中考数学专题复习15《二次函数综合应用》

合集下载

中考数学总复习:第三单元 函数 第15课时 二次函数的综合应用(1)

中考数学总复习:第三单元  函数 第15课时  二次函数的综合应用(1)

是12 m,宽是4 m,按照图中所示的直角坐标系,抛物线
可以用
y = - 1 x2 表+b示x +,c 且抛物线上的点C到墙面OB
6
的水平距离为3 m,到地面OA的距离为
m.17
2
(3)在抛物线型拱壁上需要安装两排
灯,使它们离地面的高度相等.如果灯
离地面的高度不超过8 m,那么两排灯
的水平距离最小是多少米?
是12 m,宽是4 m,按照图中所示的直角坐标系,抛物线
可以用
y表= -示1,x2且+b抛x +物c线上的点C到墙面OB
6
的水平距离为3 m,到地面OA的距离为 m.
17
2
(2)一辆货运汽车载一长方体集
装箱后高为6 m,宽为4 m.如果隧道
内设双向行车道,那么这辆货车能
否安全通过?
(2)【思路分析】判断货车能否安全通行,即判断货车 集装箱的高度是否小于对应x取到的函数值.
(1)分别写出该企业两个投资方案的年利润y1、y2与相应 生产件数x(x为正整数)之间的函数关系式,并指出自变量 的取值范围;
解:y1=(10-a)x (1≤x≤200 , x为正整数),
y2=10x-0.05x2 (1≤x≤120 , x为正整数).
(2)分别求出这两个投资方案的最大年利润;
解:①∵3<a<8,∴10-a>0,即y1随x的增大而增大. ∴当x=200时,y1取得最大值, 为(10-a)×200=(2000-200a)万美元. ②y2=-0.05(x-100)2+500. ∵-0.05<0,∴x=100时,y2取得最大值,为500万美元.
为了响应政府提出的由中国制造向中国创造转型的号召, 某公司自主设计了一款成本为40元的可控温杯,并投放 市场进行试销售,经过调查发现该产品每天的销售量y (件)与销售单价x(元)满足一次函数关系:y= -

2020年中考数学复习专题之二次函数的综合应用问题

2020年中考数学复习专题之二次函数的综合应用问题

二次函数的综合应用二次函数的实际应用(1)增长率问题一月a增长率为x 二月a(1+x)增长率为x三月a(1+x)2(2)利润问题在这个模型中,利润=(售价-成本)×销量(3)面积问题矩形面积=长×宽材料总长a 矩形长x矩形宽1(a-2x)2题型一二次函数的应用—销售问题例7.某公司投资销售一种进价为每件15元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-20x+800,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设该公司每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?【思路点拨】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价﹣进价)×销售量,从而列出关系式;(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;【答案与解析】解:(1)由题意,得:w=(x﹣15)•y=(x﹣15)•(﹣20x+800)=﹣20x2+1100x﹣12000,即w=﹣20x2+1100x﹣12000(15≤x≤24);(2)对于函数w=﹣20x2+1100x﹣12000(15≤x≤24)的图象的对称轴是直线x=27.5又∵a=﹣20<0,抛物线开口向下.∴当15≤x≤24时,W随着x的增大而增大,∴当x=24时,W=2880,答:当销售单价定为24元时,每月可获得最大利润,最大利润是2880元.变式训练1.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件,设衬衫的单价降x元,每天获利y元.(1)如果商场里这批衬衫的库存只有44件,那么衬衫的单价应降多少元,才能使得这批衬衫一天内售完,且获利最大,最大利润是多少?(2)如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降多少元?【思路点拨】(1)列出y=44(40﹣x)=﹣44x+1760,根据一次函数的性质求解;(2)根据题意列出y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,结合二次函数的性质求解;【答案与解析】解:(1)y=44(40﹣x)=﹣44x+1760,∵20+2x≥44,∴x≥12,∵y随x的增大而减小,∴当x=12时,获利最大值1232;答:如果商场里这批衬衫的库存只有44件,那么衬衫的单价应12元,才能使得这批衬衫一天内售完,且获利最大1232元;(2)y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,当y=1200时,1200=﹣2(x﹣15)2+1250,∴x=10或x=20,∵当x<15时,y随x的增大而增大,当x>15时,y随x的增大而减小,当10≤x≤20时,y≥1200,答:如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降不少于10元且不超过20元.变式训练2.为建设美丽家园,某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y(元)与x(m2)的函1数关系图象如图所示,栽花所需费用y(元)与x(m2)的函数关系式为2xy=-0.01x2-20x+30000(0剟1000).2(1)求 y (元 ) 与 x(m 2) 的函数关系式;1(2)设这块1000m 2 空地的绿化总费用为W (元 ) ,请利用W 与 x 的函数关系式,求绿化总 费用 W 的最大值.【思路点拨】(1)根据函数图象利用待定系数法即可求得y 1(元)与 x (m 2)的函数关系式 (2)总费用为 W =y 1+y 2,列出函数关系式即可求解 【答案与解析】解:(1)依题意当 0≤x≤600 时,y 1=k 1x ,将点(600,18000)代入得 18000=600k 1,解得 k 1=30∴y 1=30x当 600<x≤1000 时,y 1=k 2x+b ,将点(600,18000),(1000,26000)代入得,解得∴y 1=20x+600综上,y 1(元)与 x (m 2)的函数关系式为:(2)总费用为:W =y 1+y 2∴W=整理得故绿化总费用 W 的最大值为 32500 元.变式训练 3.某公司生产的某种商品每件成本为 20 元,经过市场调研发现,这种商品在未来 40 天内的日销售量 m (件 ) 与时间 t (天 ) 的关系如下表:时间 t (天 ) 1 3 5 10 36日销售量 m94 90 86 76 24(件 )未来 40 天内,前 20 天每天的价格 y 1(元/件)与时间 t (天)的函数关系式为 y 1= t +25(1≤t ≤20 且 t 为整数),后20 天每天的价格 y 2(元/件)与时间 t (天)的函数关系式为y 2=﹣ t +40(21≤t ≤40 且 t 为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的 m (件 ) 与 t (天 ) 之间的表达式;(2)请预测未来 40 天中哪一天的日销售利润最大,最大日销售利润是多少?【思路点拨】(1)从表格可看出每天比前一天少销售 2 件,所以判断为一次函数关系式;(2)日利润=日销售量×每件利润,据此分别表示前 20 天和后 20 天的日利润,根据函数性质求最大值后比较得结论.【答案与解析】解:(1)经分析知:m 与 t 成一次函数关系.设 m =kt+b (k≠0),将 t =1,m =94,t =3,m =90代入,解得,∴m=﹣2t+96;(2)前 20 天日销售利润为 P 1 元,后 20 天日销售利润为 P 2 元,则 P 1=(﹣2t+96)( t+25﹣20)=﹣ (t ﹣14)2+578,∴当 t =14 时,P 1 有最大值,为 578 元.P 2=(﹣2t+96)•( t+40﹣20)=﹣t 2+8t+1920=(t ﹣44)2﹣16,∵当 21≤t≤40 时,P 2 随 t 的增大而减小,∴t=21 时,P 2 有最大值,为 513 元. ∵513<578,∴第 14 天日销售利润最大,最大利润为 578 元.题型二 二次函数的应用—面积问题例 8.如图,用 30m 长的篱笆沿墙建造一边靠墙的矩形菜园,已知墙长18m ,设矩形的宽 AB为xm.(1)用含x的代数式表示矩形的长BC;(2)设矩形的面积为y,用含x的代数式表示矩形的面积y,并求出自变量的取值范围;(3)这个矩形菜园的长和宽各为多少时,菜园的面积y最大?最大面积是多少?【思路点拨】(1)设菜园的宽AB为xm,于是得到BC为(30﹣2x)m;(2)由面积公式写出y与x的函数关系式,进而求出x的取值范围;(3)利用二次函数求最值的知识可得出菜园的最大面积.【答案与解析】解:(1)∵AB=CD=xm,∴BC=(30﹣2x)m;(2)由题意得y=x(30﹣2x)=﹣2x2+30x(6≤x<15);(3)∵S=﹣2x2+30x=﹣2(x﹣7.5)2+112.5,∴当x=7.5时,S有最大值,S=112.5,最大此时这个矩形的长为15m、宽为7.5m.答:这个矩形的长、宽各为15m、7.5m时,菜园的面积最大,最大面积是112.5m2.变式训练1.为了节省材料,小浪底水库养殖户小李利用水库的岸堤(足够长)为一边,用总长为120米的网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)请你帮养殖户小李计算一下BC边多长时,养殖区ABCD面积最大,最大面积为多少?【思路点拨】(1)三个矩形的面值相等,可知2FG=2GE=BC,可知:2BC+8FC=120,即FC=,即可求解;(2)y=﹣x2+45x=﹣(x﹣30)2+675即可求解.【答案与解析】解:(1)∵三个矩形的面值相等,可知2FG=2GE=BC,∴BC×DF=BC×FC,∴2FC=DC,2BC+8FC=120,∴FC=,∴y与x之间的函数关系式为y=3FC×BC=x(120﹣2x),即y=﹣x2+45x,(0<x<60);(2)y=﹣x2+45x=﹣(x﹣30)2+675可知:当BC为30米是,养殖区ABCD面积最大,最大面积为675平方米.变式训练 2.如图,ABCD是一块边长为8米的正方形苗圃,园林部门拟将其改造为矩形AEFG的形状,其中点E在AB边上,点G在A的延长线上,DG2BE,设BE的长为x米,改造后苗圃AEFG的面积为y平方米.(1)求y与x之间的函数关系式(不需写自变量的取值范围);(2)若改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,此时BE的长为米.(3)当x为何值时改造后的矩形苗圃AEFG的最大面积?并求出最大面积.【思路点拨】(1)根据题意可得DG=2x,再表示出AE和AG,然后利用面积可得y与x之间的函数关系式;(2)根据题意可得正方形苗圃ABCD的面积为64,进而可得矩形苗圃AEFG的面积为64,进而可得:﹣2x2+8x+64=64再解方程即可;(3)根据二次函数的性质即可得到结论.【答案与解析】解:(1)y=(8﹣x)(8+2x)=﹣2x2+8x+64,故答案为:y=﹣2x2+8x+64;(2)根据题意可得:﹣2x2+8x+64=64,解得:x1=4,x2=0(不合题意,舍去),答:BE的长为4米;故答案为:y=﹣2x2+8x+64(0<x<8);(3)解析式变形为:y=﹣2(x﹣2)2+72,所以当x=2时,y有最大值,∴当x为2时改造后的矩形苗圃AEFG的最大面积,最大面积为72平方米.变式训练3.如图,一面利用墙(墙的最大可用长度为10m),用长为24m的篱笆围成中间隔有一道篱笆的矩形花圃,设花圃的一边AB的长为x(m),面积为y(m2).(1)若y与x之间的函数表达式及自变量x的取值范围;(2)若要围成的花圃的面积为45m2,则AB的长应为多少?【思路点拨】(1)根据题意可以得到y与x的函数关系式以及x的取值范围;(2)令y=45代入(1)中的函数解析式,即可求得x的值,注意x的取值范围.【答案与解析】解:(1)由题意可得,y=x(24﹣3x)=﹣3x2+24x,∵24﹣3x≤10,3x<24,解得,x≥∴且x<8,,即y与x之间的函数表达式是y=﹣3x2+24x((2)当y=45时,45=﹣3x2+24x,解得,x1=3(舍去),x2=5,答:AB的长应为5m.题型三二次函数的应用—抛物线问题);例9.如图,已知排球场的长度O D为18米,位于球场中线处球网的高度AB为2.4米,一队员站在点O处发球,排球从点O的正上方1.6米的C点向正前方飞出,当排球运行至离点O的水平距离OE为6米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.4米时,对方距离球网0.4m的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(2)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)【思路点拨】(1)根据此时抛物线顶点坐标为(6,3.4),设解析式为y=a(x﹣6)2+3.4,再将点C坐标代入即可求得;由解析式求得x=9.4时y的值,与他起跳后的最大高度为3.1米比较即可得;(2)设抛物线解析式为y=a(x﹣6)2+h,将点C坐标代入得到用h表示a的式子,再根据球既要过球网,又不出边界即x=9时,y>2.4且x=18时,y≤0得出关于h的不等式组,解之即可得.【答案与解析】解:(1)根据题意知此时抛物线的顶点G的坐标为(6,3.4),设抛物线解析式为y=a(x﹣6)2+3.4,将点C(0,1.6)代入,得:36a+3.4=1.6,解得:a=﹣,∴排球飞行的高度y与水平距离x的函数关系式为y=﹣(x﹣6)2+;由题意当x=9.5时,y=﹣(9.4﹣6)2+≈2.8<3.1,故这次她可以拦网成功;(2)设抛物线解析式为y=a(x﹣6)2+h,将点C(0,1.6)代入,得:36a+h=1.6,即a=∴此时抛物线解析式为y=(x﹣6)2+h,,变式训练1.一位篮球运动员投篮,球沿抛物线y=-x2+运行,然后准确落入篮筐内,根据题意,得:,解得:h≥3.025,答:排球飞行的最大高度h的取值范围是h≥3.025.1752已知篮筐的中心距离底面的距离为3.05m.(1)求球在空中运行的最大高度为多少m?(2)如果该运动员跳投时,球出手离地面的高度为2.25m,要想投入篮筐,则问他距离蓝筐中心的水平距离是多少?【思路点拨】(1)由抛物线的顶点坐标即可得;(2)分别求出y=3.05和y=2.25时x的值即可得出答案.【答案与解析】解:(1)∵y=﹣x2+的顶点坐标为(0,),∴球在空中运行的最大高度为m;(2)当y=3.05时,﹣0.2x2+3.5=3.05,解得:x=±1.5,∵x>0,∴x=1.5;当y=2.25时,﹣0.2x2+3.5=2.25,解得:x=2.5或x=﹣2.5,由1.5+2.5=4(m),故他距离篮筐中心的水平距离是4米.变式训练2.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x-4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=-124时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点的O水平距离为7m,离地面的高度为处时,乙扣球成功,求a的值.125m的Q【思路点拨】(1)①将点P(0,1)代入y=﹣(x﹣4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,)代入y=a(x﹣4)2+h代入即可求得a、h.【答案与解析】解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣解得:h=;×16+h=1,②把x=5代入y=﹣∵1.625>1.55,∴此球能过网;(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,(2)把(0,1)、(7,,)代入y=a(x﹣4)2+h,得:解得:,∴a=﹣.变式训练3.小明跳起投篮,球出手时离地面20m,球出手后在空中沿抛物线路径运动,并9在距出手点水平距离4m处达到最高4m.已知篮筐中心距地面3m,与球出手时的水平距离为8m,建立如图所示的平面直角坐标系.(1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?(3)在篮球比赛中,当进攻方球员要投篮时,防守方球员常借身高优势及较强的弹跳封杀对方,这就是平常说的盖帽.(注:盖帽应在球达到最高点前进行,否则就是“干扰球”,属犯规.)若此时,防守方球员乙前来盖帽,已知乙的最大摸球高度为3.19m,则乙在进攻方球员前多远才能盖帽成功?【思路点拨】(1)根据顶点坐标(4,4),设抛物线的解析式为:y=a(x﹣4)2+4,由球出手时离地面m,可知抛物线与y轴交点为(0,),代入可求出a的值,写出解析式;(2)先计算当x=8时,y的值是否等于3,把x=8代入得:y=,所以要想球经过(8,3),则抛物线得向上平移3﹣=个单位,即球出手时距离地面3米可使球直接命中篮筐中心;(3)将由y=3.19代入函数的解析式求得x值,进而得出答案.【答案与解析】(1)设抛物线为y=a(x﹣4)2+4,将(0,)代入,得a(0﹣4)2+4=,解得a=﹣,∴所求的解析式为y=﹣(x﹣4)2+4;(2)令x=8,得y=﹣(8﹣4)2+4=∴抛物线不过点(8,3),故不能正中篮筐中心;≠3,=∵抛物线过点(8,),∴要使抛物线过点(8,3),可将其向上平移 7/9 个单位长度,故小明需向上多跳 m 再投篮(即球出手时距离地面 3 米)方可使球正中篮筐中心.(3)由(1)求得的函数解析式,当 y =3.19 时,3.19=﹣19(x ﹣4)2+4解得:x 1=6.7(不符合实际,要想盖帽,必须在篮球下降前盖帽,否则无效),x 2=1.3∴球员乙距离甲球员距离小于 1.3 米时,即可盖帽成功.题型四 二次函数与图形面积的综合例 10.如图,抛物线 y = a(x + 1)2的顶点为 A ,与 y 轴的负半轴交于点 B ,且 OB = OA .(1)求抛物线的解析式;(2)若点 C (-3,b ) 在该抛物线上,求 S∆ABC 的值.【思路点拨】(1)由抛物线解析式确定出顶点 A 坐标,根据 OA =OB 确定出 B 坐标,将 B坐标代入解析式求出 a 的值,即可确定出解析式;(2)将 C 坐标代入抛物线解析式求出 b 的值,确定出 C 坐标,过 C 作 CD 垂直于 x 轴,三角形 ABC 面积=梯形 OBCD 面积﹣三角形 ACD 面积﹣三角形 AOB 面积,求出即可.【答案与解析】解:(1)由题意得:A (﹣1,0),B (0,﹣1),将 x =0,y =﹣1 代入抛物线解析式得:a =﹣1,则抛物线解析式为 y =﹣(x+1)2=﹣x 2﹣2x ﹣1;(2)过 C 作 CD⊥x 轴,将 C (﹣3,b )代入抛物线解析式得:b =﹣4,即 C (﹣3,﹣4),则 △S ABC =S 梯形 OBCD △﹣S ACD △﹣S A OB ×3×(4+1)﹣ ×4×2﹣ ×1×1=3.变式训练1.如图,已知二次函数图象的顶点为(1,-3),并经过点C(2,0).(1)求该二次函数的解析式;(2)直线y=3x与该二次函数的图象交于点B(非原点),求点B的坐标和∆AOB的面积;【思路点拨】(1)设抛物线的解析式为y=a(x﹣1)2﹣3,由待定系数法就可以求出结论;(2)由抛物线的解析式与一次函数的解析式构成方程组,求出其解即可求出B的坐标,进而可以求出直线AB的解析式,就可以求出AB与x轴的交点坐标,就可以求出△AOB的面积;【答案与解析】解:(1)抛物线的解析式为y=a(x﹣1)2﹣3,由题意,得0=a(2﹣1)2﹣3,解得:a=3,∴二次函数的解析式为:y=3(x﹣1)2﹣3;(2)由题意,得,解得:.∵交点不是原点,∴B(3,9).如图2,设直线AB的解析式为y=kx+b,由题意,得,△+S,△+S△+S解得:,∴y=6x﹣9.当y=0时,y=1.5.∴E(1.5,0),∴OE=1.5,△∴SAOB=SA OE BOE=+,=9.答:B(3,9),△AOB的面积为9;变式训练2.如图,抛物线y=x2+x-2与x轴交于A、B两点,与y轴交于点C.(1)求点A,点B和点C的坐标;(2)在抛物线的对称轴上有一动点P,求PB+PC的值最小时的点P的坐标;(3)若点M是直线AC下方抛物线上一动点,求四边形ABCM面积的最大值.【思路点拨】(1)利用待定系数法即可解决问题.(2)连接AC与对称轴的交点即为点P.求出直线AC的解析式即可解决问题.(3)过点M作MN⊥x轴与点N,设点M(x,x2+x﹣2),则AN=x+2,0N=﹣x,0B=1,0C=2,MN=﹣(x2+x﹣2)=﹣x2﹣x+2,根据S四边形ABCM△=SAOM OCM BOC构建二次函数,利用二次函数的性质即可解决问题.【答案与解析】解:(1)由y=0,得x2+x﹣2=0解得x=﹣2x=l,∴A(﹣2,0),B(l,0),由x=0,得y=﹣2,∴C(0,﹣2).(2)连接AC与对称轴的交点即为点P.△+S + =设直线 AC 为 y =kx+b ,则﹣2k+b =0,b =﹣2:得 k =﹣l ,y =﹣x ﹣2.对称轴为 x =﹣ ,当 x =﹣ 时,y =_(﹣ )﹣2=﹣ ,∴P(﹣ ,﹣ ).(3)过点 M 作 MN⊥x 轴与点 N ,设点 M (x ,x 2+x ﹣2),则 AN =x+2,0N =﹣x ,0B =1,0C =2,MN =﹣(x 2+x ﹣2)=﹣x 2﹣x+2,S四边形 ABCM△=S AOM OCM △S BOC (x+2)(﹣x 2﹣x+2)+ (2﹣x 2﹣x+2)(﹣x )+ ×1× 2=﹣x 2﹣2x+3=﹣(x+1)2+4.∵﹣1<0,∴当 x =_l 时,S 四边形 ABCM 的最大值为 4.变式训练 3.如图,二次函数 y = ax 2 + b x 的图象经过点 A(2,4) 与 B(6,0) .(1)求 a , b 的值;(2)点 C 是该二次函数图象上 A , B 两点之间的一动点,横坐标为 x (2 < x < 6) ,写出四边形 OACB 的面积 S 关于点 C 的横坐标 x 的函数表达式,并求 S 的最大值.△=△=△=△+S△+S【思路点拨】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.【答案与解析】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂线,垂足为D(2,0),连接CD、CB,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,SOADOD•AD=×2×4=4;SACDAD•CE=×4×(x﹣2)=2x﹣4;SBCDBD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=SOAD ACD BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.。

二次函数的综合应用

二次函数的综合应用

二次函数的综合应用二次函数的综合应用一、典例精析考点一:二次函数与方程1.已知抛物线与x轴没有交点。

1) 求$c$的取值范围;2) 确定直线$y=cx+l$经过的象限,并说明理由。

2.已知函数$y=mx-6x+1$($m$是常数)。

⑴证明:不论$m$为何值,该函数的图象都经过$y$轴上的一个定点;⑵若该函数的图象与$x$轴只有一个交点,求$m$的值。

考点二:二次函数与最大问题3、如图,二次函数$y=ax^2+bx+c$。

1)求此二次函数的解析式;2)证明:3)若是线段$AB$的图像经过点$C$,且与$x$轴交于点$D$(其中$D$是原点);二次函数图像及轴于$AB$两点,试问:是否存在这样的点,使$y$的坐标最大;若存在,请求出点$E$的坐标;若不存在,请说明理由。

5、如图,抛物线$y=ax^2+bx+c$与$x$轴交于$A(1,0)$,$B(-3,0)$两点。

1)求该抛物线的解析式;2)设(1)中的抛物线交$y$轴与$C$点,在该抛物线的对称轴上是否存在点$Q$,使得$\triangle QAC$的周长最小?若存在,求出$Q$点的坐标;若不存在,请说明理由。

3)在(1)中的抛物线上的第二象限上是否存在一点$P$,使$\triangle PBC$的面积最大。

若存在,求出点$P$的坐标及$\triangle PBC$的面积最大值。

若没有,请说明理由。

考点三:二次函数与等腰三角形、直角三角形6.如图,直线$y=x-3$与$x$轴交于$A$点,交$y$轴于$B$点,过$A$、$B$两点的抛物线交$x$轴于另一点$C$。

⑴求抛物线的解析式;⑵在抛物线的对称轴上是否存在点$Q$,使$\triangleABQ$是等腰三角形?若存在,求出符合条件的$Q$点坐标;若不存在,请说明理由。

7、如图,在平面直角坐标系中,$\triangle ABC$是直角三角形,$\angle ACB=90^\circ$,$AC=BC$,$OA=1$,$OC=4$,抛物线$y=x^2+bx+c$经过$A$,$B$两点,抛物线的顶点为$D$。

中考数学复习第三单元函数第15课时二次函数的综合应用

中考数学复习第三单元函数第15课时二次函数的综合应用

的形状为开口向下的抛物线,其顶点C距灯柱AB的水平距离为0.8米,距地面的
高度为2.4米,灯罩顶端D距灯柱AB的水平距离为1.4米,则灯罩顶端D距地面的
高度为
米.
图15-7
[答案] 1.95 [解析]如图,以点B为原点,建立直角坐标系. 根据题意,点A(0,1.6),点C(0.8,2.4),则设抛物线解析式为y=a(x-0.8)2+2.4. 将点A的坐标代入上式,得1.6=a(0-0.8)2+2.4,解得a=-1.25. ∴该抛物线的解析式为y=-1.25(x-0.8)2+2.4. ∵点D的横坐标为1.4, ∴y=-1.25×(1.4-0.8)2+2.4=1.95. 故灯罩顶端D距地面的高度为1.95米.
关系式是y=-x2+3x+4.请问:若不计其他因素,
水池的半径至少要
米,
才能使喷出的水流不至于落在池外.
图15-5
[答案]4 [解析]在y=-x2+3x+4中, 当y=0时,-x2+3x+4=0, ∴x1=4,x2=-1, 又∵x>0, ∴x=4, 即水池的半径至少要4米,才能使喷出的水流不至于落在池外.
2
3.[2018·绵阳]图15-4是抛物线形拱桥,当拱顶离水面2 m时,水面宽4 m,水面下
降2 m,水面宽度增加
m.
图15-4
[答案] (4 2-4)
[解析]如图所示,建立平面直角坐标系,横轴 x 通过 AB,纵轴 y 通过 AB 中点 O 且通过抛物线 顶点 C,O 为原点.则抛物线以 y 轴为对称轴,A(-2,0),B(2,0),C(0,2), 通过以上条件可设抛物线解析式为 y=ax2+2,代入 A 点坐标(-2,0),解得 a=-0.5, 所以抛物线解析式为 y=-0.5x2+2, 当水面下降 2 m 时,水面的宽度即为直线 y=-2 与抛物线相交的两点之间的距离, 把 y=-2 代入抛物线解析式得出:-2=-0.5x2+2, 解得:x=±2 2,故水面此时的宽度为 4 2 m, 比原先增加了(4 2-4)m.故答案为(4 2-4).

中考数学专题:二次函数的综合应用

中考数学专题:二次函数的综合应用

(1)点A、B在直线 l 的异侧
最小值: PA+PB=AB
P
(2)点A、B在直线 l 的同侧
P
B '
பைடு நூலகம்B '
最小值: PA+PB=PA+PB' =AB'
x=
2
(2).由(1)可知:对称轴为:x
2 2 1
2
2
∵点A与点B关于对称轴对称
P
∴连接BC,与对称轴的交点,即为满足条件的P点
方法①:
x=
2
解题思路:
求出直线BC
P
直线BC与对称 轴的交点
解题思路:
x=
已知P点的横坐标,
2
只需求纵坐标
求PF的长度
相似三角形
解题思路:
x=
已知P点的横坐标,
2
只需求纵坐标
求PF的长度
锐角三角函数
(3)设抛物线的顶点为点D,求ΔBCD的面积。
解题思路①:SBCD SPCD SPBD
解题思路②:
专题:二次函数的综合应用
学习目标
1.会根据条件确定二次函数的解析式、对称轴和顶点坐标; 2.会利用抛物线的对称性解决“线段之和最短”问题; 3.会解决二次函数中有关面积的问题; 4.体会数形结合、转化的思想。
(3)设抛物线的顶点为点D,求ΔBCD的面积。
解:方法①(一般式):设抛物线的解析式为: y=ax2+bx+c
把点A、B、C分别代入解析式得:
a b c 0
25a
5b
c
0
c
5
2
a
1 2
解得:
b c
2 5
2
∴抛物线的解析式为:y 1 x2 2x 5

中考数学复习第三单元函数第15课时二次函数的综合应用

中考数学复习第三单元函数第15课时二次函数的综合应用
的水柱恰好在喷水池中心的装饰物处汇合,如图15-6所示,以水平方向为x轴,喷水池
中心为原点建立直角坐标系.






(2)王师傅在水池内维修(wéixiū)设备期间,喷水管意外
喷水,为了不被淋湿,身高1.8米的王师傅站立时
必须在离水池中心多少米以内?
图15-6
1
(2)当 y=1.8 时,1.8=- (x-3)2+5,
第九页,共四十页。












题组二 易错题
【失分点】
忽略实际问题(wè在水池中央垂直于水面安装一个花形柱子OA,O恰在水面
中心,安置(ānzhì)在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径
落下,且在过OA的任一平面上,抛物线形状均如图15-5①所示.如图②,建立直角坐标系,水
∴y 与 x 之间的函数关系式为
1
- 2 + 2(0 ≤ ≤ 2),
y=
1
2
2
2 -4 + 8(2 < ≤ 4).
由函数关系式可看出 A 中的函数图象与所求的分段函数对应.故选 A.
第六页,共四十页。












2.如图 15-3,坐标平面上有一顶点为 A 的抛物
[答案(dáàn)] B
直角坐标系.






(3)经检修评估(pínɡ ɡū),游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,

二次函数的综合应用

二次函数的综合应用

二次函数的综合应用一、二次函数与几何图形问题例一:(2019 吉林中考)如图,抛物线y=(x-1)²+k与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C(0,-3)。

P为抛物线上一点,横坐标为m,且m>0。

(1)求此抛物线的解析式;(2)当点P位于x轴下方时,求ΔABP面积的最大值;(3)设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h.①求h关于m 的函数解析式,并写出自变量m 的取值范围!②当h=9时,直接写出ΔBCP的面积.二、二次函数与销售问题例一:(2020 湖北中考)某款旅游纪念品很受游客喜爱,每个纪念品进价40元,规定销售单价不低于44元且不高于52元,某商户在销售期间发现,当销售单价定价为44元时,每天可售出300个,销售单价每上涨1元,每天销量减少10个,现商家决定提价销售,设每天销售量为y个,销售单价为x元。

(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)将纪念品的销售单价定位多少元时,商家每天销售纪念品获得的利润w最大?最大利润是多少元?(3)该商户从每天的利润中提出200元做慈善,为了保证捐款后每天剩余利润不低于2200元,求销售单价x的取值范围。

三、二次函数与增长率问题例一:为积极响应国家“旧房改造”工程,该市推出《加快推进就放改造工作的实施方案》推进新型城镇化建设,改善民生,优化城市建设。

(1)根据方案该市的旧房改造户数从2020年底的3万户增长到2022年底的4,32万户,求该市这两年旧房改造户数的平均年增长率;(2)该市计划对某小区进行旧房改造,如果计划改造300户,计划投入改造费用平均20000元/户,且计划改造的户数每增加1户,投入改造费平均减少50元/户,求旧房改造申报的最高投入费用是多少元?四、二次函数与行程问题例一:(2019 江西中考)蜗牛A和蜗牛B分别从相距120厘米的甲水坑和乙水坑以相同的速度同时相向而行,相遇后,两只蜗牛继续前进,蜗牛A的速度不变,蜗牛B每分钟比原来多走1厘米,结果蜗牛B到达甲水坑后蜗牛A还需10分钟才能到达乙水坑,求两只蜗牛原来的速度是多少?五、二次函数与动点问题例一:(2019秋惠州期末)如图,抛物线y=x²+bx+c与x轴交于A、B两点,与y轴交于C 点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,求点D的坐标;(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;六、二次函数与阅读理解型问题(新定义题型)例一:(2019 )在平面直角坐标系中,给出如下定义:已知两个函数,如果对于任意的自变量x,这两个函数对应的函数值记为y1、y2,恒有点(x,y1)和点(x,y2)关于点(x,x)成中心对称(此三个点可以重合),由于对称中心(x,x)都在直线y=x上,所以称这两个函数为关于直线y=x的“相依函数”.例如:y=3/4*x和y=5/4*x为关于直线y=x的“相依函数”。

中考数学复习专题训练 二次函数的综合应用(含解析)

中考数学复习专题训练 二次函数的综合应用(含解析)

中考数学复习专题训练二次函数的综合应用一、选择题1.下列函数是二次函数的是( )A. y=2x+1B. y=﹣2x+1C. y=x2+2D. y=x﹣22.函数y=(m﹣3)x|m|﹣1+3x﹣1是二次函数,则m的值是( )A. ﹣3B. 3C. ±2D. ±33.已知抛物线y=ax2+bx+c经过原点和第一、二、三象限,那么()A. a>0,b>0,c>0B. a>0,b>0,c=0C. a>0,b>0,c<0D. a>0,b<0,c=04.如图,在同一坐标系下,一次函数y=ax+b与二次函数y=ax2+bx+4的图象大致可能是()A. B. C. D.5.在平面直角坐标系中,抛物线y=x2-1与y轴的交点坐标是( )A. (1,0)B. (0,1)C. (0,-1)D. (-1,0)6.二次函数的图象如图所示,则这个二次函数的解析式为()A. y (x﹣2)2+3B. y= (x﹣2)2﹣3C. y=﹣(x﹣2)2+3D. y=﹣(x﹣2)2﹣37.如图,已知二次函数y1= x2﹣x的图象与正比例函数y2= x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A. 0<x<2B. 0<x<3C. 2<x<3D. x<0或x>38. 设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A. a(x1﹣x2)=dB. a(x2﹣x1)=dC. a(x1﹣x2)2=dD. a(x1+x2)2=d9.二次函数y=x2﹣8x+15的图象与x轴相交于M,N两点,点P在该函数的图象上运动,能使△PMN的面积等于的点P共有( )A. 1个B. 2个C. 3个D. 4个10.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为()A. B. C. 3 D. 411.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为( )A. -B. 或-C. 2或-D. 2或或-12.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=﹣x2+4x上的概率为()A. B. C. D.二、填空题13.若函数y=(m+2)是二次函数,则m=________14.抛物线y= (x﹣4)2+3与y轴交点的坐标为________.15.已知抛物线的顶点坐标为(1,﹣1),且经过原点(0,0),则该抛物线的解析式为________.16.二次函数y=x2+4x+5中,当x=________时,y有最小值.17.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表x﹣1013y﹣1353下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小.③当x=2时,y=5;④3是方程ax2+(b﹣1)x+c=0的一个根;其中正确的有________.(填正确结论的序号)18.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线,且经过点(-3,y1),(4,y2),试比较y1和y2的大小:y1________y2(填“>”,“<”或“=”).19.如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是________.20.如图,二次函数的图象经过点,对称轴为直线,下列5个结论:①;②;③;④;⑤,其中正确的结论为________ .(注:只填写正确结论的序号)三、解答题21.已知抛物线y= x2﹣2x的顶点是A,与x轴相交于点B、C两点(点B在点C的左侧).(1)求A、B、C的坐标;(2)直接写出当y<0时x的取值范围.22.在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当S△ABC=15时,求该抛物线的表达式;(3)在(2)的条件下,经过点C的直线与抛物线的另一个交点为D.该抛物线在直线上方的部分与线段CD组成一个新函数的图象。

2022年九年级数学 专项复习 二次函数的应用

2022年九年级数学 专项复习 二次函数的应用

九年级数学专项复习:二次函数的综合应用课堂引入知识梳理要点一:利润问题求解二次函数与利润最大化的问题,主要是根据题意列出相关的二次函数解析式,再通过配方的方式求解最大值.这是一种实际应用的题型,需根据自变量的实际意义确定函数的定义域,在求解最大值时,也需注意自变量的取值范围.要点二:面积问题求解二次函数与面积结合的问题时,基本方法上与利润最大化是相同的,也是通过配方的方式求解相关面积的最值,当然也需要注意自变量的取值范围.而与利润最大化问题不同的是,面积问题中可能会涉及到三角形、四边形或者圆等图形,也可能会出现动点与面积相结合的类型,变化较多.要点三:拟二次函数图像问题拟二次函数函数图像问题的解题,依赖于合理的平面直角坐标系的建立,继而在平面直角坐标系中,利用二次函数的图像性质解答相关问题.主要包括拱桥问题、运行轨迹问题等.要点四:代数综合二次函数与代数的综合涉及到二次函数与一次函数、反比例函数在同一直角坐标系中的图像性质问题、交点问题等.难点是函数思想与方程思想、不等式思想的相互转化和结合.要点五:几何综合二次函数与几何的综合,主要是将几何图形与二次函数的图像相结合,求解面积问题、角相等问题、相似问题等.难点是数形结合的思想,这也是中考要求的重点和难点例题分析【例1】某企业生产并销售某种产品,假设销售量与产量相等.如图,折线ABD 、线段CD 分别表示该产品每千克的生产成本1y (单位:元)、销售价2y (单位:元)与产量x (单位:kg )之间的函数关系.(1)解释图中点D 的横坐标、纵坐标的实际意义;(2)求线段AB 所表示的1y 与x 之间的函数解析式;(3)当该产品的产量为多少时,获得的利润最大?最大利润是多少?【难度】★★【例2】某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价P (元/100kg )与上市时间t (2月1日开始的天数)有函数关系:()()30002002300200300t t P t t ⎧-≤≤⎪=⎨-<≤⎪⎩,西红柿的种植成本Q (元/100kg )与上市时间t 也存在如图所示的二次函数关系式.设市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?OtQ15010050150250【难度】★★【例3】某产品每件成本50元,出售价70元,2014年销售量5万件.为了进一步拓展销路,厂家投入一定资金做广告.2015年和2016年分别支出广告费用10万元和20万元,年销售量分别是做广告前的1.5倍和1.8倍.设做广告后年销售量与原销售量的比值y是关于广告费x(万元)的二次函数.(1)求y与x的函数关系式;(2)设年销售总额减去成本和广告费后所得的利润为S万元,求S与x的函数关系式;(3)你认为厂家是否应该继续投入大量广告费,以求年利润随广告费投入的增加而无限增加?【难度】★★★【例4】小王打羽毛球时,若羽毛球飞行得高度h(米)与发球的时间t(s)满足关系式2h t t=-++,则小王222发球后0.5秒时,羽毛球飞行的高度为________【难度】★【例5】某超市销售一种牛奶,进价是每箱24元,规定售价不低于进价,现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降低1元,每月的销售将增加10箱,设每箱牛奶降价x元(正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少?【难度】★★【例6】一边靠长为15米的围墙,其他三边用总长40米的篱笆围成一个矩形花圃,如何围法,可使花圃的面积最大?【难度】★★【例7】如图,某市在城建规划中,准备在市中心一块长方形空地ABCD 上建一块长方形绿化区域.因为空地一角有一个文物保护设施,所以规划时不能超越线段EF ,进入AEF 内.已知长方形的长AB =200米,宽AD =160米,AE =60米,AF =40米.如何规划能使这个绿化区的面积最大?【难度】★★【例8】如图1,为美化校园,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)用含a 的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的38,求出此时通道的宽;(3)已知某园林公司修建通道、花圃的造价1y (元)、2y (元)与修建面积x (平方米)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么当通道的宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?通道12004800062000800xy 图1图22y 1y 【难度】★★★【例9】三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB =20米,顶点M 距水面6米(即MO =6米),小孔顶点N 距水面4.5米(即NC =4.5米).当水位上涨刚好淹没小孔时,求此时大孔的水面宽度EF .AB CD EFONMxy【难度】★【例10】学校的围墙上端由一排相同的凹拱形栅栏组成,如图所示,已知拱形为抛物线的一部分,栅栏的跨径AB 间,每隔相同的间距0.3米用1根立柱加固,拱高OC 为0.6米.(1)建立如图所示的平面直角坐标系,则抛物线的解析式为_________________;(2)一段这样的栅栏所需立柱的总长度(精确到0.1米)为______________.xyABCO【难度】★【例11】把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式2205(04)h t t t =-≤≤.(1)经过多少时间足球能到达最大高度,最大高度时几米?(2)足球从开始踢至回到地面需要多少时间?【难度】★★【例12】某校初三年级的一场篮球比赛中,队员甲正在投篮,若球出手时离地面209米,与篮圈中心的水平距离为7米.设篮球运行的路线为抛物线,当球出手后水平距离为4米时到达最大高度4米,已知篮圈离地面3米.(1)建立如图所示的平面直角坐标系,试问此球能否准确投中?(2)若对方队员乙再甲前面1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否拦截成功?xyO3米3米4米4米【难度】★★【例13】跳水运动员在空中运动时,身体的重心所经过的路线是一条抛物线.在某项10米跳台的一个规定动作中,正常情况下运动员在跳台边缘向上跃起,重心上升1米到达最高点,这时跃出水平距离0.4米,然后下落.在距离水面5米处完成规定的翻腾动作,并调整好入水姿势.(1)建立如图所示的坐标系,求出抛物线解析式(图中数值的单位是米)(2)运动员入水时距池边多少米(精确到0.1米)?(3)运动员在空中调整好入水姿势时,与水池边的水平距离是多少米(精确到0.1米)Oxy 3110池边跳台支柱【难度】★★★【例14】利用函数图像,求解不等式2440x x -+>.【难度】★★【例15】一次函数y ax b =+与二次函数2y ax bx =-在同一坐标系中的图像可能是()xyxyx yxyA .B .C .D .【难度】★★【例16】已知关于x 的方程()231230mx m x m --+-=.(1)当m 取何整数值时,关于x 的方程()231230mx m x m --+-=的根都是整数?(2)若抛物线()23123y mx m x m =--+-向左平移一个单位后,过反比例函数k y x=(0k ≠)上的一点(1-,3).①求抛物线()23123y mx m x m =--+-的解析式;②利用函数图像求不等式0kkx x->的解.【难度】★★【例17】如图,已知A 、B 是反比例函数(k >0,x >0)图像上的两点,BC //x 轴,交y 轴与点C ,动点P 从坐标原点O 出发,沿O →A →B →C 匀速运动,终点为C .过P 作PM x ⊥轴,PN y ⊥轴,垂足分别为M 、N .设矩形OMPN 的面积为S ,点P 运动时间为t ,则S 与t 的函数图像大致为()AB C OP NMxyStStStStA .B .C .D .【难度】★★【例18】如图,一小球从斜坡点O 处抛出,球的抛出路线可以用二次函数24y x x =-+的图像来刻画,斜坡可以用一次函数12y x =的图像来刻画.(1)请用配方法求二次函数图像的最高点P 的坐标;(2)小球的落点是A ,求点A 的坐标;(3)连接抛物线的最高点P 与点O 、A 得POA ∆,求POA ∆的面积;(4)在OA 上方的抛物线上存在一点M (点M 与点P 不重合),MOA ∆的面积等于POA ∆的面积,请直接写出点M的坐标.【难度】★★★【例19】在平面直角坐标系xOy 中,抛物线23y ax ax c =-+与x 轴交于A (1-,0)、B 两点(A 点在B 点左侧),与y 轴交于点C (0,2).(1)求抛物线的对称轴及B 点的坐标;(2)求证:CAO BCO ∠=∠;(3)点D 是射线BC 上一点(不与B 、C 重合),联结OD ,过点B 作BE OD ⊥,垂足为BOD ∆外一点E ,若BDE ∆与ABC ∆相似,求点D 的坐标.【难度】★★★【例20】如图,在平面直角坐标系xOy 中,点A (m -,0)和点B (0,2m )(m >0),点C 在x 轴上(不与点A 重合).(1)当BOC ∆与AOB ∆相似时,请直接写出点C 的坐标(用m 表示);(2)当BOC ∆与AOB ∆全等时,二次函数2y x bx c =-++的图像经过A 、B 、C 三点,求m 的值,并求点C 的坐标;(3)P 是(2)的二次函数的图像上一点,90APC ∠=︒,求点P 的坐标及ACP ∠的度数.xy OA B【难度】★★★【例21】如图(a ),抛物线()263y a x =+-与x 轴相交于A 、B 两点,与y 轴相交于点C ,点D 为抛物线的顶点,直线DE x ⊥轴,垂足为E ,23AE DE =.(1)求这个抛物线的解析式;(2)P 为直线DE 上的一点,且PAC ∆是以PC 为斜边的直角三角形,见图(b ),求tan PCA ∠的值;(3)如图(c )所示,M 为抛物线上的一动点,过点M 作直线MN DM ⊥,交直线DE 于点N ,当M 点在抛物线的第二象限的部分上运动时,是否存在使点E 三等分线段DN 的情况?若存在,请求出符合条件的所有的点M 的坐标;若不存在,请说明理由.A BCD EOxyA BCD EO x yA BC D EOxyPNM 图(a )图(b )图(c )【难度】★★★【例22】已知抛物线2y ax bx c =++(0a ≠)的顶点坐标为Q (2,1-),且与y 轴交于点C (0,3),与x 轴交于A 、B 两点(点A 在点B 的右侧),点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动(P 与A 不重合),过点P 作PD //y 轴,交AC 于点D .(1)求该抛物线的函数解析式;(2)当ADP ∆是直角三角形时,求点P 的坐标;(3)在问题(2)的结论下,若点E 在x 轴上,点F 在抛物线上,问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在,求点F 的坐标,若不存在,请说明理由.【难度】★★★【例23】如图所示,在平面直角坐标系中,抛物线2y x bx c =++与x 轴交于A 、B 两点,C 为抛物线上一点,且直线AC 的解析式为2y mx m =+(0m ≠),45CAB ∠=︒,tan 2COB ∠=.(1)求A 、C 的坐标;(2)求直线AC 和抛物线的解析式;(3)在抛物线上是否存在点D ,使得四边形ABCD 为梯形?若存在,请求出点D 的坐标;若不存在,请说明理由.xA BCO y【难度】★★★【例24】已知关于x 的二次函数()22422y x k x k =+-+-的顶点在y 轴的正半轴上.(1)求此抛物线的解析式;(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作AB 垂直于x 轴于点B ,过点A 作x 轴的平行线交抛物线于点D ,再过点D 作DC 垂直于x 轴于点C ,可得到矩形ABCD (B 、C 两点在x 轴上).设矩形ABCD 的周长为l ,点A 的横坐标为m ,试求l 关于m 的函数关系式,并写出m 的取值范围;(3)当点A 在y 轴右侧的抛物线上运动时,矩形ABCD 能否成为正方形,若能,请求出此时正方形的周长;若不能,请说明理由.【难度】★★【例25】如图,在平面直角坐标系中,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点C (0,3-),点P 是直线BC 下方抛物线上的任意一点.(1)求这个二次函数2y x bx c =++的解析式;(2)联结PO 、PC ,并将POC ∆沿y 轴对折,得到四边形'POP C ,如果四边形'POP C 为菱形,求点P 的坐标;(3)如果点P 在运动过程中,能使得以P 、C 、B 为顶点的三角形与AOC ∆相似,请求出此时点P的坐标.图1【难度】★★★【例26】在平面直角坐标系xOy 中,直线243y x m =-+(0)m >与x 轴、y 轴分别交于点A 、B 如图11所示,点C 在线段AB 的延长线上,且2AB BC =.(1)用含字母m 的代数式表示点C 的坐标;(2)抛物线21103y x bx =-++经过点A 、C ,求此抛物线的表达式;(3)在第(2)题的条件下,位于第四象限的抛物线上,是否存在这样的点P :使2PAB OBC S S =△△,如果存在,求出点P 的坐标,如果不存在,试说明理由.图11xyOAB11【难度】★★★【例27】已知抛物线c bx x ++=231y 经过点()4-3,M ,与x 轴相交于点()0,3-A 和点B ,与y 轴相交于点C (1)求这条抛物线的表达式;(2)如果P 是这条抛物线对称轴上一点,BC PC =,求点P 的坐标;(3)在第(2)小题的条件下,当点P 在x 轴上方时,求PCB ∠的正弦值【难度】★★★【例28】已知开口向下的抛物线222y ax ax =-+与y 轴的交点为A ,顶点为B ,对称轴与x 轴的交点为C ,点A 与点D 关于对称轴对称,直线BD 与x 轴交于点M ,直线AB 与直线OD 交于点N .(1)求点D 的坐标;(2)求点M 的坐标(用含a 的代数式表示);(3)当点N 在第一象限,且∠OMB =∠ONA 时,求a 的值.Oxy 123412345-1-2-3-1-2-3(第24题图)【难度】★★★【例29】已知在平面直角坐标系xOy 中,抛物线c bx x y ++=294经过原点,且与x 轴相交于点A ,点A 的横坐标为6,抛物线顶点为点B .(1)求这条抛物线的表达式和顶点B 的坐标;(2)过点O 作AB OP //,在直线OP 上点取一点Q ,使得OBA QAB ∠=∠,求点Q 坐标;(3)将该抛物线向左平移)0(>m m 个单位,所得新抛物线与y 轴负半轴相交于点C 且顶点仍然在第四象限,此时点A 移动到点D 的位置,4:3:=DB CB ,求m 的值.1y1xO【难度】★★★【例30】(其中a c、为常数,且0a<)与x轴交于点A,它的坐标是()3,0-,与y轴交于点B,此抛物线顶点C到x轴的距离为4.(1)求抛物线的表达式;(2)求CAB∠的正切值;(3)如果点P是抛物线上的一点,且ABP CAO∠=∠,试直接写出点P的坐标。

中考复习专题第15讲2二次函数的应用

中考复习专题第15讲2二次函数的应用

第十五讲二次函数的综合题及应用【基础知识回顾】1、二次函数与一元二次方程:二次函数y= ax2+bx+c的图象与x轴的交点的横坐标对应着一元二次方程ax2+bx+c=0的实数根,它们都由根的判别式决定抛物线x轴有个交点<=b2-4ac>0=>一元二次方程有实数根抛物线x轴有个交点<=b2-4ac=0=>一元二次方程有实数根抛物线x轴有个交点<=b2-4ac<0=>一元二次方程有实数根【提醒:若抛物线与x轴有两交点为A(x1,0)B(x2,0)则抛物线对称轴是x= 两交点间距离AB 】2、二次函数解析式的确定:【提醒:求二次函数解析式:如抛物线顶点在原点可设,抛物线以y轴为对称轴,可设,抛物线顶点在x轴上,可设,抛物线过原点,可设】【重点考点例析】考点一:确定二次函数关系式例1如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C 为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).(1)求抛物线的解析式;(2)求直线AC的解析式及B点坐标;(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E点,若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求P点的坐标,若不存在,请说明理由.考点二:二次函数与x轴的交点问题例2 在平面直角坐标系xOy中,抛物线y=x2﹣(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,﹣1),求∠ACB的大小;(3)若m=2,△ABC是等腰三角形,求n的值.考点三:二次函数的实际应用例3实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.考点四:二次函数综合性题目例4如图1,矩形ABCD的边AD在y轴上,抛物线y=x2﹣4x+3经过点A、点B,与x轴交于点E、点F,且其顶点M在CD上.(1)请直接写出下列各点的坐标:A__________,B__________,C__________,D__________;(2)若点P是抛物线上一动点(点P不与点A、点B重合),过点P作y轴的平行线l与直线AB交于点G,与直线BD交于点H,如图2.①当线段PH=2GH时,求点P的坐标;②当点P在直线BD下方时,点K在直线BD上,且满足△KPH∽△AEF,求△KPH面积的最大值.【聚焦中考】1.已知二次函数y=a(x-h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6 B.5 C.4 D.32.已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a-b<0;③4a-2b+c<0;④(a+c)2<b2,其中正确的个数有()A.1 B.2 C.3 D.44如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x 轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.5.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.【备考真题过关】 一、选择题1.如图,是抛物线y=ax 2+bx+c (a≠0)图象的一部分.已知抛物线的对称轴为x=2,与x 轴的一个交点是(-1,0).有下列结论:①abc >0;②4a-2b+c <0;③4a+b=0;④抛物线与x 轴的另一个交点是(5,0);⑤点(-3,y 1),(6,y 2)都在抛物线上,则有y 1<y 2.其中正确的是( )A .①②③B .②④⑤C .①③④D .③④⑤2.抛物线y=2x 2,y=-2x 2,y =12x 2共有的性质是( ) A .开口向下 B .对称轴是y 轴 C .都有最低点 D .y 随x 的增大而减小3.小智将如图两水平线L 1、L 2的其中一条当成x 轴,且向右为正向;两铅直线L 3、L 4的其中一条当成y 轴,且向上为正向,并在此坐标平面上画出二次函数y=ax 2+2ax+1的图形.关于他选择x 、y 轴的叙述,下列何者正确?( ) A .L 1为x 轴,L 3为y 轴 B .L 1为x 轴,L 4为y 轴 C .L 2为x 轴,L 3为y 轴 D .L 2为x 轴,L 4为y 轴4.已知二次函数y=-x 2+2bx+c ,当x >1时,y 的值随x 值的增大而减小,则实数b 的取值范围是( ) A .b≥-1B .b≤-1C .b≥1D .b≤15.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是( ) A .演绎B .数形结合C .抽象D .公理化6.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是( ) A .c >0B .2a+b=0C .b 2-4ac >0D .a-b+c >07.二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a-3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A.2 B.3 C.4 D.58.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A.b2>4ac B.ac>0 C.a-b+c>0 D.4a+2b+c9. “如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x 的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A. m<a<b<n B. a<m<n<b C. a<m<b<n D.m<a<n<b10.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如上表:下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个 B.3个C.2个 D.1个二、填空题1.若关于x的方程x2+2mx+m2+3m-2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为______.2.如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=-2,点C在抛物线上,且位于点A、B之间(C不与A、B重合).若△ABC的周长为a,则四边形AOBC的周长为_______(用含a的式子表示).三、解答题1.某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.2如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.。

(名师整理)最新人教版数学中考《二次函数的综合应用》专题复习精品教案(含配套练习及答案)

(名师整理)最新人教版数学中考《二次函数的综合应用》专题复习精品教案(含配套练习及答案)

中考数学人教版专题复习:二次函数的综合应用一、考点突破1. 了解二次函数的概念和表示方法。

2. 会画二次函数的图象,从图象上直观地认识二次函数的性质,会根据公式确定图象的顶点、开口方向和对称轴、最大(小)值。

3. 能够用函数的观点看一元二次方程,了解求一元二次方程近似解的基本思想方法。

4. 掌握建立二次函数模型的方法,培养解决实际问题的能力。

二、重难点提示重点:二次函数的图象和性质。

难点:二次函数的综合运用。

考点精讲函数 y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)图象xy Ox =-b2axyOx =-b 2a开口 向上 向下对称轴 x =-2b a顶点(-2ba,244ac b a -)增减性 当x <-2ba时,y 随x 的增大而减小, 当x >-2b a时,y 随x 的增大而增大。

当x <-2ba时,y 随x 的增大而增大,当x >-2b a时,y 随x 的增大而减小。

最值当x =-2b a时,y最小=244ac b a-。

当x =-2b a 时,y最大=244ac b a-。

2+k的图象。

平移规律是:(1)把抛物线y =ax 2向右(h >0)或向左(h <0)平移︱h ︱个单位,得到y =a (x -h )2的图象;(2)再把抛物线y =a (x -h )2向上(k >0)或向下(k <0)平移︱k ︱个单位,便得到y =a (x -h )2+k 的图象。

【难点剖析】二次函数与一元二次方程的关系【重要提示】(1)由抛物线的对称性易求对称轴为直线x =122x x ,且对称轴与x 轴交点恰为两交点间线段的中点。

(2)求两个函数的交点坐标,就是求出两个函数解析式组成的方程组的解。

二、二次函数的应用在利用二次函数的图象和性质解决实际问题时,常常需要根据条件建立二次函数的表达式,在求最大(或最小)值时,可以采取如下的方法:(1)画出函数的图象,观察图象的最高(或最低)点,就可以得到函数的最大(或最小)值。

15中考数学二次函数综合应用

15中考数学二次函数综合应用

精典专题十五 二次函数的综合应用◆【知识目标•考点导航】1、熟悉二次函数图像的顶点坐标公式,对称轴方程;2、通过运用二次函数的性质解决实际问题,提高解决综合问题的能力与技巧;3、存在性探究问题解题思路研究;4、一元二次方程与二次函数的综合运用研究。

◆【典型例题•解题思路剖析】【考点1】---二次函数的图像性质【例1】1、若函数22)1()3(-+-=x x y ,则当=x 时,函数y 的最小值为 。

2、抛物线k kx x y 22-+=通过一个定点,则这个定点的坐标是 。

3、二次函数c bx ax y +-=2的图象过点(1-,0),则b a c a c b c b a +++++的值是( ) A 、-3 B 、3 C 、21 D 、21- 4、抛物线c bx ax y ++=2与x 轴的两个交点为(1-,0),(3,0),其形状与抛物线22x y -=相同,则c bx ax y ++=2的函数关系式为( ) A 、322+--=x x y B 、5422++-=x x yC 、8422++-=x x yD 、6422++-=x x y【例2】已知抛物线2y x bx c =++的图象如图所示,若0<y , 则x 的取值范围是( )A 、41<<-xB 、31<<-xC 、1-<x 或4>xD 、1-<x 或3>x【例3】抛物线c bx x y ++=2与x 轴的正半轴交于A 、B 两点,与y 轴交于C 点,且线段AB 的长为1,ABC ∆的面积为1,则b 的值是 。

◆目标训练1:1、直线2=y x 与双曲线xk y =的图象的一个交点为(2,4),则另一个交点坐标是( ) A 、(2-,4-) B (2-,4) C 、(4-,2-) D (2,4-) 2、二次函数22-+-=a ax x y ,当a 为任意实数时,它的图象( )A 、在x 轴的上方B 、在x 轴的下方C 、与x 轴有两个交点D 、与x 轴只有一个交点3、已知32+-=x y 的图象与2x y =的图象交于A 、B 两点,O 为坐标原点,求:AOB ∆的面积。

二次函数综合应用 知识归纳+真题解析

二次函数综合应用 知识归纳+真题解析

二次函数综合应用 知识归纳+真题解析【知识归纳】一.二次函数与一元二次方程的关系一元二次方程ax 2+bx+c=0(a ≠0)的解的情况等价于抛物线y=ax 2+bx+c(c ≠0)与直线y=0(即x 轴)的公共点的个数。

抛物线y=ax 2+bx+c(a ≠0)与x 轴的公共点有三种情况: 公共点(即有两个交点), 公共点, 公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0),一元二次方程ax 2+bx+c=0有 个不等实根△=b 2-4ac 0。

⇔(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即为顶点(,0)一2b a -⇔元二次方程ax 2+bx+c=0有 实根, 122b x x a==-⇔(3)抛物线y=ax 2+bx+c 与x 轴没有公共点,一元二次方程ax 2+bx+c=0 根△⇔=b 2-4ac 0.二.二次函数的应用.利用二次函数能解决生活实际问题如物体运动规律、销售问题、利润问题、几何图形变化问题等等.【知识归纳答案】一.二次函数与一元二次方程的关系两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0),一元二次方程ax 2+bx+c=0有两个不等实根△=b 2-4ac >0。

⇔(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即为顶点(,0) 一元2b a -⇔二次方程ax 2+bx+c=0有两个相等实根,122b x x a==-⇔240b ac -=(3)抛物线y=ax 2+bx+c 与x 轴没有公共点,一元二次方程ax 2+bx+c=0没有实数根△⇔=b 2-4ac <0.二.二次函数的应用.利用二次函数能解决生活实际问题如物体运动规律、销售问题、利润问题、几何图形变化问题等等.真题解析一.选择题(共5小题)1.设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,( )A.若m>1,则(m﹣1)a+b>0B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m﹣1)a+b>0D.若m<1,则(m﹣1)a+b<0【考点】H4:二次函数图象与系数的关系.【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.【解答】解:由对称轴,得b=﹣2a.(m+1)a+b=ma+a﹣2a=(m﹣1)a,当m>1时,(m﹣1)a<0,(m﹣1)a+b与0无法判断.当m<1时,(m﹣1)a>0,(m﹣1)a+b>0.故选:C.2.如图,是二次函数y=ax2+bx+c的图象,对下列结论①ab>0,②abc>0,③<1,其中错误的个数是( )A.3B.2C.1D.0【考点】H4:二次函数图象与系数的关系.【分析】根据抛物线的开口方向,判断a的符号,对称轴在y轴的右侧判断b 的符号,抛物线和y轴的交点坐标判断c的符号,以及抛物线与x轴的交点个数判断b2﹣4ac的符号.【解答】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴b<0,∴ab<0,故①错误;∵抛物线和y轴的负半轴相交,∴c<0,∴abc>0,故②正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴<1,故③正确;故选C.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是( )A.①②B.②④C.①③D.③④【考点】H4:二次函数图象与系数的关系.【分析】①由抛物线开口向上可得出a>0,结论①正确;②由抛物线与y轴的交点在y轴负半轴可得出c<0,结论②错误;③由抛物线与x轴有两个交点,可得出△=b2﹣4ac>0,结论③正确;④由抛物线的对称轴在y轴右侧,可得出﹣>0,结论④错误.综上即可得出结论.【解答】解:①∵抛物线开口向上,∴a>0,结论①正确;②∵抛物线与y轴的交点在y轴负半轴,∴c<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵抛物线的对称轴在y轴右侧,∴﹣>0,结论④错误.故选C.4.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C,D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E,F,则的值为( )A.B.C.D.【考点】H5:二次函数图象上点的坐标特征.【分析】可以设A、B横坐标为a,易求得点E、F、D的坐标,即可求得OE、CE、AD、BF的长度,即可解题.【解答】解:设点A、B横坐标为a,则点A纵坐标为a2,点B的纵坐标为,∵BE∥x轴,∴点F纵坐标为,∵点F是抛物线y=x2上的点,∴点F横坐标为x==,∵CD∥x轴,∴点D纵坐标为a2,∵点D是抛物线y=上的点,∴点D横坐标为x==2a,∴AD=a,BF=a,CE=a2,OE=a2,∴则==×=,故选D.5.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A.B.C.D.【考点】H6:二次函数图象与几何变换.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A 作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=(x﹣2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+4.故选D.二.填空题(共5小题)6.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{﹣,﹣}= ﹣ ;若min{(x﹣1)2,x2}=1,则x= 2或﹣1 .【考点】H3:二次函数的性质;2A:实数大小比较.【分析】首先理解题意,进而可得min{﹣,﹣ }=﹣,min{(x﹣1)2,x2}=1时再分情况讨论,当x=0.5时,x>0.5时和x<0.5时,进而可得答案.【解答】解:min{﹣,﹣ }=﹣,∵min{(x﹣1)2,x2}=1,当x=0.5时,x2=(x﹣1)2,不可能得出,最小值为1,∴当x>0.5时,(x﹣1)2<x2,则(x﹣1)2=1,x﹣1=±1,x﹣1=1,x﹣1=﹣1,解得:x1=2,x2=0(不合题意,舍去),当x<0.5时,(x﹣1)2>x2,则x2=1,解得:x1=1(不合题意,舍去),x2=﹣1,故答案为:;2或﹣1.7.若抛物线y=ax2+bx+c的开口向下,则a的值可能是 ﹣1 .(写一个即可)【考点】H3:二次函数的性质.【分析】根据二次项系数小于0,二次函数图象开口向下解答.【解答】解:∵抛物线y=ax2+bx+c的开口向下,∴a<0,∴a的值可能是﹣1,故答案为:﹣1.8.已知抛物线:y=ax2+bx+c(a>0)经过A(﹣1,1),B(2,4)两点,顶点坐标为(m,n),有下列结论:①b<1;②c<2;③0<m<;④n≤1.则所有正确结论的序号是 ①②④ .【考点】H4:二次函数图象与系数的关系.【分析】根据点A、B的坐标,利用待定系数法即可求出b=﹣a+1、c=﹣2a+2,结合a>0,可得出b<1、c<2,即结论①②正确;由抛物线顶点的横坐标m=﹣,可得出m=﹣,即m<,结论③不正确;由抛物线y=ax2+bx+c(a>0)经过A(﹣1,1),可得出n≤1,结论④正确.综上即可得出结论.【解答】解:∵抛物线过点A(﹣1,1),B(2,4),∴,∴b=﹣a+1,c=﹣2a+2.∵a>0,∴b<1,c<2,∴结论①②正确;∵抛物线的顶点坐标为(m,n),∴m=﹣=﹣=﹣,∴m<,结论③不正确;∵抛物线y=ax2+bx+c(a>0)经过A(﹣1,1),顶点坐标为(m,n),∴n≤1,结论④正确.综上所述:正确的结论有①②④.故答案为:①②④.9.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是 2≤m≤8 .【考点】H6:二次函数图象与几何变换.【分析】根据向下平移横坐标不变,分别代入B的横坐标和D的横坐标求得对应的函数值,即可求得m的取值范围.【解答】解:设平移后的解析式为y=y=(x+1)2﹣m,将B点坐标代入,得4﹣m=2,解得m=2,将D点坐标代入,得9﹣m=1,解得m=8,y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是2≤m≤8,故答案为:2≤m≤8.10.如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是 ②⑤ .(只填写序号)【考点】HC:二次函数与不等式(组);H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可.【解答】解:由图象可知:a<0,b>0,c>0,故abc<0,故①错误.观察图象可知,抛物线与直线y=3只有一个交点,故方程ax2+bx+c=3有两个相等的实数根,故②正确.根据对称性可知抛物线与x轴的另一个交点是(﹣2,0),故③错误,观察图象可知,当1<x<4时,有y2<y1,故④错误,因为x=1时,y1有最大值,所以ax2+bx+c≤a+b+c,即x(ax+b)≤a+b,故⑤正确,所以②⑤正确,故答案为②⑤.三.解答题(共7小题)11.设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:(1)max{5,2}= 5 ,max{0,3}= 3 ;(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;(3)求函数y=x2﹣2x﹣4与y=﹣x+2的图象的交点坐标,函数y=x2﹣2x﹣4的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,x2﹣2x﹣4}的最小值.【考点】H7:二次函数的最值;F3:一次函数的图象;F5:一次函数的性质;H2:二次函数的图象.【分析】(1)根据max{a,b}表示a、b两数中较大者,即可求出结论;(2)根据max{3x+1,﹣x+1}=﹣x+1,即可得出关于x的一元一次不等式,解之即可得出结论;(3)联立两函数解析式成方程组,解之即可求出交点坐标,画出直线y=﹣x+2的图象,观察图形,即可得出max{﹣x+2,x2﹣2x﹣4}的最小值.【解答】解:(1)max{5,2}=5,max{0,3}=3.故答案为:5;3.(2)∵max{3x+1,﹣x+1}=﹣x+1,∴3x+1≤﹣x+1,解得:x≤0.(3)联立两函数解析式成方程组,,解得:,,∴交点坐标为(﹣2,4)和(3,﹣1).画出直线y=﹣x+2,如图所示,观察函数图象可知:当x=3时,max{﹣x+2,x2﹣2x﹣4}取最小值﹣1.(2)当y=0时(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,y1的图象与x轴的交点是(﹣a,0),(a+1,0),当y2=ax+b经过(﹣a,0)时,﹣a2+b=0,即b=a2;当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=﹣a2﹣a;(3)当P在对称轴的左侧(含顶点)时,y随x的增大而增大,(1,n)与(0,n)关于对称轴对称,由m<n,得0<x0≤;当时P在对称轴的右侧时,y随x的增大而减小,由m<n,得<x0<1,综上所述:m<n,求x0的取值范围0<x0<1.13.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【考点】H4:二次函数图象与系数的关系;H3:二次函数的性质;H5:二次函数图象上点的坐标特征;H8:待定系数法求二次函数解析式;HA:抛物线与x 轴的交点.【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数b、c 的值,进而可得到抛物线的对称轴方程;(2)令x=0,可得C点坐标,将函数解析式配方即得抛物线的顶点C的坐标;(3)设P(x,y)(x>0,y>0),根据题意列出方程即可求得y,即得D点坐标.【解答】解:(1)由点A(﹣1,0)和点B(3,0)得,解得:,∴抛物线的解析式为y=﹣x2+2x+3;(2)令x=0,则y=3,∴C(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(3)设P(x,y)(x>0,y>0),S△COE=×1×3=,S△ABP=×4y=2y,∵S△ABP=4S△COE,∴2y=4×,∴y=3,∴﹣x2+2x+3=3,解得:x1=0(不合题意,舍去),x2=2,∴P(2,3).14.如图,△AOB的顶点A、B分别在x轴,y轴上,∠BAO=45°,且△AOB的面积为8.(1)直接写出A、B两点的坐标;(2)过点A、B的抛物线G与x轴的另一个交点为点C.①若△ABC是以BC为腰的等腰三角形,求此时抛物线的解析式;②将抛物线G向下平移4个单位后,恰好与直线AB只有一个交点N,求点N 的坐标.【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换;KH:等腰三角形的性质.【分析】(1)首先证明OA=OB,利用三角形的面积公式,列出方程即可求出OA、OB,由此即可解决问题;(2)①首先确定A、B、C的坐标,再利用的待定系数法即可解决问题;②抛物线G向下平移4个单位后,经过原点(0,0)和(4,﹣4),设抛物线的解析式为y=mx2+nx,把(4,﹣4)代入得到n=﹣1﹣4m,可得抛物线的解析式为y=mx2+(﹣1﹣4m)2x,由,消去y得到mx2﹣4mx﹣4=0,由题意△=0,可得16m2+16m=0,求出m的值即可解决问题.【解答】解:(1)在Rt△AOB中,∵∠BAO=45°,∴AO=BO,∴•OA•OB=8,∴OA=OB=4,∴A(4,0),B(0,4).(2)①由题意抛物线经过C(﹣4,0),B(0,4),A(4,0),顶点为B(0,4),时抛物线解析式为y=ax2+4,(4,0)代入得到a=﹣,∴抛物线的解析式为y=﹣x2+4.②抛物线G向下平移4个单位后,经过原点(0,0)和(4,﹣4),设抛物线的解析式为y=mx2+nx,把(4,﹣4)代入得到n=﹣1﹣4m,∴抛物线的解析式为y=mx2+(﹣1﹣4m)2x,由,消去y得到mx2﹣4mx﹣4=0,由题意△=0,∴16m2+16m=0,∵m≠0,∴m=﹣1,∴抛物线的解析式为y=﹣x2+3x,由,解得,∴N(2,2).15.已知抛物线C1:y=ax2﹣4ax﹣5(a>0).(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】(1)将a=1代入解析式,即可求得抛物线与x轴交点;(2)①化简抛物线解析式,即可求得两个定点的横坐标,即可解题;②根据抛物线翻折理论即可解题;(3)根据(2)中抛物线C2解析式,分类讨论y=2或﹣2,即可解题;【解答】解:(1)当a=1时,抛物线解析式为y=x2﹣4x﹣5=(x﹣2)2﹣9,∴对称轴为x=2;∴当y=0时,x﹣2=3或﹣3,即x=﹣1或5;∴抛物线与x轴的交点坐标为(﹣1,0)或(5,0);(2)①抛物线C1解析式为:y=ax2﹣4ax﹣5,整理得:y=ax(x﹣4)﹣5;∵当ax(x﹣4)=0时,y恒定为﹣5;∴抛物线C1一定经过两个定点(0,﹣5),(4,﹣5);②这两个点连线为y=﹣5;将抛物线C1沿y=﹣5翻折,得到抛物线C2,开口方向变了,但是对称轴没变;∴抛物线C2解析式为:y=﹣ax2+4ax﹣5,(3)抛物线C2的顶点到x轴的距离为2,则x=2时,y=2或者﹣2;当y=2时,2=﹣4a+8a﹣5,解得,a=;当y=﹣2时,﹣2=﹣4a+8a﹣5,解得,a=;∴a=或;16.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)【考点】HE:二次函数的应用.当50<t≤100时,设y与t的函数解析式为y=k2t+n2,将点(50,25)、代入,得:,解得:,∴y与t的函数解析式为y=﹣t+30;②由题意,当0≤t≤50时,W=20000(t+15)﹣=3600t,∵3600>0,∴当t=50时,W最大值=180000(元);当50<t≤100时,W=(﹣t+30)﹣=﹣10t2+1100t+150000=﹣10(t﹣55)2+180250,∵﹣10<0,∴当t=55时,W最大值=180250(元),综上所述,放养55天时,W最大,最大值为180250元.17.我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间t(t为整数,单位:天)的部分对应值如下表所示,网上商店的日销售量y2(百件)与时间t(t为整数,单位:天)的部分对应值如图所示.0510********时间t(天)025*********日销售量y1(百件)(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;(2)求y2与t的函数关系式,并写出自变量t的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.【考点】HE:二次函数的应用.【分析】(1)根据观察可设y1=at2+bt+c,将(0,0),(5,25),(10,40)代入即可得到结论;(2)当0≤t≤10时,设y2=kt,求得y2与t的函数关系式为:y2=4t,当10≤t ≤30时,设y2=mt+n,将(10,40),(30,60)代入得到y2与t的函数关系式为:y2=k+30,(3)依题意得y=y1+y2,当0≤t≤10时,得到y最大=80;当10<t≤30时,得到y最大=91.2,于是得到结论.【解答】解(1)根据观察可设y1=at2+bt+c,将(0,0),(5,25),(10,40)代入得:,解得,∴y1与t的函数关系式为:y1=﹣t2+6t(0≤t≤30,且为整数);(2)当0≤t≤10时,设y2=kt,∵(10,40)在其图象上,∴10k=40,∴k=4,∴y2与t的函数关系式为:y2=4t,当10≤t≤30时,设y2=mt+n,将(10,40),(30,60)代入得,解得,∴y2与t的函数关系式为:y2=k+30,综上所述,y2=;(3)依题意得y=y1+y2,当0≤t≤10时,y=﹣t2+6t+4t=﹣t2+10t=﹣(t﹣25)2+125,∴t=10时,y最大=80;当10<t≤30时,y=﹣t2+6t+t+30=﹣t2+7t+30=﹣(t﹣)2+,∵t为整数,∴t=17或18时,y最大=91.2,∵91.2>80,∴当t=17或18时,y最大=91.2(百件).。

2020年中考专题复习 第15讲 二次函数的综合与应用

2020年中考专题复习 第15讲  二次函数的综合与应用

为x m,面积为y m2.求y与x的函数关系式及花圃的最大面积.
解:∵AB=x m,∴BC=(30-3x) m,
∴y=x(30-3x),即y=-3x2+30x=-3(x-5)2+75,
20
∵0<30-3x≤10,∴3 ≤x<10,
∵当x>5时,y随m时面积最大,最大面积为
练习4 小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现, 每月销售量y(件)与销售单价x(元)之间的关系满足一次函数y=-10x+500, 在销售过程中,销售单价不低于成本价,而每件的利润不高于成本价的
60%. (1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之 间的函数关系式,并确定自变量x的取值范围; (2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多 少?
位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在AB、AC的
边上,当矩形DEFG的面积最大时,这个矩形的长与宽各是多少米?最大
面积为多少? 解:设DG的长为x,矩形DEFG面积为y,
∵矩形DEFG的边EF在△ABC的边BC上,
∴DG∥BC,∴△ADG∽△ABC,
∵AH⊥BC,∴AP⊥DG, ∴ AP DG,
每每问题——售价变化引起销量变化
1. 注意自变量x代表销售单价还是代表上涨(下降)的量; 2. 根据题意找函数关系“总利润=(售价-成本)×销售量”,列出函数关系 式; 3. 通过配方将函数关系式化为顶点式,再根据函数增减性求得最大值; 4. 若自变量x代表上涨(下降)的量,则根据顶点式可求得x的最大值,最后 在确定销售单价时注意找准基础量.
∴当矩形的长DG为50米,宽DE为40米时,矩形DEFG的面积最大为

中考数学专题复习二次函数综合应用

中考数学专题复习二次函数综合应用

第十五讲二次函数的综合题及应用【重点考点例析】考点一:确定二次函数关系式例1 (2015•牡丹江)如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,-3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.对应训练1.(2015•湖州)已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.考点二:二次函数与x轴的交点问题例2 (2015•苏州)已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是()A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3对应训练2.(2013•株洲)二次函数y=2x2+mx+8的图象如图所示,则m的值是()A.-8 B.8C.±8 D.6考点三:二次函数的实际应用例3 (2015•营口)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?对应训练3.(2015•武汉)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):温度x/℃…-4 -2 0 2 4 4.5 …植物每天高度增长量…41 49 49 41 25 19.75 …y/mm由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.考点四:二次函数综合性题目例4 (2015•自贡)如图,已知抛物线y=ax2+bx-2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=1.2(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.对应训练4.(2015•张家界)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P 点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.2016中考名题赏析1.(2016湖北襄阳,10,3分)一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A.B.C.D.2(2016山东省聊城市,3分)二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=的图象可能是()A.B.C.D.3(2016·湖北鄂州)(本题满分10分)某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲。

江苏省昆山市中考数学专题复习15《二次函数综合应用》

江苏省昆山市中考数学专题复习15《二次函数综合应用》

2017年中考数学专题练习15《二次函数综合应用》【知识归纳】一.二次函数与一元二次方程的关系一元二次方程ax 2+bx+c=0(a ≠0)的解的情况等价于抛物线y=ax 2+bx+c(c ≠0)与直线y=0(即x 轴)的公共点的个数。

抛物线y=ax 2+bx+c(a ≠0)与x 轴的公共点有三种情况: 公共点(即有两个交点), 公共点, 公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0),一元二次方程ax 2+bx+c=0有 个不等实根⇔△=b 2-4ac 0。

(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即为顶点(2ba-,0)⇔一元二次方程ax 2+bx+c=0有 实根,122bx x a==-⇔ (3)抛物线y=ax 2+bx+c 与x 轴没有公共点,一元二次方程ax 2+bx+c=0 根⇔△=b 2-4ac 0.二.二次函数的应用.利用二次函数能解决生活实际问题如物体运动规律、销售问题、利润问题、几何图形变化问题等等. 【基础检测】1.(2016·湖北荆州·3分)若函数y=(a ﹣1)x 2﹣4x+2a 的图象与x 轴有且只有一个交点,则a 的值为 .2.(2016广西南宁3分)二次函数y=ax 2+bx+c (a≠0)和正比例函数y=x 的图象如图所示,则方程ax 2+(b ﹣)x+c=0(a≠0)的两根之和( )A .大于0B .等于0C .小于0D .不能确定3.(2016·四川内江)(12分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图14所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.4.(2016·四川南充)如图,抛物线与x轴交于点A(﹣5,0)和点B(3,0).与y轴交于点C(0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和Q,交直线AC于点M和N.交x轴于点E和F.(1)求抛物线的解析式;(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF=,求点Q的坐标;(3)在矩形的平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M 的坐标.18m 苗圃园图14【达标检测】一、选择题1.(2016广西南宁3分)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定2.(2016·黑龙江齐齐哈尔·3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个3.(2016贵州毕节3分)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.4. (2014滨州市)如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x 的函数,函数关系式是()A.y=x+1 B.y=x-1 C.y=x2-x+1 D.y=x2-x-15.(2016广西南宁3分)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定二、填空题6.(2015•温州第15题5分)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为m2.7. (2015年浙江衢州16,4分)如图,已知直线334y x =-+分别交x 轴、y 轴于点A 、B ,P 是抛物线21252y x x =-++上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ BQ =时,a 的值是 .8.(2015•营口,第16题3分)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为 元时,该服装店平均每天的销售利润最大.9.(2015•营口,第18题3分)如图,边长为n 的正方形OABC 的边OA 、OC 分别在x 轴和y 轴的正半轴上,A 1、A 2、A 3、…、A n ﹣1为OA 的n 等分点,B 1、B 2、B 3、…B n ﹣1为CB 的n 等分点,连接A 1B 1、A 2B 2、A 3B 3、…、A n ﹣1B n ﹣1,分别交y=x 2(x≥0)于点C 1、C 2、C 3、…、C n ﹣1,当B 25C 25=8C 25A 25时,则n= 5.三、解答题10. (2016·四川泸州)如图,在平面直角坐标系中,点O 为坐标原点,直线l 与抛物线y=mx 2+nx 相交于A (1,3),B (4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D ,使得△ABD 是以线段AB 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△B C N、S△P M N满足S△B C N=2S△P M N,求出的值,并求出此时点M的坐标.11.(2016·辽宁丹东·12分)如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【知识归纳答案】一.二次函数与一元二次方程的关系两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0),一元二次方程ax 2+bx+c=0有两个不等实根⇔△=b 2-4ac >0。

九年级数学中考专题复习15第三章二次函数的综合应用(2)PPT课件(人教版)

九年级数学中考专题复习15第三章二次函数的综合应用(2)PPT课件(人教版)

③当QB=QC时,m2+4=m2-4m+5,
解得m5=
1 4

∴点Q5的坐标为(-1,
1 4
).
综上所述,抛物线的对称轴上存在动点Q,使得△BCQ为等腰三角形,点Q
的坐标为(-1,-1),(-1,1),(-1,0),(-1,1 ). 4
如图,在平面直角坐标系中,二次函数y=- x2- x+2的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.
特殊三角形存在性问题
如图,在平面直角坐标系中,二次函数y=- 2 x2- 4 x+2的图象与
3
3
x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.
(1)如图,在平面直角坐标系中,是否存在点Q,使
△BCQ是以BC为腰的等腰直角三角形?若存在,求
出点Q的坐标;若不存在,请说明理由.
解:(1)存在.
∴△Q1CD≌△CBO, ∴Q1D=OC=2,CD=OB=1, ∴OD=OC+CD=3,
∴Q1(2,3). 同理求得Q2(3,1),Q3(-1,-1),Q4(-2,1), ∴ 存 在 点 Q , 使 △ BCQ 是 以 BC 为 腰 的 等 腰 直 角 三 角 形 , Q 点 坐 标 为 Q1(2 , 3),Q2(3,1),Q3(-1,-1),Q4(-2,1).
则(-1-0)2+(y-2)2+(-1+3)2+(y-0)2=13,
解得y1= 3 +1,y2=1- 3 , ∴点Q3(-1, 3 +1),Q4(-1,1- 3 ). 综上所述,所求点Q的坐标为(-1,-3),(-1,7
2
(-1,1- 3 ).
),(-1, 3
+1),
【方法点拨】探究特殊三角形存在性问题的方法 首先假设存在满足条件的点,然后设出点坐标. 1.代数法: (1)利用点坐标分别表示出三条线段长的平方; (2)若为等腰三角形且底边不确定,分别令两两相等列方程求解即可;若 为直角三角形且直角顶点不确定,分别令三条边为斜边,利用勾股定理列 方程求解即可;

人教版九年级数学-中考复习总结-二次函数综合运用

人教版九年级数学-中考复习总结-二次函数综合运用

二次函数一、知识要点1.用待定系数法是确定二次函数解析式的常用方法:(1)一般式:所给条件是图像上任意三点(或任意三对x ,y 的值)时,可设解析式为 ,将已知条件代入,组成三元一次方程组来求解。

(2)顶点式:所给条件中已知顶点坐标或对称轴或最大(小)值时,可设解析式为 ,将已知条件代入,求出待定系数。

(3)交点式:所给条件中已知抛物线与x •轴两交点坐标12(,0),(,0)x x ,可设解析式为 ,将已知条件代入求出a 值,再将解析式化为一般形式。

2. 能根据题中函数图象所提供的信息构建二次函数模型解决一类与函数有关的应用性问题;3.应用数形结合思想来解决有关的二次函数与其他函数、方程、圆等几何图形的综合性问题是中考压轴题的重要内容。

二、知识运用典型例题例1、求满足下列条件的二次函数的解析式(1)图象经过A(﹣1,3).B(1,3).C(2,6);(2)图象经过A(﹣1,0)、B(3,0),函数有最小值﹣8;(3)图象顶点坐标是(﹣1,9),与x 轴两交点间的距离是6。

例2.(滨州)某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?(3)请画出上述函数的大致图象.例3、(2013•株洲)已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D 四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).(1)求抛物线C1的解析式的一般形式;(2)当m=2时,求h的值;(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=.三、知识运用课堂训练1.(株洲)已知二次函数()()221y x a a =-+-(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.右图分别是当1a =-,0a =,1a =,2a =时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是2. (长沙)已知:二次函数22y ax bx =+-的图象经过点(1,0),一次函数图象经过原点和点(1,-b ),其中0a b >>且a 、b 为实数.(1)求一次函数的表达式(用含b 的式子表示);(2)试说明:这两个函数的图象交于不同的两点;(3)设(2)中的两个交点的横坐标分别为x 1、x 2,求| x 1-x 2 |的范围.3. (2013•郴州)如图,△ABC 中,AB=BC ,AC=8,tanA=k ,P 为AC 边上一动点,设PC=x ,作PE ∥AB 交BC 于E ,PF ∥BC 交AB 于F .(1)证明:△PCE 是等腰三角形;(2)EM 、FN 、BH 分别是△PEC 、△AFP 、△ABC 的高,用含x 和k 的代数式表示EM 、FN ,并探究EM 、FN 、BH 之间的数量关系;(3)当k=4时,求四边形PEBF 的面积S 与x 的函数关系式.x 为何值时,S 有最大值?并求出S 的最大值.4. (2013•衡阳)如图,已知抛物线经过A (1,0),B (0,3)两点,对称轴是x=﹣1.(1)求抛物线对应的函数关系式;(2)动点Q 从点O 出发,以每秒1个单位长度的速度在线段OA 上运动,同时动点M 从M 从O 点出发以每秒3个单位长度的速度在线段OB 上运动,过点Q 作x 轴的垂线交线段AB 于点N ,交抛物线于点P ,设运动的时间为t 秒.①当t 为何值时,四边形OMPQ 为矩形;②△AON 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.课后训练(南京)已知二次函数2y x bx c =++中,函数y 与自变量x 的部分对应值如下表:(1(2)当x 为何值时,y 有最小值,最小值是多少?(3)若1()A m y ,,2(1)B m y +,两点都在该函数的图象上,试比较1y 与2y 的大小.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年中考数学专题练习15《二次函数综合应用》【知识归纳】一.二次函数与一元二次方程的关系一元二次方程ax 2+bx+c=0(a ≠0)的解的情况等价于抛物线y=ax 2+bx+c(c ≠0)与直线y=0(即x 轴)的公共点的个数。

抛物线y=ax 2+bx+c(a ≠0)与x 轴的公共点有三种情况: 公共点(即有两个交点), 公共点, 公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0),一元二次方程ax 2+bx+c=0有 个不等实根⇔△=b 2-4ac 0。

(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即为顶点(2ba-,0)⇔一元二次方程ax 2+bx+c=0有 实根,122bx x a==-⇔ (3)抛物线y=ax 2+bx+c 与x 轴没有公共点,一元二次方程ax 2+bx+c=0 根⇔△=b 2-4ac 0.二.二次函数的应用.利用二次函数能解决生活实际问题如物体运动规律、销售问题、利润问题、几何图形变化问题等等. 【基础检测】1.(2016·湖北荆州·3分)若函数y=(a ﹣1)x 2﹣4x+2a 的图象与x 轴有且只有一个交点,则a 的值为 .2.(2016广西南宁3分)二次函数y=ax 2+bx+c (a≠0)和正比例函数y=x 的图象如图所示,则方程ax 2+(b ﹣)x+c=0(a≠0)的两根之和( )A .大于0B .等于0C .小于0D .不能确定3.(2016·四川内江)(12分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图14所示),设这个苗圃园垂直于墙的一边长为x 米.(1)若苗圃园的面积为72平方米,求x ;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x 的取值范围.4.(2016·四川南充)如图,抛物线与x 轴交于点A (﹣5,0)和点B (3,0).与y 轴交于点C (0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x 轴方向平移,与y 轴平行的一组对边交抛物线于点P 和Q ,交直线AC 于点M 和N .交x 轴于点E 和F .(1)求抛物线的解析式;(2)当点M 和N 都在线段AC 上时,连接MF ,如果sin∠AMF=,求点Q 的坐标;(3)在矩形的平移过程中,当以点P ,Q ,M ,N 为顶点的四边形是平行四边形时,求点M 的坐标.图14【达标检测】一、选择题1.(2016广西南宁3分)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定2.(2016·黑龙江齐齐哈尔·3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个3.(2016贵州毕节3分)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.4. (2014滨州市)如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x 的函数,函数关系式是()A.y=x+1 B.y=x-1 C.y=x2-x+1 D.y=x2-x-15.(2016广西南宁3分)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定二、填空题6.(2015•温州第15题5分)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为m2.7. (2015年浙江衢州16,4分)如图,已知直线334y x =-+分别交x 轴、y 轴于点A 、B ,P 是抛物线21252y x x =-++上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ BQ =时,a 的值是 .8.(2015•营口,第16题3分)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为 元时,该服装店平均每天的销售利润最大.9.(2015•营口,第18题3分)如图,边长为n 的正方形OABC 的边OA 、OC 分别在x 轴和y 轴的正半轴上,A 1、A 2、A 3、…、A n ﹣1为OA 的n 等分点,B 1、B 2、B 3、…B n ﹣1为CB 的n 等分点,连接A 1B 1、A 2B 2、A 3B 3、…、A n ﹣1B n ﹣1,分别交y=x 2(x≥0)于点C 1、C 2、C 3、…、C n ﹣1,当B 25C 25=8C 25A 25时,则n= 5.三、解答题10. (2016·四川泸州)如图,在平面直角坐标系中,点O 为坐标原点,直线l 与抛物线y=mx 2+nx 相交于A (1,3),B (4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D ,使得△ABD 是以线段AB 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△B C N、S△P M N满足S△B C N=2S△P M N,求出的值,并求出此时点M的坐标.11.(2016·辽宁丹东·12分)如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【知识归纳答案】一.二次函数与一元二次方程的关系两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0),一元二次方程ax 2+bx+c=0有两个不等实根⇔△=b 2-4ac >0。

(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即为顶点(2ba-,0) ⇔一元二次方程ax 2+bx+c=0有两个相等实根,122bx x a==-⇔240b ac -= (3)抛物线y=ax 2+bx+c 与x 轴没有公共点,一元二次方程ax 2+bx+c=0没有实数根⇔△=b 2-4ac <0.二.二次函数的应用.利用二次函数能解决生活实际问题如物体运动规律、销售问题、利润问题、几何图形变化问题等等. 【基础检测答案】1.(2016·湖北荆州·3分)若函数y=(a ﹣1)x 2﹣4x+2a 的图象与x 轴有且只有一个交点,则a 的值为 ﹣1或2或1 .【分析】直接利用抛物线与x 轴相交,b 2﹣4ac=0,进而解方程得出答案. 【解答】解:∵函数y=(a ﹣1)x 2﹣4x+2a 的图象与x 轴有且只有一个交点, 当函数为二次函数时,b 2﹣4ac=16﹣4(a ﹣1)×2a=0, 解得:a 1=﹣1,a 2=2,当函数为一次函数时,a ﹣1=0,解得:a=1. 故答案为:﹣1或2或1.【点评】此题主要考查了抛物线与x 轴的交点,正确得出关于a 的方程是解题关键. 2.(2016广西南宁3分)二次函数y=ax 2+bx+c (a≠0)和正比例函数y=x 的图象如图所示,则方程ax 2+(b ﹣)x+c=0(a≠0)的两根之和( )A .大于0B .等于0C .小于0D .不能确定 【考点】抛物线与x 轴的交点.【分析】设ax 2+bx+c=0(a≠0)的两根为x 1,x 2,由二次函数的图象可知x1+x2>0,a >0,设方程ax 2+(b﹣)x+c=0(a≠0)的两根为a ,b 再根据根与系数的关系即可得出结论. 【解答】解:设ax 2+bx+c=0(a≠0)的两根为x 1,x 2, ∵由二次函数的图象可知x 1+x 2>0,a >0,∴﹣>0.设方程ax 2+(b﹣)x+c=0(a≠0)的两根为a ,b ,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0. 故选C .【点评】本题考查的是抛物线与x 轴的交点,熟知抛物线与x 轴的交点与一元二次方程根的关系是解答此题的关键.3.(2016·四川内江)(12分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图14所示),设这个苗圃园垂直于墙的一边长为x 米.(1)若苗圃园的面积为72平方米,求x ;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x 的取值范围.[考点]应用题,一元二次方程,二次函数。

解:(1)苗圃园与墙平行的一边长为(30-2x )米.依题意可列方程x (30-2x )=72,即x 2-15x +36=0.图14解得x1=3,x2=12.(2)依题意,得8≤30-2x≤18.解得6≤x≤11.面积S=x(30-2x)=-2(x-152)2+2252(6≤x≤11).①当x=152时,S有最大值,S最大=2252;②当x=11时,S有最小值,S最小=11×(30-22)=88.(3)令x(30-2x)=100,得x2-15x+50=0.解得x1=5,x2=10∴x的取值范围是5≤x≤10.4.(2016·四川南充)如图,抛物线与x轴交于点A(﹣5,0)和点B(3,0).与y轴交于点C(0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和Q,交直线AC于点M和N.交x轴于点E和F.(1)求抛物线的解析式;(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF=,求点Q的坐标;(3)在矩形的平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M 的坐标.【分析】(1)设抛物线为y=a(x+5)(x﹣3),把点(0,5)代入即可解决问题.(2)作FG⊥AC于G,设点F坐标(m,0),根据sin∠AMF==,列出方程即可解决问题.(3)①当MN是对角线时,设点F(m,0),由QN=PM,列出方程即可解决问题.②当MN为边时,MN=PQ=,设点Q(m,﹣ m2﹣m+5)则点P(m+1,﹣ m2﹣m+6),代入抛物线解析式,解方程即可.【解答】解:(1)∵抛物线与x轴交于点A(﹣5,0),B(3,0),∴可以假设抛物线为y=a(x+5)(x﹣3),把点(0,5)代入得到a=﹣,∴抛物线的解析式为y=﹣x2﹣x+5.(2)作FG⊥AC于G,设点F坐标(m,0),则AF=m+5,AE=EM=m+6,FG=(m+5),FM==,∵sin∠AMF=,∴=,∴=,整理得到2m2+19m+44=0,∴(m+4)(2m+11)=0,∴m=﹣4或﹣5.5(舍弃),∴点Q坐标(﹣4,).(3)①当MN是对角线时,设点F(m,0).∵直线AC解析式为y=x+5,∴点N(m,m+5),点M(m+1,m+6),∵QN=PM,∴﹣m2﹣m+5﹣m﹣5=m+6﹣[﹣(m+1)2﹣(m+1)+5],解得m=﹣3±,∴点M坐标(﹣2+,3+)或(﹣2﹣,3﹣).②当MN为边时,MN=PQ=,设点Q(m,﹣ m2﹣m+5)则点P(m+1,﹣ m2﹣m+6),∴﹣m2﹣m+6=﹣(m+1)2﹣(m+1)+5,解得m=﹣3.∴点M坐标(﹣2,3),综上所述以点P,Q,M,N为顶点的四边形是平行四边形时,点M的坐标为(﹣2,3)或(﹣2+,3+)或(﹣2﹣,3﹣).【点评】本题考查二次函数综合题、三角函数、勾股定理等知识,解题的关键是学会待定系数法确定函数解析式,学会分类讨论,用方程的思想解决问题,属于中考压轴题【达标检测答案】一、选择题1.(2016广西南宁3分)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.2.(2016·黑龙江齐齐哈尔·3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个【考点】二次函数图象与系数的关系.【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为负数可得到3a+c<0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y<0,即a﹣b+c<0,∴a+2a+c<0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选B.3.(2016贵州毕节3分)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx+c 的图象相比较看是否一致.【解答】解:A、由抛物线可知,a<0,由直线可知,故本选项错误;B、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;C、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0故本选项错误.故选C.4. (2014滨州市)如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x的函数,函数关系式是()A.y=x+1 B.y=x-1 C.y=x2-x+1 D.y=x2-x-1【答案】C【解析】∵∠BAE和∠EFC都是∠AEB的余角.∴∠BAE=∠FEC.∴△ABE∽△ECF,那么AB:EC=BE:CF,∵AB=1,BE=x,EC=1-x,CF=1-y.∴AB•CF=EC•BE,即1×(1-y)=(1-x)x.化简得:y=x2-x+1.故选C.5.(2016广西南宁3分)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.二、填空题6.(2015•温州第15题5分)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为75 m2.考点:二次函数的应用..分析:设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,表示出总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75即可求得面积的最值.解答:解:设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故饲养室的最大面积为75平方米,故答案为:75.点评:本题考查了二次函数的应用,解题的关键是从实际问题中抽象出函数模型,难度不大.7. (2015年浙江衢州16,4分)如图,已知直线334y x =-+分别交x 轴、y 轴于点A 、B ,P 是抛物线21252y x x =-++上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ BQ =时,a 的值是 ▲ .【答案】4或1-或4+4-【考点】二次函数与一次函数综合问题;单动点问题,曲线上点的坐标与方程的关系;勾股定理;分类思想和方程思想的应用. 【分析】根据题意,设点P 的坐标为21,252a a a ⎛⎫-++ ⎪⎝⎭ ,则Q 3,34a a ⎛⎫-+ ⎪⎝⎭.在334y x =-+令0x =得3y =.∴()0,3B . ∵PQ BQ =∴21325324a a a ⎛⎫-++--+= ⎪⎝⎭221185a a a -++=.由221185a a a -++=解得4a =或1a =-.由221185a a a -++=-解得4a =+4a =-综上所述,a 的值是4或1-或4+4-8.(2015•营口,第16题3分)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为 22 元时,该服装店平均每天的销售利润最大.【解析】二次函数的应用.根据“利润=(售价﹣成本)×销售量”列出每天的销售利润y (元)与销售单价x(元)之间的函数关系式;把二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.【解答】解:设定价为x元,根据题意得:y=(x﹣15)[8+2(25﹣x)]=﹣2x2+88x﹣870∴y=﹣2x2+88x﹣870,=﹣2(x﹣22)2+98∵a=﹣2<0,∴抛物线开口向下,∴当x=22时,y最大值=98.故答案为:22.【点评】此题题考查二次函数的实际应用,为数学建模题,借助二次函数解决实际问题,解决本题的关键是二次函数图象的性质.9.(2015•营口,第18题3分)如图,边长为n的正方形OABC的边OA、OC分别在x轴和y 轴的正半轴上,A1、A2、A3、…、A n﹣1为OA的n等分点,B1、B2、B3、…B n﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、…、A n﹣1B n﹣1,分别交y=x2(x≥0)于点C1、C2、C3、…、C n﹣1,当B25C25=8C25A25时,则n= 5.【解析】正方形的性质;二次函数图象上点的坐标特征.据题意表示出OA25,B25A25的长,由B25C25=8C25A25确定点C25的坐标,代入解析式计算得到答案.【解答】解:∵正方形OABC的边长为n,点A1,A2,…,A n﹣1为OA的n等分点,点B1,B2,…,B n﹣1为CB的n等分点,∴OA25=,A25B25=n,∵B25C25=8C25A25,∴C25(,),∵点C25在y=x2(x≥0)上,∴=×()2,解得n=5.故答案为:5.【点评】本题考查的是二次函数图象上点的特征和正方形的性质,根据正方形的性质表示出点C25的坐标是解题的关键.三、解答题10. (2016·四川泸州)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△B C N、S△P M N满足S△B C N=2S△P M N,求出的值,并求出此时点M的坐标.【考点】二次函数综合题.【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)分D在x轴上和y轴上,当D在x轴上时,过A作AD⊥x轴,垂足D即为所求;当D点在y轴上时,设出D点坐标为(0,d),可分别表示出AD、BD,再利用勾股定理可得到关于d的方程,可求得d的值,从而可求得满足条件的D点坐标;(3)过P作PF⊥CM于点F,利用Rt△ADO∽Rt△MFP以及三角函数,可用PF 分别表示出MF和NF,从而可表示出MN,设BC=a,则可用a表示出CN,再利用S△B C N=2S△P M N,可用PF表示出a的值,从而可用PF表示出CN,可求得的值;借助a可表示出M点的坐标,代入抛物线解析式可求得a的值,从而可求出M点的坐标.【解答】解:(1)∵A(1,3),B(4,0)在抛物线y=mx2+nx的图象上,∴,解得,∴抛物线解析式为y=﹣x2+4x;(2)存在三个点满足题意,理由如下:当点D在x轴上时,如图1,过点A作AD⊥x轴于点D,∵A(1,3),∴D坐标为(1,0);当点D在y轴上时,设D(0,d),则AD2=1+(3﹣d)2,BD2=42+d2,且AB2=(4﹣1)2+(3)2=36,∵△ABD是以AB为斜边的直角三角形,∴AD2+BD2=AB2,即1+(3﹣d)2+42+d2=36,解得d=,∴D点坐标为(0,)或(0,);综上可知存在满足条件的D点,其坐标为(1,0)或(0,)或(0,);(3)如图2,过P作PF⊥CM于点F,∵PM∥OA,∴Rt△ADO∽Rt△MFP,∴==3,∴MF=3PF,在Rt△ABD中,BD=3,AD=3,∴tan∠ABD=,∴∠ABD=60°,设BC=a,则CN=a,在Rt△PFN中,∠PNF=∠BNC=30°,∴tan∠PNF==,∴FN=PF,∴MN=MF+FN=4PF,∵S△B C N=2S△P M N,∴a2=2××4PF2,∴a=2PF,∴NC=a=2PF,∴==,∴MN=NC=×a=a,∴MC=MN+NC=(+)a,∴M点坐标为(4﹣a,(+)a),又M点在抛物线上,代入可得﹣(4﹣a)2+4(4﹣a)=(+)a,解得a=3﹣或a=0(舍去),OC=4﹣a=+1,MC=2+,∴点M的坐标为(+1,2+).11.(2016·辽宁丹东·12分)如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【考点】二次函数综合题.【分析】(1)利用待定系数法求二次函数的表达式;(2)根据二次函数的对称轴x=2写出点C的坐标为(3,3),根据面积公式求△ABC的面积;(3)因为点P是抛物线上一动点,且位于第四象限,设出点P的坐标(m,﹣m2+4m),利用差表示△ABP的面积,列式计算求出m的值,写出点P的坐标;(4)分别以点C、M、N为直角顶点分三类进行讨论,利用全等三角形和勾股定理求CM或CN的长,利用面积公式进行计算.【解答】解:(1)把点A(4,0),B(1,3)代入抛物线y=ax2+bx中,得解得:,∴抛物线表达式为:y=﹣x2+4x;(2)点C的坐标为(3,3),又∵点B的坐标为(1,3),∴BC=2,∴S△ABC=×2×3=3;(3)过P点作PD⊥BH交BH于点D,设点P(m,﹣m2+4m),根据题意,得:BH=AH=3,HD=m2﹣4m,PD=m﹣1,∴S△ABP=S△ABH+S四边形HAPD﹣S△BPD,6=×3×3+(3+m﹣1)(m2﹣4m)﹣(m﹣1)(3+m2﹣4m),∴3m2﹣15m=0,m1=0(舍去),m2=5,∴点P坐标为(5,﹣5).(4)以点C、M、N为顶点的三角形为等腰直角三角形时,分三类情况讨论:①以点M为直角顶点且M在x轴上方时,如图2,CM=MN,∠CMN=90°,则△CBM≌△MHN,∴BC=MH=2,BM=HN=3﹣2=1,∴M(1,2),N(2,0),由勾股定理得:MC==,∴S△CMN=××=;②以点M为直角顶点且M在x轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:Rt△NEM和Rt△MDC,得Rt△NEM≌Rt△MDC,∴EM=CD=5,MD=ME=2,由勾股定理得:CM==,∴S△CMN=××=;③以点N为直角顶点且N在y轴左侧时,如图4,CN=MN,∠MNC=90°,作辅助线,同理得:CN==,∴S△CMN=××=17;④以点N为直角顶点且N在y轴右侧时,作辅助线,如图5,同理得:CN==,∴S△CMN=××=5;⑤以C为直角顶点时,不能构成满足条件的等腰直角三角形;综上所述:△CMN的面积为:或或17或5.。

相关文档
最新文档