五年级奥数牛吃草

合集下载

(完整版)五年级奥数(牛吃草问题)

(完整版)五年级奥数(牛吃草问题)

牛吃草问题1.一牧场上的青草每天都匀速生长。

这片青草可供27头牛吃6周,或供23头牛吃9周。

那么可供21头牛吃几周?2.由于天气逐渐变冷,牧场上的青草每天以均匀的速度减少。

经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。

那么,可供11头牛吃几天?3.有一水池,池底有泉水不断涌出。

要想把水池的水抽干,10台抽水机需8小时,8台抽水机需要12小时。

如果用6台抽水机,那么需要抽多少个小时?4.有一个水池,池底有一个打开的出水口。

用5台抽水机20小时可将水抽完,用8台抽水机15小时可将水抽完。

如果仅靠出水口出水,那么多长时间能把水漏完?5.自动扶梯以匀速由下往上行驶,两个性急的孩子嫌扶梯走的太慢,于是在行驶的扶梯上,男孩每秒钟向上走1梯级,女孩每3秒钟走2梯级。

结果男孩用50秒到达楼上,女孩用60秒到达楼上。

该扶梯共有多少级?6..哥哥沿着向上移动的自动扶梯从顶向下走到底,共走了100级。

在相同的时间内,妹妹沿着自动扶梯从扶梯底向上走到顶,共走了50级。

如果哥哥单位时间内走的级数是妹妹的2倍,那么当自动扶梯静止时,自动扶梯能看到的部分有多少级?7.两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒钟可走3级梯级,女孩每秒钟可走2级梯级,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒。

问:该扶梯共有多少级梯级?8.仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。

用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完。

仓库里原有的存货若用1辆汽车运则需要多少天运完?9.画展9点开门,但早就有人排队等候入场了。

从第一个观众来到时起,每分钟来的观众人数一样多。

如果开3个入场口,则9点9分就不在有人排队,如果开5个入场口,则9点5分就没有人排队。

那么第一个观众到达的时间是8点几分?10.某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。

小学奥数题目-五年级-应用题-牛吃草问题

小学奥数题目-五年级-应用题-牛吃草问题

牛吃草问题1、概念由英国科学家牛顿提出,后人把这类问题称为牛吃草问题或叫做“牛顿问题”。

最基本的牛吃草问题是指牛在牧场上吃草,牧场上的草在不断的、均匀的生长。

难点在于草的总量不定。

2、四个关键量(1)草的生长速度(2)草的总量,分为新草的总量和原草的总量(3)牛的头数(4)吃的时间3、解决牛吃草问题的主要依据(1)草的每天生长量不变(2)每头牛每天的吃草量不变(3)草的总量=草场原有的草量(固定值)+新生的草量(4)新生的草量=草的生长速度×时间5、牛吃草问题的变形问题有抽水问题、电梯问题、检票口检票问题等等,关键在于类比成牛吃草问题,举一反三。

【例题1】牧场上长满牧草,每天都匀速生长。

这片牧场可供27头牛吃6天或23头牛吃9天。

问可供21头牛吃几天?1.1.【练习题1.1】牧场上一片青草,每天牧草都匀速生长。

这片牧草可供8头牛吃10天,或者可供6头牛吃15天。

问:可供4头牛吃几天?2.2.【练习题1.2】牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天?3.3.【练习题1.3】一块草地上的草以均匀的速度生长,如果20只羊5天可以将草地上的草和新长出的草全部吃光,而14只羊则要10天吃光。

那么想用4天的时间,把这块草地的草吃光,需要多少只羊?【例题2】由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?1.1.【练习题2.1】由于天气突变,牧场上的草以固定的速度剧烈减少。

已知某块草地上的草可供33只羊吃5天,或可供24只羊吃6天。

照此计算,这个牧场可供多少只羊吃10天?2.2.【练习题2.2】由于天气逐渐冷起来,牧场上的草量不仅不增加,反而以固定的速度在减少。

已知某块草地上的草可供25头牛吃4天,或可供16头牛吃6天。

五年级数学奥数:牛吃草问题练习及答案【三篇】

五年级数学奥数:牛吃草问题练习及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。

愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。

学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。

以下是⽆忧考为⼤家整理的《五年级数学奥数:⽜吃草问题练习及答案【三篇】》供您查阅。

【第⼀篇】牧场上⼀⽚青草,每天牧草都匀速⽣长.这⽚牧草可供10头⽜吃20天,或者可供15头⽜吃10天.问:可供25头⽜吃⼏天? 分析:这类题难就难在牧场上草的数量每天都在发⽣变化,我们要想办法从变化当中找到不变的量.总草量可以分为牧场上原有的草和新⽣长出来的草两部分.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速⽣长,所以这⽚草地每天新长出的草的数量相同,即每天新长出的草是不变的.即: (1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的. (2)在已知的两种情况中,任选⼀种,假定其中⼏头⽜专吃新长出的草,由剩下的⽜吃原有的草,根据吃的天数可以计算出原有的草量. (3)在所求的问题中,让⼏头⽜专吃新长出的草,其余的⽜吃原有的草,根据原有的草量可以计算出能吃⼏天. 解答:解:设1头⽜1天吃的草为“1“,由条件可知,前后两次青草的问题相差为10×20-15×10=50. 为什么会多出这50呢?这是第⼆次⽐第⼀次多的那(20-10)=10天⽣长出来的,所以每天⽣长的青草为50÷10=5. 现从另⼀个⾓度去理解,这个牧场每天⽣长的青草正好可以满⾜5头⽜吃.由此,我们可以把每次来吃草的⽜分为两组,⼀组是抽出的15头⽜来吃当天长出的青草,另⼀组来吃是原来牧场上的青草,那么在这批⽜开始吃草之前,牧场上有多少青草呢?(10-5)×20=100. 那么:第⼀次吃草量20×10=200,第⼆次吃草量,15×10=150; 每天⽣长草量50÷10=5. 原有草量(10-5)×20=100或200-5×20=100. 25头⽜分两组,5头去吃⽣长的草,其余20头去吃原有的草那么100÷20=5(天). 答:可供25头⽜吃5天. 点评:解题关键是弄清楚已知条件,进⾏对⽐分析,从⽽求出每⽇新长草的数量,再求出草地⾥原有草的数量,进⽽解答题中所求的问题. 这类问题的基本数量关系是: 1、(⽜的头数×吃草较多的天数-⽜头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草量. 2、⽜的头数×吃草天数-每天新长量×吃草天数=草地原有的草.【第⼆篇】由于天⽓逐渐冷起来,牧场上的草不仅不长⼤,反⽽以固定的速度在减少.已知某块草地上的草可供20头⽜吃5天,或可供15头⽜吃6天.照此计算,可供多少头⽜吃10天? 分析:20头⽜5天吃草:20×5=100(份):15头⽜6天吃草:15×6=90(份);青草每天减少:(100-90)÷(6-5)=10(份);⽜吃草前牧场有草:100+10×5=150(份); 150份草吃10天本可供:150÷10=15(头);但因每天减少10份草,相当于10头⽜吃掉;所以只能供⽜15-10=5(头). 解:①青草每天减少:(20×5-90)÷(6-5)=10(份); ②⽜吃草前牧场有草 10×5+20×5 =50+100, =150(份). ③150÷10-10, =5(头). 答:可供5头⽜吃10天. 点评:此题属于⽜吃草问题,这类题⽬有⼀定难度.对于本题⽽⾔,关键的是要求出青草每天减少的数量.【第三篇】有⼀个蓄⽔池装有9根⽔管,其中⼀根为进⽔管,其余8根为相同的出⽔管.进⽔管以均匀的速度不停地向这个蓄⽔池注⽔.后来有⼈想打开出⽔管,使池内的⽔全部排光(这时池内已注⼊了⼀些⽔).如果把8根出⽔管全部打开,需3⼩时把池内的⽔全部排光;如果仅打开5根出⽔管,需6⼩时把池内的⽔全部排光.问要想在4.5⼩时内把池内的⽔全部排光,需同时打开⼏个出⽔管? 分析:假设打开⼀根出⽔管每⼩时可排⽔“1份”,那么8根出⽔管开3⼩时共排出⽔8×3=24(份);5根出⽔管开6⼩时共排出⽔5×6=30(份);两种情况⽐较,可知3⼩时内进⽔管放进的⽔是30-24=6(份);进⽔管每⼩时放进的⽔是6÷3=2(份);在4.5⼩时内,池内原有的⽔加上进⽔管放进的⽔,共有8×3+(4.5-3)×2=27(份).由此解答即可. 解:设打开⼀根出⽔管每⼩时可排出⽔“1份”,8根出⽔管开3⼩时共排出⽔8×3=24(份);5根出⽔管开6⼩时共排出⽔5×6=30(份). 30-24=6(份),这6份是“6-3=3”⼩时内进⽔管放进的⽔. (30-24)÷(6-3)=6÷3=2(份),这“2份”就是进⽔管每⼩时进的⽔. [8×3+(4.5-3)×2]÷4.5 =[24+1.5×2]÷4.5 =27÷4.5 =6(根) 答:需同时打开6根出⽔管. 点评:此题属于⽜吃草问题,解答关键是把打开⼀根出⽔管每⼩时可排⽔“1份”,进⼀步分析推理求解.。

(完整版)小学五年级奥数:牛吃草问题(题目+答案)

(完整版)小学五年级奥数:牛吃草问题(题目+答案)

精心整理精心整理牛吃草问题例:有一片牧草,草每天匀速的生长,这片牧草可供100头牛吃3周,可供50头牛吃8周,那么可供多少头牛吃两周?设每头牛每周吃草一份,100头牛3周吃的草:100×3=300(份)50头牛8周吃的草:50×8=400(份)草的生长速度:(400-300)÷(8-3)=20(份)原有牧草的份数:100×3-3×20=240(份)(240+20×2)÷2=140(头)① 一个牧场,19头牛只需要24天就将草吃完。

问没有卖掉4设一头牛一天吃一份草.17头牛30天吃的草:17×30=510(份)19头牛24天吃的草:19×24=456(份)每天长草数:(510-456)÷(30-24)=9牧场原有草数:510-9×30=240(份)8天可吃草数:240+8×9=312(份)设卖牛前有x 头:6x+2(x-4)=312x=40② 一片牧草,可供9头牛12干头牛来吃草,再吃67天起增加了多少头牛?设一头牛一天吃一份草.9头牛12天吃的草:9×128头牛)=5(份)从开始46天可知前后共计12天,这片草地共有草量:48+5×12=108(份)开始的44×12=48(份)(头)③ 有一片草地,可供8只羊吃20天,或供14只羊吃10天。

假设草每天的生长速度不变,现有羊若干只,吃了4天后又增加了6只,这样又吃了2天,便将草吃完。

问:原有羊多少只? 设一只羊吃一天的草量为一份.每天新长的草量:(8×20-14×10)÷(20-10)=2(份)原有的草量:8×20-2×20=120(份)若不增加6只羊,这若干只羊吃6天的草量,等于原有草量加上4+2=6天新长草量再减去6只羊2天吃的草量:120+2×(4+2)-1×2×6=120(份)羊的只数:120÷6=20(只)④ 某牧场长满了草,若用17人去割,30天可割尽;若用19人去割,则只要24天便可割尽.假设草每天匀速生长,每人每天割草量相同.问49人几天可割尽?青草的生长速度:(17×30-19×24)÷(30-24)=9(份)精心整理精心整理原有的草的份数:17×30-9×30=240(份)让49人中的9人割生长的草,剩下的40人割草地原有的240份草,可割:240÷40=6(天)⑤由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.牧场上的草可供20头牛吃5天,或可供16头牛吃6天,那么,可供11头牛吃几天?每天草减少的量:(20×5-16×6)÷(6-5)=4(份)牧场上原有的草:(20+4)×5=120(份)可供11头牛吃:120÷(11+4)=8(天)⑥由于天气逐渐变冷,牧场上的草每天以固定的速度减少.牧场上的草可供20头牛吃5天,或可供12头牛吃7天,那么可供6头牛吃几天?每天草减少的量:(20×5-12×7)÷(7-5)=8(份)牧场上原有的草:(20+8)×5=140(份)可供6头牛吃:140÷(6+8)=10(天)⑦牧场上的一片牧草,可供24头牛吃6,那么可以供19头牛吃几周?每周新生草量:(18×10-24×6)÷(10-6)原来有草:24×6-9×6=90(份)设19头牛吃完这片牧草用了x周:19x=90+9xX=9。

五年级奥数专题:牛吃草(含答案)

五年级奥数专题:牛吃草(含答案)

牛吃草牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

解决牛吃草问题重点是要想办法从变化中找到不变量。

牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。

这类问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

一、例题与方法指导例1.青青一牧场青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。

改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。

“廿”即二十之意。

)【解说】这道诗题,是依据闻名于世界的“牛顿牛吃草问题”编写的。

牛顿是英国人,他的种种事迹早已闻名于世,这里不赘述。

他曾写过一本书,名叫《普遍的算术》,“牛吃草问题”就编写在这本书中。

书中的这道题目翻译过来是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。

若是21头牛,要几个星期才可以吃完?(注:牧场的草是不断生长的。

)解答这一问题,首先必须注意牧场里的草是不断生长增多的,而并非一个固定不变的数值。

五年级奥数牛吃草问题

五年级奥数牛吃草问题

五年级奥数牛吃草问题 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】牛吃草问题一、知识框架:1、英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长。

后人把这类问题称为牛吃草问题或叫做“牛顿问题”。

2、“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定。

“牛吃草”问题是小学应用题中的难点。

3、解“牛吃草”问题的主要依据:草的每天生长量不变;每头牛每天的食草量不变;草的总量,草场原有的草量,新生的草量,其中草场原有的草量是一个固定值新生的草量,每天生长量,天数。

4、同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数)⑶原有草量=牛头数×吃的天数-草的生长速度×吃的天数⑷吃的天数=原有草量÷(牛头数-草的生长速度)⑸牛头数=原有草量÷吃的天数+草的生长速度5、“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题。

重难点:(1)理解牛吃草这类题目的解题步骤,掌握牛吃草问题的对比的解题思路。

(2)初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系。

6、典型例题:考点一:一块草地的牛吃草例1、牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周【巩固】有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天例2、一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。

五年级奥数-牛吃草问题

五年级奥数-牛吃草问题

五年级奥数-牛吃草问题牛吃草问题姓名:【知识点拨】伟大的科学家牛顿著的《普通算术》一书中有这样一道题:“12头牛4周吃牧草31格3尔,同样的牧草,21头牛9周吃10格尔。

问24格尔牧草多少牛吃18周吃完。

”(格尔――牧场面积单位),以后人们称这类问题为“牛顿问题”的牛吃草问题。

“牛吃草”问题中涉及三个量:草的数量、牛的头数、时间。

难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点。

牛吃草的三种类型:(1)同一块草地上的牛吃草问题(2)多块草地上的牛吃草问题(3)牛吃草的变型题本堂课我们主要学习同一块草地上的牛吃草问题和多块草地上的牛吃草问题一般的解法可总结为:(1)设定1头牛1天吃草量为“1”份;(2)草的生长速度?[对应牛数量?天数(多)?对应牛数量?天数(少)]?[天数(多)?天数(少)];(3)原草量?牛的数量?吃的天数?草的生长速度?吃的天数;(4)吃的天数?原草量?(牛的头数?草的生长速度);(5)牛的头数?原草量?吃的天数?草的生长速度。

【典型例题】【例1】牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15 头牛吃10天。

问:这片牧草可供25头牛吃多少天?1【巩固】牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?【巩固】有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【例2】由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。

如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?2【巩固】由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天?【例3】一个农夫有面积为2公顷、4公顷和6公顷的三块牧场,三块牧场上的草长得一样的密,而且长得一样快,农夫将8头牛赶到2公顷的牧场,牛5天吃完了草;如果农夫将8头牛赶到4公顷的牧场,牛15天可吃完草。

五年级奥数题及答案:牛吃草问题【三篇】

五年级奥数题及答案:牛吃草问题【三篇】

五年级奥数题及答案:牛吃草问题【三篇】
(1)要让草永远吃不完,最多放养多少头牛;
(2)如果放养36头牛,多少天能够把草吃完?
牛吃草答案:
(1)设1头牛1天的吃草量为"1",那么天生长的草量为21*8-
24*6=24 ,所以,每天生长的草量为24/2=12也就是说,每天生长的
草量能够供12头牛吃1天。

那么要让草永远也吃不完,最多放养12
头牛。

(2)原有草量(24-12)*6=72 ,72/(36-12)=3天可供36头牛吃。

【第二篇】
牧场上一片牧草,可供27头牛吃6周,或者供23头牛吃9周.如果牧
草每周匀速生长,可供21头牛吃几周?
牛牛吃草答案:
可供21头牛吃12周
27头牛6周吃的草可供多少头牛吃一周?27×6=162
23头牛9周吃的草可供多少头牛吃一周?23×9=207
(9-6)周新长的草可供多少头牛吃一周?207-162=45
一周新长的草可供多少头牛吃一周?45÷3=15
原有的草可供多少头牛吃一周?162-15×6=72 或207-
15×9=72
21头牛中的15头牛专吃新长的草,余下的(21-15=)6头牛去吃
原有的草几周吃完?
72÷(21-15)=12
【第三篇】
有一堆割下来的青草可供45头牛吃20天,那么可供36头牛吃多少天?牛吃草答案:
【分析】45×20÷36=900÷36=25(天)。

小学五年级奥数题牛吃草问题

小学五年级奥数题牛吃草问题

小学五年级奥数题牛吃草问题
小学五年级奥数题牛吃草问题
有一片牧场,草每天都在均匀的生长。

如果在牧场上放养24头牛,那么6天就可以把草吃完;如果放养21头牛,8天可以把草吃完。

那么:
(1)要让草永远吃不完,最多放养多少头牛;
(2)如果放养36头牛,多少天可以把草吃完?
牛吃草答案:
(1)设1头牛1天的吃草量为"1",那么天生长的'草量为
所以,每天生长的草量为
也就是说,每天生长的草量可以供12头牛吃1天。

那么要让草永远也吃不完,最多放养12头牛。

(2)原有草量,可供36头牛吃。

五年级奥数.应用题.牛吃草问题

五年级奥数.应用题.牛吃草问题

牛吃草问题知识框架(1)英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.(2)“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.(3)解“牛吃草”问题的主要依据:草的每天生长量不变;每头牛每天的食草量不变;草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值新生的草量=每天生长量⨯天数.(4)同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.(5)“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.重难点(1)理解牛吃草这类题目的解题步骤,掌握牛吃草问题的对比的解题思路.(2)初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系例题精讲一、一块草地的牛吃草【例 1】牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【巩固】有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【例 2】一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。

若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)【巩固】牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?【例 3】由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。

牛吃草问题五年级奥数

牛吃草问题五年级奥数

牛吃草问题五年级奥数牛吃草问题解决问题的技巧:解决这个问题的关键是牧场上的饲料总量在不断变化。

因此,为了解决这类问题,我们必须首先分析清草量的变化,这通常被称为新量。

然后找出牧场上原始草的数量。

只要你注意这两点,你就能很好地解决问题。

例1牧场上有一片匀速生长的牧草,可供27头牛吃6天,或供23头牛吃9天,那么这片牧草可供多少头牛吃12天?练习1一个牧场可以饲养58头牛7天,或者50头牛9天。

假设每天草的生长量相等,每头牛的草消耗量相等,那么6天内能吃多少头牛?2.一片牧场长满牧草,每天牧草都匀速生长,这片牧场可供10头牛吃20天,或可供15头牛吃10天,问:可供多少头牛吃5天?一例2一只船发现漏水时,已经进了一些水,水匀速进入船内。

如果派10人淘水,6小时淘完;如果派6人淘水,18小时淘完。

如果派22人淘水,多少小时可以淘完?例3:一个车站在办理登机手续前几分钟开始排队,每分钟来的乘客人数相同。

从开始办理登机手续到等待办理登机手续的队伍消失,同时打开四个登机门需要30分钟,同时打开五个登机门需要20分钟。

如果同时打开七个登机口,需要多少分钟?例4由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?例5小军家的一片草地上长满了草,草每天都在以恒定的速度生长。

该牧场可饲养10头牛20天,12头牛15天。

如果小军有24头牛,他能吃多少天?2练习1牧场上有一片草地,6周内可供24头牛食用,10周内可供18头牛食用。

假设草的生长速度保持不变,19头牛需要多少周才能吃草?练习2一片均匀生长的牧草,如果9头牛吃,12天吃光所有的草,如果8头牛吃16天吃完所有的草。

如果13头牛吃,多少天可以把草吃完?练习3:20匹马可以在72天内吃掉32公顷的草,16匹马可以在54天内吃掉24公顷的草。

假设每公顷草地上有等量的草,每公顷草的生长速率每天都是相同的。

小学奥数专题牛吃草问题

小学奥数专题牛吃草问题

小学奥数专题一牛吃草问题牛吃草概念及公式:设定一头牛一天吃草量为“1”1草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;2原有草量=牛头数×吃的天数-草的生长速度×吃的天数;3吃的天数=原有草量÷牛头数-草的生长速度;4牛头数=原有草量÷吃的天数+草的生长速度一、奥数导引例1.一块牧场长满草,每天牧草都均匀生长;这片牧场可供10头牛吃20天,可供15头牛吃10天,那么1可供25头牛吃多少天 2可供多少头牛吃4天例1.解析:假设一头牛一天吃1份草,10天长出草10×20-15×10=50份,每天长出草50÷20-10=5份,原有草10×20-20×5=100份,25头牛吃的草,减去每天长的草,一天消耗草25-5=20份,够吃100÷25-5=5天;可供25头牛吃5天; 解法二:110-x×20=15-x×10=25-x×210-x×20=15-x×10= -x×4例2.如果22头牛吃33公亩牧场的草,54天后可以吃完,17头牛吃28公亩牧场的草,84天后可以吃完,那么要在24天内吃完40公亩牧场的草,需要多少头牛A.50B.46C.38D.35例2解法1:牧场的面积发生变化,所以每天长出的草量不再是常量;设每头牛每天的吃草量为1份,则每亩54天的总草量为:22×54÷33=36份;每亩84天的总草量为:17×84÷28=51份,那么每亩每天的新生长草量为51-36÷84-54=0.5份,每亩原有草量为36-0.5×54=9份,那么40亩原有草量为9×40=360份,40亩24天新生长草量为24×0.5×40=480份,40亩24天共有草量360+480=840,可供牛数为840÷24=35头;解法2:利用列方程解问题;二、历年真题三、奥数拔高训练100分1.一个牧场可供58头牛吃7天,或者可供50头牛吃9天;假设草的生长量每天相等,每头牛的吃草量也相等,那么可供多少头牛吃6天10分2.现要将一池塘水全部抽干,但同时又有水流进池塘;若用8台抽水机10天可以抽干;用6台抽水机20天可以抽干;若要5天抽干水,需要多少台同样的抽水机抽水 15分3.一个蓄水池装有9根水管,1根进水管,8根相同的出水管;先放进一些水再排水;排水时进水管不关;如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光;要想在4.5小时内把池内的水全部排光,需同时打开几个出水管 15分4.旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站开放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所有乘客解决完毕;1求增加人数的速度;2原来的人数;30分5.有三块草地,面积分别是5、15、24亩;草地上的草一样厚,而且长得一样快;第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天 30分1.解析:50×9-58×7÷9-7=22份,58×7-22×7=252份,252+6×22÷6=64头可供64头牛吃6天;2.解析:假设一台抽水机一天抽水1份;6×20-8×10÷20-10=4份,8×10-4×10=40份, 40+4×5÷5=12台,需要12台同样的抽水机抽水;3.解析:假设打开一根出水管每小时可排水“一份”,那么8根出水管开3小时共排出水8×3=24份;5根出水管开6小时共排出水5×6=30份;两种情况比较,可知3小时内进水管放进的水是30-24=6份;进水管每小时放进的水是6÷3=2份;3小时排水24份,3小时进水6份,可见打开排水管前,水池中有水24-6=18份;4.5小时再进水4.5×2=9份,4.5小时排完需打开18+9÷4.5=6根排水管;4.解析:设一个检票口一分钟通过一个人1个检票口30分钟30个人1个检票口10分钟20个人30-20÷30-10=0.5个人原有1×30-30×0.5=15人或者2×10-10×0.5=15人5.解析:设每头牛每天的吃草量为1份,则每亩30天的总草量为:10×30÷5=60份;每亩45天的总草量为:28×45÷15=84份,那么每亩每天的新生长草量为84-60÷45-30=1.6份,每亩原有草量为60-1.6×30=12份,那么24亩原有草量为12×24=288份,24亩80天新生长草量为24×1.6×80=3072,24亩80天共有草量3072+288=3360,可供牛数为3360÷80=42头;例 1 一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100只羊吃6天,而4只羊的吃草量相当于l头牛的吃草量,那么8头牛与48只羊一起吃,可以吃多少天例 22008年“陈省身杯”国际青少年五年级数学邀请赛有一个水池,池底存了一些水,并且还有泉水不断涌出;为了将水池里的水抽干,原计划调来8台抽水机同时工作;但出于节省时间的考虑,实际调来了9台抽水机,这样比原计划节省了8小时;工程师们测算出,如果最初调来10台抽水机,将会比原计划节省12小时;这样,将水池的水抽干后,为了保持池中始终没有水,还应该至少留下台抽水机;例3 甲、乙、丙三车同时从A地出发到B地去.甲、乙两车的速度分别是每小时60千米和每小时48千米.有一辆卡车同时从B地迎面开来,分别在它们出发后6小时、7小时、8小时先后与甲、乙、丙车相遇,求丙车的速度.巩固小新、正南、妮妮三人同时从学校出发到公园去.小新、正南两人的速度分别是每分钟20米和每分钟16米.在他们出发的同时,风间从公园迎面走来,分别在他们出发后6分钟、7分钟、8分钟先后与小新、正南、妮妮相遇,求妮妮的速度.例 4 一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽巩固现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间。

五年级奥数——牛吃草问题

五年级奥数——牛吃草问题

年 级五年级 授课日期 授课主题 第8讲——牛吃草问题教学内容i.检测定位有这样一类问题,例如“牧场上有一片牧草,这些牧草每天都均匀生长.这片牧场可供15头牛吃20天,或可供20头牛吃10天,新生草量可供几头牛吃1天?”,类似的问题成为“牛吃草”问题.解决这类问题我们通常假设1头牛一天的吃草量为“1”.牛在一定时间(天、周)内所食的草量包含两类:一定规模的牧场原有的草量;一定时段内新生的草量.解决这类问题的思维模式及数量关系常可应用到相似生活中某种场合下所发生的问题中去.例如合理开放火车站检票口问题;合理调度运输车辆运送仓库货物问题;甚至预测地球固有资源的消耗速度及人口消耗地球资源速度而必须控制人口的增长等问题.【例1】有一个牧场,牧场上的牧草每天都在匀速生长.这片牧场可供15头牛吃20天,或可供20头牛吃10天.那么,这片牧场每天新生的草量可供几头牛吃1天?分析与解 解决这类问题的关键是利用牛吃草的草量,最终求出这片牧场每天新生长的草量.由于这类问题一百年不给出草量的单位.为此,我们可以设周)吃的草量天(或头牛单位的草量1111=.于是15头牛20天所食的草量为)(单位13002015=⨯, ①300单位的草量包含这片牧场原有的草量加上20天内这片牧场新生长的草量.而20头牛吃10天所食的草量为)(单位12001020=⨯, ②200单位的草量包含这片牧场原有的草量加上10天内这片内这片牧场新生长的草量.由 ①- ②,得100200-300=,这意味着20天新生长的草量与10天新生长草量只差(因为这片牧场原有的草量是固定的)是100(单位1).,)(6030330=-+x ,6090330=-+x,60603=-x,1203=x.40=x 因此,所有的饮料40天后可售完.随堂练习6仓库里有一批存货,以后不断有车运货金仓,且每天运进的货一样多,用同样的货车运货出仓.若每天用4辆车,则9天恰好运完;若每天用5辆货车,则6天恰好运完.仓库里原有的货若用一辆货车运,则需要多少天运完?想一想平均分配如图1是16个盛有不同水量的杯子(用○表示).圆的数字表示该杯中的水量.摆成4行4列的正方形形状.箭头上的数所指的行、列、对角上4个杯中水量的总和,现在这10个总和不完全相等.请你只动一只杯子,将其中的水(部分或全部)适当分配到某几个杯中,使箭头上的10个总量全部相等.解答 .10440,40101398=÷=+++每行、每列及对角线上4个杯中水的总量是10.如图2,将盛有水量为5的杯中水如箭头所示分配到3个杯中,即可使每行、每列及对角线上的4个杯中水的总量都变成10,如图3所示.ii.针对培养1. 有一片牧草,草每天匀速地生长.这片牧草可供100头牛吃3周,可供50头牛吃8周.那么可供多少头牛吃两周?2. 一个牧场,草每天匀速地生长,每头牛每天吃草量相同.17头牛30天可将草吃完,19头牛只需24天就可将草吃完.现有一群牛,吃了6天后,卖掉4头牛,余下的再吃2天就可将草吃完.问没有卖掉4头牛前,这一群牛共有多少头?。

牛吃草五年级奥数题

牛吃草五年级奥数题

牛吃草五年级奥数题
题目:
一头成年牛每天吃多少根草?
正文:
这是一个经典的牛吃草问题,适合五年级的学生进行奥数思维训练。

题目描述:
一头成年牛每天吃多少根草?假设这头牛有12个牙齿,每次可以咀嚼20根草,问每天吃多少根草?
拓展:
这道题可以有多种解答方法,下面介绍其中一种。

解法一:
根据题目描述,这头牛有12个牙齿,每次可以咀嚼20根草。

因此,每天可以吃12个牙齿× 20根草 = 240根草。

解法二:
我们还可以利用牛的消化系统来解决这个问题。

成年牛的消化系统能够将草分解为更小的分子,以便更好地吸收。

根据牛的消化系统,一头成年牛每天可以消化300-400克的草。

因此,这头牛每天吃的草量应该是:
300-400克/天 = 100-150克/天
根据题目描述,这头牛每天吃12个牙齿× 20根草 = 240根草。

因此,每天吃的草量应该是240克/天,与前面的计算结果一致。

总之,牛吃草问题是一个经典的奥数问题,可以激发学生的数学思维和创造力。

除了以上两种方法外,还有其他的解法,学生可以根据自己的实际情况进行选择。

五年级奥数学习之牛吃草问题(彩色版,含解答)

五年级奥数学习之牛吃草问题(彩色版,含解答)

学奥数这里总有一本适合你49什么是“牛吃草问题”呢?同学们先来看一个简单的例子:仓库里有一堆草,给4头牛吃,6天可以吃完,如果给3头牛吃,几天能吃完?这道题该怎么处理呢?我们可以借助下面这个关系式来进行求解:由于每头牛每天的吃草量是不变的,因此可以把它设为单位“1”.这样4头牛6天吃掉的草量就等于4624×=(个)单位,而3头牛每天吃掉“3”个单位的草,因此3头牛需要2438÷=(天)才能吃完.大家看,牛吃草问题是不是很简单?但是,这道题还不是真正的“牛吃草问题”呢.真正的“牛吃草问题”不是让一群牛去仓库里吃草,而是去一片草地上吃草.大家能看出这其中的区别吗?地方更宽敞?草更新鲜?当然不是这些,最大的区别在于,仓库里草的总量是固定不变的,而草地上的草还在不停地生长,这样一来问题一下子就变复杂了.不过大家不用害怕,有了上面设单位“1”的方法后,这类题目的解法是很容易的,大家可以从下面的例子中学到这种方法.分析 这是最常见的牛吃草问题,这类问题的难点在于牛吃草的同时,草还在生长.假设一头牛一天吃1个单位的草,会发现两种放养方法吃的总草量不同.为什么会这样呢?因为两次草生长的天数不同,于是就可以算出草生长的速度了.我们可以把例1的方法总结一下,得出牛吃草问题的基本解题步骤:养18吃完了.1.将练习1.有一片牧场,草每天都在均匀地生长.如果放养24头牛,那么6天就把草吃完了;如果放养21头牛,那么8天就把草吃完了.(1)要使得草永远吃不完,那么最多可以放养多少头牛?(2)放养多少头牛,12天才能把草吃完?前面的两道题都是草在生长,草的总量在增加.而实际生活中,草量有时也会随着时间不断减少,那么碰到这样的问题我们该怎么办呢?下面就来看一道这样的问题.分析 本题在羊吃草的同时,草也在不断的减少,这也是牛吃草问题的一种.同前面的问题一样,我们还是要对比一下两个已知条件,算出草的减少速度和原有草总量.练习2.进入冬季,有一片牧场上的草开始枯萎,因此均匀地减少.若在这儿放牛,草地上的草可以供32头牛吃24天,或者供27头牛吃28天.如果在这片牧场上养21头牛,那么可以吃多少天?地减少.现在开始在这片牧场上放羊,如果放少天?将草吃完,一天的吃草量)例题352分析 这道题既有牛又有羊,只需将牛羊统一,然后按照基本的牛吃草问题求解即可.练习3.一片草场,草每天都在均匀生长.如果在这片草场上放20头牛和24头羊,那么18天可以吃完;如果在这片草场上放15头牛和54头羊,那么15天就把草吃完.已知一头牛每天吃的草量相当于3只羊每天吃的草量,请问,如果在这片草地上放12头牛和18头羊可以吃几天? 牛顿的故事 牛顿Newton (1642~1727,英国人)是大科学家,是近代科学的象征.他在世时作为科学界的主宰几乎被当作偶像崇拜.他作为英国皇家学会连任24年的终身会长,法国科学院至尊的外国院士,还兼任英国造币局局长和国会议员,并前所未有地被封为贵族,获得爵士称号.他死后作为自然科学家又第一个获得国葬,长眠于威斯敏斯特教堂,这是历代帝王和一流名人的墓地.牛顿去世之后,他的声望有增无减.他不仅有不朽的著作《自然哲学的数学原理》、《光学》等流传于世,而且由于后继大师们的发展,他的思想观念长期统率着科学战线上的士卒.他在物理、数学研究上的主要成果,至今仍是各国大、中学生必修的功课.在前面的例题中,牛总是听话地呆在某一块草地上吃草,因此在吃的过程中,牛的数量不会发生改变.而实际上,牛有时不会老老实实呆在一块草地上,它们会四处走动,而牛一走动就会改变草地上牛的数量.那么在吃草的过程中,如果牛的数量发生变化又该如何处理呢?请大家来看下面的问题.53分析 这道题牛的数量在变化,但同其它牛吃草问题一样,还是需要通过比较草量的变化求出每天生长的草量和原有的草量.练习4.有一片草地,草每天都在均匀生长.如果有9头牛来吃,那么12天可以把草吃完;如果有8头牛来吃,那么16天可以把草吃完.现在有3头牛,先吃了10天,然后又来了几头牛,结果又用了4天之就把草吃完了,那么后来又来了多少头牛?有很多的问题看上去和“牛吃草”毫无联系,但仔细观察就会发现,它们都只是换了个形式的“牛吃草”而已.这样的问题通常都可以看成牛吃草问题来求解,下面我们来看一个这样的例子.分析 这是一个标准的水管问题,进水管不停的把水注入水池,同学们想想看,这和牛吃草问题中的什么量很类似?不停生长的草地!没错,只要看出这一点,这道题就变成了一个牛吃草问题.我们可以把每根排水管看成是一头牛,这样天可以把草全部吃完.如果起初这总共则总共需要多少天可以把草吃完?假定草生长的速度不变,每头牛每天吃的草量相同.根为相同的出水管.进水管以均匀的速度不停地向这个蓄水池注水.后来有人想打开出水管,使池内的水全部排光(这时池内已注入了一些水)果把水管,需需同时打开多少根出水管?54就可以使用常用的牛吃草问题的解题方法了.练习5. 2006年夏天.我国某地区遭遇了严重干旱,政府为了解决村民饮水问题,在山下的一眼泉水旁修了一个蓄水池,每小时有相同量的泉水注入池中.第一周开动5台抽水机2.5小时就把一池水抽完,接着第二周开动8台抽水机1.5小时就把一池水抽完.后来由于旱情严重,需要开动13台抽水机同时供水,那么多长时间可以把这池水抽完?本讲知识点汇总一、基本牛吃草问题的解决办法:(1)将每头牛每天的吃草量设为单位“1”; (2)比较已知条件中牛的吃草总量,算出草每天的生长量; (3)计算草地原有草的总量; (4)根据所问问题求解.二、一些实际问题可转化为牛吃草问题求解.顷.那么第三块草地可以供多少头牛吃题55作业1.有一片牧场,草每天都在均匀地生长.如果放养20头牛,那么16天就把草吃完了;如果放养24头牛,那么12天就把草吃完了.那么放养多少头牛,8天就能把草吃完?2.有一个酒桶坏了,每天匀速往外面流失酒,酒桶里面的酒可供7人喝6天,或者供5人喝8天.若1人独饮,那么可以喝多少天?3.假设地球上新生成的资源的增长速度是一定的,照此测算,地球上的资源可供110亿人生活90年,或可供90亿人生活210年.为使人类能够不断繁衍,那么地球最多能养活多少亿人?4.有一均匀生长的草地,可以供18头牛吃40天,或者供12头牛与36只羊吃25天,如果一头牛每天吃草量相当于3只羊每天吃的草,那么让17头牛与48只羊一起吃可以吃多少天?5.有一个蓄水池装了21根相同的水管,其中一根是进水管,其余20根是出水管.开始时,进水管以均匀的速度不停地向蓄水池注水.后来又打开了出水管,希望将池内的水全部排光.如果同时打开10根出水管,则4小时可排尽池内的水;如果仅打开7根出水管,则需6小时才能排尽池内的水.若要3小时排尽池内的水,那么应当同时打开多少根出水管?五年级上册第8讲 牛吃草问题例题1. 答案:(1)5天;(2)14头牛.解答:设一头牛一天吃的草量为1份. 18头牛10天一共吃草:1810180×=(份);24头牛7天一共吃草:247168×=(份).如图,对比两次吃草的总量,吃的总量不同是因为18头牛比24头牛多吃了3天(草多生长了3天),而草每天生长:()18016834−÷=(份),于是草地原有草的总量为:180410140−×=(份).(1)放养的32头牛中有4头牛每天把新长的草吃完,剩下的牛吃原有的草,因此要把草地吃完需要()1403245÷−=(天).(2)要恰好14天吃完,那么最后吃的总草量为140414196+×=(份),因此要在14天内吃完需要1961414÷=(头)牛.例题2. 答案:40天.解答:设一只羊一天吃的草量为1份.供38只羊吃25天,则吃草总量:3825950×=(份).供30只羊吃30天,则吃草总量:3030900×=(份).如图,对比两次吃草的总量,发现5天草减少的量为95090050−=(份),因此草每天减少的量为:50510÷=(份),原有草的总量为:95010251200+×=(份).现在有20只羊,那么每天草地除了被羊吃掉20份草以外,还会自己减少10份草,因此这片牧场可以吃()1200201040÷+=(天).4例题详解70只羊16天也可将草吃完,请问,1742088×+=(只)羊多少天能将草吃完?下面利用例题1的方法计算即可.例题4. 答案:6天.解答:设一头牛一天吃的草量为1份.15头牛8天一共吃草:158120×=(份).如果放养15头牛,吃2天,又来2头牛,再吃5天把草吃完了,一共吃草:()157272115×+×−=(份).对比两次吃草的总量,吃的总量不同是因为一个8天,一个7天,因此草每天生长:()()120115875−÷−=(份),于是草地原有草的总量为:1205880−×=(份).15头牛吃了2天后,剩下的草量为:()80155260−−×=(份),还可以吃:()6015554÷+−=(天),所以总共用6天.例题5. 答案:6根.解答:设每根排水管每小时的排水量为1份.8根进水管3小时的总排水量为:8324×=份.5根进水管6小时的总进水量为:5630×=(份).第二次比第一次排除的水量多,是因为第二次比第一次多排了3小时(进水管多进水3小时),因此进水管每小时的进水量为()()3024632−÷−=(份).于是原有水量为30()3024−02618+×=(份).现在要想4.5小时把水排空,需要打开18 4.526÷+=(根)排水管.2.答案:24天.简答:设1人1天喝1份酒,则每天流失()()7658861×−×÷−=(份)的酒,原有酒()71648+×=(份),1人独饮可以喝()481124÷+=(天).3.答案:75亿.简答:设1亿人1天消耗1份资源,地球上每年增长的资源是()(210901109021×−×÷)()2109075÷−=(份),则地球上最多能养活75亿人.4.答案:16天.简答:只需按照一头牛相当与三只羊将牛羊统一即可.5.答案:13根.简答:设1根出水管1小时排出1份水,则进水管1小时流进()()6741064×−×÷−)641−=(份)水.打开出水管之前,水池中有()101436−×=(份)水,要在3小时排完,需要打开363113÷+=(根)出水管.。

五年级奥数.应用题.牛吃草问题

五年级奥数.应用题.牛吃草问题

牛吃草问题知识框架(1)英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.(2)“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.(3)解“牛吃草”问题的主要依据:草的每天生长量不变;每头牛每天的食草量不变;草的总量草场原有的草量新生的草量,其中草场原有的草量是一个固定值新生的草量每天生长量天数.(4)同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度(对应牛的头数较多天数对应牛的头数较少天数)(较多天数较少天数);⑶原来的草量对应牛的头数吃的天数草的生长速度吃的天数;⑷吃的天数原来的草量(牛的头数草的生长速度);⑸牛的头数原来的草量吃的天数草的生长速度.(5)“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.重难点(1)理解牛吃草这类题目的解题步骤,掌握牛吃草问题的对比的解题思路.(2)初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系一、一块草地的牛吃草【例 1】牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【巩固】有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【例 2】一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。

若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)【巩固】牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?【例 3】由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。

牛吃草002-五年级奥数

牛吃草002-五年级奥数

【牛吃草练习】难度:★★★★1、牧场上有一片青草,每天都生长得一样快。

这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?【参考答案】这片草地天天以匀速生长是分析问题的难点。

把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。

求出了这个条件,把所有头牛分成两部分来研究,用其中头吃掉新长出的草,用其余头数吃掉原有的草,即可求出全部头牛吃的天数。

设一头牛1天吃的草为一份。

那么10头牛22天吃草为1×10×22=220份,16头牛10天吃草为1×16×10=160份(220-160)÷(22-10)=5份,说明牧场上一天长出新草5份。

220-5×22=110份,说明原有老草110份。

综合式:110÷(25-5)=5.5天,算出一共多少天。

难度:★★★★★2、2006年夏天,我国某地区遭遇了严重干旱,政府为了解决村民饮水问题,在山下的一眼泉水旁修了一个蓄水池,每小时有40立方米泉水注入池中。

第一周开动5台抽水机2.5小时就把一池水抽完,接着第二周开动8台抽水机1.5小时就把一池水抽完。

后来由于旱情严重,开动13台抽水机同时供水,请问几小时可以把这池水抽完?【参考答案】答案为0.9。

一台抽水机一小时的抽水量为40×(2.5-1.5)÷(5×2.5-8×1.5)=80(立方米),池水的总量为2.5×(80×5-40)=900(立方米)。

所以,使用13台抽水机,抽完池水需要的时间为900÷(80×13-40)=0.9(小时)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二讲工程问题之牛吃草问题教学目标:1.理解牛吃草这类题目的解题步骤,掌握牛吃草问题的解题思路.2.初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系知识点拨:英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:①草的每天生长量不变;②每头牛每天的食草量不变;③草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④新生的草量=每天生长量⨯天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.例题精讲:板块一、一块地的“牛吃草问题”【例1】青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。

改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。

“廿”即二十之意。

)【解说】题目翻译过来是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。

若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)⨯=份;23头牛吃9周共吃了【解析】设1头牛1天的吃草量为“1”,27头牛吃6周共吃了276162-=份草,这45份草是牧场的草⨯=份.第二种吃法比第一种吃法多吃了20716245239207-⨯=.÷=,那么原有草量为:16261572 -=周生长出来的,所以每周生长的草量为45315963÷=(周)可将原有牧草吃供21头牛吃,若有15头牛去吃每周生长的草,剩下6头牛需要72612完,即它可供21头牛吃12周.【巩固】牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?【解析】 设1头牛1天的吃草量为“1”,10头牛吃20天共吃了1020200⨯=份;15头牛吃10天共吃了1510150⨯=份.第一种吃法比第二种吃法多吃了20015050-=份草,这50份草是牧场的草201010-=天生长出来的,所以每天生长的草量为50105÷=,那么原有草量为:200520100-⨯=.供25头牛吃,若有5头牛去吃每天生长的草,剩下20头牛需要100205÷=(天)可将原有牧草吃完,即它可供25头牛吃5天.【例 2】 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【解析】 设1头牛1周的吃草量为“1”,草的生长速度为(239276)(96)15⨯-⨯÷-=,原有草量为(2715)672-⨯=,可供72181519÷+=(头)牛吃18周【巩固】 有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【解析】 设1头牛1天的吃草量为“1”,那么251015-=天生长的草量为1225241060⨯-⨯=,所以每天生长的草量为60154÷=;原有草量为:()24410200-⨯=.20天里,草场共提供草200420280+⨯=,可以让2802014÷=头牛吃20天.【巩固】 (2007年湖北省“创新杯”)牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则 头牛96天可以把草吃完.【解析】 设1头牛1天的吃草量为“1”,那么每天新生长的草量为()()103060702460243⨯-⨯÷-=,牧场原有草量为10306016003⎛⎫-⨯= ⎪⎝⎭,要吃96天,需要10160096203÷+=(头)牛.【巩固】 一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?【解析】 设1头牛1天的吃草量为1个单位,则每天生长的草量为:(509587)(97)22⨯-⨯÷-=,原有草量为:509229252⨯-⨯=,(252226)664+⨯÷=(头)【巩固】 林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果要4周吃光野果,则需有多少只猴子一起吃?(假定野果生长的速度不变)【解析】 设一只猴子一周吃的野果为“1”,则野果的生长速度是(2112239)(129)15⨯-⨯÷-=,原有的野果为(2315)972-⨯=,如果要4周吃光野果,则需有7241533÷+=只猴子一起吃【例 3】 由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?【解析】 设1头牛1天的吃草量为“1”,那么每天自然减少的草量为:()()2051566510⨯-⨯÷-=,原有草量为:()20105150+⨯=;10天吃完需要牛的头数是:15010105÷-=(头).【巩固】 由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。

如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?【解析】 设1头牛1天吃的草为“1”。

牧场上的草每天自然减少 (254166)(64)2⨯-⨯÷-=;原来牧场有草(252)4108+⨯=,12天吃完需要牛的头数是:1081227÷-=(头)或(108122)127-⨯÷=(头)。

【例 4】 由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?【解析】 设1头牛1天的吃草量为“1”,651-=天自然减少的草量为2051664⨯-⨯=,原有草量为:()2045120+⨯=.若有11头牛来吃草,每天草减少11415+=;所以可供11头牛吃120158÷=(天).【巩固】 由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。

如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?【解析】 设1头牛1天吃的草为“1”。

牧场上的草每天自然减少 (254166)(64)2⨯-⨯÷-=原来牧场有草(252)4108+⨯=可供10头牛吃的天数是:108(102)9÷+=(天)。

【例 5】 一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天.如果一头牛一天吃草量等于5只羊一天的吃草量,那么这块草地可供10头牛和75只羊一起吃多少天?【解析】 设1头牛1天的吃草量为“1”,由于一头牛一天吃草量等于5只羊一天的吃草量,所以100只羊吃12天相当于20头牛吃12天.那么每天生长的草量为()()16202012201210⨯-⨯÷-=,原有草量为:()161020120-⨯=.10头牛和75只羊1天一起吃的草量,相当于25头牛一天吃的草量;25头牛中,若有10头牛去吃每天生长的草,那么剩下的15头牛需要120158÷=天可以把原有草量吃完,即这块草地可供10头牛和75只羊一起吃8天.【巩固】 (2008年希望杯六年级二试试题)有一片草场,草每天的生长速度相同。

若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量)。

那么,17头牛和20只羊多少天可将草吃完?【解析】 “4只羊一天的吃草量相当于1头牛一天的吃草量”,所以可以设一只羊一天的食量为1,那么14头牛30天吃了144301680⨯⨯=单位草量,而70只羊16天吃了16701120⨯=单位草量,所以草场在每天内增加了(16801120)(3016)40-÷-=草量,原来的草量为11204016480-⨯=草量,所以如果安排17头牛和20只羊,即每天食草88草量,经过480(8840)10÷-=天,可将草吃完。

【巩固】 一片牧草,每天生长的速度相同。

现在这片牧草可供20头牛吃12天,或可供60只羊吃24天。

如果1头牛的吃草量等于4只羊的吃草量,那么12头牛与88只羊一起吃可以吃几天?【解析】 设1头牛1天的吃草量为“1”,60只羊的吃草量等于15头牛的吃草量,88只羊的吃草量等于22头牛的吃草量,所以草的生长速度为(15242012)(2412)10⨯-⨯÷-=,原有草量为(2010)12120-⨯=,12头牛与88只羊一起吃可以吃120(122210)5÷+-=(天)【例 6】 有一牧场,17头牛30天可将草吃完,19头牛则24天可以吃完.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完.问:原来有多少头牛吃草(草均匀生长)?【解析】 设1头牛1天的吃草量为“1”,那么每天生长的草量为()()1730192430249⨯-⨯÷-=,原有草量为:()17930240-⨯=.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完,如果不卖掉这4头牛,那么原有草量需增加428⨯=才能恰好供这些牛吃8天,所以这些牛的头数为()24088940+÷+=(头).【巩固】 一片草地,可供5头牛吃30天,也可供4头牛吃40天,如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?【解析】 设1头牛1天的吃草量为“1”,那么每天生长的草量为()()44053040301⨯-⨯÷-=,原有草量为:()5130120-⨯=.如果4头牛吃30天,那么将会吃去30天的新生长草量以及90原有草量,此时原有草量还剩1209030-=,而牛的头数变为6,现在就相当于:“原有草量30,每天生长草量1,那么6头牛吃几天可将它吃完?”易得答案为:()30616÷-=(天).【例 7】 一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?【解析】 设1匹马1天吃草量为“1”,根据题意,有:15天马和牛吃草量=原有草量15+天新生长草量……⑴20天马和羊吃草量=原有草量20+天新生长草量……⑵30天牛和羊(等于马)吃草量=原有草量30+天新生长草量……⑶由(1)2(3)⨯-可得:30天牛吃草量=原有草量,所以:牛每天吃草量=原有草量30÷;由⑶可知,30天羊吃草量30=天新生长草量,所以:羊每天吃草量=每天新生长草量;设马每天吃的草为3份将上述结果带入⑵得:原有草量60=,所以牛每天吃草量2=.这样如果同时放牧牛、羊、马,可以让羊去吃新生长的草,牛和马吃原有的草,可以吃:()602312÷+=(天).【巩固】 现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?【解析】 牛、马45天吃了 原有45+天新长的草①→牛、马90天吃了2原有90+天新长的草⑤马、羊60天吃了 原有60+天新长的草②牛、羊90天吃了 原有90+天新长的草③↓ ↓ ↓马 90天吃了 原有90+天新长的草④所以,由④、⑤知,牛吃了90天,吃了原有的草;再结合③知,羊吃了90天,吃了90天新长的草,所以,可以将羊视为专门吃新长的草.所以,②知马60天吃完原有的草,③知牛90天吃完原有的草.现在将牛、马、羊放在一起吃;还是让羊吃新长的草,牛、马一起吃原有的草.所需时间为111()369060÷+=天. 所以,牛、羊、马一起吃,需36天.模块二、“牛吃草问题”的变形【例 8】 一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水,8小时淘完.如果要求2小时淘完,要安排多少人淘水?【解析】 设1人1小时淘出的水量是“1”,淘水速度是(58103)(83)2⨯-⨯÷-=,原有水量(102)324-⨯=,要求2小时淘完,要安排242214÷+=人淘水【巩固】 一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果3人淘水40分钟可以淘完;6人淘水16分钟可以把水淘完,那么,5人淘水几分钟可以把水淘完?【解析】 设1人1分钟淘出的水量是“1”,401624-=分钟的进水量为34061624⨯-⨯=,所以每分钟的进水量为24241÷=,那么原有水量为:()314080-⨯=.5人淘水需要()805120÷-=(分钟)把水淘完.【例 9】 假设地球上新生成的资源增长速度是一定的,照此计算,地球上的资源可供110亿人生活90年;或供90亿人生活210年。

相关文档
最新文档