可做出判断;C、在分式分子分母都乘以同一个不为0的数,分式的大小不变,故正确;D、约分得到结果,即可做出判断.【解答】解:A、此式子为最简分式,故A选项错误;B、〔〕2=,故B选项错误;C、=〔a≠0〕,故C选项正确;D、=,故D选项错误,应选:C.【点评】此题考查了分式的乘除法,以及分式的根本性质,熟练掌握法那么及性质是解此题的关键.7.x﹣=3,那么﹣x2+3x的值为〔〕A.1B.﹣1C.﹣3D.3【考点】6C:分式的混合运算.【专题】选择题【难度】易【分析】等式去分母变形后求出x2﹣3x的值,所求式子提取﹣1变形后将x2﹣3x 的值代入计算即可求出值.【解答】解:等式去分母得:x2﹣1=3x,即x2﹣3x=1,那么原式=﹣〔x2﹣3x〕=﹣1.应选B【点评】此题考查了分式的混合运算,熟练掌握运算法那么是解此题的关键.8.有以下方程:①;②;③;④.属于分式方程的有〔〕A.①②B.②③C.③④D.②④【考点】B1:分式方程的定义.【专题】选择题【难度】易【分析】根据分式方程的定义对各小题分析判断即可得解.【解答】解:①2x+=10是整式方程,②x﹣=2是分式方程,③﹣3=0是分式方程,④+=0是整式方程,所以,属于分式方程的有②③.应选B.【点评】此题考查了分式方程的定义,判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数.9.关于x的分式方程=1的解是正数,那么m的取值范围是〔〕A.m>1B.m>1且m≠0C.m≥1D.m≥1且m≠0【考点】B2:分式方程的解;C6:解一元一次不等式.【专题】选择题【难度】易【分析】首先解方程求得方程的解,根据方程的解是正数,即可得到一个关于m 的不等式,从而求得m的范围.【解答】解:去分母得:m=x+1,解得:x=m﹣1,∵关于x的分式方程=1的解是正数,∴m﹣1>0,∴m>1,∵x+1≠0,∴m﹣1+1≠0,∴m≠0,∴m的取值范围是m>1.应选:A.【点评】此题主要考查了分式方程的解的符号确实定,正确求解分式方程是解题的关键.10.分式方程=1的解是〔〕A.x=2B.x=5C.x=﹣1D.x=1【考点】B3:解分式方程.【专题】选择题【难度】易【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣7=x﹣2,解得:x=5,经检验x=5是分式方程的解.应选B【点评】此题考查了解分式方程,解分式方程的根本思想是“转化思想〞,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11.完成某项工程,甲、乙合做要2天,乙、丙合做要4天,丙、甲合做要2.4天,那么甲单独完成此项工程需要的天数是〔〕A.2.8B.3C.6D.12【考点】B7:分式方程的应用.【专题】选择题【难度】易【分析】让乙丙合作的工作效率减去乙的工作效率得到丙的工作效率;等量关系为:甲2.4天的工作量+丙2.4天的工作量=1,把相关数值代入即可求解.【解答】解:设甲单独完成此项工程需要x天.×2.4+[﹣〔﹣〕]×2.4=1,解得x=3,经检验x=3是原方程的解,应选B.【点评】考查了用分式方程解决工程问题;得到工作量1的等量关系是解决问题的关键;易错点是得到丙的工作效率.12.某校参加数学竞赛的选手平均分数是75分,其中参赛男选手比女选手人数多80%,而女选手的平均分比男选手的平均分高20%,那么女选手的平均分是〔〕A.81B.82C.83D.84【考点】B7:分式方程的应用.【专题】选择题【难度】易【分析】根据得出男生数:女生数=180:100=9:5,男生平均分:女生平均分=100:120,进而得出全班平均分是男生平均分的,即可得出答案.【解答】解:由题意可得:男生数:女生数=180:100=9:5,男生平均分:女生平均分=100:120,×=,即全班平均分比男生平均分高,所以全班平均分是男生平均分的,即男生平均分为×14=70分,女生平均分为:70×1.2=84分,应选:D.【点评】此题主要考查了百分比的应用,能根据题意,列出关系式得出全班平均分是男生平均分的是解题关键.13.某中学方案在生物园栽72棵树,开工后每天比原方案多栽2棵,结果提前3天完成任务,问原方案每天栽几棵?设原方案栽x棵,那么〔〕A.=+3B.=﹣3C.=+3D.=﹣3【考点】B6:由实际问题抽象出分式方程.【专题】选择题【难度】易【分析】设原方案每天栽x棵,实际每天栽〔x+2〕天,根据实际比方案提前3天完成任务,列方程即可.【解答】解:设原方案每天栽x棵,实际每天栽〔x+2〕天,由题意得,﹣3=.应选D.【点评】此题考查了由实际问题抽象出分式方程,解答此题的关键是读懂题意,设出未知数,找出适宜的等量关系,列方程.14.某工厂方案每天生产x吨生产资料,采用新技术后每天多生产3吨,实际生产180吨与原方案生产120吨的时间相等,那么适合x的方程是〔〕A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【专题】选择题【难度】易【分析】根据实际生产180吨与原方案生产120吨的时间相等,可以建立方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,=,应选C.【点评】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出方程.15.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行90km 所用时间,与以最大航速逆流航行60km所用时间相等.设江水的流速为vkm/h,根据题意,以下所列方程正确的选项是〔〕A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【专题】选择题【难度】易【分析】根据题意可得顺水速度为〔30+v〕km/h,逆水速度为〔30﹣v〕km/h,根据题意可得等量关系:以最大航速沿江顺流航行90km所用时间=以最大航速逆流航行60km所用时间,根据等量关系列出方程即可.【解答】解:设江水的流速为vkm/h,根据题意得:=,应选:A.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,表示出顺水和逆水行驶速度,找出题目中等量关系,然后列出方程.16.=,那么分式=.【考点】64:分式的值.【专题】填空题【难度】中【分析】等式变形表示出a,代入原式计算即可得到结果.【解答】解:由=,得到a=b,那么原式==,故答案为:【点评】此题考查了分式的值,熟练掌握运算法那么是解此题的关键.17.计算=.【考点】66:约分.【专题】填空题【难度】中【分析】根据平方差公式先把分子与分母因式分解,再约分即可.【解答】解:==;故答案为:.【点评】此题考查了约分,用到的知识点是平方差公式和分式的根本性质,在约分时要注意结果的符号.18.﹣=.【考点】6B:分式的加减法.【专题】填空题【难度】中【分析】原式通分并利用同分母分式的减法法那么计算即可得到结果.【解答】解:原式=﹣==,故答案为:【点评】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出各分母的最简公分母.19.计算:〔〕2=.【考点】6A:分式的乘除法.【专题】填空题【难度】中【分析】原式分子分母分别平方即可得到结果.【解答】解:原式=,故答案为:【点评】此题考查了分式的乘除法,熟练掌握运算法那么是解此题的关键.20.假设干人乘坐假设干辆汽车,如果每辆汽车坐22人,有1人不能上车;如果有一辆车不坐人,那么所有旅客正好能平分乘到其他各车上,那么旅客共人.【考点】B7:分式方程的应用.【专题】填空题【难度】中【分析】设起初有汽车m辆,开走一辆空车后,平均每辆车所乘旅客为n人,依题意有22m+1=n〔m﹣1〕然后确定m、n的值,进而可得答案.【解答】解:设起初有汽车m辆,开走一辆空车后,平均每辆车所乘旅客为n 人.依题意有22m+1=n〔m﹣1〕.所以n==22+,因为n为自然数,所以为整数,因此m﹣1=1,或m﹣1=23,即m=2或m=24.当m=2时,n=45,n〔m﹣1〕=45×1=45〔人〕;当m=24时,n=23,n〔m﹣1〕=23×〔24﹣1〕=529〔人〕.故答案为:45或529.【点评】此题考查分式方程的应用,关键是正确理解题意,找出题目中的等量关系,讨论出未知数的值.21.先化简再求值:•÷,请在以下﹣2,﹣1,0,1四个数中任选一个数求值.【考点】6D:分式的化简求值.【专题】解答题【难度】难【分析】原式利用除法法那么变形,约分得到最简结果,把x=0代入计算即可求出值.【解答】解:原式=••〔x+1〕〔x﹣1〕=〔x﹣2〕〔x+1〕=x2﹣x﹣2,当x=0时,原式=﹣2.【点评】此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.22.解以下分式方程(1)+3=(2)﹣=1.【考点】B3:解分式方程.【专题】解答题【难度】难【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:1+3x﹣6=x﹣1,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.上海首条中运量公交线路71路已正式开通.该线路西起沪青平公路申昆路,东至延安东路中山东一路,全长17.5千米.71路车行驶于专设的公交车道,又配以专用的公交信号灯.经测试,早晚顶峰时段71路车在专用车道内行驶的平均速度比在非专用车道每小时快6千米,因此单程可节省时间22.5分钟.求早晚顶峰时段71路车在专用车道内行驶的平均车速.【考点】B7:分式方程的应用.【专题】解答题【难度】难【分析】设早晚顶峰时段71路在专用车道内行驶的平均车速x千米/时.那么非专用车道内行驶的平均速度是〔x﹣6〕千米/时,根据“单程可节省时间22.5分钟〞列出方程并解答.【解答】解:设早晚顶峰时段71路在专用车道内行驶的平均车速x千米/时.根据题意,可列方程﹣=.整理得x2﹣6x﹣280=0.解得x1=20,x2=﹣14.经检验x1=20,x2=﹣14都是原方程的解.因为速度不能负数,所以取x=20.答:71路在专用车道内行驶的平均车速20千米/时.【点评】此题考查了分式方程的应用.找到关键描述语,找到适宜的等量关系是解决问题的关键.24.从邵阳市到长沙的高铁列车里程比普快列车里程缩短了75千米,运行时间减少了4小时,邵阳市到长沙的普快列车里程为306千米,高铁列车平均时速是普快列车平均时速的3.5倍.(1)求高铁列车的平均时速;(2)某日刘老师从邵阳火车南站到长沙市新大新宾馆参加上午11:00召开的会议,如果他买到当日上午9:20从邵阳市火车站到长沙火车南站的高铁票,而且从长沙火车南站到新大新宾馆最多需要20分钟.试问在高铁列车准点到达的情况下他能在开会之前赶到吗?【考点】B7:分式方程的应用.【专题】解答题【难度】难【分析】(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为3.5x千米/小时,根据题意可得,高铁走〔306﹣75〕千米比普快走306千米时间减少了4小时,据此列方程求解;(2)求出刘老师所用的时间,然后进行判断.【解答】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为3.5x 千米/小时,由题意得,﹣=4,解得:x=60,经检验,x=60是原分式方程的解,且符合题意,那么3.5x=210,答:高铁列车的平均时速为210千米/小时;(2)〔306﹣75〕÷〔3.5×60〕=1.1小时即66分钟,66+20=86分钟,而9:20到11:00相差100分钟,∵100>86,故在高铁列车准点到达的情况下他能在开会之前赶到.【点评】此题考查了分式方程的应用,解答此题的关键是读懂题意,设出未知数,找出适宜的等量关系,列方程求解,注意检验.25.某文教店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,用200元购进A种套装的数量是用75元购进B种套装数量的2倍.(1)求A、B两种品牌套装每套进价分别为多少元?(2)假设A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,那么最少购进A品牌工具套装多少套?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】解答题【难度】难【分析】(1)设B种品牌套装每套进价为x元,那么A种品牌套装每套进价为〔x+2.5〕元.根据数量=总价÷单价结合用200元购进A种套装的数量是用75元购进B 种套装数量的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进A品牌工具套装a套,那么购进B品牌工具套装〔2a+4〕套,根据总利润=单价利润×购进数量结合总利润超过120元,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,取其内的最小正整数即可得出结论.【解答】解:(1)设B种品牌套装每套进价为x元,那么A种品牌套装每套进价为〔x+2.5〕元.根据题意得:=2×,解得:x=7.5,经检验,x=7.5为分式方程的解,∴x+2.5=10.答:A种品牌套装每套进价为10元,B种品牌套装每套进价为7.5元.(2)解:设购进A品牌工具套装a套,那么购进B品牌工具套装〔2a+4〕套,根据题意得:〔13﹣10〕a+〔9.5﹣7.5〕〔2a+4〕>120,解得:a>16,∵a为正整数,∴a取最小值17.答:最少购进A品牌工具套装17套.【点评】此题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价,列出关于x的分式方程;(2)根据总利润=单价利润×购进数量,列出关于a的一元一次不等式.26.计算:(1)﹣;(2)﹣÷〔﹣〕2.【考点】6C:分式的混合运算.【专题】解答题【难度】难【分析】(1)根据分式的减法可以解答此题;(2)根据积的乘方和分式的除法可以解答此题.【解答】解:(1)﹣===2;(2)﹣÷〔﹣〕2===.【点评】此题考查分式的混合运算,解答此题的关键是明确分式混合运算的计算方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2014八年级下学期数学期末复习卷(二)
一、选择题:
1、若m -3为二次根式,则m 的取值为( )
A .m≤3
B .m <3
C .m≥3
D .m >3
2、 如图字母B 所代表的正方形的面积是 ( )
A. 12
B. 13
C. 144
D. 194 3、一次函数y=-5x+3的图象经过的象限是( )
A .一、二、三
B .二、三、四
C .一、二、四
D .一、三、四
4、下面给出了四边形ABCD 中∠A 、∠B 、∠C 、∠D 的度数之比,其中能判定四边形ABCD 是平行四边形的是( )
A.1∶2∶3∶4
B.2∶2∶3∶3
C.2∶3∶3∶2
D.2∶3∶2∶3
5、下列计算正确的是( ) ①69494=-⋅-=--))((; ②69494=⋅=--))((; ③145454522=-⋅+=-; ④145452222=-=-;
A .1个
B .2个
C .3个
D .4个
6、某中学人数相等的甲、乙两班学生参加同一次数学测验,两班成绩的方差分别是2452=甲s ,1902=乙s ,那么成绩比较整齐的是( )
A 、甲班
B 、乙班
C 、两班一样整齐
D 、无法确定
7.如图,平面直角坐标系中,平行四边形ABCD 的顶点A 、B 、D 的坐标分别为(0,0), (5,0)、(2,3),则顶点C 的坐标是( ).
(A) (3,7) (B) (5,3) (C) (7,3) (D)(8,2)
8.如图,将一张矩形纸片对折后再对折,然后沿着图中的虚线剪
下,得到①、②两部分,将②展开后得到的平面图形是( )
(A) 矩形 (B)平行四边形 (C)梯形 (D) 菱形
9.如图,菱形纸片ABCD 中,∠A=60°,折叠菱形纸片ABCD ,使点C 落在DP
直线上,得到经过点D 的折痕DE .则∠DEC 的大小为( )
A .78°
B .75°
C .60°
D .45°
B
16925第
10.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P 点经过的路径长为x ,△APD 的面积是y ,则下列图象能大致反映y 与x 的函数关系的是( )
(A).
(B).
(C). (D).
11.如图,在边长为2的正方形ABCD 中,M 为边AD 的中点,延长MD 至
点E ,使ME=MC ,以DE 为边作正方形DEFG ,点G 在边CD 上,则DG
的长为( ) A.13- B.53- C. 15+ D. 15-
二、填空题:
12、平行四边形ABCD 中,∠A=500,AB=30cm ,则∠B=____ ,DC=____ cm 。

13、已知直角三角形的两边长为3、4,则另一条边长是
14、已知样本x 1,x 2,x 3,x 4的平均数是2,则x 1+3,x 2+3,x 3+3,x 4+3的平均数为 ;
15、在□ABCD 中,若添加一个条件_______ _,则四边形ABCD 是矩形.
16、已知一次函数的图象经过点A (1,4)、 B (4,2),•则这个一次函数的解析式为___________
17、计算:=∙b a 10253___________
18、在△ABC 中,若其三条边的长度分别为9、12、15,则这个三角形的面积是
19、已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组
30220x y x y --=⎧⎨-+=⎩
的解是________ 20. 如图,已知一次函数y =x 3+b 和y =ax -3的图象交于
点P (-2,-5),则根据图象可得不等式x 3+b >ax -3的解
集是_______________
三、解答题:
21、计算:(1)、x x x 26416++ (2)、5
21312311⨯÷
(3)).94(323ab a
b a b a a b a b +-+
22、(6分)九河乡乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产
定额,统计了
(1)写出这15
(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否
合理,为什么?
23、(7分)如图3,在□ABCD 中,点E 、F 在对角线AC 上,且AE =CF .请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并说明它和图中已知的某一线段相等(只需说明一组线段相等即可).
(1)连接 .
(2)猜想: = .
(3)试说明理由.
24.(12分)某件商品的成本价为15元,据市场调查得知,每天的销量y(件)与价格x(元)
(1) 根据表中数据,在直角坐标系中描出实数对(x ,y )的对应点,
并画出图象。

(2)猜测确定y 与x 间的关系式。

(3)设总利润为W 元,试求出W 与x 之间的函数关系式,
若售价不超过30元,求出当日的销售单价定为多少时,才能
获得最大利润?
25.已知:如图,在△ABC 中,D 是BC 边上的一点,连结AD ,
取AD 的中点E ,过点A 作BC 的平行线与CE 的延长线交于
点F ,连结DF 。

(8分)
(1) 求证:AF=DC ;
(2) 若AD=CF ,试判断四边形AFDC 是什么样的四边形?并证明你的结论。

26、(6分)
30.已知正方形ABCD 的边长是2,E 是CD 的中点,动点P 从点A
出发,沿A→B→C→E 运动,到达E 点即停止运动,若点P 经过的
路程为x ,△APE 的面积记为y ,试求出y 与x 之间的函数解析式,
并求出当y=
31时,x 的值.。

相关文档
最新文档