万有引力与航天重点知识、公式总结(2020年整理).pdf

合集下载

(完整版)第六章万有引力与航天知识点总结

(完整版)第六章万有引力与航天知识点总结

万有引力与航天1、开普勒行星运动定律(1).所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.(2).对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积.(3).所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等. 32a K T= (K 只与中心天体质量M 有关) 行星轨道视为圆处理,开三变成32r K T =(K 只与中心天体质量M 有关)2、万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体质量的乘积成正比,跟它们距离的二次方成反比。

表达式:122,m m F G r=2211kg /m N 1067.6⋅⨯=-G 适用于两个质点(两个天体)、一个质点和一个均匀球(卫星和地球)、两个均匀球。

(质量均匀分布的球可以看作质量在球心的质点)3、万有引力定律的应用:(天体质量M , 卫星质量m ,天体半径R, 轨道半径r ,天体表面重力加速度g ,卫星运行向心加速度n a ,卫星运行周期T)两种基本思路:1.万有引力=向心力 (一个天体绕另一个天体作圆周运动时,r=R+h )人造地球卫星(只讨论绕地球做匀速圆周运动的人造卫星r=R+h ):r GM v =,r 越大,v 越小;3r GM =ω,r 越大,ω越小;GM r T 324π=,r 越大,T 越大;2n GMa r =,r 越大,n a 越小。

(1)求质量:①天体表面任意放一物体重力近似等于万有引力:= G M m R2→2gR M G = ②当一个星球绕另一个星球做匀速圆周运动时,设中心星球质量为M ,半径为R ,环绕星球质量为m ,线速度为v ,公转周期为T ,两星球相距r ,由万有引力定律有:2222⎪⎭⎫ ⎝⎛==T mr r mv r GMm π,可得出中心天体的质量:23224GT r G r v M π==求密度34/3M M V R ρπ==2高空物体的重力加速度:mg = G2)(h R Mm + 3、万有引力和重力的关系: 一般的星球都在不停地自转,星球表面的物体随星球自转需要向心力,因此星球表面上的物体所受的万有引力有两个作用效果:一个是重力,一个是向心力。

《万有引力与航天》知识点总结

《万有引力与航天》知识点总结

万有引力与航天知识点总结一、人类认识天体运动的历史1、“地心说”的内容及代表人物: 托勒密 (欧多克斯、亚里士多德)2、“日心说”的内容及代表人物: 哥白尼 (布鲁诺被烧死、伽利略) 二、开普勒行星运动定律的内容开普勒第二定律:v v >远近开普勒第三定律:K —与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体才可以列比例,太阳系: 333222===......a a a T T T 水火地地水火 三、万有引力定律1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。

KT R =23 ① r T m F 224π= ② 22π4=r m K F 2m F r ∝ F F '= ③ 2r M F ∝' 2r Mm F ∝ 2r MmG F =2、表达式:221r m m GF = 3、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1,m2的乘积成正比,与它们之间的距离r 的二次方成反比。

4.引力常量:G=6.67×10-11N/m 2/kg 2,牛顿发现万有引力定律后的100多年里,卡文迪许在实验室里用扭秤实验测出。

5、适用条件:①适用于两个质点间的万有引力大小的计算。

②对于质量分布均匀的球体,公式中的r 就是它们球心之间的距离。

③一个均匀球体与球外一个质点的万有引力也适用,其中r 为球心到质点间的距离。

④两个物体间的距离远远大于物体本身的大小时,公式也近似的适用,其中r 为两物体质心间的距离。

6、推导:2224mM G m R R T π= ⇒ 3224R GMT π= 四、万有引力定律的两个重要推论1、在匀质球层的空腔内任意位置处,质点受到地壳万有引力的合力为零。

2、在匀质球体内部距离球心r 处,质点受到的万有引力就等于半径为r 的球体的引力。

五、万有引力的成就1、测量中心天体的质量法一:在天体表面找一个物体m ,不计天体自转,万有引力=重力(=G F F 引)2Mm G mg R=⇒M = 黄金代换式中心天体的密度:233443gR M gG V GR R ρππ===法二:在中心天体周围找一颗卫星绕中心天体做圆周运动,万有引力提供向心力(=n F F 引)2Mm G r= 22232223224v v r m M r Gr mr M G r mr M T GT ωωππ⇒=⇒=⎛⎫⇒=⎪⎝⎭以 2324r M GT π=为例求中心天体的密度 2332233433r M r GT V GT R R ππρπ=== 若为近地卫星,则r=R ,则23GT πρ= T 为近地卫星的公转周期六、双星系统两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。

(完整版)万有引力与航天重点知识归纳

(完整版)万有引力与航天重点知识归纳

(完整版)万有引力与航天重点知识归纳万有引力与航天重点知识归纳考点一、万有引力定律1. 开普勒行星运动定律(1)第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

(2)第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。

(3)第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。

其中k 值与太阳有关,与行星无关。

中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动;③k TR =23,R ——轨道半径。

2. 万有引力定律(1)内容:万有引力F 与m 1m 2成正比,与r 2成反比。

(2)公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ??=-。

(3)适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。

(4)两个物体间的万有引力也遵循牛顿第三定律。

3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。

①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。

由以上分析可知,重力和重力加速度都随纬度的增加而增大。

(2) 物体受到的重力随地面高度的变化而变化。

在地面上,22R GM g mg R Mm G =?=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=?=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。

考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=?=,再根据32333,34R GT r V M R Vπρρπ=?==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22==,再根据GRg VM R V πρρπ43,343=?==3.v 、r 法:Grv M r v m r Mm G 222=?=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=?==考点三、星体表面及某高度处的重力加速度1、星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =?=。

万有引力与航天知识点总结

万有引力与航天知识点总结

万有引力与航天知识点总结万有引力是牛顿的万有引力定律的简称,是物体间相互作用的基本力之一、航天知识则涉及到太空探索、火箭技术、卫星技术等方面的内容。

下面将对这两个知识点进行总结。

一、万有引力:1.定义与公式:万有引力是指在宇宙中,物体之间的引力相互作用。

根据牛顿的万有引力定律可以得出如下公式:F=G*(m1*m2)/r^2其中,F表示两物体之间的引力,G为普适引力常数,m1和m2分别为两物体的质量,r为两物体之间的距离。

2.万有引力的特点:(1)引力大小与质量成正比:两物体的质量越大,它们之间的引力越大。

(2)引力大小与距离成反比:两物体的距离越远,它们之间的引力越小。

(3)作用力相互切实:不仅物体1受到物体2的引力作用,物体2也同样受到物体1的引力作用。

3.万有引力在宇宙中的应用:(1)行星与恒星的运动:行星绕恒星运动是由于恒星对行星的引力作用,保持了它们之间的平衡。

(2)卫星轨道:卫星绕地球运动也是由于地球对卫星的引力作用,保持了它们之间的平衡。

(3)宇宙探测器的轨道:通过计算出不同行星、卫星之间的引力大小和方向,可以确定宇宙探测器的轨道设计。

二、航天知识:1.航天器的分类:(1)人造卫星:用于地球观测、通信、导航等领域。

(2)宇宙飞船:用于载人航天,包括宇宙飞船和国际空间站。

(3)深空探测器:用于探测太阳系以外的星球、行星等宇宙空间。

(4)陆地探测器:用于探索行星表面的器械。

2.火箭技术:(1)火箭方程:描述火箭运动的速度、加速度和燃料质量等相关关系。

(2)推力、燃料消耗与速度增长:加大推力和减小燃料消耗可以提高速度增长。

(3)多级火箭:通过分层设计,将多级火箭发射到太空。

3.卫星技术:(1)通信卫星:用于实现地球上不同地区之间的通信连接。

(2)导航卫星:用于卫星定位系统,如GPS系统。

(3)遥感卫星:用于地球观测,获取地球表面的信息。

4.航天发展:(1)航天技术的应用范围越来越广泛,包括通信、天气预报、农业、资源勘探等多个领域。

万有引力与航天学习知识点

万有引力与航天学习知识点

万有引力与航天一、 开普勒行星运动定律理解:( 1)k 是与太阳质量相关而与行星没关的常量. 因为行星的椭圆轨道都跟圆近似,在近似的计算中,能够以为行星都是以太阳为圆心做匀速圆周运动,在这类状况下,a 可代表轨道半径.(2) 开普勒第三定律不单合用于行星,也合用于卫星,只可是此时 a 3 /T 2 = k ′,比值 k ′是由行星的质量所决定的另一常量,与卫星没关. 二、万有引力定律(一).内容:自然界中任何两个物体都互相吸引,引力的方向在它们的连线上,引力的大小与物体的质量 12m 和 m 的乘积成正比,与它们之间距离 r 的二次方成反比. (二) .公式:此中 G=6.67× 10-11 N · m 2/kg 2, 叫做引力常量FG m 1m2 ,体间的距离远远大于物体自己的大小时,物体可视为(三).公式合用条件:此公式合用于质点间的互相作用.当两物r 2r 是两球心间的距离.一个平均球体与球外一个质点间的万有引力也合用,此中 r 为球心质 点.平均的球体可视为质点, 到质点间的距离.(四) . 万有引力定律的运用1.解决天体 ( 卫星 ) 运动问题的基本思路(1) 把天体 ( 或人造卫星 ) 的运动当作是匀速圆周运动,其所需向心力由万有引力供给,关系式:F=Mm v 2 2m 2 r 4 π(2) G 2 m m 2 r ,mg = 2在地球表面或地面邻近的物r 体所受的r 重力等于地球对物T 体的引力,即, gR = GM .2.天体质量和密度的计算(1) 利用天体表面的重力加快度 g 和天体半径 R . 因为 =mg ,故天体质量 M = ,天体密度 ρ =(2) 经过察看卫星绕天体做匀速圆周运动的周期T ,轨道半径 r .①由万有引力等于向心力,即 得出中心天体质量M =②若已知天体的半径 R ,则天体的密度③若天体的卫星在天体表面邻近围绕天体运动,可以为其轨道半径r 等于天体半径R,则天体密度ρ =可见,只需测出卫星围绕天体表面运动的周期T,便可估量出中心天体的密度.不考虑天体自转,对在任何天体表面的物体都能够以为 mg=,进而得出 GM=gR2(往常称为黄金代换),此中 M为该天体的质量, R为该天体的半径, g 为相应天体表面的重力加快度.三、三种宇宙速度1.三种宇宙速度均指的是发射速度,不可以理解为运转速度.2.第一宇宙速度既是最小发射速度,又是卫星绕地球做匀速圆周运动的最大运转速度.四、对于地球同步卫星的五个“必定”1.轨道平面必定:轨道平面与赤道平面共面.(即卫星在赤道正上方)2.周期必定:与地球自转周期相同,即T=24h.3.角速度必定:与地球自转的角速度相同.4.高度必定:由同步卫星离地面的高度h=≈3.6 ×10 7 m.5.速率必定:v=≈3.1×103m/s.五、卫星的各物理量随轨道半径变化二变化的规律及卫星的变轨问题1.卫星的各物理量随轨道半径变化而变化的规律2.卫星的稳固运转与变轨运转剖析(1) 圆轨道上的稳固运转:若卫星所受万有引力等于做匀速圆周运动的向心力,将保持匀速圆周运动,即F=Mm v 22(2) 变轨运转剖析m 2r4 πGr 2mm2 r,rT当卫星因为某种原由速度忽然改变时 ( 开启或封闭发动机或空气阻力作用) ,万有引力就不再等于向心力,卫星将做变轨运动①卫星的速度 v 增大时,所需向心力 M v 2/r增大,即万有引力不足以供给向心力,卫星将做离心运动,离开本来的圆轨道,轨道半径变大.但卫星一旦进入新的轨道运转,由v = 知其运转速度要减小,但重力势能、机械能均增添.②当卫星的速度 v 减小时,所需向心力mv 2/r 减小,即万有引力大于卫星所需的向心力,所以卫星将做近心运动,相同会离开本来的圆轨道,轨道半径变小.卫星进入新轨道运转时,由v =知运转速度将增大,但重力势能、机械能均减少 ( 卫星的发射和回收就是利用了这一原理 )a 、 v 、ω 、 T 均与卫星的质量没关,只由轨道半径r 和中心天体质量共同决定.六、经典时空观和相对论时空观 1.经典时空观(1) 在经典力学中,物体的质量是不随速度的改变而改变的.(2) 在经典力学中,同一物理过程发生的位移和对应时间的丈量结果在不一样的参照系中是相同的.2.相对论时空观(1) 在狭义相对论中,物体的质量要随物体运动速度的增大而增大,用公式表示为m =.(2) 在狭义相对论中,同一物理过程发生的位移和对应时间的丈量结果在不一样的参照系中是不一样的.。

物理万有引力与航天重点知识归纳

物理万有引力与航天重点知识归纳

万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。

(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。

其中k 值与太阳有关,与行星无关。

中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。

2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。

(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。

(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。

(4) 两个物体间的万有引力也遵循牛顿第三定律。

3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。

①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。

由以上分析可知,重力和重力加速度都随纬度的增加而增大。

(2) 物体受到的重力随地面高度的变化而变化。

在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。

考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。

万有引力与航天知识点总结

万有引力与航天知识点总结

万有引力与航天知识点总结万有引力是指任何两个物体之间都存在着一种相互吸引的力,这种力的大小与两个物体的质量和它们之间的距离有关。

在航天领域,对于万有引力的理解和应用至关重要。

本文将从万有引力的基本概念出发,结合航天知识点,对其进行总结和探讨。

首先,我们来看一下万有引力的公式,F=G(m1m2)/r^2。

其中,F代表物体之间的引力,G代表万有引力常量,m1和m2分别代表两个物体的质量,r代表它们之间的距离。

这个公式揭示了万有引力与质量和距离的关系,也为航天领域的计算和设计提供了重要的理论基础。

在航天领域,我们经常要面对的一个问题就是轨道计算。

万有引力的公式为我们提供了计算轨道的重要依据。

通过对引力大小的计算,我们可以确定航天器在空间中的轨道,从而实现对航天任务的精确控制和计划。

除了轨道计算,万有引力还对航天器的发射和返回轨道有着重要的影响。

在发射阶段,我们需要考虑地球的引力对航天器的影响,以确保航天器能够顺利进入预定轨道。

而在返回阶段,我们也需要精确计算出地球的引力,以保证航天器能够准确着陆或返回地面。

另外,对于天体探测任务来说,万有引力也是一个重要的考虑因素。

在执行探测任务时,我们需要精确计算出天体之间的引力,以便准确预测探测器的运动轨迹和目标天体的特征。

只有充分理解和利用万有引力,我们才能够更好地执行航天任务,实现科学探索的目标。

总的来说,万有引力作为一种普遍存在的物理现象,对航天领域有着重要的影响和应用。

通过对万有引力的深入理解,我们可以更好地规划和执行航天任务,实现对宇宙的探索和认识。

同时,万有引力也为航天技术的发展提供了重要的理论支持,促进了航天领域的不断进步和发展。

综上所述,万有引力与航天知识点的总结,对我们加深对宇宙物理学的理解,提高航天技术的水平,具有重要的意义和价值。

希望本文能够对读者有所启发,促进对万有引力与航天知识的深入学习和探讨。

让我们共同努力,探索未知的宇宙,为人类的航天事业作出更大的贡献。

万有引力与航天知识点归纳

万有引力与航天知识点归纳

万有引力与航天知识点归纳一、万有引力定律1. 内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量和的乘积成正比,与它们之间距离的平方成反比。

2. 公式,其中,称为引力常量。

3. 适用条件适用于两个质点间的相互作用。

当两个物体间的距离远大于物体本身的大小时,物体可视为质点。

对于质量分布均匀的球体,为两球心间的距离。

二、万有引力定律的应用1. 计算天体质量对于中心天体和环绕天体,根据万有引力提供向心力。

若已知环绕天体的线速度和轨道半径,则。

若已知环绕天体的角速度和轨道半径,则。

若已知环绕天体的周期和轨道半径,则。

2. 计算天体密度对于质量为、半径为的天体,若有一颗卫星绕其做匀速圆周运动,轨道半径为。

由,天体的体积。

当卫星绕天体表面运行时,则。

三、人造卫星1. 卫星的动力学方程万有引力提供向心力,即。

2. 卫星的线速度由可得,说明卫星的线速度与轨道半径的平方根成反比,轨道半径越大,线速度越小。

3. 卫星的角速度由可得,轨道半径越大,角速度越小。

4. 卫星的周期由可得,轨道半径越大,周期越大。

5. 地球同步卫星特点:周期,与地球自转周期相同。

轨道平面与赤道平面重合。

高度,线速度。

四、宇宙速度1. 第一宇宙速度定义:卫星在地面附近绕地球做匀速圆周运动的速度。

计算:由(为地球半径),可得。

这是人造地球卫星的最小发射速度,也是卫星绕地球做匀速圆周运动的最大环绕速度。

2. 第二宇宙速度,当卫星的发射速度大于而小于时,卫星绕地球运行;当卫星的发射速度等于或大于时,卫星将脱离地球的引力束缚,成为绕太阳运行的人造行星。

3. 第三宇宙速度,当卫星的发射速度等于或大于时,卫星将挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间去。

五、双星系统1. 特点两颗星绕它们连线上的某一点做匀速圆周运动,它们之间的万有引力提供各自做圆周运动的向心力。

2. 规律对于质量分别为、的两颗星,轨道半径分别为、,两星之间的距离为()。

(完整版)万有引力与航天公式总结

(完整版)万有引力与航天公式总结

万有引力与航天重点规律方法总结一.三种模型1 .匀速圆周运动模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星 )都可看成质点,围绕中心天体(视为静止)做匀速圆周运动2 .双星模型:将两颗彼此距离较近的恒星称为双星 ,它们相互之间的万有引力提供各自转动的向心力。

3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。

二.两种学说1.地心说:代表人物是古希腊科学家托勒密2/日心说:代表人物是波兰天文学家哥白尼三.两个定律1.开普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。

第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴 R 的三次方跟公转周期 T 的二次方的比值都相等。

表达式为:R3 = K(K = GM ) k 只与中心天体质量有关的T2 4 2定值与行星无关2.牛顿万有引力定律1687 年在《自然哲学的数学原理》正式提出万有引力定律⑴ . 内容:宇宙间的一切物体都是相互吸引的 .两个物体间引力的方向在它们的连线上 ,引力的大小跟它们的质量的乘积成正比 ,跟它们之间的距离的二次方成反比 .Mm⑵ .数学表达式:F = G万r2⑶ .适用条件:a.适用于两个质点或者两个均匀球体之间的相互作用。

(两物体为均匀球体时, r 为两球心间的距离)b. 当r 0 时,物体不可以处理为质点,不能直接用万有引力公式计算c. 认为当r 0 时,引力F 的说法是错误的⑷.对定律的理解a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。

c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际意义 .d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关 .与所在空间的性质无关 ,与周期及有无其它物体无关 .(5)引力常数 G:①大小: G = 6.67 1011N . m 2 / kg 2,由英国科学家卡文迪许利用扭秤测出②意义:表示两个质量均为 1kg 的物体,相距为 1 米时相互作用力为: 6.671011N四.两条思路:即解决天体运动的两种方法1. 万有引力提供向心力:F万 = F 向即: F 万 = G Mmr 2 = ma n = m r v2= mr 4几2T 2 = mr 2 2 .天体对其表面物体的万有引力近似等于重力:GMmR 2= m g即 GM = gR 2 (又叫黄金代换式)注意:GM2②高空物体的重力加速度:g '= (R)2〈 9.8m/s 2③关系:g'g=五.万有引力定律的应用1.计算天体运动的线速度、角速度、周期、向心加速度。

(完整版)万有引力与航天知识点总结

(完整版)万有引力与航天知识点总结

万有引力定律复习提纲一. 万有引力定律:① 内容:自然界中任何两个物体都相互吸引,弓I 力的大小与物体的质量 m 1和m 2的乘积成正比,与它们之间的距离r 的二次方成反比。

即: m i m 2 其中G =6. 67 x 10「11N ・ m 2/kg 2F G —2-② 适用条件r1.可看成质点的两物体间,r 为两个物体质心间的距离。

2.质量分布均匀两球体间,r 为两球体球心间距离。

③ 运用万有引力与重力的关系:重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。

忽略地球自转可得: Mmmg G 击二.重力和地球的万有引力:R1.地球对其表面物体的万有引力产生两个效果: 2(i )物体随地球自转的向心力:F 向=m ・R •( 2 n / T o ),很小。

由于纬度的变化,物体做圆周运动的向心力不断变化,因而表面物体的重力随纬度的变化而变化。

為mg ,所以mg F F 向邺m |RR 24.中心天体质量M 和密度p 的估算: 测量卫星绕天体匀速圆周运动的半径r 和周期T ,由G-再测量天体的半径,得到 p =MV =M ( - n ?F 3) =4n3若卫星绕天体表面圆周运动,则: p =3n / (G ?〒)5 .计算重力加速度GMR 2自转角速度很小,GMmm l R ,所以gR说明:如果有些星球的自转角速度非常大,那么万有引力的向心力分力就会很大,重力就相应减小,就不 能再认为重力等于万有引力了。

如果星球自转速度相当大,使得在它赤道上的物体所受的万有引力恰好等 于该物体随星球自转所需要的向心力,那么这个星球就处于自行崩溃的临界状态了。

在地球的同一纬度处,g 随物体离地面高度的增大而减小,即gGM (R强调:g =G- MR"不仅适用于地球表面,还适用于其它星球表面。

2.绕地球运动的物体所受地球的万有引力充当圆周运动的向心力,万有引力、 即:G- M- m/F 2=m- a 向=mg /. g=a 向=G- M 氏三.天体运动:i.开普勒行星运动规律:(i ) 向心力、重力三力合一。

(完整版)万有引力与航天重点知识归纳

(完整版)万有引力与航天重点知识归纳

万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。

(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。

其中k 值与太阳有关,与行星无关。

中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。

2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。

(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。

(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。

(4) 两个物体间的万有引力也遵循牛顿第三定律。

3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。

①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。

由以上分析可知,重力和重力加速度都随纬度的增加而增大。

(2) 物体受到的重力随地面高度的变化而变化。

在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。

考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。

必修二物理万有引力与航天知识点

必修二物理万有引力与航天知识点

必修二物理万有引力与航天知识点
1. 万有引力定律:任何两个物体之间存在着一个互相吸引的力,这个力与两个物体的质量成正比,与它们之间的距离的平方成反比。

2. 地球引力:地球对物体施加的引力称为地球引力,地球引力可以近似看作物体的重力,其大小由物体的质量和地球的质量以及它们之间的距离决定。

3. 行星运动:行星围绕太阳运动的轨道是椭圆形的,太阳位于椭圆的一个焦点上。

根据开普勒定律,行星与太阳之间的连线在相等的时间内扫过相等的面积。

4. 航天知识:航天是指人类在大气层外的空间进行探索和活动的行为。

航天技术包括火箭发射、卫星定位、航天飞行器的设计和制造等方面。

5. 地球自转和公转:地球自转是指地球绕自身中心轴旋转一周的运动,导致了地球的昼夜变化。

地球公转是指地球围绕太阳运动的轨道,完成一年的时间。

6. 卫星运行:人造卫星绕地球运行,可以用于通信、气象观测、科学研究等领域。

卫星的轨道有不同类型,如地球同步轨道、极地轨道等。

7. 火箭原理:火箭利用燃料的燃烧产生的庞大的排气冲击力,通过排气速度差产生反作用力,从而推动火箭向前运动。

8. 重力势能和动能:物体在重力场中具有重力势能,当物体从一个高处移动到另一个低处时,它的重力势能减小,同时动能增加。

9. 卫星通信:卫星通信利用卫星将信号从发送者传送到接收者,通过卫星的广覆盖范围和高速传输能力,实现长距离通信。

10. 空间站:空间站是人类在太空中建造的长期居住和科学研究设施。

它们提供生活、工作和研究的空间,同时也作为航天员进行航天任务的基地。

必修二万有引力与航天知识点总结完整版

必修二万有引力与航天知识点总结完整版

必修二万有引力与航天知识点总结完整版第六章万有引力与航天知识点总结一、万有引力定律:万有引力定律指出,自然界中任何两个物体都会相互吸引,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间的距离r的二次方成反比。

公式为F=G*m1*m2/r^2,其中G=6.67×10^-11 N·m^2/kg^2.适用条件有两种情况:可看成质点的两物体间,r为两个物体质心间的距离;质量分布均匀的两球体间,r为两个球体球心间的距离。

运用方面,万有引力与重力有关系,重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。

二、重力和地球的万有引力:地球对其表面物体的万有引力产生两个效果:物体随地球自转的向心力和重力。

其中,向心力很小,由于纬度的变化,物体做圆周运动的向心力不断变化,因而表面物体的重力随纬度的变化而变化。

重力约等于万有引力,在赤道处,F=F向+mg,所以mg=F-F向=GMm/(2-Rω^2)自^2/R,因地球自转角速度很小,所以可以忽略地球自转。

地球表面的物体所受到的向心力f的大小不超过重力的0.35%,因此在计算中可以认为万有引力和重力大小相等。

但是,如果星球自转速度相当大,使得在它赤道上的物体所受的万有引力恰好等于该物体随星球自转所需要的向心力,那么这个星球就处于自行崩溃的临界状态了。

在地球的同一纬度处,g随物体离地面高度的增大而减小,即g'=(Gm1/(R+h)^2)。

强调的是,g=G·M/R不仅适用于地球表面,还适用于其他星球表面。

绕地球运动的物体所受地球的万有引力充当圆周运动的向心力,万有引力、向心力、重力三力合一。

即:G·M·m/R=m·a向=mg,所以g=a向=G·M/R^2.三、人类认识天体运动的历史:人类认识天体运动的历史可以分为“地心说”和“日心说”两个阶段。

XXX(XXX、XXX)代表了“地心说”,而XXX (XXX被烧死、XXX)则代表了“XXX说”。

万有引力与航天知识点总结

万有引力与航天知识点总结

万有引力与航天知识点总结
万有引力定律:
定义:任何两个物体之间都存在引力,且这个引力与它们质量的乘积成正比,与它们距离的平方成反比。

这就是万有引力定律。

公式:F=G(m1m2)/r^2,其中F是两个物体之间的引力,m1和m2分别是两个物体的质量,r是它们之间的距离,G是引力常量。

特点:万有引力定律具有普遍性、相互性、宏观性和特殊性。

万有引力与航天:
万有引力提供向心力:物体在地球表面附近绕地球做匀速圆周运动时,万有引力提供向心力。

重力与万有引力的关系:重力是由于地面附近的物体受到地球的万有引力而产生的。

在地球的两极,物体所受的重力与万有引力大小相等。

但在地球的其他地方,由于物体随地球自转,万有引力的一部分提供向心力,所以重力并不完全等于万有引力。

第一宇宙速度:在地球表面附近(轨道半径可视为地球半径)绕地球做圆周运动的卫星的线速度,是所有圆周运动的卫星中线速度最大的。

航天器:航天器是利用万有引力定律,通过一定的技术手段,实现人类探索太空、研究太空、利用太空的目的的重要工具。

例如,我国已经成功发射了多颗人造卫星,如东方红一号、悟空号等,还成功发射了载人飞船,如神舟9号、神舟10号、神舟11号和神舟12号等。

以上就是万有引力与航天的主要知识点,通过学习和理解这些知识点,可以更好地认识宇宙的奥秘,也可以为人类探索宇宙提供更多的支持和帮助。

万有引力与航天知识点

万有引力与航天知识点

第1页,共4页第2页,共4页万有引力与航天知识点一、行星的运动1、 开普勒行星运动三大定律① 第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

② 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。

推论:近日点速度比较快,远日点速度比较慢。

③ 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。

即:其中k 是只与中心天体的质量有关,与做圆周运动的天体的质量无关。

二、万有引力定律1、万有引力定律的建立① 太阳与行星间引力公式 ② 月—地检验 ③ 引力常量G :11226.6710/G N m kg -=⨯⋅, 是由卡文迪许通过扭秤实验测得的2、万有引力定律① 内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r 的二次方成反比。

即:② 运用 (1)万有引力与重力的关系: 重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。

忽略地球自转可得:(2)计算重力加速度地球表面附近 方法:万有引力≈重力地球上空距离地心r=R+h 处 方法:三、万有引力的成就1、求天体质量的思路法一:在地球表面的物体,若不考虑地球自转,物体的重力等于地球对物体的万有引力(=G F F 引)2Mm G mg R=⇒2gRM G = 黄金代换式 中心天体的密度:233443gR M gG V GR R ρππ===法二:把行星(或卫星)绕中心天体看做匀速圆周运动,万有引力充当向心力(=n F F 引)G Mm r 2=m v 2r =mω2r =m 4π2T2r =ma 向 则 2Mm G r = 22232223224v v rm M r Gr mr M Gr mr M T GT ωωππ⇒=⇒=⎛⎫⇒=⎪⎝⎭以 2324r M GT π=为例 求中心天体的密度 23322334343r M r GT V GT R R ππρπ=== 若当卫星环绕天体表面运动时,其轨道半径r 等于天体半径R , 即 r=R , 则 23GTπρ=(T 为近地卫星的公转周期) 四、宇宙速度(1)第一宇宙速度17.9/v km s = 近地卫星的环绕速度 A 、推导:近地卫星(r=R) , 万有引力提供向心力(=n F F 引)22Mm v G m v R R =⇒= 表达式一 2GM gR =又由黄金代换式v ⇒= 表达式二B 、第一宇宙速度既是卫星最大的环绕速度,也是卫星最小的发射速度 2、第二宇宙速度211.2/v km s = 3、第三宇宙速度316.7/v km s =(2)、人造地球卫星32a kT =2Mm F Gr =122m m F G r=2R Mm G mg =2')(h R Mm G mg +=2R Mm G mg =2 严谨的人,方方面面表现的都是严谨;乐观的人,时时处处看到的都是阳光第3页,共4页第4页,共4页1. 万有引力提供向心力=n F F 引 (G Mm r 2=m v 2r =mω2r =m 4π2T2r =ma 向)r 增大2Mm G r =223223224n n v GM m v r rGM mr r r mr T T GM GMma a rωωππ⇒=⇒=⎛⎫⇒=⎪⎝⎭⇒=(3)、 地球同步卫星(通讯卫星)1、轨道一定:在赤道的正上方2、周期一定:运动周期与地球自转周期相同,且T=24h3、离地高度:h=36000km求解方法:万有引力提供向心力()()22322222322()4360004MmGMT Gm R h h R T R h gR T h R km πππ=+⇒=-+⇒=-=由黄金代换式GM=gR 4、线速度大小:v=3.1km/s 5.角速度大小:定值 6.向心加速度大小:定值 例题 1 如图所示,在同一轨道平面上的几颗人造地球卫星A 、B 、C ,下列说法正确的是( C )A .根据v =gR ,可知三颗卫星的线速度v A <vB <v CB .根据万有引力定律,可知三颗卫星受到的万有引力F A >F B >FC C .三颗卫星的向心加速度a A >a B >a CD .三颗卫星运行的角速度ωA <ωB <ωC(4) 近地卫星、同步卫星和赤道上随地球自转的物体运动的异同1.轨道半径:近地卫星与赤道上物体的轨道半径相同,同步卫星的轨道半径较大.r 同>r 近=r 物.2.运行周期:同步卫星与赤道上物体的运行周期相同.由T =2πr 3GM可知,近地卫星 的周期要小于同步卫星的周期.T 近<T 同=T 物.3.向心加速度:由G Mmr2=ma 知,同步卫星的加速度小于近地卫星加速度.由a =ω2r = (2πT )2 r 知,同步卫星加速度大于赤道上物体的加速度,a 近>a 同>a 物. (5) 卫星变轨问题的处理技巧1.当卫星绕天体做匀速圆周运动时,万有引力提供向心力,由G Mm r 2=m v 2r,得v =GMr,由此可见轨道半径r 越大,线速度v 越小.当由于某原因速度v 突然改变时,若速度v 突然减小,则F >m v 2r ,卫星将做近心运动;若速度v 突然增大,则F <m v 2r ,卫星将做离心运动,轨迹变为椭圆,此时可用开普勒第三定律分析其运动.2.卫星到达椭圆轨道与圆轨道的切点时,卫星受到万有引力相同,所以加速度相同.五、“双星”模型我们的银河系中的恒星大约四分之一是双星,有一种双星,质量分别为m 1和m 2的两个星球,绕同一圆心做匀速圆周运动,它们之间的距离恒为l ,不考虑其他星体的影响,两颗星的轨道半径和周期各是多少?解:对m 1G m 1m 2l2=m 1R 1ω2 ①对m 2G m 1m 2l2=m 2R 2ω2 ②由①②式可得:m 1R 1=m 2R 2,(即轨道半径与质量成反比)又因为R 1+R 2=l ,所以R 1=m 2l m 1+m 2,R 2=m 1lm 1+m 2,将ω=2πT , R 1=m 2l m 1+m 2,代入①式可得:G m 1m 2l 2=m 1m 2l m 1+m 2·4π2T 2,所以T =4π2l 3G (m 1+m 2)=2πllG (m 1+m 2).知识归纳:1.双星绕它们共同的圆心做匀速圆周运动,两星之间的万有引力提供各自需要的向心力(即F 向 大小相等)2.双星系统中每颗星的角速度ω和周期T 都相等;3.两星的轨道半径之和等于两星间的距离 ( R 1+R 2=l )V 减小ω减小T 增大a n 减小。

万有引力与航天 公式总结

万有引力与航天 公式总结

注释:M 中心天体质量m 中心天体上的物体质量或者围绕中心天体做匀速圆周运动的物体质量R 中心天体半径(地球半径约为6400km )r 两球心间距离或轨道半径h 距离中心天体高度 R r h -=(同步卫星轨道半径约为36000km )g 星球表面重力加速度ρ中心天体密度一、地面公式当忽略中心天体自转影响时:⎪⎪⎪⎩⎪⎪⎪⎨⎧=⇒=⇒====R G g GR g G gR M R GM g gR GM mg R GMm πρπρ34432222 二、围绕中心天体做匀速圆周运动的卫星公式⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=⇒=⇒=⇒=⇒=⇒=⇒=3232323222322223444R GT rGT r M GM r T Tr m r GMr m r GM v r v m r GM a ma r GMm n n πρπππωω 结论:越远周期越大,剩下都小三、万有引力与重力的关系在南北极:万有引力等于重力极mg R GMm =2在赤道:万有引力一小部分充当向心力⎪⎪⎪⎩⎪⎪⎪⎨⎧=-22224自自赤T R m R m ma mg R GMm n πω四、宇宙速度 第一宇宙速度(环绕速度)s km gR RGM v /9.7≈==(最大的环绕速度,最小的发射速度) 第二宇宙速度(脱离速度)s km v /2.11=(使物体挣脱地球引力束缚的最小发射速度) 第三宇宙速度(逃逸速度)s km v /7.16=(使物体挣脱太阳引力束缚的最小发射速度)五、双星1)双星系统的周期、角速度相同.2)轨道半径之比与线速度成正比与质量成反比.3)双星系统的周期与双星间距离的三次方之比只与双星的总质量有关. 122121M M v v r r == )(2213M M G L T +=π六、卫星变轨速度:B ⅡB Ⅲv v > ⅡB ⅡA v v > A ⅠⅡA v v > ⅢB ⅠA v v >加速度:ⅡA ⅠA a a = ⅢB ⅡB a a = B A a a >周期:123T T T >>机械能:123E E E >>结论:低轨道变高轨道→加速,高轨道变低轨道→减速;同一点加速度相等,越近加速度越大越远周期越大,能量越高,一直在一个轨道上环绕时机械能守恒七、开普勒行星定律①(轨道定律)所有行星绕太阳运动都是椭圆,太阳处在椭圆的一个焦点上②(面积定律)对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积 ③(周期定律)所有行星轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等即:k Ta =23(圆轨道半长轴用R ,k 的大小与中心天体质量有关)。

万有引力与航天知识总结

万有引力与航天知识总结

第 1 页第4讲 万有引力与航天1.两条线索(1)万有引力提供向心力F 引=F 向.r T m r m r v m rMm G 2222)2(πω=== ---------越远越慢 ( r =R +h .当卫星贴近天体表面运动时,h ≈0,r=R ).(2)重力近似等于万有引力提供向心力.2R MmGmg = 2.应用实例天体质量M 、密度ρ的估算测出卫星绕天体做匀速圆周运动的半径r 和周期T ,由r T m r Mm G 22)2(π=得2324GTr M π=, 3233334R GT rR M VM ππρ===(R 为天体的半径) 当卫星沿天体表面绕天体运行时,r =R ,则23GT πρ=3. 第一宇宙速度R v m RMm G 212=, s km R GMv /9.71==或Rv m mg 21=, s km gR v /9.71==4.关于同步卫星的五个“一定” (1)轨道平面一定:轨道平面与 赤道 共面. (2)周期一定:与地球自转周期 相同 ,即T =24 h. (3)角速度一定:与地球自转的角速度 相同 . (4)高度一定:由222)()2()(h R T m h R Mm G +=+π,得同步卫星离地面的高度一定h ≈3.6×107 m.(5)速度一定:v =3.1×103 m/s. 5.变轨问题(1)圆轨道1与 Ⅲ 比较-----越远越慢(2)椭圆轨道Ⅱ A 点速度小于B 点速度(3)A 点 从低轨道到高轨道 点火加速 V1>V Ⅱ 加速度由距离决定 a1=a Ⅱ6.万有引力和重力的关系万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转需要的向心力F 向,如图4-4-1所示,可知:(1)地面上的物体的重力随纬度的增大而增大.故重力加速度g 从赤道到两极逐渐增加. (2)在两极:重力等于万有引力,重力加速度最大.(3)在赤道:F 万=F 向+mg故22ωmR rMmGmg -= (4)由于地球的自转角速度很小,地球的自转带来的影响很小,一般情况下认为: mg RMm G=2,故GM =gR 2,这是万有引力定律应用中经常用到的“黄金代换”.7.星体表面某一高度处的重力加速度的求法若物体距星体表面高度为h ,则2/)(h R Mm G mg +=,即g h R R h R GM g 22/)()(+=+=Ⅲ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等于零(自转速度),要充分利用地球的自转的惯性,就必须自西向东发射。这
样可以更多地节省燃料和推力。发射可分为三个阶段:
①发射长空阶段
②漂移进入轨道阶段
③在预定轨道上绕地球运行阶段
(4)运行:
稳定运行时,由万有引力提供向心力。
①由公式:线速度: v = GM r
r3
角速度: = GM 周期:T = 2

,卫星将做近心运动,轨道半

F F 径将减小;当

时,卫星将做离心运动,轨道半径将增大。

(6)对接:
交会对接指两个航天器(宇宙飞船、航天飞机等)在太空轨道会合并连接成一
个整体.它是实现太空装配、回收、补给、维修、航天员交换等过程的先决条
件.空间交会对接技术包括两部分相互衔接的空间操作,即空间交会和空间对
万有引力与航天重点规律方法总结
一.三种模型 1.匀速圆周运动模型: 无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点, 围绕中心天体(视为静止)做匀速圆周运动
2.双星模型: 将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自 转动的向心力。
3.“天体相遇”模型: 两天体相遇,实际上是指两天体相距最近。
第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴 R 的三次方跟公 转周期 T 的二次方的比值都相等。
表达式为:R3 = K (K = GM ) k 只与中心天体质量有关的
T2
4 2
定值与行星无关
2.牛顿万有引力定律 1687 年在《自然哲学的数学原理》正式提出万有引力定律 ⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引 力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比.
b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。
c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附
近的物体间,它的存在才有实际意义.
d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在
空间的性质无关,与周期及有无其它物体无关.
r 3 3
=
(适合于有行星、卫星转动的中心天体)
GT 2 R3
方法二:根据中心天体半径 R 和其表面的重力加速度 g 计算:
= 3g 4GR
(适合于没有行星、卫星转动的天体)
4.计算第一宇宙速度(环绕速度)
简单说就是卫星或行星贴近中心天体表面的飞行速度,这时卫星或行星高度忽略 r≈R
方法一。根据中心天体质量 M 和半径 R 计算:
由于是万有引力提供向心力,所以所有卫星都是围绕地心在转。轨道有三种:
a.赤道平面内(如同步卫星)叫赤道轨道。
b.与赤道平面垂直,通过地球两极,叫极地轨道。
c.可以和赤道平面成任一角度,叫一般轨道。
注意:没有跟某一经度或某一纬度重合的轨道(除赤道平面)
(3)发射:由于卫星运动的分析是针对地心这个参考系的,故火箭发射时的初速度不
接.所谓交会是指两个或两个以上的航天器在轨道上按预定位置和时间相会,
而对接则为两个航天器相会后在结构上连成一个整体.
(5)引力常数 G:
10 m kg ①大小: G = 6.67 −11 N 2 /
2
,由英国科学家卡文迪许利用扭秤测出
1
②意义:
10 表示两个质量均为 1kg 的物体,相距为 1 米时相互作用力为: 6.67 −11 N
四.两条思路:即解决天体运动的两种方法
F F 1. 万有引力提供向心力:
9.8m/s2
g R '
2
③关系:
=
g (R + h)2
五.万有引力定律的应用
1.计算天体运动的线速度、角速度、周期、向心加速度。
r a.线速度: v =
GM r
b.角速度: =
GM
3
3
r a r c.周期:T = 2
GMd.向心加速度:向来自=GM2
2.计算中心天体的质量:
方法一:根据转动天体运动周期 T 和转动半径 r 计算:
2

G
Mm
R2
=
m
v2
R

v
=
GM R
方法二。根据中心天体半径 R 和表面重力加速度计算:

F万
=
mg
=
m
v2
R

v
=
gR
5.预测未知天体:
6.研究天体运动,发射人造卫星
(1)分类:主要有:侦察卫星、通信卫星、导航卫星、气象卫星、地球资源卫星、勘
测科学研究卫星、预警卫星、测地卫星等种类。
(2)轨道:
F r ⑵.数学表达式:

=
G
Mm
2
⑶.适用条件:
a.适用于两个质点或者两个均匀球体之间的相互作用。(两物体为均匀球体时,r 为 两球心间的距离)
b. 当 r → 0 时,物体不可以处理为质点,不能直接用万有引力公式计算
c. 认为当 r → 0 时,引力 F → 的说法是错误的
⑷.对定律的理解
a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力
r 4 2 3
M=
(适合于有行星、卫星转动的中心天体)
GT 2
方法二:根据中心天体半径 R 和其表面的重力加速度 g 计算:
R g 2
M=
(适合于没有行星、卫星转动的中心天体)
G
注意:转动天体的质量是求不出来的。只能求中心天体的质量。
3.计算中心天体的密度:
方法一:根据转动天体运动周期 T、转动半径 r 和中心天体半径 R 计算:
万=

即: F万
=G
Mm r2
=
man
=
v2 m
r
=
mr
4 2 T2
=
mr 2
2.天体对其表面物体的万有引力近似等于重力:
Mm
G
=m g
R2
即 GM = gR 2 (又叫黄金代换式)
注意:
①地面物体的重力加速度: g = GM ≈9.8m/s2
R2
②高空物体的重力加速度:
g'
=
GM (R + h) 2
r3
GM
a r 向心加速度:
向=
GM
2
分析可知:在同一中心天体做匀速圆周运动的所
有卫星的 v、 、T、a 各量都只与轨道半径 r 有关。 ②离地面越高即 r 越大,则卫星的 v、 、a、越小, T 越大。
(5)变轨: 卫星的变轨实质是通过短时间内启动加速或减速火箭以改变卫星的速度,而使
F F 万有引力与所需向心力不再相等。当
二.两种学说 1.地心说:代表人物是古希腊科学家托勒密 2/日心说:代表人物是波兰天文学家哥白尼
三.两个定律 1.开普勒定律: 第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆
的一个焦点上
第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫
过相同的面积。
相关文档
最新文档