高二数学下学期复习题

合集下载

高中高二数学下学期期末复习试卷(含解析)-人教版高二全册数学试题

高中高二数学下学期期末复习试卷(含解析)-人教版高二全册数学试题

2014-2015学年某某省某某市东海县石榴高中高二(下)期末数学复习试卷一、填空题:1.已知集合P={﹣4,﹣2,0,2,4},Q={x|﹣1<x<3},则P∩Q=.2.若复数z1=3+4i,z2=1+2i(i是虚数单位),则z1﹣z2=.3.命题:∀x∈R,sinx<2的否定是.4.复数z=(1+3i)i(i是虚数单位),则z的实部是.5.已知函数y=f(x),x∈[0,2π]的导函数y=f′(x)的图象,如图所示,则y=f(x)的单调增区间为.6.已知则满足的x值为.7.函数在[2,4]上是增函数的充要条件是m的取值X围为.8.已知函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,则实数a的取值X 围是.9.设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为35,则a+b的最小值为.10.曲线在点(4,e2)处的切线与坐标轴所围三角形的面积为.11.在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.12.已知实数a,b,c满足a+b+c=9,ab+bc+ca=24,则b的取值X围是.13.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是.14.观察下面的数阵,第20行第20个数是.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25…二、解答题(共6小题,满分0分)15.给定两个命题:p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2﹣x+a=0有实数根,如果p和q中至少有一个为真命题,某某数a的取值X围.16.已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2.17.已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,求:(Ⅰ)x0的值;(Ⅱ)a,b,c的值.18.因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放a(1≤a≤4,且a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a•f(x),其中f(x)=.若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值(精确到0.1,参考数据:取1.4).19.试比较n n+1与(n+1)n(n∈N*)的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论.20.对于定义在区间D上的函数f(x)和g(x),如果对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,那么称函数f(x)在区间D上可被函数g(x)替代.(1)若,试判断在区间[[1,e]]上f(x)能否被g(x)替代?(2)记f(x)=x,g(x)=lnx,证明f(x)在上不能被g(x)替代;(3)设,若f(x)在区间[1,e]上能被g(x)替代,某某数a的X围.2014-2015学年某某省某某市东海县石榴高中高二(下)期末数学复习试卷参考答案与试题解析一、填空题:1.已知集合P={﹣4,﹣2,0,2,4},Q={x|﹣1<x<3},则P∩Q={0,2} .考点:交集及其运算.专题:计算题.分析:通过理解集合的表示法化简集合P和集合Q,两集合的交集是集合P和Q中的共同的数.解答:解:∵P={﹣4,﹣2,0,2,4},Q={x|﹣1<x<3},∴P∩Q={0,2}故答案为:{0,2}点评:本题考查集合的表示法、集合交集的求法.2.若复数z1=3+4i,z2=1+2i(i是虚数单位),则z1﹣z2= 2+2i .考点:复数代数形式的加减运算.专题:计算题.分析:根据复数减法的运算法则,当且仅当实部与虚部分别相减可求.解答:解:Z1﹣Z2=(3+4i)﹣(1+2i)=2+2i故答案为:2+2i点评:本题主要考查了复数减法的基本运算,运算法则:当且仅当实部与虚部分别相减,属于基础试题.3.命题:∀x∈R,sinx<2的否定是“∃x∈R,sinx≥2”.考点:命题的否定.分析:根据命题“∀x∈R,sinx<2”是全称命题,其否定为特称命题,即“∃x∈R,sinx≥2”.从而得到本题答案.解答:解:∵命题“∀x∈R,sinx<2”是全称命题.∴命题的否定是存在x值,使sinx<2不成立,即“∃x∈R,sinx≥2”.故答案为:“∃x∈R,sinx≥2”.点评:本题给出全称命题,求该命题的否定形式.着重考查了含有量词的命题的否定、全称命题和特称命题等知识点,属于基础题.4.复数z=(1+3i)i(i是虚数单位),则z的实部是﹣3 .考点:复数的基本概念.专题:计算题.分析:利用两个复数代数形式的乘法,虚数单位i的幂运算性质,化简=(1+3i)i,依据使不得定义求得z的实部.解答:解:复数z=(1+3i)i=﹣3+i,故实部为﹣3,故答案为﹣3.点评:本题考查两个复数代数形式的乘法,虚数单位i的幂运算性质,以及复数为实数的条件.5.已知函数y=f(x),x∈[0,2π]的导函数y=f′(x)的图象,如图所示,则y=f(x)的单调增区间为[0,π].考点:函数的单调性与导数的关系.专题:数形结合.分析:根据据f′(x)≥0,函数f(x)单调递增;f′(x)≤0时,f(x)单调递减;从图中找到f′(x)≥0的区间即可.解答:解:据f′(x)≥0,函数f(x)单调递增;f′(x)≤0时,f(x)单调递减由图得到x∈[0,π]时,f′(x)≥0故y=f (x)的单调增区间为[0,π]故答案为[0,π]点评:本题考查函数的单调性与导函数符号的关系:f′(x)≥0时,函数f(x)单调递增;f′(x)≤0时,f(x)单调递减6.已知则满足的x值为 3 .考点:分段函数的解析式求法及其图象的作法;函数的值.分析:分x≤1和x>1两段讨论,x≤1时,得,x>1时,得,分别求解.解答:解:x≤1时,f(x)=,x=2,不合题意,舍去;x>1时,,=3综上所示,x=3故答案为:3点评:本题考查分段函数求值问题,属基本题.7.函数在[2,4]上是增函数的充要条件是m的取值X围为.考点:利用导数研究函数的单调性;必要条件、充分条件与充要条件的判断.专题:计算题.分析:先求导函数,要使函数在[2,4]上是增函数,则﹣x2+mx+2≥0在[2,4]上恒成立,故可建立不等式,解之即可求得m的取值X围.解答:解:求导函数要使函数在[2,4]上是增函数,则﹣x2+mx+2≥0在[2,4]上恒成立,构建函数g(x)=﹣x2+mx+2,因为函数图象恒过点(0,2),所以﹣x2+mx+2≥0在[2,4]上恒成立,只需m根据函数的单调递增,解得,即所求m的X围为故答案为:点评:本题考查利用导数研究函数的单调性,解题的关键是求导函数,将问题转化为﹣x2+mx+2≥0在[2,4]上恒成立.8.已知函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,则实数a的取值X 围是﹣1≤a<7 .考点:函数在某点取得极值的条件.专题:计算题.分析:首先利用函数的导数与极值的关系求出a的值,由于函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,所以f′(﹣1)f′(1)<0,进而验证a=﹣1与a=7时是否符合题意,即可求答案.解答:解:由题意,f′(x)=3x2+4x﹣a,当f′(﹣1)f′(1)<0时,函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,解得﹣1<a<7,当a=﹣1时,f′(x)=3x2+4x+1=0,在(﹣1,1)上恰有一根x=﹣,当a=7时,f′(x)=3x2+4x﹣7=0在(﹣1,1)上无实根,则a的取值X围是﹣1≤a<7,故答案为﹣1≤a<7.点评:考查利用导数研究函数的极值问题,体现了数形结合和转化的思想方法.9.设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为35,则a+b的最小值为8 .考点:简单线性规划.专题:计算题;压轴题;数形结合.分析:本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件,画出满足约束条件的可行域,再根据目标函数z=abx+y(a>0,b>0)的最大值为35,求出a,b的关系式,再利用基本不等式求出a+b的最小值.解答:解:满足约束条件的区域是一个四边形,如图4个顶点是(0,0),(0,1),(,0),(2,3),由图易得目标函数在(2,3)取最大值35,即35=2ab+3∴ab=16,∴a+b≥2 =8,在a=b=8时是等号成立,∴a+b的最小值为8.故答案为:8点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.10.曲线在点(4,e2)处的切线与坐标轴所围三角形的面积为e2.考点:定积分在求面积中的应用.专题:计算题.分析:先利用复合函数求导法则求已知函数的导函数,再利用导数的几何意义求切线斜率,进而利用直线的点斜式写出切线方程,最后求直线与坐标轴的交点,计算直角三角形的面积即可解答:解:y′=,y′|x=4=e2∴曲线在点(4,e2)处的切线方程为y﹣e2=e2(x﹣4)即y=e2x﹣e2令x=0,得y=﹣e2,令y=0,得x=2∴此切线与坐标轴所围三角形的面积为×2×e2=e2故答案为e2点评:本题主要考查了导数的几何意义,求曲线在某点出的切线方程的方法,利用导数求切线方程是解决本题的关键11.在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:由已知直线y=2a与函数y=|x﹣a|﹣1的图象特点分析一个交点时,两个图象的位置,确定a.解答:解:由已知直线y=2a是平行于x轴的直线,函数y=|x﹣a|﹣1的图象是折线,所以直线y=2a过折线顶点时满足题意,所以2a=﹣1,解得a=﹣;故答案为:.点评:本题考查了函数的图象;考查利用数形结合求参数.12.已知实数a,b,c满足a+b+c=9,ab+bc+ca=24,则b的取值X围是[1,5].考点:函数最值的应用.专题:计算题;综合题.分析:根据a+b+c=9,ab+bc+ca=24,得到a+c=9﹣b,并代入ab+bc+ca=24,得到ac=24﹣(a+c)b,然后利用基本不等式ac,即可求得b的取值X围.解答:解:∵a+b+c=9,∴a+c=9﹣b,∵ab+ac+bc=(a+c)b+ac=24,得ac=24﹣(a+c)b;又∵ac,∴24﹣(a+c)b,即24﹣(9﹣b)b,整理得b2﹣6b+5≤0,∴1≤b≤5;故答案为[1,5].点评:此题考查了利用基本不等式求最值的问题,注意基本不等式成立的条件为一正、二定、三等,以及消元思想的应用,属中档题.13.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).考点:利用导数研究函数的单调性;函数奇偶性的性质.专题:导数的概念及应用.分析:构造函数h(x)=f(x)g(x),利用已知可判断出其奇偶性和单调性,进而即可得出不等式的解集.解答:解:令h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h(x),因此函数h(x)在R上是奇函数.①∵当x<0时,h′(x)=f′(x)g(x)+f(x)g′(x)>0,∴h(x)在x<0时单调递增,故函数h(x)在R上单调递增.∵h(﹣3)=f(﹣3)g(﹣3)=0,∴h(x)=f(x)g(x)<0=h(﹣3),∴x<﹣3.②当x>0时,函数h(x)在R上是奇函数,可知:h(x)在(0,+∞)上单调递增,且h (3)=﹣h(﹣3)=0,∴h(x)<0,的解集为(0,3).∴不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).故答案为(﹣∞,﹣3)∪(0,3).点评:恰当构造函数,熟练掌握函数的奇偶性单调性是解题的关键.14.观察下面的数阵,第20行第20个数是381 .12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25…考点:归纳推理.专题:综合题;推理和证明.分析:观察这个数列知,第n行的最后一个数是n2,第19行的最后一个数是192=361,由此可求出第20行第20个数.解答:解:观察这个数列知,第n行的最后一个数是n2,第19行的最后一个数是192=361,∴第20行第20个数是361+20=381.故答案为:381.点评:本题给出三角形数阵,求第20行第20个数,着重考查了递归数列和归纳推理等知识点,属于基础题.二、解答题(共6小题,满分0分)15.给定两个命题:p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2﹣x+a=0有实数根,如果p和q中至少有一个为真命题,某某数a的取值X围.考点:复合命题的真假.专题:简易逻辑.分析:根据二次函数恒成立的充要条件,我们可以求出命题p为真时,实数a的取值X围,根据二次函数有实根的充要条件,我们可以求出命题q为真时,实数a的取值X围,则命题p,q中一个为真,分类讨论后,即可得到实数a的取值X围.解答:解:对任意实数x都有ax2+ax+1>0恒成立⇔a=0或⇔0≤a<4;关于x的方程x2﹣x+a=0有实数根⇔△=1﹣4a≥0⇔a≤;p和q中至少有一个为真命题如果p真q假,则有0≤a<4,且a>,∴<a<4;如果p假q真,则有a<0,或a≥4,且a≤∴a<0;如果p真q真,则有0≤a<4,且a≤,∴0≤a≤;所以实数a的取值X围为(﹣∞,4)点评:本题考查的知识点是命题的真假判断与应用,复合命题的真假,函数恒成立问题,其中判断出命题p与命题q为真时,实数a的取值X围,是解答本题的关键.16.已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2.考点:复数代数形式的混合运算.专题:计算题.分析:利用复数的除法运算法则求出z1,设出复数z2;利用复数的乘法运算法则求出z1•z2;利用当虚部为0时复数为实数,求出z2.解答:解:∴z1=2﹣i设z2=a+2i(a∈R)∴z1•z2=(2﹣i)(a+2i)=(2a+2)+(4﹣a)i∵z1•z2是实数∴4﹣a=0解得a=4所以z2=4+2i点评:本题考查复数的除法、乘法运算法则、考查复数为实数的充要条件是虚部为0.17.已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,求:(Ⅰ)x0的值;(Ⅱ)a,b,c的值.考点:利用导数研究函数的极值.专题:计算题.分析:(1)观察图象满足f′(x)=0的点附近的导数的符号的变化情况,来确定极大值,求出x0的值;(2)根据图象可得f'(1)=0,f'(2)=0,f(1)=5,建立三个方程,联立方程组求解即可.解答:解:(Ⅰ)由图象可知,在(﹣∝,1)上f'(x)>0,在(1,2)上f'(x)<0.在(2,+∝)上f'(x)>0.故f(x)在(﹣∝,1),(2,+∝)上递增,在(1,2)上递减.因此f(x)在x=1处取得极大值,所以x0=1.(Ⅱ)f'(x)=3ax2+2bx+c,由f'(1)=0,f'(2)=0,f(1)=5,得解得a=2,b=﹣9,c=12.点评:本题主要考查了利用导数研究函数的极值,以及观察图形的能力,属于基础题.18.因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放a(1≤a≤4,且a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a•f(x),其中f(x)=.若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值(精确到0.1,参考数据:取1.4).考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(Ⅰ)通过a=4可知y=,分别令每段对应函数值大于等于4,计算即得结论;(Ⅱ)通过化简、利用基本不等式可知y=2•(5﹣x)+a[﹣1]=(14﹣x)+﹣a﹣4≥﹣a﹣4,再令﹣a﹣4≥4,计算即得结论.解答:解:(Ⅰ)∵a=4,∴y=,当0≤x≤4时,由﹣4≥4,解得x≥0,∴此时0≤x≤4;当4<x≤10时,由20﹣2x≥4,解得x≤8,∴此时4<x≤8;综上所述,0≤x≤8,即若一次投放4个单位的制剂,则有效治污时间可达8天;(Ⅱ)当6≤x≤10时,y=2•(5﹣x)+a[﹣1]=10﹣x+﹣a=(14﹣x)+﹣a﹣4,∵14﹣x∈[4,8],而1≤a≤4,∴∈[4,8],∴y=(14﹣x)+﹣a﹣4≥2﹣a﹣4=﹣a﹣4,当且仅当14﹣x=即x=14﹣4时,y有最小值为﹣a﹣4,令﹣a﹣4≥4,解得24﹣16≤a≤4,∴a的最小值为24﹣16≈1.6.点评:本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.19.试比较n n+1与(n+1)n(n∈N*)的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论.考点:数学归纳法.专题:点列、递归数列与数学归纳法.分析:本题考查的知识点是归纳推理与数学归纳法,我们可以列出n n+1与(n+1)n(n∈N*)的前若干项,然后分别比较其大小,然后由归纳推理猜想出一个一般性的结论,然后利用数学归纳法进行证明.解答:解:当n=1时,n n+1=1,(n+1)n=2,此时,n n+1<(n+1)n,当n=2时,n n+1=8,(n+1)n=9,此时,n n+1<(n+1)n,当n=3时,n n+1=81,(n+1)n=64,此时,n n+1>(n+1)n,当n=4时,n n+1=1024,(n+1)n=625,此时,n n+1>(n+1)n,根据上述结论,我们猜想:当n≥3时,n n+1>(n+1)n(n∈N*)恒成立.证明:①当n=3时,n n+1=34=81>(n+1)n=43=64即n n+1>(n+1)n成立.②假设当n=k时,k k+1>(k+1)k成立,即:>1则当n=k+1时,=(k+1)()k+1>(k+1)()k+1=>1即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,∴当n≥3时,n n+1>(n+1)n(n∈N*)恒成立.点评:本题考查了数学归纳法的应用,证明步骤的应用,归纳推理,考查计算能力,属于中档题.20.对于定义在区间D上的函数f(x)和g(x),如果对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,那么称函数f(x)在区间D上可被函数g(x)替代.(1)若,试判断在区间[[1,e]]上f(x)能否被g(x)替代?(2)记f(x)=x,g(x)=lnx,证明f(x)在上不能被g(x)替代;(3)设,若f(x)在区间[1,e]上能被g(x)替代,某某数a的X围.考点:函数恒成立问题;函数单调性的性质.专题:证明题;综合题;压轴题.分析:(1)构造函数,通过研究h(x)的导数得出其单调性,从而得出其在区间[[1,e]上的值域,可以证出f(x)能被g(x)替代;(2)构造函数k(x)=f(x)﹣g(x)=x﹣lnx,可得在区间上函数k(x)为减函数,在区间(1,m)上为增函数,因此函数k(x)在区间的最小值为k(1)=1,最大值是k(m)大于1,所以不满足对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,故f(x)在上不能被g(x)替代;(3)根据题意得出不等式,去掉绝对值,再根据x﹣lnx的正负转化为或,通过讨论右边函数的最值,得出实数a的X围解答:解:(1)∵,令,∵,∴h(x)在[1,e]上单调增,∴.∴|f(x)﹣g(x)|≤1,即在区间[[1,e]]上f(x)能被g(x)替代.(2)记k(x)=f(x)﹣g(x)=x﹣lnx,可得当时,k′(x)<0,在区间上函数k(x)为减函数,当1<x<m时,k′(x)>0,在区间(1,m)上函数k(x)为增函数∴函数k(x)在区间的最小值为k(1)=1,最大值是k(m)>1,所以不满足对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,故f(x)在上不能被g(x)替代;(3)∵f(x)在区间[1,e]上能被g(x)替代,即|f(x)﹣g(x)|≤1对于x∈[1,e]恒成立.∴.,由(2)知,当x∈[1,e]时,x﹣lnx>0恒成立,∴有,令,∵=,由(1)的结果可知,∴F'(x)恒大于零,∴.②,令,∵=,∵,∴G'(x)恒大于零,∴,即实数a的X围为点评:本题考查了利用导数研究函数的单调性,通过分类讨论解决了不等式恒成立的问题,属于难题.。

高二下学期期末数学考试复习 优质常考题型

高二下学期期末数学考试复习  优质常考题型

高二下学期数学期末考试复习(常考题型)学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)1、圆C:与圆:位置关系是()A.内含 B, 内切 C .相交 D.外切2、函数的图象是()3、抛物线上点P的纵坐标是4,则其焦点F到点P的距离为( )A.3B.4C.5D.64、若函数的图象过第一二三象限,则有()A.B.,C.,D.5、已知奇函数f (x)满足f(x+3)=f (x), 当x∈[1,2]时,f (x)=-1则的值为A.3B.-3C.D.6、设成等比数列,其公比为2,则的值为()D.1A.B.C.7、数列{a n}的通项公式是,若前n项和为10,则项数n为()A.120B.99C.110D.1218、若,则=()A.B.C.D.9、有5名同学被安排在周一至周五值日,已知同学甲只能在周一值日,那么5名同学值日顺序的编排方案共有A.12种B.24种C.48种D.120种10、为不重合的直线,为不重合的平面,则下列说法正确的是()A.,则B.,则C.,则D.,则11、已知函数,,当时,方程的根的个数是()A.8B.6C.4D.212、抛物线的准线方程是()A.B.C.D.13、已知对任意恒成立,则a的最大值为()A.0B.1C.2D.3二、填空题(题型注释)14、已知函数,若时恒成立,则实数的取值范围是.15、已知直线与曲线相切于点,则实数的值为______.16、展开式中的常数项是.17、若函数有三个零点,则正数的范围是 .三、解答题(题型注释)18、(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分)已知向量,且.(Ⅰ)若,求的值;(Ⅱ)设的内角的对边分别为,,且,求函数的值域.19、(本小题满分14分)如图,已知四棱锥的底面是矩形,、分别是、的中点,底面,,(1)求证:平面(2)求二面角的余弦值。

高二下学期数学重难点练习题

高二下学期数学重难点练习题

高二下学期数学重难点练习题在高二下学期的数学学习中,我们面临了很多重难点的知识点和题目。

为了帮助大家更好地掌握这些难点,下面给大家提供一些重难点练习题。

希望通过这些题目的训练,能够提高大家的数学解题能力。

练习1:函数的运算已知函数f(x) = 2x + 1,g(x) = 3x - 2,求以下函数的表达式:a) h(x) = f(x) + g(x)b) h(x) = f(x) - g(x)c) h(x) = f(g(x))d) h(x) = g(f(x))练习2:复合函数已知函数f(x) = 2x + 1,g(x) = x^2,求以下函数的表达式:a) h(x) = f(g(x))b) h(x) = g(f(x))c) h(x) = g(g(x))d) h(x) = f(f(x))练习3:指数和对数计算以下式子的值:a) 2^3 + 3^2b) log2(8) + log3(81)c) log4(16) - log2(8)练习4:三角函数计算以下式子的值:a) sin(30°) + cos(45°)b) tan(60°) - cot(45°)c) sec(30°) × csc(60°)练习5:平面几何与空间几何已知平面直角坐标系中点A(1, 2)和B(4, 5),求AB的斜率。

已知直线L1过点A(1, 2)且斜率为2,直线L2经过点B(4, 5),求L1和L2的夹角。

已知空间直角坐标系中点A(1,2,3)和点B(4,5,6),求线段AB的长度。

练习6:概率与统计某班共有60人,其中男生40人,女生20人。

随机从班级中抽取一人,问抽到男生的概率是多少?某地某天气台提供了一个天气预报,说明下雨的概率为0.3,那么不下雨的概率是多少?练习7:数列与数学归纳法求以下数列的前n项和:a) 1, 3, 5, 7, 9, ...b) 2, 4, 8, 16, 32, ...c) 1, 1/2, 1/3, 1/4, 1/5, ...练习8:三角函数与平面几何的综合运用在平面直角坐标系中,已知正方形ABCD的顶点坐标分别为A(0,0),B(2, 0),C(2, 2),D(0, 2)。

高二下学期文科数学期末复习试题含答案

高二下学期文科数学期末复习试题含答案

高二文科数学期末复习一、填空题:1.若复数z 满足()12i 34i z +=-+(i 是虚数单位),则=z . 答案:i 21+.2.设全集=U Z ,集合2{|20=--≥A x x x ,}∈x Z ,则U=A (用列举法表示).答案:{0,1}.3.若复数z 满足i iz 31+-=(i 是虚数单位),则=z .i +4.已知A ,B 均为集合{=U 2,4,6,8,10}的子集,且}4{=⋂B A ,}10{)(=⋂A B C U ,则=A .答案:{4,10}5.已知全集R U =,集合=A {32|≤≤-x x },=B {1|-<x x 或4>x },那么集合⋂A (UB )等于 .答案:{x|-1≤x≤3}解析:主要考查集合运算.由题意可得,UB ={x|-1≤x≤4},A ={x|-2≤x≤3},所以(⋂A U)B ={x|-1≤x≤3}.6.已知集合},3,1{m A =,}4,3{=B ,且}4,3,2,1{=B A ,则实数m = . 答案:27.命题“若b a >,则b a 22>”的否命题为 . 答案:若b a ≤,则ba22≤8.设函数()⎩⎨⎧=x xx f 2log 2 11>≤x x ,则()[]=2f f .答案:2 9.函数)23(log 5.0-=x y 的定义域是 .答案:]1,32(10.已知9.01.17.01.1,7.0log ,9.0log ===c b a ,则c b a ,,按从小到大依次为 .答案:c a b <<11.设函数)(x f 是定义在R 上的奇函数.若当),0(∞+∈x 时,x x f lg )(=,则满足0)(>x f 的x 的取值范围是 .答案:),1()0,1(∞+-12.曲线C :x x y ln =在点M (e ,e )处的切线方程为 . 答案:e x y -=213.已知函数211)(xx f -=的定义域为M ,)1(log )(2x x g -=(1-≤x )的值域为N ,则(RM )N ⋂等于 .答案:{x|x≥1}解析:考查定义域求解.可求得集合M ={x|-1<x<1},集合N ={g (x )|g (x )≥1},则RM ={x|x≤-1或x≥1},∴(RM )N ⋂={x|x≥1}.14.设⎪⎩⎪⎨⎧+--=,11,2|1|)(2x x x f 1||1||>≤x x ,则)]21([f f 等于 .答案:134解析:本题主要考查分段函数运算. ∵232|121|)21(-=--=f ,∴134)23(11)23()]21([2=-+=-=f f f .15.已知函数)1ln()(2++=x x x f ,若实数a ,b 满足0)1()(=-+b f a f ,则b a +等于 .答案:1解析:考查函数奇偶性.观察得)(x f 在定义域内是增函数, 而)1ln()(2++-=-x x x f )(11ln2x f x x -=++=,∴)(x f 是奇函数,则)1()1()(b f b f a f -=--=,∴b a -=1,即1=+b a .16.若函数)(log )(3ax x x f a -=(0>a ,1≠a )在区间(21-,0)上单调递增,则a 的范围是 .答案:143<≤a解析:本题考查复合函数单调性,要注意分类讨论.设ax x x u -=3)(,由复合函数的单调性,可分10<<a 和1>a 两种情况讨论:①当10<<a 时,ax x x u -=3)(在(21-,0)上单调递减,即03)('2≤-=a x x u 在(21-,0)上恒成立,∴43≥a ,∴143<≤a ;②当1>a 时,ax x x u -=3)(在(21-,0)上单调递增,即03)('2≥-=a x x u 在(21-,0)上恒成立,∴0≤a ,∴a 无解.综上,可知143<≤a .17.已知()f x 为偶函数,且)3()1(x f x f -=+,当02≤≤-x 时,xx f 3)(=,则=)2011(f . 答案:3118.函数221x xy =+的值域为 .答案:)1,0(19.已知函数)(x f 的定义域为A ,若其值域也为A ,则称区间A 为)(x f 的保值区间.若()ln g x x m x =++的保值区间是[,)e +∞ ,则实数m 的值为 .答案:1-20.若不等式0122<-+-m x mx 对任意]2,2[-∈m 恒成立,则实数x 的取值范围是 .答案:)213,217(+-21.直线1=y 与曲线a x x y +-=2有四个交点,则实数a 的取值范围是 . 答案:)45,1(22.已知函数0)(3(log 2≠-=a ax y a 且)1±≠a 在]2,0[上是减函数,则实数a 的取值范围是 . 答案:)23,1()0,1( -二、解答题: 1.已知函数132)(++-=x x x f 的定义域为A ,函数)1()]2)(1lg[()(<---=a x a a x x g 的定义域为B . (1)求A ;(2)若A B ⊆,求实数a 的取值范围. 解:(1)由0132≥++-x x ,得011≥+-x x ,∴1-<x 或1≥x , ……4分即),1[)1,(+∞--∞= A ; ……6分 (2)由0)2)(1(>---x a a x ,得0)2)(1(<---a x a x .∵1<a ,∴a a 21>+.∴)1,2(+=a a B . ……8分 ∵A B ⊆,∴12≥a 或11-≤+a ,即21≥a 或2-≤a . ……12分而1<a ,∴121<≤a 或2-≤a .故当A B ⊆时,实数a 的取值范围是)1,21[]2,( --∞. ……14分2.已知命题p :函数)2(log 25.0a x x y ++=的值域为R ,命题q :函数x a y )25(--= 是减函数.若p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.解:对命题p :∵函数)2(log 25.0a x x y ++=的值域为R ,∴1)1(222-++=++a x a x x 可以取到),0(+∞上的每一个值,∴01≤-a ,即1≤a ; ……4分命题q :∵函数xa y )25(--=是减函数,∴125>-a ,即2<a . ……8分 ∵p 或q 为真命题,p 且q 为假命题,∴命题p 与命题q 一真一假,若p 真q 假,则1≤a 且2≥a ,无解, ……10分 若p 假q 真,则21<<a , ……12分 ∴实数a 的取值范围是)2,1( ……14分3.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为2.1万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为)10(<<x x ,则出厂价相应提高的比例为x 75.0,同时预计年销售量增加的比例为x 6.0.已知年利润=(出厂价–投入成本)⨯年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内? 解:(1)由题意得)10)(6.01(1000)]1(1)75.01(2.1[<<+⨯⨯+⨯-+⨯=x x x x y ,…5分 整理得 )10( 20020602<<++-=x x x y ;……7分(2)要保证本年度的利润比上年度有所增加,当且仅当⎩⎨⎧<<>⨯--.10,01000)12.1(x y …10分即⎩⎨⎧<<>+-.10,020602x x x 解不等式得 310<<x . ……13分答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足33.00<<x .…14分 4.已知命题p :指数函数xa x f )62()(-=在R 上单调递减,命题Q :关于x 的方程012322=++-a ax x 的两个实根均大于3.若p 或q 为真,p 且q 为假,求实数a 的取值范围.解:若p 真,则f (x )=(2a -6)x在R 上单调递减,∴0<2a -6<1,∴3<a<72,若q 真,令f (x )=x 2-3ax +2a 2+1,则应满足⎩⎪⎨⎪⎧Δ= -3a 2-4 2a 2+1 ≥0--3a2>3f 3 =9-9a +2a 2+1>0,∴⎩⎪⎨⎪⎧a ≥2或a ≤-2a>2a<2或a>52,故a>52,又由题意应有p 真q 假或p 假q 真.①若p 真q 假,则⎩⎪⎨⎪⎧3<a<72a ≤52,a 无解.②若p 假q 真,则⎩⎪⎨⎪⎧a ≤3或a ≥72a>52,∴52<a ≤3或a ≥72.故a 的取值范围是{a|52<a ≤3或a ≥72}.5.已知函数)(x f 满足对任意实数y x ,都有1)()()(+++=+xy y f x f y x f ,且2)2(-=-f .(1)求)1(f 的值;(2)证明:对一切大于1的正整数t ,恒有t t f >)(;(3)试求满足t t f =)(的所有的整数t ,并说明理由.解:(1)令0==y x ,得1)0(-=f ;令1-==y x ,得2)1()1()2(+-+-=-f f f ,又2)2(-=-f ,∴2)1(-=-f ; 令1,1-==y x ,得)1()1()0(-+=f f f ,∴1)1(=f . ……4分 (2)令1=x ,得2)()1(+=-+y y f y f ①∴当N y ∈时,有0)()1(>-+y f y f ,由1)1(),()1(=>+f y f y f 知对*N y ∈有0)(>y f ,∴当*N y ∈时,111)(2)()1(+>+++=++=+y y y f y y f y f ,于是对于一切大于1的正整数t ,恒有t t f >)(. ……9分 (3)由①及(1)可知1)4(,1)3(=--=-f f ; ……11分下面证明当整数4-≤t 时,t t f >)(,∵4-≤t ,∴02)2(>≥+-t 由① 得0)2()1()(>+-=+-t t f t f ,即 0)4()5(>---f f ,同理0)5()6(>---f f , ……,0)2()1(>+-+t f t f ,0)1()(>+-t f t f , 将以上不等式相加得41)4()(->=->f t f ,∴当4-≤t 时,t t f >)(, ……15分 综上,满足条件的整数只有2,1-=t . ……16分6.如下图所示,图1是定义在R 上的二次函数)(x f 的部分图象,图2是函数)(log )(b x x g a +=的部分图象.(1)分别求出函数)(x f 和)(x g 的解析式;(2)如果函数)]([x f g y =在区间[1,m )上单调递减,求实数m 的取值范围. 解:(1)由题图1得,二次函数)(x f 的顶点坐标为(1,2), 故可设函数2)1()(2+-=x a x f ,又函数)(x f 的图象过点(0,0),故2-=a , 整理得x x x f 42)(2+-=.由题图2得,函数)(log )(b x x g a +=的图象过点(0,0)和(1,1),故有⎩⎨⎧=+=1)1(log 0log b b aa ,∴⎩⎨⎧==12b a ,∴)1(log )(2+=x x g (1->x ).(2)由(1)得)142(l og )]([22++-==x x x f g y 是由t y 2log =和1422++-=x x t 复合而成的函数,而t y 2log =在定义域上单调递增,要使函数)]([x f g y =在区间[1,m )上单调递减,必须1422++-=x x t 在区间[1,m )上单调递减,且有0>t 恒成立.由0=t 得262±=x ,又因为t 的图象的对称轴为1=x .所以满足条件的m 的取值范围为2621±<<m .7.已知1212)3(4)(234+-++-=x x m x x x f ,R m ∈.(1)若f 0)1('=,求m 的值,并求)(x f 的单调区间;(2)若对于任意实数x ,0)(≥x f 恒成立,求m 的取值范围.解:(1)由f ′(x )=4x 3-12x 2+2(3+m )x -12,得f ′(1)=4-12+2(3+m )-12=0,解得m =7.………2分所以 f ′(x )=4 x 3-12x 2+20x -12=4(x -1)(x 2-2x +3) .方程x 2-2x +3=0的判别式Δ=22-3×4=-8<0,所以x 2-2x +3>0. 所以f ′(x )=0,解得x =1.……………………………4分由此可得f (x )的单调减区间是(-∞,1),f (x )的单调增区间是(1,+∞).…8分(2)f (x )=x 4-4x 3+(3+m )x 2-12x +12=(x 2+3)(x -2)2+(m -4)x 2. 当m <4时,f (2)=4(m -4)<0,不合题意;……………12分当m≥4时,f (x )=(x 2+3)(x -2)2+(m -4)x 2≥0,对一切实数x 恒成立. 所以,m 的取值范围是[4,+∞).……………16分。

高二数学期末复习题库

高二数学期末复习题库

高二数学期末复习题库一、选择题1. 若函数f(x) = 2x^3 - 3x^2 + 5x - 7,求f(1)的值。

A. -3B. 0C. 2D. 52. 已知等差数列的首项a1=3,公差d=2,求第10项a10的值。

A. 23B. 25C. 27D. 293. 圆的方程为(x-3)^2 + (y-4)^2 = 25,求圆心坐标和半径。

A. 圆心(3,4),半径5B. 圆心(4,3),半径5C. 圆心(3,4),半径3D. 圆心(4,3),半径34. 已知三角形ABC的三边长分别为a=5,b=7,c=8,求其面积。

A. 12B. 15C. 18D. 205. 函数y = sin(x) + cos(x)的周期是多少?A. πB. 2πC. 3πD. 4π二、填空题6. 已知直线l1: 2x + 3y - 6 = 0与直线l2: x - 4y + 8 = 0,求它们的交点坐标。

交点坐标为:________。

7. 求函数y = x^2 - 4x + 4的顶点坐标。

顶点坐标为:________。

8. 已知向量a = (1, 2),b = (3, 4),求向量a与向量b的点积。

点积为:________。

9. 已知方程x^2 - 6x + 9 = 0,求它的根。

根为:________。

10. 已知正弦函数y = sin(ωx + φ),其中ω = 2,φ = π/4,求函数的周期。

周期为:________。

三、解答题11. 证明:对于任意实数x,等式e^x ≥ x + 1恒成立。

12. 已知椭圆的方程为x^2/a^2 + y^2/b^2 = 1(a > b > 0),求椭圆的焦点坐标。

13. 解不等式:|x - 2| + |x + 3| ≥ 5。

14. 已知函数f(x) = x^3 - 3x^2 + 2,求其导数f'(x)。

15. 利用向量的知识证明勾股定理。

四、应用题16. 某工厂生产产品的成本函数为C(x) = 100 + 30x,其中x为生产数量。

高二(下)期末数学复习试卷三(文科)

高二(下)期末数学复习试卷三(文科)

高二(下)期末数学复习试卷三(文科)一、选择题(每小题5分,共60.0分)1.设复数z满足(1+i)z=2i,则|z|=()A. 12B. √22C. √2D. 22.用反证法证明“三角形中最多只有一个内角是钝角”的结论的否定是( )A. 有两个内角是钝角B. 有三个内角是钝角C. 至少有两个内角是钝角D. 没有一个内角是钝角3.设函数y=√4−x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A. (1,2)B. (1,2]C. (−2,1)D. [−2,1)4.设i为虚数单位,m∈R,“复数m(m−1)+i是纯虚数”是“m=1”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件5.执行如图所示的程序框图,如果运行结果为720,那么判断框中可以填入( )A. k<6?B. k<7?C. k>6?D. k>7?6.设某中学的高中女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,3,…,n),用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是()A. y与x具有正线性相关关系B. 回归直线过样本的中心点(x,y)C. 若该中学某高中女生身高增加1cm,则其体重约增加0.85kgD. 若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg7.函数f(x)=ln|x+1|x+1的大致图象为()A. B.C. D.8.用二分法求方程近似解的过程中,已知在区间[a,b]上,f(a)>0,f(b)<0,并计算得到f(a+b2)<0,那么下一步要计算的函数值为()A. f(3a+b4) B. f(a+3b4) C. f(a+b4) D. f(3a+3b4)9.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,图2是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( )①1月至8月空气合格天数超过20天的月份有5个②第二季度与第一季度相比,空气达标天数的比重下降了 ③8月是空气质量最好的一个月 ④6月份的空气质量最差.A. ①②③B. ①②④C. ①③④D. ②③④10. 下列说法错误的是()A. 在统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法B. 在残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好C. 线性回归方程对应的直线y ̂=b ̂x +a ̂至少经过其样本数据点中的一个点D. 在回归分析中,相关指数R 2越大,模拟的效果越好 11. 若函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A. 1<a ≤2B. a ≥4C. a ≤2D. 0<a ≤312. 已知定义在R 上的函数y =f (x )对任意的x 满足f (x +1)=−f (x ),当−1≤x <1,f (x )=x 3.函数g(x)={|log a x|,x >0−1x,x <0,若函数h (x )=f (x )-g (x )在[-6,+∞)上恰有6个零点,实数a 的取值范围是( )A. (0,17)⋃(7,+∞)B. [19,17)⋃(7,9]C. (19,17]⋃[7,9)D. [19,1)⋃(1,9]二、填空题(本大题共4小题,每题5分,共20.0分)13. 函数f (x )=ax 3+3x 2+2,若f ′(-1)=6,则a 的值等于______ . 14. ln1=0,ln (2+3+4)=2ln3,ln (3+4+5+6+7)=2ln5,ln (4+5+6+7+8+9+10)=2ln7,……则根据以上四个等式,猜想第n 个等式是______.(n ∈N *) 15. 已知函数f(x)={3x −1,x >0−2x 2−4x,x ≤0,若方程f(x)=m 有3个不等的实根,则实数m 的取值范围是________.16. 已知函数f (x )的定义域为[-1,5],部分对应值如下表,f (x )的导函数y =f ˈ(x )图象如图所示.下列关于f (x )的命题:X -1 0 4 5 f (x )1221①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)-a有4个零点.其中正确命题的序号是__________.三、解答题(本大题共7小题,共84.0分)17.已知命题p:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,命题q:函数y=log a(1-2x)在定义域上单调递增,若“p∨q”为真命题且“p∧q”为假命题,求实数a的取值范围.18.已知函数f(x)=(a2-3a+3)a x是指数函数.(1)求f(x)的表达式;(2)判断F(x)=f(x)-f(-x)的奇偶性,并加以证明;(3)解不等式:log a(1-x)>log a(x+2).19.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数91011121314人数10182225205将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.P(K2≥k)0.050.01k 3.841 6.635.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)20. 中国"一带一路"战略构思提出后,某科技企业为抓住"一带一路"带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x台,需另投入成本c (x )(万元),当年产量不足80台时,c (x )=12x 2+40x(万元);当年产量不小于80台时,c (x )=101x +8100x−2180(万元).若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y(万元)关于年产量x(台)的函数关系式;(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?21. 已知函数f (x )=x •ln x .(Ⅰ)求曲线y =f (x )在点(1,f (1))处的切线方程; (Ⅱ)求f (x )的单调区间;(Ⅲ)若对于任意x ∈[1e ,e],都有f (x )≤ax -1,求实数a 的取值范围.四、选考题(本题满分10,请在22题23题任选一题作答,多答则以22题计分,解答应写出文字说明、证明过程或演算步骤.)[选修4-4:坐标系与参数方程]22. 已知曲线C 1在平面直角坐标系中的参数方程为{x =√55ty =2√55t −1(t 为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,有曲线C 2:ρ=2cosθ-4sinθ (1)将C 1的方程化为普通方程,并求出C 2的平面直角坐标方程 (2)求曲线C 1和C 2两交点之间的距离.23. 已知函数f (x )=|2x +1|-|x -m |(m ∈R ).(1)当m =1时,解不等式f (x )≥2;(2)若关于x 的不等式f (x )≥|x -3|的解集包含[3,4],求m 的取值范围.答案和解析1.【答案】C2.【答案】C3.【答案】D4.【答案】B5.【答案】C6.【答案】D7.【答案】A8.【答案】A9.【答案】A 10.【答案】C 11.【答案】A 12.【答案】B【解析】解:∵对任意的x 满足f (x+1)=-f (x ),∴f (x+2)=-f (x+1)=f (x ),即函数f (x )是以2为周期的函数,画出函数f (x )、g (x )在[-6,+∞)的图象,由图象可知:在y 轴的左侧有2个交点,只要在右侧有4个交点即可,则即有,故7<a≤9或≤a <.13.【答案】4 14.【答案】15.【答案】(0,2) 16.【答案】①②【解析】由导函数的图象可知:当x ∈(-1,0),(2,4)时,f′(x )>0, 函数f (x )增区间为(-1,0),(2,4); 当x ∈(0,2),(4,5)时,f′(x )<0, 函数f (x )减区间为(0,2),(4,5). 由此可知函数f (x )的极大值点为0,4,命题①正确; ∵函数在x=0,2处有意义,∴函数f (x )在[0,2]上是减函数,命题②正确; 当x ∈[-1,t]时,f (x )的最大值是2,那么t 的最大值为5,命题③不正确; 2是函数的极小值点,若f (2)>1,则函数y=f (x )-a 不一定有4个零点,命题④不正确. ∴正确命题的序号是①②. 故答案为:①②.17.【答案】解:不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 恒成立.当a =2时不等式等价为-4<0成立,当a ≠2时,可得{a −2<0∆=4(a −2)2+16(a −2)<0,解得-2<a <2,综上-2<a ≤2.即p :-2<a ≤2,函数y =log a (1-2x )在定义域上单调递增,可得0<a <1,即q :0<a <1,若“p ∨q ”为真命题且“p ∧q ”为假命题,则p ,q 为一真一假,若p 真q 假,则{−2<a ≤2a ≥1或a ≤0即1≤a ≤2或-2<a ≤0,若p 假q 真,则{a >2或a ≤−20<a <1,此时无解,故实数a 的取值范围是1≤a ≤2或-2<a ≤0. 18.【答案】解:(1)∵函数f(x)=(a 2−3a +3)a x 是指数函数,a >0且a ≠1, ∴a 2-3a +3=1,可得a =2或a =1(舍去),∴f (x )=2x ;(2)由(1)得F (x )=2x -2-x ,∴F (-x )=2-x -2x ,∴F (-x )=-F (x ), ∴F (x )是奇函数;(3)不等式:log 2(1-x )>log 2(x +2),以2为底单调递增, 即1-x >x +2>0,∴-2<x <-12,解集为{x |-2<x <-12}.19.【答案】解:(Ⅰ)由统计表可知,在抽取的100人中,“歌迷”有25人,从而完2×2…(分)将列联表中的数据代入公式计算,得: K 2=100×(30×10−45×15)275×25×45×55=10033≈3.030 因为3.030<3.841,所以我们没有95%的把握认为“歌迷”与性别有关.…(6分)(Ⅱ)由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)}其中a i 表示男性,i =1,2,3,b i 表示女性,i =1,2.Ω由10个等可能的基本事件组成.…(9分)用A 表示“任选2人中,至少有1个是女性”这一事件,则A ={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2) },事件A 由7个基本事件组成.∴P (A )=710 (12)20.【答案】解:(1)∵当0<x <80时,∴y =100x −(12x 2+40x)−500=−12x 2+60x −500,∵当x ≥80时,∴y =100x −(101x +8100x−2180)−500=1680−(x +8100x),∴y ={−12x 2+60x −500,0<x <801680−(x +8100x),x ≥80; (2)∵由(1)可知当0<x <80时,y =−12(x −60)2+1300,∴此时当x =60时y 取得最大值为1300(万元),∵当x ≥80时,y =1680−(x +8100x)≤1680−2√x ·8100x=1500,∴当且仅当x =8100x,即x =90时,y 取最大值为1500(万元),∴综上所述,当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.21.【答案】解:(Ⅰ)因为函数f (x )=x lnx ,所以f′(x)=lnx +x ⋅1x =lnx +1,f '(1)=ln1+1=1.又因为f (1)=0,所以曲线y =f (x )在点(1,f (1))处的切线方程为y =x -1.(Ⅱ)函数f (x )=x lnx 定义域为(0,+∞),由(Ⅰ)可知,f '(x )=ln x +1. 令f ′(x )=0,解得x =1e .所以,f (x )的单调递增区间是(1e ,+∞),f (x )的单调递减区间是(0,1e ). (Ⅲ)当1e ≤x ≤e 时,“f (x )≤ax -1”等价于“a ≥lnx +1x ”.令g(x)=lnx +1x ,x ∈[1e,e],g′(x)=1x−1x 2=x−1x 2,x ∈[1e ,e].当x ∈(1e ,1)时,g '(x )<0,所以以g (x )在区间(1e ,1)单调递减.当x ∈(1,e )时,g '(x )>0,所以g (x )在区间(1,e )单调递增.而g(1e )=−lne +e =e −1>1.5,g(e)=lne +1e =1+1e <1.5.所以g (x )在区间[1e ,e]上的最大值为g(1e )=e −1.所以当a ≥e -1时,对于任意x ∈[1e ,e],都有f (x )≤ax -1.22.【答案】解:(1)曲线C 1在平面直角坐标系中的参数方程为{x =√55ty =2√55t −1(t 为参数),消去参数t 可得普通方程:y =2x -1.由曲线C 2:ρ=2cosθ-4sinθ,即ρ2=ρ(2cosθ-4sinθ),可得直角坐标方程:x 2+y 2=2x -4y .(2)x 2+y 2=2x -4y .化为(x -1)2+(y +2)2=5.可得圆心C 2(1,-2),半径r =√5. 圆心C 2(1,-2)到直线y =2x -1的距离为d =√12+22∴曲线C 1和C 2两交点之间的距离=2√5−(√12+22)2=8√55. 23.【答案】解:(1)当x ≤−12时,f (x )=-2x -1+(x -1)=-x -2,由f (x )≥2解得x ≤-4,综合得x ≤-4;当−12<x <1时,f (x )=(2x +1)+(x -1)=3x ,由f (x )≥2解得x ≥23,综合得23≤x <1;当x ≥1时,f (x )=(2x +1)-(x -1)=x +2,由f (x )≥2解得x ≥0,综合得x ≥1.所以f (x )≥2的解集是(−∞,−4]∪[23,+∞).(2)∵f (x )=|2x +1|-|x -m |≥|x -3|的解集包含[3,4],∴当x ∈[3,4]时,|2x +1|-|x -m |≥|x -3|恒成立原式可变为2x +1-|x -m |≥x -3,即|x -m |≤x +4,∴-x -4≤x -m ≤x +4即-4≤m ≤2x +4在x ∈[3,4]上恒成立,显然当x =3时,2x +4取得最小值10,即m 的取值范围是[-4,10].。

广西南宁市第二中学2023-2024学年高二下学期开学考试数学复习卷试题

广西南宁市第二中学2023-2024学年高二下学期开学考试数学复习卷试题

广西南宁市第二中学2023-2024学年高二下学期开学考试数学复习卷试题一、单选题1.若()1i 2i z -=,则2i z -=( ) A .0B .1CD .22.将函数()cos2f x x =图象上所有的点都向左平移π3个单位长度后,再将所得函数图象上所有点的横坐标变为原来的2倍,得到函数()g x 的图象,则()g x =( ) A .πcos 6x ⎛⎫+ ⎪⎝⎭B .πcos 43x ⎛⎫+ ⎪⎝⎭C .2πcos 3x ⎛⎫- ⎪⎝⎭D .2πcos 3x ⎛⎫+ ⎪⎝⎭3.第1次从盛有1L 纯酒精的容器中倒出1L 2,然后用水填满,第2次再从该容器中倒出1L 2,又用水填满;….若要使容器中的纯酒精不足1L 10,则至少要连续进行以上操作( ) A .3次B .4次C .5次D .6次4.已知直线,,a b c 是三条不同的直线,平面,,αβγ是三个不同的平面,下列命题正确的是( ) A .若,a c b c ⊥⊥,则a ∥b B .若a ∥,b a ∥α,则b ∥平面αC .若,a b αα⊂⊂,且a ∥,b β∥β,则α∥βD .若,βαγα⊥⊥,且a βγ=I ,则a α⊥5.已知等差数列{}n a 的公差0d ≠且139,,a a a 成等比数列,则2410138a a a a a a ++=++( )A .43B .34C .1615D .15146.已知数列{}n a 满足111n n a a +=-,若112a =,则40a =( ) A .-1B .12C .1D .27.已知直线l 交抛物线2:28C x y =-于,M N 两点,且MN 的中点为()2,11--,则直线l 的斜率为( )A .114-B .1114C .17D .17-8.已知函数()e ln xf x a x =-在区间(1,3)上单调递减,则实数a 的最大值为( )A .1eB .13eC .313e D .31e二、多选题9.在平面直角坐标系中,已知点()0,0O ,()1,2OA =u u u r ,()3,1OB =u u u r,则( ) A .5AB =u u u rB .OA u u u r 与OB u u u r 的夹角为π4C .OA u u u r 在OB u u u r 方向上的投影向量的坐标为11,3⎛⎫⎪⎝⎭D .与OB u u u r垂直的单位向量的坐标为⎛ ⎝⎭或⎝⎭10.下列结论中正确的是( )A .已知曲线22:2||2||C x y x y +=+(x ,y 不全为0),则曲线C 的周长为B .若直线l 的方程10x +=,则直线l 的倾斜角为2π3C .若直线3260ax y ++=与直线220x a y -+=垂直,则32a =D .圆22:2410O x y x y ++++=与圆22:1M x y +=的公切线条数为2 11.已知函数()ln xf x x=,下列说法正确的是( ) A .()f x 的单调递减区间是()0,eB .()f x 在点()()22e ,ef 处的切线方程是24e0x y -+=C .若方程ln a x x =只有一个解,则e a =D .设()2g x x a =+,若对()12R,1,x x ∀∈∃∈+∞,使得()()12g x f x =成立,则e a ≥三、填空题12.已知数列{}n a 满足*1111,2)0(n n n n a a a a a n ++=-+=∈N ,则数列{}n a 的通项公式为.13.如图,直三棱柱111ABC A B C -中,90BCA ∠=︒,12CA CB CC ===,M ,N 分别是11A B ,11AC 的中点,则BM 与AN 所成的角的余弦值为.14.已知抛物线C :24y x =,焦点为F ,过点(1,0)P -作斜率为k (0k >)的直线l 与抛物线C 交于A ,B 两点,连接AF ,BF (AF BF >),若2AF BF =,则k =.四、解答题15.在ABC V 中,角,,A B C 的对边分别是,,a b c ,且πsin sin()3a C c A =+. (1)求角A 的大小;(2)若2b =,3c =,D 是边BC 的中点,求AD 的长.16.已知等差数列{}n a 的公差不为0,*N n ∈,且满足56a =,3a ,4a ,6a 成等比数列. (1)求{}n a 的通项公式;(2)若数列{}n a 的前n 项和为n S ,记286n n b S n =++,求数列{}n b 的前n 项和n T .17.如图所示,在几何体PABCD 中,AD ⊥平面PAB ,点C 在平面PAB 的投影在线段PB 上()BC PC <,6BP =,AB AP ==2DC =,//CD 平面PAB .(1)证明:平面PCD ⊥平面PAD .(2)若平面BCD 与平面PCD ,求线段AD 的长. 18.已知双曲线C :()222210,0x y a b a b-=>>的右焦点为()2,0F ,且C 的一条渐近线恰好与直线10x y -+=垂直. (1)求C 的方程;(2)直线l :1x my =+与C 的右支交于A ,B 两点,点D 在C 上,且AD x ⊥轴.求证:直线BD 过点F .19.已知函数()2ln(1)bf x ax x x =++-,曲线()y f x =在()()1,1f --处的切线方程为2ln 23y =-.(1)求a ,b 的值;(2)求()f x 的单调区间,并证明()f x 在(),0-∞上没有零点.。

2-3期未复习题(二)(高二(下)数学同步测试题)

2-3期未复习题(二)(高二(下)数学同步测试题)

高二数学期未复习题(二)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项符合题目要求。

1.已知随机变量X ~B(6,0.4),则当η=-2X+1时,D(η)=( ). A.-1.88B.-2.88C.5.76D.6.762.已知一次考试共有60名同学参加,考生成绩X ~N(110,52),据此估计,大约有57人的分数所在的区间为( ).A.(90,100]B.(95,125]C.(100,120]D.(105,115] 3.满足条件|z |=|3+4i|的复数z 在复平面上对应点的轨迹是( ). A .一条直线 B .两条直线 C .圆 D .椭圆 4. 求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( )A .S =⎠⎛01(x 2-x)d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y)d xD .S =⎠⎛01(y -y)d y5.样本中共有五个个体,其值分别为0,1,2,3,m .若该样本的平均值为1,则其方差为( ) A.105 B.305C. 2 D .2 6.曲线y =13x 3-2在点(-1,-53)处切线的倾斜角为( )A .30°B .45°C .135°D .150°7.我国古代数学名著《九章算术》有“米谷粒分”题:发仓募粮,所募粒中秕不百三则收之(不超过3%),现抽样取米一把,取得235粒米中夹秕n 粒,若这批米合格,则n 不超过( )A .6粒B .7粒C .8粒D .9粒8.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( )A.60 B.90 C.120 D.1809.一个电路如图所示, C 、D 、E 、F 为4个开关,其闭合的概率都是12,且是相互独立的,则灯亮的概率是( )A. 916B. 716C. 1316D. 31610.若0<x<π2,则2x与3sin x的大小关系( ).A.2x>3sin x B.2x<3sin x C.2x=3sin x D.与x的取值有关11. 设随机变量X~N(μ,σ2)且P(X<1)=12,P(X>2)=p,则P(0<X<1)的值为( )A.12p B.1-p C.1-2p D.12-p12. 设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为y^=0.85x-85.71,则下列结论中不正确的是( )A.y与x具有正的线性相关关系 B.回归直线过样本点的中心(x,y) C.若该大学某女生身高增加1 cm,则其体重约增加0.85 kgD.若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg二、填空题:本大题共4小题,每小题5分,共20分。

高二下学期数学期中复习训练题(理科)

高二下学期数学期中复习训练题(理科)

高二下学期数学期中复习训练题(理科)一.选择题(共30分)1.下列命题中是假命题的是(D )A.π0,,2x ⎛⎫∀∈ ⎪⎝⎭x x sin > B . ,x ∃∈R 0lg 0=x C .,x ∀∈R 03>x D . ,x ∃∈R 2cos sin 00=+x x 2. 若“01x <<”是“()[(2)]0x a x a --+≤”的充分而不必要条件,则实数a 的取值范围是( A )A .[1,0]-B . (1,0)-C .(,0][1,)-∞+∞ D . (,1)(0,)-∞-+∞3. 方程322670x x -+=在(0,2)内根的个数有( C ) A. 3个 B. 2个C. 1个D. 0个4. 函数y =x2-2sin x 的图象大致是(C)5. 椭圆22a x +22by =1(a >b >0)上一点A 关于原点的对称点为B , F 为其右焦点, 若AF ⊥BF , 设∠ABF =α, 且α∈[12π,4π], 则该椭圆离心率的取值范围为 ( B ) A .[22,1 ) B .[22,36] C .[36, 1) D .[22,23] 6.已知ln ()ln 1xf x x x=-+,()f x 在0x x =处取得最大值,以下各式中正确的序号为B ①00()f x x < ②00()f x x = ③00()f x x > ④01()2f x < ⑤01()2f x >A . ①④ B. ②⑤ C. ②④ D. ③⑤ 二.填空题(共30分)7. 已知椭圆1422=+y m x 的离心率为22,则此椭圆的长轴长为 4 或 48.=-+⎰-dx x x x )4sin (2222π2 .9. 过双曲线12222=-by a x ()0,0a b >>上任意一点P ,引与实轴平行的直线,交两渐近线于M 、N 两点,则PM NP ⋅的值是2a -10. 对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是 122n +- 。

高二数学第二学期期末复习试卷 文(二)(含解析)-人教版高二全册数学试题

高二数学第二学期期末复习试卷 文(二)(含解析)-人教版高二全册数学试题

2014-2015学年某某省某某市罗湖区翠圆中学高二(下)期末数学复习试卷(文科)(二)一、选择题(本大题共10小题,每小题5分,满分50分)1.已知集合A={x|x+1>0},B={x|x2﹣x<0},则A∪B=()A. {x|x>﹣1} B. {x|﹣1<x<1} C. {x|0<x<1} D. {x|﹣1<x<0}2.角α的终边过点(﹣1,2),则cosα的值为()A. B. C.﹣ D.﹣3.(文)设a∈R,则a>1是<1的()A.必要但不充分条件 B.充分但不必要条件C.充要条件 D.既不充分也不必要条件4.如图所示为一个简单几何体的三视图,则其对应的几何体是()A. B. C.D.5.一个容量为 n 的样本,分成若干组,已知某组频数和频率分别为 36 和0.25,则n=() A. 9 B. 36 C. 72 D. 1446.已知函数y=xlnx,则其在点x=1处的切线方程是()A. y=2x﹣2 B. y=2x+2 C. y=x﹣1 D. y=x+17.已知向量=(2,1),+=(1,k),若⊥,则实数k等于()A. B. 3 C.﹣7 D.﹣28.已知等差数列{a n}的公差为﹣2,且a2,a4,a5成等比数列,则a2等于()A.﹣4 B.﹣6 C.﹣8 D. 89.若函数f(x)=x2+2x+3a没有零点,则实数a的取值X围是()A. B. C. D.10.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是等腰直角三角形,则这个椭圆的离心率是()A. B. C. D.二、填空题(本大题共3小题,每小题5分,满分15分,其中11-13题是必做题,14-15题是选做题,考生只能选做一题,两题都答的,只计算前一题得分)11.若函数y=sin(ωx+)(ω>0)的最小正周期是,则ω=.12.定义运算,复数z满足,则复数z=.13.在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=.类比到空间,在长方体中,一条对角线与从某一顶点出发的三条棱所成的角分别是α,β,γ则有正确的式子是.【极坐标与参数方程选做题】14.在极坐标系中,ρ=4sinθ是圆的极坐标方程,则点A(4,)到圆心C的距离是.【几何证明选讲选做题】15.(几何证明选讲选做题)如图,MN是圆O的直径,MN的延长线与圆O上过点P的切线PA相交于点A,若∠M=30°,切线AP长为,则圆O的直径长为.三、解答题(本大题共6小题,满分80分,解答须出文字说明、证明过程和演算步骤)16.设函数f(x)=2cosx(sinx+cosx)﹣1将函数f(x)的图象向左平移a个单位,得到函数y=g(x)的图象.(1)求函数f(x)的最小正周期;(2)若0<a<,且g(x)是偶函数,求a的值.17.已知集合A={﹣2,0,1,3},在平面直角坐标系中,点M的坐标(x,y)满足x∈A,y ∈A.(Ⅰ)请列出点M的所有坐标;(Ⅱ)求点M不在y轴上的概率;(Ⅲ)求点M正好落在区域上的概率.18.如图(1)所示,正△ABC的边长为2a,CD是AB边上的高,E,F分别是AC,BC的中点.现将△ABC沿CD翻折,使翻折后平面ACD⊥平面BCD(如图(2)),(1)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;(2)求三棱锥C﹣DEF的体积.19.已知椭圆的中心在原点,焦点在x轴上,离心率为,且椭圆经过圆C:x2+y2﹣4x+2y=0的圆心C.(1)求椭圆的方程;(2)设直线l过椭圆的焦点且与圆C相切,求直线l的方程.20.已知函数f(x)=(1)求函数f(x)的单调递增区间;(2)求函数f(x)的零点.21.数列{a n}的前n项和为S n,已知.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{}满足,求数列{}的前n项和T n.(Ⅲ)X三同学利用第(Ⅱ)题中的T n设计了一个程序流程图,但李四同学认为这个程序如果被执行会是一个“死循环”(即程序会永远循环下去,而无法结束).你是否同意李四同学的观点?请说明理由.2014-2015学年某某省某某市罗湖区翠圆中学高二(下)期末数学复习试卷(文科)(二)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,满分50分)1.已知集合A={x|x+1>0},B={x|x2﹣x<0},则A∪B=()A. {x|x>﹣1} B. {x|﹣1<x<1} C. {x|0<x<1} D. {x|﹣1<x<0}考点:并集及其运算.专题:计算题.分析:分别求出A与B中不等式的解集确定出A与B,找出两集合的并集即可.解答:解:由A中不等式解得:x>﹣1,即A={x|x>﹣1},由B中不等式变形得:x(x﹣1)<0,解得:0<x<1,即B={x|0<x<1},则A∪B={x|x>﹣1},故选:A.点评:此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.角α的终边过点(﹣1,2),则cosα的值为()A. B. C.﹣ D.﹣考点:任意角的三角函数的定义.专题:计算题.分析:先求出 x=﹣1,y=2,r=,利用cosα的定义,求出cosα的值.解答:解:∵角α的终边过点(﹣1,2),∴x=﹣1,y=2,r=,cosα===﹣,故选D.点评:本题考查任意角的三角函数的定义,两点间的距离公式的应用.3.(文)设a∈R,则a>1是<1的()A.必要但不充分条件 B.充分但不必要条件C.充要条件 D.既不充分也不必要条件考点:不等关系与不等式;充要条件.专题:计算题.分析:根据由a>1,一定能得到<1.但当<1时,不能推出a>1 (如 a=﹣1时),从而得到结论.解答:解:由a>1,一定能得到<1.但当<1时,不能推出a>1 (如 a=﹣1时),故a>1是<1 的充分不必要条件,故选 B.点评:本题考查充分条件、必要条件的定义,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.4.如图所示为一个简单几何体的三视图,则其对应的几何体是()A. B. C.D.考点:由三视图还原实物图.专题:计算题;空间位置关系与距离.分析:根据题意,B、D两项的视图中都应该有对角线为虚线的矩形,故不符合题意;C项的正视图矩形的对角线方向不符合,也不符合题意,而A项符合题意,得到本题答案.解答:解:对于A,该几何体的三视图恰好与已知图形相符,故A符合题意;对于B,该几何体的正视图的矩形中,对角线应该是虚线,故不符合题意;对于C,该几何体的正视图的矩形中,对角线应该是从左上到右下的方向,故不符合题意;对于D,该几何体的侧视图的矩形中,对角线应该是虚线,不符合题意故选:A点评:本题给出三视图,要求我们将其还原为实物图,着重考查了对三视图的理解与认识,考查了空间想象能力,属于基础题.5.一个容量为 n 的样本,分成若干组,已知某组频数和频率分别为 36 和0.25,则n=() A. 9 B. 36 C. 72 D. 144考点:频率分布表.专题:计算题.分析:根据一个容量为n的样本,某组频数和频率分别为 36 和0.25,写出这三者之间的关系式,得到关于n的方程,解方程即可.解答:解:∵一个容量为n的样本,某组频数和频率分别为 36 和0.25,∴0.25=∴n=144故选D.点评:本题考查频率分布表,本题解题的关键是知道频率,频数和样本容量之间的关系,这三者可以做到知二求一.6.已知函数y=xlnx,则其在点x=1处的切线方程是()A. y=2x﹣2 B. y=2x+2 C. y=x﹣1 D. y=x+1考点:导数的几何意义.分析:运用求导公式计算x=1时的斜率,再结合曲线上一点求出切线方程.解答:解:y=xlnx y'=1×lnx+x•=1+lnx y'(1)=1 又当x=1时y=0∴切线方程为y=x﹣1 故选C.点评:此题主要考查导数的计算,比较简单.7.已知向量=(2,1),+=(1,k),若⊥,则实数k等于()A. B. 3 C.﹣7 D.﹣2考点:数量积判断两个平面向量的垂直关系.专题:计算题.分析:先根据+=(1,k),⊥,求出坐标,再代入+=(1,k),即可求出k值.解答:解:设=(x,y),则=(2+x,1+y)=(1,k),∴2+x=1,1+y=k∵,∴=0,即2x+y=0,∴y=2,∴k=3故选B点评:本题考查向量加法的坐标运算,以及向量的数量积判断两个向量的垂直关系,考查计算能力,是基础题.8.已知等差数列{a n}的公差为﹣2,且a2,a4,a5成等比数列,则a2等于()A.﹣4 B.﹣6 C.﹣8 D. 8考点:等差数列的通项公式.专题:计算题;等差数列与等比数列.分析:根据等差数列与等比数列的通项公式与性质,列出方程,求出且a2的值.解答:解:等差数列{a n}的公差为﹣2,且a2,a4,a5成等比数列,∴=a2•a5,即=a2•(a2﹣6),解得a2=8.故选:D.点评:本题考查了等差与等比数列的通项公式与应用问题,是基础题目.9.若函数f(x)=x2+2x+3a没有零点,则实数a的取值X围是()A. B. C. D.考点:函数的零点;二次函数的性质.专题:计算题.分析:函数f(x)=x2+2x+3a没有零点,等价于方程x2+2x+3a=0无解,由根的判别式能求出结果.解答:解:∵函数f(x)=x2+2x+3a没有零点,∴x2+2x+3a=0无解,∴△=4﹣12a<0,∴a>.故选C.点评:本题考查函数的零的求法和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.10.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是等腰直角三角形,则这个椭圆的离心率是()A. B. C. D.考点:椭圆的简单性质.专题:计算题.分析:由△ABF2是等腰直角三角形可知|AF1|=|F1F2|,即=2c,由此推导出这个椭圆的离心率.解答:解:由△ABF2是等腰直角三角形可知|AF1|=|F1F2|,∴=2c又∵c2=a2﹣b2∴a2﹣c2﹣2ac=0∴e2+2e﹣1=0解之得:e=﹣1或e=﹣﹣1 (负值舍去).故选C点评:题主要考查了椭圆的简单性质.椭圆的离心率是高考中选择填空题常考的题目.应熟练掌握圆锥曲线中a,b,c和e的关系.二、填空题(本大题共3小题,每小题5分,满分15分,其中11-13题是必做题,14-15题是选做题,考生只能选做一题,两题都答的,只计算前一题得分)11.若函数y=sin(ωx+)(ω>0)的最小正周期是,则ω= 6 .考点:三角函数的周期性及其求法;正弦函数的图象.专题:三角函数的图像与性质.分析:由条件根据函数y=Asin(ωx+φ)的周期为,可得结论.解答:解:函数y=sin(ωx+)(ω>0)的最小正周期是=,则ω=6,故答案为:6.点评:本题主要考查函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为,属于基础题.12.定义运算,复数z满足,则复数z= 2﹣i .考点:复数代数形式的乘除运算.专题:新定义.分析:根据给出的定义把化简整理后,运用复数的除法运算求z.解答:解:由,得.故答案为2﹣i.点评:本题考查了复数的代数形式的乘除运算,复数的除法采用分子分母同时乘以分母的共轭复数,是基础题.13.在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β= 1 .类比到空间,在长方体中,一条对角线与从某一顶点出发的三条棱所成的角分别是α,β,γ则有正确的式子是cos2α+cos2β+cos2γ=1 .考点:类比推理.专题:探究型.分析:本题考查的知识点是类比推理,由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1,我们根据平面性质可以类比推断出空间性质,我们易得答案.解答:解:我们将平面中的两维性质,类比推断到空间中的三维性质.由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1,我们楞根据平面性质可以类比推断出空间性质,即在长方体中,一条对角线与从某一顶点出发的三条棱所成的角分别是α,β,γ,则有cos2α+cos2β+cos2γ=1.故答案为:1,cos2α+cos2β+cos2γ=1点评:本题考查的知识点是类比推理,在由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质,或是将平面中的两维性质,类比推断到空间中的三维性质.【极坐标与参数方程选做题】14.在极坐标系中,ρ=4sinθ是圆的极坐标方程,则点A(4,)到圆心C的距离是2.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:把极坐标化为直角坐标,利用两点之间的距离公式即可得出.解答:解:由ρ=4sinθ化为ρ2=4ρsinθ,∴x2+y2=4y,化为x2+(y﹣2)2=4,可得圆心C (0,2).点A(4,)化为A.∴点A到圆心C的距离d==2.故答案为:2.点评:本题考查了把极坐标化为直角坐标、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.【几何证明选讲选做题】15.(几何证明选讲选做题)如图,MN是圆O的直径,MN的延长线与圆O上过点P的切线PA相交于点A,若∠M=30°,切线AP长为,则圆O的直径长为 4 .考点:与圆有关的比例线段;圆的切线的判定定理的证明.专题:计算题;压轴题;直线与圆.分析:连接PN,由题设条件推导出△MPN中,ON=r,PM=2,MN=2r,∠MPN=90°,由此能求出圆O的直径长.解答:解:连接PN,∵MN是圆O的直径,MN的延长线与圆O上过点P的切线PA相交于点A,∠M=30°,切线AP长为,∴∠MPN=∠APO=90°,∠PNO=∠PON=60°,∴∠A=30°,PM=2,∴△MPN中,ON=r,PM=2,MN=2r,∠MPN=90°,∴(4r)2=r2+(2)2,解得r=2.∴圆O的直径长为4.故答案为:4.点评:本题考查与圆有关的比例线段的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.三、解答题(本大题共6小题,满分80分,解答须出文字说明、证明过程和演算步骤)16.设函数f(x)=2cosx(sinx+cosx)﹣1将函数f(x)的图象向左平移a个单位,得到函数y=g(x)的图象.(1)求函数f(x)的最小正周期;(2)若0<a<,且g(x)是偶函数,求a的值.考点:三角函数的周期性及其求法;函数奇偶性的性质;函数y=Asin(ωx+φ)的图象变换.专题:计算题;综合题.分析:(1)利用降次以及两角和的正弦,化简为一个角的一个三角函数的形式,求函数f (x)的最小正周期;(2)0<a<,化简g(x)利用它是偶函数,根据0<a<,求a的值.解答:解:(1)∵f(x)=2sinxcosx+2cos2x﹣1=sin2x+cos2x=sin(2x+)∴f(x)的最小正周期T==π(2)g(x)=f(x+a)=sin[2(x+α)+]=sin(2x+2α+)g(x)是偶函数,则g(0)=±=sin(2α+)∴2α+=kπ+,k∈Zα=( k∈Z)∵0<a<,∴α=点评:本题考查三角函数的周期性及其求法,函数奇偶性的应用,函数y=Asin(ωx+φ)的图象变换,考查计算能力,逻辑思维能力,是基础题.17.已知集合A={﹣2,0,1,3},在平面直角坐标系中,点M的坐标(x,y)满足x∈A,y ∈A.(Ⅰ)请列出点M的所有坐标;(Ⅱ)求点M不在y轴上的概率;(Ⅲ)求点M正好落在区域上的概率.考点:等可能事件的概率.专题:计算题.分析:(Ⅰ)根据题意,依次列举符合条件的M即可,(Ⅱ)由(Ⅰ)列举的结果,分析可得在y轴的点有4个,即可得不在y轴上的点的个数,由等可能事件的概率公式,计算可得答案;(Ⅲ)由(Ⅰ)列举的结果,验证可得符合不等式组的点的个数,由等可能事件的概率公式,计算可得答案.解答:解:(Ⅰ)根据题意,符合条件的点M有:(﹣2,﹣2)、(﹣2,0)、(﹣2,1)、(﹣2,3)、(0,﹣2)、(0,0)、(0,1)、(0,3)、(1,﹣2)、(1,0)、(1,1)、(1,3)、(3,﹣2)、(3,0)、(3,1)、(3,3);共16个;(Ⅱ)其中在y轴上,有(﹣2,0)、(0,0)、(1,0)、(3,0),共4个,则不在y轴的点有16﹣4=12个,点M不在y轴上的概率为=;(Ⅲ)根据题意,分析可得,满足不等式组的点有(1,1)、(1,3)、(3,1),共3个;则点M正好落在区域上的概率为.点评:本题考查等可能事件的概率计算,关键是用列举法得到符合条件的点的个数,注意(Ⅲ)中是古典概型,而不是几何概型.18.如图(1)所示,正△ABC的边长为2a,CD是AB边上的高,E,F分别是AC,BC的中点.现将△ABC沿CD翻折,使翻折后平面ACD⊥平面BCD(如图(2)),(1)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;(2)求三棱锥C﹣DEF的体积.考点:平面与平面垂直的性质;棱柱、棱锥、棱台的体积;空间中直线与平面之间的位置关系.专题:计算题.分析:(1)判断:AB∥平面DEF,再由直线与平面平行的判定定理进行证明.(2)过点E作EM⊥DC于点M,由面ACD⊥面BCD,面ACD∩面BCD=CD,而EM⊂面ACD,知EM是三棱锥E﹣CDF的高,由此能求出三棱锥C﹣DEF的体积.解答:解:(1)判断:AB∥平面DEF,(2分)证明:因在△ABC中,E,F分别是AC,BC的中点,∴EF∥AB,(5分)又因AB⊄平面DEF,∴EF⊂平面DEF,(6分)所以AB∥平面DEF,(7分)(2)过点E作EM⊥DC于点M,∵面ACD⊥面BCD,面ACD∩面BCD=CD,而EM⊂面ACD故EM⊥平面BCD 于是EM是三棱锥E﹣CDF的高,(9分)又△CDF的面积为S△CDF====,EM=,(11分)故三棱锥C﹣DEF的体积==.点评:本题考查直线与平面的位置关系的判断,考查三棱锥的体积的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.19.已知椭圆的中心在原点,焦点在x轴上,离心率为,且椭圆经过圆C:x2+y2﹣4x+2y=0的圆心C.(1)求椭圆的方程;(2)设直线l过椭圆的焦点且与圆C相切,求直线l的方程.考点:椭圆的标准方程;直线的一般式方程.专题:计算题.分析:(1)把圆C的方程化为标准方程,进而求得圆心和半径,设椭圆的标准方程,根据题设得方程组求得a和b,则椭圆的方程可得.(2)跟椭圆方程求得焦点坐标,根据两点间的距离求得|F2C|小于圆的半径,判断出F2在圆C内,过F2没有圆C的切线,设直线的方程,求得点C到直线l的距离进而求得k,则直线方程可得.解答:解:(1)圆C方程化为:(x﹣2)2+(y+)2=6,圆心C(2,﹣),半径r=设椭圆的方程为=1(a>b>0),则所以所求的椭圆的方程是:=1.(2)由(1)得到椭圆的左右焦点分别是F1(﹣2,0),F2(2,0),|F2C|==<∴F2在C内,故过F2没有圆C的切线,设l的方程为y=k(x+2),即kx﹣y+2k=0点C(2,﹣)到直线l的距离为d=,由d=得=解得:k=或k=﹣,故l的方程为x﹣5y+2=0或x+y+2=0点评:本题主要考查了椭圆的标准方程.考查了学生综合运用所学知识解决问题的能力.20.已知函数f(x)=(1)求函数f(x)的单调递增区间;(2)求函数f(x)的零点.考点:利用导数研究函数的单调性;函数零点的判定定理.分析:(1)当x>时,对函数f(x)求导,令导函数大于0求x的X围;当x≤时根据二次函数的图象和性质可得答案.(2)当x>时根据函数的单调性与极值点可求出零点;当x≤时对函数判别式进行分析可得答案.解答:解(1)当x>时,f′(x)=1﹣=由f′(x)>0得x>1.∴f(x)在(1,+∞)上是增函数.当x≤时,f(x)=x2+2x+a﹣1=(x+1)2+a﹣2,∴f(x)在上是增函数∴f(x)的递增区间是(﹣1,)和(1,+∞).(2)当x>时,由(1)知f(x)在(,1)上递减,在(1,+∞)上递增且f′(1)=0.∴f(x)有极小值f(1)=1>0,此时f(x)无零点.当x≤时,f(x)=x2+2x+a﹣1,△=4﹣4(a﹣1)=8﹣4a.当△<0,即a>2时,f(x)无零点.当△=0,即a=2时,f(x)有一个零点﹣1.当△>0,且f()≥0时,即∴时f(x)有两个零点:x=或x=,即x=﹣1+或x=﹣1﹣当△>0且f()<0,即∴a<﹣时,f(x)仅有一个零点﹣1﹣点评:本题主要考查函数的单调性与其导函数的正负之间的关系和函数零点的求法.属中档题.21.数列{a n}的前n项和为S n,已知.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{}满足,求数列{}的前n项和T n.(Ⅲ)X三同学利用第(Ⅱ)题中的T n设计了一个程序流程图,但李四同学认为这个程序如果被执行会是一个“死循环”(即程序会永远循环下去,而无法结束).你是否同意李四同学的观点?请说明理由.考点:数列的求和;等差数列的前n项和.专题:综合题;等差数列与等比数列.分析:(Ⅰ)利用,a1=S1;当n>1时,a n=S n﹣S n﹣1可求(Ⅱ)根据题意需要分类讨论:当n为偶数和n为奇数两种情况,结合等差数列与等比数列的求和公式可求(Ⅲ)记d n=T n﹣P,结合(II)中的求和可得d n,进而可判断d n的单调性,分n为偶数,奇数两种情况讨论d n的X围,结合所求d n可判断其循环规律,从而可知判断解答:解:(Ⅰ)当n=1时,a1=S1=2;当n>1时,a n=S n﹣S n﹣1=n+1,则(Ⅱ)当n为偶数时,当n为奇数时,n﹣1为偶数,则(Ⅲ)记d n=T n﹣P当n为偶数时,.所以从第4项开始,数列{d n}的偶数项开始递增,而且d2,d4,…,d10均小于2012,d12>2012,则d n≠2012(n为偶数).当n为奇数时,.所以从第5项开始,数列{d n}的奇数项开始递增,而且d1,d3,…,d11均小于2012,d13>2012,则d n≠2012(n为奇数).故李四同学的观点是正确的.点评:本题以程序框图为载体综合考查了利用数列的递推公式求解数列的通项公式及数列的和的求解,体现了分类讨论思想的应用,。

专题07 随机变量及其分布【专项训练】高二数学下学期期末专项复习(新人教A版2019)

专题07 随机变量及其分布【专项训练】高二数学下学期期末专项复习(新人教A版2019)

专题07 随机变量及其分布【专项训练】一、单选题1.若随机变量~(,)B n p ξ,且()2E ξ=,8()5D ξ=,则p =( ) A .15B .25C .35D .45【答案】A 【详解】解:因为随机变量~(,)B n p ξ,且()2E ξ=,8()5D ξ=, 所以28(1)5np np p =⎧⎪⎨-=⎪⎩,解得1015n p =⎧⎪⎨=⎪⎩,故选:A2.学校从高一、高二、高三中各选派10名同学参加“建党100周年党史宣讲”系列报告会,其中三个年级参会同学中女生人数分别为5、6、7,学习后学校随机选取一名同学汇报学习心得,结果选出一名女同学,则该名女同学来自高三年级的概率为( ) A .718B .730C .915D .13【答案】A 【详解】设事件A 为“30人中抽出一名女同学”,事件B 为“30人中抽出一名高三同学”, 则56718()3030P A ++==,7()30P AB =, 所以()()7()18P AB P B A P A ==,故选:A.3.已知离散型随机变量X 的分布列为则X 的数学期望E (X )=( ) A .1 B .1.5 C .2.5D .1.7【详解】()10.420.530.1 1.7E X=⨯+⨯+⨯=.故选:D.4.某次市教学质量检测,甲、乙、丙三科考试成绩服从正态分布,相应的正态曲线如图所示,则下列说法中正确的是()A.三科总体的标准差相同B.甲、乙、丙三科的总体的平均数不相同C.丙科总体的平均数最小D.甲科总体的标准差最小【答案】D【详解】解:由图象知甲、乙、丙三科的平均分一样,但标准差不同,σ甲<σ乙<σ丙.故选:D.5.已知P(B|A)=13,P(A)=25,则P(AB)等于()A.56B.910C.215D.115【答案】C 【详解】由题意,知()()(122315 )5P AB P B A P A==⨯=故选:C6.随机变量X所有可能取值是-2,0,3,5,且P(X=-2)=14,P(X=3)=12,P(X=5)=112,则P(X=0)的值为()A.0 B.14C.16D.18【详解】由各个变量概率和为1可得:P (X =-2)+P (X =0)+P (X =3)+P (X =5)=1, 所以111(0)14212P X +=++=,解得1(0)6P X == 故选:C7.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球且不放回,直到取出的球是白球为止,所需要的取球次数为随机变量X ,则X 的可能取值为( )A .1,2,3,…,6B .1,2,3,…,7C .0,1,2,…,5D .1,2,…,5 【答案】B 【详解】由于取到白球时停止,所以最少取球次数为1,即第一次就取到了白球; 最多次数是7次,即把所有的黑球取完之后再取到白球. 所以取球次数可以是1,2,3,…,7. 故选:B8.若离散型随机变量2~4,3X B ⎛⎫ ⎪⎝⎭,则()E X 和()D X 分别为( ) A .83,169 B .83,89C .89,83D .169,83【答案】B 【详解】因为离散型随机变量2~4,3X B ⎛⎫ ⎪⎝⎭, 所以()28433E X =⨯=, ()22841339D X ⎛⎫=⨯⨯-= ⎪⎝⎭.9.设随机变量()24,N ζδ,若()10.4P a ζ>+=,则()7P a ζ>-=( )A .0.4B .0.5C .0.6D .0.7【答案】C随机变量2~(4,8)N ζ,对称轴为:4μ= 因为(1)0.40.5P a ζ>+=<,所以14a +>, 根据对称性可得(1)(7)0.4P a P a ζζ>+=<-=, 则(7)0.6P a ζ>-=. 故选:C.10.设()()221122,,,X N Y N μσμσ~~,这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .()()21P Y P Y μμ≥≥≥B .()()21P X P X σσ≤≤≤C .函数()()F t P X t =>在R 上单调递增D .()()111122222222P X P Y μσμσμσμσ-<<+=-<<+ 【答案】D 【详解】由正态分布密度曲线的性质得:X ,Y 的正态分布密度曲线分别关于直线12,x x μμ==对称, 对于A :由图象得12μμ<,所以()()21P Y P Y μμ≥<≥,故A 不正确;对于B :由图象得X 的正态分布密度曲线较Y 的正态分布密度曲线“廋高”,所以12σσ<,所以()()21>P X P X σσ≤≤,故B 不正确;对于C :由图象得:当1>t μ时,函数()()F t P X t =>在()t +∞,上单调递减,故C 不正确; 对于D :根据3σ原则:()111168.3%P X μσμσ-<<+=,()11112295.4%P X μσμσ-<<+=,()11113399.7%P X μσμσ-<<+=,无论σ 取何值时,有()()111122222222P X P Y μσμσμσμσ-<<+=-<<+,故D 正确,故选:D.二、多选题11.近年来中国进入一个鲜花消费的增长期,某农户利用精准扶贫政策,贷款承包了一个新型温室鲜花大棚,种植销售红玫瑰和白玫瑰.若这个大棚的红玫瑰和白玫瑰的日销量分别服从正态分布()2,30N μ和()2280,40N ,则下列选项正确的是( )附:若随机变量X 服从正态分布()2,N μσ,则()0.6826P X μσμσ-<<+≈.A .若红玫瑰日销售量范围在(30,280)μ-的概率是0.6826,则红玫瑰日销售量的平均数约为250B .红玫瑰日销售量比白玫瑰日销售量更集中C .白玫瑰日销售量比红玫瑰日销售量更集中D .白玫瑰日销售量范围在()280,320的概率约为0.3413 【答案】ABD 【详解】对于A ,因为红玫瑰日销售量范围在(30,280)μ-的概率是0.6826, 故30280μ+≈即250μ≈,故A 正确.对于B ,因为3040<,故红玫瑰日销售量比白玫瑰日销售量更集中,故B 对,C 错. 白玫瑰日销售量范围在()280,320的概率约为0.68260.34132=,故D 正确. 故选:ABD.12.已知三个正态分布密度函数()()()222,1,2,3i i x i f x x R i μσ--=∈=的图象如图所示,则下列结论正确的是( )A .123σσσ==B .123σσσ=<C .123μμμ=>D .123μμμ<=【答案】BD 【详解】正态密度曲线关于直线x μ=对称,且μ越大图象越靠近右边,σ越小图象越瘦长. 因此,123μμμ<=,123σσσ=<.13.甲、乙两人练习射击,命中目标的概率分别为12和13,甲、乙两人各射击一次,下列说法正确的是( )A .目标恰好被命中一次的概率为1123+ B .目标恰好被命中两次的概率为1123⨯C .目标被命中的概率为12112323⨯+⨯D .目标被命中的概率为12123-⨯【答案】BD 【详解】甲、乙两人练习射击,命中目标的概率分别为12和13,甲、乙两人各射击一次, 在A 中,目标恰好被命中一次的概率为1112123232⨯+⨯=,故A 错误; 在B 中,由相互独立事件概率乘法公式得:目标恰好被命中两次的概率为111236⨯=,故B 正确; 在CD 中,目标被命中的概率为112111233⎛⎫⎛⎫--⨯-= ⎪ ⎪⎝⎭⎝⎭,故C 错误,D 正确. 故选:BD .14.袋子中有2个黑球,1个白球,现从袋子中有放回地随机取球4次,取到白球记0分,黑球记1分,记4次取球的总分数为X ,则( ) A .2~4,3XB ⎛⎫ ⎪⎝⎭B .8(2)81P X ==C .X 的期望8()3E X =D .X 的方差8()9D X =【答案】ACD 【详解】从袋子中有放回地随机取球4次,则每次取球互不影响, 并且每次取到的黑球概率相等,又取到黑球记1分, 取4次球的总分数,即为取到黑球的个数,所以随机变量X 服从二项分布2~4,3X B ⎛⎫ ⎪⎝⎭,故A 正确;2X =,记其概率为22242124(2)3381P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,故B 错误;因为2~4,3X B ⎛⎫ ⎪⎝⎭,所以X 的期望28()433E X =⨯=,故C 正确; 因为2~4,3X B ⎛⎫ ⎪⎝⎭,所以X 的方差218()4339D X =⨯⨯=,故D 正确. 故选:ACD . 15.已知()2~,X N μσ,22()2()x f x μσ--=,x ∈R ,则( )A .曲线()y f x =与x 轴围成的几何图形的面积小于1B .函数()f x 图象关于直线=x μ对称C .()2()()P X P X P X μσμμσμσ>-=<<++≥+D .函数()()F x P X x =>在R 上单调递增 【答案】BC 【详解】选项A. 曲线()y f x =与x 轴围成的几何图形的面积等于1, 所以A 不正确.选项B. 222()x f x σμ-+=,222()x f x σμ--=所以()()f x f x μμ+=-,所以函数()f x 图象关于直线x μ=对称,所以选项B 正确.选项C. 因为()()P X P X μμσμμσ>>-=<>+所以()()()P X P X P X μσμσμσμσ>-=-<<++≥+2()()P X P X μμσμσ=<<++≥+ 所以选项C 正确.选项D. 由正态分布曲线可知,当x 越大时,其概率越小.即函数()()F x P X x =>随x 的增大而减小,是减函数,所以选项D 不正确. 故选:BC三、解答题16.设离散型随机变量X 的分布列为求:(1)21X +的分布列; (2)求(14)P X <≤的值. 【详解】由分布列的性质知:0.20.10.10.31m ++++=,解得0.3m = (1)由题意可知(211)(0)0.2P X P X +====,(213)(1)0.1P X P X +====,(215)(2)0.1P X P X +==== (217)(3)0.3P X P X +====,(219)(4)0.3P X P X +====所以21X +的分布列为:(2)(14)(2)(3)(4)0.10.30.30.7P X P X P X P X <≤==+=+==++=17.为降低雾霾等恶劣气候对居民的影响,某公司研发了一种新型防雾霾产品.每一台新产品在进入市场前都必须进行两种不同的检测,只有两种检测都合格才能进行销售,否则不能销售.已知该新型防雾霾产品第一种检测不合格的概率为16,第二种检测不合格的概率为110,两种检测是否合格相互独立.(1)求每台新型防雾霾产品不能销售的概率;(2)如果产品可以销售,则每台产品可获利40元;如果产品不能销售,则每台产品亏损80元(即获利80-元).现有该新型防雾霾产品3台,随机变量X 表示这3台产品的获利,求X 的分布列及数学期望. 【详解】(1)设事件A 表示“每台新型防雾霾产品不能销售” 事件A 表示“每台新型防雾霾产品能销售” 所以()113116104P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭ 所以()()114P A P A =-= (2)根据(1)可知,“每台新型防雾霾产品能销售”的概率为34 “每台新型防雾霾产品不能销售”的概率为14X 所有的可能取值为:240-,120-,0,120则()30311240464P X C ⎛⎫=-== ⎪⎝⎭ ()2131391204464P X C ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭()1223132704464P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()333327120464P X C ⎛⎫=== ⎪⎝⎭所以X 的分布列为所以()()1927240120120646464EX =-⨯+-⨯+⨯ 则30EX =18.为落实中央“坚持五育并举,全面发展素质教育,强化体育锻炼”的精神,某高中学校鼓励学生自发组织各项体育比赛活动,甲、乙两名同学利用课余时间进行乒乓球比赛,规定:每一局比赛中获胜方记1分,失败方记0分,没有平局,首先获得5分者获胜,比赛结束.假设每局比赛甲获胜的概率都是35. (1)求比赛结束时恰好打了6局的概率;(2)若甲以3:1的比分领先时,记X 表示到结束比赛时还需要比赛的局数,求X 的分布列及期望. 【详解】解:(1)比赛结束时恰好打了6局,甲获胜的概率为44153234865553125P C ⎛⎫⎛⎫=⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭,恰好打了6局,乙获胜的概率为14125322965553125P C ⎛⎫⎛⎫=⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭, 所以比赛结束时恰好打了6局的概率为1248696582312531253125P P P =+=+=. (2)X 的可能取值为2,3,4,5,()2392525P X ⎛⎫===⎪⎝⎭, ()12233363555125P X C ==⨯⨯⨯=,()2413323212445555625P X C ⎛⎫⎛⎫==⨯⨯⨯+=⎪ ⎪⎝⎭⎝⎭, ()331344323232965555555625P X C C ⎛⎫⎛⎫==⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 所以X 的分布列如下:故()936124961966234525125625625625E X =⨯+⨯+⨯+⨯=.。

高中数学练习题 2020-2021学年湖北省荆门市高二(下)期末数学复习练习试卷(8)

高中数学练习题 2020-2021学年湖北省荆门市高二(下)期末数学复习练习试卷(8)

2020-2021学年湖北省荆门市钟祥实验中学高二(下)期末数学复习练习试卷(8)一、选择题:本大题10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是满足题目要求的.A .12B .1C .32D .21.(5分)设m ∈R ,且2m 1−i+1-i 是实数,则m =( )A .{x |x ≤0}B .{x |2≤x ≤4}C .{x |0≤x <2或x >4}D .{x |0<x ≤2或x ≥4}2.(5分)已知全集为R ,集合A ={x |(12)x ≤1},B ={x |x 2-6x +8≤0},则A ∩(∁R B )=( )A .①②B .①③C .②③D .③④3.(5分)给出下列结论:①“a >b ”是“a 2>b 2”的充分条件;②若p :∀x ∈R ,x 2+2x +2>0,则¬p :∃x 0∈R ,x 02+2x 0+2≤0;③“若m >0,则方程x 2+x -m =0有实数根”的否命题是“若m ≤0,则方程x 2+x -m =0没有实数根”;④若p∧q 是假命题,则p 、q 均为假命题.则其中正确结论的序号是( )A .[-13,5]B .[-13,7]C .[0,7]D .[5,7]4.(5分)已知变量x ,y 满足约束条件V Y Y W Y Y X x −y +2≥0x +y −4≤0x −2y −1≤0,则目标函数z =2x +y 的取值范围是( )A .-10B .10C .-6D .65.(5分)执行如图所示的程序框图,输出的S 值为( )二、填空题:本大题共5小题,每小题5分,共25分.答错位置,书写不清,模棱两可均不得分.A .2B .2C .22D .306.(5分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若cosB =34,sinC =2sinA ,且S △ABC =74,则b =( )√√√√A .1B .2C .3D .47.(5分)对于非零向量a 、b ,给出以下结论:①若a ∥b ,则a 在b 方向上的投影为|a |;②若a ⊥b ,则a •b =(a •b )2;③若a •c =b •c ,则a =b ;④若|a |=|b |,且a ,b 同向,则a >b .其中所有正确结论的个数是( )→→→→→→→→→→→→→→→→→→→→→→→→→A .m ≥4或m ≤-2B .m ≥2或m ≤-4C .-2<m <4D .-4<m <28.(5分)已知x >0,y >0,若2y x +8x y>m 2+2m 恒成立,则实数m 的取值范围是( )A .相交B .内切C .外切D .相离9.(5分)(文科做)双曲线x 2a 2−y 2b 2=1的左焦点为F 1,顶点为A 1,A 2,P 是该双曲线右支上任意一点,则分别以线段PF 1,A 1A 2为直径的两圆一定是( )A .(0,6]B .(0,7]C .(6,7]D .(6,7)10.(5分)已知函数f (x )=V W X |lgx |,x >0x +7,x ≤0,若关于x 的方程f (x 2+2x )=a 有6个不相等的实根,则实数a 的取值范围是( )11.(5分)计算:sin 256π+cos 263π+tan (-274π)= .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.12.(5分)若一个几何体的三视图如图,则此几何体的体积为 .13.(5分)若a =21(x -1x 2)dx ,则(x -a x )10的展开式中常数项为 .∫14.(5分)在Rt △ABC 中,若∠C =90°,AC =b ,BC =a ,则△ABC 外接圆半径r =a 2+b 22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a ,b ,c ,则其外接球的半径R = .√15.(5分)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染指数量Pmg /L 与时间th 间的关系为P =P 0e -kt .如果在前5个小时消除了10%的污染物,则10小时后还剩 %的污染物.16.(12分)已知函数f (x )=3sinωxcosωx +cos 2ωx +m (ω>0,x ∈R )的最小正周期为π,最大值为2.(Ⅰ)求ω和m 值;(Ⅱ)求函数f (x )在区间[0,π2]上的取值范围.√17.(12分)已知数列{a n }是公差不为0的等差数列,满足S 3=9,且a 1,a 2,a 5成等比数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b 1=a 1,b n +1-b n =2a n (n ∈N *),求数列{b n }的通项公式.18.(12分)某班有12名男生和18名女生参加综合素质测试,所得分数的茎叶图如图,若成绩在75分以上(包括75分)定义为“优秀”,成绩在75分以下(不包括75分)定义为“非优秀”.(Ⅰ)如果用分层抽样的方法从“优秀”和“非优秀”中共抽取5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?(Ⅱ)若从所有“优秀”中选3人参加综合素质展示活动,用ξ表示所选学生中女生的人数,写出ξ的分布列,并求ξ的数学期望.19.(12分)如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .(1)证明:PA ∥平面EDB ;(2)证明:PB⊥平面EFD;(3)求二面角C-PB-D的大小.(m≠-20.(13分)设点A、B的坐标分别为(0,1),(0,-1),直线AM、BM相交于点M,且它们的斜率之积是常数-1m+11).(Ⅰ)求点M的轨迹C的方程;交曲线C于点P,Q,是否存在m,使得以PQ为直径的圆恒过点A?若存在,求m的值;若不存在,请说明(Ⅱ)设直线l:y=kx-13理由.x2+ax-lnx(a∈R)21.(14分)设函数f(x)=1−a2(Ⅰ)当a=1时,求函数f(x)的极值;(Ⅱ)当a≥2时,讨论函数f(x)的单调性;(Ⅲ)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有ma+ln2>|f(x1)-f(x2)|成立,求实数m的取值范围.。

高二下学期期末考试数学试题(图片版)

高二下学期期末考试数学试题(图片版)
(2) ,则 或 ;………………………………8分
,则 .………………………………………10分
故函数在 和 上单调递增…………………………………………11分
在 上单调递减.………………………………………………………………12分
17.(本小题满分12分)
解:(Ⅰ)由A∩B={3,7}得 2+4 +2=7,解得 =1或 =-5.………………4分
所以 , 在 上单调递减,……………………………………10分
.………………………………………………………………………11分
所以 最小值为 .…………………………………………………………………12分
所以至少一种产品研发成功的概率为 .………………………………………5分
(2)依题意, ,……………………6分
由独立试验同时发生的பைடு நூலகம்率计算公式可得:
;………………………………………………7分
;…………………………………………………8分
;……………………………………………………9分
;…………………………………………………………10分
所以 的分布列如下:
………………………………………………………………………………………11分
则数学期望 .
…………………………………………………………………………………………12分
20.(本小题满分12分)
解:(Ⅰ)函数 …………………………………………………1分
所以 ………………………………………………………………3分
当 =1时,集合B={0,7,3,1};……………………………………………………5分
当 =-5时,因为2- =7,集合B中元素重复.…………………………………6分

高中数学选择性必修三 专题02二项式定理(含答案)高二数学下学期期中专项复习

高中数学选择性必修三 专题02二项式定理(含答案)高二数学下学期期中专项复习

专题02二项式定理一、单选题1.(2020·吐鲁番市高昌区第二中学高二期末)101x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为( ) A .第5项 B .第5项或第6项 C .第6项D .不存在【答案】C 【详解】解:根据题意,101()x x +展开式中的通项为10102110101()()()r r r rr r T C x C x x--+==, 令1020r -=,可得=5r ;则其常数项为第516+=项; 故选C .2.(2021·全国高二课时练习)在521x x ⎛⎫+- ⎪⎝⎭的展开式中,2x 项的系数为( )A .50-B .30-C .30D .50【答案】B 【详解】521x x ⎛⎫+- ⎪⎝⎭表示5个因式21x x ⎛⎫+- ⎪⎝⎭的乘积,在这5个因式中,有2个因式都选x -,其余的3个因式都选1,相乘可得含2x 的项; 或者有3个因式选x -,有1个因式选1x,1个因式选1,相乘可得含2x 的项, 故2x 项的系数为()231552230C C C +-⋅⋅=-, 故选B .3.(2020·江苏高一期中)二项式43123nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( ) A .8 B .7C .6D .5【答案】B 【详解】由43123nx x ⎛⎫- ⎪⎝⎭得:展开式的通项为471123rn r r n rr n T C x--+⎛⎫=- ⎪⎝⎭, 令470n r -=, 据题意此方程有解,74r n ∴=, 当4r =时,n 最小为7,故选:B.4.(2021·山东济宁市·高三一模)若()52mx m⎫-∈⎪⎭R 的展开式中5x 的系数是80,则实数m =( ) A .2- B .1-C .1D .2【答案】A 【详解】二项式展开式的通项为()()552552215r rrrr r r T C m C mx x--+-=-=,令55522r -=,得3r =, 则()33554580T m C x x =-=,所以()33580m C -=,解得2m =-.故选:A5.(2020·山东枣庄市·高二期末)若()712x ax x ⎛⎫+- ⎪⎝⎭展开式的常数项等于280- ,则a =( )A .3-B .2-C .2D .3【答案】C 【详解】解:71ax x ⎛⎫- ⎪⎝⎭展开式的通项公式为:()()7271771kkkk kk k T C ax C a x x --+⎛⎫=-=- ⎪⎝⎭,所以当3k =时,1x项的系数为:()337C a -, 71ax x ⎛⎫- ⎪⎝⎭的展开式无常数项,所以()712x ax x ⎛⎫+- ⎪⎝⎭展开式的常数项为:()337280C a -=-,解得:2a =故选:C.6.(2021·贵州高三开学考试(理))已知二项式1nx x ⎛⎫- ⎪⎝⎭的展开式中,第二项和第四项的二项式系数相等,则n =( ) A .6 B .5 C .4 D .3【答案】C 【详解】因为二项式展开式中第二项和第四项的二项式系数相等, 所以31n n C C =, 所以4n =, 故选:C7.(2021·湖北黄冈市·高二期末)已知二项式()21nx -的展开式中仅有第4项的二项式系数最大,则展开式中3x 项的系数为( ) A .-80 B .80 C .-160 D .-120【答案】C 【详解】解:因为二项式()21nx -的展开式中仅有第4项的二项式系数最大,所以6n =,所以()621x -的展开式的通项为()()61621rrrr T C x -+=-,令6r 3-=,得3r =,故()()333331621160T C x x +=-=-,故展开式中3x 的系数为160- 故选:C8.(2020·安徽省太和第一中学高二月考(理))已知7280128(2)(1)(1)(1)x x a a x a x a x -=+-+-+⋯⋯+-,则56a a +=( )A .14-B .0C .14D .28-【答案】B 【详解】解:由题知,7280128(2)(1)(1)(1)x x a a x a x a x -=+-+-+⋯⋯+-,且()()77(2)1111x x x x -=-+--⎡⎤⎡⎤⎣⎦⎣⎦,则()()235457711114a C C =⋅-+⋅⋅-=-, ()()126567711114a C C =⋅-+⋅⋅-=,所以5614140a a +=-+=. 故选:B.9.(多选)(2021·全国高三其他模拟)已知7270127(12)x a a x a x a x -=+++⋅⋅⋅+,则( ) A .01a = B .3280a =-C .1272a a a ++⋅⋅⋅+=-D .127277a a a ++⋅⋅⋅+=- 【答案】ABC 【详解】因为7270127(12)x a a x a x a x -=+++⋅⋅⋅+ 令0x =,得01a =,故选项A 正确; 令1x =,得01271a a a a -=+++⋅⋅⋅+, 所以1272a a a ++⋅⋅⋅+=-,故选项C 正确;易知该二项展开式的通项 7177C 1(2)(2)C r r r r r rr T x x -+=-=-,所以3337(2)C 280a =-=-,故选项B 正确;对7270127(12)x a a x a x a x -=+++⋅⋅⋅+两边同时求导,得6612714(12)27x a a x a x --=++⋅⋅⋅+, 令1x =,得1272714a a a ++⋅⋅⋅+=-,故选项D 错误. 故选::ABC10.(多选)(2021·全国高二课时练习)(多选题)若二项式6(x+展开式中的常数项为15,则实数m 的值可能为( ) A .1B .-1C .2D .-2【答案】AB 【详解】二项式6x⎛⎝展开式的通项为,661rr r r C x T -+=3626rr r x m C -=,令3602r -=,得4r =, 常数项为44615C m =,41m =,得1m =±,故答案为±1.故选:AB11.(多选)(2020·江苏宿迁市·宿迁中学高二期中)对于()()N na b n *+∈展开式的二项式系数下列结论正确的是( )A .m n m n n C C -=B .11m m mn n n C C C -++=C .当n 为偶数时,012...2n n n n n n C C C C ++++=D .012...2n nn n n n C C C C ++++= 【答案】ABCD 【详解】解:选项A :由组合数的运算直接可得m n mn n C C -=,故选项A 正确; 选项B :由杨辉三角直接可得11m m mn n n C C C -++=,故选项B 正确;选项C :二项式展开式中,令1a b ==,不论n 为奇数还是偶数,都可得012...2n nn n n n C C C C ++++=,故选项C 正确;选项D :由选项C 可知012...2nnn n n n C C C C ++++=,故选项D 正确. 故选:ABCD12.(多选)(2021·江苏省天一中学高三二模)已知6112a x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则下列结论正确的有( )A .1a =B .展开式中常数项为160C .展开式系数的绝对值的和1458D .若r 为偶数,则展开式中r x 和1r x -的系数相等 【答案】ACD 【详解】对于A , 6112a x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭ 令二项式中的x 为1得到展开式的各项系数和为1a +,12a ∴+=1a ,故A 正确;对于B ,661111212a x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 6611122x x x x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,612x x ⎛⎫- ⎪⎝⎭展开式的通项为66621(1)2r r r r r T C x --+=-,当612x x ⎛⎫- ⎪⎝⎭展开式是中常数项为:令620r -=,得3r = 可得展开式中常数项为:33346(1)2160T C =-=-,当6112x x x ⎛⎫- ⎪⎝⎭展开式是中常数项为: 662665261(1)2(1)2r r r r r r r rC xC x x ----=⋅-- 令520r -=,得52r =(舍去) 故6112a x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中常数项为160-.故B 错误; 661111212a x xx x x x ⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭对于C ,求其展开式系数的绝对值的和与61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数的绝对值的和相等 61112xx x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭,令1x =,可得:66111112231458⎛⎫⎛⎫++⨯ ⎪⎪⎝⎭⎝==⎭ ∴61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数的绝对值的和为:1458.故C 正确; 对于D ,66611111222a x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+-=-+- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭612x x ⎛⎫- ⎪⎝⎭展开式的通项为66621(1)2r r r r r T C x --+=-, 当r 为偶数,保证展开式中r x 和1r x -的系数相等 ①2x 和1x 的系数相等,61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数中2x 系数为:622226(1)2C x -- 展开式系数中1x 系数为:622226(1)2C x --此时2x 和1x 的系数相等, ②4x 和3x 的系数相等,61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数中4x 系数为:15146(1)2C x - 展开式系数中3x 系数为:15146(1)2C x -此时4x 和3x 的系数相等, ③6x 和5x 的系数相等,61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数中6x 系数为:66600(1)2C x -展开式系数中5x 系数为:66600(1)2C x -此时6x 和5x 的系数相等,故D 正确;综上所在,正确的是:ACD 故选:ACD. 二、填空题13.(2020·全国高二课时练习)在如图所示的三角形数阵中,从第3行开始,每一行除1以外,其他每一个数字都是其上一行的左、右两个数字之和.若在此数阵中存在某一行,满足该行中有三个相邻的数字之比为4:5:6,则这一行是第______行(填行数). 第0行 1 第1行 1 1 第2行 1 2 1 第3行 1 3 3 1 第4行 1 4 6 4 1 第5行 1 5 10 10 5 1 第6行 1 6 15 20 15 6 1 【答案】98 【详解】三角形数阵中,第n 行的数由二项式系数(),,kn C k N N k n n ∈∈≤组成,如果第n 行中有1415k n k n C k C n k -==-+,1156kn k n C k C n k ++==-, 那么9445116k n n k -=⎧⎨-=⎩,解得9844n k =⎧⎨=⎩,故答案为:98.14.(2020·湖南高二月考)如图中的杨辉三角最早出现于我国南宋数学家杨辉1261年所著的《详解九章算法》.它有很多奇妙的性质,如除1以外的每个数等于它“肩上”两数之和、揭示了()na b +(n 为非负整数)展开式的项数及各项系数的有关规律等.由此可得图中第7行从左到右数第4个数是______;第n 行的所有数字之和为______.【答案】35 2n 【详解】解:根据除1以外的每个数等于它“肩上”两数之和得第7行从左到右数第4个数是第6行从左到右数第3个与第4个数之和,即152035+=;第n 行的所有数字之和为()na b +的展开式的所有项的二项式系数和2n .。

专题03 复数-高二数学(文)下学期期中专项复习(人教A版选修1-2+4-4+4-5)(解析版)

专题03 复数-高二数学(文)下学期期中专项复习(人教A版选修1-2+4-4+4-5)(解析版)

专题03复数【专项训练】-2020-2021学年高二数学下学期期中专项复习一、单选题1.(2021·全国高三专题练习(文))复数12iz i -=+(i 为虚数单位)的虚部为( ) A .15B .35C .-35D .35i【答案】C 【分析】先化简,再求虚部. 【详解】()()222121221313225555i i i i i i i z i i i -----+-=====-+-,所以复数z 的虚部为35. 故选:C.2.(2021·全国高三其他模拟(文))已知复数z 满足23iz i+=+,则z =( )A .2B C D【答案】A 【分析】 先计算23iz i+=+,再求模. 【详解】由()()()()2327,33310i i i iz i i i +-++===++-则z =故选:A. 【点睛】复数的计算常见题型:(1) 复数的四则运算直接利用四则运算法则; (2) 求共轭复数是实部不变,虚部相反; (3) 复数的模的计算直接根据模的定义即可.3.(2021·北京朝阳区·高三一模)如果复数2()bib i+∈R 的实部与虚部相等,那么b =( ) A .2- B .1C .2D .4【答案】A 【分析】把复数化为代数形式,得实部和虚部,由此可求得b . 【详解】2(2)2bi i b i b i i i+-==-,所以实部为b ,虚部为2-,所以2b =-. 故选:A .4.(2021·四川高三一模(文))已知复数12iz i+=,则z 的共轭复数为( ) A .2i + B .2i -C .2i -+D .2i --【答案】A 【分析】 先把12iz i+=化简,再写出z 的共轭复数. 【详解】 因为122iz i i+==-, 则2z i =+. 故选:A5.(2021·陕西宝鸡市·高三二模(文))已知复数21iz i=+(i 为虚数单位),则复数z 对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【分析】利用复数的除法化简复数z ,利用复数的几何意义可得出结论. 【详解】()()()()21211111i i i z i i i i i i -===-=+++-,因此,复数z 对应点位于第一象限.6.(2021·全国高一课时练习)已知复数z =a 2+(2a +3)i ()a R ∈的实部大于虚部,则实数a 的取值范围是( ) A .-1或3B .{3a a >或}1a <-C .{3a a >-或}1a < D .{3a a >或}1a =-【答案】B 【分析】根据题意实部大于虚部列式求解不等式,即得结果. 【详解】由已知实部大于虚部,可得a 2>2a +3,即a 2-2a -3>0,即()()130a a +->,解得3a >或1a <-,故实数a 的取值范围是{3a a >或}1a <-. 故选:B.7.(2021·全国高一课时练习)复数2341i i i i++-=( )A . 1122i -- B . 1122+i -C .1122i - D . 1122+i【答案】C 【分析】直接利用复数的运算化简求解. 【详解】因为i 2=-1,i 3=-i ,i 4=1,所以234(1)1111222i i i i i i i i i ++--+===---.故选:C8.(2021·全国高二单元测试)集合(){}4,5,33M m m i =-+- (其中i 为虚数单位),{}9,3N =-,且M N ≠∅,则实数m 的值为( )A .-3B .3C .3或-3D .-1【答案】B由题知()33m m i -+-必须为实数,进而得答案. 【详解】 解:因为MN ≠∅,所以M 中的()33m m i -+-必须为实数,所以3m =,此时实部恰为9-,满足题意. 故选:B. 【点睛】本题主要考查了数的概念的扩展简单应用,属于基础试题,解题的关键在于根据集合交集运算得()33m m i -+-必须为实数,进而求解..9.(2021·全国高二单元测试)设()f z z =,134z i =+,22z i =--,则12()f z z -等于( ) A .13i - B .211i -+ C .2i -+ D .55i +【答案】D 【分析】直接利用复数的加、减法,结合函数的解析式,求解即可. 【详解】解:134z i =+,22z i =--,则1255z z i -=+. ()f z z =,则1212()55f z z z z i -=-=+. 故选:D .10.(2021·湖南高三月考(文))在复平面内,若复数z 与1i12i-+表示的点关于虚轴对称,则复数z =( ).A .13i 55-B .13i 55--C .1355i +D .13i 55-+ 【答案】A 【分析】 首先化简112ii-+,再根据对称性求复数z . 【详解】()()()()11211313121212555i i i i i i i i -----===--++-,因为复数z 与112i i-+表示的点关于虚轴对称,所以1355z i =-. 故选:A 二、填空题11.(2021·全国高一课时练习)已知1+2i 是方程x 2-mx +2n =0(m ,n ∈R )的一个根,则m +n =____. 【答案】92【分析】将12x i =+代入方程,根据复数的乘法运算法则,得到()()32420m n m i --++-=,再由复数相等的充要条件得到方程组,解得即可; 【详解】解:将12x i =+代入方程x 2-mx +2n =0,有(1+2i )2-m (1+2i )+2n =0,即144220i m mi n +---+=,即()()32420m n m i --++-=,由复数相等的充要条件,得320420m n m --+=⎧⎨-=⎩解得522n m ⎧=⎪⎨⎪=⎩ 故59222m n +=+=. 故答案为:9212.(2021·全国高一课时练习)以下四个命题: ①满足1z z=的复数只有±1,±i ; ②若a 、b 是两个相等的实数,则(a -b )+(a +b )i 是纯虚数; ③|z +z |=2|z |;④复数z ∈R 的充要条件是z =z ,其中正确的有_____. 【答案】④ 【分析】利用复数的四则运算以及共轭复数的概念、复数的模逐一判断即可.【详解】①令z =a +bi (a ,b ∈R ),则z =a -bi , 若z =1z ,则有a -bi =1a bi+,即a 2+b 2=1=|z |2,错误; ②(a -b )+(a +b )i =2ai ,若a =b =0,(a -b )+(a +b )i =0,不是纯虚数,错误; ③若z =i ,|i -i |≠2|i |,错误; ④z =z ,则其虚部为0,正确, 综上所述,正确的命题为④. 故答案为:④13.(2021·江苏高一课时练习)i是虚数单位,2020⎝⎭+611i i +⎛⎫ ⎪-⎝⎭=________.【答案】-2 【分析】按照复数除法、乘方运算法则计算即可. 【详解】()22212ii i ii ⎛⎫-=== ⎪ ⎪---⎝⎭()()()211111i ii i i i ++==--+2020⎝⎭+611i i +⎛⎫ ⎪-⎝⎭=()()505310106112i i +=-+-=- 故答案为:2-14.(2021·江苏高一课时练习)如果zz 100+z 50+1=________. 【答案】i 【分析】先求出复数)12z i =+,计算出2z 后可求100501z z ++的值. 【详解】因为z =,故)1z i =+,所以()22112z i i =+=,故()()251210025021,z i z i i i ==-=⋅=,故100501z z i ++=,故答案为:i . 【点睛】 知识点睛: 对任意的*n N ∈,若41,n k k N =+∈,则41k i i +=,若42,n k k N =+∈,则421k i +=-, 若43,n k k N =+∈,则43k i i +=-,若44,n k k N =+∈,则441k i +=.三、解答题15.(2021·全国高一课时练习)(1)201611i i +⎛⎫⎪-⎝⎭;(220161i ⎛⎫⎪ ⎪-⎝⎭(3)55(1)(1)11i i i i +-+-+;(4)201920191111i i i i +-⎛⎫⎛⎫- ⎪ ⎪-+⎝⎭⎝⎭;(5;(6)23201920202320192020i i i i i +++++.【答案】(1)1;(2)1i +;(3)0;(4)2i -;(5)516;(6)10101010i -. 【分析】根据复数四则运算法则计算、化简即可求得结果. 【详解】(1)()()()211111i i i i i i ++==--+,又21i =-,3i i =-,41i =, 201620164504111i i i i ⨯+⎛⎫∴= =⎪⎝⎭=-;(220161008122i i --⎛⎫=+ ⎪-⎝⎭⎝⎭()100842521311113i i i i i ⨯=+=+=+-; (3)()()()()()()()()()()332255662211111111111111i i i i i i i i i i i i i i ⎡⎤⎡⎤+-+-+-⎣⎦⎣⎦+=+=+-+-+-+--()()33332244022i i i i -=+=-=;(4)()()()21121112i i i i i i i ++===--+,()()()21121112i i i i i i i ---===-++-,201920192019420192019504331111()2222i i i i i i i i i i ⨯++-⎛⎫⎛⎫∴ ⎪ ⎪-+⎝⎭⎝⎭-=--====-;(5)==()545488452525251642i⨯⨯====⨯+; (6)23201920202320192020i i i i i +++⋅⋅⋅++()()()23456782017201820192020i i i i i i =--++--++⋅⋅⋅+--+ ()()()222222i i i =-+-+⋅⋅⋅+-()50522i =⨯-10101010i =-.16.(2021·全国高一课时练习)已知复数z =a +i (a >0,a ∈R ),i 为虚数单位,且复数2z z+为实数.(1)求复数z ;(2)在复平面内,若复数(m +z )2对应的点在第一象限,求实数m 的取值范围. 【答案】(1)1z i =+;(2)()0,∞+. 【分析】(1)利用复数的四则运算以及复数的分类即求解. (2)利用复数的四则运算以及复数的几何意义即可求解. 【详解】(1)因为z =a +i (a >0),所以z +2z =a +i +2a i+ =a +i +()()()2a i a i a i -+-=a +i +2221a ia -+=2222111a a i a a ⎛⎫⎛⎫++- ⎪ ⎪++⎝⎭⎝⎭, 由于复数z +2z 为实数,所以1-221a +=0, 因为a >0,解得a =1,因此,z =1+i . (2)由题意(m +z )2=(m +1+i )2=(m +1)2-1+2(m +1)i =(m 2+2m )+2(m +1)i ,由于复数(m +z )2对应的点在第一象限,则()220210m m m ⎧+>⎪⎨+>⎪⎩,解得m >0.因此,实数m 的取值范围是(0,+∞).。

第八章立体几何初步综合复习题-2021-2022学年高二下学期数学人教A版(2019)必修第二册

第八章立体几何初步综合复习题-2021-2022学年高二下学期数学人教A版(2019)必修第二册

第八章立体几何初步综合复习题一、选择题1.已知空间中不过同一点的三条直线l,m,n.则“l,m,n共面”是“l,m,n两两相交”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.如果PA,PB,PC两两垂直,那么点P在平面ABC内的投影一定是△ABC( )A.重心B.内心C.外心D.垂心3.给出下列命题:(1)若一条直线与两条直线都相交,那么这三条直线共面;(2)若三条直线两两平行,那么这三条直线共面;(3)若直线a与直线b异面,直线b与直线c异面,那么直线a与直线c异面;(4)若直线a与直线b垂直,直线b与直线c垂直,那么直线a与直线c平行;其中正确的命题个数有( )A.0个B.1个C.2个D.3个4.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A.9πB.22π3C.28π3D.34π35.若正四棱锥的侧面积等于12√34,底面边长为6,则棱锥的高等于( )A.4B.5C.6D.76.下列四个正方体中,A,B,C为正方体所在棱的中点,则能得出平面ABC∥平面DEF的是( )A.B.C.D.7.如图,平面α∩平面β=l,A,B∈α,C∈β,C∉l,直线AB∩l=D,过A,B,C三点确定的平面为γ,则平面γ,β的交线必过( )A.点A B.点BC.点C,但不过点D D.点C和点D8.若一个四面体的四个侧面是全等的三角形,则称这样的四面体为“完美四面体”,现给出四个不同的四面体A k B k C k D k(k=1,2,3,4),记△A k B k C k的三个内角分别为A k,B k,C k,其中一定不是“完美四面体”的为( )A.A1:B1:C1=3:5:7B.sinA2:sinB2:sinC2=3:5:7C.cosA3:cosB3:cosC3=3:5:7D.tanA4:tanB4:tanC4=3:5:7二、多选题9.下列说法正确的是( )A.一个棱锥至少有四个面B.如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等C.五棱锥只有五条棱D.用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似10.a,b,c是空间中的三条直线,下列说法中正确的是( )A.若a∥b,b∥c,则a∥cB.若a与b相交,b与c相交,则a与c也相交C.若a,b分别在两个相交平面内,则这两条直线可能平行、相交或异面D.若a与c相交,b与c异面,则a与b异面11.在正方体ABCD−AʹBʹCʹDʹ中,过体对角线BDʹ的一个平面交AAʹ于E、交CCʹ于F,则以下结论中正确的是( )A.四边形BFDʹE一定是平行四边形B.四边形BFDʹE有可能是正方形C.四边形BFDʹE有可能是菱形D.四边形BFDʹE在底面的投影一定是正方形12.如图,在正四棱锥S−ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN(不包含端点)上运动时,下列四个结论中恒成立的为( )A.EP⊥AC B.EP∥BDC.EP∥平面SBD D.EP⊥平面SAC三、填空题13.如图所示,已知多面体ABCDEFG中,AB,AC,AD两两互相垂直,平面ABC∥平面DEFG,平面BEF∥平面ADGC,AB=AD=DG=2,AC=EF=1,则该多面体的体积为.14.已知三棱锥P−ABC的侧棱PA,PB,PC两两垂直,且长度均为1,若该棱锥的四个顶点都在球O的表面上,则球O的表面积为.15.我国古代数学名著《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,现有一“阳马”如图所示,PA⊥平面ABCD,PA=4,AB=√3,AD=1,则该“阳马”外接球的表面积为.16.已知a,b为异面直线,且a,b所成的角为40∘,过空间一点作直线c,直线c与a,b均异面,且所成的角均为θ.若这样的直线c共有四条,则θ的取值范围为.三、解答题17.已知P是平面ABC外一点,PA⊥平面ABC,AC⊥BC,求证:PC⊥BC.18.如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上的一点,且PA=AC,求二面角P−BC−A的大小.19.如图,已知在棱长为a的正方体A1B1C1D1−ABCD中,M,N分别是棱CD,AD的中点.求证:(1) 四边形MNA1C1是梯形;(2) ∠DNM=∠D1A1C1.20.如图,正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE⊥平面CDE,且AE=1,AB=2.(1) 求证:AB⊥平面ADE;(2) 求凸多面体ABCDE的体积.21.如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=√6,DE=3,∠BAD=60∘,G为BC的中点.(1) 求证:FG∥平面BED;(2) 求证:平面BED⊥平面AED;(3) 求直线EF与平面BED所成角的正弦值.22.如图,在四棱锥P−ABCD中,底面ABCD为菱形,∠BAD=60∘,Q为AD的中点,(1) 若PA=PD,求证:平面PQB⊥平面PAD;(2) 点M在线段PC上,PM=tPC,试确定实数t的值,使得PA∥平面MQB;(3) 在(2)的条件下,若平面PAD⊥平面ABCD,PA=AD=PD=2,求二面角M−BQ−C的大小.。

四川省仁寿县汪洋中学2024-2025学年高二上学期期末复习数学试卷(含解析)

四川省仁寿县汪洋中学2024-2025学年高二上学期期末复习数学试卷(含解析)

仁寿县汪洋中学高二、下期数学期末复习题卷班级:_______姓名:________考号:_______一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1. 已知函数f (x )=(1―2x )2 ,则f′(1)= A. 8 B. 4C. 3D. 12. 调查某种群花萼长度和花瓣长度,所得数据如图所示,其中相关系数,下列说法正确的是A. 花瓣长度和花萼长度没有相关性B. 花瓣长度和花萼长度呈现负相关C. 花瓣长度和花萼长度呈现正相关D. 若从样本中抽取一部分,则这部分的相关系数一定是3.有甲、乙两台车床加工同一种零件,且甲、乙两台车床的产量分别占总产量的,甲、乙两台车床的正品率分别为.现从一批零件中任取一件,则取到正品的概率为A .0.93B .0.934C .0.94D .0.9454. 甲、乙两人计划分别从“围棋”,“篮球”,“书法”三门兴趣班中至少选择一门报名学习,若甲只选一门,且甲乙不选择同一门兴趣班,则不同的报名学习方式有A. 3种B. 6种C. 9种D. 12种5.已知为实数,函数,,下列说法中不正确的是A.若,则函数为奇函数 B.函数在上单调递增C.是函数的极大值点 D.若函数有3个零点,则6.设随机变量,随机变量,则下列结论正确的是A. B. Y 的方差D (X )=430.8245r =0.824570%,30%94%,92%c 3()3f x x x c =-+x ∈R 0c =()f x ()f x (,1)-∞-1x =()f x ()f x 22c -<<)32,3(~B X 12+=X Y 91)1(==X PB. C.的期望 D. 的期望7.已知的展开式中的系数为40,则的值为A. -2B. -1C. 1D. 28. 已知函数在区间上单调递增,则a 的最小值为A. B. eC. D. 二、多项选择题(本大题共3个小题,每小题6分,共18分.在每个给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得3分,有选错的得0分)9.为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”、“数”六门体验课程,每周一门,连续开设六周,则下列说法正确的是A .某学生从中选2门课程学习,共有15种选法B .课程“乐”“射”排在相邻的两周,共有240种排法C .课程“御”“书”“数”排在不相邻的三周,共有144种排法D .课程“礼”不排在第一周,课程“数”不排在最后一周,共有480种排法10. 已知,则A. B. 是所有系数中的最大值C. D. 11. 若函数既有极大值也有极小值,则A. B. C. D. 三、填空题(本大题共3个小题,每小题5分,共15分)12. 关于二项式的展开式常数项为_________.13. 已知随机变量X 服从正态分布,即:,若,,则实数________.X 2)(=X E Y 4)(=Y E ()512my x y x ⎛⎫+- ⎪⎝⎭24x y m ()e ln xf x a x =-()1,22e 1e -2e -6260126(32)x a a x a x a x -=+++⋅⋅⋅+0729a =3a 60246512a a a a -+++=6540125622224096a a a a a +++⋅⋅⋅++=()()2ln 0b cf x a x a x x=++≠0bc >0ab >280b ac +>0ac <622x x ⎛⎫- ⎪⎝⎭()2~2,X N σ(1)0.8P X ≥-=(2)0.3P X m ≤≤=m =14. 某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).四、解答题(77分)15(13分)若函数f (x )=ax 3―bx 2+2 ,当x =2 时,函数f (x ) 有极值―2 .(1) 求函数f (x ) 的解析式;(2) 求函数f (x ) 的极值.16(15分).已知函数,.(1)讨论函数的单调性;(2)求函数在区间上的最小值.17 (15分)溺水、校园欺凌、食品卫生、消防安全、道路交通等与学生安全有关的问题越来越受到社会的关注和重视.学校安全工作事关学生的健康成长,关系到千万个家庭的幸福和安宁,关系到整个社会的和谐稳定.为了普及安全教育,某市准备组织一次安全知识竞赛.某学校为了选拔学生参赛,按性别采用分层抽样的方法抽取200名学生进行安全知识测试,根据200名同学的测试成绩得到如下表格:了解安全知识的程度性别得分不超过85分的人数得分超过85分的人数男生20100女生3050(1)现从得分超过85分的学生中根据性别采用分层随机抽样抽取6名学生进行安全知识培训,再从这6名学生中随机抽取3名学生去市里参加竞赛,记这3名学生中男生的人数为X ,求X 的分布列和数学期望.(2)根据小概率值的独立性检验,能否推断该校高二年级男生和女生在了解安全知识的程度与性别有关?若有关,请结合表中数据分析了解安全知识的程度与性别的差异.附:参考公式,其中.下表是独立性检验中几个常用的小概率值和相应的临界值a 0.10.050.010.0050.0012.7063.8416.6357.87910.82818(17分)某公司对某产品作市场调研,获得了该产品的定价x (单位:万元/吨)和一天销售量y (单位:吨)的一组数据,制作了如下的数据统计表,并作出了散点图。

高中数学选择性必修三 专题05二项分布、超几何分布与正态分布(含答案)高二数学下学期期中专项复习

高中数学选择性必修三 专题05二项分布、超几何分布与正态分布(含答案)高二数学下学期期中专项复习

专题05二项分布、超几何分布与正态分布一、单选题1.(2020·全国高二课时练习)抛掷一枚质地均匀的正方体骰子4次,设X 表示向上一面出现6点的次数,则X 的数学期望()E X 的值为( )A .13 B .49C .59D .23【答案】D 【详解】抛掷一枚质地均匀的正方体骰子1次,向上一面出现6点的概率为16()112(4,)4663XB E X ∴=⨯=故选:D2.(2020·全国高二课时练习)甲、乙两人分别独立参加某高校自主招生考试,若甲、乙能通过面试的概率都是23,则面试结束后通过的人数X 的数学期望是( ) A .43 B .119C .1D .89【答案】A 【详解】由题意可知:2~(2,)3X B ,因此面试结束后通过的人数X 的数学期望是242=33⨯. 故选:A3.(2021·河南驻马店市·高三期末(理))已知~(20,)X B p ,且()6E X =,则()D X =( ) A .1.8 B .6C .2.1D .4.2【答案】D 【详解】因为X 服从二项分布~(20,)X B p ,所以()206==E X p ,得0.3p =,故()(1)200.30.7 4.2=-=⨯⨯=D X np p .故选:D.4.(2021·山东德州市·高二期末)已知随机变量X 服从二项分布(),X B n p ,若()54E X =,()1516=D X ,则p =( ) A .14B .13C .34D .45【答案】A 【详解】由题意5415(1)16np np p ⎧=⎪⎪⎨⎪-=⎪⎩,解得145p n ⎧=⎪⎨⎪=⎩.故选:A .5.(2020·全国高二课时练习)已知圆2228130+--+=x y x y 的圆心到直线()10kx y k +-=∈Z 的距离为14,4XB ⎛⎫⎪⎝⎭,则使()P X k =的值为( ) A .23 B .35C .13D .2764【答案】D 【详解】由题意,知圆心坐标为()1,4,圆心到直线()10kxy k +-=∈Z 的距离为=17k =-或1k =.因为k Z ∈,所以1k =. 因为14,4XB ⎛⎫⎪⎝⎭, 所以()141141127114464P X C -⎛⎫⎛⎫==⋅⋅-=⎪ ⎪⎝⎭⎝⎭. 故选:D .6.(2021·辽宁大连市·高三期末)2020年12月4日,中国科学技术大学宣布该校潘建伟等科学家成功构建76光子的量子计算原型机“九章”,求解数学算法“高斯玻色取样”只需要200秒,而目前世界最快的超级计算机要用6亿年,这一突破使我国成为全球第二个实现“量子优越性”的国家.“九章”求得的问题名叫“高斯玻色取样”,通俗的可以理解为量子版本的高尔顿钉板,但其实际情况非常复杂.高尔顿钉板是英国生物学家高尔顿设计的,如图,每一个黑点表示钉在板上的一颗钉子,上一层的每个钉子水平位置恰好位于下一层的两颗钉子的正中间,从入口处放进一个直径略小于两颗钉子之间距离的白色圆玻璃球,白球向下降落的过程中,首先碰到最上面的钉子,碰到钉子后皆以二分之一的概率向左或向右滚下,于是又碰到下一层钉子.如此继续下去,直到滚到底板的一个格子内为止.现从入口放进一个白球,则其落在第③个格子的概率为( )A .1128B .7128C .21128D .35128【答案】C 【详解】小球从起点到第③个格子一共跳了7次,其中要向左边跳动5次,向右边跳动2次,而向左或向右的概率均为12,则向右的次数服从二项分布,所以所求的概率为2527112122128P C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 故答案为:C.7.(2020·江苏省苏州中学园区校高二月考)设随机变量ξ服从正态分布(2,9)N ,若(21)(1)P m P m ξξ<+=>-,则实数m 的值是( )A .23B .43C .53D .2【答案】B 【详解】因为随机变量ξ服从正态分布(2,9)N ,(21)(1)P m P m ξξ<+=>-, 根据正态分布的特征,可得21122m m ++-=,解得43m =.故选:B .8.(多选)(2021·全国高二课时练习)如城镇小汽车的普及率为75%,即平均每100个家庭有75个家庭拥有小汽车,若从如城镇中任意选出5个家庭,则下列结论成立的是( ) A .这5个家庭均有小汽车的概率为2431024B .这5个家庭中,恰有三个家庭拥有小汽车的概率为2764C .这5个家庭平均有3.75个家庭拥有小汽车D .这5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为81128【答案】ACD 【详解】由题得小汽车的普及率为34, A. 这5个家庭均有小汽车的概率为53()4=2431024,所以该命题是真命题; B. 这5个家庭中,恰有三个家庭拥有小汽车的概率为332531135()()44512C =,所以该命题是假命题;C. 这5个家庭平均有3.75个家庭拥有小汽车,是真命题;D. 这5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为4455313()()()444C +=81128,所以该命题是真命题. 故选:ACD.9.(多选)(2020·全国高三专题练习)某计算机程序每运行一次都随机出现一个五位二进制数12345A a a a a a =(例如10100)其中A 的各位数中()2,3,4,5k a k =出现0的概率为13,出现1的概率为23,记2345X a a a a =+++,则当程序运行一次时( )A .X 服从二项分布B .()8181P X ==C .X 的期望()83E X = D .X 的方差()83V X =【答案】ABC 【详解】解:由于二进制数A 的特点知每一个数位上的数字只能填0,1,且每个数位上的数字再填时互不影响,故以后的5位数中后4位的所有结果有4类: ①后4个数出现0,X 0=,记其概率为411(0)()381P X ===;②后4个数位只出现1个1,1X =,记其概率为134218(1)()()3381P X C ===; ③后4位数位出现2个1,2X =,记其概率为22242124(2)()()3381P X C ===, ④后4个数为上出现3个1,记其概率为3342132(3)()()3381P X C ===,⑤后4个数为都出现1,4X =,记其概率为4232(4)()381P X ===,故2~(4,)3X B ,故A 正确;又134218(1)()()3381P X C ===,故B 正确;2~(4,)3X B ,28()433E X ∴=⨯=,故C 正确;2~(4,)3X B ,X ∴的方差218()4339V X =⨯⨯=,故D 错误.故选:ABC .10.(2020·江苏南京市·南京田家炳高级中学高三期中)下列命题中,正确的命题是( ) A .已知随机变量服从二项分布(),B n p ,若()30E x =,()20D x =,则23p =B .已知34n n A C =,则27n =C .设随机变量ξ服从正态分布()0,1N ,若()1P p ξ>=,则()1102P p ξ-<<=- D .某人在10次射击中,击中目标的次数为X ,()~10,0.8X B ,则当8X =时概率最大. 【答案】BCD 【详解】对于选项A :随机变量服从二项分布(),B n p ,()30E X =,()20D X =,可得30np =,()120np p -=,则13p =,故选项A 错误; 对于选项B :根据排列数和组合数的计算公式可得,()()()3!213!n n A n n n n ==---,()()()()4321!4!4!24n n n n n n C n ---=-=,因为34n n A C =,所以有()()()()()3212124n n n n n n n -----=,即3124n -= 解得27n =,故选项B 正确;对于选项C :随机变量ξ服从正态分布()0,1N ,则图象关于y 轴对称,若()1P p ξ>=,则()1012P p ξ<<=-,即()1102P p ξ-<<=-,故选项C 正确; 对于选项D :因为在10次射击中,击中目标的次数为X ,()~10,0,8X B , 当x k =时,对应的概率()10100.2kkkP x k C -==⨯0.8⨯,所以当1k时,()()()101011101104110.80.210.80.2kk kk k k P x k k C P x k C k----+=-⋅⋅===-⋅⋅, 由()()()41111P x k k P x k k =-=≥=-得444k k -≥,即4415k ≤≤,因为*k N ∈,所以18k ≤≤且*k N ∈, 即8k时,概率()8P x =最大,故选项D 正确.故选:BCD . 二、填空题11.(2021·江西高三其他模拟(理))已知随机变量ξ服从正态分布()23,N σ,()60.84P ξ≤=,则()0P ξ≤=______.【答案】0.16 【详解】因为随机变量ξ服从正态分布2(3,)N σ,所以(0)(6)P P ξξ≤=≥, 又(6)0.84P ξ≤=,所以(0)1(6)10.840.16P P ξξ≤=-≤=-=.故答案为:0.1612.(2020·福建三明市·高二期末)已知某批零件的长度误差X 服从正态分布()2,N μσ,其密度函数()()222,12x x e μσμσϕπσ--=的曲线如图所示,则σ=______;从中随机取一件,其长度误差落在()3,6内的概率为______.(附:若随机变量ξ服从正态分布()2,N μσ,则()0.6826P μσξμσ-<≤+=,()220.9544P μσξμσ-<≤+=,()330.9974P μσξμσ-<≤+=.)【答案】3 0.1359 【详解】解:由图中密度函数解析式,可得3σ=;又由图象可知0μ=,则长度误差落在(3,6)内的概率为: 1(36)[(22)()]2P X P P μσξμσμσξμσ<<=-<+--<+1(0.95440.6826)0.13592=-=. 故答案为:3;0.1359. 三、解答题13.(2021·全国高二课时练习)某学校高三年级有400名学生参加某项体育测试,根据男女学生人数比例,使用分层抽样的方法从中抽取了100名学生,记录他们的分数,将数据分成7组:[30,40),[40,50),[90,100],整理得到如下频率分布直方图:(1)若该样本中男生有55人,试估计该学校高三年级女生总人数;(2)若规定小于60分为“不及格”,从该学校高三年级学生中随机抽取一人,估计该学生不及格的概率; (3)若规定分数在[80,90)为“良好”,[]90,100为“优秀”.用频率估计概率,从该校高三年级随机抽取三人,记该项测试分数为“良好”或“优秀”的人数为X ,求X 的分布列和数学期望. 【答案】(1)180人(2)0.1(3)详见解析 【详解】解:(1)∵样本中男生有55人,则女生45人 ∴估计总体中女生人数45400180100⨯=人 (2)设“不及格”为事件A ,则“及格”为事件A ∴()1()1(0.20.40.20.1)0.1P A P A =-=-+++=(3)设“样本中“良好”或“优秀””为事件B ,则()0.20.10.3B P =+= 依题意可知:~(3,0.3)X B3(0)0.7P B ==,1123(1)0.30.7P X C == 22133(2)0.30.7,(3)0.3P X C X P ====所以,X 的分布列为 X 0 1 2 3 P0.3430.4410.1890.027()30.30.9E X np ==⨯=14.(2020·全国高三专题练习(理))袋子中有1个白球和2个红球. (1)每次取1个球,不放回,直到取到白球为止,求取球次数X 的分布列;(2)每次取1个球,有放回,直到取到白球为止,但抽取次数不超过5次,求取球次数X 的分布列; (3)每次取1个球,有放回,共取5次,求取到白球次数X 的分布列. 【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析. 【详解】(1)由题意,X 可能取值1,2,3. 则()113P X ==,()2112323P X ==⨯=,()211133213P X ==⨯⨯=,所以X 的分布列为(2)X 可能取值为1,2,3,4,5.则()113P X ==,()2122339P X ==⨯=,()221433327P X ⎛⎫==⨯= ⎪⎝⎭,()321843381P X ⎛⎫==⨯= ⎪⎝⎭,()42165381P X ⎛⎫=== ⎪⎝⎭,故X 的分布列为(3)由题意可得,15,3XB ⎛⎫ ⎪⎝⎭, 所以()551233kkk P X k C -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,0,1,2,3,4,5k =,则()320243P X ==,()801243P X ==,()802243P X ==,()403243P X ==,()104243P X ==,()15243P X ==, 所以X 的分布列为15.(2021·全国高三其他模拟)某商场举行有奖促销活动,凡10月13日当天消费每超过400元(含400元),均可抽奖一次,抽奖箱里有6个形状、大小、质地完全相同的小球(其中红球有3个,白球有3个),抽奖方案设置两种,顾客自行选择其中的一种方案.方案一:从抽奖箱中,一次性摸出2个球,若摸出2个红球,则打6折;若摸出1个红球,则打8折;若没摸出红球,则不打折.方案二:从抽奖箱中,有放回地每次摸取1个球,连摸2次,每摸到1次红球,立减100元.(1)若小方、小红均分别消费了400元,且均选择抽奖方案一,试求他们其中有一人享受6折优惠的概率. (2)若小勇消费恰好满600元,试比较说明小勇选择哪种方案更划算. 【答案】(1)825;(2)选择方案一更划算. 【详解】(1)由题意,设顾客享受到6折优惠为事件A ,则()232615C P A C ==.∴小方、小红两人其中有一人享受6折优惠的概率为()()22118[1]215525P C P A P A ⎛⎫=⋅⋅-=⨯⨯-=⎪⎝⎭. (2)若小勇选择方案一,设付款金额为X 元,则X 可能的取值为360,480,600.则()232613605C P X C ===,()11332634805C C P X C ===,()232616005C P X C ===. 故X 的分布列为∴()131360480600480555E X =⨯+⨯+⨯=(元).若小勇选择方案二,设摸到红球的个数为Y ,付款金额为Z 元,则600100Z Y =-. 由已知,可得12,2Y B ⎛⎫~ ⎪⎝⎭,故()1212E Y =⨯=, ∴()()()600100600100600100500E Z E Y E Y =-=-=-=(元).由上知:()()E X E Z <,故小勇选择方案一更划算.16.(2021·全国高二课时练习)第13届女排世界杯于2019年9月14日在日本举行,共有12支参赛队伍.本次比赛启用了新的排球用球MIKSA -V 200W ,已知这种球的质量指标ξ (单位:g )服从正态分布N (270,25 ).比赛赛制采取单循环方式,即每支球队进行11场比赛(采取5局3胜制),最后靠积分选出最后冠军积分规则如下:比赛中以3:0或3:1取胜的球队积3分,负队积0分;而在比赛中以3:2取胜的球队积2分,负队积1分.已知第10轮中国队对抗塞尔维亚队,设每局比赛中国队取胜的概率为p (0<p <1).(1)如果比赛准备了1000个排球,估计质量指标在(260,265]内的排球个数(计算结果取整数). (2)第10轮比赛中,记中国队3:1取胜的概率为()f p .(i )求出f (p )的最大值点0p ;(ii )若以0p 作为p 的值记第10轮比赛中,中国队所得积分为X ,求X 的分布列.参考数据:ζ ~N (u ,2σ),则p (μ-σ<X <μ+σ)≈0.6826,p (μ-2σ<X <μ+2σ)≈0.9644.【答案】(1)140;(2)(i )034p =;(ii )分布列见解析. 【详解】(1)因为ξ服从正态分布N (270,25 ),所以()0.96440.68262602650.14092P ξ-<<==, 所以质量指标在(260,265]内的排球个数为10000.1409140.9140⨯=≈个;(2)(i )()()()2333131f p C p p p p =-=-,()()()()2'2331+13334p p f p p p p ⎡⎤=-⨯-=-⎣⎦令()0f p '=,得34p =, 当3(0,)4p ∈时,()0f p '>,()f p 在3(0,)4上单调递增; 当3(,1)4p ∈时,()0f p '<,()f p 在3(,1)4上单调递减;所以()f p 的最大值点034p =; (ii )X 的可能取值为0,1,2,3.212313(0)(1)(1)256P X p C p p ==-+-=;223427(1)(1)512P X C p p ==-=; 222481(2)(1)512P X C p p p ==-=;2223189(3)(1)256P X p C p p p ==+-=; 所以X 的分布列为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一).选择题 (1)曲线3231y x x =-+在点(1,-1)处的切线方程为( )A .34y x =-B 。

32y x =-+C 。

43y x =-+D 。

45y x =- a(2) 函数y =a x 2+1的图象与直线y =x 相切,则a = ( )A . 18B .41C .21D .1 (3) 函数13)(23+-=x x x f 是减函数的区间为 ( )A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2)(4) 函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( )A .2B .3C .4D .5(5) 在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是 ( )A .3B .2C .1D .0(6)函数3()1f x ax x =++有极值的充要条件是 ( ) A .0a > B .0a ≥ C .0a < D .0a ≤(7)函数3()34f x x x =- ([]0,1x ∈的最大值是( )A . 12B . -1C .0D .1(8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为()A 、0B 、1002C 、200D 、100! (9)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19 B.29 C.13 D.23(二).填空题(1).垂直于直线2x+6y +1=0且与曲线y = x 3+3x -5相切的直线方程是 。

(2).设f ( x ) = x 3-21x 2-2x +5,当]2,1[-∈x 时,f ( x ) < m 恒成立,则实数m 的取值范围为 .(3).函数y = f ( x ) = x 3+ax 2+bx +a 2,在x = 1时,有极值10,则a = ,b = 。

(4).已知函数32()45f x x bx ax =+++在3,12x x ==-处有极值,那么a = ;b (5).已知函数3()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是(6).已知函数32()33(2)1f x x ax a x =++++ 既有极大值又有极小值,则实数a 的取值范围是(7).若函数32()1f x x x mx =+++ 是R 是的单调函数,则实数m 的取值范围是(8).设点P 是曲线3233+-=x x y 上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是 。

(三).解答题1.已知函数d ax bx x x f +++=23)(的图象过点P (0,2),且在点M))1(,1(--f 处的切线方程为076=+-y x .(Ⅰ)求函数)(x f y =的解析式;(Ⅱ)求函数)(x f y =的单调区间.2.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值. (Ⅰ)讨论)1(f 和)1(-f 是函数)(x f 的极大值还是极小值; (Ⅱ)过点)16,0(A 作曲线)(x f y =的切线,求此切线方程.3.已知向量x f t x x x ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围.4.已知函数323()(2)632f x ax a x x =-++-(1)当2a >时,求函数()f x 极小值;(2)试讨论曲线()y f x =与x 轴公共点的个数。

5.已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈<, (I )求m 与n 的关系式; (II )求()f x 的单调区间;(III )当[]1,1x ∈-时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围.6.已知两个函数c x x x f --=287)(2,x x x x g 4042)(23-+=.(Ⅰ)若对任意∈x [-3,3],都有)(x f ≤)(x g 成立,求实数c 的取值范围;(Ⅱ)若对任意∈1x [-3,3],∈2x [-3,3],都有)(1x f ≤)(2x g 成立,求实数c 的取值范围7.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.8.设函数22()21(0)f x tx t x t x t =++-∈>R ,. (Ⅰ)求()f x 的最小值()h t ;(Ⅱ)若()2h t t m <-+对(02)t ∈,恒成立,求实数m 的取值范围9.已知cx bx ax x f ++=23)(在区间[0,1]上是增函数,在区间),1(),0,(+∞-∞上是减函数,又.23)21(='f(Ⅰ)求)(x f 的解析式;(Ⅱ)若在区间],0[m (m >0)上恒有)(x f ≤x 成立,求m 的取值范围.10.用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?11.某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a 件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为)10(<<x x ,那么月平均销售量减少的百分率为x 2.记改进工艺后,旅游部门销售该纪念品的月平均利润是y (元).(1)写出y 与x 的函数关系式;(2)改进工艺后,试确定该纪念品的销售价,使得旅游部门销售该纪念品的月平均利润最大.12.某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划建成一个矩形的高科技工业园区.已知AB ⊥BC ,OA//BC ,且AB=BC=2 AO=4km ,曲线段OC 是以点O 为顶点且开口向上的抛物线的一段.如果要使矩形的相邻两边分别落在AB ,BC 上,且一个顶点落在曲线段OC 上,问应如何规划才能使矩形工业园区的用地面积最大?并求出最大的用地面积(精确到0.1km 2)。

13.设三次函数32()(),f x ax bx cx d a b c =+++<<在1x =处取得极值,其图象在x m =处的切线的斜率为3a -.(1)求证:01ba≤<; (2)若函数()y f x =在区间[,]s t 上单调递增,求||s t -的取值范围;(3)问是否存在实数k (k 是与,,,a b c d 无关的常数),当x k ≥时,恒有'()30f x a +<恒成立?若存在,试求出k 的最小值;若不存在,请说明理由. 14.已知函数14)(234-+-=ax x x x f 在区间[0,1]单调递增,在区间)2,1[单调递减.(1)求a 的值;(2)若点00(,())A x f x 在函数f (x )的图象上,求证点A 关于直线1=x的对称点B 也在函数f (x )的图象上;AOB C(3)是否存在实数b ,使得函数1)(2-=bx x g 的图象与函数f (x )的图象恰有3个交点,若存在,请求出实数b 的值;若不存在,试说明理 15.已知32()(,0]f x x bx cx d =+++-∞在上是增函数,在[0,2]上是减函数,且()0,2,(2)f x αβαβ=≤≤有三个根。

(1)求c 的值,并求出b 和d 的取值范围。

(2)求证(1)2f ≥。

(3)求||βα-的取值范围,并写出当||βα-取最小值时的()f x 的解析式。

16.设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-. (Ⅰ)求a ,b ,c 的值;(Ⅱ)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值.参考解答一.BBDDD CDDA 二.1、y=3x-5 2、m>7 3、4 -11 4、18,3-- 5、(,0)-∞6、1,)3⎡+∞⎢⎣7、(,1)(2,)-∞-⋃+∞ 8、),32[]2,0[πππ三.1.解:(Ⅰ)由)(x f 的图象经过P (0,2),知d=2,所以,2)(23+++=cx bx x x f .23)(2c bx x x f ++='由在))1(,1(--f M 处的切线方程是076=+-y x ,知.6)1(,1)1(,07)1(6=-'=-=+---f f f 即.3,0,32.121,623-==⎩⎨⎧=-=-⎩⎨⎧=+-+-=+-∴c b c b c b c b c b 解得即故所求的解析式是 .233)(23+--=x x x x f (2).012,0363.363)(222=--=----='x x x x x x x f 即令解得 .21,2121+=-=x x 当;0)(,21,21>'+>-<x f x x 时或当.0)(,2121<'+<<-x f x 时故)21,(233)(23--∞+--=在x x x x f 内是增函数,在)21,21(+-内是减函数,在),21(+∞+内是增函数.2.(Ⅰ)解:323)(2-+='bx ax x f ,依题意,0)1()1(=-'='f f ,即⎩⎨⎧=--=-+.0323,0323b a b a 解得0,1==b a . ∴)1)(1(333)(,3)(23-+=-='-=x x x x f x x x f . 令0)(='x f ,得1,1=-=x x .若),1()1,(∞+--∞∈ x ,则0)(>'x f ,故)(x f 在)1,(--∞上是增函数,)(x f 在),1(∞+上是增函数. 若)1,1(-∈x ,则0)(<'x f ,故)(x f 在)1,1(-上是减函数. 所以,2)1(=-f 是极大值;2)1(-=f 是极小值.(Ⅱ)解:曲线方程为x x y 33-=,点)16,0(A 不在曲线上.设切点为),(00y x M ,则点M 的坐标满足03003x x y -=.因)1(3)(200-='x x f ,故切线的方程为))(1(30200x x x y y --=-注意到点A (0,16)在切线上,有)0)(1(3)3(16020030x x x x --=--化简得830-=x ,解得20-=x .所以,切点为)2,2(--M ,切线方程为0169=+-y x .3.解:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在4.解:(1)'22()33(2)63()(1),f x ax a x a x x a=-++=--()f x 极小值为(1)2af =-(2)①若0a =,则2()3(1)f x x =--,()f x ∴的图像与x 轴只有一个交点; ②若0a <, ∴()f x 极大值为(1)02af =->,()f x 的极小值为2()0f a<,()f x ∴的图像与x 轴有三个交点;③若02a <<,()f x 的图像与x 轴只有一个交点;④若2a =,则'2()6(1)0f x x =-≥,()f x ∴的图像与x 轴只有一个交点; ⑤若2a >,由(1)知()f x 的极大值为22133()4()044f a a =---<,()f x ∴的图像与x 轴只有一个交点;综上知,若0,()a f x ≥的图像与x 轴只有一个交点;若0a <,()f x 的图像与x 轴有三个交点。

相关文档
最新文档