数学期末试题(1)及答案

合集下载

【三套试卷】小学三年级数学下册期末练习试题(及答案)(1)

【三套试卷】小学三年级数学下册期末练习试题(及答案)(1)

期末测试卷(含答案解析)数学(考试时间:60分钟满分100分)一、直接写出得数。

(共4分)120÷4=93÷3=15×5=320×30=二、填空。

(共15分)(1)王红身高是1米4分米,用小数表示是()米。

(2)671÷5,商是()位数。

(3)右图是禁止左转的交通指示牌,表示这个路口有两个时段不能左转。

①下午4时30分,一位司机行驶到这个路口,这时他能左转吗?(选择后在□里划“√”。

能□不能□)②一天中有()个小时这段路不能左转。

(4)如左图,小猫家在小猴家的()方向。

(5)李师傅有一块长方形布料(如下图),他要从这块布料上剪下一块最大的正方形做窗帘,剩下的布料要做一些面积是1平方分米的杯子垫,最多做()块。

5米3米三、选择题。

(把正确选项对应的“[ ]”涂满涂黑)(共21分)(1)小亮同学一只手掌面的大小约是70()。

[A]厘米[B]分米[C]平方厘米[D]平方分米(2)下面4幅图中,涂色部分不能..用“0.8”表示的是()。

(3)下面是小红在计算12×14时的思路,能正确表达小红思路的算式是()。

[A]14×10=14014×4=56140+56=196[B]14×10=14012×4=48140+48=188[C]12×10=12012×4=48140+48=168[D]12×10=12012×4=56120+56=176[A]1米[B](1元)(1角)[C][D]2016年2月(4)在一张边长是10厘米的正方形纸中,减去一个长7厘米,宽5厘米的长方形。

小明想到了三种方法(如下图)。

对于剩下部分的面积和周长说法正确的是( )。

[A] 面积相等,周长相等。

[B] 面积相等,周长不相等。

[C] 面积不相等,周长相等。

[D] 面积不相等,周长不相等。

(5)根据统计表中的成绩,获得第一名的是( )。

初中数学精品试题:2022-2023学年七年级(下)期末数学测试卷(一)及答案

初中数学精品试题:2022-2023学年七年级(下)期末数学测试卷(一)及答案

2022-2023学年七年级(下)期末数学测试卷(一)班级姓名考生须知:1.本试卷分试题卷和答题卡两部分. 满分120分,考试时间100分钟.2.答题前,必须在答题卡填写校名、班级、姓名,正确涂写考试号.3.不允许使用计算器进行计算,凡题目中没有要求取精确值的,结果中应保留根号或π.一、选择题(共10小题,每小题3分,满分30分)1、要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各50名学生2、下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣253、如图所示,在图形B到图形A的变化过程中,下列描述正确的是()A.向上平移2个单位,向左平移4个单位B.向上平移1个单位,向左平移4个单位C.向上平移2个单位,向左平移5个单位D.向上平移1个单位,向左平移5个单位(第3题) (第4题)4、从图1到图2的变化过程可以发现的代数结论是()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.a2+2ab+b2=(a+b)2A.∠1=∠2 B.∠1=∠5 C.∠1+∠3=180°D.∠3=∠5(第5题) (第8题)6、某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场中共有中、小型汽车50辆,这些车共缴纳停车费230元.四名同学都设未知数x,y,并根据题意,分别列出以下四个方程组,其中不正确的是()A.B.C.D.7、已知﹣=4,则的值等于()A.6 B.﹣6 C.D.﹣8、如图,将△ABC沿AC方向平移1cm得到△DEF,若△ABC的周长为10cm.则四边形ABEF的周长为()A.10cm B.11cm C.12cm D.14cm9、若方程组的解x与y的和为3,则a的值为()A.7 B.4 C.0 D.﹣410、某公司员工分别在A、B、C三个住宅区,A区有30人,B区有30人,C区有10人,三个区在同一条直线上,如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间二、填空题(共6小题,每小题4分,满分24分)11、在,﹣π,0,3.14,,0.3,,中,是无理数的有.422413、给出以下调查方式:(1)调查某批次汽车的搞撞击能力用全面调查;(2)了解某班学生的身高情况用全面调查;(3)调查春节联欢晚会的收视率用抽样调查;(4)调查市场上某种食品的色素含量是否合乎国家标准用抽样调查.你认为以上调查比较科学的是.(填序号)14、如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有个.(第14题) (第16题)15、已知方程组有无数多解,则a=,m=.16、一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则大正方形的边长为,小正方形边长为,(用a、b的代数式表示),图②的大正方形中未被小正方形覆盖部分的面积是(用a,b的代数式表示).三、解答题(本题有7个小题,共66分)解答应写出证明过程或推演步骤.17、(6分)先化简,再求值:(+)÷,其中x=4.18、(8分)我们把选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫配方.例如x2﹣4x+2=x2﹣4x+4﹣2=(x﹣2)2﹣2,根据上述材料,解决下面问题:(1)写出x2﹣8x+4的配方过程;(2)求出x2+y2﹣4x+8y+25的最小值.19、(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=60°,求∠ACB的度数.20、(10分)为丰富学生的课余生活,陶冶学生的情趣和爱好,某校开展可学生社团活动,为了解学生各类活动的参加情况,该校对2014-2015学年七年级学生社团活动进行了抽样调查,制作出如下的统计图.根据上述统计图,完成以下问题:(1)这次共调查了名学生;子啊扇形统计图中,表示“书法类”部分子啊扇形的圆心角是度.(2)请把统计图1补充完整.(3)已知该校2014-2015学年七年级共有学生1000名参加社团活动,请根据样本估算该校2014-2015学年七年级学生参加文学类社团的人数.21、(10分)已知关于x、y的方程组,给出下列结论:①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣;③不论a取什么实数,2x+y的值始终不变;④若z=﹣xy,则z的最小值为﹣1.请判断以上结论是否正确,并说明理由.22、(12分)某超市用300元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?解:小明找到可第二次购进干果数量是第一次的2倍好多300千克这个等量关系,设该种干果第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,根据题意(请你接着完成本题的解答).23、(12分)一张如图1的长方形铁皮,四个角都剪去边长为30厘米的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是4a(cm),宽是3a(cm),这个无盖铁盒各个面的面积之和称为铁盒的全面积.(1)请用a的代数式表示图1中原长方形铁皮的面积;(2)若要在铁盒的各个外表面漆上某种油漆,每元钱可漆的面积为(cm2),则油漆这个铁盒需要多少钱(用a的代数式表示)?(3)铁盒的底面积是全面积的几分之几(用a的代数式表示)?若铁盒的底面积是全面积的,求a的值;(4)是否存在一个正整数a,使得铁盒的全面积是底面积的正整数倍?若存在,请求出这个a,若不存在,请说明理由.参考答案一、选择题1.D;2.B3、如图所示,在图形B到图形A的变化过程中,下列描述正确的是()A.向上平移2个单位,向左平移4个单位B.向上平移1个单位,向左平移4个单位C.向上平移2个单位,向左平移5个单位D.向上平移1个单位,向左平移5个单位解:观察图形可得:将图形A向下平移1个单位,再向右平移4个单位或先向右平移4个单位,再向下平移1个单位得到图形B.只有B符合.故选B.4、从图1到图2的变化过程可以发现的代数结论是()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.a2+2ab+b2=(a+b)2解:图1的面积为:(a+b)(a﹣b),图2的面积为:a2﹣(a﹣b+b)2=a2﹣b2,根据面积相等,可得:(a+b)(a﹣b)=a2﹣b2.故选:A.5、如图,下列条件中能判定直线l1∥l2的是()A.∠1=∠2 B.∠1=∠5 C.∠1+∠3=180°D.∠3=∠5解:A、根据∠1=∠2不能推出l1∥l2,故A选项错误;B、∵∠5=∠3,∠1=∠5,∴∠1=∠3,即根据∠1=∠5不能推出l1∥l2,故B选项错误;C、∵∠1+∠3=180°,∴l1∥l2,故C选项正确;D、根据∠3=∠5不能推出l1∥l2,故D选项错误;故选:C.6、某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场中共有中、小型汽车50辆,这些车共缴纳停车费230元.四名同学都设未知数x,y,并根据题意,分别列出以下四个方程组,其中不正确的是()A.B.C.D.解:设中型汽车缴纳停车费x元,小型汽车缴纳停车费y元,由题意得,;设有x辆中型汽车,y辆小型汽车,由题意得,;设有x辆小型汽车,y辆中型汽车,由题意得,.则错误的为B.7、已知﹣=4,则的值等于()A.6 B.﹣6 C.D.﹣解:∵﹣=4,∴a﹣b=﹣4ab,∴原式====6.故选A.8、如图,将△ABC沿AC方向平移1cm得到△DEF,若△ABC的周长为10cm.则四边形ABEF的周长为()A.10cm B.11cm C.12cm D.14cm解:根据题意,将周长为10cm的△ABC沿AC向右平移1cm得到△DEF,∴BE=1cm,AF=AC+CF=AC+1cm,EF=BC;又∵AB+AC+BC=10cm,∴四边形ABEF的周长=BE+AB+AF+EF=1+AB+AC+1+BC=12cm.故选C.9、若方程组的解x与y的和为3,则a的值为()A.7 B. 4 C.0 D.﹣4解:由题意得:x+y=3①,将方程2x+3y=a代入方程3x+5y=a+4得:x+2y=4②,将①,②联立方程组:,解得:,将,代入方程2x+3y=a得:a=4+3=7.故选:A.10、某公司员工分别在A、B、C三个住宅区,A区有30人,B区有30人,C区有10人,三个区在同一条直线上,如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间解:①设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+30(100﹣x)+10(100+200﹣x),=30x+3000﹣30x+3000﹣10x,=﹣10x+6000,∴当x最大为100时,即在B区时,路程之和最小,为5000米;②设在B区、C区之间时,设距离B区x米,则所有员工步行路程之和=30(100+x)+30x+10=3000+30x+30x+2000﹣10x=50x+5000,∴当x最大为0时,即在B区时,路程之和最小,为5000米;综上所述,停靠点的位置应设在B区.故选B.二、填空题(共6小题,每小题4分,满分24分)11、在,﹣π,0,3.14,,0.3,,中,是无理数的有﹣π,﹣.解:是分数,故是有理数;﹣π是无限不循环小数,故是无理数;0是整数,故是有理数;3.14是小数,故是有理数;是开方开不尽的数,故是无理数;0.3是小数,故是有理数;=﹣7,﹣7是整数,故是有理数;是分数,故是有理数.故答案为:﹣π,﹣.12、因式分解:16m4﹣8m2n2+n4=(2m﹣n)2(2m+n)2.解:16m4﹣8m2n2+n4=(4m2﹣n2)2=(2m﹣n)2(2m+n)2.故答案为:(2m﹣n)2(2m+n)2.13、给出以下调查方式:(1)调查某批次汽车的搞撞击能力用全面调查;(2)了解某班学生的身高情况用全面调查;(3)调查春节联欢晚会的收视率用抽样调查;(4)调查市场上某种食品的色素含量是否合乎国家标准用抽样调查.你认为以上调查比较科学的是(2)(3)(4).(填序号)解:(1)调查具有破坏性,只能进行抽样调查,故(1)错误;(2)了解某班学生的身高情况用全面调查,调查对象容量小,进行全面调查较科学,故(2)正确;(3)调查春节联欢晚会的收视率用抽样调查,调查对象容量大,进行抽样调查较科学,故(3)正确;(4)调查市场上某种食品的色素含量是否合乎国家标准用抽样调查,具有破坏性,调查对象容量大,进行抽样调查较科学,故(4)正确.故答案为:(2)(3)(4).14、如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有3个.解:(1)如果∠3=∠4,那么AC∥BD,故(1)错误;(2)∠1=∠2,那么AB∥CD;内错角相等,两直线平行,故(2)正确;(3)∠A=∠DCE,那么AB∥CD;同位角相等,两直线平行,故(3)正确;(4)∠D+∠ABD=180°,那么AB∥CD;同旁内角互补,两直线平行,故(4)正确.即正确的有(2)(3)(4).故答案为:3.15、已知方程组有无数多解,则a=3,m=﹣4.解:根据题意得:a=3,=3,解得:a=3,m=﹣4.故答案为:3;﹣416、一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则大正方形的边长为,小正方形边长为,(用a、b的代数式表示),图②的大正方形中未被小正方形覆盖部分的面积是ab(用a,b的代数式表示).解:根据图示可得:大正方形的边长为,小正方形边长为,大正方形中未被小正方形覆盖部分的面积是=()2﹣4×()2=a b.故答案为:;;a b.四、解答题(本题有7个小题,共66分)解答应写出证明过程或推演步骤.17、(6分)先化简,再求值:(+)÷,其中x=4.解:原式=[+]•=•=,当x=4时,原式==.18、(8分)我们把选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫配方.例如x2﹣4x+2=x2﹣4x+4﹣2=(x﹣2)2﹣2,根据上述材料,解决下面问题:(1)写出x2﹣8x+4的配方过程;(2)求出x2+y2﹣4x+8y+25的最小值.解:(1)原式=x2﹣8x+16﹣12=(x﹣4)2﹣12;(2)原式=(x2﹣4x+4)+(y2+8y+16)+5=(x﹣2)2+(y+4)2+5,∵(x﹣2)2≥0,(y+4)2≥0,∴当x=2,y=﹣4时,原式最小值为5.19、(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=60°,求∠ACB的度数.解:(1)证明:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴CD∥EF;(2)解:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠3=∠ACB=60°.20、(10分)为丰富学生的课余生活,陶冶学生的情趣和爱好,某校开展可学生社团活动,为了解学生各类活动的参加情况,该校对2014-2015学年七年级学生社团活动进行了抽样调查,制作出如下的统计图.根据上述统计图,完成以下问题:(1)这次共调查了100名学生;子啊扇形统计图中,表示“书法类”部分子啊扇形的圆心角是72度.(2)请把统计图1补充完整.(3)已知该校2014-2015学年七年级共有学生1000名参加社团活动,请根据样本估算该校2014-2015学年七年级学生参加文学类社团的人数.解:(1)根据题意得:40÷40%=100(名);×360°=72°,故答案为:100;72;(2)艺术的人数为100﹣(40+20+30)=10(名),补全统计图,如图所示:(3)1000×=300(人),该校2014-2015学年七年级学生参加文学类社团的人数为300人.21、(10分)已知关于x、y的方程组,给出下列结论:①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣;③不论a取什么实数,2x+y的值始终不变;④若z=﹣xy,则z的最小值为﹣1.请判断以上结论是否正确,并说明理由.解:关于x、y的方程组,解得:.①将a=1代入,得:,将x=4,y=﹣4代入方程左边得:x+y=0,右边=2,左边≠右边,本选项错误;②将x=y代入,得:,即当x=y时,a=﹣,本选项正确;③将原方程组中第一个方程×3,加第二个方程得:4x+2y=8,即2x+y=4,不论a取什么实数,2x+y的值始终不变,本选项正确;④z=﹣xy=﹣(a+3)(﹣2a﹣2)=a2+4a+3=(a+2)2﹣1≥﹣1,即若z=﹣xy,则z的最小值为﹣1,此选项正确.故正确的选项有:②、③、④.22、(12分)某超市用300元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?解:小明找到可第二次购进干果数量是第一次的2倍好多300千克这个等量关系,设该种干果第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,根据题意(请你接着完成本题的解答).解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.23、(12分)一张如图1的长方形铁皮,四个角都剪去边长为30厘米的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是4a(cm),宽是3a(cm),这个无盖铁盒各个面的面积之和称为铁盒的全面积.(1)请用a的代数式表示图1中原长方形铁皮的面积;(2)若要在铁盒的各个外表面漆上某种油漆,每元钱可漆的面积为(cm2),则油漆这个铁盒需要多少钱(用a的代数式表示)?(3)铁盒的底面积是全面积的几分之几(用a的代数式表示)?若铁盒的底面积是全面积的,求a的值;(4)是否存在一个正整数a,使得铁盒的全面积是底面积的正整数倍?若存在,请求出这个a,若不存在,请说明理由.解:(1)原铁皮的面积是(4a+60)(3a+60)=12a2+420a+3600;(2)油漆这个铁盒的表面积是:12a2+2×30×4a+2×30×3a=12a2+420a,则油漆这个铁盒需要的钱数是:(12a2+420a)÷=(12a2+420a)×=600a+21000(元);(3)铁盒的底面积是全面积的=;根据题意得:=,解得a=105;(4)铁盒的全面积是4a×3a+4a×30×2+3a×30×2=12a2+420a,底面积是12a2,假设存在正整数n,使12a2+420a=n(12a2)则(n﹣1)a=35,由题意可知a>>10,则a只能为35,n=2.所以存在铁盒的全面积是底面积的正整数倍,这时a=35.。

【名校密卷】人教版数学五年级上册期末测试卷(一)及答案

【名校密卷】人教版数学五年级上册期末测试卷(一)及答案

人教版五年级(上)数学期末测试卷(一)时间:90 分钟满分:100 分一、口算(12 分)2.5×0.4= 7÷0.25= 0.72÷0.6= 7.96-7.9=0.4×0.02= 99×0.25= 16÷1.6= 0.9÷0.01=4×(1.5+0.25)= 0.99+0.01÷10=0.5÷0.5+0.5÷0.5= (4.8+3.2)÷4=二、想一想,填一填(20 分)1.0.28 平方米=( )平方分米。

4 平方分米 3 平方厘米=( )平方分米。

2.0.25×()=0.25÷()=1。

3.不改变4.8 的大小,使它成为有三位小数的数,是( )。

4.将( )扩大到原来的 1000 倍是 62.5;0.7979…用循环节表示是( ),保留两位小数约是( )。

5.一个三位小数四舍五入后是 5.00,这个小数最大只能是( ),最小只能是( )。

6.一条长a 米的路,小雪每分钟走x 米,走了 6 分钟之后,走了( ) 米,还剩( )米。

7.把0.3,0.3,0.313,0.313这四个小数按从小到大的顺序排列起来是( )。

8.口袋里有 5 个红球、3 个蓝球(质量、形状、大小都相同),则摸到( )球的可能性大。

9.一个直角三角形的两条直角边长分别是 6 厘米和 8 厘米,斜边长是10 厘米,这个三角形的面积是( )平方厘米,斜边上的高是( )厘米。

10.每支铅笔的价格是b 元,小明有x 元钱,买了 4 支铅笔,还剩下( )元。

(用含字母的式子表示)11.张老师买了 5 个排球,每个排球a 元,付给营业员 150 元,应找回( )元。

12.一人工湖的周长为 900 米,现预计每隔 9 米植一棵树,每两棵树之间放一石凳,湖周围一共要植树( )棵,放( )个石凳。

三、精挑细选(6 分)1.当除数小于 1 时(除数不为 0),商( )。

【必考题】七年级数学下期末试题带答案(1)

【必考题】七年级数学下期末试题带答案(1)

【必考题】七年级数学下期末试题带答案(1)一、选择题1.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =20°,则∠AOM 的度数为( )A .40°B .50°C .60°D .70° 2.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩3.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x 人,买鸡的钱数为y ,依题意可列方程组为( )A .8374x y x y +=⎧⎨+=⎩B .8374x y x y-=⎧⎨-=⎩ C .8374x y x y +=⎧⎨-=⎩ D .8374x y x y -=⎧⎨+=⎩4.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2 B .3 C .4D .5 5.方程组23x y a x y +=⎧⎨-=⎩的解为5x y b =⎧⎨=⎩,则a 、b 分别为( ) A .a=8,b=﹣2 B .a=8,b=2 C .a=12,b=2 D .a=18,b=86.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个7.如图,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7B .∠2=∠6C .∠3+∠4+∠5+∠6=180°D .∠4=∠88.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个9.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-310.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( ) A .至少有一个内角是直角B .至少有两个内角是直角C .至多有一个内角是直角D .至多有两个内角是直角11.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限.A .一B .二C .三D .四12.已知a ,b 为两个连续整数,且a<191-<b,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和5 二、填空题13.已知不等式231x a -<<-的整数解有四个,则a 的范围是___________.14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.15.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.16.若a ,b 均为正整数,且a 7,b 32a +b 的最小值是_______________.17.已知a 、b 满足(a ﹣1)22b +,则a+b=_____.18.关于x 的不等式组352223x x x a-≤-⎧⎨+>⎩有且仅有4个整数解,则a 的整数值是______________. 19.现有2019条直线1232019a a a a ,,,,,⋯且有12233445a a a a a a a a ⊥⊥P P ,,,,…,则直线1a 与2019a 的位置关系是___________.20.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是________________________三、解答题21.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为;(2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?AB CD,点E在直线AB与CD之间,连接AE、CE,22.(1)(感知)如图①,//∠=∠+∠.下面给出了这道题的解题过程,请完成下面的解题过程试说明AEC A DCE(填恰当的理由).EF AB.证明:如图①过点E作//∴∠=∠(),A1Q(已知),EF//AB(辅助线作法),//AB CD∴(),EF CD//∴∠=∠(),2DCE12AEC ∠=∠+∠Q ,AEC A DCE ∴∠=∠+∠ ( ).(2)(探究)当点E 在如图②的位置时,其他条件不变,试说明360A AEC C ∠+∠+∠=︒.(3)(应用)如图③,延长线段AE 交直线CD 于点M ,已知130A ∠=︒,120DCE ∠=︒,则MEC ∠的度数为 .(请直接写出答案)23.问题情境在综合与实践课上,老师让同学们以“两条平行线AB ,CD 和一块含60°角的直角三角尺EFG(∠EFG =90°,∠EGF =60°)”为主题开展数学活动.操作发现(1)如图(1),小明把三角尺的60°角的顶点G 放在CD 上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明∠AEF 与∠FGC 之间的数量关系;结论应用(3)如图(3),小亮把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上.若∠AEG =α,则∠CFG 等于______(用含α的式子表示).24.一个工程队原定在10天内至少要挖土600m 3,在前两天一共完成了120m 3,由于整个工程调整工期,要求提前两天完成挖土任务.问以后几天内,平均每天至少要挖土多少m 3?25.已知关于,x y 的方程组354522x y ax by -=⎧⎨+=-⎩和2348x y ax by +=-⎧⎨-=⎩有相同解,求(a)b -值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先根据角的平分线的定义求得∠BON ,然后根据对顶角相等求得∠MOC ,然后根据∠AOM =90°﹣∠COM 即可求解.【详解】∵OE 平分∠BON ,∴∠BON =2∠EON =40°,∴∠COM =∠BON =40°,∵AO ⊥BC ,∴∠AOC =90°,∴∠AOM =90°﹣∠COM =90°﹣40°=50°.故选B .【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC 的度数是关键.2.C解析:C【解析】【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案.【详解】解:∵实数x ,y 满足254()0x y x y +-+-=, ∴40x y +-=且2()0x y -=,即400x y x y +-=⎧⎨-=⎩, 解得:22x y =⎧⎨=⎩,故选C.【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.3.D解析:D【解析】【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.4.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.5.C解析:C【解析】试题解析:将x=5,y=b代入方程组得:10{53b ab+=-=,解得:a=12,b=2,故选C.考点:二元一次方程组的解.6.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.7.D解析:D【解析】【分析】【详解】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误,故选D.8.C解析:C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A10.B解析:B【解析】【分析】本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案.【详解】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.故选B.【点睛】本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.11.B解析:B【解析】【分析】由点P在x轴上求出a的值,从而得出点Q的坐标,继而得出答案.【详解】∵点P(a,a-1)在x轴上,∴a-1=0,即a=1,则点Q坐标为(-1,2),∴点Q在第二象限,故选:B.【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.12.C解析:C【解析】试题解析:∵45,∴3<4,∴这两个连续整数是3和4,故选C.二、填空题13.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点解析:78 33a <.【解析】【分析】根据不等式2<x<3a-1的整数解有四个,得出关于a的不等式组,求解即可得出a的取值范围.【详解】∵不等式2<x<3a-1的整数解有四个,∴整数解为3,4,5,6,∴6<3a-1≤7,∴78 33a≤<.故答案为:78 33a≤<.【点睛】本题考查了一元一次不等式组的整数解.关键是根据整数解的个数,确定含a的代数式的取值范围.14.(-2-2)【解析】【分析】先根据相和兵的坐标确定原点位置然后建立坐标系进而可得卒的坐标【详解】卒的坐标为(﹣2﹣2)故答案是:(﹣2﹣2)【点睛】考查了坐标确定位置关键是正确确定原点位置解析:(-2,-2)【解析】【分析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.15.25【解析】【分析】【详解】设需安排x名工人加工大齿轮安排y名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能解析:25【解析】【分析】【详解】设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,由题意得:85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560x y =⎧⎨=⎩. 即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.故答案为25.【点睛】本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.16.4【解析】【分析】先估算的范围然后确定ab 的最小值即可计算a+b 的最小值【详解】∵<<∴2<<3∵a>a 为正整数∴a 的最小值为3∵<<∴1<<2∵b<b 为正整数∴b 的最小值为1∴a+b 的最小值为3+解析:4【解析】【分析】的范围,然后确定a 、b 的最小值,即可计算a+b 的最小值.【详解】∴2<3,∵a ,a 为正整数,∴a 的最小值为3,∴1<2,∵b ,b 为正整数,∴b 的最小值为1,∴a+b 的最小值为3+1=4.故答案为:4.【点睛】此题考查了估算无理数的大小,解题的关键是:确定a 、b 的最小值.17.﹣1【解析】【分析】利用非负数的性质可得a-1=0b+2=0解方程即可求得ab 的值进而得出答案【详解】∵(a ﹣1)2+=0∴a=1b=﹣2∴a+b=﹣1故答案为﹣1【点睛】本题考查了非负数的性质熟知解析:﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a ,b 的值,进而得出答案.【详解】∵(a ﹣1)2=0,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.18.12【解析】【分析】求出每个不等式的解集根据已知得出不等式组的解集根据不等式组的整数解即可得出关于a的不等式组求出即可【详解】解不等式3x -5≤2x-2得:x≤3解不能等式2x+3>a得:x>∵不等解析:1,2【解析】【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出关于a的不等式组,求出即可.【详解】解不等式3x-5≤2x-2,得:x≤3,解不能等式2x+3>a,得:x>32a-,∵不等式组有且仅有4个整数解,∴-1≤32a-<0,解得:1≤a<3,∴整数a的值为1和2,故答案为:1,2.【点睛】本题考查了一元一次不等式组的整数解,解答本题的关键应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.垂直【解析】【分析】根据两直线平行同位角相等得出相等的角再根据垂直的定义解答进而得出规律:a1与其它直线的位置关系为每4个一循环垂直垂直平行平行根据此规律即可判断【详解】先判断直线a1与a3的位置关解析:垂直.【解析】【分析】根据两直线平行,同位角相等得出相等的角,再根据垂直的定义解答,进而得出规律:a1与其它直线的位置关系为每4个一循环,垂直、垂直、平行、平行,根据此规律即可判断.【详解】先判断直线a1与a3的位置关系是:a1⊥a3.理由如下:如图1,∵a1⊥a2,∴∠1=90°,∵a2∥a3,∴∠2=∠1=90°,∴a1⊥a3;再判断直线a1与a4的位置关系是:a1∥a4,如图2;∵直线a1与a3的位置关系是:a1⊥a3,直线a1与a4的位置关系是:a1∥a4,∵2019÷4=504…3,∴直线a1与a2015的位置关系是:垂直.故答案为:垂直.【点睛】本题考查了平行公理的推导,作出图形更有利于规律的发现以及规律的推导,解题的关键是:结合图形先判断几组直线的关系,然后找出规律.20.【解析】【分析】设绳索长为x尺竿子长为y尺根据索比竿子长一托折回索子却量竿却比竿子短一托即可得出关于xy的二元一次方程组【详解】解:根据题意得:故答案为:【点睛】本题考查了二元一次方程组的应用找准等解析:5 15 2x yx y+⎧⎪⎨-⎪⎩==【解析】【分析】设绳索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】解:根据题意得:515 2x yx y+⎧⎪⎨-⎪⎩==.故答案为:515 2x yx y+⎧⎪⎨-⎪⎩==.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三、解答题21.(1)120,30°;(2)答案见解析;(3)1375人.【解析】【分析】(1)根据“从来不管”的人数和百分比求出总份数,根据总份数和严加干涉的分数求出百分比,然后计算圆心角的度数;(2)根据总分数求出稍加询问的人数,然后补全统计图;(3)根据题意求出“从来不管”和“稍加询问”的百分比求出全校的人数.【详解】解:(1)30÷25%=120(人)10÷120×360°=30°故答案为:120,30°(2)如图所示:(3)1500×3080120=1375(人)则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.22.(1)见解析;(2)证明见解析;(3)70°.【解析】【分析】(1)根据平行线的性质、平行公理的推论和等量代换依次解答即可;(2)如图④,过点E作//EF AB,根据平行线的性质、平行公理的推论解答即可;(3)由(2)题的结论可求出∠AEC的度数,进而可得答案.【详解】解:(1)证明:如图①,过点E作//EF AB,1A ∴∠=∠(两直线平行,内错角相等), //AB CD Q (已知),EF //AB (辅助线作法),//EF CD ∴(平行于同一条直线的两直线互相平行),2DCE ∴∠=∠(两直线平行,内错角相等),12AEC ∠=∠+∠Q ,AEC A DCE ∴∠=∠+∠ (等量代换);(2)证明:如图④,过点E 作//EF AB ,180A AEF ∴∠+∠=︒(两直线平行,同旁内角互补),//AB CD Q (已知),//EF AB (辅助线作法),//EF CD ∴(平行于同一条直线的两直线互相平行),180C CEF ∴∠+∠=︒(两直线平行,同旁内角互补),180180360A AEC C A AEF CEF C ∴∠+∠+∠=∠+∠+∠+∠=︒+=︒;(3)解:由(2)题的结论知:360A AEC C ∠+∠+∠=︒,∴360360*********AEC A C ∠=︒-∠-∠=︒-︒-︒=︒,∴∠MEC =180AEC ︒-∠=70°. 故答案为:70°. 【点睛】本题主要考查了平行线的性质、平行公理的推论等知识,属于常考题型,熟练掌握平行线的性质是解题关键.23.(1)∠1=40°;(2)∠AEF+∠GFC =90°;(3)60°﹣α.【解析】【分析】(1)依据AB ∥CD ,可得∠1=∠EGD ,再根据∠2=2∠1,∠FGE =60°,即可得出∠EGD 13=(180°﹣60°)=40°,进而得到∠1=40°; (2)根据AB ∥CD ,可得∠AEG +∠CGE =180°,再根据∠FEG +∠EGF =90°,即可得到∠AEF +∠GFC =90°;(3)根据AB ∥CD ,可得∠AEF +∠CFE =180°,再根据∠GFE =90°,∠GEF =30°,∠AEG =α,即可得到∠GFC =180°﹣90°﹣30°﹣α=60°﹣α.【详解】(1)如图1.∵AB ∥CD ,∴∠1=∠EGD .又∵∠2=2∠1,∴∠2=2∠EGD.又∵∠FGE=60°,∴∠EGD13=(180°﹣60°)=40°,∴∠1=40°;(2)如图2.∵AB∥CD,∴∠AEG+∠CGE=180°,即∠AEF+∠FEG+∠EGF+∠FGC=180°.又∵∠FEG+∠EGF=90°,∴∠AEF+∠GFC=90°;(3)如图3.∵AB∥CD,∴∠AEF+∠CFE=180°,即∠AEG+∠FEG+∠EFG+∠GFC=180°.又∵∠GFE=90°,∠GEF=30°,∠AEG=α,∴∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.故答案为:60°﹣α.【点睛】本题考查了平行线的性质的运用,解决问题的关键是掌握:两直线平行,同旁内角互补.24.80m3【解析】试题分析:设以后几天内,平均每天要挖掘xm3土方,根据题意可知原定在10天,已经干了两天,还要求提前2天,即为要6天至少挖掘(600-120)m3的土方,根据题意可得不等式,解不等式即可.试题解析:设平均每天挖土x m3,由题意得:(10﹣2﹣2)x≥600﹣120,解得:x≥80.答:平均每天至少挖土80m3.点睛:本题考查了一元一次不等式的应用,关键是弄清题意,清楚600m3的土方到底要用几天干完.25.-8.【解析】试题分析:因为两个方程组有相同的解,故只要将两个方程组中不含有a,b的两个方程联立,组成新的方程组,求出x和y的值,再代入含有a,b的两个方程中,解关于a,b的方程组即可得出a,b的值.试题解析:因为两组方程组有相同的解,所以原方程组可化为方程组①35234x yx y-=⎧⎨+=-⎩和方程组②45228ax byax by+=-⎧⎨-=⎩,解方程组①,得12 xy=⎧⎨=-⎩,代入②得4102228a ba b-=-⎧⎨+=⎩,解得23ab=⎧⎨=⎩,所以(-a)b=(-2)3=-8.【点睛】本题考查了同解方程组,考查了学生对方程组有公共解定义的理解能力及应用能力,解题的关键是将所给的两个方程组进行重新组合.。

2022-2023学年江苏省扬州市高一上学期期末复习数学试题(一)(解析版)

2022-2023学年江苏省扬州市高一上学期期末复习数学试题(一)(解析版)

2022-2023学年江苏省扬州市高一上学期期末复习数学试题(一)一、单选题1.设集合{}12A x x =<<,{}B x x a =>,若A B ⊆,则a 的范围是( ) A .2a ≥ B .1a ≤C .1a ≥D .2a ≤【答案】B【分析】结合数轴分析即可.【详解】由数轴可得,若A B ⊆,则1a ≤. 故选:B.2.命题p :x ∃∈R ,210x bx ++≤是假命题,则实数b 的值可能是( )A .74-B .32-C .2D .52【答案】B【分析】根据特称命题与全称命题的真假可知:x ∀∈R ,210x bx ++>,利用判别式小于即可求解. 【详解】因为命题p :x ∃∈R ,210x bx ++≤是假命题,所以命题:x ∀∈R ,210x bx ++>是真命题,也即对x ∀∈R ,210x bx ++>恒成立, 则有240b ∆=-<,解得:22b -<<,根据选项的值,可判断选项B 符合, 故选:B . 3.函数 21x y x =-的图象大致为( )A .B .C .D .【答案】B【分析】本题首先根据判断函数的奇偶性排除A,D ,再根据01x <<,对应0y <,排除C ,进而选出正确答案B .【详解】由函数 21x y x =-, 可得1x ≠±,故函数的定义域为()()()1111∞∞--⋃-⋃+,,,, 又 ()()()2211xxf x f x x x --===---, 所以21x y x =-是偶函数, 其图象关于y 轴对称, 因此 A,D 错误; 当 01x <<时,221001x x y x -<=<-,, 所以C 错误.故选: B4.已知322323233,,log 322a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( ) A .a b c << B .b a c << C .c b a << D .c a b <<【答案】D【分析】构造指数函数,结合单调性分析即可.【详解】23xy ⎛⎫= ⎪⎝⎭在R 上单调递减,3222333012a ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝<=⎭<∴,, ∴01a <<;32xy ⎛⎫= ⎪⎝⎭在R 上单调递增,23033222013b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝>=⎭<∴,, ∴1b >; 223332log log 123c ==-=- ∴c a b << 故选:D5.中国共产党第二十次全国代表大会于2022年10月16日在北京召开,这次会议是我们党带领全国人民全面建设社会主义现代化国家,向第二个百年奋斗目标进军新征程的重要时刻召开的一次十分重要的代表大会,相信中国共产党一定会继续带领中国人民实现经济发展和社会进步.假设在2022年以后,我国每年的GDP (国内生产总值)比上一年平均增加8%,那么最有可能实现GDP 翻两番的目标的年份为(参考数据:lg 20.3010=,lg30.4771=)( ) A .2032 B .2035 C .2038 D .2040【答案】D【分析】由题意,建立方程,根据对数运算性质,可得答案.【详解】设2022年我国GDP (国内生产总值)为a ,在2022年以后,每年的GDP (国内生产总值)比上一年平均增加8%,则经过n 年以后的GDP (国内生产总值)为()18%na +, 由题意,经过n 年以后的GDP (国内生产总值)实现翻两番的目标,则()18%4na a +=, 所以lg 420.301020.301027lg1.083lg32lg5lg 25n ⨯⨯===-20.301020.301020.30100.6020183lg 32(1lg 2)3lg 32lg 2230.477120.301020.0333⨯⨯⨯===≈--+-⨯+⨯-=,所以到2040年GDP 基本实现翻两番的目标. 故选:D.6.将函数sin y x =的图像C 向左平移6π个单位长度得到曲线1C ,然后再使曲线1C 上各点的横坐标变为原来的13得到曲线2C ,最后再把曲线2C 上各点的纵坐标变为原来的2倍得到曲线3C ,则曲线3C 对应的函数是( )A .2sin 36y x π⎛⎫=- ⎪⎝⎭B .2sin36y x π⎛⎫=- ⎪⎝⎭C .2sin 36y x π⎛⎫=+ ⎪⎝⎭D .2sin36y x π⎛⎫=+ ⎪⎝⎭【答案】C【分析】利用图像变换方式计算即可.【详解】由题得1C :sin 6y x π⎛⎫=+ ⎪⎝⎭,所以2C :sin 36y x π⎛⎫=+ ⎪⎝⎭,得到3C :2sin 36y x π⎛⎫=+ ⎪⎝⎭故选:C7.已知0x >,0y >,且满足20x y xy +-=,则92x y+的最大值为( ) A .9 B .6 C .4 D .1【答案】D【分析】由题可得211x y+=,利用基本不等式可得29x y +≥ ,进而即得.【详解】因为20x y xy +-=,0x >,0y >,所以211x y+=,所以()212222559y x x y x x y y x y ⎛⎫+=+ ⎪⎝+++≥⎭==, 当且仅当22y xx y=,即3x y ==时等号成立, 所以912x y≤+,即92x y +的最大值为1.故选:D.8.已知22log log 1a b +=且21922m m a b+≥-恒成立,则实数m 的取值范围为( ) A .(][),13,-∞-⋃∞ B .(][),31,-∞-⋃∞ C .[]1,3- D .[]3,1-【答案】C【分析】利用对数运算可得出2ab =且a 、b 均为正数,利用基本不等式求出192a b+的最小值,可得出关于实数m 的不等式,解之即可.【详解】因为()222log log log 1a b ab +==,则2ab =且a 、b 均为正数,由基本不等式可得1932a b +≥,当且仅当2192ab a b =⎧⎪⎨=⎪⎩时,即当136a b ⎧=⎪⎨⎪=⎩时,等号成立, 所以,192a b+的最小值为3,所以,223m m -≤,即2230m m -≤-,解得13m -≤≤. 故选:C.二、多选题9.函数()y f x =图像关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学据此推出以下结论,其中正确的是( )A .函数()y f x =的图像关于点(,)P a b 成中心对称的图形的充要条件是()y f x a b =+-为奇函数B .函数32()3f x x x =-的图像的对称中心为1,2C .函数()y f x =的图像关于x a =成轴对称的充要条件是函数()y f x a =-是偶函数D .函数32()|32|g x x x =-+的图像关于直线1x =对称 【答案】ABD【分析】根据函数奇偶性的定义,以及函数对称性的概念对选项进行逐一判断,即可得到结果. 【详解】对于A ,函数()y f x =的图像关于点(,)P a b 成中心对称的图形,则有()()2f a x f a x b ++-=函数()y f x a b =+-为奇函数,则有()()0f x a b f x a b -+-++-=, 即有()()2f a x f a x b ++-=所以函数(=)y f x 的图像关于点(,)P a b 成中心对称的图形的充要条件是 为()y f x a b =+-为奇函数,A 正确;对于B,32()3f x x x =-,则323(1)2(1)3(1)23f x x x x x ++=+-++=-因为33y x x =-为奇函数,结合A 选项可知函数32()=-3f x x x 关于点(1,2)-对称,B 正确; 对于C ,函数()y f x =的图像关于x a =成轴对称的充要条件是()()f a x f a x =-+, 即函数()y f x a =+是偶函数,因此C 不正确; 对于D ,32()|-3+2|g x x x =,则323(1)|(1)3(1)2||3|g x x x x x +=+-++=-, 则33(1)|3||3|(1)g x x x x x g x -+=-+=-=+, 所以32()|-3+2|g x x x =关于=1x 对称,D 正确 故选:ABD.10.下列结论中正确的是( )A .若一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,则a b +的值是14-B .若集合*1N lg 2A x x ⎧⎫=∈≤⎨⎬⎩⎭∣,{}142x B x-=>∣,则集合A B ⋂的子集个数为4 C .函数()21f x x x =++的最小值为1 D .函数()21xf x =-与函数()f x 【答案】AB【分析】对于A :12-和13为方程220ax bx ++=的两根且0a <,即可得到方程组,解得即可判断A ;根据对数函数、指数函数的性质求出集合A 、B ,从而求出集合A B ⋂,即可判断B ;当1x <-时()0f x <,即可判断C ;求出两函数的定义域,化简函数解析式,即可判断D.【详解】解:对于A :因为一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,所以12-和13为方程220ax bx ++=的两根且0a <,所以112311223b a a⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得122a b =-⎧⎨=-⎩,所以14a b +=-,故A 正确;对于B:{{}**1N lg N 1,2,32A x x x x ⎧⎫=∈≤=∈<≤=⎨⎬⎩⎭∣∣0,{}{}12234222|2x x B x x x x --⎧⎫=>=>=>⎨⎬⎩⎭∣∣, 所以{}2,3A B ⋂=,即A B ⋂中含有2个元素,则A B ⋂的子集有224=个,故B 正确; 对于C :()21f x x x =++,当1x <-时10x +<,()0f x <,故C 错误; 对于D :()21,02112,0x xxx f x x ⎧-≥=-=⎨-<⎩, 令()2210x -≥,解得x ∈R,所以函数()f x =R ,函数()21xf x =-的定义域为R ,虽然两函数的定义域相同,但是解析式不相同,故不是同一函数,即D 错误; 故选:AB11.已知函数()()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭.当()()122f x f x =时,12min 2x x π-=,012f π⎛⎫-= ⎪⎝⎭,则下列结论正确的是( ) A .6x π=是函数()f x 的一个零点B .函数()f x 的最小正周期为2π C .函数()1y f x =+的图象的一个对称中心为,03π⎛-⎫⎪⎝⎭D .()f x 的图象向右平移2π个单位长度可以得到函数2y x =的图象 【答案】AB【分析】根据三角函数的图象与性质,求得函数的解析式())6f x x π=-,再结合三角函数的图象与性质,逐项判定,即可求解.【详解】由题意,函数()()f x x ωϕ+,可得()()min max f x f x == 因为()()122f x f x =,可得()()122f x f x =, 又由12min 2x x π-=,所以函数()f x 的最小正周期为2T π=,所以24Tπω==,所以()()4f x x ϕ+,又因为012f π⎛⎫-= ⎪⎝⎭()]012πϕ⨯-+=,即cos()13πϕ-+=,由2πϕ<,所以6πϕ=-,即())6f x x π=-,对于A 中,当6x π=时,可得()cos()062f ππ==,所以6x π=是函数()f x 的一个零点,所以A 正确;又由函数的最小正周期为2T π=,所以B 正确;由()1)16y f x x π=+=-+,所以对称中心的纵坐标为1,所以C 不正确;将函数())6f x x π=-的图象向右平移2π个单位长度,可得())]2))2666f x x x x πππππ=--=---,所以D 不正确. 故选:AB.12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.54-=-,[]2.12=,已知函数()2e 11e 2x x f x =-+,()()g x f x =⎡⎤⎣⎦,则下列叙述正确的是( ) A .()g x 是偶函数B .()f x 在R 上是增函数C .()f x 的值域是1,2⎛⎫-+∞ ⎪⎝⎭D .()g x 的值域是{}1,0,1-【答案】BD【分析】依题意可得()2321e xf x =-+,再根据指数函数的性质判断函数的单调性与值域,距离判断B 、D ,再根据高斯函数的定义求出()g x 的解析式,即可判断A 、D.【详解】解:因为()()22e 2e 111321e 21e 21e 21122e2x x x x x x f x =-=-=--=-+-++++,定义域为R , 因为1e x y =+在定义域上单调递增,且e 11x y =+>,又2y x=-在()1,+∞上单调递增,所以()2321e xf x =-+在定义域R 上单调递增,故B 正确; 因为1e 1x +>,所以1011e x<<+,所以1101e x -<-<+,则2201e x -<-<+, 则1323221e 2x -<-<+,即()13,22f x ⎛⎫∈- ⎪⎝⎭,故C 错误;令()0f x =,即32021e x -=+,解得ln3x =-,所以当ln3x <-时()1,02f x ⎛⎫∈- ⎪⎝⎭,令()1f x =,即32121ex-=+,解得ln3x =, 所以当ln3ln3x -<<时()()0,1f x ∈,当ln 3x >时()31,2f x ⎛⎫∈ ⎪⎝⎭,所以()()1,ln 30,ln 3ln 31,ln 3x g x f x x x ≥⎧⎪⎡⎤==-≤<⎨⎣⎦⎪-<-⎩, 所以()g x 的值域是{}1,0,1-,故D 正确;显然()()55g g ≠-,即()g x 不是偶函数,故A 错误; 故选:BD三、填空题13.函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,方程()f x k =有3个实数解,则k 的取值范围为___________.【答案】(4,3]--【分析】根据给定条件将方程()f x k =的实数解问题转化为函数()y f x =的图象与直线y k =的交点问题,再利用数形结合思想即可作答.【详解】方程()f x k =有3个实数解,等价于函数()y f x =的图象与直线y k =有3个公共点, 因当0x ≤时,()f x 在(,1]-∞-上单调递减,在[1,0]-上单调递增,(1)4,(0)3f f -=-=-, 当0x >时,()f x 单调递增,()f x 取一切实数,在同一坐标系内作出函数()y f x =的图象及直线y k =,如图:由图象可知,当43k -<≤-时,函数()y f x =的图象及直线y k =有3个公共点,方程()f x k =有3个解,所以k 的取值范围为(4,3]--. 故答案为:(4,3]--14.已知()1sin 503α︒-=,且27090α-︒<<-︒,则()sin 40α︒+=______【答案】##【分析】由4090(50)αα︒+=︒-︒-,应用诱导公式,结合已知角的范围及正弦值求cos(50)α︒-,即可得解.【详解】由题设,()sin 40sin[90(50)]cos(50)ααα︒+=︒-︒-=︒-,又27090α-︒<<-︒,即14050320α︒<︒-<︒,且()1sin 503α︒-=,所以14050180α︒<︒-<︒,故cos(50)3α︒-=-. 故答案为:3-15.关于x 不等式0ax b +<的解集为{}3x x >,则关于x 的不等式2045ax bx x +≥--的解集为______.【答案】()[)13,5-∞-,【分析】根据不等式的解集,可得方程的根与参数a 与零的大小关系,利用分式不等式的解法,结合穿根法,可得答案.【详解】由题意,可得方程0ax b +=的解为3x =,且a<0,由不等式2045ax bx x +≥--,等价于()()22450450ax b x x x x ⎧+--≥⎪⎨--≠⎪⎩,整理可得()()()()()510510ax b x x x x ⎧---+≤⎪⎨-+≠⎪⎩,解得()[),13,5-∞-,故答案为:()[)13,5-∞-,.16.已知函数f (x )=221122x a x x x -≥⎧⎪⎨-<⎪⎩(),(), 满足对任意实数12x x ≠,都有1212f x f x x x -<-()()0 成立,则实数a 的取值范围是( ) 【答案】138a ≤【分析】根据分段函数的单调性可得()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩ ,解不等式组即可. 【详解】根据题意可知,函数为减函数,所以()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩,解得138a ≤.故答案为:138a ≤【点睛】本题考查了由分段函数的单调性求参数值,考查了基本知识掌握的情况,属于基础题.四、解答题17.在①A B B ⋃=;②“x A ∈“是“x B ∈”的充分不必要条件;③A B ⋂=∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合{}{}121,13A x a x a B x x =-≤≤+=-≤≤. (1)当2a =时,求A B ⋃;()RAB(2)若_______,求实数a 的取值范围.【答案】(1){}15A B x x ⋃=-≤≤,{}35R A B x x ⋂=<≤ (2)答案见解析【分析】(1)代入2a =,然后根据交、并、补集进行计算.(2)选①,可知A B ⊆,分A =∅,A ≠∅计算;选②可知A B ,分A =∅,A ≠∅计算即可;选③,分A =∅,A ≠∅计算.【详解】(1)当2a =时,集合{}{}15,13A x x B x x =≤≤=-≤≤, 所以{}15A B x x ⋃=-≤≤;{}35R A B x x ⋂=<≤ (2)若选择①A B B ⋃=,则A B ⊆, 当A =∅时,121a a ->+解得2a <- 当A ≠∅时,又A B ⊆,{|13}B x x =-≤≤,所以12111213a a a a -≤+⎧⎪-≥-⎨⎪+≤⎩,解得01a ≤≤,所以实数a 的取值范围是)([],10,1-∞-⋃.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B , 当A =∅时,121a a ->+解得2a <- 当A ≠∅时,又A B ,{|13}B x x =-≤≤,12111213a a a a -≤+⎧⎪-≥-⎨⎪+<⎩或12111213a a a a -≤+⎧⎪->-⎨⎪+≤⎩解得01a ≤≤, 所以实数a 的取值范围是)([],10,1-∞-⋃. 若选择③,A B ⋂=∅,当A =∅时,121a a ->+解得2a <- 当A ≠∅又A B ⋂=∅则12113211a a a a -≤+⎧⎨->+<-⎩或解得2a <-所以实数a 的取值范围是()(),24,-∞-+∞.18.计算下列各式的值: (1)1222301322( 2.5)3483-⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)7log 2log lg25lg47++ 【答案】(1)12; (2)112.【分析】(1)根据指数幂的运算求解;(2)根据对数的定义及运算求解. 【详解】(1)12232231222301322( 2.5)34833331222-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=--+⎢⎥⎢⎥ ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎦ 2339199112242442--+-+⎛⎫=== ⎪⎝⎭. (2)7log 2log lg25lg47++()31111log 27lg 2542322222=+⨯+=⨯++=.19.已知函数()()sin 0,06f x A x A πωω⎛⎫=+>> ⎪⎝⎭同时满足下列两个条件中的两个:①函数()f x 的最大值为2;②函数()f x 图像的相邻两条对称轴之间的距离为2π. (1)求出()f x 的解析式;(2)求方程()10f x +=在区间[],ππ-上所有解的和.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)23π.【分析】(1)由条件可得2A =,最小正周期T π=,由公式可得2ω=,得出答案.(2)由()10f x +=,即得到1sin 262x π⎛⎫+=- ⎪⎝⎭,解出满足条件的所有x 值,从而得到答案.【详解】(1)由函数()f x 的最大值为2,则2A = 由函数()f x 图像的相邻两条对称轴之间的距离为2π,则最小正周期T π=,由2T ππω==,可得2ω= 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)因为()10f x +=,所以1sin 262x π⎛⎫+=- ⎪⎝⎭,所以()2266x k k πππ+=-+∈Z 或()72266x k k πππ+=+∈Z , 解得()6x k k ππ=-+∈Z 或()2x k k ππ=+∈Z .又因为[],x ππ∈-,所以x 的取值为6π-,56π,2π-,2π, 故方程()10f x +=在区间[],ππ-上所有解得和为23π. 20.某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【答案】(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果; (2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型. 【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得:当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x .当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+.此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭12502001050=-=.此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.21.已知函数2()(22)x f x a a a =-- (a >0,a ≠1)是指数函数. (1)求a 的值,判断1()()()F x f x f x =+的奇偶性,并加以证明; (2)解不等式 log (1)log (2)a a x x +<-.【答案】(1)3a =,是偶函数,证明见解析;(2)1|12x x ⎧⎫-<<⎨⎬⎩⎭.【解析】(1)根据2221,0,1a a a a --=>≠,求出a 即可; (2)根据对数函数的单调性解不等式,注意考虑真数恒为正数. 【详解】(1)函数2()(22)x f x a a a =-- (a >0,a ≠1)是指数函数, 所以2221,0,1a a a a --=>≠,解得:3a =, 所以()3x f x =, 1()()33()x x F x f x f x -=+=+,定义域为R ,是偶函数,证明如下: ()33()x x F x F x --=+=所以,1()()()F x f x f x =+是定义在R 上的偶函数; (2)解不等式 log (1)log (2)a a x x +<-,即解不等式 33log (1)log (2)x x +<- 所以012x x <+<-,解得112x -<< 即不等式的解集为1|12x x ⎧⎫-<<⎨⎬⎩⎭【点睛】此题考查根据指数函数定义辨析求解参数的值和函数奇偶性的判断,利用对数函数的单调性解对数型不等式,注意考虑真数为正数.22.已知函数2()2x x b cf x b ⋅-=+,1()log a x g x x b -=+(0a >且1a ≠),()g x 的定义域关于原点对称,(0)0f =.(1)求b 的值,判断函数()g x 的奇偶性并说明理由; (2)求函数()f x 的值域;(3)若关于x 的方程2[()](1)()20m f x m f x ---=有解,求实数m 的取值范围. 【答案】(1)1b =,()g x 为奇函数 (2)()1,1-(3)(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭【分析】(1)根据()g x 的定义域关于原点对称可得1b =,再求解可得()()0g x g x -+=判断即可; (2)根据指数函数的范围逐步分析即可;(3)参变分离,令()()21,3t f x =-∈,将题意转换为求()()222tm t t =---在()1,3t ∈上的值域,再根据基本不等式,结合分式函数的范围求解即可. 【详解】(1)由题意,1()log ax g x x b-=+的定义域10x x b ->+,即()()10x x b -+>的解集关于原点对称,根据二次函数的性质可得1x =与x b =-关于原点对称,故1b =. 此时1()log 1ax g x x -=+,定义域关于原点对称,11()log log 11a a x x g x x x --+-==-+-,因为1111()()log log log log 101111aa a a x x x x g x g x x x x x -+-+⎛⎫-+=+=⨯== ⎪+-+-⎝⎭. 故()()g x g x -=-,()g x 为奇函数.(2)由(1)2()21x x c f x -=+,又(0)0f =,故002121c -=+,解得1c =,故212()12121x x x f x -==-++,因为211x +>,故20221x<<+,故211121x -<-<+,即()f x 的值域为()1,1- (3)由(2)()f x 的值域为()1,1-,故关于x 的方程2[()](1)()20m f x m f x ---=有解,即()()()22f x m f x f x -=-在()()()1,00,1f x ∈-⋃上有解.令()()()21,22,3t f x =-∈⋃,即求()()212223tm t t t t==---+-在()()1,22,3t ∈⋃上的值域即可.因为2333t t +-≥=,当且仅当t =时取等号,且21301+-=,223333+-=,故)2233,00,3t t ⎛⎫⎡+-∈⋃ ⎪⎣⎝⎭,故13,223m t t∞∞⎛⎛⎫=∈-⋃+ ⎪ ⎝⎭⎝+-,即m的值域为(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭,即实数m 的取值范围为(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭.。

高等数学下册期末考试试题及答案 (1).

高等数学下册期末考试试题及答案 (1).

高数高等数学A(下册)期末考试试题一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a、b满足a b0,a2,b2,则a b.3z2、设z xln(xy),则.x y23、曲面x2y2z9在点(1,2,4)处的切平面方程为.4、设f(x)是周期为2的周期函数,它在[,)上的表达式为f(x)x,则f(x)的傅里叶级数在x3处收敛于,在x处收敛于.5、设L为连接(1,0)与(0,1)两点的直线段,则(x y)ds L※以下各题在答题纸上作答并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)2222x3y z91、求曲线2在点M0(1,1,2)处的切线及法平面方程.22z3x y2、求由曲面z2x2y及z6x y所围成的立体体积.3、判定级数2222(1)nlnn1n1是否收敛?如果是收敛的,是绝对收敛还是条件收敛? nz2zx,4、设z f(xy,)siny,其中f具有二阶连续偏导数,求.x x yy 5、计算曲面积分dS2222,x y z a其中是球面被平面z h(0h a)截出的顶部.z三、(本题满分9分)抛物面z x2y2被平面x y z1截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.第 1 页共 2 页高数(本题满分10分)计算曲线积分⎰L(exsiny-m)dx+(excosy-mx)dy,其中m为常数,L为由点A(a,0)至原点O(0,0)的上半圆周x2+y2=ax(a>0).四、(本题满分10分) xn求幂级数∑n的收敛域及和函数.n=13⋅n∞五、(本题满分10分)计算曲面积分I=⎰⎰2xdydz+2ydzdx+3(z∑332-1)dxdy,其中∑为曲面z=1-x2-y2(z≥0)的上侧.六、(本题满分6分)设f(x)为连续函数,f(0)=a,F(t)=222z=Ω,其中是由曲面[z+f(x+y+z)]dvt⎰⎰⎰Ωt与z=lim+t→0F(t). t3-------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交;不得带走试卷。

苏教版2022-2023扬州市育才小学五年级数学下册期末复习试卷(一)及答案

苏教版2022-2023扬州市育才小学五年级数学下册期末复习试卷(一)及答案

五年级数学下册期末复习试卷(一)一 、选择题。

1. 一根绳被剪成两段,第一段长52米,第二段占全长的52。

比较两段的长度,发现( )。

A.第一段长 B.第二段长 C.一样长 D.无法判断2. 把 27 的分子加上10,要使分数的大小不变,分母应加上( )。

A.10B. 42C. 35 D .283. 一个五位数万位上是最小的质数,十位上是最小的合数,其余各个数位上数字相同,这个五位数一定是( )。

A.2的倍数B.3的倍数C.5的倍数D.无法判断4. 小军、小明两人读同一篇文章,小军用51小时,小明用了61小时,( )读得快。

A.小军 B.小明 C.一样快 D.无法判断5. 分母是8的最简真分数有( )个。

A .2B .3C .4D .76.学校合唱社团,每组5人或每组8人都多1人,学校合唱社团最少有( )。

A .81 人B .41人C .40 人D .39人7. 右图中,正方形的面积是10平方厘米,圆的面积是( )。

A .2.5π平方厘米B .4π 平方厘米C .5π平方厘米D .6.25π平方厘米8. 古希腊人认为:如果一个数恰好等于它的所有因数(本身除外)相加之和,那么这个数就是“完美数”。

下面各数中,是“完美数”的是( )。

A.14B.28C.35D.519.要反映一个人一天的体温变化情况,应绘制( )。

A.复式统计表B.单式统计表C.条形统计图D.折线统计图10. 如右图,小红从甲地到乙地有两条路线可走,走哪一条路线近一些?( )。

A. 走①号路线近B. 走②号路线近C.一样近D.无法确定二、填空题。

1.( )÷20=)(15=53=15)(=( )(此空填小数)。

2. 一个数最大因数与最小倍数的和是36,把这个数分解质因数,是( )。

【易错题】小学六年级数学下期末试题(带答案)(1)

【易错题】小学六年级数学下期末试题(带答案)(1)

【易错题】小学六年级数学下期末试题(带答案)(1)一、选择题1.下面各选项中的两种量,成正比例关系的是()。

A. 当xy =8时,x和yB. 购买物品的总价和数量C. 正方形的周长和它的边长D. 圆锥的高一定,体积和底面半径2.一根长2米的圆柱形钢材,如果把它截成4个小圆柱,这4个小圆柱的表面积和比原来增加56.52cm2。

这根圆柱形钢材的体积是()cm3。

A. 1884B. 3140C. 125.6D. 157 3.一瓶装满水的矿泉水,喝了一些,还剩220毫升,瓶盖拧紧倒置放平,无水部分高10cm,已知底面半径3cm,喝了()毫升水。

A. 220B. 500C. 282.64.一个圆柱形无盖水桶,它的底面直径是6分米,高是5分米,要做一个这样的水桶,至少需要()平方分米的铁皮。

A. 122.46B. 94.2C. 565.25.月月红超市1月份的营业额为50万元,缴纳营业税后还剩47.5万元。

月月红超市纳税的税率是()。

A. 5%B. 95%C. 50%6.2019年8月,小明的妈妈把4万元存入银行,定期两年,年利率是2.25%,到期时,妈妈从银行连本金带利息一共取回()元.A. 4×(1+2.25%×2)B. 40000+40000×2.25%×2C. 40000×2.25%×2D. 4000(1+2.25%)×27.某景点2018年春节初一到初三期间,游客达到15万人,比去年同期增加了3万人,比去年同期增加了()。

A. 二成B. 二成五C. 七成五D. 八成8.-2到-4之间有()个负数。

A. 1个B. 2个C. 3个D. 无数个9.小红和小丽以大树为起点,小红向东走10米记作+10米,小丽向西走8米记作﹣8米,小红和小丽相距()米.A. 20米B. 19米C. 18米10.下表是一月份我国几个城市的平均气温,其中平均气温最低的城市是()。

【易错题】高一数学下期末试题(及答案)(1)

【易错题】高一数学下期末试题(及答案)(1)

【易错题】高一数学下期末试题(及答案)(1)一、选择题1.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3 D .丁地:总体均值为2,总体方差为32.若,则( )A .B .C .D .3.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .44.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( )A .B .C .D .5.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 26.要得到函数23sin 23y x x =+2sin 2y x =的图象( ) A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 7.设函数f (x )=cos (x +3π),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6π D .f(x)在(2π,π)单调递减 8.设函数()sin()cos()f x x x ωϕωϕ=+-+0,||2πωϕ⎛⎫><⎪⎝⎭的最小正周期为π,且f x f x -=()(),则( )A .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增B .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递减D .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增9.记max{,,}x y z 表示,,x y z 中的最大者,设函数{}2()max 42,,3f x x x x x =-+---,若()1f m <,则实数m 的取值范围是( )A .(1,1)(3,4)-UB .(1,3)C .(1,4)-D .(,1)(4,)-∞-+∞U10.若tan()24πα+=,则sin cos sin cos αααα-=+( )A .12B .2C .2-D .12-11.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a = A .12-B .10-C .10D .1212.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .已知5a =,7b =,8c =,则A C +=A .90︒B .120︒C .135︒D .150︒二、填空题13.在直角ABC ∆中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在ABC ∆中随机地选取m 个点,其中有n 个点正好在扇形里面,则用随机模拟的方法得到的圆周率π的近似值为__________.(答案用m ,n 表示)14.已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为__________.15.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.233a b c-=,则222a cb ac+-的取值范围为______. 16.已知0,0,2a b a b >>+=,则14y a b=+的最小值是__________. 17.对于函数()f x ,()g x ,设(){}0m x f x ∈=,(){}0n x g x ∈=,若存在m ,n 使得1m n -<,则称()f x 与()g x 互为“近邻函数”.已知函数()()13log 2exf x x -=+-与()1422x x g x a +=⋅-+互为“近邻函数”,则实数a 的取值范围是______.(e 是自然对数的底数)18.已知点G 是ABC ∆的重心,内角A 、B 、C 所对的边长分别为a 、b 、c ,且0578a b c GA GB GC ++=u u ur u u u r u u u r r ,则角B 的大小是__________. 19.函数()sin f x x ω=(0>ω)的图像与其对称轴在y 轴右侧的交点从左到右依次记为1A ,2A ,3A ,⋅⋅⋅,n A ,⋅⋅⋅,在点列{}n A 中存在三个不同的点k A 、l A 、p A ,使得△k l p A A A 是等腰直角三角形,将满足上述条件的ω值从小到大组成的数记为n ω,则6ω=________.20.设α为锐角,若4cos()65πα+=,则sin(2)12πα+的值为______. 三、解答题21.某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是[)70,80,[)80,90,[)90,100,[)90,100,[)100,110,[)110,120.()1求图中m 的值;()2根据频率分布直方图,估计这200名学生的平均分;()3若这200名学生的数学成绩中,某些分数段的人数x 与英语成绩相应分数段的人数y 之比如表所示,求英语成绩在[)90,120的人数.分数段[)90,100[)100,110[)110,120:x y6:51:21:122.如图,四棱锥P ABC -中,PA ⊥平面ABCD ,AD BC ∥,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (I )证明MN ∥平面PAB ; (II )求四面体N BCM -的体积.23.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455--,). (Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求cos β的值. 24.已知数列{}n a 是等比数列,24a =,32a +是2a 和4a 的等差中项. (1)求数列{}n a 的通项公式;(2)设22log 1n n b a =-,求数列{}n n a b 的前n 项和n T . 25.已知数列{}n a 满足()*112112n n n n na a a n Nb a a +==∈=+,,,. ()1证明数列{}n b 为等差数列;()2求数列{}n a 的通项公式.26.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,2225()ac a b c =--.(I )求cos A 的值; (II )求sin(2)B A -的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差2.D解析:D 【解析】试题分析:,且,故选D.【考点】三角恒等变换【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.3.D解析:D 【解析】 【分析】 【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.4.B解析:B 【解析】 【分析】计算函数()y f x =的表达式,对比图像得到答案. 【详解】根据题意知:cos cos OM OP x x ==M 到直线OP 的距离为:sin cos sin OM x x x = 1()cos sin sin 22f x x x x ==对应图像为B 故答案选B 【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.5.D解析:D 【解析】把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=cos2x 图象,再把得到的曲线向左平移π12个单位长度,得到函数y=cos2(x +π12)=cos (2x +π6)=sin (2x +2π3)的图象,即曲线C 2, 故选D .点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数sin()()y A x x R ωϕ=+∈是奇函数π()k k Z ϕ⇔=∈;函数sin()()y A x x R ωϕ=+∈是偶函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是奇函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是偶函数π()k k Z ϕ⇔=∈.6.C解析:C 【解析】 【分析】化简函数2sin 2y x x =+-. 【详解】依题意2ππsin 22sin 22sin 236y x x x x ⎡⎤⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故只需将函数2sin 2y x =的图象向左平移6π个单位.所以选C. 【点睛】本小题主要考查三角函数降次公式和辅助角公式,考查三角函数图象变换的知识,属于基础题.7.D解析:D 【解析】f (x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫⎪⎝⎭=cos 8ππ33⎛⎫+ ⎪⎝⎭=cos3π=-1,为f (x )的最小值,故B 正确; ∵f (x +π)=cos ππ3x ⎛⎫++ ⎪⎝⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,∴f ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫+ ⎪⎝⎭=-cos 2π=0,故C 正确; 由于f 2π3⎛⎫⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪⎝⎭=cosπ=-1,为f (x )的最小值,故f (x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误. 故选D.8.A解析:A 【解析】 【分析】将f(x)化简,求得ωφ,,再进行判断即可. 【详解】()πf x ωx φ,4⎛⎫=+- ⎪⎝⎭∵最小正周期为2ππ,π,ω∴=得ω2=,又f x f x ()()-=为偶函数,所以ππφk π42-=+, k Z ∈∵πφ2<,∴k=-1,()πππφ,f x 2x 444⎛⎫=-∴=--= ⎪⎝⎭,当2k π2x 2k ππ≤≤+,即πk πx k π2≤≤+,f(x)单调递增,结合选项k=0合题意, 故选A. 【点睛】本题考查三角函数性质,两角差的正弦逆用,熟记三角函数性质,熟练计算f(x)解析式是关键,是中档题.9.A解析:A 【解析】 【分析】画出函数的图象,利用不等式,结合函数的图象求解即可. 【详解】函数()f x 的图象如图,直线1y =与曲线交点(1,1)A -,()1,1B ,()3,1C ,()4,1D , 故()1f m <时,实数m 的取值范围是11m -<<或34m <<. 故选A. 【点睛】本题考查函数与方程的综合运用,属于常考题型.10.D解析:D 【解析】 由tan()24πα+=有tan 112,tan 1tan 3ααα+==-,所以11sin cos tan 1131sin cos tan 1213αααααα---===-+++,选D.点睛:本题主要考查两角和的正切公式以及同角三角函数的基本关系式,属于中档题。

七年级上册数学期末试题及答案解答(1)

七年级上册数学期末试题及答案解答(1)

七年级上册数学期末试题及答案解答(1)一、选择题1.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是( )A .183B .157C .133D .912.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n 个图中黑色正方形纸片的张数为( ) ….A .4n+1B .3n+1C .3nD .2n+13.按照如图所示的运算程序,若输入的x 的值为4,则输出的结果是( )A .21B .89C .261D .3614.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )A .第80个图形B .第82个图形C .第84个图形D .第86个图形5.有理数,a b 在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b -<C .b a >D .0ab <6.下列计算正确的是( )A .b ﹣3b =﹣2B .3m +n =4mnC .2a 4+4a 2=6a 6D .﹣2a 2b +5a 2b =3a 2b7.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家( ) A .亏损8元 B .赚了12元C .亏损了12元D .不亏不损8.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5B .6C .7D .89.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .410.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >011.已知232-m a b 和45n a b 是同类项,则m n -的值是( ) A .-2B .1C .0D .-112.已知线段AB ,C 是直线AB 上的一点,AB=8,BC=4,点M 是线段AC 的中点,则线段AM 的长为( ) A .2cmB .4cmC .2cm 或6cmD .4cm 或6cm13.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .49B .32C .54D .9414.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )A .94B .85C .84D .7615.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形数阵解释二项式()na b +的展开式的各项系数,此三角形数阵称为“杨辉三角”. 第一行 ()0a b + 1 第二行 ()1a b + 1 1 第三行 ()2a b + 1 2 1 第四行 ()3a b + 1 3 3 1 第五行 ()4a b + 1 4 6 4 1根据此规律,请你写出第22行第三个数是( ) A .190 B .210 C .231 D .253 16.如果a+b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <017.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = ) A .3B .23C .12-D .无法确定18.现有一列数a 1,a 2,a 3,…,a 98,a 99,a 100,其中a 3=2020,a 7=-2018,a 98=-1,且满足任意相邻三个数的和为常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( ) A .1985B .-1985C .2019D .-201919.如图所示,OB 是一条河流,OC 是一片菜田,张大伯每天从家(A 点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是( )A .B .C .D .20.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( )A .9B .18C .12D .621.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有( ) A .2种B .3种C .4种D .5种22.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )A .14-B . 3.94-C . 1.06-D . 3.7-23.一辆客车和一辆卡车同时从A 地出发沿同一公路同向行驶,客车的行驶速度是70km /h ,卡车的行驶速度是60km /h ,客车经过x 小时到达B 地,卡车比客车晚到1h .根据题意列出关于x 的方程,正确的是( ) A .16070x x -= B .106070x x+-= C .70x =60x+60 D .60x =70x-7024.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2B .-2C .-27D .2725.下列各式中运算正确的是( ) A .2222a a a +=B .220a b ab -=C .2(1)21a a -=-D .33323a a a -=26.下列生活、生产现象:①用两颗钉子就可以把木条固定在墙上;②从甲地到乙地架设电线,总是沿线段架设;③把弯曲的公路改直就能缩短路程;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线.其中能用“两点之间线段最短”来解释的现象是( ) A .①②B .②③C .①④D .③④27.以下问题,不适合抽样调查的是( ) A .了解全市中小学生的每天的零花钱 B .旅客上高铁列车前的安检 C .调查某批次汽车的抗撞击能力 D .调查某池塘中草鱼的数量28.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-<D .a b b a -<-<< 29.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >030.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米B .30千米C .32千米D .36千米【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论. 【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数. 第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43 第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)= 1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24) =1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157. 故选B . 【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.2.D解析:D【解析】【分析】根据图形的规律可知,从第二个图形开始,每个图形中的黑色正方形纸片数比前一个图形多2个,由此可推出结果.【详解】第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,依次类推,第n个图中黑色正方形纸片的张数为2n+1,故选:D.【点睛】本题考查了图形的规律,代数式表示图形的个数,掌握图形的规律是解题的关键.3.D解析:D【解析】【分析】首先把输入的x的值乘4,求出积是多少;然后用所得的积加上5,判断出和是多少,依此类推,直到输出的结果不小于100为止.【详解】解:4×4+5=16+5=21,21<100,21×4+5=84+5=89,89<100,89×4+5=356+5=361,∴输出的结果是361.故选:D.【点睛】此题主要考查了代数式求值,以及有理数的混合运算.熟练掌握代数式求值的方法,以及有理数的混合运算的法则是解题的关键.4.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,若5+7(n-1)×12=295,没有整数解,若8+7(n-2)×12=295,解得n=84,即用295根火柴搭成的图形是第84个图形,故选:C.【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.5.B解析:B【解析】【分析】先根据点在数轴上的位置,判断出a、b的正负,然后再比较出a、b的大小,最后结合选项进行判断即可.【详解】解:由点在数轴上的位置可知:a<0,b<0,|a|>|b|,A、∵a<0,b<0,∴a+b<0,故A错误;B、∵a<b,∴a-b<0,故B正确;C、|a|>|b|,故C错误;D、ab>0,故D错误.故选:B.【点睛】本题主要考查的是绝对值、数轴、有理数的加法、减法、乘法运算,掌握运算法则是解题的关键.6.D解析:D【解析】【分析】根据合并同类项的法则即可求出答案.A. b﹣3b=﹣2b,故原选项计算错误;B. 3m+n不能计算,故原选项错误;C. 2a4+4a2不能计算,故原选项错误;D.﹣2a2b+5a2b=3a2b计算正确.故选D.【点睛】本题考查合并同类项的法则,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.7.C解析:C【解析】试题分析:设第一件衣服的进价为x元,依题意得:x(1+25%)=90,解得:x=72,所以盈利了90﹣72=18(元).设第二件衣服的进价为y元,依题意得:y(1﹣25%)=90,解得:y=120,所以亏损了120﹣90=30元,所以两件衣服一共亏损了30﹣18=12(元).故选C.点睛:本题考查了一元一次方程的应用.解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.8.B解析:B【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵-2a m b2与12a5b n+1是同类项,∴m=5,n+1=2,解得:m=1,∴m+n=6.故选B.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.9.C解析:C【解析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补. 【详解】根据角的和差关系可得第一个图形∠α=∠β=45°, 根据等角的补角相等可得第二个图形∠α=∠β, 第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β, 因此∠α=∠β的图形个数共有3个, 故选:C . 【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.10.B解析:B 【解析】 【分析】先确定出a 、b 、c 的取值范围,然后根据有理数的运算法则解答即可. 【详解】解:观察数轴,可知:﹣2<a <﹣1,0<b <1,1<c <2, ∴c >b >a ,1b >1c,|a |>|b |,abc <0. 故选:B . 【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键.11.D解析:D 【解析】 【分析】根据同类项的字母相同且相同字母的指数也相同,可得关于m 、n 的方程,根据方程的解可得答案. 【详解】∵232-m a b 和45n a b 是同类项 ∴2m=4,n=3 ∴m=2,n=3 ∴=231m n --=- 故选D . 【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.12.C解析:C【解析】【分析】分类讨论:点C在线段AB上,点C在线段BC的延长线上,根据线段的和差,可得AC的长,根据线段中点的性质,可得AM的长.【详解】解:①当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-4=4(cm),由线段中点的定义,得AM=12AC=12×4=2(cm);②点C在线段BC的延长线上,由线段的和差,得AC=AB+BC=8+4=12(cm),由线段中点的定义,得AM=12AC=12×12=6(cm);故选C.【点睛】本题考查两点间的距离,利用了线段的和差,线段中点的定义;解题关键是进行分类讨论.13.D解析:D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx2-2x+8-(3x2-nx)的值与x无关,∴2m-3=0,-2+n=0,解得:m=32,n=2,故m n=(32)2= 94.故选D.【点睛】此题主要考查了合并同类项,去括号,正确得出m,n的值是解题关键.14.A解析:A【解析】【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n(n+1) +4.将9代入即可.【详解】第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5...,所以第n 个图形中小圆的个数为4+n (n+1)所以第9个图形有: 4 +9×10=94个小圆,故选: A【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n个图形的代数表达式将所求的代入.15.B解析:B【解析】【分析】根据题目中的规律,即可求出第22行(a+b)21的展开式中第三项的系数.【详解】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),∴第22行(a+b)21第三项系数为1+2+3+…+19+20=210;故选:B.【点睛】本题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.16.A解析:A【解析】分析:根据ab大于0,利用同号得正,异号得负的取符号法则得到a与b同号,再由a+b 小于0,即可得到a与b都为负数.详解:∵ab>0,∴a与b同号,又a+b<0,则a<0,b<0.故选A.点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.17.B解析:B【解析】【分析】根据规则计算出a 2、a 3、a 4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a =,211132a ==--, 312131()2a ==--,413213a ==-,⋯,由上可得,每三个数一个循环,2019÷3=673,201923a ∴=, 故选:B .【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.18.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a 1=a 4,a 2=a 5,a 3=a 6,从而得到每三个数为一个循环组依次循环,再求出a 100=a 1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数,∴a 1+a 2+a 3=a 2+a 3+a 4,a 2+a 3+a 4=a 3+a 4+a 5,a 3+a 4+a 5=a 4+a 5+a 6,∴a 1=a 4,a 2=a 5,a 3=a 6,∴原式为每三个数一个循环;∵a 3=2020,a 7=-2018,a 98=-1,∵732÷=…1,98332÷=…2,∴a1= a7=-2018,a2=a98=-1,∴a1+a2+a3=-2018-1+2020=1;÷=…1,∵100333∴a100=a1=-2018;∴a1+a2+a3+…+a98+a99+a100=(a1+a2+a3)+…+(a97+a98+a99)+a100⨯-=-;=133********故选择:B.【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.19.D解析:D【解析】【分析】做出点A关于OB和OC的对称点A′和A″,连接A′A″,与OB、OC分别交与点M,N,则沿AM-MN-NA的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A点的对称点A',连接A'N与河流相交于M点,再连接AM,则张大伯可沿着AM走一条直线去河边M点挑水,然后再沿MN走一条直线到菜园去,同理,画出回家的路线图如下:故选D.【点睛】本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.20.B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.考点:频数(率)分布直方图.21.D解析:D【解析】【分析】根据题意可以用列举法把符合要求的方案写出来,从而得到问题的答案.【详解】解:∵数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,∴动点的不同运动方案为:方案一:0→-1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3;共计5种.故选:D .【点睛】本题考查数轴,解题的关键是可以根据题目中的信息,把符合要求的方案列举出来.22.B解析:B【解析】【分析】根据如图所示的按键顺序,列出算式3×(-56)-1.22,再计算可得. 【详解】根据如图所示的按键顺序,输出结果应为3×(-56)-1.22=-2.5-1.44=-3.94, 故选:B .【点睛】本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式. 23.C解析:C【解析】【分析】根据A 地到B 地的路程相等,可构造等量关系7060(1)x x =+,即可得出答案.【详解】解:根据题意,客车从A 地到B 地的路程为:70S x =卡车从A 地到B 地的路程为:60(1)S x =+则7060(1)x x =+故答案为:C .【点睛】本题考查一元一次方程路程的应用题,注意设未知数后等量关系构成的条件,属于一般题型.24.C解析:C【解析】【分析】将x =-m 代入方程,解出m 的值即可.【详解】将x =-m 代入方程可得:-4m -3m =2,解得:m =-27. 故选:C .【点睛】本题主要考查一元一次方程的解的意义以及求解方法,将解代入方程求解是解题关键.25.A解析:A【解析】【分析】各项计算得到结果,即可作出判断.【详解】A 、2222a a a +=,符合题意;B 、2a b 和2ab 不是同类项,不能合并,不符合题意;C 、2(1)22a a -=-,不符合题意;D 、33323a a a -=-,不符合题意,故选:A .【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.26.B解析:B【解析】【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断即可得出结果.【详解】解:①用两颗钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误; ②从甲地到乙地架设电线,总是沿线段架设是利用了“两点之间线段最短”,故正确; ③把弯曲的公路改直就能缩短路程是利用了“两点之间线段最短”,故正确;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故错误.故选:B【点睛】本题主要考查的是线段的性质和直线的性质,正确的掌握这两个性质是解题的关键.27.B解析:B【解析】A 、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B 、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C 、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D 、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B .28.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可.【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.29.B解析:B【解析】【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.30.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=535(小时)由题意可得:2×2x=(535-2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.。

山东省济南市南山区2022-2023学年九年级上学期期末考试数学试题(1)

山东省济南市南山区2022-2023学年九年级上学期期末考试数学试题(1)

山东省济南市南山区2022-2023学年九年级上学期期末考试数学试题满分为150分.考试时间为120分钟.第I 卷(选择题 共40分)注意事项:第1卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若85b a .则ba 等于() A.58 B.35 C.53 D.85 2.已知反比例函数y=x k 的图像经过点(3.2),那么下列四个点中,也在这个函数图像上的是( ).A.(-3-2)B.(3-2)C. (1.-6)D.(-6.1)3.把抛物线y=-2x ²先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A. y=-2(x+1)2+2B. y=-2(x+1)2-2C. y=-2(x -1)²+2D. y=-2(x -1)2-24.如图,已知△ADE~△ABC ,且AD:DB=2:1,则S △ADE :S △ABC =()A. 2:1B. 4:1C. 2:3D. 4:95.在同一平面直角坐标系中,函数y=kx+k 与y=xk (k ≠0)的图象可能是( )6. 如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若∠BOD=130°,则∠ACD 的度数为()A. 50°B. 30°C. 25°D. 20°7.若点A (-6.x 1),B (-1,x 2),C (3,x 3)都在反比例函数y=xm (m>0)的图象上,则y 1,y 2,y 3的大小关系为( )A. y 1>y 2>y 3B. y 2>y 3>y 1C. y 3>y 2>y 1D. y 3>y 1>y 28.如图,△ABC 的顶点是正方形网格的格点,则sin 4的值为( )A. 21 B. 55 C. 1010 D. 552 9. AB 为⊙O 的直径,延长AB 到点P ,过点P 作⊙O 的切线,切点为C ,连接AC ,∠P=40°,D 为圆上一点,则∠D 的度数为( )A. 20°B. 25°C. 30°D. 40°10.在平面直角坐标系中,若点P 的横坐标和纵坐标相等,则称点P 为雅系点,已知二次函数y=ax 2-4x+c (a ≠0)的图象上有且只有一个雅系点(-25,-25),且当m ≤x ≤0时,函数 y=ax 2-4x+c+41(a ≠0)的最小值为-6,最大值为-2,则m 的取值范围是() A. -1≤m ≤0 B.-27≤m ≤-2 C. -4≤m ≤-2 D.-27≤m ≤-49 第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)11.如图,在△ABC 中,BC=4cm ,点D 是AB 的中点,过点D 作DE//BC 交AC 于点E ,则DE=_________cm.12.如图,M 为反比例函数y=xk 的图象上的一点,MA 垂直y 轴,垂足为A ,△MA 的面积为2,则k 的值为13.已知在R △ABC 中,∠C=90°,AB=5,BC=3,那么cosA 的值是14.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE=40cm ,EF=20cm ,测得边DF 离地面的高度AC=15m ,CD=8m ,则树高AB=___m.15.如图①,一个扇形纸片的圆心角为90°,半径为4.如图②,将这张扇形纸片折叠,使点4与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为___16.如图,在矩形纸片ABCD 中,将AB 沿BM 翻折,使点A 落在BC 上的点N 处,BM 为折痕,连接 MN ;再将CD 沿CE 翻折,使点D 恰好落在MN 上的点F 处,CE 为折痕,连接EF 并延长交BM 于点P ,若AD =8,AB=5,则线段PE 的长等于__三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分6分)计算2cos 45°-23tan 30°cos 30°+sin 260°18. (本小题满分6分)在平面直角坐标系xOy 中,二次函数y=x ²-2mx+5m 的图象经过点(1,-2).(1)求二次函数的表达式;(2)求二次函数图象的对称轴.19.(本小题满分6分)如图,已知∠ACD=∠B ,BD=5,AD=4,求AC 的长.20.(本小题满分8分)如图,四边形ABCD 内接于⊙O ,AC 为⊙O 的直径,∠ADB=∠CDB.(1)试判断△ABC 的形状,并给出证明;(2)若AB=22,AD=2,求CD 的长度.21.(本小题满分8分)小军同学想利用所学的“锐角三角函数”知识测量一段两岸平行的河流宽度.他先在河岸设立A ,B 两个观测点,然后选定对岸河边的一棵树记为点M.测得AB=50m ,∠MAB=22°,∠MBA =67°.请你依据所测数据求出这段河流的宽度(结果精确到0.1m ).参考数据:sin22°≈83,sin67°≈1312,cos67°≈135,cos22°≈1615,tan67°≈51222. (本小题满分8分)如图,有长为18m 的篱笆,一面利用墙(墙的最大可用长度为10m )围成中间隔有一道篱笆的长方形养鸡场ABCD ,设养鸡场的宽AB 为xm ,长为BC ,面积为ym ².(1)求y 与x 的函数关系,并写出x 的取值范围;(2)当长方形的长、宽各为多少时,养鸡场的面积最大,最大面积是多少?23. (本小题满分10分)如图,⊙O 是△ABC 的外接圆,AB 是直径,过点C 作⊙O 的切线FC ,过点B 作BD ⊥FC 于点D ,DB 的延长线交⊙O 于点E.(1)求证:∠ABC=∠DBC ;(2)若⊙O 的半径为5,BC=6,求CE 的长.24. (本小题满分10分)如图,函数y=x k (x>0)的图象过点A (n ,2)和B (58,2n -3)两点。

小学数学六年级上册期末考试质量检测(一)卷 人教版(含答案)(1)

小学数学六年级上册期末考试质量检测(一)卷   人教版(含答案)(1)

期末考试质量检测卷(一)一.选择题(共8小题,满分16分,每小题2分)1.(2分)t的是()kg.A.B.125C.2.(2分)上海在北京的南偏东30°方向,那么北京就在上海的()方向。

A.东偏南30°B.北偏西30°C.北偏东30°D.北偏西60°3.(2分)两个假分数相除,商()被除数.A.大于B.小于C.等于或小于4.(2分)8:15的前项增加16,要使比值不变,后项应()A.增加30B.乘以16C.增加16D.乘以305.(2分)经过同学们的努力,今年602班参加《国家学生体质健康标准》测试合格率达到了()A.4%B.20.5%C.98.6%D.120%6.(2分)在一个40名学生的班级里选举班长,选举结果如表,下面()图表示了这一结果.张明10票小豆20票杨杨5票丽丽5票A.B.C.7.(2分)已知12×9+3=111,123×9+4=1111,1234×9+5=11111,那么123456×9+7=()A.111111B.11111111C.11111118.(2分)如果一个圆的半径由2cm增加到4cm,这个圆的周长增加()cm.A.2B.12.56C.6.28二.填空题(共8小题,满分16分,每小题2分)9.(2分)3.5kg增加它的是kg;m减少它的是m.10.(2分)(1)电影院在笑笑家的方向,距离笑笑家米.(2)图书馆在学校的方向,距离学校米.11.(2分)与它倒数的积是,商是。

12.(2分)5:8的前项是,后项是,比值是.13.(2分)在一个边长是8dm的正方形铁片上,剪下一个最大的圆,这个圆的周长是,面积是.14.(2分)读写下面各数.百分之四十八写作百分之零点五四写作百分之一百二十六写作92%读作10.8%读作200%读作15.(2分)看图填空.(1)六年级一班同学喜欢的人数最多.(2)六年级一班同学喜欢的人数最少.(3)六年级一班同学喜欢跑步的占总数的%.16.(2分)一列分数的前5个是、、、、.根据这5个分数的规律可知,第6个分数是.三.判断题(共4小题,满分8分,每小题2分)17.(2分)5千克棉花的和1千克铁块的一样重.(判断对错).18.(2分)淘气在笑笑的北偏东45°方向上,则笑笑就在淘气的东偏北45°方向上.(判断对错)19.(2分)比的前项乘3,后项除以3,比值扩大到原来的6倍。

2022-2023学年北京市中国人民大学附属中学高二年级上册学期期末复习(一)数学试题【含答案】

2022-2023学年北京市中国人民大学附属中学高二年级上册学期期末复习(一)数学试题【含答案】

2022-2023学年北京市中国人民大学附属中学高二上学期期末复习(一)数学试题一、单选题 1.已知复数2ii 1iz =++,则z =( ) A .3 BC .2D .1【答案】B【分析】首先根据复数的除法运算性质化简复数z ,再结合复数的模的概念计算即可. 【详解】()()()2i 1i 2ii i 12i 1i 1i 1i z -=+=+=+++-,则z =故选:B.2.向量(),0,1a x =,()4,,2b y =,若//a b ,则x y +的值为( ) A .0 B .1C .2D .3【答案】C【分析】根据向量平行,得到方程组,求出,x y 的值,得到答案. 【详解】由题意得:a b λ=,即4012x y λλλ=⎧⎪=⎨⎪=⎩,解得:2012x y λ⎧⎪=⎪=⎨⎪⎪=⎩, 故2x y +=. 故选:C3.若直线l 的一个方向向量为()2,2,4v =---,平面α的一个法向量为()1,1,2n =,则直线l 与平面α的位置关系是( ) A .垂直 B .平行C .相交但不垂直D .平行或线在面内【答案】A【分析】根据2n υ=-得到υ与n 共线,即可得到直线l 与平面α垂直.【详解】因为2n υ=-,所以υ与n 共线,直线l 与平面α垂直. 故选:A.4.空间,,,A B C D 四点共面,但任意三点不共线,若P 为该平面外一点且5133=--PA PB xPC PD ,则实数x 的值为( ) A .43-B .13-C .13D .43【答案】C【分析】先设AB mAC nAD =+,然后把向量AB ,AC ,AD 分别用向量PA ,PB ,PC ,PD 表示,再把向量PA 用向量PB ,PC ,PD 表示出,对照已知的系数相等即可求解. 【详解】解:因为空间A ,B ,C ,D 四点共面,但任意三点不共线, 则可设AB mAC nAD =+, 又点P 在平面外,则()()PB PA m PC PA n PD PA -=-+-,即(1)m n PA PB mPC nPD ++=-++, 则1111m nPA PB PC PD m n m n m n -=+++-+-+-,又5133=--PA PB xPC PD ,所以15131113m n mx m n n m n -⎧=⎪+-⎪⎪=-⎨+-⎪⎪=-⎪+-⎩,解得15m n ==,13x =, 故选:C .5.()2,2M 是抛物线()220y px p =>上一点,F 是抛物线的焦点,则MF =( )A .52B .3C .72D .4【答案】A【分析】将点()2,2M 代入22y px =,可得1p =,即可求出准线方程,根据抛物线的定义,抛物线上的点到焦点的距离等于到准线的距离,即可求得MF【详解】解:因为()2,2M 是抛物线()220y px p =>上一点,所以22221p p =⋅⇒=,则抛物线的准线方程为12x =-,由抛物线的定义可知,15222MF =+=, 故选:A.6.已知直线l :()()2110m x m y m ++++=经过定点P ,直线l '经过点P ,且l '的方向向量()3,2a =,则直线l '的方程为( ) A .2350x y -+= B .2350x y --= C .3250x y -+= D .3250x y --=【答案】A【分析】直线l 方程变为()210x y m x y ++++=,可得定点P ()1,1-.根据l '的方向向量()3,2a =,可得斜率为23,代入点斜式方程,化简为一般式即可.【详解】()()2110m x m y m ++++=可变形为()210x y m x y ++++=,解0210x y x y +=⎧⎨++=⎩得11x y =-⎧⎨=⎩,即P 点坐标为()1,1-.因为()23,231,3a ⎛⎫== ⎪⎝⎭,所以直线l '的斜率为23,又l '过点P ()1,1-,代入点斜式方程可得()2113y x -=+,整理可得2350x y -+=. 故选:A.7.在正方体1111ABCD A B C D -中,E 为1CC 中点,112,,,BM MC B N B B x y λ==∃∈R ,使得1A N xAM yAE =+,则λ=( ) A .12B .23C .1D .43【答案】C【分析】正方体中存在三条互相垂直的直线,故我们可以建立空间直角坐标系进行计算.【详解】如图建系,设棱长为6,则()()()()()16,0,0,0,6,3,2,6,0,6,0,6,6,6,66A E M A N λ-()()()10,6,6,4,6,0,6,6,3A N AM AE λ=-=-=-1046,66663x y A N xAM y AE x y y λ=--⎧⎪=+∴=+⎨⎪-=⎩,解之:1λ=故选:C8.若双曲线()222:104y x C a a -=>的一条渐近线被圆()2224x y -+=所截得的弦长为165,则双曲线C的离心率为( ) A 13B 17C .53D 39 【答案】C【分析】首先确定双曲线渐近线方程,结合圆的方程可确定两渐近线截圆所得弦长相等;利用垂径定理可构造方程求得a 的值,进而根据离心率241e a +可求得结果. 【详解】由双曲线方程得:渐近线方程为2ay x =±; 由圆的方程知:圆心为()2,0,半径2r =;2a y x =与2ay x =-图象关于x 轴对称,圆的图象关于x 轴对称,∴两条渐近线截圆所得弦长相等,不妨取2ay x =,即20ax y -=,则圆心到直线距离24d a =+∴弦长为222241622445a r d a --=+,解得:32a =,∴双曲线离心率241651193e a =++. 故选:C.9.已知直线1:4360l x y -+=和直线2:1l x =-,则抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( ) A .3716B .115C .2D .74【答案】C【分析】由=1x -是抛物线24y x =的准线,推导出点P 到直线1:4360l x y -+=的距离和到直线2:1l x =-的距离之和的最小值即为点P 到直线1:4360l x y -+=的距离和点P 到焦点的距离之和,利用几何法求最值.【详解】1x =-是抛物线24y x =的准线,P ∴到=1x -的距离等于PF .过P 作1PQ l ⊥于 Q ,则P 到直线1l 和直线2l 的距离之和为PF PQ + 抛物线24y x =的焦点(1,0)F∴过F 作11Q F l ⊥于1Q ,和抛物线的交点就是1P ,∴111PF PQ PF PQ +≤+(当且仅当F 、P 、Q 三点共线时等号成立)∴点P 到直线1:4360l x y -+=的距离和到直线2:1l x =-的距离之和的最小值就是(1,0)F 到直线4360x y -+=距离,∴最小值1FQ 4062169-+==+.故选:C .10.双曲线2221(0)16x y a a -=>的一条渐近线方程为124,,3y x F F =分别为该双曲线的左右焦点,M 为双曲线上的一点,则2116MF MF +的最小值为( ) A .2 B .4 C .8 D .14【答案】B【分析】由双曲线定义及渐近线方程得3,5a c ==,126MF MF -=,结合均值不等式、对勾函数单调性及12MF MF 、的取值范围求最小值即可. 【详解】由一条渐近线方程为43y x =得4433a a =⇒=,由双曲线定义可知,126MF MF -=,5c =.要使2116MF MF +的值最小,则1MF 应尽可能大,2MF 应尽可能小,故点M 应为双曲线右支上一点,故126MF MF -=,即216MF MF =-.故21111616662MF MF MF MF +=+-≥=,当且仅当1116MF MF =即14MF =时等号成立,此时21620MF MF =-=-<,故取不到等号. 对勾函数166y x x=+-在()0,4单调递减,在()4,+∞单调递增, ∵22MF c a ≥-=,∴1268MF MF =+≥,故当212,8MF MF ==时,2116MF MF +取得最小值为4. 故选:B.二、填空题 11.已知复数5i12iz =+,则z 的虚部为________. 【答案】1【分析】由复数除法得出2i z =+,即可得虚部 【详解】()()()5i 12i 5i 105i 2i 12i 12i 12i 5z -+====+++-,故虚部为1. 故答案为:112.若空间中有三点()()()1,0,1,0,1,1,1,2,0A B C - ,则点()1,2,3P 到平面ABC 的距离为______.【分析】求出平面ABC 的法向量,利用空间距离的向量公式去求P 到平面ABC 的距离可得答案.【详解】由()()()1,0,1,0,1,1,1,2,0A B C -可得()()1,1,21,1,1BA BC =--=-,, 设平面ABC 的一个法向量为(),,n x y z =, 则0n BA n BC ⎧⋅=⎪⎨⋅=⎪⎩ ,即200x y z x y z --=⎧⎨+-=⎩ , 令3x =,则()3,1,2n =- ,又()0,2,4PA =-- ,则点()1,2,3P 到平面ABC 的距离为289PA nn ⋅-==+,故答案为. 13.在下列命题中:①若向量,a b 共线,则向量,a b 所在的直线平行;②若向量,a b 所在的直线为异面直线,则向量,a b 一定不共面; ③若三个向量,,a b c 两两共面,则向量,,a b c 不一定共面;④已知空间的三个向量,,a b c ,则对于空间的任意一个向量p 总存在实数,,x y z 使得p xa yb zc =++. 其中正确命题的是______. 【答案】③【分析】根据共线向量和共面向量的相关定义判断即可.【详解】①若向量,a b 共线,则向量,a b 所在的直线可以重合,并不一定平行,错误;②若向量,a b 所在的直线为异面直线,由向量位置的任意性,空间中两向量可平移至一个平面内,故,a b 共面,错误;③若,,a b c 两两共面,可能为空间能作为基底的三个向量,则,,a b c 不一定共面,正确; ④只有当空间的三个向量,,a b c 不共面时,对于空间的任意一个向量p 总存在实数,,x y z 使得p xa yb zc =++,若空间中的三个向量共面,此说法不成立,错误;综上③正确, 故选:③14.已知P 、Q 分别在直线1:10l x y -+=与直线2:10l x y --=上,且1PQ l ⊥,点()4,4A -,()4,0B ,则AP PQ QB ++的最小值为___________.【答案】582+##258+【分析】利用线段的等量关系进行转化,找到AP QB +最小值即为所求.【详解】由直线1l 与2l 间的距离为2得2PQ =,过()4,0B 作直线l 垂直于1:10l x y -+=,如图,则直线l 的方程为:4y x =-+,将()4,0B 沿着直线l 2B '点,有()3,1B ', 连接AB '交直线1l 于点P ,过P 作2⊥PQ l 于Q ,连接BQ ,有//,||||BB PQ BB PQ ''=,即四边形BB PQ '为平行四边形,则||||PB BQ '=,即有||AP QB AP PB AB ''+=+=,显然AB '是直线1l 上的点与点,A B '距离和的最小值,因此AP QB +的最小值,即AP PB '+的最小值AB ',而()()22434158AB '=--+-所以AP PQ QB ++的最小值为AB PQ '+582582【点睛】思路点睛:(1)合理的利用假设可以探究取值的范围,严谨的思维是验证的必要过程. (2)转化与划归思想是解决距离最值问题中一种有效的途径. (3)数形结合使得问题更加具体和形象,从而使得方法清晰与明朗.15.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点Q 、P 的距离之比MQMPλ=()0,1λλ>≠,那么点M 的轨迹就是阿波罗尼斯圆.已知动点M 的轨迹是阿波罗尼斯圆,其方程为221x y +=,定点Q 为x 轴上一点,1,02P ⎛⎫- ⎪⎝⎭且2λ=,若点()1,1B ,则2MP MB +的最小值为______.【答案】10【分析】根据点M 的轨迹方程可得()2,0Q -,结合条件可得2MP MB MQ MB QB +=+≥,结合图象,即可求得.【详解】设(),0Q a ,(),M x y ,所以()22=-+MQ x a y ,又1,02P ⎛⎫- ⎪⎝⎭,所以2212MP x y ⎛⎫=++ ⎪⎝⎭.因为MQ MPλ=且2λ=,所以()2222212-+=⎛⎫++ ⎪⎝⎭x a y x y, 整理可得22242133+-++=a a x y x , 又动点M 的轨迹是221x y +=,所以24203113aa +⎧=⎪⎪⎨-⎪=⎪⎩,解得2a =-,所以()2,0Q -,又2MQ MP =, 所以2MP MB MQ MB QB +=+≥, 当且仅当,,Q M B 三点共线时,等号成立, 因为101123QB k -==+,所以直线QB 方程为:()123y x =+即320x y -+=,圆心到直线距离1015d r =<=, 即直线QB 与圆相交.(如图中的12,M M 点均满足)又因为()1,1B ,所以2MP MB +的最小值为()()22121010++-=BQ10三、解答题16.若两条相交直线1l ,2l 的倾斜角分别为1θ,2θ,斜率均存在,分别为1k ,2k ,且120k k ⋅≠,若1l ,2l 满足______(从①12θθπ+=;②12l l ⊥两个条件中,任选一个补充在上面问题中并作答),求: (1)1k ,2k 满足的关系式;(2)若1l ,2l 交点坐标为()1,1P ,同时1l 过(),2A a ,2l 过()2,B b ,在(1)的条件下,求出a ,b 满足的关系;(3)在(2)的条件下,若直线1l 上的一点向右平移4个单位长度,再向上平移2个单位长度,仍在该直线上,求实数a ,b 的值. 【答案】(1)答案见解析 (2)答案见解析 (3)答案见解析【分析】(1)依题意11tan k θ=,22tan k θ=,若选①利用诱导公式计算可得;若选②根据两直线垂直的充要条件得解;(2)首先表示出直线1l 、2l ,再将点代入方程,再结合(1)的结论计算可得;(3)按照函数的平移变换规则将直线1l 进行平移变换,即可求出1k ,从而求出直线1l 的方程,即可求出a ,再根据(1)求出直线2l 的方程,即可求出b 的值;【详解】(1)解:依题意11tan k θ=,22tan k θ=,且1θ,2θ均不为0或2π, 若选①12θθπ+=,则12θπθ=-,则()122tan tan tan θπθθ=-=-,即120k k +=; 若选②12l l ⊥,则121k k(2)解:依题意直线1l :()111y k x -=-,直线2l :()211y k x -=-,又1l 过(),2A a ,所以()1121k a -=-且1a ≠,即()111k a =-且1a ≠,又2l 过()2,B b ,所以()2211b k -=-且1b ≠,即21b k -=且1b ≠;若选①,则120k k +=,所以121b k k -==-,即()()111b a =--且1a ≠、1b ≠;若选②,则121k k ,所以()()21111b a k k -⨯=-⨯,即2b a +=且1a ≠、1b ≠;(3)解:直线1l :()111y k x -=-,将直线1l 向右平移4个单位长度,再向上平移2个单位长度得到()14121y k x -⎡⎤-=-+⎣⎦,即11215x y k k --=+,所以1152k k -+=-,解得112k =,此时直线1l :()1112y x -=-,所以()1112a =-,解得3a =;若选①,则212k =-,此时直线2l :()1112y x -=--,所以121b -=-,解得12b =;若选②,则22k =-,此时直线2l :()121y x -=--,所以12b -=-,解得1b;17.已知1F ,2F 是椭圆C :22221(0)x ya b a b+=>>的两个焦点,P 为C 上一点.(1)若12F PF △为等腰直角三角形,求椭圆C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于9,求b 的值和a 的取值范围.【答案】1(2)3b =,)+∞【分析】(1)根据1290PF F ︒∠=或2190PF F ︒∠=或1290F PF ︒∠=进行分类讨论,通过求22ce a=来求得椭圆的离心率.(2)根据已知条件列方程求得b ,判断出22c b ≥,结合222a b c =+求得a 的取值范围. 【详解】(1)12F PF △为等腰直角三角形可知有三种情况.当1290PF F ︒∠=时,1||2PF c =,2||PF =,于是12||||1)2PF PF c a +==,得212c e a ===;当2190PF F ︒∠=时,同理求得1e =;当1290F PF ︒∠=时,则P 在椭圆短轴的端点,12||||PF PF =,12||||2PF PF a +==,解得22c e a ===所以椭圆C 1. (2)设(,)P x y ,由12F PF △的面积等于9,得12||92c y ⋅⋅=,①由12PF PF ⊥,得222x y c +=,② 再由P 在椭圆上,得22221x y a b+=,③由②③及222c b a +=,得422b y c=,又由①知242229b y c c ==,故3b =,由②③得22222()a x c b c=-,22c b ∴≥,从而2222218a b c b =+≥=,故32a ≥,3b ∴=,32a ≥时存在满足条件的点P , 故3b =,a 的取值范围为[32,).+∞18.已知直三棱柱111ABC A B C 中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的动点,BF AB ⊥.(1)证明:BF ⊥平面11EA B ;(2)当1B D 为何值时,平面11BB C C 与平面DFE 所成的夹角最小? 【答案】(1)证明见解析 (2)112B D =【分析】(1)先证明AB ⊥平面11BCC B ,由此建立空间直角坐标系,利用向量方法证明1BF EA ⊥,1BF EB ⊥,由线面垂直判定定理证明BF ⊥平面11EA B ;(2)求平面11BB C C 与平面DFE 的法向量,结合向量夹角公式求两平面的夹角余弦,再求其最小值可得1B D 的取值. 【详解】(1)因为三棱柱111ABC A B C 是直三棱柱, 所以1BB ⊥底面ABC ,AB ⊂底面ABC ,所以1BB AB ⊥.因为BF AB ⊥,1BB BF B ⋂=,1BB ⊂平面11BCC B ,BF ⊂平面11BCC B ,所以AB ⊥平面11BCC B . 所以BA ,BC ,1BB 两两垂直.以B 为坐标原点,分别以BA ,BC ,1BB 所在直线为x ,y ,z 轴建立空间直角坐标系,如图,所以()0,0,0B ,()2,0,0A ,()12,0,2A ,()10,0,2B ,()1,1,0E ,()0,2,1F , 因为()0,2,1BF =,()11,1,2EA =-,()11,1,2EB =--, 所以10BF EA ⋅=,10BF EB ⋅=, 所以1BF EA ⊥,1BF EB ⊥,因为11EA EB E ⋂=,1EA ,1EB ⊂平面11EA B , 所以BF ⊥平面11EA B .(2)由题设()(),0,202D a a ≤≤. 设平面DFE 的法向量为(),,m x y z =, 因为()1,1,1EF =-,()1,1,2DE a =--, 所以00m EF m DE ⎧⋅=⎪⎨⋅=⎪⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-. 因为平面11BB C C 的法向量为()2,0,0BA =, 设平面11BB C C 与平面DEF 所成的夹角为θ,则()()2222633cos 22142912127222m BA m BAa a a a a θ⋅====⋅-+⨯+++-⎛⎫-+⎪⎝⎭, 当12a =时,22214a a -+取最小值为272,此时cos θ取最大值为363272=,此时11112B D A B =<,符合题意.故当112B D =时,面11BB C C 与面DFE 所成的夹角最小. 19.如图,已知动圆P 过点()11,0F -,且与圆()222:18F x y -+=内切于点N ,记动圆圆心P 的轨迹为E .(1)求E 的方程;(2)过点1F 的直线l 交E 于A 、B 两点,是否存在实数t ,使得11AB t AF BF =⋅恒成立?若存在,求出t 的值;若不存在,说明理由. 【答案】(1)2212x y +=(2)存在,且22t =【分析】(1)分析可知动点P 的轨迹是1F 、2F 为焦点,以22a 、b 的值,结合椭圆E 的焦点位置可得出椭圆E 的方程;(2)对直线l 的斜率是否存在进行分类讨论,设出直线l 的方程,与椭圆E 的方程联立,利用弦长公式以及两点间的距离求出t 的值,即可得出结论.【详解】(1)解:显然,圆2F 的半径为22P 的半径为r , 由题意可得122PF r PF r ⎧=⎪⎨=⎪⎩,所以,1212222PF PF F F +=>=,则动点P 的轨迹是1F 、2F 为焦点,以2设椭圆E 的方程为()222210x y a b a b+=>>,122F F c =,所以a =1c =,1b ==,故E 的方程为2212xy +=.(2)解:当直线l 的斜率存在时,设直线l 的方程为()1y k x =+, 设点()11,A x y 、()22,B x y ,联立方程组()22121x y y k x ⎧+=⎪⎨⎪=+⎩得()2222124220k x k x k +++-=,所以2122412k x x k +=-+,21222212k x x k -=+.12AB x -==)22112k k +=+.1AF1BF =所以()222221212112228424112122212k k x x x x k k k AF BF k --+++++++==+⋅==.所以11?AB BF =;当直线l 的斜率不存在时,直线l 的方程为=1x -, 联立方程组22121x y x ⎧+=⎪⎨⎪=-⎩,得2A ⎛-⎝⎭、1,2B ⎛- ⎝⎭. 此时AB111222AF BF ⋅==,所以11AB BF=⋅. 综上,存在实数t =11AB t AF BF =⋅恒成立. 【点睛】方法点睛:求定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。

【鲁教版】八年级数学上期末试题带答案(1)

【鲁教版】八年级数学上期末试题带答案(1)

一、选择题1.如图,在△ABC 中,∠ACB=90°,D 在AB 上,将△ABC 沿CD 折叠,点B 落在AC 边上的点B′处,若'20ADB ∠=︒,则∠A 的度数为( )A .25°B .30°C .35°D .40°2.下列命题为真命题的是( )A .内错角相等,两直线平行B .面积相等的两个三角形全等C .若a b >,则22a b ->-D .一般而言,一组数据的方差越大,这组数据就越稳定3.如图,60A ∠=,70B ∠=,将纸片的一角折叠,使点C 落在ABC 外.若218∠=,则1∠的度数为( )A .50B .118C .75D .804.在长方形ABCD 中,放入6个形状大小完全相同的小长方形,所标尺寸如 图所示,则小长方形的宽AE 的长度为( ) cm .A .1B .1.6C .2D .2.55.为了研究吸烟对肺癌是否有影响,某研究机构随机调查了8000人,结果显示:在吸烟者中患肺癌的比例是3%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多33人.在这8000人中,设吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y .所列方程组正确的是( )A.333%0.5%8000x yx y-=⎧⎨⨯+⨯=⎩B.80003%0.5%22x yx y+=⎧⎨⨯-⨯=⎩C.3380003%0.5%x yx y-=⎧⎪⎨+=⎪⎩D.8000333%0.5%x yx y+=⎧⎪⎨-=⎪⎩6.由方程组223224x y mx y m-=+⎧⎨+=+⎩可得x与y的关系式是()A.3x=7+3m B.5x﹣2y=10 C.﹣3x+6y=2 D.3x﹣6y=27.一次函数y=2x+1的图像,可由函数y=2x的图像()A.向左平移1个单位长度而得到B.向右平移1个单位长度而得到C.向上平移1个单位长度而得到D.向下平移1个单位长度而得到8.一个装有进水管和出水管的容器,开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数. 容器内的水量y(单位:升)与时间x (单位:分)之间的关系如图,则6分钟时容器内的水量(单位:升)为()A.22 B.22.5 C.23 D.259.已知函数y=kx+b的图象如图所示,则y=2kx+b的图象可能是()A.B.C.D.10.点()1,2-关于y轴对称的点的坐标是()A .()1,2-B .()2,1-C .()1,2--D .()1,211.下列选项中,属于无理数的是( )A .πB .227-C .4D .012.如图①,直角三角形纸片的两直角边长分别为6、8,按如图②方式折叠,使点A 与点CB 重合,折痕为DE ,则BCE 与ADE 的面积之比为( )A .2:3B .4:9C .9:25D .14:25二、填空题13.如图所示,D 是ABC 的边BC 上的一点,且∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC=_________.14.如图所示,已知∠1=22°,∠2=28°,∠A=56°,则∠BOC 的度数是___________.15.在平面直角坐标系中有两点(1,2)A -,()2,3B ,如果函数1y kx =-的图象与线段AB 的延长线相交(交点不包括点B ),则实数k 的取值范围是__________.16.请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵. 17.已知Q 在直线4y x =-+上,且点Q 到两坐标轴的距离相等,那么点Q 的坐标为__________.18.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=,(1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.19.有一个正方体的集装箱,原体积为364m ,现准备将其扩容以盛放更多的货物,若要使其体积达到3125m ,则它的棱长需要增加__________m .20.已知等腰三角形的两边长分别为a ,b ,且a ,b 满足2235(2313)0a b a b -+++-=,则此等腰三角形的面积为____.三、解答题21.如图,已知直线//AB CD ,100A C ∠=∠=︒,E 、F 在CD 上,且满足DBF ABD ∠=∠,BE 平分CBF ∠.(1)直线AD 与BC 有何位置关系?请说明理由.(2)求DBE ∠的度数.(3)若平行移动AD ,在平行移动AD 的过程中,存在使BEC ADB ∠=∠的情况,求ADB ∠的度数.22.随着新冠肺炎疫情的持续,某学校计划购进一批防疫物品,经过市场调查得知:某品牌洗手液和消毒水原来的单价和为50元.因政府市场调控,洗手液降价10%,消毒水降价20%,调价后,两种物品的单价和比原来降低了16%.请你用二元一次方程组的知识计算该学校购买 200 瓶洗手液和 300 瓶消毒水共需要多少钱.23.如图,1l 表示振华商场一天的某型电脑销售额与销售量的关系,2l 表示该商场一天的销售成本与电脑销售量的关系.观察图象,解决以下问题:(1)当销售量x =2时, 销售额= 万元,销售成本= 万元;(2)一天销售 台时,销售额等于销售成本;当销售量 时,该商场实现赢利(收入大于成本);(3)分别求出1l 和2l 对应的函数表达式;(4)直接写出利润w 与销售量x 之间的函数表达式,并求出当销售量x 是多少时,每天的利润达到5万元?24.已知:A (0,1),B (2,0),C (4,3)(1)在坐标系中描出各点,画出△ABC ;(2)求△ABC 的面积;(3)设点P 在y 轴上,且△APB 与△ABC 的面积相等,求P 的坐标.25.阅读材料:我们定义:如果一个数的平方等于1-,记作21i =-,那么这个i 就叫做虚数单位.虚数与我们学过的实数合在一起叫做复数.一个复数可以表示为a bi +(a ,b 均为实数)的形式,其中a 叫做它的实部,b 叫做它的虚部.复数的加、减、乘的运算与我们学过的整式加、减、乘的运算类似.例如计算:()()()()62362382i i i i i ++-=++-=-.根据上述材料,解决下列问题:(1)填空:3i ______,6i =_________;(2)计算:2(32)i +;(3)将32i i+-化为a bi +(a ,b 均为实数)的形式(即化为分母中不含i 的形式). 26.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn ,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD 的距离为2寸,点C 和点D 距离门槛AB 都为1尺(1尺=10寸),则AB 的长是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用翻折不变性,三角形内角和定理和三角形外角的性质即可解决问题.【详解】∵∠ACB =90°,∴∠A +∠B =90°,∵△CDB′是由△CDB 翻折得到,∴∠CB′D =∠B ,∵∠CB′D =∠A +∠ADB′=∠A +20°,∴∠A +∠A +20°=90°,解得∠A =35°.故选:C .【点睛】本题考查三角形内角和定理和三角形外角的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.A解析:A【分析】根据平行线的判定和性质、三角形全等的判定、不等式的性质、方差的性质逐一判断即可.【详解】A 、内错角相等,两直线平行,是真命题,符合题意;B 、面积相等的两个三角形不一定全等,原命题是假命题,不符合题意;C 、若a b >,则22a b -<-,原命题是假命题,不符合题意;D 、一般而言,一组数据的方差越大,这组数据就越不稳定,原命题是假命题,不符合题意;故选:A .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.B解析:B【分析】先根据三角形的内角和定理得出∠C=180°-∠A-∠B=180°-60°-70°=50°;再根据折叠的性质得到∠C′=∠C=50°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+50°,即可得到∠3+∠4=62°,然后利用平角的定义即可求出∠1.【详解】∵∠A=60°,∠B=70°,∴∠C=180°-∠A-∠B=180°-60°-70°=50°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=50°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+50°,∠2=18°,∴∠3+18°+∠4+50°+50°=180°,∴∠3+∠4=62°,∴∠1=180°-62°=118°.故选:B.【点睛】本题综合考查了三角形内角和定理、外角定理以及翻折变换的问题,而翻折变换实际上就是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.明确各个角之间的等量关系,是解决本题的关键.4.C解析:C【分析】设小长方形的长为xcm,宽为ycm,则AD=x+3y,AB=x+y=6+2y,联立构造方程组求解即可.【详解】设小长方形的长为xcm,宽为ycm,则AD=x+3y,AB=x+y=6+2y即x-y=6,根据题意,得3146x y x y +=⎧⎨-=⎩, 解得62x y =⎧⎨=⎩, 即AE=2,故选C .【点睛】本题考查了二元一次方程组的应用,合理引进未知数,列出正确的方程组是解题的关键. 5.C解析:C【分析】根据吸烟者患肺癌的人数比不吸烟者患肺癌的人数多33人且该研究机构共调查了8000人,即可得出关于x ,y 的二元一次方程,此题得解.【详解】解:依题意得:3380003%0.5%x y x y -=⎧⎪⎨+=⎪⎩. 故选:C .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.6.D解析:D【分析】方程组消去m 即可得到x 与y 的关系式.【详解】解:223224x y m x y m -=+⎧⎨+=+⎩①②, ①×2﹣②得:3x ﹣6y =2,故选:D .【点睛】此题考查了解二元一次方程组,利用了消元的思想,本题用的是加减消元法. 7.C解析:C【分析】根据一次函数图象平移规律,直接判断即可.【详解】解:∵一次函数图象向上平移m (m>0)个单位,常数项增加m ,∴函数y =2x 的图像向上平移1个单位可以得到y =2x +1的图像,故选:C .【点睛】本题考查了一次函数图象平移的规律,解题关键是掌握一次函数图象平移的规律:上加下减常数项,左加右减自变量.8.B解析:B【分析】由题意结合图象,设后8分钟的函数解析式为y=kx+b ,将x=4时,y=20;x=12时,y=30代入求得k 、b 值,可得函数解析式,再将x=6代入求得对应的y 值即可.【详解】设当4≤x≤12时函数的解析式为y=kx+b(k≠0),由图象,将x=4时,y=20;x=12时,y=30代入,得:2043012k b k b =+⎧⎨=+⎩,解得:5415k b ⎧=⎪⎨⎪=⎩, ∴5154y x =+, 当x=6时,56157.51522.54y =⨯+=+=, 故选:B .【点睛】 本题考查了一次函数的应用,解答的关键是从图象上获取相关联的量,会用待定系数法求函数的解析式,特别要注意分段函数自变量的取值范围的划分.9.A解析:A【分析】由图知,函数y =kx +b 图象过点(0,1),即k >0,b =1,再根据一次函数的特点解答即可.【详解】解:∵由函数y =kx +b 的图象可知,k >0,b =1,∴y =2kx +b =2kx +1,2k >0,∴2k >k ,可见一次函数y =2kx +b 图象与x 轴的夹角,大于y =kx +b 图象与x 轴的夹角.∴函数y =2kx +1的图象过第一、二、三象限且与x 轴的夹角比y =kx +b 与x 轴的夹角大.故选:A .【点睛】本题考查了一次函数的图象,掌握一次函数图象上点的坐标特点及一次函数的图象与k 与b 的关系是解题的关键.10.C解析:C【分析】根据关于y 轴对称的点的坐标的变化特征求解即可.【详解】解:关于y 轴对称的点的坐标变化规律是:纵坐标不变,横坐标变为原来的相反数, 所以,点()1,2-关于y 轴对称的点的坐标是(-1,-2),故选:C .【点睛】本题考查了关于y 轴对称点的坐标变化规律,解题关键是树立数形结合思想,掌握坐标变化规律.11.A解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数; B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式. 12.D解析:D【分析】由折叠可得5AD BD ==,AE BE =,根据勾股定理可得CE ,AE ,DE 的长度,即可求面积比.【详解】解:6BC =,8AC =,10AB ∴=,折叠,5AD BD ∴==,AE BE =,22BC CE BE +=2,2236(8)CE CE ∴+=-,74CE ∴=, 725844AE ∴=-=,154DE ∴==, 11::14:2522BCE ADE S S BC CE AD DE ∆∆∴=⨯⨯⨯=, 故选:D .【点睛】本题考查了折叠问题,勾股定理,关键是熟练运用勾股定理求线段的长度.二、填空题13.【分析】先根据三角形的外角性质可得再根据三角形的内角和定理可得然后根据角的和差即可得的度数由此即可得【详解】又解得故答案为:【点睛】本题考查了三角形的外角性质三角形的内角和定理等知识点熟练掌握三角形 解析:24︒【分析】先根据三角形的外角性质可得4321∠=∠=∠,再根据三角形的内角和定理可得18041DAC ∠=︒-∠,然后根据角的和差即可得1∠的度数,由此即可得.【详解】12∠=∠,31221∴∠=∠+∠=∠,34∠∠=,421∴∠=∠,1804318041DAC ∴∠=︒-∠-∠=︒-∠,118031BAC DAC ∴∠=∠+∠=︒-∠,又63BAC ∠=︒,1803163∴︒-∠=︒,解得139∠=︒,1804118043924DAC ∴∠=︒-∠=︒-⨯︒=︒,故答案为:24︒.【点睛】本题考查了三角形的外角性质、三角形的内角和定理等知识点,熟练掌握三角形的角的性质是解题关键.14.106°【分析】利用了三角形中一个外角等于与它不相邻的两个内角和即可求解【详解】如图连接AO 延长AO 交BC 于点D 根据三角形中一个外角等于与它不相邻的两个内角和可得:∠BOD=∠1+∠BAO ∠DOC=解析:106°【分析】利用了三角形中一个外角等于与它不相邻的两个内角和即可求解.【详解】如图,连接AO ,延长AO 交BC 于点D .根据三角形中一个外角等于与它不相邻的两个内角和,可得:∠BOD=∠1+∠BAO ,∠DOC=∠2+∠OAC ,∵∠BAO+∠CAO=∠BAC=56°,∠BOD+∠COD=∠BOC ,∴∠BOC=∠1+∠2+∠BAC=22°+28°+56°=106°.故答案为:106°.【点睛】本题考查了三角形的内角和定理,三角形的外角的性质,关键是利用了三角形中一个外角等于与它不相邻的两个内角和求解.15.【分析】先求出直线AB 的解析式找出两临界点即可得出答案【详解】解:设AB 的解析式为:y=kx+b ;将代入可得;解得:当与直线AB 平行此时当过时2k-1=3则k=2∴实数k 的取值范围是:【点睛】本题考 解析:123k << 【分析】先求出直线AB 的解析式,找出两临界点即可得出答案.【详解】解: 设AB 的解析式为:y=kx+b ;将(1,2)A -,()2,3B 代入可得232k b k b +=⎧⎨-+=⎩; 解得:1373k b ⎧=⎪⎪⎨⎪=⎪⎩当1y kx =-与直线AB 平行,此时13k =,当1y kx =-过()2,3B 时,2k-1=3,则k=2,∴实数k 的取值范围是:123k << 【点睛】本题考查一次函数图象与系数的关系,有一定难度,关键是找出两临界条件. 16.10【分析】本题涉及两种分配方法关键是不管怎么分配鸦的总数是不变的可设树有x 棵即可列方程:4x+5=5(x ﹣1)求解【详解】解:设树有x 棵依题意列方程:4x+5=5(x ﹣1)解得:x =10所以树有1解析:10【分析】本题涉及两种分配方法,关键是不管怎么分配鸦的总数是不变的,可设树有x 棵,即可列方程:4x+5=5(x ﹣1)求解.【详解】解:设树有x 棵依题意列方程:4x+5=5(x ﹣1)解得:x =10所以树有10棵,鸦的个数为:10×4+5=45故答案为45,10【点睛】本题是典型的分配问题.不管怎么分配鸦的个数是不变的是解题关键.17.【分析】根据题意分点Q 的坐标是(aa)和点Q 的坐标是(b-b)两种情况然后根据点Q 在直线y=-x+4上分别求出点Q 的坐标是多少即可【详解】解:(1)当点Q 的坐标是(aa)时a=-a+4解得a=2∴点解析:()2,2【分析】根据题意,分点Q 的坐标是(a ,a )和点Q 的坐标是(b ,-b )两种情况,然后根据点Q 在直线y =-x +4上,分别求出点Q 的坐标是多少即可.【详解】解:(1)当点Q 的坐标是(a ,a )时,a =-a +4,解得a =2,∴点Q 的坐标是(2,2);(2)当点Q 的坐标是(b ,-b )时,-b =-b +4,此方程无解.∴点Q 的坐标是(2,2).故答案为:(2,2).【点睛】此题主要考查了一次函数图象上点的坐标特征.注意考虑两种情况.18.或【分析】(1)分和两种情况分别代入方程求解即可得;(2)先求出再根据x 轴上方的点的纵坐标大于0建立不等式求解即可得【详解】(1)由题意得:或①当时代入方程得:解得则因此点A 的坐标为②当时代入方程得 解析:(2,2)A 或(1,1)A - 43x >【分析】(1)分x y =和x y =-两种情况,分别代入方程求解即可得;(2)先求出34y x =-,再根据x 轴上方的点的纵坐标大于0建立不等式,求解即可得.【详解】(1)由题意得:x y =或x y =-①当x y =时代入方程得:34y y -=,解得2y =则2x =因此,点A 的坐标为(2,2)A②当x y =-时代入方程得:34y y --=,解得1y =-则1x =因此,点A 的坐标为(1,1)A -综上,点A 的坐标为(2,2)A 或(1,1)A -故答案为:(2,2)A 或(1,1)A -;(2)方程34x y -=可变形为34y x =-当点A 在x 轴上方时,点A 的纵坐标一定大于0,即0y >则340x -> 解得43x > 故答案为:43x >. 【点睛】本题考查了点坐标、点到坐标轴的距离等知识点,掌握平面直角坐标系中,点坐标的特征是解题关键.19.1【分析】先根据正方体的体积得出其棱长再求出体积达到125m3时的棱长进而可得出结论【详解】解:设正方体集装箱的棱长为a ∵体积为64m3∴a==4m ;设体积达到125m3的棱长为b 则b==5m ∴b-解析:1【分析】先根据正方体的体积得出其棱长,再求出体积达到125m 3时的棱长,进而可得出结论.【详解】解:设正方体集装箱的棱长为a ,∵体积为64m 3,∴a=364=4m ; 设体积达到125m 3的棱长为b ,则b=3125 =5m ,∴b-a=5-4=1(m ).故答案为:1.【点睛】本题考查的是立方根,熟知正方体的体积公式是解题的关键.20.或【分析】根据非负数的性质列出方程组求解的值然后分两种情况讨论画出图形作底边上的高利用勾股定理求出高即可求解【详解】解:由非负性可知解得①当是腰时三边分别为由2+2>3则能组成三角形设底边上的高为h解析:374或22 【分析】 根据非负数的性质列出方程组求解a ,b 的值,然后分两种情况讨论,画出图形,作底边上的高,利用勾股定理求出高,即可求解.【详解】解:由非负性可知235023130a b a b -+=⎧⎨+-=⎩, 解得23a b =⎧⎨=⎩, ①当a 是腰时,三边分别为2、2、3,由2+2>3,则能组成三角形,设底边上的高为h ,如下图所示则h=22322⎛⎫- ⎪⎝⎭=72 ∴此等腰三角形的面积为17322⨯⨯=374; ②当b 是腰时,三边分别为3、3、2,由3+2>3,则能组成三角形, 设底边上的高为h ,如下图所示则=∴此等腰三角形的面积为122⨯⨯=【点睛】 本题主要考查了等腰三角形的性质,非负数的性质,解二元一次方程组,三角形的三边关系,勾股定理,先求出a ,b 的值是解题的关键,要注意分情况讨论.三、解答题21.(1)直线AD 与BC 互相平行,理由见解析;(2)40DBE ∴∠=︒(3)存在,60BEC ADB ∠=∠=︒.【分析】(1)根据平行线的性质,以及等量代换证明180ADC C ∠+∠=︒,即可证得//AD BC ; (2)由直线//AB CD ,根据两直线平行,同旁内角互补,即可求得ABC ∠的度数,又由12DBE ABC ∠=∠,即可求得DBE ∠的度数. (3)首先设ABD DBF BDC x ∠=∠=∠=︒,由直线//AB CD ,根据两直线平行,同旁内角互补与两直线平行,内错角相等,可求得BEC ∠与ADB ∠的度数,又由BEC ADB ∠=∠,即可得方程:4080x x ︒+︒=︒-︒,解此方程即可求得答案.【详解】解:(1)直线AD 与BC 互相平行,理由://AB CD ,180A ADC ∴∠+∠=︒,又A C ∠=∠180ADC C ∴∠+∠=︒,//AD BC ∴;(2)//AB CD ,18080ABC C ∴∠=︒-∠=︒,DBF ABD ∠=∠,BE 平分CBF ∠,11140222DBE ABF CBF ABC ∴∠=∠+∠=∠=︒; (3)存在.设ABD DBF BDC x ∠=∠=∠=︒.//AB CD ,40BEC ABE x ∴∠=∠=︒+︒;//AB CD ,18080ADC A ∴∠=︒-∠=︒,80ADB x ∴∠=︒-︒.若BEC ADB ∠=∠,则4080x x ︒+︒=︒-︒,得20x ︒=︒.∴存在60BEC ADB ∠=∠=︒.【点睛】此题主要考查了平行线的性质与判定.解题的关键是注意掌握两直线平行,同旁内角互补与两直线平行,内错角相等定理的应用,注意数形结合与方程思想的应用.22.学校购买 200 瓶洗手液和 300 瓶消毒水共需要10800元.【分析】解:设洗手液和消毒水原来的单价分别为x 元,y 元, 根据题意,列出关于x ,y 的二元一次方程组,进而即可求解.【详解】解:设洗手液和消毒水原来的单价分别为x 元,y 元,由题意得:50(110%)(120%)50(116%)x y x y +=⎧⎨-+-=⨯-⎩,即500.90.842x y x y +=⎧⎨+=⎩, 解得2030x y =⎧⎨=⎩, ∴调价后洗手液的单价为0.12098⨯=(元),消毒水的单价为300.824⨯=(元), 200183002410800⨯+⨯=(元).答:学校购买 200 瓶洗手液和 300 瓶消毒水共需要10800元.【点睛】本题主要考查二元一次方程组的实际应用。

2023-2024学年冀教版八年级数学下册期末复习试题(一)(含答案)

2023-2024学年冀教版八年级数学下册期末复习试题(一)(含答案)

2023-2024学年度下期冀教版数学八年级下册期末复习习题精选(一)(满分120分,限时100分钟)一、选择题(每小题3分,共42分)1.(2023河北保定期末)为了解某市七年级8 000名学生的身高情况,从中抽取了60名学生进行身高检查.下列判断:①这种调查方式是抽样调查;②8 000名学生是总体;③每名学生的身高是个体;④60名学生是总体的一个样本;⑤60名学生是样本容量.其中正确的判断有( )A.5个B.4个C.3个D.2个2.(2023广东深圳南山二模)剪纸艺术是中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是轴对称图形,将其放在平面直角坐标系中,如果图中点E的坐标为(m,3),其关于y轴对称的点F的坐标为(4,n),则m+n的值为( )A.-1B.0C.1D.-93.(2023陕西西安雁塔模拟)一次函数y=(-2m+1)x的图像经过(-1,y1),(2,y2)两点,且y1>y2,则m的值可以是( )A. B.0 C.1 D.-4.(2023浙江温州三模)某校九(1)班50名学生的视力频数分布直方图如图所示(每一组含前一个边界值,不含后一个边界值),若视力达到 4.8以上(含 4.8)为达标,则该班学生视力的达标率为( )A.8%B.18%C.29%D.36%5.(2023山东临沂兰陵期中)下面的三个问题中都有两个变量:①正方形的周长y与边长x;②汽车以30千米/时的速度行驶,它的行驶路程y(千米)与时间x(小时);③水箱以0.8 L/min的流量往外放水,水箱中的剩余水量y(L)与放水时间x(min).其中,变量y与变量x之间的函数关系可以利用如图所示的图像表示的是( )A.①②B.①③C.②③D.①②③6.(2023天津南开期末)已知张强家、体育场、文具店在同一直线上.给出的图像反映的过程是:张强从家跑步去体育场,在体育场锻练了若干分钟后又走到文具店去买笔,然后散步走回家.图中x(min)表示张强离开家的时间,y(km)表示张强离家的距离,则下列说法错误的是( )A.体育场离文具店1 kmB.张强在文具店停留了20 minC.张强从文具店回家的平均速度是 km/minD.当30≤x≤45时,y=7.(2023重庆忠县期末)如图,四边形ABCD是矩形,有一动点P从点B出发,沿B→C→D→A绕矩形的边匀速运动,当点P到达点A时停止运动.在点P的运动过程中,△ABP的面积S随时间t变化的函数图像大致是( )8.【新独家原创】在菱形ABCD中,AC=6,BD=8,点E为BC上一动点,则的最小值为( )A. B. C. D.9.(2023河南新乡长垣期末)随着暑假临近,某游泳馆推出了甲、乙两种消费卡,设消费次数为x,所需费用为y元,且y与x的函数关系的图像如图所示.根据图中信息判断,下列说法错误的是( )A.甲种消费卡为20元/次=10x+100B.y乙C.点B的坐标为(10,200)D.洋洋爸爸准备了240元钱用于洋洋在该游泳馆消费,选择甲种消费卡划算10.(2023上海虹口期末)在平面直角坐标系中,点A(0,6),点B(-6,0),坐标轴上有一点C,使得△ABC为等腰三角形,则这样的点C一共有( )A.5个B.6个C.7个D.8个11.(2023河南濮阳二模)如图,以矩形ABCD的顶点A为圆心,AD长为半径画弧交CB的延长线于点E,过点D作DF∥AE交BC于点F,连接AF.若AB=4,AD=5,则AF的长是( )A.2B.3C.3D.312.(2023福建福州台江模拟)“开开心心”商场2021年1~4月的销售总额如图1,其中A商品的销售额占当月销售总额的百分比如图2.根据图中信息,有以下四个结论,其中推断不合理的是( )A.1~4月该商场的销售总额为290万元B.2月份A商品的销售额为12万元C.1~4月A商品的销售额占当月销售总额的百分比最低的月份是4月D.2~4月A商品的销售额占当月销售总额的百分比与1月份相比都下降了13.【新考法】(2023河南郑州金水期末)现有一四边形ABCD,借助此四边形作平行四边形EFGH,两位同学提供了如图所示的方案,对于方案Ⅰ、Ⅱ,下列说法正确的是( )方案Ⅰ方案Ⅱ作边AB,BC,CD,AD的垂直平分线l1,l2,l3,l4,分别交AB,BC,CD,AD于点E,F,G,H,顺次连接这四点得到的四边形EFGH即为所求连接AC,BD,过四边形ABCD各顶点分别作AC,BD 的平行线EF,GH,EH,FG,这四条平行线围成的四边形EFGH即为所求A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行14.【一题多解】(2022贵州黔东南州中考)如图,在边长为2的等边三角形ABC的外侧作正方形ABED,过点D作DF⊥BC交CB的延长线于点F,则DF的长为( )A.2+2B.5-C.3-D.+1二、填空题(每小题4分,共12分)15.(2023北京房山期末)如图,菱形ABCD的对角线AC,BD相交于点O,点E为BC的中点,连接OE,若OE=,OA=4,则AB= ,菱形ABCD的面积是.16.【河北常考·双填空题】(2023河北石家庄桥西期末)在同一直线上,甲骑自行车,乙步行,分别由A,B两地同时向右匀速出发,当甲追上乙时,两人同时停止.下图是两人之间的距离y(km)与所经过的时间t(h)之间的函数关系图像,观察图像,出发后h甲追上乙.若乙的速度为8 km/h,则经过1.5 h甲行驶的路程为.17.(2023河北沧州献县期末)五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子获胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点.若黑子A的坐标为(7,5),为了不让白方获胜,此时黑方应该下在坐标为的位置.三、解答题(共66分)18.[含评分细则](2023湖北武汉期中)(12分)已知点P(2a-2,a+5),解答下列各题:(1)若点P在x轴上,求出点P的坐标.(2)若点Q的坐标为(4,5),直线PQ∥y轴,求出点P的坐标.(3)若点P在第二象限,且它到x轴的距离与到y轴的距离相等,求a2 023+2 023的值.19.[含评分细则](2023广东深圳期中)(12分)自行车骑行爱好者小轩为备战中国国际自行车公开赛,积极训练.下图是他最近一次在深圳湾体育公园骑车训练时,离家的距离s(km)与所用时间t(h)之间的函数图像.请根据图像回答下列问题:(1)途中小轩共休息了h.(2)小轩第一次休息后,骑行速度恢复到第1小时的速度,请求出目的地离家的距离a是多少.(3)小轩第二次休息后返回家时,速度和到达目的地前的最快车速相同,则全程最快车速是km/h.(4)已知小轩是早上7点离开家的,请通过计算,求出小轩回到家的时间.20.[含评分细则]【新素材】(2023四川绵阳涪城模拟)(14分)青少年“心理健康”问题引起社会的广泛关注,某区为了解学生的心理健康状况,对中学初二学生进行了一次“心理健康”知识测试,随机抽取了部分学生的成绩作为样本,绘制了不完整的频率分布表和频率分布直方图(频率分布表每组含前一个边界值,不含后一个边界值).学生心理健康测试成绩频率分布表分组频数频率50~60 4 0.0860~70 14 0.2870~80 m 0.3280~90 6 0.1290~100 10 0.20合计 1.00请解答下列问题:(1)学生心理健康测试成绩频率分布表中,m= .(2)请补全学生心理健康测试成绩频数分布直方图.(3)若成绩在60分以下(不含60分)心理健康状况为不良,60分~70分(含60分)为一般,70分~90分(含70分)为良好,90分(含90分)以上为优秀,请补全学生心理健康测试成绩扇形统计图.21.[含评分细则](2023江苏无锡梁溪期末)(14分)某学校新建的初中部即将投入使用,为了改善教室空气环境,该校八年级1班班委会计划到朝阳花卉基地购买绿植,已知该基地一盆绿萝与一盆吊兰的费用之和是16元.班委会决定用80元购买绿萝,用120元购买吊兰,所购绿萝数量正好是吊兰数量的两倍.(1)分别求出每盆绿萝和每盆吊兰的价格.(2)该校八年级所有班级准备一起到该基地购买绿萝和吊兰共计120盆,其中绿萝数量不超过吊兰数量的一半,则八年级购买这两种绿植各多少盆时总费用最少?最少费用是多少元?22.[含评分细则](2023四川达州渠县期末)(14分)如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD以每秒1个单位长度的速度运动,同时点Q从点C出发沿射线CB以每秒2个单位长度的速度运动,在线段QC 上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长.(2)是否存在t值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.答案解析1.D 为了解某市七年级8 000名学生的身高情况,从中抽取了60名学生进行身高检查.①这种调查方式是抽样调查,说法正确;②8 000名学生的身高情况是总体,故原说法错误;③每名学生的身高是个体,说法正确;④60名学生身高情况是总体的一个样本,故原说法错误;⑤60是样本容量,故原说法错误.所以正确的判断有2个.故选D.2.A ∵图中点E的坐标为(m,3),其关于y轴对称的点F的坐标为(4,n),∴m=-4,n=3,∴m+n=-4+3=-1,故选A.3.C ∵-1<2,且y1>y2,∴y随x的增大而减小,∴-2m+1<0,解得m>.故选C.4.D 若视力达到4.8以上(含4.8)为达标,则该班学生视力的达标率为×100%=36%.故选D.5.A 正方形的周长y与边长x的关系式为y=4x,故①符合题意;汽车以30千米/时的速度行驶,它的行驶路程y(千米)与时间x(小时)的关系式为y=30x,故②符合题意;水箱以0.8 L/min的流量往外放水,水箱中的剩余水量y(L)与放水时间x(min)的关系式为y=水箱原来的水量-0.8x,故③不符合题意.所以变量y与变量x之间的函数关系可以用题中的图像表示的是①②.故选A.6.D A.体育场到文具店的距离为2.5-1.5=1(km),故A选项正确,不符合题意;B.张强在文具店停留了65-45=20(min),故B选项正确,不符合题意;C.张强从文具店回家的平均速度为 1.5÷(100-65)= km/min,故C选项正确,不符合题意;D.当30≤x≤45时,设y=kx+b(k≠0),则∴当30≤x≤45时,y=-,故D选项错误,符合题意.故选D.7.B 由题意可知,当点P从点B向点C运动时,S=AB·BP,△ABP的面积S与t成正比例函数关系且随时间t的增大而增大;当点P从点C向点D运动时,S=AB·BC,△ABP的面积S不随时间t的变化而变化;当点P从点D向点A运动时,S=AB·AP,△ABP的面积S是t的一次函数且随时间t的增大而减小.所以在点P的运动过程中,△ABP的面积S随时间t变化的函数图像大致是选项B的图像.故选B.8.B ∵四边形ABCD是菱形,AC=6,BD=8,∴OB=AC=3,AC⊥BD.OB是定值,要想的值最小,则OE取最小值.当OE⊥BC时,OE取最小值,由勾股定理可求得BC==5,∵BC·OE=OB·OC,∴OE=,∴.故选B.9.D 设甲对应的函数解析式为y甲=kx(k≠0),∵点(5,100)在该函数图像上,∴5k=100,解得k=20,即甲对应的函数解析式为y甲=20x,即甲种消费卡为20元/次,故选项A不符合题意;设乙对应的函数解析式为y乙=ax+b(a≠0),∵点(0,100),(20,300)在该函数图像上,∴即乙对应的函数解析式为y乙=10x+100,故选项B不符合题意;令20x=10x+100,解得x=10,20×10=200,故点B的坐标为(10,200),故选项C不符合题意;当y=240时,甲种消费卡可消费240÷20=12(次),乙种消费卡可消费的次数为(240-100)÷10=14,因为12<14,所以洋洋爸爸准备240元钱用于洋洋在该游泳馆消费,选择乙种消费卡划算,故选项D符合题意.故选D.10.C 如图,当BC=AB时,以点B为圆心、AB长为半径画圆,与坐标轴分别交于点C1、C2、C3、A.当AC=AB时,以点A为圆心、AB长为半径画圆,与坐标轴分别交于点C4、C5、C6、B.当AC=BC时,点C应该在AB的垂直平分线上,∵OA=OB,∴点O在AB的垂直平分线上.综上,这样的C点共有7个,分别是点C1、C2、C3、C4、C5、C6、O.故选C.11.A ∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠ABE=90°,∵DF∥AE,AD∥EF,∴四边形ADFE是平行四边形,由作图得AE=AD=5,∴四边形ADFE是菱形,∴FE=AE=5,∵BE==3,∴BF=FE-BE=5-3=2,∴AF=.12.C A.1~4月该商场的销售总额为85+80+60+65=290万元,故A不符合题意;B.2月份A商品的销售额为80×15%=12万元,故B不符合题意;C.1~4月A商品的销售额占当月销售总额的百分比最低的月份是2月,故C符合题意;D.2~4月A商品的销售额占当月销售总额的百分比与1月份相比都下降了,故D不符合题意. 故选C.12.C 本题列举两种方案,从中选取可行方案,考查形式比较新颖.方案Ⅰ,如图,连接AC,∵l1,l2,l3,l4分别垂直平分AB,BC,CD,AD,∴E,F,G,H分别是AB,BC,CD,AD的中点,∴EF是△ABC的中位线,GH是△ADC的中位线,∴EF∥AC,EF=AC,GH∥AC,GH=AC,∴EF∥GH,且EF=GH,∴四边形EFGH是平行四边形,∴方案Ⅰ可行.方案Ⅱ,∵EF∥AC,GH∥AC,∴EF∥GH,∵EH∥BD,FG∥BD,∴EH∥FG,∴四边形EFGH是平行四边形,方案Ⅱ可行.故选C.14.D 解法一:如图1,延长DA,BC交于点G,∵四边形ABED是正方形,∴∠BAD=90°,AD=AB,∴∠BAG=180°-90°=90°.∵△ABC是边长为2的等边三角形,∴AB=AC=2,∠ABC=∠BAC=60°,∴∠CAG=∠BAG-∠BAC=30°,∠G=90°-∠ABC=30°,∴∠CAG=∠G,∴AC=CG=2,∴BG=BC+CG=4,∴AG=,∴DG=AD+AG=2+2.在△DFG中,DF⊥BC,∠G=30°,∴DF=×(2+2.故选D.解法二:如图2,过点E作EG⊥DF于点G,作EH⊥BC交CB的延长线于点H,则∠BHE=∠DGE=90°.∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°.∵四边形ABED是正方形,∴BE=DE=AB=2,∠ABE=∠BED=90°,∴∠EBH=180°-∠ABC-∠ABE=180°-60°-90°=30°,∴EH=×2=1,∴BH=.∵EG⊥DF,EH⊥BC,DF⊥BC,∴∠EGF=∠EHB=∠DFH=90°,∴四边形EGFH是矩形,∴FG=EH=1,∠BEH+∠BEG=∠GEH=90°.∵∠DEG+∠BEG=90°,∴∠BEH=∠DEG.在△BEH和△DEG中,∴△BEH≌△DEG(AAS),∴DG=BH=,∴DF=DG+FG=+1.故选D.15.2;16解析∵菱形ABCD的对角线AC与BD相交于点O,∴DO⊥CO,AC=2OA=2OC=8,∵E是BC的中点,∴OE是△CAB的中位线,∴AB=2OE=2,∴OB==2,∴BD=2OB=4,∴菱形ABCD的面积=×8×4=16.16.2;30km解析由图像可知,出发后2 h甲追上乙,A,B两地相距24 km,设甲的速度为x km/h,根据题意得2x=8×2+24,解得x=20,20×1.5=30(km).经过1.5 h甲行驶的路程为30 km.17.(3,7)或(7,3)18.解析(1)∵点P在x轴上,∴a+5=0,∴a=-5,∴2a-2=-12,∴点P的坐标为(-12,0).4分(2)∵点Q的坐标为(4,5),直线PQ∥y轴,∴2a-2=4,∴a=3,∴a+5=8,∴P(4,8).8分(3)∵点P在第二象限,且它到x轴的距离与到y轴的距离相等,∴2a-2=-(a+5),∴a=-1,此时P(-4,4)在第二象限,符合题意,∴a2 023+2 023=(-1)2 023+2 023=2 022,∴a2 023+2 023的值为2 022.12分19.解析(1)途中小轩共休息了2-1.5+4-3=1.5(h).故答案为1.5.3分(2)25+15×(3-2)=40(km).∴a=40.6分(3)全程最快车速是(25-15)÷(1.5-1)=20(km/h).故答案为20.9分(4)4+40÷20=6(h),7+6=13,∴小轩回到家的时间是13点.12分20.解析(1)由表格可得,抽取的学生数为4÷0.08=50,∴m=50×0.32=16.故答案为16.4分(2)补全的学生心理健康测试成绩频数分布直方图如图1所示.8分(3)良好率:(0.32+0.12)×100%=44%,9分优秀率:0.2×100%=20%,10分补全的学生心理健康测试成绩扇形统计图如图2所示.14分21.解析(1)设每盆绿萝x元,则每盆吊兰(16-x)元.根据题意得=2×,解得x=4.4分经检验,x=4是方程的解且符合题意.∴16-x=12.答:每盆绿萝4元,每盆吊兰12元.6分(2)设购买吊兰a盆,总费用为y元.依题意得,购买绿萝(120-a)盆,则y=12a+4(120-a)=8a+480.9分∵绿萝数量不超过吊兰数量的一半,∴120-a≤a,解得a≥80.10分对于y=8a+480,y随a的增大而增大,∴当a=80时,y取得最小值,最小值为8×80+480=1 120,12分此时120-a=40.答:购买吊兰80盆,绿萝40盆时,总费用最少,为1 120元.14分22.解析(1)如图,过A点作AM⊥BC于点M,设AC交PE于点N.∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=BC=5,2分∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,4分∴PN=AP=t,∴CE=NE=PE-PN=5-t,∵CE=CQ-QE=2t-2,∴5-t=2t-2,6分解得t=,∴BQ=BC-CQ=10-2×.7分(2)存在.8分若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,分两种情况:①当点E在点B的右侧时,有解得t=4.②当点E在点B的左侧时,有解得t=12.∴存在t值,使以A,B,E,P为顶点的四边形为平行四边形,此时t的值为4或12.14分。

七年级上学期数学期末考试试题及答案 (1)

七年级上学期数学期末考试试题及答案 (1)

七年级上学期数学期末试卷一. 单项选择题(每小题3 分,共30 分)1. 冰雪节来到了,爸爸、妈妈带着小明去看冰灯。

在一块由冰块铺成的长方形冰面上,小明发现每块冰都是同样大小的正方形,并估计出正方形冰块的边长为40厘米,他又数出整个冰面有20块冰块长、16 块冰块宽,你能估计出这块冰面的面积大约是()A. 28.8 平方米B. 51.2 平方米C. 12.8 平方米D. 32.6 平方米2. 如下图,如果由小头向大头将胡萝卜切成薄片,下列切面面积变化图比较符合的是()。

3. 将三盒糖果包成一包,糖果的尺寸如图,至少需包装纸()平方厘米。

A. 275B. 525C. 1050D. 4504. 1月5日是多多的生日,妈妈买来生日蛋糕,在切蛋糕时爸爸说:“现在一共有7个人,你至少切几刀就能让每个人都分到一块蛋糕?”多多听了马上就切起来,很快每个人都吃上了蛋糕。

同学们,多多应该切()刀。

A. 3B. 4C. 5D. 65. 2005年12月25日是西方的春节(圣诞节),这一天是星期日,2006年1月29日是中国的春节,这一天是()。

A. 星期五B. 星期六C. 星期日D. 星期一6. 寒假快到了,李华全家打算去旅游,爸爸说:“我们要去的城市在重庆的北边,在济南的南边,在成都的东边,在杭州的西边”,请参考下图,李华全家要去()旅游。

A. 石家庄B. 武汉C. 北京D. 济南7. 营养师建议一个12 岁的儿童每日可通过食用200克鱼或180克肉或360克豆腐来摄取蛋白质。

小睿今年12岁,一天他吃了90克豆腐、90 克肉,再吃()克鱼就可以满足一天的蛋白质需求。

A. 100B. 50C. 200D. 258. 一列货运火车从南安站出发,速度逐渐增加,行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车行驶速度逐渐增加,一段时间后再次开始匀速行驶,可以近似地刻画出火车在这段时间内的速度变化情况是()9. 在下图中,右边的立体图形最多有()个是由左边的平面图形折叠而成的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一学期期末检测模拟试题(1)
七年级数学试题
参考答案
一、1~5 DDBBC 6~10 DACDC 11.C 12.D
二、13. <,<14. 圆锥15. 10cm或4cm
16. 201017. (42500-88a)
18. 1 19. 2-20.16
-.
三、21.解:(1)
2
2
12 294
33
⎛⎫
--⨯-+÷-

⎝⎭
=
13 494
92 --⨯+⨯
=
416 --+
=1.
(2)
2
4
21 (1)5(3)
33
⎛⎫
---+÷-⨯

⎝⎭
=
411 15()
933 -+⨯-⨯
=
45 1
99 --
=0.
22.解:
15x 2-(6x 2 +4x )-(4x 2 + 2x -3)+(-5x 2 + 6x + 9) =15x 2 - 6x 2 -4x -4x 2 -2 x + 3 -5x 2 + 6x + 9 =15x 2 - 6x 2- 4x 2 -5x 2 -4x - 2x + 6x + 3 + 9 =12.
因为原多项式化简(即去括号、合并同类项)后的结果为12,这个结果不含字母x ,故原多项式的值与x 的取值无关.因此,小芳同学将“x =2012”错抄成“x =2021”,结果仍然是正确的.
23.解:
(1)因为点M 、N 分别是AC 、BC 的中点,
所以MC =21AC =21×12=6, NC =21BC =21×2=2.
所以MN =MC+NC =6+2=8. (2)MN 的长度是2a .
规律:已知线段分成两部分,它们的中点之间的距离等于原来线段长度的一半.
24.解:设失地农民中自主创业连续经营一年以上
的有x人,则自主创业且解决5人以上失业人员稳定就业一年以上的农民有(60-x)人.
根据题意列出方程
1000x +(60-x)(1000 + 2000)=100000.
解得:x = 40.
所以60-x=20.
答:失地农民中自主创业连续经营一年以上的有40人,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.
四、25.解:(1)450-36-55—180-49=130(万人),作图正确(图略);
(2)(1-3%-10%-38%-17%)×10000 = 3200(人);
(3)180÷450×10000=4000(人),4000-3200=800(人).
26.(1)在甲超市购物所付的费用是:
300+0.8(x-300)=0.8x+60(元);
在乙超市购物所付的费用是:
200+0.85(x-200)=0.85x+30(元).
(2)设这位顾客每次花x元钱,则两次共花了2x元钱,根据题意得:
0.8x+60=0.85x+30,
解这个方程,得x=600.
这时,2x=1200(元).
答:这位顾客两次共花了1200元钱.。

相关文档
最新文档