(完整版)高二数学期末考试试题及其答案
高二年级下学期期末考试数学试题与答案解析(共三套)
高二年级下学期期末考试数学试题(一)注意事项:1.本试卷共22题。
全卷满分150分。
考试用时120分钟。
2.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.记S n为等差数列{a n}的前n项和,若a2=3,a5=9,则S6为()A.36 B.32 C.28 D.242.的展开式中的常数项为()A.﹣60 B.240 C.﹣80 D.1803.设曲线在处的切线与直线y=ax+1平行,则实数a等于()A.﹣1 B.C.﹣2 D.24.在2022年高中学生信息技术测试中,经统计,某校高二学生的测试成绩X~N(86,σ2),若已知P(80<X≤86)=0.36,则从该校高二年级任选一名考生,他的测试成绩大于92分的概率为()A.0.86 B.0.64 C.0.36 D.0.145.设函数,若f(x)在点(3,f(3))的切线与x轴平行,且在区间[m﹣1,m+1]上单调递减,则实数m的取值范围是()A.m≤2 B.m≥4 C.1<m≤2 D.0<m≤36.利用独立性检验的方法调查高中生的写作水平与喜好阅读是否有关,通过随机询问120名高中生是否喜好阅读,利用2×2列联表,由计算可得K2=4.236.P(K2≥0.100 0.050 0.025 0.010 0.001k0)k0 2.706 3.841 5.024 6.635 10.828参照附表,可得正确的结论是()A.有95%的把握认为“写作水平与喜好阅读有关”B.有97.5%的把握认为“写作水平与喜好阅读有关”C.有95%的把握认为“写作水平与喜好阅读无关”D.有97.5%的把握认为“写作水平与喜好阅读无关”7.某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD(边长为2个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,…,6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有()A.22种B.24种C.25种D.27种8.若两个等差数列{a n},{b n}的前n项和分别为A n、B n,且满足,则的值为()A.B.C.D.二、多选题:本题共4小题,每小题5分,共20分。
高二数学期末考试题及答案
高二数学期末考试题及答案Learn standards and apply them. June 22, 2023一、选择题:本大题共12小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在试卷的答题卡中.1.若抛物线y 2=2px 的焦点与椭圆22162x y +=的右焦点重合,则p 的值为 A .-2B .2C .-4D .42.理已知向量a =3,5,-1,b =2,2,3,c =4,-1,-3,则向量2a -3b +4c 的坐标为A .16,0,-23B .28,0,-23C .16,-4,-1D .0,0,9文曲线y =4x -x 2上两点A 4,0,B 2,4,若曲线上一点P 处的切线恰好平行于弦AB ,则点P 的坐标为A .1,3B .3,3C .6,-12D .2,43.过点0,1作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有A .1条B .2条C .3条D .4条4.已知双曲线222112x y a -=的离心率2,则该双曲线的实轴长为 A .2 B .4C .23D .435.在极坐标系下,已知圆C 的方程为=2cos θ,则下列各点中,在圆C 上的是A .1,-3πB .1,6πC .2,34πD 2,54π6.将曲线y =sin3x 变为y =2sin x 的伸缩变换是A .312x x y y '=⎧⎪⎨'=⎪⎩B .312x xy y '=⎧⎪⎨'=⎪⎩C .32x x y y '=⎧⎨'=⎩D .32x xy y'=⎧⎨'=⎩7.在方程sin cos 2x y θθ=⎧⎨=⎩为参数表示的曲线上的一个点的坐标是A .2,-7B .1,0C .12,12D .13,238.极坐标方程=2sin 和参数方程231x ty t =+⎧⎨=--⎩t 为参数所表示的图形分别为A .圆,圆B .圆,直线C .直线,直线D .直线,圆9.理若向量a =1,,2,b =2,-1,2,a 、b 夹角的余弦值为89,则=A .2B .-2C .-2或255D .2或-255文曲线y =e x +x 在点0,1处的切线方程为 A .y =2x +1 B .y =2x -1 C .y =x +1 D .y =-x +110.理已知点P 1的球坐标是P 14,2π,53π,P 2的柱坐标是P 22,6π,1,则|P 1P 2|=A .21B .29C .30D .42文已知点P 在曲线fx =x 4-x 上,曲线在点P 处的切线垂直于直线x +3y =0,则点P 的坐标为A .0,0B .1,1C .0,1D .1,011.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若点M 在以AB 为直径的圆的内部,则此双曲线的离心率e 的取值范围为A .32,+∞B .1,32C .2,+∞D .1,212.从抛物线y 2=4x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△MPF 的面积为A .5B .10C .20D 15二、填空题:本大题共4小题,每小题4分,共16分.请将答案填在试卷的答题卡中.13.理已知空间四边形ABCD 中,G 是CD 的中点,则1()2AG AB AC -+=.文抛物线y =x 2+bx +c 在点1,2处的切线与其平行直线bx +y +c =0间的距离是 .14.在极坐标系中,设P 是直线l :cos θ+sin θ=4上任一点,Q 是圆C :2=4cos θ-3上任一点,则|PQ |的最小值是________.15.理与A -1,2,3,B 0,0,5两点距离相等的点Px ,y ,z 的坐标满足的条件为__________.文函数fx =ax 3-x 在R 上为减函数,则实数a 的取值范围是__________.16.如图,已知双曲线以长方形ABCD 的顶点A 、B 为左、右焦点,且双曲线过C 、D 两顶点.若AB =4,BC =3,则此双曲线的标准方程为_____________________.三、解答题:本大题共4小题,共48分,解答应写出文字说明,证明过程或演算步骤.17.本题满分12分双曲线与椭圆2212736x y +=有相同焦点,且经过点15,4,求其方程.18.本题满分12分在直角坐标系xOy 中,直线l 的参数方程为:415315x t y t⎧=+⎪⎪⎨⎪=--⎪⎩t 为参数,若以O为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为=2cos θ+4π,求直线l 被曲线C 所截的弦长.19.本题满分12分已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M-3,m到焦点的距离为5,求抛物线的方程和m的值.20.本题满分12分文已知函数fx=x2x-a.1若fx在2,3上单调,求实数a的取值范围;2若fx在2,3上不单调,求实数a的取值范围.理本题满分12分如图,四棱锥P—ABCD的底面是矩形,PA⊥面ABCD,PA=219,AB=8,BC=6,点E是PC的中点,F在AD上且AF:FD=1:2.建立适当坐标系.1求EF的长;2证明:EF⊥PC.参考答案一、 选择题:本大题共12小题,每小题3分,共36分.内为文科答案二、填空题:本大题共4小题,每小题4分,共16分.13.理12BD 文32214.21-15.理2x -4y +4z =11 文a ≤0 16.x 2-23y =1 三、解答题:本大题共4小题,共48分,解答应写出文字说明,证明过程或演算步骤.17.本题满分12分解:椭圆2213627y x +=的焦点为0,3,c =3,………………………3分 设双曲线方程为222219y x a a-=-,…………………………………6分 ∵过点15,4,则22161519a a-=-,……………………………9分 得a 2=4或36,而a 2<9,∴a 2=4,………………………………11分双曲线方程为22145y x -=.………………………………………12分18.本题满分12分解:将方程415315x t y t⎧=+⎪⎪⎨⎪=--⎪⎩t 为参数化为普通方程得,3x +4y +1=0,………3分将方程2θ+4π化为普通方程得,x 2+y 2-x +y =0, ……………6分 它表示圆心为12,-12,半径为22的圆, …………………………9分则圆心到直线的距离d =110, …………………………………………10分 弦长为2211721005r d -=-=. …………………………………12分20.文本题满分12分解:由fx =x 3-ax 2得f ′x =3x 2-2ax =3xx -23a.…………3分 1若fx 在2,3上单调,则23a ≤0,或0<23a≤2,解得:a ≤3.…………6分∴实数a 的取值范围是-∞,3.…………8分 2若fx 在4,6上不单调,则有4<23a<6,解得:6<a <9.…………11分 ∴实数a 的取值范围是6,9.…………12分20.理本题满分12分解:1以A 为原点,AB ,AD ,AP 分别为x ,y ,z 轴建立直角坐标系,…………2分由条件知:AF =2,…………3分∴F 0,2,0,P 0,0,219,C 8,6,0.…4分从而E 4,3,19,∴EF =222(40)(32)(190)-+-+-=6.…………6分 2证明:EF =-4,-1,-19,PC =8,6,-219,…………8分 ∵EF PC ⋅=-4×8+-1×6+-19×-219=0,…………10分 ∴EF ⊥PC .…………12分第一课件网系列资料 .。
河南省高二上学期期末考试数学试题(解析版)
一、单选题1.直线的倾斜角为( ) 50x +=A . B .C .D .30︒60︒120︒150︒【答案】D【分析】求出直线的斜率,然后根据斜率的定义即可求得倾斜角.【详解】直线可化为 50x +=y x =则斜率,满足, tan k α==α0180α≤<︒所以倾斜角为. 150︒故选:D2.下列有关数列的说法正确的是( )A .数列1,0,,与数列,,0,1是相同的数列 1-2-2-1-B .如果一个数列不是递增数列,那么它一定是递减数列C .数列0,2,4,6,8,…的一个通项公式为 2n a n =D ,…的一个通项公式为n a =【答案】D【分析】根据数列的定义和表示方法,逐一判断,即可得到本题答案.【详解】对于选项A ,数列1,0,-1,-2与数列-2,-1,0,1中的数字排列顺序不同,不是同一个数列,故A 错误;对于选项B ,常数数列既不是递增数列,也不是递减数列,故B 错误; 对于选项C ,当时,,故C 错误;1n =120a =≠对于选项D ,因为123a a a =====4a ==…,所以数列的一个通项公式为D 正确. n a =故选:D3.已知直线l 过点且方向向量为,则l 在x 轴上的截距为( ) ()3,4-()1,2-A . B .1C .D .51-5-【答案】A【分析】先根据方向向量求得直线的斜率,然后利用点斜式可求得直线方程,再令,即2k =-0y =可得到本题答案.【详解】因为直线的方向向量为,所以直线斜率, l ()1,2-2k =-又直线过点,所以直线方程为,即, l ()3,4-42(3)y x -=-+220x y ++=令,得,所以在x 轴上的截距为-1. 0y ==1x -l 故选:A4.已知,“直线与平行”是“”的( )m ∈R 1:0l mx y +=22:910l x my m +--=3m =±A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【分析】根据平行的成比例运算即可求解.【详解】直线与平行1:0l mx y +=22:910l x my m +--=则, 210=91m m m ≠--所以, 29m =解得,3m =±经检验,均符合题意, 3m =±故选:C.5.已知等差数列中,,是函数的两个零点,则{}n a 5a 14a 232()=--x x x f 381116a a a a +++=( ) A .3 B .6C .8D .9【答案】B【分析】由等差数列的性质进行计算即可.【详解】由已知,函数的两个零点,即方程的两根,, 232()=--x x x f 2320x x --=1x 2x ∴, 51412331a a x x -+=+=-=∵数列为等差数列, {}n a ∴, 3168115143a a a a a a +=+=+=∴. 3811166a a a a +++=故选:B.6.已知圆关于y 轴对称的圆与直线相切,则m 的值为( )221:230C x y x ++-=2C x m =A .B .3C .或3D .1或1-1-3-【答案】C【分析】先求出关于y 轴对称的圆的标准方程,然后利用圆心到切线的距离等于半径,列出方2C 程求解,即可得到本题答案.【详解】由圆,可得标准方程,圆心为,半径, 221:230C x y x ++-=22(1)4x y ++=(1,0)-2r =故关于轴对称的圆的圆心为,半径,则其标准方程为, y 2C (1,0)2r =22(1)4x y -+=又因为圆与直线相切,所以圆心到切线的距离等于半径, 2C x m =即,解得或. 12m -=1m =-3m =故选:C7.已知数列满足,且,则数列的前项和为( ) {}n a 13n n a a +=11a =-{}2n a n +5A . B . C . D .151-91-91151【答案】B【分析】由等比数列的定义判断出数列为等比数列,再使用分组求和法求解即可. {}n a 【详解】∵数列满足,且, {}n a 13n n a a +=11a =-∴数列是首项为,公比为的等比数列,{}n a 1-3∴,11133n n n a --=-⨯=-∴数列的前项和为,{}2n a n +5()()()()()01234532343638310S =-++-++-++-++-+()()0123433333246810=-----+++++()()51132105132-⨯-+⨯=+-12130=-+.91=-故选:B.8.已知椭圆过点且与双曲线有相同焦点,则椭圆的离心率22221(0)x y a b a b +=>>()3,2-22132x y -=为( )A B C D 【答案】C【分析】由题可得,,联立方程可求得,然后代入公式,即225a b -=22941a b +=22,a b e =可求得本题答案.【详解】因为椭圆与双曲线有相同焦点,所以椭圆两个焦点分别为22132x y -=12(F F ,则①, 2225c a b =-=又椭圆过点,所以②, ()3,2P -22941a b +=结合①,②得,,2215,10a b ==所以, e ==故选:C9.已知圆与圆的公共弦长为2,则m 的值为221:2220C x y x y +-+-=222:20(0)C x y mx m +-=>( )A B .C D .332【答案】A【分析】根据圆的圆心和半径公式以及点到直线的距离公式,以及公共线弦方程的求法即可求解. 【详解】联立和, 222220x y x y +-+-=2220x y mx +-=得,由题得两圆公共弦长,(1)10m x y -+-=2l =圆的圆心为,半径, 221:2220C x y x y +-+-=(1,1)-r 2=圆心到直线(1,1)-(1)10m x y -+-=,===平方后整理得,, 2230m -=所以 m m =故选:A.10.“斐波那契数列”又称黄金分割数列,指的是这样一个数列:1,1,2,3,5,8,13,…,即斐波那契数列满足,,设其前n 项和为,若,则{}n a 121a a ==21++=+n n n a a a n S 2021S m =2023a =( ) A . B .mC .D .1m -1m +2m 【答案】C【分析】由斐波那契数列满足,归纳可得,令{}n a 12121,1,n n n a a a a a --===+21m m a S +=+2021m =,即可求得本题答案.【详解】因为斐波那契数列满足, {}n a 12121,1,n n n a a a a a --===+所以,321a a a =+, 432211a a a a a =+=++, 5433211a a a a a a =+=+++……, 21122111m m m m m m m a a a a a a a a S ++--=+=++++++=+ 则. 2023202111a S m =+=+故选:C11.如图,在直四棱柱中,底面ABCD 是边长为2的正方形,,M ,N 分1111ABCD A B C D -13D D =别是,AB 的中点,设点P 是线段DN 上的动点,则MP 的最小值为( )11B CA B C D 【答案】D【分析】建立空间直角坐标系,设出点的坐标,根据两点距离公式表示,利用二次函数求值P MP 域,即可得到本题答案.【详解】以点为坐标原点,分别以所在直线为轴,轴,轴,建立如图所示的空D 1,,DA DC DD x y z 间直角坐标系.因为底面ABCD 是边长为2的正方形,,所以, 13D D =(1,2,3)M ∵点在平面上,∴设点的坐标为,P xOy P ()[],,0,0,1x y y ∈∵在上运动,∴,∴,∴点的坐标为, P DN 2AD x y AN==2x y =P (2,,0)y y==∵,∴当时, 取得最小值. []0,1y ∈45y =MP 故选:D12.已知双曲线C :l 与C 相交于A ,B 两2221(0)y x b b-=>点,若线段的中点为,则直线l 的斜率为( ) AB ()1,2NA .B .1CD .21-【答案】B【分析】先利用题目条件求出双曲线的标准方程,然后利用点差法即可求出直线的斜率.l 【详解】因为双曲线的标准方程为,2221(0)y x b b-=>所以它的一个焦点为,一条渐近线方程为, (,0)c 0bx y -=所以焦点到渐近线的距离,化简得,解得,d =2222(1)b c b =+22b =所以双曲线的标准方程为,2212y x -=设,所以①,②, 1122(,),(,)A x y B x y 221112y x -=222212y x -=①-②得,,222212121()()02x x y y ---=化简得③,121212121()()()()02x x x x y y y y +--+-=因为线段的中点为,所以, AB ()1,2N 12122,4x x y y +=+=代入③,整理得, 1212x x y y -=-显然,所以直线的斜率. 1212,x x y y ≠≠l 12121y y k x x -==-故选:B二、填空题13.已知A (1,-2,11)、B (4,2,3)、C (x ,y ,15)三点共线,则xy=___________. 【答案】2.【详解】试题分析:由三点共线得向量与共线,即,,AB AC ABk AC = (3,4,8)(1,2,4)k x y -=-+,解得,,∴. 124348x y -+==-12x =-4y =-2xy =【解析】空间三点共线.14.已知抛物线的焦点为F ,直线与抛物线交于点M ,且,则22(0)x py p =>2x =2MF =p =_______. 【答案】2【分析】先求点的纵坐标,然后根据抛物线的定义,列出方程,即可求得的值.M p 【详解】把代入抛物线标准方程,得,2x =22(0)x py p =>2(2,)M p 根据抛物线的定义有,,化简得,,解得. 222p MF MH p==+=244p p +=2p =故答案为:215.已知点,点为圆上的任意一点,点在直线上,其中为坐标原(1,1)--P M 22:1C x y +=N OP O点,若恒成立,则点的坐标为______.|||MP MN =N【答案】11,22⎛⎫-- ⎪⎝⎭【分析】设和的坐标,由,列等式,利用点在圆上,点在直线上,NM |||MP MN =M N OP 化简得恒成立的条件,求得点的坐标.N 【详解】易知直线的方程为,由题意可设,OP 0x y -=00(,)N x x 设,则可得,由,可得(,)M x y ''221x y ''+=||||MP MN 22222200||(1)(1)||()()MP x y MN x x y x ''+++==''-+-, 2002()322()12x y x x y x ''++=''-+++则,化简得,2002()322()12x y x x y x ''''⎡⎤++=-+++⎣⎦200(24)()41x x y x ''++=-即,[]00(12)2()(12)0x x y x ''+++-=若恒成立,则,解得,故.|||MP MN =0120x +=012x =-11,22N ⎛⎫-- ⎪⎝⎭故答案为:11,22⎛⎫-- ⎪⎝⎭16.已知双曲线C :的左、右焦点分别为,,其中与抛物线的22221(0,0)x y a b a b-=>>1F 2F 2F 28y x =焦点重合,点P 在双曲线C 的右支上,若,且,则的面积为122PF PF -=1260F PF ∠=︒12F PF △_______. 【答案】【分析】结合题目条件与余弦定理,先算出的值,然后代入三角形的面积公式12PF PF ⋅,即可得到本题答案. 1212121sin 2F PF S PF PF F PF =⋅∠A 【详解】由双曲线右焦点与抛物线的焦点重合,可得,所以, 2F 28y x =2(2,0)F 124F F =设,则,1122,PF r PF r ==122r r -=因为,所以, 22212121212||||2cos F F PF PF PF PF F PF =+-⋅⋅∠22121212162r r r r +-⨯=则,解得,21212()16r r r r -+=1212r r =所以,. 12121sin 602F PF S r r =︒=A故答案为:三、解答题17.已知数列满足,且点在直线上.{}n a 11a =111,n n a a +⎛⎫⎪⎝⎭2y x =+(1)求数列的通项公式;{}n a (2)设,求数列的前n 项和. 1n n n b a a +={}n b n T 【答案】(1) 121n a n =-(2) 21nn + 【分析】(1)先求出数列的通项公式,从而可得到数列的通项公式;1n a ⎧⎫⎨⎬⎩⎭{}n a (2)根据(1)中数列的通项公式,可写出数列的通项公式,再利用裂项相消的方法即可{}n a {}n b 求得前n 项和.n T 【详解】(1)由题意得,即, 1112n n a a +=+1112n n a a +-=所以数列是首项为,公差为2的等差数列,1n a ⎧⎫⎨⎬⎩⎭111a =故,即. 1112(1)21n n n a a =+-=-121n a n =-(2)由(1)知,11111(21)(21)22121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭所以1111111112323522121n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-++⨯- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭ 111111123352121n n ⎛⎫=⨯-+-++- ⎪-+⎝⎭. 111221n ⎛⎫=- ⎪+⎝⎭21n n =+18.已知的顶点坐标分别是,,. ABC A ()3,0A ()1,2B ()1,0C -(1)求外接圆的方程;ABC A (2)若直线l :与的外接圆相交于M ,N 两点,求. 3480x y +-=ABC A MCN ∠【答案】(1) 22(1)4x y -+=(2) 60MCN ∠=︒【分析】(1)设出圆的一般方程,代入点,求出方程组的解,即可得到本题答案; ,,A B C (2)先求出圆心到直线的距离,即可得到,然后求出,即可得到本题答MN 30PMN ∠=︒MPN ∠案.【详解】(1)设圆的一般方程为:,, 220x y Dx Ey F ++++=22(40)D E F +->代入点得,(3,0),(1,2),(1,0)A B C -,解得,9+30142010D F DEF D F +=⎧⎪++++=⎨⎪-+=⎩203D E F =-⎧⎪=⎨⎪=-⎩所以圆的一般方程为:, 22230x y x +--=标准方程为:.22(1)4x y -+=(2)圆心到直线的距离,(1,0)P :3480l x y +-=d 又因为,在等腰中,, 2PM =PMN A 30PMN ∠=︒所以圆心角,则.260120MPN ∠=⨯︒=︒60MCN ∠=︒19.如图所示,在四棱锥中,平面ABCD ,,,且P ABCD -PA ⊥AD BC ∥AB BC ⊥,.1AB AP BC ===2AD =(1)求证:平面;CD ⊥PAC (2)若E 为PC 的中点,求与平面所成角的正弦值.PD AED 【答案】(1)证明见解析【分析】(1)先证,,由此即可证得平面; AC CD ⊥PA CD ⊥CD ⊥PAC (2)建立空间直角坐标系,求出,平面的一个法向量为,然后利用公(0,2,1)PD =- AED ()1,0,1n =- 式,即可求得本题答案. sin cos ,n PD n PD n PDθ⋅==⋅ 【详解】(1)作,垂足为,易证,四边形为正方形.CF AD ⊥F ABCF 所以,又1CF AF DF ===CD ==AC ==因为,所以.222AC CD AD +=AC CD ⊥因为平面,平面,所以.PA ⊥ABCD CD ⊂ABCD PA CD ⊥又,平面,平面,所以平面.AC PA A ⋂=AC ⊂PAC PA ⊂PAC CD ⊥PAC(2)以点为坐标原点,以所在的直线分别为x 轴,y 轴,z 轴,建立如图所示的空间A ,,AB AD AP 直角坐标系,则,,,,. ()0,0,0A ()0,0,1P ()1,1,0C ()0,2,0D 111,,222E ⎛⎫ ⎪⎝⎭则,,. (0,2,0)AD = (0,2,1)PD =- 111(,,)222AE = 设平面的法向量为,AED (),,n x y z = 由,得, 00n AE n AD ⎧⋅=⎪⎨⋅=⎪⎩ 11102220x y z y ⎧++=⎪⎨⎪=⎩令,可得平面的一个法向量为.1z =AED ()1,0,1n =- 设与平面所成角为,PD AED θ则sin cos ,n PD n PD n PDθ⋅====⋅ 20.已知抛物线:()的焦点为,过上一点向抛物线的准线作垂线,垂足C 22y px =0p >F C P 为,是面积为.Q PQF △(1)求抛物线的方程;C (2)过点作直线交于,两点,记直线,的斜率分别为,,证明:()1,0M -l C A B FA FB 1k 2k .120k k +=【答案】(1)24y x =(2)证明见解析【分析】(1)由等边三角形的面积可以求出边的长,再求出中的长,即可求出QF Rt FQN A FN 的值,从而求出抛物线的标准方程;p (2)设过的直线方程,与抛物线方程联立,借助,坐标表示,化简证明即可.M A B 12k k +【详解】(1)如图所示,的面积 PQF △1sin 602PQF S PQ PF =︒A ∴, 4PF PQ QF ===设准线与轴交于点,则在中,, x N Rt FQN A 906030FQN ∠=︒-︒=︒∴, 122p FN QF ===∴抛物线的方程为.C 24y x =(2)由题意知,过点的直线l 的斜率存在且不为,()1,0M -0∴设直线的方程为:(),l l ()1y k x =+0k ≠直线的方程与抛物线的方程联立,得,消去y 整理得, l C 2(1)4y k x y x=+⎧⎨=⎩,()2222240k x k x k +-+=当,即时,设,, ()2242440k k ∆=-->()()1,00,1k ∈-⋃()11,A x y ()22,B x y 则,, 212224k x x k =-+-121=x x 由第(1)问知,,()1,0F ∴直线的斜率,直线的斜率, FA 1111y k x =-FB 2221y k x =-∴. ()()()()()()()()()12112121212121221121011111111x x k x x y y k x k x x k k x x x x x -++--+=+===------+∴原命题得证.21.已知数列满足,且.{}n a 12n n a a +=12314++=a a a (1)求的通项公式;{}n a (2)设,数列的前n 项和为,若对任意的,不等式2n n b n a =⋅{}n b n T n *∈N ()2224844n n T n n λ++-≥-恒成立,求实数λ的取值范围.【答案】(1)2n n a =(2) 3,128⎡⎫+∞⎪⎢⎣⎭【分析】(1)由,可得数列为等比数列,公比,代入到,算出12n n a a +={}n a 2q =12314++=a a a ,即可得到本题答案;1a (2)根据错位相减的方法求得,然后将不等式,逐步等价转化为n T ()2224844n n T n n λ++-≥-,再利用单调性求出的最大值,即可得到本题答案. 2112n n λ-≥2112n nn c -=【详解】(1)因为,所以是公比为2的等比数列, 12n n a a +={}n a 所以,故,1231112414a a a a a a ++=++=12a =故.2n n a =(2),1222n n n b n n +=⋅=⋅则,23411222322n n T n +=⨯+⨯+⨯++⨯ 所以,()345121222321222n n n n n T ++⨯+⨯+⨯++-⨯+⨯= 两式相减得,,()()2234122221222222212412n n n n n n T n n n ++++--=++++-⋅=-⋅=-⋅-- 因此. 2(1)24n n T n +=-⋅+由,可得,所以, ()2224844n n T n n λ++-≥-222844n n n n λ+⋅≥-2112nn λ-≥该式对任意的恒成立,则. n *∈N max2112n n λ-⎛⎫≥ ⎪⎝⎭令,则, 2112n n n c -=()1112111211132222n n n n n n n n c c ++++----=-=当时,,即数列递增,当时,,即数列递减,6n ≤10n n c c +->{}n c 7n ≥10n n c c +-<{}n c所以当时,, 7n =()max 3128n c =所以实数λ的取值范围是. 3,128⎡⎫+∞⎪⎢⎣⎭22.已知椭圆M :的短轴长为. 22221(0)x y a b a b +=>>(1)求椭圆M 的方程;(2)若过点的两条直线分别与椭圆M 交于点A ,C 和B ,D ,且共线,求直线AB 的()1,1Q -,AB CD 斜率.【答案】(1)22193x y +=(2) 13【分析】(1)由短轴长可求出可求出,由此即可求得本题答案; 23b =29a =(2)设点,因为共线,可设()()()()11223344,,,,,,,A x y B x y C x y D x y ,AB CD ,AQ QC BQ QD λλ== ,可得,,代入椭圆方程,然后相减,即可得到本题答案. 13131(1)x x y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩24241(1)xx y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩【详解】(1)因为短轴长为,b =23b =因为离心率,所以,可得, e 2222213c b a a =-=2213b a =29a =所以椭圆M 的方程为. 22193x y +=(2)设.()()()()11223344,,,,,,,A x y B x y C x y D x y 设,则,即, AQ QC λ= 13131(1)1(1)x x y y λλ-=-⎧⎨--=+⎩13131(1)x x y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩代入椭圆方程,得, ()()22112211193x y λλλλ+-++⎡⎤⎡⎤⎣⎦⎣⎦+=即① ()()221141211993x y λλλ+⎛⎫-+-=- ⎪⎝⎭同理可得② ()()222241211993x y λλλ+⎛⎫-+-=- ⎪⎝⎭由②-①,得, 11229393x y x y -=-所以,()12123y y x x -=-所以直线AB 的斜率. 121213y y k x x -==-【点睛】思路点睛:把共线这个条件,转化为,是解决此题的关键. ,AB CD ,AQ QC BQ QD λλ==。
高二下学期期末数学考试试卷含答案(共5套)
i A. > B. > 1 C. a 2 > b 2 D. ab < a + b - 18、已知 x > 0 , y > 0 ,若 2 y + > m 2 + 2m 恒成立,则实数 m 的取值范围是()高二年级下学期期末考试数学试卷一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、不等式 2x - 3 < 5 的解集为()A. (-1,4)B. (1,4)C. (1,-4)D. (-1,-4)2、设复数 z 满足 (1 + i) z = 2 ( i 为虚数单位),则复数 z 的共轭复数在复平面中对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3、某市对公共场合禁烟进行网上调查,在参与调查的 2500 名男性市民中有 1000 名持支持态度,2500 名女性市民中有 2000 人持支持态度,在运用数据说明市民对在公共场合禁烟是 否支持与性别有关系时,用什么方法最有说明力( ) A. 平均数与方差 B. 回归直线方程 C. 独立性检验 D. 概率4、若函数 f ( x ) = ax 4 + bx 2 + c 满足 f '(1) = 2 ,则 f '(-1) 等于()A. - 1B. - 2C. 2D. 05 、函数 y = f ( x ) 的图象过原点,且它的导函数y = f '( x ) 的图象是如图所示的一条直线,y = f ( x ) 的图象的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6、在一组样本数据 ( x , y ) , ( x , y ) ,……, ( x , y ) (n ≥ 2, x , x ⋅ ⋅ ⋅ x 不全相等)的散点图中, 1 122nn12n若所有样本点 ( x , y ) (i = 1,2 ⋅ ⋅ ⋅ n) 都在直线 y = i i ( )1 2x + 1上,则这组样本数据的样本相关系数为A. - 1B. 0C. 12D. 17、若 a < 1 , b > 1 那么下列命题正确的是( )1 1 b a b a8xx yA. m ≥ 4 或 m ≤ -2B. m ≥ 2 或 m ≤ -4C. - 4 < m < 2D. - 2 < m < 49、某同学为了了解某家庭人均用电量( y 度)与气温( x o C )的关系,曾由下表数据计算回归直线方程 y = - x + 50 ,现表中有一个数据被污损,则被污损的数据为()+ 的取值范围A. ⎢ ,+∞ ⎪B. - ∞, ⎥C. ⎢ ,+∞ ⎪D. - ∞,- ⎥气温 30 2010 0 人均用电量20 30*50A. 35B. 40C. 45D. 4810、已知函数 f ( x ) 的导函数 f '( x ) = a( x + 1)( x - a) ,若 f ( x ) 在 x = a 处取得极大值,则a 的取值范围是()A. (-∞,1)B. (-1,0)C. (0,1)D. (0,+∞ )11、已知函数 f ( x ) = x 3 - 2ax 2 - bx 在 x = 1 处切线的斜率为 1 ,若 ab > 0 ,则 1 1a b( )⎡ 9 ⎫ ⎛ 9 ⎤ ⎡ 1 ⎫ ⎛ 1 ⎤ ⎣ 2 ⎭⎝ 2 ⎦ ⎣ 2 ⎭ ⎝2 ⎦12、已知 a > b > c > 1 ,设 M = a - cN = a - bP = 2( a + b- ab ) 则 M 、 N 、 P 的大小2关系为( )A. P > N > MB. N > M > PC. M > N > P二、填空题(本大题共 4 个小题,每小题 5 分,共 20 分) 13、下列的一段推理过程中,推理错误的步骤是_______ ∵ a < b∴ a + a < b + a 即 2a < b + a ……①∴ 2a - 2b < b + a - 2b 即 2(a - b ) < a - b ……②∴ 2(a - b )(a - b ) < (a - b )(a - b ) 即 2(a - b )2 < (a - b )2 ……③∵ (a - b )2 > 0∴ 可证得 2 < 1 ……④D. P > M > N14、已知曲线 y = x 2 4- 3ln x 在点( x , f ( x ) 处的切线与直线 2 x + y - 1 = 0 垂直,则 x 的值为0 0 0________15、 f ( x ) = x +1( x > 2) 在 x = a 年取得最小值,则 a =________x - 216、设 a 、 b ∈ R , a - b > 2 ,则关于实数 x 的不等式 x - a + x - b > 2 的解集是_______三、解答题(本大题共 6 小题,共 70 分。
高二数学期末试卷带答案解析
高二数学期末试卷带答案解析考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为()A.B.C.D.2.已知双曲线的焦点在轴上,两条渐近线为,则双曲线的离心率().A.5 B. C. D.3.右图是2007年中央电视台举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最底分后,所剩数据的平均数和方差分别为( )A.84, 4.84B.84, 1.6C.85, 1.6D.85, 44.下列空间几何体中,是棱柱的是()A. B. C. D.5.设实数满足,则点在圆内部的概率是 ( )A. B. C. D.6.在中,若,则是()A.锐角三角形B.直角三角形C.钝角三角形D .等腰直角三角形 7.直线的倾斜角的取值范围( )A .B .C .D .8.已知函数在恰有两个不同的零点,则下列结论正确的是( ).A .B .C .D .9.设,则的最大值是( )A .3B .C .D .-110.“m=”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0相互垂直”的 ( ) A .充分必要条件 B .充分而不必要条件 C .必要而不充分条件 D .既不充分也不必要条件 11.函数的单调递减区间是A .B .C .,D .12.若满足约束条件,目标函数仅在点(1,0)处取得最小值,则的取值范围是( )A .(,2)B .C .D .(,2) 13.若正实数满足,则的最小值( )A .B .C .D .14.若过点的直线与曲线有公共点,则直线的斜率的取值范围为( ) A .B .C .D .15.甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( ) A .B .C .D .16.已知,则的值为( )A .B .C .D .17.下列函数中与函数相等的是( ) A .B .C .D .18.某次联欢会要安排3个歌舞类节目,2个小品类节目和一个相声类节目的演出顺序,则同类节目不相邻的排法种数是( ) A .72 B .120 C .144 D .16819.(2015秋•水富县校级月考)若直线y=x+b 与曲线有且只有1个公共点,则b 的取值不可能是( )A .B .0C .1D .20.如图,ABC —A 1B 1C 1是正方体,E 、F 分别是AD 、DD 1的中点,则面EFC 1B 和面BCC 1B 1所成二面角的正切值等于( )A、B、C、D、二、填空题21.已知复数满足,则复数在复平面上对应点所表示的图形是22.观察:①;②,由此猜出一个一般式为.23.已知椭圆的左、右焦点分别为、,为椭圆上一点,且,若的面积为9,则__________.24.已知双曲线:的右焦点为,是双曲线的左支上一点,,则△周长最小值为.25.双曲线的顶点到其渐近线的距离等于__________.26.执行右边的程序框图,若,则输出的.27.(本小题满分12分)已知等比数列,公比,且,求公比q和前6项和.28.是公差不等于0的等差数列的前项和,若且成等比数列,则___。
高二下学期期末考试数学试卷(含参考答案)
高中二年级学业水平考试数学(测试时间120分钟,满分150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知i 是虚数单位,若复数))((R a i a i ∈+-的实部与虚部相等,则=a (A )2-(B )1- (C )1 (D )2(2)若集合{}0,1,2A =,{}24,B x x x N =≤∈,则AB =(A ){}20≤≤x x(B ){}22≤≤-x x (C ){0,1,2} (D ){1,2}(3)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 没有公共点”是“平面α和平面β平行”的(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(4)若()1sin 3πα-=,且2παπ≤≤,则sin 2α的值为(A )9-(B )9-(C )9(D )9(5)在区间[]1,4-上随机选取一个数x ,则1≤x 的概率为 (A )23 (B )15 (C )52 (D )14(6)已知抛物线2y x =的焦点是椭圆22213x y a +=的一个焦点,则椭圆的离心率为(A )37(B )13(C )14 (D )17(7)以下函数,在区间[3,5]内存在零点的是(A )3()35f x x x =--+ (B )()24x f x =-图2俯视图侧视图主视图(C )()2ln(2)3f x x x =-- (D )1()2f x x=-+ (8)已知(2,1),(1,1)a b ==,a 与b 的夹角为θ,则cos θ=(A)10 (B)10 (C)5 (D)5(9)在图1的程序框图中,若输入的x 值为2,则输出的y 值为(A )0 (B )12 (C )1- (D )32- (10)某几何体的三视图如图2所示,则该几何体的侧面积是(A )76 (B )70 (C )64 (D )62 (11)设2()3,()ln(3)xf x eg x x =-=+,则不等式(())(())11f g x g f x -≤的解集为(A )[5,1]- (B )(3,1]- (C )[1,5]- (D )(3,5]-(12) 已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且00x <,则a 的取值范围为(A )∞(-,-2) (B )1∞(-,-) (C )(1,+)∞ (D )(2,)+∞第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.(13)函数()cos f x x x =+的最小正周期为 .(14)已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-3322y x y x x y ,则y x -2的最小值为 .(15)已知直线l :0x y a -+=,点()2,0A -,()2,0B . 若直线l 上存在点P 满足AP BP ⊥,则实数a 的取值范围为 .(16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2,b =3B π=,且△ABC 的面DC 1B 1CBA积S =a c += .三、解答题:本大题必做题5小题,选做题2小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知等差数列{}n a 满足141,4a a ==;数列{}n b 满足12b a =,25b a =,数列{}n n b a -为等比数列. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n b 的前n 项和n S . (18)(本小题满分12分)某地区以“绿色出行”为宗旨开展“共享单车”业务.该地区某高级中学一兴趣小组由9名高二级学生和6名高一级学生组成,现采用分层抽样的方法抽取5人,组成一个体验小组去市场体验“共享单车”的使用.问:(Ⅰ)应从该兴趣小组中抽取高一级和高二级的学生各多少人;(Ⅱ)已知该地区有X ,Y 两种型号的“共享单车”,在市场体验中,该体验小组的高二级学生都租X 型车,高一级学生都租Y 型车.如果从组内随机抽取2人,求抽取的2人中至少有1人在市场体验过程中租X 型车的概率.(19)(本小题满分12分)如图3,已知四棱锥11A CBB C -的底面为矩形,D 为1AC 的中点,AC ⊥平面BCC 1B 1. (Ⅰ)证明:AB//平面CDB 1; (Ⅱ)若AC=BC=1,BB 1(1)求BD 的长;(2)求三棱锥C-DB 1C 1的体积. 图3 (20)(本小题满分12分)已知过点(0,1)A 的动直线l 与圆C :224230x y x y +---=交于M ,N 两点. (Ⅰ)设线段MN 的中点为P ,求点P 的轨迹方程; (Ⅱ)若2OM ON ⋅=-,求直线l 的方程. (21)(本小题满分12分)已知函数()ln f x x x =.(Ⅰ)求函数()f x 的极值;(Ⅱ)若对任意1,x e e⎡⎤∈⎢⎥⎣⎦,都有()213022f x x ax +++≤成立,求实数a 的取值范围. 请考生在(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分. (22)(本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的纵坐标不变,横坐标变为原来的14,得曲线C . (Ⅰ)写出C 的参数方程;(Ⅱ)设直线l :410x y ++=与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1 P 2的中点且与l 垂直的直线的极坐标方程. (23)(本小题满分10分)选修4-5:不等式选讲设函数()|2|||f x x x a =-+-. (Ⅰ)若2a =-,解不等式5)(≥x f ;(Ⅱ)如果当x R ∈时,()3f x a ≥-,求a 的取值范围.数学参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.一、选择题:部分解析:(10)依题意知,该几何体是底面为直角梯形的直棱柱,故其侧面积为42+44+245=64⨯⨯⨯⨯.(11)(())(())11f g x g f x -≤即22(3)3211450x x x x +--≤⇒+-≤51x ⇒-≤≤,注意到30x +>,即3x >-,故31x -<≤.(12)当0a =时,函数2()31f x x =-+有两个零点,不符合题意,故0a ≠,2'()363(2)f x ax x x ax =-=-,令'()0f x =得0x =或2x a =,由题意知,0a >,且2()0f a>,解得2a >.二、填空题:(15)问题转化为求直线l 与圆2222x y +=有公共点时,a 的取值范围,数形结合易得a -≤.(16)由余弦定理得2222cos 4b a c ac B =+-=,即224a c ac +-=,1sin 24S ac B ac ===得4ac =,故2()164a c a c +=⇒+= 三、解答题:(17)解:(Ⅰ)由数列{}n a 是等差数列且141,4a a ==∴公差4113a a d -==, ------------------------------------------------------------------------------1分 ∴1(1)n a a n d n =+-=,------------------------------------------------------------------------------3分 ∵12b a ==2,25b a ==5,∴11221,3,b a b a -=-= ∴数列{}n n b a -的公比22113b a q b a -==-,-----------------------------------------------------------5分∴1111()3n n n n b a b a q ---=-=,∴13n n b n -=+;-------------------------------------------------------------------------------------------7分 (Ⅱ)由13n n b n -=+得21(12)(1333)n n S n -=++++++++--------------------------------------------------------9分(1)31231n n n +-=+- 3(1)12n n n ++-=------------------------------------------------------------------------------------ 12分 (18)解:(Ⅰ)依题意知,应从该兴趣小组中抽取的高一学生人数为56=29+6⨯, ------2分 高二学生的人数为:59=39+6⨯; -------------------------------------------------------------------4分 (Ⅱ)解法1:记抽取的2名高一学生为12,a a ,3名高二的学生为123,,b b b ,------------5分 则从体验小组5人中任取2人的所有可能为:12111213(,),(,),(,),(,)a a a b a b a b ,(a 2,b 1), (a 2,b 2), (a 2,b 3), (b 1,b 2), (b 1,b 3), (b 2,b 3),共10种可能; ----------------------------------------------------------8分 其中至少有1人在市场体验过程中租X 型车的有:111213(,),(,),(,)a b a b a b ,212223121323(,),(,),(,),(,),(,),(,)a b a b a b b b b b b b 共9种,------------------------------------------10分故所求的概率910P =.-----------------------------------------------------------------------------------------12分 【解法:2:记抽取的2名高一学生为12,a a ,3名高二的学生为123,,b b b ,------------------------5分 则从体验小组5人中任取2人的所有可能为:12111213(,),(,),(,),(,)a a a b a b a b ,EABCB 1C 1D212223121323(,),(,),(,),(,),(,),(,)a b a b a b b b b b b b 共10种可能;--------------------------------------8分其中所抽的2人都不租X 型车的有:12(,)a a 一种,-------------------------------------------------9分 故所求的概率1911010P =-=. ---------------------------------------------------------------------------12分 (19)解:(Ⅰ)证明:连结1BC 交1B C 于E ,连结DE , ------------------------------------------1分 ∵D 、E 分别为1AC 和1BC 的中点,∴DE//AB,---------------------------------- --------------------2分 又∵DE ⊂平面1CDB ,AB ⊄平面1CDB ,∴AB//平面CDB 1;---------------------------------------------4分 (Ⅱ)(1)∵AC ⊥平面BCC 1B 1,BC ⊂平面11BCC B , ∴BC AC ⊥, 又∵1BC CC ⊥,1ACCC C =,∴BC ⊥平面1ACC , ∵CD ⊂平面1ACC ,∴BC CD ⊥,----------------------------------------------------------------------------------------------------6分 在Rt BCD ∆,∵BC=1,1112CD AC ===, ∴BD =分【注:以上加灰色底纹的条件不写不扣分!】 (2)解法1:∵BC ⊥平面1ACC ,BC//B 1C 1∴11B C ⊥平面1CC A ,-----------------------------------------------------------------------------------------10分 ∴111111113C DB C B CDC CDC V V S B C --∆==⋅111134=⨯⨯=. ---------------------------------12分 【解法2:取1CC 中点F,连结DF ,∵DF 为△1ACC 的中位线,∴DF//AC,-------------------------------------------------------------------9分 ∵AC ⊥平面11CBB C ,从而可得DF ⊥平面11CBB C ,----------------------------------------------10分∴11111113C DB C D CB C CB C V V S DF --∆==⋅1111322=⨯⨯=. --------------------------------12分 (20)解法(Ⅰ)将224230x y x y +---=化为标准方程得:222(2)(1)x y -+-=, ----------------------------------------------------------------------------1分可知圆心C 的坐标为(2,1),半径r =设点P 的坐标为(,)x y ,则(2,1),(,1)CP x y AP x y =--=-,---------------------------------------2分 依题意知CP AP ⊥,∴0CP AP ⋅=(2)(1)(1)0x x y y ⇒-+--=整理得:222210x y x y +--+=, ------------------------------------------------------------------------4分∵点A 在圆C 内部, ∴直线l 始终与圆C 相交,∴点P 的轨迹方程为222210x y x y +--+=.----------------------------------------------------------6分 (Ⅱ)设1122(,),(,)M x y N x y ,若直线l 与x 轴垂直,则l 的方程为0x =,代入224230x y x y +---=得2230y y --=,解得1y =-或3y =,不妨设121,3y y =-=,则3OM ON ⋅=-,不符合题设, ------------------------------------------------7分 设直线l 的斜率为k ,则l 的方程为1y kx =+,由224230,1.x y x y y kx ⎧+---=⎨=+⎩消去y 得:22(1)440k x x +--=, --------------------------------8分 216(2)0k ∆=+>,则12122244,11x x x x k k+==-++,------------------------------------------------------------------------9分 由2OM ON ⋅=-得212121212(1)()12x x y y k x x k x x +=++++=-,∴22244(1)1211kk k k-+++=-++2410k k ⇒-+=,解得:2k =±分∴当2OM ON ⋅=-时,直线l 的方程为(21y x =++或(21y x =-+. --------------12分 (21)解:(Ⅰ)函数()f x 的定义域为(0,)+∞, ∵()ln 1f x x '=+,令'()0f x =得1x e=,-------------------------------------------------------------2分 当10x e <<时'()0f x <,当1x e>时,'()0f x >, ∴函数()f x 在1(0,)e 上单调递减,在1(,)e+∞上单调递增,----------------------------------------4分∴函数()f x 无极大值, 当1x e =时,函数()f x 在(0,)+∞有极小值,11()()f x f e e==-极小,--------------------------5分 (Ⅱ)当1,x e e ⎡⎤∈⎢⎥⎣⎦时,由()213022f x x ax +++≤,得3ln 22x a x x ≤---,--------------6分 记()3ln 22x g x x x =---,1,x e e ⎡⎤∈⎢⎥⎣⎦, 则()()()2231113222x x g x x x x +-'=--+=-, 当∈x 1,1e ⎛⎫ ⎪⎝⎭时,得'()0g x >,当∈x ()1,e 时, '()0g x <∴()g x 在1,1e ⎛⎫ ⎪⎝⎭上单调递增,在()1,e 上单调递减,---------------------------------------------------9分又113122e g e e ⎛⎫=-- ⎪⎝⎭,()3122e g e e=---, ∵012)()1(<-+=-e e e g e g ,∴()1g g e e ⎛⎫< ⎪⎝⎭,-------------------------------------------------10分故()g x 在1,e e ⎡⎤⎢⎥⎣⎦上的最小值为1g e ⎛⎫ ⎪⎝⎭,故只需1a g e ⎛⎫≤ ⎪⎝⎭,即实数a 的取值范围是13,122e e ⎛⎤-∞-- ⎥⎝⎦.------------------------------------------------------------12分 选做题:(22)解:(Ⅰ)由坐标变换公式1',4'.x x y y ⎧=⎪⎨⎪=⎩ 得4','x x y y ==-------------------------------------2分 代入221x y +=中得2216''1x y +=,--------------------------------------------------------------------3分故曲线C 的参数方程为1cos ,4sin .x y θθ⎧=⎪⎨⎪=⎩(θ为参数);----------------------------------------------------5分 (Ⅱ)由题知,121(,0),(0,1)4P P --,--------------------------------------------------------------------6分 故线段P 1 P 2中点11(,)82M --,---------------------------------------------------------------------------7分∵直线l 的斜率4k =-∴线段P 1 P 2的中垂线斜率为14,故线段P 1 P 2的中垂线的方程为111()248y x +=+------------------------------------------------------8分即832150x y --=,将cos ,sin x y ρθρθ==代入得其极坐标方程为8cos 32sin 150ρθρθ--=----------------------------------------------------------10分 (23)解:(Ⅰ)当a =-2时,f (x )=|x -2|+|x +2|, ①当2x ≤-时,原不等式化为:25,x -≥解得52x ≤-,从而52x ≤-;-------------------------1分 ②当22x -<≤时,原不等式化为:45≥,无解;---------------------------------------------------2分 ③当2x >时,原不等式化为:25,x ≥解得52x ≥,从而52x ≥;----------------------------------3分 综上得不等式的解集为⎭⎬⎫⎩⎨⎧≥-≤2525x x x 或.----------------------------------------------------------------5分(Ⅱ)当x R ∈时,|2||||2()||2|x x a x x a a -+-≥---=- ---------------------------------------7分 所以当x R ∈时,()3f x a ≥-等价于|2|3a a -≥------(*) 当2a ≥时,(*)等价于23,a a -≥-解得52a ≥,从而52a ≥;----------------------------------8分 当2a <时,(*)等价于23,a a -≥-无解;------------------------------------------------------------9分 故所求a 的取值范围为5[,+2∞). --------------------------------------------------------------------------10分。
高二下学期期末数学试卷及答案
高二下学期期末数学试卷一、单项选择1、设,若直线与线段相交,则的取值范围是( )A .B .C .D .2、已知点A (2,-3),B (-3,-2),直线l 方程为kx+y-k-1=0,且与线段AB 相交,求直线l的斜率k 的取值范围为( )A或 B C D 3、直线与曲线有两个不同的交点,则实数的k 的取值范围是( ) A .B .C .D .4、已知圆,直线l :,若圆上恰有4个点到直线l 的距离都等于1,则b 的取值范围为 A .B .C .D .5、若直线被圆截得弦长为,则) A . B . C6、设△ABC 的一个顶点是A (3,-1),∠B,∠C 的平分线方程分别是x=0,y=x ,则直线BC 的方程是( ) A .B .C .D .7、已知圆:,则过点(1,2)作该圆的切线方程为( )A .x+4y-4=0B .2x+y-5=0C .x=2D .x+y-3=0 8、阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A 、B 间4k ≤-220(0,0)ax by a b -+=>>222410x y x y ++-+=494(0,1)k k k >≠的距离为,动点P、A、B不共线时,三角形PAB面积的最大值是()ABD9、若圆上有个点到直线的距离为1,则等于()A.2 B.1 C.4 D.310、圆的一条切线与圆相交于,两点,为坐标原点,则()AB.C.2 D11、已知直线与圆相交,则的取值范围是()A. B. C.D.12、古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点、距离之比是常数的点的轨迹是圆.若两定点、的距离为3,动点满足,则点的轨迹围成区域的面积为().A.B.C.D.13、已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是()A.1或3 B.1或5 C.3或5 D.1或214、我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上面的已知条件可求得该女子第4天所织布的尺数为( )A.B C D15、在等比数列中,,前项和为,若数列也是等比数列,则等于()A.B.C.D.16、设数列满足,记数列的前项之积为,则2P22:(5)(1)4C x y-++=n4320x y+-=n 221x y+=224x y+=()11,A x y()22,B x y O1212x x y y+=2-:cos sin1()l x yααα+=∈R222:(0)C x y r r+=>r 01r<≤01r<<1r≥1r>)0(>>ba{}na21=a n n S{}1na+nS 122n+-3n2n31n-( ) A .B .C .D .17、已知公比不为的等比数列满足,若,则( )A .9B .10C .11D .12 18、设等差数列的前项和为,已知,,则( )A .B .C .D .19、在等差数列中,若,是方程的两根,则的前11项的和为( )A .22B .-33C .-11D .1120、已知数列满足,数列前项和为,则( )ABCD21、已知数列满足,,是数列的前项和,则( )A .B .C .数列是等差数列 D .数列是等比数列22、已知等数差数列中,是它的前项和,若且,则当最大时的值为( )A .9B .10 C .11 D .1823、已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m 、a n ,使得a m a n =16a 12 )1{}n a 15514620a a a a +=210m a =m ={}n a nnS ()()201920212017201720171201912000a a a -++-=()()20192021202020202020-1+201912038a a a +-=4036S =2019202020214036{}n a 2*1222...2()n n a a a n n N +++=∈n nS 12310...S S S S ⋅⋅⋅⋅={}n a n S n 180S >190S <n S nABCD .不存在24、的内角,,所对的边分别是,,.已知,则的最小值为( ) A . B .C .D .25、已知,,为的三个内角,,的对边,向量,,若,且,则角( )A .B .C .D .二、填空题26、点到直线的距离的最大值为________.27、已知点和圆,过点 作圆的切线有两条,则实数的取值范围是______28、已知直线l :x+y-6=0,过直线上一点P 作圆x 2+y 2=4的切线,切点分别为A ,B ,则四边形PAOB 面积的最小值为______,此时四边形PAOB 外接圆的方程为______. 29、已知实数满足,则的取值范围为________.30、已知实数x ,y 满足6x+8y-1=0,则的最小值为______.31、等比数列的前n 项和为32、若等差数列满足,则数列的前项和取得最大值时_________ 33、已知数列满足,则数列的最大值为________.34、已知数列中,,是数列的前项和,且对任意的,都有,则=_____35、已知首项与公比相等的等比数列中,若,,满足,则()1,2P 222:20C x y kx y k ++++=P C k {}n a n S {}n a 7897100,a a a a a ++>+<{}n a n n S =n {}n a 11a =n S {}n a n *,r t N ∈n a的最小值为_____.36、在锐角三角形中,角的对边分别为,若,则的最小值是_______.37、在锐角中,角,,所对应的边分别为,,.则________;若,则的最小值为________. 38、若△ABC 的内角,则的最小值是 . 39、已知分别是的内角的对边,,,则周长的最小值为_____。
高二数学下学期期末考试试卷含答案(共3套)
B .C .D .8.若 S = ⎰ 2 x 2dx , S = ⎰ 2 dx, S = ⎰ 2 e x d x ,则 S , S , S 的大小关系为( )1 x 1 1高二年级下学期期末考试数学试卷(考试时间:120 分钟;满分:150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.设 Z = 10i3 + i,则 Z 的共轭复数为( )A . -1 + 3iB . -1 - 3iC .1+ 3iD .1- 3i2.6 把椅子摆成一排,3 人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .24v v v v3.已知 a = (1- t,2 t - 1,0), b = (2, t, t ), 则 b - a 的 最小值是( )A . 5B . 6C . 2D . 3uuuv uuuv uuuv v4.已知正三棱锥 P - ABC 的外接球 O 的半径为1 ,且满足OA + OB + OC = 0, 则正三棱锥的体积为()A .344 2 45.已知函数 f ( x ) = - x, 且a < b < 1,则 ( )e x A .f (a) = f (b )B . f (a) < f (b )C . f (a) > f (b )D . f (a),f (b )大小关系不能确定6.若随机变量 X ~ B(n, p ), 且 E( X ) = 6, D( X ) = 3,则P( X = 1) 的值为()A . 3 2-2B . 2-4C . 3 2-10D . 2-8作检验的产品件数为()A.6B.7C.8D.91123123A.S<S<S123B.S<S<S213C.S<S<S231D.S<S<S3211A . n + 1B . 2nC .D . n 2 + n + 112.设点 P 在曲线 y = e x 上,点 Q 在曲线 y = ln(2 x) 上,则 PQ 的最小值为()13.已知复数 z = (i 是虚数单位) ,则 z = __________;15.二项式 (x- )8的展开式中,x 2 y 2的系数为 __________; 16.已知 f (n ) = 1 + + + … + (n ∈ N * ), 经计算得f (4) > 2, f (8) > , f (16) > 3 ,f (32) > , 则有__________(填上合情推理得到的式子).17.已知曲线 C 的极坐标方程是 ρ = 2cos(θ + ) ,以极点为平面直角坐标系的原点,极轴为 x,9.平面内有 n 条直线,最多可将平面分成 f (n) 个区域,则 f (n) 的表达式为()n 2 + n + 2 210.设m 为正整数,( x + y)2m 展开式的二项式系数的最大值为 a ,( x + y)2m +1 展开式的二项式系数的最大值为 b .若13a = 7b ,则 m = ( )A .5B .6C .7D .811.已知一系列样本点 ( x , y ) (i = 1,2,3, … , n) 的回归直线方程为 y = 2 x + a, 若样本点 (r,1)与(1,s) ii的残差相同,则有( ) A . r = s B . s = 2r C . s = -2r + 3 D . s = 2r + 112A .1- ln2B . 2(1 - ln 2)C .1+ ln2D . 2(1 + ln2)二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)5i1 + 2i14.直线 2 ρcos θ = 1 与圆 ρ = 2cos θ 相交的弦长为__________;y y x1 1 1 52 3 n 272三、解答题(本大题共 6 小题,17 小题 10 分, 18-22 题每小题 12 分,共 70 分;解答应写出文字说明、证明过程或演算步骤)π 3轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线 l 的参数方程是⎧⎪ x = -1 - t, ⎨⎪⎩ y = 2 + 3t(t 是参数) 设点 P(-1,2) .(Ⅰ)将曲线 C 的极坐标方程化为直角坐标方程,将直线 l 的参数方程化为普通方程;(Ⅱ)设直线 l 与曲线 C 相交于 M , N 两点,求 PM PN 的值.已知从该班随机抽取1人为喜欢的概率是.(参考公式:K2=,其中n=a+b+c+d)20.已知数列{x}满足x=,xn+1=18.我校为了解学生喜欢通用技术课程“机器人制作”是否与学生性别有关,采用简单随机抽样的办法在我校高一年级抽出一个有60人的班级进行问卷调查,得到如下的2⨯2列联表:喜欢不喜欢合计男生18女生6合计6013(Ⅰ)请完成上面的2⨯2列联表;(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.参考临界值表:P(K2≥k)0.150.100.050.0250.0100.0050.001k2.072 2.7063.841 5.024 6.6357.87910.828n(ad-bc)2(a+b)(c+d)(a+c)(b+d)19.在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设a,a,a分别表123示甲,乙,丙3个盒中的球数.(Ⅰ)求a=2,a=1,a=0的概率;123(Ⅱ)记ξ=a+a,求随机变量ξ的概率分布列和数学期望.1211n121+xn,其中n∈N*.(Ⅰ)写出数列{x}的前6项;n(Ⅱ)猜想数列{x}的单调性,并证明你的结论.2na21 .如图,四棱锥 P - ABCD 中,底面 ABCD 是梯形, AD / / B C , AD > BC , ∠BAD = 900 ,P A ⊥ 底面ABCD, P A = AB, 点 E 是PB 的中点 .(Ⅰ)证明: PC ⊥ AE ;(Ⅱ)若 AB = 1, AD = 3, 且P A 与平面 PCD 所成角的大小为 450 ,求二面角 A - PD - C 的正弦值.22.已知函数 g ( x ) =x, f ( x ) = g ( x ) - ax .ln x(Ⅰ)求函数 g ( x ) 的单调区间;(Ⅱ)若函数 f ( x ) 在 (1, +∞)上是减函数,求实数 的最小值;(Ⅲ)若 ∃x , x ∈ [e , e 2 ], 使f ( x ) ≤ f '( x ) + a(a > 0) 成立,求实数 a 的取值范围.12 1 2( x - )2 + ( y + )2 = 1 ;⎪⎪ (Ⅱ) 直线 l 的参数方程化为标准形式为 ⎨ (m 是参数) ,①19.解:由题意知,每次抛掷骰子,球依次放入甲,乙,丙盒中的概率分别为 , , .下学期高二年级期末考试数学参考答案一、选择题题号答案1D 2D 3C 4A 5C 6C 7C 8B9C10B 11C 12B二、填空题13.514.315.7016. f (2n) >n + 22(n ≥ 2, n ∈ N * )三、解答题17 . 解 : ( Ⅰ ) 曲 线 C 的 极 坐 标 方 程 化 为 直 角 坐 标 方 程 为 : x 2 + y 2 = x - 3 y,即1 32 2直线 l 的参数方程化为普通方程为: 3x + y + 3 - 2 = 0 .⎧1 x = -1 - m ,2 ⎪ y = 2 +3 m ⎪⎩ 2将①式代入 x 2 + y 2 = x - 3 y ,得: m 2 + (2 3 + 3)m + 6 + 2 3 = 0 ,②由题意得方程②有两个不同的根,设 m , m 是方程②的两个根,由直线参数方程的几何意义知:1 2PM PN = m m = 6 + 2 3 .1218.解:(Ⅰ)列联表如下;喜欢 男生 14 女生 6 合计20 不喜欢18 22 40 合计 32 28 60(Ⅱ)根据列联表数据,得到 K 2 = 60(14⨯ 22 - 6 ⨯18)2 32 ⨯ 28 ⨯ 20 ⨯ 40≈ 3.348 > 2.706,所以有 90%的可靠性认为“喜欢与否和学生性别有关”.1 1 16 3 2p=p(a=2,a=1,a=0)=C1()2()=.3633683323628 3626323328p(a=3,a=0,a=0)=.8期望E(ξ)=0⨯+1⨯+2⨯+3⨯=.20.解:(Ⅰ)由x=,得x==;21+x3由x=,得x==;31+x5由x=,得x==;51+x8由x=,得x==;81+x13由x=8,得x==;131+x21(Ⅰ)由题意知,满足条件的情况为两次掷出1点,一次掷出2点或3点,111123(Ⅱ)由题意知,ξ可能的取值是0,1,2,3.1p(ξ=0)=p(a=0,a=0,a=3)=,12311113 p(ξ=1)=p(a=0,a=1,a=2)+p(a=1,a=0,a=2)=C1()()2+C1()()2= 123123p(ξ=2)=p(a=2,a=0,a=1)+p(a=1,a=1,a=1)+p(a=0,a=2,a=1)123123123 11111113=C1()2()+A3()()()+C1()2()=3p(ξ=3)=p(a=0,a=3,a=0)+p(a=1,a=2,a=0)+p(a=2,a=1,a=0)+ 1231231231123故ξ的分布列为:ξ0123P13883818 1331388882112121213232315343518454113565(Ⅱ)由(Ⅰ)知x>x>x,猜想:数列{x}是递减数列.2462n下面用数学归纳法证明:①当n=1时,已证命题成立;(Ⅰ)证明: AE = ⎛ 0, b , b ⎫⎪ , PC = (c, b , - b ) , 所以 AE ⋅ PC = 0 ⨯ c + b ⋅ b + b ⋅ (-b ) = 0 , r 由 ⎪⎨ur uuur即 ⎪⎨ 令 z = 1 ,得 m = ⎛ 1 , 1 - c , 1⎫⎪ . ⎩ ⎩ 1 ⎛ c ⎫2 3 ⎝ 3 ⎭ ur AP r |②假设当 n = k 时命题成立,即 x > x2k 2k +2易知 x > 0 ,当 n = k + 1时,2k.x2k +2- x 2k +4=11 + x2k +1-11 + x2k +3==x- x2k +32k +1(1+ x)(1+ x)2k +12k +3x - x2k 2k +2(1+ x )(1+ x )(1+ x2k 2k +1 2k +2)(1+ x2k +3)> 0即 x2( k +1)> x2( k +1)+ 2.也就是说,当 n = k + 1时命题也成立.根据①②可知,猜想对任何正整数 n 都成立.21. 解:解法一(向量法):建立空间直角坐标系 A - xyz ,如图所示.根据题设,可设 D(a, 0, 0), B(0, b , 0), P(0, 0, b ), C (c, b , 0) ,uuuruuu⎝2 2 ⎭ uuur uuur22uuur uuur所以 AE ⊥ PC ,所以 PC ⊥ AE .uuur(Ⅱ)解:由已知,平面 P AD 的一个法向量为 AB = (0, 1, 0) .ur设平面 PCD 的法向量为 m = ( x , y , z) ,ur uuur⎧m ⋅ PC = 0,⎪m ⋅ PD = 0,⎧cx + y - z = 0,⎪ 3x + 0 ⋅ y - z = 0,ur⎝ 3 3 ⎭uuur而 AP = (0, 0, 1) ,依题意 P A 与平面 PCD 所成角的大小为 45︒ ,ur uuur所以 sin 45︒ = 2 = | m ⋅ uuuu ,即 2 | m || AP | 1 1 = 2+ 1 - ⎪ + 17,, 1⎪⎪ . 3 cos θ = ur uuur = PG ⋅ DF 3解得 BC = c = 3 - 2 ( BC = c = 3 + 2 舍去),所以ur ⎛ 1m = 3 ,⎝2 ⎫⎭设二面角 A - PD - C 的大小为 θ ,则ur uuur m ⋅ AB | m || AB | 2 31 2+ + 1 3 3= 3 , 3所以 sin θ = 6 ,所以二面角 A - PD - C 的正 3弦值为6 3 . 解法二(几何法): Ⅰ)证明:因为 P A ⊥ 平面 ABCD ,BC ⊂ 平面 ABCD ,所以 BC ⊥ P A .又由 ABCD 是梯形, AD ∥ BC , ∠BAD = 90︒ ,知 BC ⊥ AB ,而 AB I AP = A , AB ⊂ 平面 P AB , AP ⊂ 平面 P AB ,所以 BC ⊥ 平面 P AB .因为 AE ⊂ 平面 P AB ,所以 AE ⊥ BC .又 P A = AB ,点 E 是 PB 的中点,所以 AE ⊥ PB .因为 PB I BC = B , PB ⊂ 平面 PBC , BC ⊂ 平面 PBC ,所以 AE ⊥ 平面 PBC .因为 PC ⊂ 平面 PBC ,所以 AE ⊥ PC .(Ⅱ)解:如图 4 所示,过 A 作 AF ⊥ CD 于 F ,连接 PF ,因为 P A ⊥ 平面 ABCD , CD ⊂ 平面 ABCD ,所以 CD ⊥ P A ,则 CD ⊥ 平面 PAF ,于是平面 PAF ⊥ 平面 PCD ,它们的交线是 PF .过 A 作 AG ⊥ PF 于 G ,则 AG ⊥ 平面 PCD ,即 P A 在平面 PCD 上的射影是 PG ,所以 P A 与平面 PCD 所成的角是 ∠APF .由题意, ∠APF = 45︒ .在直角三角形 APF 中, P A = AF = 1 ,于是 AG = PG = FG = 2 .2在直角三角形 ADF 中, AD = 3 ,所以 DF = 2 .方法一:设二面角 A - PD - C 的大小为 θ ,则 cos θ = △S PDG △SAPD 2 = = 2=P A ⋅ AD 1⨯ 3 3⨯ 2,8x = ln x - 1,+ 2 = , 即 x = e 2时, f '( x ) max = - a .所以 - a ≤ 0, 于是a ≥, 故a 的最小值为 .=1+ a = . 4 4所以 sin θ = 6 ,所以二面角 A - PD - C 的正弦值为 6 .33方法二:过 G 作 GH ⊥ PD 于 H ,连接 AH ,由三垂线定理,得 AH ⊥ PD ,所以 ∠AHG 为二面角 A - PD - C 的平面角,在直角三角形 APD 中, PD = P A 2 + AD 2 = 2 , AH = P A ⋅ AD = 1⨯ 3 = 3 .PD2 22在直角三角形 AGH 中, sin ∠AHG = AG = 2 = 6 ,AH 33 2所以二面角 A - PD - C 的正弦值为 6 .322.解:由已知,函数 g ( x ) , f ( x ) 的定义域为 (0,1) U (1,+∞),且 f ( x ) =x- ax .ln x(Ⅰ)函数 g '( x ) = 1ln x - x ⋅(ln x)2 (ln x)2当 0 < x < e 且x ≠ 1时,g '( x ) < 0 ;当 x > e 时,g '( x ) > 0 .所以函数 g ( x ) 的单调减区间是 (0,1),(1,e), 增区间是(e , ∞) .(Ⅱ)因 f ( x ) 在 (1, +∞) 上为减函数,故 f '( x ) =所以当 x ∈ (1,+∞) 时, f '( x )max ≤ 0 .ln x - 1 (ln x)2- a ≤ 0 在 (1, +∞) 上恒成立.又 f '( x ) = ln x - 1 1 1 1 1 1- a = -( )2 + - a = -( - )2 + - a,(ln x) ln x ln x ln x 2 4故当1 1 1ln x 2 4 1 1 1 4 4 4(Ⅲ)命题“若 ∃x , x ∈ [e , e 2 ], 使f ( x ) ≤ f '( x ) + a 成立 ”等价于1212“当 x ∈ [e , e 2 ]时, 有f ( x ) min≤ f '( x )max + a ” .由(Ⅱ)知,当 x ∈ [e , e 2 ]时, 有f '( x )- a,∴ f '( x )max1min≤”.①当a≥时,由(Ⅱ)知,f(x)在[e,e2]上为减函数,=f(e)=-ae2≤,故a≥-②当0<a<时,由于f'(x)=-(-)2+-a在[e,e2]上为增函数,故f'(x)的值域为[f'(e),f'(e2)],即[-a,-a].,ln x -ax≤,x∈(e,e2).4->->-=,与0<a<综上,得a≥1问题等价于:“当x∈[e,e2]时,有f(x)1 41 4则f(x)min2e21112424e2. 1111 4ln x2414由f'(x)的单调性和值域知,∃唯一x∈(e,e2)使f'(x)=0,且满足:00当x∈(e,x)时,f'(x)<0,f(x)为减函数;当x∈(x,e2)时,f'(x)>0,f(x)为增函数;所以,f(x)min =f(x)=x001所以,a≥1ln x11111114x ln e24e2444矛盾,不合题意.1-24e2.1.已知集合 M = x x 2 < 2x + 3 , N = x x < 2 ,则 M ⋂ N = (){}3⎩- log 2 ( x + 1) f ( x ) = ⎨ “ 12 ,则可以利用方程 x = 求得 x ,高二年级第二学期期末考试数学试题一、选择题(每小题 5 分,共 50 分){ }A .(-1,2)B .(-3,2)C .(-3,1)D .(1,2)2.欧拉公式 e i x = cos x + i sin x ( i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天骄”。
高二数学期末试卷带答案
高二数学期末试卷带答案一、单选题(共10题;共40分)1.已知P (﹣4,3),与P 关于x 轴对称的点的坐标是( )A .(﹣3,4)B .(﹣4,﹣3)C .(﹣3,﹣4)D .(4,﹣3)2.数π3,3.14,2273 1.732,168,0.203,﹣0.1010010001…(相邻两个1之间的0的个数逐渐加1)中,无理数的个数为( ) A .1B .2C .3D .43.以下列各组数为边长,能构成直角三角形的是( )A 352B .1,27C .123D .4,5,64.已知()()()123211y y y --,,,,,都在直线2y x =-+上,则123y y y ,,的值的大小关系是( )A .132y y y >>B .123y y y <<C .312y y y >>D .123y y y >>5.下列说法中,正确的是( )A .一个数的立方根有两个,它们互为相反数B .一个非零数的立方根与这个数同号C .如果一个数有立方根,那么它一定有平方根D .一个数的立方根是非负数6.下列命题是真命题的是( )A .同位角相等B .12a 不是整式C .数据6,3,10的中位数是3D .第七次全国人口普查是全面调查7.欣欣商店在一段时间内销售了四种饮料共100瓶,各品牌饮料的销售量如表,根据表中数据,建议该商店进货数量最多的品牌是( )品牌甲 乙 丙 丁 销售量(瓶) 15301243 A .甲品牌B .乙品牌C .丙品牌D .丁品牌8.已知关于x 、y 的二元一次方程组{2ax +by =3ax −by =1的解为{x =1y =−1,则代数式a ﹣2b 的值是( )A .﹣2B .2C .3D .﹣39.如图,在直线l 上有正方形a ,b ,c ,若a ,c 的面积分别为4和16,则b 的面积为( )A .24B .20C .12D .2210.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数 0 1 2 3 4 人数31316171则这50名学生读书册数的众数、中位数是( ) A .3,3B .3,2C .2,3D .2,2二、填空题(共4题;共20分)11.已知正比例函数的图象经过点()36-,,则此正比例函数的表达式是 . 12.若点()P 23,关于y 轴的对称点是点()P'a 13+,,则a = .13.等腰ABC 中,AB AC =,BD 平分ABC ∠,若BDC 120∠=︒,则A ∠= .14.如图,QP∥MN ,A ,B 分别为直线MN ,PQ 上两点,且∥BAN =60°,射线AE 从AM 开始绕点A 按顺时针方向旋转至AN 后立即回转,然后以不变的速度在AM 和AN 之间不停地来回旋转,射线BF 从BQ 绕点B 按逆时针方向同时开始旋转,射线AE 转动的速度是4°/s ,射线BF 转动的速度是1°/s ,在射线BF 到达BP 之前,有 次射线AE 与射线BF 互相平行,时间分别是 s.三、计算题(共4题;共40分)15.计算(737316.16.计算:(022132(2)4-+--+- 17.解下列方程组(1)43325x y x y -=⎧⎨+=⎩(2)132(4)35y x x y ⎧-=⎪⎨⎪-+=⎩ . 18.3268(0)3m m m m>. 四、解答题(共4题;共44分)19(10分).如图,在ABC 中,AD 是BC 边上的高线,CE 是一条角平分线,它们相交于点P.已知55APE ∠=︒,80AEP ∠=︒,求BAC ∠的度数.20(10分).如图,已知65AB DE B CM ∠=︒,,平分90BCE MCN ∠∠=︒,,求证:CN 平分BCD ∠.21(12分).王怡同学参加数学质量测试活动,各项成绩如表所示(单位:分),如果将“数与代数”“图形与几何”“统计与概率”“综合与实践”四项成绩按3:3:2:2的比例确定最终成绩,请你计算王怡同学的最终成绩.项目 数与代数 图形与几何 统计与概率 综合与实践成绩9093899022.24x y =⎧⎨=⎩是二元一次方程32ax y -=和2x y b +=的公共解,求a 与b 的值.五、综合题(共1题;共14分)23.在∥ABC中,AB=AC,∥BAC=90°. 过点A作直线AP,点C关于直线AP的对称点为点D,连接BD,CD,直线BD交直线AP于点E.(1)依题意补全图1;(2)在图1中,若∥PAC=30°,求∥ABD的度数;(3)若直线AP旋转到如图2所示的位置,请用等式表示线段EB,ED,BC之间的数量关系,并证明.答案解析部分1.【答案】B【解析】【解答】解:∵ P (﹣4,3),∴与P 关于x 轴对称的点的坐标是(-4,-3) . 故答案为:B.【分析】根据关于x 轴对称的点,其横坐标相同,纵坐标互为相反数可得答案.2.【答案】D【解析】【解答】解:π3是无理数; 3.14是有限小数,是有理数;227是分数,是有理数; 31.732是有限小数,是有理数;1682=0.203是有限小数,是有理数;﹣0.1010010001…(相邻两个1之间的0的个数逐渐加1) ,是无限不循环小数,是无理数, ∴无理数共有4个. 故答案为:D.【分析】无理数就是无限不循环的小数,常见的无理数有四类:①开方开不尽的数,②与π有关的数,③规律性的数,如0.101001000100001000001…(每两个1之间依次多一个0)这类有规律的数,④锐角三角函数,如sin60°等,根据定义即可一一判断.3.【答案】C【解析】【解答】解:A 、22223)5)+≠,故此选项中的三条线段不能构成直角三角形;B 、222217)+≠,故此选项中的三条线段不能构成直角三角形;C 、22212)3)+=,故此选项中的三条线段能构成直角三角形;D 、222456+≠,故此选项中的三条线段不能构成直角三角形. 故答案为:C.【分析】如果一个三角形的三边满足较小两边的平方和等于最大边长的平方,则该三角形就是直角三角形,据此一一判断得出答案.4.【答案】D【解析】【解答】解:∵2y x =-+,10k =-<,∴直线呈下降趋势,y 随着x 的增大而减小,∵()()()123211y y y --,,,,,都在直线2y x =-+上,211-<-<, ∴123y y y >>; 故答案为:D.【分析】由于一次函数解析中的自变量系数k=-1<0,故函数值y 故随着自变量x 的增大而减小,从而比较三点的横坐标的大小即可判断得出答案.5.【答案】B【解析】【解答】解:A 、一个数的立方根有1个,故原说法错误,该选项不符合题意;B 、一个非零数的立方根与这个数同号选项,正确,该选项符合题意;C 、负数有立方根,但负数没有平方根,故原说法错误,该选项不符合题意;D 、正数的立方根是正数,负数的立方根是负数,0的立方根是0,故原说法错误,该选项不符合题意.故答案为:B.【分析】正数有一个正的立方根,负数有一个负的立方根,0的立方根是0,即任何一个数都有且只有一个立方根;正数有两个平方根,这两个平方根互为相反数,0的平方根是0,负数没有平方根,据此一一判断得出答案.6.【答案】D【解析】【解答】解:A 、两直线平行,同位角相等,故该命题不是真命题;B 、12a 是整式,故该命题不是真命题; C 、 数据6,3,10的中位数是6,故该命题不是真命题; D 、 第七次全国人口普查是全面调查,故该命题是真命题. 故答案为:D.【分析】只有在两直线平行的时候,同位角才会相等,据此判断A ;“12a ”是数与字母的乘积,是单项式,而单项式与多项式统称整式,据此判断B ;将一组数据按从小到大(或者从大到小)的顺序排列后,如果数据的个数是奇数个时,则处在最中间的那个数据叫做这组数据的中位数;如果数据的个数是偶数个时,则处在最中间的两个数据的平均数 叫做这组数据的中位数,据此判断C ;对调查对象的全体进行的调查就是全面调查,据此判断D.7.【答案】D【解析】【解答】解:∵丁品牌饮料出现了43次,是出现次数最多的,∴建议该商店进货数量最多的品牌是丁品牌. 故答案为:D【分析】利用表中数据可知丁品牌饮料出现了43次,是出现次数最多的,即可求解.8.【答案】B【解析】【解答】解:∵ 关于x 、y 的二元一次方程组{2ax +by =3ax −by =1的解为{x =1y =−1 ,∴{2a −b =3①a +b =1②,①-②得a-2b=2. 故答案为:B.【分析】根据方程组解的概念,将x=1与y=-1代入关于x 的方程组可得关于a 、b 的二元一次方程组,进而将两方程相加即可得出答案.9.【答案】B【解析】【解答】解:∵a 、b 、c 都是正方形,∴AC CD =,=90ACD ∠︒,∵90ACB DCE ACB BAC ∠+∠=∠+∠=︒,即BAC DCE ∠=∠,90ABC CED ∠=∠=︒,AC CD =, ∴ACB CDE ≌, ∴AB CE =,BC DE =,在Rt ABC 中,由勾股定理得:22222AC AB BC AB DE =+=+, 即41620b a c S S S =+=+=,故B 正确. 故答案为:B.【分析】根据正方形的性质得AC=CD ,∥ACD=90°,根据同角的余角相等得∥BAC=∥DCE ,从而用AAS 判断出∥ACB∥∥CDE ,根据全等三角形对应边相等得AB=CE ,BC=DE ,在Rt∥ABC 中,由勾股定理得AC 2=AB 2+BC 2=AB 2+DE 2最后结合正方形的面积计算方法即可得出答案.10.【答案】B【解析】【解答】解:∵3出现了17次,是出现次数最多的数,∴这组数据的众数是3;∵一共有50个数,从小到大排列后,第25个数和第26个数都是2,∴这组数据的中位数是2;故答案为:B【分析】求中位数的方法是:把数据先按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,据此可求出这组数据的众数和中位数. 11.【答案】y=-2x【解析】【解答】解:设正比例函数表达式为:y=kx,将点(-3,6)代入得:6=-3k,解得:k=-2.正比例函数表达式为:y=-2x.故答案为:y=-2x.【分析】设正比例函数表达式为:y=kx,将点(-3,6)代入求出k的值,从而即可求出该正比例函数的解析式.12.【答案】-3【解析】【解答】解:∵点P(2,3)关于y轴的对称点是点P'(a+1,3),∴a+1=-2,∴a=-3.故答案为:-3.【分析】根据关于y轴的对称点的坐标特点,即横坐标互为相反数,纵坐标不变,可得a+1=-2,解之即可求得a的值.13.【答案】100°【解析】【解答】解:如图所示,∵AB=AC,∴∥C=∥ABC,又∵BD平分∥ABC,∴∥1=∥2=12∥ABC,∴∥C=2∥1,∵∥2+∥C=180°-∥BDC,且∥BDC=120°,∴3∥1=60°,即∥1=∥2=20°,又∵∥BDC=∥A+∥1,∴∥A=∥BDC-∥1=120°-20°=100°.故答案为:100°.【分析】由AB=AC,根据等边对等角,可得∥ABC=∥C,又由BD平分∥ABC,∥BDC=120°,可求得∥1的度数,然后根据三角形内角和定理,即可求得∥A的度数.14.【答案】2;36或60【解析】【解答】解:设射线AE从AM开始绕点A按顺时针方向旋转ts时,射线AE与射线BF互相平行.分三种情况:①如图,当0<t<45时,∥QBF=t°,∥MAE=(4t)°,∵PQ∥MN,∥BAN=60°,∴∥ABQ=∥BAN=60°,∴∥MAB=180°﹣∥BAN=120°,∴∥ABF=60°﹣t°,∥BAE=∥MAE﹣∥MAB=(4t)°﹣120°,当∥ABF=∥BAE时,AE∥BF,此时,60﹣t=4t﹣120,解得t=36;②当45≤t≤60时,∥QBF=t°,∥NAE=(4t)°﹣180°,∥BAE=60°﹣[(4t)°﹣180°]=240°﹣(4t)°,∵PQ∥MN,∥BAN=60°,∴∥ABQ=∥BAN=60°,∴∥MAB=180°﹣∥BAN=120°,∴∥ABF=60°﹣t°,∥BAE=240°﹣(4t)°,当∥ABF=∥BAE时,AE∥BF,此时,60﹣t=240﹣4t,解得t=60;③如图,当60≤t<180时,∥QBF=t°,∥NAE=(4t)°﹣180°,∥BAE=[(4t)°﹣180°]﹣60°=(4t)°﹣240°,∵PQ∥MN,∥BAN=60°,∴∥ABQ=∥BAN=60°,∴∥MAB=180°﹣∥BAN=120°,∴∥ABF=t°﹣60°,∥BAE=240°﹣(4t)°,当∥ABF=∥BAE时,AE∥BF,此时,t﹣60=4t﹣240,解得t=60;综上所述,在射线BF到达BP之前,有2次射线AE与射线BF互相平行,时间分别是36或60s.故答案为:2,36或60.【分析】设射线AE从AM开始绕点A按顺时针方向旋转ts时,射线AE与射线BF互相平行,①当0<t<45时,∥QBF=t°,∥MAE=(4t)°,根据平行线的性质可得∥ABQ=∥BAN=60°,由邻补角的性质可得∥MAB=120°,根据角的和差关系可得∥ABF=60°-t°,∥BAE=(4t)°﹣120°,当∥ABF=∥BAE时,AE∥BF,据此求解;②当45≤t≤60时,∥QBF=t°,∥NAE=(4t)°﹣180°,∥BAE=240°﹣(4t)°,同理可得t的值;③当60≤t<180时,∥QBF=t°,∥NAE=(4t)°﹣180°,∥BAE=(4t)°﹣240°,同理可得t的值.15.【答案】解:(737316734=--=【解析】【分析】利用二次根式的混合运算的计算方法求解即可。
(完整word版)高二数学期末考试试题及其答案
禄劝一中高中2018-2019学年高二(上)期末数学模拟试卷一、选择题:本大题共12个小题,每小题5分,共60分.1.(5分)已知集合M ={1,2,3},N ={2,3,4},则下列式子正确的是( ) A .M ⊆N B .N ⊆M C .M ∩N ={2,3} D .M ∪N ={1,4} 2.已知向量,则2等于( )A .(4,﹣5)B .(﹣4,5)C .(0,﹣1)D .(0,1)3.在区间(1,7)上任取一个数,这个数在区间(5,8)上的概率为( ) A .B .C .D .4.要得到函数y =sin (4x ﹣)的图象,只需将函数y =sin4x 的图象( ) A .向左平移单位 B .向右平移单位 C .向左平移单位D .向右平移单位5.已知两条直线m ,n ,两个平面α,β,给出下面四个命题: ①m ∥n ,m ⊥α⇒n ⊥α ②α∥β,m ⊂α,n ⊂β⇒m ∥n ③m ∥n ,m ∥α⇒n ∥α ④α∥β,m ∥n ,m ⊥α⇒n ⊥β 其中正确命题的序号是( ) A .①③ B .②④ C .①④ D .②③6.执行如图所以的程序框图,如果输入a =5,那么输出n =( ) A .2B .3C .4D .57.下表提供了某厂节能降耗技术改造后在生产产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据:根据上表提供的数据,若求出关于的线性回归方程为,那么表中的值为 A . B . C . D . 8.已知f (x )=(x ﹣m )(x ﹣n )+2,并且α、β是方程f (x )=0的两根,则实数m ,n ,α,β的大小关系可能是( )A x y yx ˆ0.70.35yx =+t 3 3.15 3.5 4.5x 3456y 2.5t 4 4.5A.α<m<n<βB.m<α<β<n C.m<α<n<βD.α<m<β<n9.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为()A.2cm3B.4cm3C.6cm3D.8cm310.在等腰△ABC中,∠BAC=90°,AB=AC=2,,,则的值为()A.B.C.D.11.已知一个三角形的三边长分别是5,5,6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁距离三角形的三个顶点的距离均超过2的概率是()A.1﹣B.1﹣C.1﹣D.1﹣12.已知函数f(x)=,x1,x2,x3,x4,x5是方程f(x)=m的五个不等的实数根,则x1+x2+x3+x4+x5的取值范围是()A.(0,π)B.(﹣π,π)C.(lg π,1)D.(π,10)二、填空题(每题5分,满分20分)13.若直线2x+(m+1)y+4=0与直线mx+3y+4=0平行,则m=.14.已知=﹣1,则tanα=.15.若变量x、y满足约束条件,则z=x﹣2y的最大值为.16.已知函数()3,01,02+≥⎧⎪=⎨⎛⎫<⎪⎪⎝⎭⎩kkx xf xx ,若方程()()20f f x-=恰有三个实数根,则实数k的取值范围是三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,a,b,c分别为内角A,B,C的对边,2b sin B=(2a+c)sin A+(2c+a)sin C.(Ⅰ)求B的大小;(Ⅱ)若b=,A=,求△ABC的面积.18.已知:、、是同一平面上的三个向量,其中=(1,2).① 若||=2,且∥,求的坐标. ② 若||=,且+2与2-垂直,求与的夹角.19.设S n 是等差数列{a n}的前n 项和,已知S 3=6,a 4=4. (1)求数列{a n }的通项公式; (2)若b n =3﹣3,求证:++…+<.20为了了解某省各景点在大众中的熟知度,随机对15~65岁的人群抽样了人,回答问题“某省有哪几个著名的旅游景点?”统计结果如下图表.(1)分别求出的值;a b c a c 5c a c b 25a b a b a b n y x b a ,,,(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.21.在三棱柱ABC﹣A1B1C1中,△ABC是边长为2的正三角形,侧面BB1C1C是矩形,D、E 分别是线段BB1、AC1的中点.(1)求证:DE∥平面A1B1C1;(2)若平面ABC⊥平面BB1C1C,BB1=4,求三棱锥A﹣DCE的体积.22.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE的面积最大.禄劝一中高中2018-2019学年高二(上)期末数学模拟试卷参考答案一.选择题(每小题5分,共12分)二、填空题(每小题5分,共12分) 13. -3 14.15. 3 16. 11,3⎛⎤-- ⎥⎝⎦17(Ⅰ)解:∵2b sin B =(2a +c )sin A +(2c +a )sin C , 由正弦定理得,2b 2=(2a +c )a +(2c +a )c , 化简得,a 2+c 2﹣b 2+ac =0. ∴.∵0<B <π, ∴B =.(Ⅱ)解:∵A =,∴C =.∴sin C =sin ==.由正弦定理得,,∵,B =,∴.∴△ABC 的面积=.18. 解:①设 ∵∥且||=2∴∴∴=(2,4)或=(-2,-4) .),(y x c =→c a c 5⎩⎨⎧=+=-200222y x y x 2±=x c c②∵(+2)⊥(2-)∴(+2)·(2-)=0, ∴22+3·-22=0∴2||2+3||·||-2||2=0 ∴2×5+3××-2×=0,∴= -1 ∴θ=,∵θ∈[0,π],∴θ=π.19.解:(1)设公差为d ,则,解得,∴a n =n .(2)证明:∵b n =3﹣3=3n +1﹣3n =2•3n ,∴=,∴{}是等比数列.∵=,q =,∴++…+==(1﹣)<.20解:(1)由频率表中第4组数据可知,第4组总人数为, …(1分) 再结合频率分布直方图可知,a b a b a b a b a a b b a a b θcos b 525θcos 45θcos π2πk +2536.09==n 10010025.025=⨯∴1000.01100.55a =⨯⨯⨯=,…(4) (2)因为第2,3,4组回答正确的人数共有54人,所以利用分层抽样在54人中抽取6人,每组分别抽取的人数为: 第2组:人; 第3组:人; 第4组:人 …(8分) (3)设第2组2人为:A 1,A 2;第3组3人为:B 1,B 2,B 3;第4组1人为:C 1. 则从6人中随机抽取2人的所有可能的结果为:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 2,B 1),(A 2, B 2),(A 2,B 3),(A 2,C 1),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 2,B 3),(B 2,C 1),(B 3,C 1)共15个基本事件,其中恰好没有第3组人共3个基本事件, …(10分) ∴所抽取的人中恰好没有第3组人的概率是:. …(12分) 21.(1)证明:取棱A 1C 1的中点F ,连接EF 、B 1F 则由EF 是△AA 1C 1的中位线得EF ∥AA 1,EF =AA 1 又DB 1∥AA 1,DB 1=AA 1 所以EF ∥DB 1,EF =DB 1故四边形DEFB 1是平行四边形,从而DE ∥B 1F 所以DE ∥平面A 1B 1C 1(Ⅱ)解:因为E 是AC 1的中点,所以V A ﹣DCE =V D ﹣ACE =过A 作AH ⊥BC 于H因为平面平面ABC ⊥平面BB 1C 1C ,所以AH ⊥平面BB 1C 1C , 所以==所以V A ﹣DCE =V D ﹣ACE ==279.01003.0100=⨯⨯⨯=b 2.0153,9.02018====y x 265418=⨯365427=⨯16549=⨯51153==P22.解:(1)圆C:x2+y2+2x﹣3=0,配方得(x+1)2+y2=4,则圆心C的坐标为(﹣1,0),圆的半径长为2;(2)设直线l的方程为y=kx,联立方程组,消去y得(1+k2)x2+2x﹣3=0,则有:;所以为定值;(3)解法一:设直线m的方程为y=kx+b,则圆心C到直线m的距离,所以,≤,当且仅当,即时,△CDE的面积最大,从而,解之得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.解法二:由(1)知|CD|=|CE|=R=2,所以≤2,当且仅当CD⊥CE时,△CDE的面积最大,此时;设直线m的方程为y=x+b,则圆心C到直线m的距离,由,得,由,得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.。
高二数学期末试卷带答案解析
高二数学期末试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.甲、乙、丙、丁、戊五位同学站成一排照相留念,则在甲乙相邻的条件下,甲丙也相邻的概率 为A .B .C .D .2.在△ABC 中,cosAcosB>sinAsinB ,则△ABC 是( )A .钝角三角形B .锐角三角形C .直角三角形D .等边三角形 3.设点P(x,y)(xy≠0)是曲线上的点,下列关系正确的是( )A .B .C .D .的值与1的大小关系不确定4.棱长为1的正方体ABCD A 1B 1C 1D 1中,点M,N 分别在线段AB 1,BC 1上,且AM=BN,给出以下结论: ①AA 1⊥MN②异面直线AB 1,BC 1所成的角为60° ③四面体B 1 D 1CA 的体积为④A 1C ⊥AB 1,A 1C ⊥BC 1, 其中正确的结论的个数为( )A .1B .2C .3D .45.已知命题“若,则”为真命题,则下列命题中一定为真命题的是( ) A .若,则 B .若,则C .若,则D .若,则6.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( ) A .或 B .或C .D .7.抛物线的焦点到准线的距离为( )A.2 B.4 C. D.8.已知集合,则()A. B. C. D.9. ( )A. B. C. D.10.已知四个实数成等差数列五个实数成等比数列,则的值等于()A. B. C. D.11.若且,则的最小值是()A.6 B.12 C.16 D.2412.一次函数的图象同时经过第一、三、四象限的必要但不充分条件是()A.B.C.D.13.下列命题错误的是: ()A.命题“若,则方程有实数根”的逆否命题为:“若方程无实数根,则”.B.“”是“”的充分不必要条件.C.若为假命题,则均为假命题.D.对于命题14.一圆锥的底面半径是母线长的一半,侧面积和它的体积的数值相等,则该圆锥的底面半径()A. B. C. D.15.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第个“金鱼”图需要火柴棒的根数为()A. B. C. D.16.已知,则()A. B. C. D.17.有一匹叫的马,参加了100场赛马比赛,赢了20场,输了80场.在这100场比赛中,有30场是下雨天,70场是晴天,在30场下雨天的比赛中,赢了15场.如果明天下雨,参加赛马的胜率是( )A. B. C. D.18.在极坐标系中与圆相切的一条直线的方程为()A.B.C.D.19.已知,如图,在梯形ABCD中,AD//BC,AD=3,BC=7,点M,N分别是对角线BD,AC的中点,则MN=" "A.2 B. 5 C. D.20.设为函数的导函数,且则与的大小关系是()A.B.C.D.不能确定二、填空题21.阅读图4的程序框图,若输入m=4,n=3,则输出a=______,i=________。
西城区2023-2024学年第一学期期末高二数学试题及答案
北京市西城区2023—2024学年度第一学期期末试卷高二数学 2024.1本试卷共5页,共150分.考试时长120分钟.考生务必将答案写在答题卡上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.直线3410x y -+=不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2.抛物线26x y =的焦点到其准线的距离等于( ) A.32B.3C.6D.8 3.在空间直角坐标系O xyz -中,点()4,2,8A -到平面xOz 的距离与其到平面yOz 的距离的比值等于( ) A.14 B.12C.2D.4 4.在312x x ⎛⎫+ ⎪⎝⎭的展开式中,x 的系数为( ) A.3 B.6 C.9 D.125.在正四面体ABCD 中,棱AB 与底面BCD 所成角的正弦值为( )C.136.已知直线,a b 和平面α,且b α⊂,则“直线a ∥直线b ”是“直线a ∥平面α”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.设,A B 为双曲线2222:1(0,0)x y E a b a b-=>>的左、右顶点,M 为双曲线E 上一点,且AMB 为等腰三角形,顶角为120,则双曲线E 的一条渐近线方程是( )A.y x =B.2y x =C.y =D.y =8.在正方体的8个顶点中任选3个,则这3个顶点恰好不在同一个表面正方形中的选法有( )A.12种B.24种C.32种D.36种9.如图,在长方体1111ABCD A B C D -中,13,4,AB BC CC E ===为棱11B C 的中点,P 为四边形11BCC B 内(含边界)的一个动点.且DP BE ⊥,则动点P 的轨迹长度为( )A.5B.C.10.在直角坐标系xOy 内,圆22:(2)(2)1C x y -+-=,若直线:0l x y m ++=绕原点O 顺时针旋转90后与圆C 存在公共点,则实数m 的取值范围是( )A.⎡⎣B.44⎡--⎣C.22⎡--+⎣D.2⎡-+⎣第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.过点()2,3A -且与直线30x y ++=平行的直线方程为__________.12.在4(21)x +的展开式中,所有项的系数和等于__________.(用数字作答)13.两个顶点朝下竖直放置的圆锥形容器盛有体积相同的同种液体(示意图如图所示),液体表面圆的半径分别为3,6,则窄口容器与宽口容器的液体高度的比值等于__________.14.若方程22124x y m m+=+-m 的取值范围是__________;若此方程表示的曲线为椭圆,则实数m 的取值范围是__________.15.如图,在正方体1111ABCD A B C D -中,2,AB E =为棱1BB 的中点,F 为棱1CC (含端点)上的一个动点.给出下列四个结论:①存在符合条件的点F ,使得1B F ∥平面1A ED ;①不存在符合条件的点F ,使得BF DE ⊥;①异面直线1A D 与1EC 所成角的余弦值为5; ①三棱锥1F A DE -的体积的取值范围是2,23⎡⎤⎢⎥⎣⎦. 其中所有正确结论的序号是__________.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.从6男4女共10名志愿者中,选出3人参加社会实践活动.(1)共有多少种不同的选择方法?(2)若要求选出的3名志愿者中有2男1女,且他们分别从事经济、文化和民生方面的问卷调查工作,求共有多少种不同的选派方法?17.(本小题15分)如图,在直三棱柱111ABC A B C -中,1,3,4BA BC BC AB AA ⊥===.(1)证明:直线1AB ⊥平面1A BC ;(2)求二面角1B CA A --的余弦值.18.(本小题15分)已知C 经过点()1,3A 和()5,1B ,且圆心C 在直线10x y -+=上.(1)求C 的方程;(2)设动直线l 与C 相切于点M ,点()8,0N .若点P 在直线l 上,且PM PN =,求动点P的轨迹方程.19.(本小题15分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为),四个顶点构成的四边形面积等于12.设圆22(1)25x y -+=的圆心为,M P 为此圆上一点.(1)求椭圆C 的离心率;(2)记线段MP 与椭圆C 的交点为Q ,求PQ 的取值范围.20.(本小题15分)如图,在四棱锥P ABCD -中,AD ⊥平面,PAB AB ∥,DC E 为棱PB 的中点,平面DCE 与棱PA 相交于点F ,且22PA AB AD CD ====,再从下列两个条件中选择一个作为已知. 条件①:PB BD =;条件①:PA BC ⊥.(1)求证:AB ∥EF ;(2)求点P 到平面DCEF 的距离;(3)已知点M 在棱PC 上,直线BM 与平面DCEF 所成角的正弦值为23,求PM PC的值.设椭圆2222:1(0)x y C a b a b+=>>左、右焦点分别为12,F F ,过1F 的直线与椭圆C 相交于,A B 两点.已知椭圆C 的离心率为21,2ABF 的周长为8. (1)求椭圆C 的方程;(2)判断x 轴上是否存在一点M ,对于任一条与两坐标轴都不垂直的弦AB ,使得1MF 为AMB 的一条内角平分线?若存在,求点M 的坐标;若不存在,说明理由.北京市西城区2023—2024学年度第一学期期末试卷高二数学参考答案 2024.1一、选择题:本大题共10小题,每小题4分,共40分1.D2.B3.B4.D5.B6.D7.A8.C9.B 10.A二、填空题:本大题共5小题,每小题5分,共25分11.10x y ++= 12.81 13.414.()(),24,∞∞−−⋃+;()()2,11,4−⋃ 15.①②④注:第14题第一问3分,第二问2分;第15题全部选对得5分,有两个选对且无错选得3分,有一个选对且无错选得2分,其他得0分.三、解答题:本大题共6小题,共85分.其他正确解答过程,请参照评分标准给分. 16.(本小题10分)解:(1)从6男4女共10名志愿者中,选出3人参加社会实践活动,选择方法数为310C 120=种.(2)从10名志愿者中选2男1女,选择方法数共有2164C C 60=种,故从10名志愿者中选2男1女,且分别从事经济、文化和民生方面的问卷调查工作的选派方法数为213643C C A 360=种.17.(本小题15分)解:(1)在直三棱柱111ABC A B C −中,因为1AA ⊥.平面,ABC BC ⊂平面ABC ,所以1AA BC ⊥.又因为1,BA BC BA AA A ⊥⋂=,所以BC ⊥平面11AA B B ,所以1BC AB ⊥.由14AB AA ==,得四边形11AA B B 为正方形.所以11AB A B ⊥.又因为1BC A B B ⋂=,所以1AB ⊥平面1A BC .(2)因为1BB ⊥平面,ABC BA BC ⊥,所以1,,BA BC BB 两两互相垂直,故以B 为原点,1,,BA BC BB 的方向分别为x 轴、y .轴、z 轴正方向,建立如图所示的空间直角坐标系.则()()()()114,0,0,0,3,0,4,0,4,0,0,4A C A B .所以()()14,3,0,0,0,4AC AA =−=.设平面1A AC 的法向量为(),,m x y z =,则10,0,m AC m AA ⎧⋅=⎪⎨⋅=⎪⎩即430,40.x y z −+=⎧⎨=⎩ 令3x =,则4,0y z ==.于是()3,4,0m =.由(1)可知:()14,0,4AB =−是平面1A BC 的一个法向量.因为11112cos ,1042||AB mAB m AB m ⋅−===−⨯, 由图可知二面角1B CA A −−的平面角为锐角,所以二面角1B CA A −−的余弦值为10. 18.(本小题15分)解:(1)由题意,设C 的圆心(),1C a a +,半径为r , 则222222(1)(31),(5)(11).a a r a a r ⎧−+−−=⎨−+−−=⎩ 解得:5,5.a r =⎧⎨=⎩所以C 的方程为22(5)(6)25x y −+−=.(2)由平面几何,知PMC 为直角三角形,且PM MC ⊥,所以222||||||PM MC PC +=.由PM PN =,得222||||||PN MC PC +=.设(),P x y ,则2222(8)25(5)(6)x y x y −++=−+−.即36140x y −−=,经检验符合题意.所以动点P 的轨迹方程为36140x y −−=.19.(本小题15分)解:(1)由题意,得222212,c ab a b c ===+,所以3,2a b ==,所以椭圆C 的离心率c e a ==. (2)由题意,得5PQ MP MQ MQ =−=−.设()11,Q x y ,则2211194x y +=.所以MQ ===. 因为[]13,3x ∈−,所以当195x =时,min ||MQ =;当13x =−时,max ||4MQ =.所以PQ 的取值范围为1,5⎡−⎢⎣⎦. 20.(本小题15分)解:选择条件①:(1)因为AB ∥,DC AB ⊄平面,DCEF DC ⊂平面DCEF ,所以AB ∥平面DCEF .又因为AB ⊂平面PAB ,平面PAB ⋂平面DCEF EF =,所以AB ∥EF .(2)因为AD ⊥平面PAB ,所以,AD PA AD AB ⊥⊥.又因为,22PB BD PA AB AD CD ====,所以PAB DAB ≅.因此90PAB DAB ∠∠==,即,,AB AD AP 两两垂直.如图,以A 为原点,,,AB AD AP 的方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系,所以()()()()0,2,0,1,2,0,0,0,2,2,0,0D C P B .由(1),得AB ∥EF ,且E 为棱PB 的中点,所以点F 为棱PA 的中点.()()1,0,1,0,0,1E F ,故()()()0,0,1,0,2,1,1,0,0FP DF CD ==−=−.设平面DCEF 的一个法向量为(),,n x y z =,则20,0,DF n y z CD n x ⎧⋅=−+=⎪⎨⋅=−=⎪⎩ 取1y =,则0,2x z ==,即()0,1,2n =.所以点P 到平面DCEF 的距离255FP n d n ⋅==. (3)设[],0,1PM PCλλ=∈, 则()()1,2,2,2,2PM PC λλλλλ==−=−.所以()2,2,22BM BP PM λλλ=+=−−.设直线BM 与平面DCEF 所成角为θ,所以||sin |cos ,|||||BM n BMn BM n θ⋅=<>== 23=. 化简,得29610λλ−+=,解得13λ=, 即13PM PC =. 选择条件②:(1)与上述解法相同,略.(2)因为AD ⊥平面PAB ,所以,AD PA AD AB ⊥⊥,又因为,PA BC BC ⊥与AD 相交,所以PA ⊥平面ABCD . 所以PA AB ⊥.即,,AB AD AP 两两垂直.以下与上述解法相同,略.21.(本小题15分)解:(1)由题意,得22248,1,2,a c a abc =⎧⎪⎪=⎨⎪=+⎪⎩ 解得2,1.a b c =⎧⎪=⎨⎪=⎩所以椭圆C 的方程为22143x y +=. (2)假设x 轴上存在一点()0,0M x 符合题意.由题意,设直线()()()()1122:10,,,,AB y k x k A x y B x y =+≠.联立方程()221,1,43y k x x y ⎧=+⎪⎨+=⎪⎩消去y , 得()22223484120k x k x k +++−=. 所以221212228412,3434k k x x x x k k−+=−=++. 由题意,知直线AM 的斜率存在,且为()11101010AM k x y k x x x x +−==−−, 同理,直线BM 的斜率为()22202010BM k x y k x x x x +−==−−. 所以()()12102011AM BM k x k x k k x x x x +++=+−− ()()()()12120120102022k x x x x x x x x x x x x ⎡⎤++−+−⎣⎦=−−. 因为1MF 为AMB 的一条内角平分线,所以0AM BM k k +=.所以()()1212010220k x x x x x x x x ⎡⎤++−+−=⎣⎦.因为上式要对任意非零的实数k 都成立, 所以2220022241288220343434k k k x x k k k−⨯−+⨯−=+++, 解得04x =−.故x 轴上存在一点()4,0M −,对于任一条与两坐标轴都不垂直的弦AB ,使得1MF 为AMB 的一条内角平分线.。
高二数学期末试卷带答案解析
高二数学期末试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.数列中,,,则使为整数的的取值可能是( )A .1022B .1023C .1024D .1025 2.已知平面内不共线的四点O,A,B,C,若=A .1B .2C .3D .不确定3.某几何体是组合体,其三视图如图所示,则该几何体的体积为( )A .B .C .D .4.若是双曲线与椭圆的共同焦点,点是两曲线的一个交点,且△为等腰三角形,则该双曲线的渐近线方程是 A .B .C .D .5.椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,则椭圆的离心率为( ) A .B .C .D .6.已知直线l 1:ax ﹣y+2a=0,l 2:(2a ﹣1)x+ay+a=0互相垂直,则a 的值是( ) A .0 B .1 C .0或1 D .0或﹣17.已知命题:函数在R 为增函数,:函数在为减函数.则命题;;;中真命题的个数为( )A .1B .2C .3D .4 8.已知数列为等差数列,,,则数列的前项和为( )A .B .C .D .9.函数的递增区间是( ) A .B .C .D .10.有一段“三段论”推理是这样的:对于可导函数,若,则是函数的极值点,因为在处的导数值为0,所以是的极值点,以上推理是( )A .大前提错误B .小前提错误C .推理形式错误D .结论正确11.函数的图象如图所示,则导函数的图象可能是 ( )12.在平面四边形中,,将沿对角线所在的直线折起,使平面平面,则直线与平面所成角为()A. B. C. D.13.用反证法证明命题“设为实数,则方程至少有一个实根”时,要做的假设是( )A.方程没有实根B.方程至多有一个实根C.方程至多有两个实根D.方程恰好有两个实根14.三条侧棱两两互相垂直且长都为的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为()A. B. C. D.15.在中,,则此三角形解的情况是( )A.一解 B.两解 C.一解或两解 D.无解16.若圆与直线有两个不同的交点,则实数的取值范围是A.B.C.D.17.下列函数在其定义域内,既是奇函数又存在零点的是:()A. B. C. D.18.已知数列是首项为的等比数列,其前项和为,且,则数列的前5项和为A.或 B.或 C. D.19.函数的图像 ( )A.关于原点成中心对称B.关于y轴成轴对称C.关于点成中心对称D.关于直线成轴对称20.下列函数是奇函数的是()A.f(x)=x2+2|x| B.f(x)=x•sinx C.f(x)=2x+2﹣x D.二、填空题21.被5除所得的余数是_________22.设,当时,恒成立,则实数的取值范围为 .23.正方形ABCD的边长为2,E、F分别为对边AB、CD的中点,现沿EF将AEFD向上折起,若折起后AC=,折成的二面角的余弦值=" "24.如图所示,过外一点作一条直线与交于两点,已知,点到的切线长,则弦的长为.25.化简3=▲(用数式表示)26.设且,则.27.若数列{},(n∈N)是等差数列,则有数列b=(n∈N)也是等差数列,类比上述性质,相应地:若数列{c}是等比数列,且c >0(n∈N),则有d="________" (n∈N)也是等比数列.28.点A为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B,则劣弧AB的长度小于1的概率为。
高二数学期末复习题及答案
高二数学期末复习题及答案高二数学期末复习题及答案高二数学期末复习题选择题1.若点Q在直线b上,b在平面内,则Q,b,之间的关系可记作()A.B.C.D.2.已知A,B是两不重合的点,则以下四个推理中,错误的一个推理是()A.B.C.D.A,B,CA,B,C,且A,B,C三点不共线3.设A,B,C三点不共线,直线,但与不垂直,则与一定()A.不垂直B.不平行C.不异面D.垂直4.对于直线和平面,则的一个充分条件是()A.B.C.D.5.若一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的大小关系是()A.相等B.互补C.相等或互补D.不能确定6.长方体的表面积为,所有棱的总长度为,则长方体的对角线的长度是()A.B.C.D.7.设地球半径为R,在北纬30的纬度圈上有A,B两地,它们的经度差为1200,则这两地间的纬度线长等于()A.B.C.D.8.若三棱锥的顶点在底面内的射影是底面三角形的内心,则下列命题错误的是()A.各侧面与底面所成的二面角相等B.顶点到底面各边距离相等C.这个棱锥是正三棱锥D.顶点在底面的射影到各侧面的距离相等9.正二十面体的面是正三角形,且每一个顶点为其一端都有五条棱,则其顶点数V和棱数E应是()A.V=30,E=12B.V=12,E=30C.V=32,E=10D.V=10,E=3210.在正方形中,,分别是及的中点,是的中点,现沿,及把这个正方形折成一个四面体,使,,三点重合记为,则必有()A.平面B.平面C.平面D.平面11.异面直线a,b所成角为80,过空间一点作与直线a,b所成角都为的直线只可以作2条,则的取值范围为()A.80100B.4050C.4050D.509012.设a,b,c表示直线,表示平面,给出下列命题:①若//,//,则//;②若,//,则//;③若,,则//;④若,,则//.其中错误命题的个数为()A.0B.1C.2D.313.有一高度为米的山坡,坡面与坡脚水平面成角,山坡上的一条直道与坡脚的水平线成角,一人在山脚处沿该直道上山至山顶,则此人行走了()A.米B.米C.米D.米14.已知二面角的平面角为,于,于,,设,到二面角棱的距离分别为,,当变化时,点的轨迹是下列图中的()ABCD15.已知等边三角形的边长为1,沿边上的高将它折成直二面角后,点到直线的距离是()A.1B.C.D.16.如右图,正方体中,是异面线段和的中点,则和的关系是()A.相交不垂直B.相交垂直C.平行直线D.异面直线17.在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰与棱锥的四个面都接触上,经过棱锥的一条侧棱和高作截面,正确的截面图形是()18.给出下列命题:①平行于三角形两边的平面平行于三角形的第三边;②垂直于三角形两边的直线垂直于三角形的第三边;③与三角形各顶点距离相等的平面平行于三角形所在平面;④钝角三角形在一个平面内的射影可以是锐角三角形.其中假命题的个数是()A.一个B.两个C.三个D.四个19.如果直线与平面满足:,那么()A.B.C.D.20.如图在正方形ABCDA1B1C1D1中,M是棱DD1的中点,O为底面ABCD的中点,P为棱A1B1上任意一点,则直线OP与直线AM所成的角的大小为()A.B.C.D.与P点位置有关21.在三棱锥PABC中,D,E,F分别是PA,PB,PC上的三个点,AD:DP=1:3,BE:EP=1:2,CF=FP,则三棱锥PDEF与三棱锥PABC的体积比是()A.1:3B.1:4C.1:5D.1:622.已知E是正方体的棱的中点,则二面角的正切值是()A.B.C.D.23.一平面截一球得到直径是6cm的圆面,球心到这个平面的距离是4cm,则该球的体积是()A.B.C.D.24.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为()A.B.C.D.25.设m,n是两条不同的直线,,,是三个不同的平面,给出下列四个命题:若m,n‖,则m若‖,‖,m,则m若m‖,n‖,则m‖n;若,,则‖.其中正确命题的.序号是()(A)①和②(B)②和③(C)③和④(D)①和④26.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是()直线圆双曲线抛物线27.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两全等,则该四棱柱为直四棱柱.其中真命题的编号是(写出所有真命题的编号).28.已知球O的半径为1,A,B,C三点都在球面上,且每两点间的球面距离均为,则球心O到平面ABC的距离为()ABCD29.如图,在长方体中,,分别过BC,的两个平行截面将长方体分成三部分,其体积分别记为,.若,则截面的面积为()(A)(B)(C)(D)30.将正方体的纸盒展开(如右图),直线AB,CD在原来正方体中的位置关系是()A平行B垂直C相交且成60的角D异面且成60的角二,填空题31.长方体全面积为24cm2,各棱长总和为24cm,则其对角线长为cm.32.以正方体ABCDA1B1C1D1的8个顶点中4个为顶点,且4个面均为直角三角形的四面体是(只要写出一个四面体即可).33.已知球的表面积为20,球面上有A,B,C三点,如果AB=AC=2,BC=2,则球心到平面ABC的距离为________.34.如图为正三棱柱的平面展开图,该正三棱柱的各侧面都是正方形,对这个正三棱柱有如下判断:①;②与BC是异面直线;③与BC所成的角的余弦为;④与垂直.其中正确的判断是_________.35.长方体的全面积为,所有棱长之和为,则这个长方形对角线长为______.36.已知为平面的一条斜线,在平面内,到的距离为,,则的取值范围用区间表示为______________________.37.已知异面直线,的公垂线段长为,点,在直线上,,若直线,所成的角为,则点到直线的距离=________.38.在四面体中,平面平面,平面,给出下列结论:①;②;③平面平面;④平面平面.其中正确结论的序号为______________.39.棱长为a正方体ABCDA1B1C1D1中,异面直线AC,A1B1的距离是40.用平面截半径为R的球,如果球心到平面的距离为,那么截得小圆的面积与球的表面积的比值为____.三,解答题:41.在正三棱锥中,.(1)求此三棱锥的体积;(2)求二面角的正弦值.42.如图,二面角的平面角为,,.(1)求的长;(2)求直线与所成的角.43.在正方体中,(1)求证:平面平面;(2)求直线与平面所成的角.44.在四棱锥中,为矩形,平面,,分别为,的中点.(1)求证:平面;(2)当二面角的大小为多少时,就有平面成立,证明你的结论.45.已知正方体ABCD中,E为棱CC上的点.(1)求证:(2)求平面ABD与平面ABCD所成二面角的余弦值;(3)当E恰为棱CC的中点时,求证:平面平面;46.如图,已知四棱锥P-ABCD的底面是直角梯形,ABC=BCD=900,AB=BC=PB=PC=2CD,侧面PBC底面ABCD.(1)求斜线PB与平面ABCD所成角大小.(2)PA与BD是否相互垂直,请证明你的结论.(3)求二面角P-BD-C 的大小.(4)求证:平面PAD平面PAB.47.如图,在正方体中,分别是,的中点.证明:;②求直线与所成的角;③证明:平面平面.48.(本小题满分12分)如图,PA矩形ABCD所在平面,PA=AD=a,M,N分别是线段AB,PC的中点.①求证:MN//平面PDA;②求直线AB到平面PDC的距离.49.(本小题满分14分)如图,已知直三棱柱ABCA1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,且ACB=90,AC=2,D是AA1的中点.①求异面直线AB和C1D所成的角(用反三角函数表示);②若E为AB上一点,试确定点E在AB上的位置,使得A1E③在②成立的条件下,求点D到平面B1C1E的距离.50.如图,在四棱锥PABCD中,PD底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.(Ⅰ)求证:EF(Ⅱ)在平面PAD内求一点G,使GF平面PCB,并证明你的结论;(Ⅲ)求DB与平面DEF所成角的大小.51.如图,在长方体中,,点为上的点,且.(1)求证:平面;(2)求二面角的大小(结果用反余弦表示).52.在直角梯形P1DCB中,P1D//CB,CD//P1D且P1D=6,BC=3,DC=,A是P1D的中点,沿AB把平面P1AB折起到平面PAB的位置,使二面角P-CD-B成45角,设E,F分别是线段AB,PD的中点.(1)求证:AF//平面PEC;(2)求平面PEC和平面PAD所成的二面角的大小;(3)求点D到平面PEC的距离.53.已知在正方体ABCDA1B1C1D1中,E,F分别是D1D,BD的中点,G在棱CD上,且CG=.(1)求证:EF(2)求EF与C1G所成角的余弦值;(3)求二面角FEGC1的大小(用反三角函数表示).54.在正方体中,棱长.(Ⅰ)E为棱的中点,求证:;(Ⅱ)求二面角C-AE-B 的平面角的正切值;(III)求点到平面EAB的距离.55.如图,已知四棱锥PABCD中,底面ABCD为正方形,侧面PDC为正三角形,且平面PDC底面ABCD,E为PC的中点.(1)求证:PA//平面EDB;(2)求证:平面EDB平面PBC;(3)求二面角DPBC的大小.56.如图,四棱锥PABCD中,PB底面ABCD,CDPD.底面ABCD为直角梯形,AD‖BC,ABBC,AB=AD=PB=3.点E在棱PA上,且PE=2EA.求异面直线PA与CD所成的角;求证:PC‖平面EBD;求二面角ABED的大小(用反三角函数表示).57.如图,四棱锥的底面为菱形且ABC=120,PA底面ABCD,AB=1,PA=,E为PC的中点.(Ⅰ)求直线DE与平面PAC所成角的大小;(Ⅱ)求二面角平面角的正切值;(Ⅲ)在线段PC上是否存在一点M,使PC平面MBD成立.如果存在,求出MC的长;如果不存在,请说明理由.58.在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.(Ⅰ)求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O点在平面D1AP上的射影是H,求证:D1H(Ⅲ)求点P到平面ABD1的距离.59如图,在正三棱柱ABC=A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为,设这条最短路线与CC1的交点为N,求:(I)该三棱柱的侧面展开图的对角线长;(II)PC和NC的长;(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示).60.如图所示的几何体中,底面是边长为6的正方形,是以为顶点的等腰直角的三角形,且垂直于底面..若边上的中点,上的两个三等分.(1)求证:(2)求二面角的大小.(3)求该几何体体积.参考答案选择题:BCACB;ACCBA;BDCBB;DBAAC;BBCCA;D②④BCD.填空题31.32.33.134.2,335.536.37.838.2,339.a40.3:16。
高二数学期末考试试题理含解析
二中2021-2021学年第二学期期末考制卷人:打自企; 成别使; 而都那。
审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。
高二数学〔理〕试题一、选择题〔在每一小题给出的四个选项里面,只有一项是哪一项符合题意.〕=U R ,集合{|1}A x x =,{|(2)(1)0}B x x x =+-<,那么〔 〕A. A B ⋂∅=B. A B U ⋃=C.UB A ⊆ D.UA B ⊆【答案】A 【解析】 【分析】先求得集合B 中一元二次不等式的解集.然后对四个选项进展分析判断,由此得出正确选项.【详解】由(x +2)(x -1)<0,解得-2<x<1,所以B ={x|-2<x<1},那么A∩B=∅,A∪B={x|x>-2},∁U B ={x|x≥1或者x≤-2},A ⊆∁U B ,∁U A ={x|x<1},B ⊆∁U A ,应选A.【点睛】本小题主要考察一元二次不等式的解法,考察集合交集、并集、补集和子集的概念,属于根底题.2()f x =的定义域是〔 〕A. 1,3⎛⎫-+∞ ⎪⎝⎭B. 1,13⎛⎫- ⎪⎝⎭C. 11,33⎛⎫- ⎪⎝⎭D. [0,1)【答案】D 【解析】【分析】根据求详细函数的根本原那么:分母不为零、偶次根式被开方数非负、对数中真数为正数列不等式解出x 的取值范围,即为函数的定义域。
【详解】由题意可得()10lg 310lg1310x x x ->⎧⎪+≥=⎨⎪+>⎩,即10311x x ->⎧⎨+≥⎩,解得01x ≤<,因此,函数()y f x =的定义域为[)0,1,应选:D.【点睛】此题考察详细函数的定义域的求解,求解原那么如下: 〔1〕分式中分母不为零; 〔2〕偶次根式中被开方数非负;〔3〕对数中真数大于零,底数大于零且不为1; 〔4〕正切函数tan y x =中,()2x k k Z ππ≠+∈;〔5〕求定义域只能在原函数解析式中求,不能对解析式变形.32a log =,b ln2=,,那么〔 〕A. a b c <<B. b c a <<C. c a b <<D. c b a <<【答案】A 【解析】 【分析】先利用中间值1来比拟大小,得知1a <,1b <,1c >,再用换底公式以及不等式性质可得出a 、b 的大小关系,从而得出三个数的大小关系。
高二数学期末试卷带答案解析
高二数学期末试卷带答案解析考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.抛物线上一点到准线的距离为3,则点的横坐标为(▲)A.1 B.2 C.3 D.42.对任意,函数的值恒大于零,求的取值范围。
3.根据表格中的数据,可以判定函数的一个零点所在的区间为,则的值为()A.-1 B.0 C.1 D.24.设函数,则是A.最小正周期为的奇函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的偶函数5.函数的图象如图所示,下列数值排序正确的是A.B.C.D.6.如图,在中,,,,则等于()A.B.C.D .7.以双曲线的右焦点为圆心,且与其渐近线相切的圆的方程是( )A .B .C .D .8.图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为(如表示身高(单位:cm )在内的学生人数).图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm (含160cm ,不含180cm )的学生人数,那么在流程图中的判断框内应填写的条件是( )A .B .C .D .9.设双曲线 ()的右焦点是,左、右顶点分别是,过作的垂线与双曲线交于两点,若,则该双曲线的渐近线的斜率为( ) A .B .C .D .10..已知双曲线右焦点与抛物线的焦点重合,则该双曲线的离心率等于A .B .C .D .11.棱长为的正方体的8个顶点都在球的表面上,则球的表面积为( ) A .B .C .D .12.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,求发现大肠杆菌的概率为( ) A .0.005 B .0.004 C .0.001 D .0.002 13.已知椭圆上一点到椭圆的一个焦点的距离等于4,那么点到另一个焦点的距离等于( )A .1B .3C .6D .10 14.已知点F 1、F 2分别是椭圆的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,若△ABF 2为正三角形,则该椭圆的离心率为( )A 、B 、C 、D 、15.已知抛物线的方程为,且过点,则焦点坐标为( )A .(1,0)B .C .D .(0,1) 16.对于实数,若,则的最大值为( )A .4B .6C .8D .1017.在数列{a n }中,a 1=2,a n+1=2a n +2,则a 100的值为( ) A .2100-2 B .2101-2 C .2101 D .215 18.的展开式中,无理数项的个数是( )A.84 B.85 C.86 D.8719.复数z=1+cos α+isin α(π<α<2π)的模为 ().A.2cosB.-2cosC.2sinD.-2sin20.设函数在内不单调,则实数的取值范围是()A. B. C. D.二、填空题21.给出命题:若函数是幂函数,则函数的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是:22.在极坐标系中,直线被曲线:所截得弦的中点的极坐标为.23.若关于的二次方程的两个互异的实根都小于1,则实数的取值范围是__________.24.是双曲线的焦点,点在双曲线上,若点到焦点的距离是,则点到焦点的距离是 .25.若曲线的一条切线与直线垂直,则的方程为;26.在10个球中,有6个红球和4个白球(除编号外其它完全相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次也摸出红球的概率为_____27.已知双曲线上一点P到焦点的距离等于9,则点P到的距离等于.28.已知样本的平均数是,标准差是,则29.30.在中,斜边,以的中点为圆心,作半径为2的圆,分别交于两点,令,则的值为__________.三、解答题31.(本小题8分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF//AC,AB=,CE=EF=1,.(1)求证:AF//平面BDE;(2)求异面直线AB与DE所成角的余弦值.32.如图,直角三角形的顶点坐标,直角顶点,顶点在轴上,点为线段的中点,三角形外接圆的圆心为.(1)求边所在直线方程;(2)求圆的方程;(3)直线过点且倾斜角为,求该直线被圆截得的弦长.33.(本大题满分10分)选修4-5:不等式选讲 设函数(Ⅰ)解不等式; (Ⅱ)当,时,证明:.34.(本小题满分12分)设椭圆(a >b >0)的左右焦点分别为F 1、F 2,点D 在椭圆上,DF 1⊥F 1F 2,,△DF 1F 2的面积为.(1)求该椭圆的标准方程;(2)若圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点,求出这个圆的方程. 35. (1)设集合和,从集合中随机取一个数作为,从中随机取一个数作为.求所取的两数中能使时的概率;(2)设点是区域内的随机点,求能使时的概率.参考答案1 .B【解析】略2 .【解析】设,则的图象为一直线,在上恒大于0,故有, ---------4分即,解得:或 ----------9分∴的取值范围是 ---------10分3 .C【解析】略4 .C【解析】略5 .B【解析】略6 .B【解析】试题分析:由图可知,,又因为,所以,故选B.考点:平面向量的数量积.7 .A【解析】试题分析:双曲线的右焦点为,渐近线为,所以所求圆的圆心为,半径,故圆的方程为,选A.考点:1、双曲线的标准方程;2、圆的方程.8 .C【解析】略9 .C【解析】试题分析:,,,,所以,根据,所以,代入后得,整理为,所以该双曲线渐近线的斜率是,故选C.考点:双曲线的性质10 .B【解析】略11 .B【解析】试题分析:正方体的对角线是其外接球的直径,所以,球O的表面积,故选B.考点:球与几何体12 .A【解析】试题分析:记“从中随机取出2ml水样放到显微镜下观察,则发现大肠杆菌”为事件A由题意可得,所求的概率属于几何概率由几何概率的计算公式可得P (A ).考点:几何概率的判断及计算公式的应用. 13 .C【解析】由椭圆方程可得 ,由椭圆定义可得点M 到另一焦点的距离等于6.故选C 。
河南省南阳市2023-2024学年高二下学期期末考试 数学试题(含答案)
南阳市2023-2024学年高二下学期期末考试数学试题注意事项:1、答题前考生务必将自己的姓名、考生号填写在试卷和答题卡上并将考生的条形码贴在答题卡指定位置上2、回答选择题时选出每小题答案之后用铅笔把答题卡对应题目的标号涂黑,如需改动用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3、考试结束之后,将本卷和答题卡一并收回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 离散型随机变量X 的分布列中部分数据丢失,丢失数据以x ,代替,分布列如下:则( )1234560.210.200.100.10A. 0.35B. 0.45C. 0.55D. 0.652. 若等比数列各项均为正数,且成等差数列,则( )A. 3B. 6C. 9D. 183. 在空间直角坐标系中,已知,,,,则直线与的位置关系是( )A. 异面 B.平行 C. 垂直 D. 相交但不垂直4. “基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项人才培养计划,旨在培养中国自己的学术大师.已知浙江大学、复旦大学、武汉大学、中山大学均有开设数学学科拔尖学生培养基地,某班级有5位同学从中任选一所学校作为奋斗目标,则每所学校至少有一位同学选择的不同方法数共有( )A. 120种 B. 180种 C. 240种 D. 300种5. 的展开式中的常数项为( )A. B. 240C. D. 1806. 如图,椭圆①,②与双曲线③,④的离心率分别为,,,,其大小关系为( )A B. C. D. 7. 若双曲线C :的渐近线与圆没有公共点,则双曲线C 的离心的.(),N y x y ∈()31123P X <<=X i=()P X i =0.5x 0.1y{}n a 5761322a a a ,,10482a a a a ++()1,2,3A ()2,1,6B --()3,2,1C ()4,3,0D AB CD 63112x x ⎛⎫⎛-+ ⎪ ⎝⎝⎭240-180-1e 2e 3e 4e 1243e e e e <<<2134e e e e <<<3412e e e e <<<4312e e e e <<<()222210,0x y a b a b-=>>()2223x y -+=率的取值范围为( )A. B. C. D. 8 设,,,则( )A. B. C. D. 二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 三棱锥中,平面与平面的法向量分别为,,则二面角的大小可能为( )A. B. C. D.10. 法国著名数学家蒙日首先发现椭圆两条互相垂直的切线的交点轨迹是以椭圆的中心为圆心的圆,后来这个圆被称为蒙日圆.已知椭圆,其蒙日圆为圆,过直线上一点作圆的两条切线,切点分别为,,则下列选项正确的是( )A. 圆的方程为 B. 四边形面积的最小值为4C. 的最小值为 D. 当点为时,直线的方程为11. 已知函数的定义域为,且是的一个极值点,则下列结论正确的是( )A. 方程的判别式B.C. 若,则在区间上单调递增D. 若且,则是的极小值点三、填空题:本题共3小题,每小题5分,共15分.12. 已知数列满足.且,若,则________.13. 已知函数在区间上有定义,且在此区间上有极值点,则实数取值范围是__________.14. 某校课外学习社对“学生性别和喜欢网络游戏是否有关”作了一次调查,其中被调查的男、女生人数相同,男生中有的学生喜欢网络游戏,女生中有的学生喜欢网络游戏,若有超过的把握但没有的把握认为是否喜欢网络游戏和性别有关,则被调查的学生中男生可能有_____________人.附:,其中.0.050.013.8416.635四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤..的∞⎫+⎪⎪⎭()2,+∞()1,2⎛ ⎝ln1.5a =0.5b =ππcos 0.522c ⎛⎫=- ⎪⎝⎭a b c <<b a c <<c<a<b c b a<<A BCD -ABD BCD ()2,1,1n =-()1,1,2m = A BD C --π6π32π35π622:13x C y +=M :40l x y --=P MA B M 223x y +=PAMB PA PB ⋅12-P (1,3)-AB 340x y --=()()23023a b cf x a x x x=---≠()0,∞+x c =()f x 20ax bx c ++=Δ0>1ac b +=-a<0()f x (),c +∞0a >1ac >x c =()f x {}n a 1265n n a a n ++=+13a =()1nn n b a =-1232024b b b b ++++= ()24ln 2x f x x =-()1,4a a -+a 453595%99%()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++()20P K k ≥0k15. 已知函数在处有极值36.(1)求实数a ,b 的值;(2)当时,求的单调递增区间.16. 在四棱锥中,底面是边长为6的菱形,,,.(1)证明:平面;(2)若,M 为棱上一点,满足,求点到平面的距离.17. 某商场举行抽奖活动,准备了甲、乙两个箱子,甲箱内有2个黑球、4个白球,乙箱内有4个红球、6个黄球.每位顾客可参与一次抽奖,先从甲箱中摸出一个球,如果是黑球,就可以到乙箱中一次性地摸出两个球;如果是白球,就只能到乙箱中摸出一个球.摸出一个红球可获得90元奖金,摸出两个红球可获得180元奖金.(1)求某顾客摸出红球的概率;(2)设某家庭四人均参与了抽奖,他们获得的奖金总数为元,求随机变量的数学期望.18. 已知椭圆经过点和.(1)求的方程;(2)若点(异于点)是上不同的两点,且,证明直线过定点,并求该定点的坐标.19. 对于项数为有穷数列,设为中的最大值,称数列是的控制数列.例如数列3,5,4,7的控制数列是3,5,5,7.(1)若各项均为正整数的数列的控制数列是2,3,4,6,6,写出所有的;(2)设是的控制数列,满足(为常数,).证明:.(3)考虑正整数的所有排列,将每种排列都视为一个有穷数列.是否存在数列,使它的控制数列为等差数列?若存在,求出满足条件的数列的个数;若不存在,请说明理由.的()322f x x ax bx a =+++3x =-0b >()f x P ABCD -ABCD 60ABC ∠=︒PB PD =PA AC ⊥BD ⊥PAC 3PA =PC 23CM CP =A MBD Y Y ()E Y 2222:1(0)x y E a b a b +=>>P ⎛ ⎝()2,0A -E ,M N A E 0AM AN ⋅=MN m {}n a n b ()12,,,1,2,,n a a a n m ⋅⋅⋅=⋅⋅⋅{}n b {}n a {}n a {}n a {}n b {}n a 1n m n a b C -++=C 1,2,,n m =⋅⋅⋅()1,2,,n n b a n m ==⋅⋅⋅1,2,,m ⋅⋅⋅{}n c {}n c {}n c参考答案1. B2. C.3. B4. C5. C6. A .7. B .8. A9. BC 10. BD 11. ABD 12. 202413. 14. 45,或50,或55,或60,或6515. (1)或 (2),16. (1)证明:在四棱锥中,连接交于,连接,如图,因为底面是菱形,则,又是的中点,,则,而平面,所以平面.(217. (1)(2)192(元).18. (1)(2)(方法一)由 题意可知均有斜率且不为0,设直线的方程为,联立方程组消去得,可得,解得,所以点的坐标为.[)1,339a b =⎧⎨=-⎩69a b =⎧⎨=⎩(),3-∞-()1,-+∞P ABCD -BD AC O PO ABCD BD AC ⊥O BD PB PD =BD PO ⊥,,AC PO O AC PO =⊂ PAC BD ⊥PAC 22452214x y +=,AM AN AM ()2y k x =+()222,1,4y k x x y ⎧=+⎪⎨+=⎪⎩y ()222214161640k x k x k +++-=22164214M k x k--=+()222284,21414M M M k kx y k x k k -==+=++M 222284,1414k k k k ⎛⎫- ⎪++⎝⎭因为,所以直线的斜率为,同理可得点.当时,有,解得,直线的方程为.当时,直线的斜率,则直线的方程为,即,即,直线过定点.又当时,直线也过点.综上,直线过定点.(方法二)当直线不垂直于轴时,设直线的方程为,联立方程组消去得,,即.设,则,.因为,所以,即,,,化简得,解得或,所以直线的方程为或(过点A ,不合题意,舍去),所以直线过定点.0AM AN ⋅= AN 1k -222284,44k k N k k ⎛⎫-- ⎪++⎝⎭M N x x =22222828144k k k k --=++21k =MN 65x =-M N x x ≠MN ()()22222422442011442828161144M N MN M N k k k k y y k k k k k x x k k k ++-++====-----++()2541k k -MN ()N MN N y y k x x -=-()()()2222222252845528444414141k k k k k k y x x k k k k k k⎛⎫--=--=-⋅- ⎪+++---⎝⎭()2245441k k x k k =-+-()()()22225624565415441k k k x k k k --⎛⎫⋅=+ ⎪-+-⎝⎭()256541k y x k ⎛⎫=+ ⎪-⎝⎭MN 6,05⎛⎫- ⎪⎝⎭M N x x =65x =-6,05⎛⎫- ⎪⎝⎭MN 6,05⎛⎫- ⎪⎝⎭MN x MN y kx m =+22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩y ()222148440k x kmx m +++-=()()()222222Δ644144416140k m k m m k =-+-=--->2214m k <+()()1122,,,M x y N x y 2121222844,1414km m x x x x k k--+==++()22121212y y k x x km x x m =+++0AM AN ⋅=()()1212220x x y y +++=()()()2212121240kx x km x x m++++++=()()2222244812401414m km k km m k k --⎛⎫+++++= ⎪++⎝⎭()()()()()2222144824140k mkm km m k +--++++=22516120m km k -+=65m k =2m k =MN 65y k x ⎛⎫=+⎪⎝⎭()2y k x =+MN 6,05⎛⎫- ⎪⎝⎭当直线垂直于轴时,设它的方程为,因为,所以.又,解得或(过点A ,不合题意,舍去),所以此时直线的方程为,也过点.综上,直线过定点.19.(1)由题意,,,,,所以数列有六种可能:;;;;;.(2)证明:因为,,所以,所以控制数列是不减的数列,是的控制数列,满足,是常数,所以,即数列也是不减的数列,,那么若时都有,则,若,则,若,则,又,由数学归纳法思想可得对,都有;(3)因为控制数列为等差数列,故.设的控制数列是,由(2)知是不减的数列,必有一项等于,当是数列中间某项时,不可能是等差数列,所以或,若,则(),是等差数列,此时只要,是的任意排列均可.共个,,而时,数列中必有,否则不可能是等差数列,由此有,即就是,只有一种排列,综上,个数是.的MN x 1x x =0AM AN ⋅= ()221120x y +-=221114x y +=165x =-12x =-MN 65x =-6,05⎛⎫- ⎪⎝⎭MN 6,05⎛⎫- ⎪⎝⎭12a =23a =34a =46a =56a ≤{}n a 2,3,4,6,12,3,4,6,22,3,4,6,32,3,4,6,42,3,4,6,52,3,4,6,612max{,,,}n n b a a a = 1121max{,,,,}n n n b a a a a ++= 1n n b b +≥{}n b {}n b {}n a 1n m n a b C -++=C 1n n a a +≥{}n a 123m a a a a ≤≤≤≤ n k ≤n n b a =1121max{,,,,}k k k b a a a a ++= 1k k a a +>11k k b a ++=11k k a b ++=11k k k k b b a a ++===11b a =1,2,,n m = n n b a =3m ≥{}n c {}n b {}n b {}n b m m {}n b {}n b 1b m =m b m =1b m =n b m =1,2,,n m = {}n b 1c m =23,,,m c c c 1,2,3,,1m - (1)!m -m b m =1b m ≠{}n b n b n =n c n ={}n c 1,2,3,,m {}n c (1)!1m -+。
高二数学期末试卷带答案解析
高二数学期末试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知棱锥的顶点为P ,P 在底面上的射影为O ,PO=a ,现用平行于底面的平面去截这个棱锥,截面交PO 于点M ,并使截得的两部分侧面积相等,设OM=b ,则a 与b 的关系是( ) A .b=(-1)a B .b=(+1)a C .b=D .b=2.已知集合M ={x| x 2-3x -28≤0}, ,则M∩N 为( )A.{x|-4≤x<-2或3<x≤7} B .{x|-4<x≤-2或3≤x<7} C .{x|x≤-2或x>3} D .{x|x<-2或x≥3} 3.命题“若,则”的逆命题是( )A .若,则B .若,则C .若,则D .若,则4.某工厂生产某种零件,零件质量采用电脑自动化控制,某日生产100个零件,记产生出第n 个零件时电脑显示的前n 个零件的正品率为f (n ),则下列关系式不可能成立的是( ) A .f (1)<f (2)< <f (100)B .存在n {1,2, ,99},使得f (n )=2f (n+1)C .存在n {1,2, ,98},使得f (n )<f (n+1),且f (n+1)=f (n+2)D .f (1)=f (2)= =f (100) 5.圆内接四边形中,、、的度数比是,则( ).A .B .C .D .6.抛物线的焦点坐标为( ) A . B . C . D .7.在中,,,,则边的长为( )A .B .C .D .8.是空间三条不同的直线,则下列命题正确的是( ) A .若,,则 B .若,,则C .若,则共面D .若共点,则共面9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A. B. C. D.10.函数(且)的图象可能为()11.若直线与圆C:相交,则点的位置是( )A.在圆C外 B.在圆C内 C.在圆C上 D.以上都可能12.设,则方程不能表示的曲线为A.椭圆 B.双曲线 C.抛物线 D.圆13.相交成60°的两条直线与一个平面α所成的角都是45°,那么这两条直线在平面α内的射影所成的角是()A.30° B.45° C.60° D.90°14.抛物线的焦点坐标为( ▲ )A. B. C. D.15.是等差数列的前项和,如果,那么的值是()A.10 B.15 C.25 D.3016.设函数的导数的最大值为3,则的图象的一条对称轴的方程是A. B. C. D.17.若sin α+sin β+sin γ=0,cos α+cos β+cos γ=0,则cos(α-β)=( ).A.1 B.-1 C. D.-18.“双曲线C的方程为”是“双曲线C的渐近线方程为”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件19.曲线 (为参数)与坐标轴的交点是()A. B. C. D.20.设曲线的方程为,直线的方程为,则曲线上到直线的距离为的点的个数为()A.1 B.2 C.3 D.4二、填空题21.曲线在点处的切线方程为__________.22.是的 _______ 条件.(填:充分不必要、必要不充分、充要、既不充分又不必要)23.如图所示, 底面直径为的圆柱被与底面成的平面所截,其截口是一个椭圆,则这个椭圆的离心率为.24.如图,在直三棱柱ABC -A 1B 1C 1中,底面ABC 是等腰直角三角形,斜边AB =a ,侧棱AA 1=2a,点D 是AA 1的中点,那么截面DBC 与底面ABC所成二面角的大小是________.25.若,且A 、B 均为钝角,则A+B= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
禄劝一中高中2018-2019学年高二(上)期末数学模拟试卷
一、选择题:本大题共12个小题,每小题5分,共60分.
1.(5分)已知集合
M ={1,2,3},N={2,3,4},则下列式子正确的是(
)
A .M?N
B .N?M
C .M ∩N={2,3}
D .M ∪N={1,4}2.已知向量,则2等于(
)
A .(4,﹣5)
B .(﹣4,5)
C .(0,﹣1)
D .(0,1)
3.在区间(1,7)上任取一个数,这个数在区间(5,8)上的概率为(
)
A .
B .
C .
D .
4.要得到函数y=sin (4x ﹣)的图象,只需将函数
y=sin4x 的图象(
)
A .向左平移单位
B .向右平移单位
C .向左平移单位
D .向右平移
单位
5.已知两条直线
m ,n ,两个平面α,β,给出下面四个命题:
①m ∥n ,m ⊥α?n ⊥α②α∥β,m?α,n?β?m ∥n ③m ∥n ,m ∥α?n ∥α④α∥β,m ∥n ,m ⊥α?n ⊥β其中正确命题的序号是(
)
A .①③
B .②④
C .①④
D .②③6.执行如图所以的程序框图,如果输入a=5,那么输出n=(
)
A .2
B .3
C .4
D .5
7.下表提供了某厂节能降耗技术改造后在生产
产品过程中记录的产量
(吨)与相应的生
产能耗(吨)的几组对应数据:根据上表提供的数据,若求出关于的线性回归方程为,那么表中的值为
A .
B .
C .
D .8.已知f (x )=(x ﹣m )(x ﹣n )+2,并且α、β是方程f (x )=0的两根,则实数m ,n ,α,β的大小关系可能是(
)
A x y y x ?0.70.35y
x
t 3
3.15
3.5
4.5
x 345
6y
2.5
t
4
4.5
A.α<m<n<βB.m<α<β<n C.m<α<n<βD.α<m<β<n
9.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为()
A.2cm3B.4cm3C.6cm3D.8cm3
10.在等腰△ABC中,∠BAC=90°,AB=AC=2,,,则的值为()A.B.C.D.
11.已知一个三角形的三边长分别是5,5,6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁距离三角形的三个顶点的距离均超过2的概率是()
A.1﹣B.1﹣C.1﹣D.1﹣
12.已知函数f(x)=,x1,x2,x3,x4,x5是方程f(x)=m的五个不等的实数根,则x1+x2+x3+x4+x5的取值范围是()
A.(0,π)B.(﹣π,π)C.(lg π
,1)D.(π,10)二、填空题(每题5分,满分20分)
13.若直线2x+(m+1)y+4=0与直线mx+3y+4=0平行,则m=.
14.已知=﹣1,则tanα=.
15.若变量x、y满足约束条件,则z=x﹣2y的最大值为.
16.已知函数
3,0
1
,0
2
k
kx x
f x
x
,若方程20
f f x恰有三个实数根,则实数k的
取值范围是
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17.在△ABC中,a,b,c分别为内角A,B,C的对边,2bsinB=(2a+c)sinA+
(2c+a)sinC.
(Ⅰ)求B的大小;
(Ⅱ)若b=,A=,求△ABC的面积.
18.已知:、、是同一平面上的三个向量,其中
=(1,2).
①若||=2
,且∥,求的坐标.②若||=,且+2与2-垂直,求与的夹角
.
19.设S n 是等差数列{a n }的前n 项和,已知S 3=6,a 4=4.(1)求数列{a n }的通项公式;(2)若b n =3
﹣3
,求证:
+
+…+
<
.
20为了了解某省各景点在大众中的熟知度,随机对15~65岁的人群抽样了
人,回答问题
“某省有哪几个著名的旅游景点?
”统计结果如下图表.组号分组回答正确的人数
回答正确的人数占本组的频率第1组[15,25)0.5
第2组[25,35)18
第3组[35,45)0.9第4组[45,55)90.36
第5组
[55,65]
3
(1)分别求出的值;
a r
b c a c 5c a c b 2
5a b a b a b n a
x
b
y
y x b a ,,,
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.
21.在三棱柱ABC﹣A1B1C1中,△ABC是边长为2的正三角形,侧面BB1C1C是矩形,D、E 分别是线段BB1、AC1的中点.
(1)求证:DE∥平面A1B1C1;
(2)若平面ABC⊥平面BB1C1C,BB1=4,求三棱锥A﹣DCE的体积.
22.已知圆C:x2+y2+2x﹣3=0.
(1)求圆的圆心C的坐标和半径长;
(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;
(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE的面积
最大.。